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Large-scale structure formation with global topological defects
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We investigate cosmological structure formation seeded by topological defects which may form du
phase transition in the early Universe. First, we derive a partially new, local, and gauge-invariant sys
perturbation equations to treat microwave background and dark matter fluctuations induced by topo
defects or any other type of seeds. We then show that this system is well suited for numerical anal
structure formation by applying it to seeds induced by fluctuations of a global scalar field. Our num
results cover a larger dynamical range than those covered by previous investigations and are compleme
them since we use substantially different methods. The resulting microwave background fluctuatio
compatible with older simulations. We also obtain a scale-invariant spectrum of fluctuations although
somewhat higher amplitude. On the other hand, our dark matter results yield a smaller bias paramete
patible withb;2 on scales of 20h21 Mpc in contrast with previous work which yielded larger bias facto
Our conclusions are thus more positive. According to the aspects analyzed in this work, global topol
defect-induced fluctuations yield viable scenarios of structure formation and do better than standard C
large scales.@S0556-2821~96!00510-3#

PACS number~s!: 98.80.Cq, 98.80.Bp, 98.80.Hw
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I. INTRODUCTION

The formation of cosmological structure in the Univers
inhomogeneities in the matter distribution such as quasar
redshifts up toz;5, galaxies, clusters, super clusters, void
and walls, is an outstanding basically unsolved proble
within the standard model of cosmology. At first sight,
seems obvious that small density enhancements can g
sufficiently rapidly by gravitational instability. But globa
expansion of the Universe and radiation pressure counte
gravity, so that, e.g., in the case of a radiation-dominate
expanding Universe, no density inhomogeneity can gro
faster than logarithmically. Even in a Universe dominated
pressureless matter, cosmic dust, the growth of density p
turbations is strongly reduced by the expansion of the U
verse.

On the other hand, we know that the Universe was e
tremely homogeneous and isotropic at early times. This f
lows from the isotropy of the 3 K cosmic microwave back-
ground ~CMB!, which represents a relic of the plasma o
baryons, electrons, and radiation at times before protons
electrons combined to form hydrogen. After a long series
upper bounds, measurements with the Cosmic Backgro
Explorer ~COBE! satellite have finally established anisotro
pies in this radiation@1# at the level of

K DT

T
~u!L ;1025 on angular scales 7°<u<90°.

On smaller angular scales, the observational situation is
present somewhat confusing and contradictory@2#, but many
upper limits requireDT/T,431025 on all scalesu,8°.

*Present address: Universite´ de Gene`ve, Département de Physique
Théorique, 24 quai E. Ansermet, CH-1211 Gene`ve, Switzerland.
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All observations together clearly rule out the simple
model of a purely baryonic universe with density parame
V;0.1 and adiabatic initial fluctuations~either the initial
perturbations are too large to satisfy CMB limits, or they a
too small to develop into the observed large scale structu!.

The most conservative way out, where one just allows
nonadiabatic initial perturbations~minimal isocurvature
model!, also faces severe difficulties@3–6#. In other models,
one assumes that initial fluctuations are created during
inflationary epoch, but that the matter content of the U
verse is dominated by hot or cold dark matter or a mixture
both. Dark matter particles do not interact with photons oth
than gravitationally and thus induce perturbations in t
CMB only via gravitation. In these models, inflation gene
cally leads toV51, while the baryonic density parameter
only VBh

2;0.01, compatible with nucleosynthesis co
straints. With one component of dark matter, these mod
do not seem to agree with observations@4,7#, however, if a
suitable mixture of hot and cold dark matter is adopted,
results from numerical simulations look quite promisin
@8–10#, although they might have difficulties to account fo
the existence of clusters at a redshiftz;1 @11#.

In these dark matter models initial fluctuations are gen
ated during an inflationary phase. Since all worked out m
els of inflation face difficulties~all of them have to invoke
fine tuning to obtain the correct amplitude of density inh
mogeneities!, we consider it very important to investigate ye
another possibility: Density perturbations in dark matter a
baryons might have been triggered by seeds. Seeds ar
inhomogeneously distributed form of energy which mak
up only a small fraction of the total energy density of th
Universe. Particularly, natural seeds are topological defe
They can form during symmetry-breaking phase transitio
in the early Universe@12,13#. Depending on the symmetry
being gauged or global, the corresponding defects are ca
local or global.
5394 © 1996 The American Physical Society
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53 5395LARGE-SCALE STRUCTURE FORMATION WITH GLOBAL . . .
The fluctuation spectrum on large scales observed
COBE is not very far from scale-invariant@14#. This has
been considered a great success for inflationary mod
which generically predict a scale invariant fluctuation spe
trum. However, as we shall see, also models in which p
turbations are seeded by global topological defects, yi
scale-invariant spectra of CMB fluctuations. To be specifi
we shall mainly consider texture,p3 defects which lead to
event singularities in four-dimensional spacetime@15,16#.
Global defects are viable candidates for structure formati
since the scalar field energy densityrS of global topological
defects scales likerS}1/(at)

2 ~up to a logarithmic correc-
tion for global strings! and thus always represents the sam
fraction of the total energy density of the Universe (t is
conformal time!:

rS /r;8pGh2[2e, ~1!

whereh determines the symmetry-breaking scale~see Fig.
1!. For the background spacetime we assume a Friedma
Lemaı̂tre universe withV51 dominated by cold dark matte
~CDM!. We choose conformal coordinates such that

ds25a2~2dt21d i j dx
idxj !.

A numerical analysis of CMB fluctuations from topologica
defects on large scales has been performed in@17,18#; a
spherically symmetric approximation is discussed in@19#.
Results for intermediate scales angular are presented in@20#.
All these investigations~except@19#! use linear cosmological
perturbation theory in synchronous gauge and~except@18#!
take into account only scalar perturbations. Here, we deriv
fully gauge-invariant and local system of perturbation equ
tions. The ~nonlocal! split into scalar, vector, and tenso
modes on hypersurfaces of constant time is not perform

FIG. 1. The scaling behavior for (r13p)a2 found numerically
in (128)3 simulations for different O(N) models. The time is given
in units of the grid spacingDx. For comparison, a dashed lin
}1/t2 is also shown. After some initial oscillations, forN.3 the
scaling is very clean untilt;80, where finite-size effects can be
come important.
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We solve the equations numerically in a cold dark matt
~CDM! universe with global texture. In this paper, we deta
the results outlined in a previous letter@21#. Furthermore, we
present explicit derivations of the equations, a description
our numerical methods, and we briefly discuss some tests
our codes. Since there is no spurious gauge mode in o
initial conditions, there is no danger that these may grow
time and some of the difficulties to choose correct initia
conditions ~see, e.g.,@18#! are removed. However, as we
shall discuss in Sec. III, the results do depend very sen
tively on the choice of initial conditions.

Nevertheless, we should keep in mind that we are inve
tigating models of structure formation which rely on the pa
ticle physics and cosmology at temperatures o
T;TGUT;1016 GeV. An energy scale about which we have
no experimental evidence whatsoever. The physical mod
adopted for our calculations should thus always be cons
ered as a toy model, which we hope, captures the featu
relevant for structure formation of the ‘‘realistic physics’’ a
these energies. Therefore, we suggest, to not to take the
sults seriously much beyond about a factor of 2 or so. On t
other hand, our models show that the particle physics at t
grand unified theory~GUT! scale may have left its traces in
the distribution of matter and radiation in the present Un
verse, yielding the exciting possibility to learn about th
physics at the highest energies, smallest scales, by prob
the largest structures of the Universe.

We calculate the CMB anisotropies on angular scal
which are larger than the angle subtended by the horiz
scale at decoupling of matter and radiation,u.ud . For
V51 andzd'1000,

ud51/Azd11'0.03'2°. ~2!

It is therefore sufficient to study the generation and evolutio
of microwave background fluctuations after recombinatio
During this period, photons stream freely, influenced only b
cosmic gravitational redshift and by perturbations in th
gravitational field~if the medium is not reionized!.

In Sec. II we derive a local and gauge-invariant perturb
tion equation to calculate the CMB fluctuations. In Sec. II
we put together the full system of equations which has to
solved to investigate gravitationally induced CMB fluctua
tions and the dark matter perturbation spectrum in a mod
with global topological defects. We discuss the choice o
initial conditions and the numerical treatment of this syste
in Sec. IV. The next section is devoted to the presentati
and analysis of our numerical results. We end with concl
sions in Sec. VI.

Notation. We denote conformal time byt. Greek indices
run from 0 to 3, Latin indices run from 1 to 3. The metric
signature is chosen (2111). We set\5c5kBoltzmann51
throughout.

II. A LOCAL AND GAUGE-INVARIANT FORM
OF THE PERTURBED LIOUVILLE EQUATION

Collisionless particles are described by their one-partic
distribution function which lives on the seven-dimensiona
phase space:

Pm5$~x,p!PTMug~x!~p,p!52m2%.
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5396 53RUTH DURRER AND ZHI-HONG ZHOU
Here,M denotes the spacetime manifold andTM its tan-
gent space. The fact that collisionless particles move on g
desics translates to the Liouville equation for the one-parti
distribution functionf . The Liouville equation reads@22#

Xg~ f !50. ~3!

In a tetrad basis (em)m50
3 ofM, the vector fieldXg onPm is

given by ~see, e.g.,@22#!

Xg5S pmem2vm
i ~p!pm

]

]pi D , ~4!

wherevm
n are the connection one-forms of (M,g) in the

basisem, and we have chosen the basis

~em!m50
3 and S ]

]pi D
i51

3

on TPm , p5pmem .

We apply this general framework to the case of a perturb
Friedmann universe. The metric of a perturbed Friedma
universe with density parameterV51 is given by
ds25gmndx

mdxn with

gmn5a2~hmn1hmn!5a2g̃mn , ~5!

where (hmn)5diag(2,1,1,1) is the flat Minkowski met-
ric and (hmn) is a small perturbation,uhmnu!1. We now use
the fact that the motion of photons is conformally invarian

We show that, for massless particles and conformally
lated metrics,

gmn5a2g̃mn ,

~Xgf !~x,p!50 is equivalent to~Xg̃ f !~x,ap!50. ~6!

This is easily seen if we writeXg in a coordinate basis:

Xg5bm]m2Gab
i babb

]

]bi
,

with

Gab
i 5

1

2
gim~gam ,b1gbm ,a2gab ,m!.

Thebm are the components of the momentump with respect
to thecoordinatebasis:

p5pmem5bm]m .

If ( em) is a tetrad with respect tog, thenẽm5aem is a tetrad
basis for g̃. Therefore, the coordinates ofap5apmẽm
5a2pmem5a2bm]m with respect to]m on (M,g̃) are given
by a2bm. In the coordinate basis, thus our statement Eq.~6!
follows, if we can show that

~Xg̃ f !~x
m,a2bi !50 if ~Xgf !~x

m,bi !50. ~7!

Setting v5ap5vmẽm5wm]m , we have vm5apm and
wm5a2bm. Using p250, we obtain the following relation
for the Christoffel symbols ofg and g̃:
eo-
cle

ed
nn

t.
re-

Gab
i babb5G̃ab

i babb1
2a,a
a

babi .

For this step it is crucial that the particles are massless.
massive particles, the statement is of course not true. Ins
ing this result into the Liouville equation, we find

a2Xgf5wmS ]m f ub22
a,m
a
bi

] f

]bi D2G̃ab
i wawb

] f

]wi , ~8!

where]m f ub denotes the derivative off with respect toxm at
constant (bi). Using

]m f ub5]m f uw12
a,m
a
bi

] f

]bi
,

we see that the braces in Eq.~8! just correspond to]m f uw .
Therefore,

a2Xgf ~x,p!5wm]m f uw2G̃ab
i wawb

] f

]wi 5Xg̃ f ~x,ap!.

We have thus shown that the Liouville equation in a p
turbed Friedmann universe is equivalent to the Liouvi
equation in perturbed Minkowski space,

~Xg̃ f !~x,v !50, ~9!

with1

v5vmẽm5apmẽm .

We now want to derive a perturbation equation for E

~9!. If ēm is a tetrad in Minkowski space,ẽm5ēm1 1
2hm

n ēn is
a tetrad with respect to the perturbed geometryg̃. For
(x,vmēm)P P̄0 , thus, (x,v

mẽm)P P̃0 . Here, P̄0 denotes the
zero-mass one-particle phase space in Minkowski space
P̃0 is the phase space with respect tog̃, perturbed
Minkowski space. We define the perturbation of the distrib
tion functionF by

f ~x,vmẽm!5 f̄ ~x,vmēm!1F~x,vmēm!. ~10!

Liouville’s equation forf then leads to a perturbation equ
tion for F. We choose the natural tetrad

ẽm5]m2
1

2
hm

n ]n

with the corresponding basis of one-forms

ũm5dxm1
1

2
hn

mdxn.

1Note that also Friedmann universes with nonvanishing spa
curvature,KÞ0, are conformally flat and thus this procedure c
also be applied forKÞ0. Of course, in that case the conform
factora2 is no longer just the scale factor but depends on positi
A coordinate transformation which transforms the metric ofKÞ0
Friedmann universes into a conformally flat form can be found, e
in @23#.
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Inserting this into the first structure equation,dũm52vn
m

`dxn, one finds

vmn52
1

2
~hml ,n2hnl ,m!ul.

Using the background Liouville equation, namely, thatf̄ is
only a function ofv5ap, we obtain the perturbation equa
tion

~] t1g i] i !F52
v
2

@~ ḣi02h00, i !g
i1~ ḣi j2h0 j , i !g

ig j #
d f̄

dv
,

where we have setv i5vg i , with v25( i51
3 (v i)2. Let us pa-

rametrize the perturbations of the metric by

~hmn!5S 22A Bi

Bi 2HLd i j12Hi j
D , ~11!

with Hi
i50. Inserting this above, we obtain

~] t1g i] i !F52@ḢL1~A, i1
1
2 Ḃi !g

i

1~Ḣ i j2
1
2Bi , j !g

ig j #v
d f̄

dv
. ~12!

From Eq.~12! we see that the perturbation in the distributio
function in each spectral band is proportional tovd f̄ /dv.
This shows once more that gravity is achromatic. We thus
not lose any information if we integrate this equation ov
photon energies. We define

m5
p

r ra
4E Fv3dv.

4m is the fractional perturbation of the brightnessi,

i5a24E fv3dv.

This is obtained using the relation

4pE d f̄

dv
v4dv524E f̄v3dvdV524r ra

4. ~13!

Setting i5 ī„T(g,x)…, one finds thati5(p/60)T4(g,x).
Hence,m corresponds to the fractional perturbation in th
temperature:

T~g,x!5T̄„11m~g,x!…. ~14!

Another derivation of Eq.~14! is given in @25#. Since thev
dependence ofF is of the formvd f̄ /dv, we have, with Eq.
~13!,

F~xm,g i ,v !52m~xm,g i !v
d f̄

dv
.

This shows thatm is indeed the quantity which is measure
in a CMB anisotropy experiment, where the spectral info
mation is used to verify that the spectrum of perturbations
the derivative of a blackbody spectrum. Of course, in a r
-

n

do
er

e

d
r-
is

eal

experiment located at a fixed position in the Universe, th
monopole and dipole contributions tom cannot be measured.
They cannot be distinguished from a background compone
and from a dipole because of our peculiar motion with re
spect to the CMB radiation.

Multiplying Eq. ~12! with v3 and integrating overv, we
obtain the equation of motion form:

] tm1g i] im5ḢL1~A, i1
1
2 Ḃi !g

i1~Ḣ i j2
1
2Bi , j !g

ig j .
~15!

It is well known that the equation of motion for photons
only couples to the Weyl part of the curvature~null geode-
sics are conformally invariant!. The right-hand side~RHS! of
Eq. ~15! is given by first derivatives of the metric only which
could at most represent integrals of the Weyl tensor. To o
tain a local, nonintegral equation, we thus rewrite Eq.~15! in
terms of¹2m. It turns out that the most suitable variable is
however, not¹2m but x, which is given by

x5¹2m2~¹2HL2 1
2H, i j

i j !2
1

2
~¹2Bi23] js i j !g

i ,

where

s i j52
1

2
~Bi , j1Bj , i !1

1

3
d i j Bl

,l1Ḣ i j .

Note thatx and¹2m only differ by the monopole contribu-
tion, ¹2HL2(1/2)Hi j , i j and the dipole contribution, (1/2)
3(¹2Bi23] js i j )g

i . The higher multipoles ofx and¹2m
agree. An observer at fixed position and time cannot distin
guish a monopole contribution from an isotropic backgroun
and a dipole contribution from a peculiar motion. Only the
higher multipoles,l>2, contain information about tempera-
ture anisotropies. For a fixed observer, therefore, we ca
identify ¹22x with dT/T.

In terms of metric perturbations, the electric and magnet
parts of the Weyl tensor are given by~see, e.g.,@26,25#!

Ei j5
1

2
@n i j ~A2HL!2ṡ i j2¹2Hi j2

2
3Hlm

,lmd i j

1Hil
,l , j1Hjl

,l , i #, ~16!

Bi j52
1

2
~e i lms jm , l1e j lms im , l !, ~17!

with

n i j5] i] j2~1/3!d i j¹
2.

Explicitly working out (] t1g i] i)x using Eq.~15!, yields
after some algebra, the equation of motion forx:

~] t1g i] i !x53g i] jEi j1gkg jekli] lBi j[ST~ t,x,g!,
~18!

whereekli is the totally antisymmetric tensor in three dimen-
sions withe12351. The spatial indices in this equation are
raised and lowered withd i j and thus index positions are
irrelevant. Double indices are summed over irrespective
their positions.
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5398 53RUTH DURRER AND ZHI-HONG ZHOU
Equation~18! is the main result of this section. We now
discuss it, rewrite it in integral form, and specify initial con
ditions for adiabatic CDM perturbations plus seeds.

In Eq. ~18! the contribution from the electric part of the
Weyl tensor does not contain tensor perturbations. On
other hand, scalar perturbations do not induce a magne
gravitational field. The second contribution to the sourc
term in Eq.~18! thus represents a combination of vector an
tensor perturbations. If vector perturbations are negligib
the two terms on the right-hand side~RHS! of Eq. ~18! thus
yield a split into scalar and tensor perturbations which
local.

Since the Weyl tensor of Friedmann Lemaıˆtre universes
vanishes, the RHS of Eq.~18! is manifestly gauge invariant
~this is the so-called Stewart-Walker lemma@28#!. Hence,
also the variablex is gauge invariant. Another proof of the
gauge invariance ofx, discussing the behavior ofF under
infinitesimal coordinate transformations, is presented in@25#.

The general solution to Eq.~18! is given by

x~ t,x,g!5E
t i

t

ST„t8,x1~ t82t !g,g…dt8

1x„t i ,x1~ t i2t !g,g…, ~19!

whereST is the source term on the RHS of Eq.~18!. Let us
compare this result with the more familiar one, where on
calculatesdT/T by integrating photon geodesics~which is of
course equivalent to solving the Liouville equation!. For sim-
plicity, we specialize to the case of pure scalar perturbatio
@the expressions for vector and tensor perturbations given
@25# can be compared with Eq.~19! in the same manner#. For
scalar perturbations, integration of photon geodesics yie
@25#

dT

T
~ t f ,xf ,n!52@ 1

4Dg
~r !1Vi•n

i1~C2F!#u i
f

1E
i

f

~Ċ2Ḟ!dl. ~20!

Here,C and F denote the Bardeen potentials as define
e.g., in @27,25#. On super-horizon scales~which are the im-
portant scales for the Sachs-Wolfe contribution! Vi•n

i can be
neglected. Furthermore, the contributions of the squa
brackets of Eq.~20! from the final timet5t f , only lead to
uninteresting monopole and dipole terms. We now use th
the electric contribution to the Weyl tensor for purely scal
perturbations is given by@25#

Ei j5
1

2
~] i] j2

1
3d i j¹

2!~C2F![
1

2
n i j ~C2F!.

Therefore,] i(C2F)53] jEi j . Using furthermore

2~C2F!u i
f52E

i

f

@Ċ2Ḟ1~C2F!, in
i #dl,

Eq. ~20! leads to

dT

T
~ t,x,n!5

1

4
Dg

~r !~ t i ,xi !23E
i

f

¹22] jEi j n
idt. ~21!
-
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If we take into account that the directionn in Eq. ~20!, the
direction of anincomingphoton, corresponds to2g in Eq.
~19!, we find that Eq.~20! coincides with Eq.~19! for scalar
perturbations, and that

x~ t i ,xi ,g!5
1

4
¹2Dg

~r !~ t i ,xi !5
1

4
¹2Dg

~r !
„t i ,x2~ t2t i !….

~22!

We now want to investigate this initial value and decompo
Eq. ~21! into terms caused by CDM and terms coming fro
the seeds, the scalar field. We assume that dark matter
radiation perturbations are adiabatic onsuperhorizon scales:

Dg
~r !5~4/3!Dg

~c! .

Since radiation and CDM probably have been a single flu
at very early times~e.g., at the time of the phase transition!,
this assumption is reasonable. It is, however, inconsisten
setDg

(r )54/3Dg
(c) on subhorizon scales. Because of the d

ferent equations of state for the two components, adiabati
cannot be maintained on subhorizon scales@27#. We can then
derive, from Eqs.~2.36!, ~2.37!, ~2.45!–~2.47! in @25#,

1

4
Dg

~r !5
5

3
FC1

2

3
ḞC /~ ȧ/a!1FS

on superhorizon scales. Here, the Bardeen potentials are
into parts due to cold dark matter (C) and the scalar field
(S), respectively. For cold dark matter,CC52FC . Using
this, we can bring Eq.~19! into the form

dT

T
~ t f ,xf ,n!5

1

3
CC~ t i ,xi !2

2

3
ĊC /~ ȧ/a!~ t i ,xi !

12E
i

f

ĊCdt1FS~ t i ,xi !

2E
i

f

¹22STS„t,xf2~ t f2t !n,n…dt,

~23!

whereSTS denotes the portion of the source term due to t
scalar field only:

STS523ni] jEi j
~S!1nknjekl j] lBi j

~S! . ~24!

From an analysis analogous to the one presented here
scalar perturbations, one can conclude that initial contrib
tions todT/T from vector perturbations can be neglected o
superhorizon scales and that those for tensor perturbat
vanish. Equation~23! is thus the general solution on supe
horizon scales,l@t i for our adiabatic model~including vec-
tor and tensor perturbations of the seeds!. Equation~23! is
much better suited for numerical investigation than the ge
eral expression Eq.~19!. This can be demonstrated by con
sidering the case of pure CDM without source term: In th
case,FC52CC5const and from Eq.~23! we easily recover
the well-known result

dT

T
~ t,x,n!5

1

3
CC„t i ,x2n~ t2t i !…,
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whereas Eq.~19! in this case leads to

dT

T
~ t,x,n!5

dT

T
~ t i ,xi ,n!12CC~ t i ,xi !.

In other words, the unknown initial condition in Eq.~19!
cancels 5/6 of the naive result for the case of adiabatic CD
fluctuations. Even though because of the existence ofĊC
terms, the cancellation is slightly less substantial in our ca
the assumption of adiabaticity on superhorizon scales i
crucial ingredient of the model.

The electric and magnetic parts of the Weyl tensor a
determined by the perturbations in the energy moment
tensor via Einstein’s equations. We assume that the sou
for the geometric perturbations is given by the scalar fie
and dark matter. The contributions from radiation may
neglected. Furthermore, vector perturbations of dark ma
~which decay quickly! are neglected. The divergence ofEi j
is then given by~see the Appendix!

3] jEi j58pGrCa
2Di

18pGF] idT0013S ȧaD dT0i2~3/2!] jt i j G , ~25!

where the first term on the RHS is the dark matter sou
term rC , denoting the dark matter energy density. The se
ond contribution is due to the scalar field: The energy m
mentum tensor of the scalar field

Tmn
S 5f,mf,n2

1

2
gmnf ,lf,l

yields

t i j[Ti j2~a2/3!d i j Tl
l5t i j

S5f, if, j2~1/3!d i j ~¹f!2,

dT0 j5T0 j
S 5ḟf, j ,

dT005T00
S 5

1

2
@~ḟ !21~¹f!2#,

andDj is a gauge invariant perturbation variable for the de
sity gradient. For scalar perturbations,Dj5] jD. The evolu-
tion equation for the dark matter density perturbation
given by ~see@24# and @29#!

D̈ i1S ȧaD Ḋ i24pGa2rCDi58pG] i~ḟ2!. ~26!

During the radiation-dominated era 8pGrRDR , in principle,
has to be included in Eq.~26!. But since radiation perturba
tions cannot grow substantially on subhorizon scales, a
since dark matter fluctuations do not grow in a radiatio
dominated universe@30#, their influence is not very impor-
tant. It leads to a slight decrease of the CDM perturbatio
~We haved checked this and found differences of up to 2
on small scales but much less on large scales.!

The equation of motion forBi j is more involved. A some-
what cumbersome derivation~see the Appendix! yields
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a21~aBi j !
••2¹2Bi j58pGS i j

~B! , ~27!

with

S i j
~B!52e lm~ idT0l , j )m1e lm~ i ṫ j ) l ,m .

Here, (i , . . . ,j ) denote symmetrizations in indicesi and j .
To the source termS (B), only vector and tensor pertur-

bations contribute. It is thus entirely determined by the e
ergy momentum tensor of the scalar field.

Equations~23!, ~25!, ~26!, and~27! constitute a fully local
and gauge-invariant system of cosmological perturbatio
equations for CDM and photons in the presence of seeds

III. THE SYSTEM OF EQUATIONS FOR GLOBAL
SCALAR FIELD-INDUCED FLUCTUATIONS

In this section we collect all the equations which dete
mine the system under consideration. We also repeat eq
tions which have been derived in Sec. II. Let us begin wit
the scalar field equation of motion.

The energy momentum tensor of the scalar field is a sm
perturbation. In first-order perturbation theory, we can thu
solve the equation of motion of the scalar field in the bac
ground, Friedmann-Lemaıˆtre geometry, neglecting geometric
perturbations. The equation of motion for the scalar fieldf is
given by

gmn¹m¹nf1
]V

]f
50, ~28!

where gmn denotes the unperturbed metric and¹m is the
covariant derivative with respect to this metric. For our nu
merical computations, we consider anO(4) model. In
O(N) models, the scalar fieldfPRN and the zero-
temperature potential is given byV05l/4(f22h2)2 for
some energy scaleh. At high temperatures,T.Tc;h, one-
loop corrections to the effective potential dominate and th
minimum of the effective potential is atf50. Below the
critical temperature, the minimum is shifted~in the simplest
case! to ^f2&5@12(T/Tc)

2#h2 ~see@12,16# and references
therein!. The vacuum manifold, i.e., the space of minima o
the effective potential, then becomes a (N21)-sphere,
S(N21). Since

pk~S
m!5H 0, k,m,

Z, k5m,

the lowest nonvanishing homotopy group of am-sphere is
alwayspm . Since probably higher defects are unstable an
decay into lower ones,2 them-sphere is a suitable vacuum
manifold to studypm defects.

If the system under consideration is at a temperatureT
much below the critical temperature,T!Tc , it becomes
more and more improbable for the fieldf to leave the
vacuum manifold.f will leave the vacuum manifold only if

2This is an unproven conjecture, motivated, e.g., by observatio
of the density of textures and monopoles in liquid crystals and b
numerical experiments@13,31#.
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it would otherwise be forced to gradients of orde
(¹f)2;lf2h2, thus only over length scales of orde
l51/(Alh)[mf

21 ( l is the transversal extension of the de
fects!. For GUT scale phase transitionsl;10230 cm, where
cosmic distances are of the order of Mpc;1024 cm. If we
are willing to lose the information of the precise field con
figuration over these tiny regions, it seems well justified
fix f to the vacuum manifoldN . Instead of discussing the
field equation~28!, we requiref/hPS(N21). The remaining
field equation,hf50, then demands that

f/h[b : M→S~N21!

is a harmonic map from spacetimeM into S(N21).
The topological defects we are interested in are singula

ties of these maps. When the gradients off become very
large, such as, e.g., towards the center of a global monop
the field leaves the vacuum manifold and assumes nonv
ishing potential energy. IfbPS(N21) is enforced, a singular-
ity develops by topological reasons.

In the physics literature, harmonic maps are known ass
models. The action of as model is given by

Ss5E
M

gmn]mbA]nbBgAB~b!Augud4x, ~29!

wheregAB denotes the metric onS
N21 andgmn is the metric

of spacetime. We fixb to lay in the vacuum manifold
SN21 by introducing a Lagrange multiplier. We then obtai
the following equation of motion forb:

hb2~b•hb!b50, ~30!

which shows that thes model is scale free. There are thu
two possible evolution equations for the scalar field at lo
temperature. We call Eq.~28! the ‘‘potential model’’ evolu-
tion equation and Eq.~30! thes-model approach.

The energy-momentum tensor of the scalar field pertur
spacetime geometry and induces perturbations in the d
matter energy density according to Eq.~26!:

D̈1S ȧaD Ḋ24pGa2rCD58pGḟ2, ~31!

whereD is a gauge-invariant variable for the dark matte
perturbations@29#. On subhorizon scalesD;dr/r. In co-
moving coordinates, the total perturbed energy-momentu
tensor is given by

dTm
n 5f,m•f

,n2
1

2
dm

n f,l•f
,l1rCDdm

0d0
n .

As already mentioned in Sec. II, the perturbed Einstein equ
tions to this energy momentum tensor yield an algebra
equation for the divergence of the electric part of the We
tensor and an evolution equation for the magnetic part of t
Weyl tensor~see the Appendix!:
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] jEi j52
8p

3
GrCa

2Di

28pGF13 ] idT001S ȧaD dT0i1
1

2
] jt i j G , ~32!

and

1

a
~aBi j !

••2¹2Bi j58pGS i j
~B! , ~33!

with

S i j
~B!5e lm~ i@T0l

S , j )m1 ṫ j ) l ,m#

and

t i j5f, if, j2
1

3
d i j ~¹f!2.

The source term for the perturbation of the Liouville equa
tion is given by Eq.~24!:

23ni] jEi j
~S!1nknjekl j] lBi j

~S![SST~ t,x,n!. ~34!

The CMB fluctuations are then determined according to

dT

T
~ t,x,n!5E

t i

t

SST„t8,x1~ t82t !n,n…dt8

1FS„t i ,x1~ t i2t !n,n…1
1

3
CC~ t i ,xi !

2
2

3
ĊC /~ ȧ/a!~ t i ,xi !12E

i

f

ĊCdt. ~35!

Equations~28! and~31!–~35! form a closed, hyperbolic sys-
tem of partial differential equations. Actually, all except the
scalar field equation~28!, are linear perturbation equations
with source terms. The differential equations fordT/T, D,
andBi j can thus be solved, e.g., by the Wronskian metho
i.e., by some integrals over the source term. The correspon
ing solution fordT/T is given in Eq.~35!, the general solu-
tion of the dark matter equation is given below in Eqs.~45!,
~46!, and~47!.

Let us briefly describe the general solution forBi j : We
switch to Fourier space, because there the¹2 is a simple
multiplication by 2k2 and Eq. ~33! becomes an ordinary
differential equation with scalar homogeneous solutions

b65
1

a
exp~6 ikt !. ~36!

The general solution to the inhomogeneous equation is giv
by

Bi j5~b1Ci j
11b2Ci j

2!1Bi j
~hom! , ~37!

whereBhom denotes an arbitrary homogeneous solution an
C1, C2 are given by
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Ci j
1528pGE S̃ i j

~B!b2

W
dt, ~38!

Ci j
258pGE S̃ i j

~B!b1

W
dt. ~39!

Here,W denotes the Wronskian determinant of the solutio
which amounts to

W5b1ḃ22b2ḃ15
2ik

a2
. ~40!

IV. INITIAL CONDITIONS AND NUMERICAL METHODS

A. The scalar field

As already shown in the previous section, the equation
motion of the scalar field is given by

gmn¹m¹nf1
]V

]f
50, ~41!

where gmn is the background~unperturbed metric!. With
b5f/h andm5Alh, Eq.~41! yields, for O~N! models in a
Friedmann universe,

] t
2b12~ ȧ/a!] tb2¹2b5

1

2
a2m2~b221!b. ~42!

This equation as it stands cannot be treated numerically
the regime which is interesting for large-scale structure f
mation. The two scales in the problem are the horizon sc
t;(ȧ/a)21 and the inverse symmetry-breaking scale, the c
moving scale (am)21. At recombination, e.g., these scale
differ by a factor of about 1053 and thus both cannot be
resolved in one computer code.

There are two approximations to treat the scalar field n
merically. As we shall see, they are complementary and t
the fact that both approximations agree with each oth
within about 10% is reassuring. The first possibility is
replace (am)21 by w, the smallest scale which can be re
solved in a given simulation, typically twice the grid spacin
w;2Dx. The time dependence of (am)21 which results in a
steepening of the potential is mimicked by an addition
damping term: 2(ȧ/a)→aȧ/a, with a;3 @32#. Numerical
tests have shown that this procedure, which usually is imp
mented by a modified staggered leap frog scheme@33#, is not
very sensitive on the values ofa andw chosen. With this
method, we have replaced the growing comoving massam
by the largest mass which our code can resolve. Fo
(256)3 grid which simulates the evolution of the scalar fie
until today, we obtain 256Dx;t0;431017 sec/a0 , so that
w;431015 sec/a0 , i.e., am;harec;1017 GeV is replaced
by aboutw215a010

239 GeV ;10235 GeV, where we set
aeq51.

We are confident that this modified equation mimics t
behavior of the field, since the actual mass of the scalar fi
is irrelevant as long as it is much larger than the typic
kinetic and gradient energies associated with the field wh
are of the order of the inverse horizon scale. Therefore,
soon as the horizon scale is substantially larger thanDx, the
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code should mimic the true field evolution on scales larg
than w. But, to our knowledge, there exists no rigorou
mathematical approximation scheme leading to the abo
treatment of the scalar field which would then also yield t
optimal choice fora.

Alternatively, we can treat the scalar field in th
s-model approximation given in the previous section. Th
approach is opposite to the one outlined above in which
scalar field mass is much too small, since thes model cor-
responds to setting the scalar field mass equal infinity.

The s-model equation of motion cannot be treated n
merically with a leap frog scheme, since it involves nonli
ear time derivatives. In this case, a second-order accu
integration scheme has been developed by varying the
cretized action with respect to the field@18#.

The two different approaches have been extensiv
tested by us and other workers in the field, and good agr
ment has been found on scales larger than about 3–4
sizes@34,35#. We have compared our potential code with th
exact spherically symmetric scaling solution@36# and with
our old spherically symmetrics-model code@19#. Outside
the unwinding events which extend over approximately thr
grid sizes, the different approaches agree within about 5
This is very encouraging, especially since the two treatme
are complementary: In thes model, we let the scalar field
massm go to infinity. In the potential approach, we replac
m by ;1/Dx;200/t0;200a0/10

10y;10235 GeV.
The integration of the scalar field equation is numerica

the hardest part of the problem, since it involves the solut
of a system of nonlinear partial differential equations.
good test of our numerical calculations, next to checking t
scaling behavior ofrS , is energy-momentum conservation o
the scalar field,T;n

(S)mn50. Energy-momentum conservatio
in the potential model, with about 15% accuracy, is slight
worse than in thes model, where it is about 5% accurat

FIG. 2. The quantitiesu(T0
m ;m)u2 ~dotted line!, u(Ti

m ;m)u2

~dashed lines! and u(T0
0/t)u2 ~solid line! are shown as functions of

k. The inaccuracy in energy- and momentum-conservation is be
10% fork<325128/4. This hints that our code is accurate to bett
than 10% for wavelengths of four grid spacings and larger.
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~see Fig. 2!. Therefore, the final results presented here are
obtained with thes-model approach. Our checks lead us
the conclusion that we can calculate the scalar field ener
momentum tensor, which then is the source of dark ma
and CMB fluctuations, to an accuracy of about 10%. T
problem of choosing the correct initial condition may induc
another ~systematical! error in our calculations which we
hope to remain below 20%. Other sources of error are n
ligible.

B. Dark matter

Once the scalar fieldb(x,t) is known, the dark matter
perturbations can easily be calculated by either using
Wronskian method~see below! or some standard ordinary
differential equation solver. We have performed both me
ods and they agree very well. For later use, we briefly d
scribe the Wronskian method. We normalize the scale fac
by

a5
t

t
~11 1

4 t/t!,

with

t51/A~4pG/3!r eq5
teq

2~A221!
.

Here,teq denotes the time of equal matter and radiation de
sity, r rad(teq)5rC(t eq)5(1/2)r(teq). We have normalized
a such thataeq5a(teq)51. Transformed to the variablea,
the dark matter equation~26! then yields

d2D

da2
1

213a

2a~11a!

dD

da
2

3

2a~11a!
D

52eḃ2S dadt D
2

5~11a!S/t2, ~43!

S52eḃ2 and e54pGh2.

The homogeneous solutions to this linear differential equ
tion are well known@37#:

D1511
3

2
a, ~44!

D25S 11
3

2
aD F lnS Aa1111

Aa1121
D 23Aa11G . ~45!

The general solution to Eq.~43! is given by

D~ t !5c1~ t !D1~ t !1c2~ t !D2~ t ! ~46!

with

c152E ~SD2 /W!dt, c25E ~SD1 /W!dt,

W5D1Ḋ22Ḋ1D25
ȧ~11 3

2a!3

aAa11
5

~11 3
2a!3

at
~47!
all
to
gy-
tter
he
e

eg-

the

th-
e-
tor

n-

a-

is the Wronskian determinant of the homogeneous solution
The integrals@Eq. ~47!# have to be performed numerically
with S5eḃ2. When discussing the initial conditions forD in
Sec. IV D, we shall present an analytic approximation for th
source termS.

C. The CMB anisotropies

The CMB anisotropies are given by

dT

T
5¹22x

up to monopole and dipole contributions which we disregard
Here, x is a solution of Eq.~18!. The source termST is
determined via Eqs.~25! and ~27!. However, using this
straightforward approach results in a big waste of comput
memory~which we cannot afford!: We would be satisfied to
calculatedT/T for about 30 observers in each simulations
which means we need¹22x only at 30 positionsx. But since
we have to perform an inverse Laplacian which is done b
fast Fourier transforms, we have to calculatex on the whole
grid, which consists of 1923;73106 positions. In addition,
to calculate the spherical harmonic amplitudes ofdT/T up to
aboutl;40 ~angular resolution of about4°), weneed typi-
cally 53104 directionsn. The x variable alone~in double
precision! would thus require 700 Gbytes of memory, an
amount which is not available on present-day computer
The way out is to take the inverse Laplacian already in th
equation of motion~18!. This results in

~] t1g i] i !
dT

T
523g i¹22~] jEi j !2gkg jekli¹

22~] lBi j !

[¹22ST~ t,x,g!. ~48!

Here, the inverse Laplacian has to be performed for a vect
field and a symmetric traceless tensor field, a total of eig
scalar variables which only depend onx and not ong. For a
1923 grid, the total code then reaches a size of about 1 Gby
of memory, no problem for presently available machines
Equation~48! has the general solution@see Eq.~23!#

dT

T
~ t0 ,x0 ,g!51FS~ t i ,xi !

2E
i

f

¹22STS„t,x02~ t f2t !n,n…dt

1
1

3
CC~ t i ,xi !2

2

3
ĊC /~ ȧ/a!~ t i ,xi !

12E
i

f

ĊCdt, ~49!

with STS given in Eq.~24!. Here, vector perturbations of the
dark matter@which are not seeded by the defects, see E
~26!, and thus decay quickly# are neglected. The first term of
Eq. ~49! determines the initial condition of the CMB
anisotropies caused by the source. In the numerical simu
tion, we just set it23nl¹22(] jEl j

(S))(t i ,xi)t i . This assumes
that the source term is approximately constant untilt i and
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that magnetic contributions can be neglected. The resul
amplitude is not very sensitive to this assumption, but cha
ing it can somewhat influence the spectral index. We ha
solved Eq.~49! numerically by just summing up the contri
butions from each time step for 27 observer positionsx0 .
The value of the source term at positionx01(t2t0) is de-
termined by linear interpolation. The quantity] iEi j

S is deter-
mined by Eq.~25! and its inverse Laplacian is calculated b
fast Fourier transforms. To obtain¹22Bi j

S from Eq.~27!, we
directly calculate¹22S(B) in k-space, then solve the ordi
nary, linear differential equation for¹22Bi j in k-space by
the Wronskian method. Since all componentsTmn

(S) in average
scale such asA/At on superhorizon scales,S (B);At21/2

and thereforeC6}t5/2 on superhorizon scales. Therefore, w
can neglect the contribution toC6 from the lower boundary
in the integral. Furthermore, since the homogeneous solu
Bi j
(hom) is decaying, we drop it entirely. This procedure co

responds to settingB(t i)50 and calculatingB(t) according
to Eq. ~37!.

D. Initial conditions

Initially, the fieldf itself and/or the velocitiesḟ are laid
down randomly on the grid points. The initial timet in is
chosen to be the grid sizet in5Dx, so that the field at differ-
ent grid points should not be correlated. The configuration
then evolved in time with one of the approximation schem
discussed above.

Because our initial conditions for dark matter and photo
very sensitively depend on the scaling behavior of the sca
field ~see below!, we can only start the dark matter or photo
simulations when scaling is fully reached,t in58Dx. Starting
our simulations, e.g., att54Dx, changes the results by abou
a factor of 2. Further doubling of the initial time, changes o
results by less than 20%, we thus believe that att58Dx
scaling is sufficiently accurate. Unfortunately, this late initi
time reduces our dynamical range to about 192/8524 for a
1923 grid, which is seen clearly in our results for the CM
anisotropies discussed below.

It is very important to choose the correct initial condition
for the dark matter and the photon perturbations induced
the dark matter. Changing them can change the CMB fl
tuation amplitudes by more than a factor of 2. Since the
fluctuations are used to normalize the model, i.e., to de
minee, this reflects in corresponding changes ine. We want
to do better than a factor of 2 by choosing physically pla
sible initial conditions. The cleanest way would be to sim
late the evolution of perturbations through the phase tran
tion, assuming that before the phase transition, the unive
was an unperturbed Friedmann universe withf[0. On the
other hand, since we want to calculate the perturbation sp
trum on scales of up to 1000 Mpc with a (256)3 grid, we
cannot start our dark matter and CMB simulation earlier th
at a time when the horizon distance is approximate
8Dx;30 Mpc. At the beginning of the scalar field simula
tion, our grid scaleDx;4 Mpc is of the order of the horizon
scale. We therefore have to decide on the amplitudes of
perhorizon perturbations. One possibility is setting all ge
metrical perturbations initially to zero. The requirements

] jEi j ~ t i !50 and S i j
~B!~ t i !50
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then yield initial conditions for the dark matter fluctuations
D and the photon variablex. But these, let us call them
‘‘strict isocurvature’’ initial conditions, are not natural since
they do not propagate in time: Even if we start withE and
B vanishing on superhorizon scales, after some time residu
fluctuations have leaked into these scales and one obtains
white noise fluctuations spectrum on superhorizon scal
shown in Fig. 3. This does not violate causality, since whit
noise is uncorrelated and just results from the residuals
correlated fluctuations on smaller scales. The correct initi
values forD and Ḋ would, of course, be those obtained by
solving the equation of motion Eq.~26! from the symmetry-
breaking time until the start of the simulation. We found a
method to incorporate this at least approximately: The spe

trum of the dark matter source term 8pGuḟ 2̃u2 can be ap-
proximated by

8pGuḟ 2̃u52eḃ 2̃5eA1

VE d3xḃ2~x!eikx

'
eA

At@11a1kt1a2~kt!
2#
, ~50!

with

A53.3, a1520.7/~2p!, a250.7/~2p!2.

These numbers have been obtained by ax2–minimization
scheme. The approximation is not very good. It yields
x2'2000 for about 1000 data points. Its comparison wit
the real data in Figs. 4 and 5 shows that Eq.~50! approxi-
mates the source term to about 10% on superhorizon scal
but does not follow the wiggles present in the data on small
scales. Since we shall not use the fit on subhorizon scale
this is not important for our simulations. However, in gen

eral, ḟ 2̃ is complex and setting it equal to its absolute value

FIG. 3. The spectrum of the electric part of the Weyl tensor as
function of kt at time t58 for a grid of size 160. On large scales,
kt/(2p),1, the spectrum is flat, white noise.
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we neglect the evolution of phases. Again, by causality, t
will not severely affect scales larger than the horizon, sin
on these scales the phases are~approximately! frozen. But on
subhorizon scales, our fit is not very useful because the
coherent evolution of phases. Assuming this form of t
source term, we can solve Eq.~26! analytically on superho-
rizon scales, where we approximate the source term by

2eḃ 2̃5
eA

At
, on superhorizon scales. ~51!

The homogeneous solutions of Eq.~26! are given by Eqs.
~44! and ~45!. The general inhomogeneous solutio

FIG. 4. The dashed curves and the triangles showḃ2 as a func-
tion of t for fixed values ofk5n/ntot for ntot5128. The solid lines
show the fits according to the fitting formula given in the text.

FIG. 5. The crosses and triangles showḃ2 as a function ofn,
with k5n/ntot for fixed values oft. The solid curves show the fits
according to the fitting formula given in the text.
his
ce
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he
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D5c1D11c2D2 , even with the simple source term equatio
~51!, becomes rather complicated. But in the radiation- an
matter-dominated regimes, we find the simple approxim
tions

D5~4/7!t2S; Ḋ5~6/7!t2S radiation dominated,
~52!

D52~4/9!t2S; Ḋ52~2/3!t2S matter dominated.
~53!

FromD we can calculateCC , leading to the dark matter
contribution to the CMB anisotropies.

As mentioned above, the initial contribution of the scala
field is approximated by

FS~ t i ,xi !;23t in
i¹22~] jEi j

~S!!.

The result does not depend very strongly on this initial co
dition, however, it is very sensitive to thedark matterinitial
conditions: If we choose some arbitrary, nonadiabatic initi
condition, the resultingCl ’s increase by nearly a factor of
10 and the dark matter induces 80% of the total fluctuatio
Choosing adiabatic initial conditions as discussed in Sec. I
leading to Eq.~49!, dark matter only contributes about 20%
to the angular power spectrum and the main contribution
because of the defects. The dark matter contribution to t
CMB anisotropies is not scale invariant, but is white noise.
has a spectral indexn50. This result was found numerically
~see Fig. 6! but it is also clear from Eq.~50! which shows
again that on superhorizon scalesḟ2 and therefore alsoD
have white noise spectra.

Our value ofe obtained with these physical isocurvature
and on superhorizon scale adiabatic initial conditions, is
reasonable agreement with the values obtained in@18# and
@17#.

FIG. 6. The dark matter contribution to theCl ’s from a
(160)3 simulation. (l 12)(l 11)l Cl /24 is shown. Forl ,20,
which is the dynamic range of this simulation, a white noise
n50, spectrum fits reasonably well.
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Let us also present a heuristic derivation of the numeri
finding equation~51! on superhorizon scales: We know tha
the average valuêḃ2&}1/t2, the usual scaling behavior. Th
Fourier transform ofḃ2 determines the fluctuations on thi
‘‘background’’ on a given comoving scalel52p/k. As
long as this scale is superhorizon,l.t, a patch of sizel3

consists ofN5(l/t)3-independent horizon size volumes
The fluctuations on this scale should thus be proportiona

ḃ 2̃}^ḃ2&/AN}1/At,

which is just the behavior which we have found numerica
on superhorizon scales.

As soon as a given scale becomes subhorizon,l!t, ḃ 2̃

starts decaying from this large scale value proportional
1/t2.

V. RESULTS

A. CMB anisotropies

To analyze the CMB anisotropies, we expanddT/T in
spherical harmonics

dT

T
~ t0 ,x,g!5(

lm
alm~x!Ylm~g!. ~54!

As usual, we assume that the average overNx different ob-
server positions coincides with the ensemble average~a kind
of ‘‘ergodic hypothesis’’!. We define

Cl 5
1

~2l 11!Nx
(
m,x

ual m~x!u2, l >2. ~55!

Gaussian fluctuations are characterized by the two-point c
relation function. Since the angular two-point correlatio
function is given by

FIG. 7. The pixel distribution ofdT/T for one observer.
cal
t
e
s

.
l to

lly

to

or-
n

K dT

T
~n!

dT

T
~n8!L

~n•n85cosu!

5
1

4p (
l

~2l 11!

3Cl Pl ~cosu!, ~56!

Gaussian-distributed CMB fluctuations are fully determine
by theCl ’s. However, as can be seen from Fig. 7, in ou
case the distribution of the CMB fluctuations is not quite
Gaussian. It is slightly negatively skewed. We find an ave
age skewness of20.5 and a kurtosis of 0.7. In Fig. 8 we
show the harmonic amplitudes for five simulations on
1923 grid with 27 different observer positions for each simu
lation. The low-order multipoles depend strongly on the ran
dom initial conditions~cosmic variance!, as was found in the
spherically symmetric simulation@19#.

It is well known that cold dark matter fluctuations with a
power spectrum of spectral indexn gravitationally induce
CMB anisotropies with a spectrum given by@38#

Cl 5C2

G„l1~n21!/2…G„~92n!/2…

G„l1~52n!/2…G„~n13!/2…
. ~57!

We have performed a least square fit of log10(Cl ) from our
numerical results fitted with log10(Cl ) obtained from Eq.
~57!.3 If we take into account all theCl ’s reliably calculated
in our simulations, which limits us approximately tol<22,
we find a very nice scale-invariant spectrum,

n50.960.2, ~58!

3In the case of topological defect-induced fluctuations, theCl
spectrum does not have precisely this form, since CMB fluctuation
are not only induced by the dark matter but mainly by the scala
field perturbations and the assumptions made for the derivation
this formula are not valid.

FIG. 8. The valuesl (l 11)Cl /6 for 27 observers are plotted
for e51. The crosses are the individual observers and the solid lin
indicates the average. The sharp drop afterl ;30 is because of
finite resolution~our dynamical range is approximately 25!.
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with quadrupole amplitude

Q5A~5/4p!C2TCMB5~2.860.7!K•e. ~59!

The 1, 2, and 3 sigma contour plot is shown in Fig. 9. T
minimal x2 is 0.56.

It is very interesting that the dark matter contribution
the CMB anisotropies does not yield a scale-invariant sp
trum, but white noise. This can be understood analytica
The ĊC contributions todT/T in Eq. ~23! are not very im-
portant and

~dT/T!C~ t0 ,k!;
1

3
CC~ t i ,k!exp~ ik•nt0!

5
eA

6At i

exp~ ik•nt0!

k2

on superhorizon scales. For the second equal sign, we u
k2CC54pGDC;eA/2At i . By standard arguments~see,
e.g.,@38#!, one then finds

Cl
~C!5

e2A2

18pt i
E dk

k2
j l
2 ~kt0!}

G~ l 20.5!

G~ l 12.5!
, ~60!

corresponding to Eq.~57! with n50. This is also what we
find numerically~see Fig. 6!. The dark matter contribution
caused the spectral indexn of the total CMB anisotropies to
drop slightly belown51.

To reproduce the COBE amplitudeQCOBE5(2065)mK,
@14# we have to normalize the spectrum by choosing t
phase transition scaleh according to

e54pGh25~0.860.4!31025. ~61!

FIG. 9. Thex2 contour plots for 66%, 95%, and 99% confidenc
levels from fitting theCl , to a spectrum with indexn with quad-
rupole amplitudeQ according to Eq.~57! for l <20. In total, 81
observers from three different (192)3 simulations have been taken
into account.
he

to
ec-
lly:

sed

he

This value is somewhat smaller, but still comparable with th
results obtained in@17,18#. But even taking into account the
considerable uncertainties, the difference of nearly a fact
of 2 between the result~61! and Refs.@17,18# ~normalized to
the two-year COBE data! is somewhat disturbing and de-
serves future investigation.

Another method to determinee is the following: The total
temperature fluctuation amplitude on a given angular sca
uC is given by

sT
2~uC!5

1

4p(
l

Cl ~2l 11!exp~2l 2uC
2 /2!. ~62!

In Fig. 10 we showsT as a function ofuC . In a recent
analysis of the COBE data@40# sT

(COBE)(7°);44 mK and
sT
(COBE)(10°);40mK for a spectral indexn;1, which leads

again to the result given in Eq.~61!.

B. Dark matter fluctuations

Using fast Fourier transforms, we calculate the spectru
P(k)5ud(k)u2 of the dark matter density fluctuations as
shown in Fig. 11. The fit represented as dashed line in F
11 is given by

P~k!h3/~2p!35
Ck

@11ak1~bk!1.51~gk!2#2
, ~63!

with h50.5 and

C5215h21 Mpc4, ~64!

a510h22 Mpc ~50.5t!, ~65!

b51.25h22 Mpc ;t/~4p!, ~66!

g52.3h22 Mpc ;t/~2p!, ~67!

e FIG. 10. The root mean square of the temperature fluctuation
given angular scale is shown as a function of angle fore51025.
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where we have usedt519.36h22 Mpc, which is approxi-
mately the comoving time at equal matter and radiation.

The parameterC, which is most important to determine
the bias factor, can also be obtained by the following rou
analytical argument, valid in the relevant, matter-dominat
era: On superhorizon scales,uDu2;(0.5eA)2t3 according to
Eq. ~53!. As soon as the perturbation enters the horizon
t52p/k, the source term disappears andD starts growing as
t2, leading to

P~k,t0!;
~0.5eA!2

2p
kt0

45
~2p!3

h3
Cank. ~68!

Inserting the numberse50.831025, A53.3, t0
254a0t

2,
a0;2.5h23104, we obtainCan;190h21 Mpc4 in excellent
agreement with Eq.~64!. Figure 11 can be compared directl
with the Infrared Astronomy Satellite~IRAS! observation
@39# and it is compatible with a bias factor of order 1.
more detailed calculation with Gaussian or square hat w
dow function yields, fore50.831025,

ssim~10 MPc!51/b10;0.521

sQDOT~10 MPc!51 for h50.5, ~69!

yielding b10;1–2 for the value ofe found by comparison
with COBE, Eq.~61!. A value even somewhat closer to 1
found for b20. Observations and simulations of nonline
clustering of dark matter and baryons@41# suggest a bias
factor b10;1–2 which is compatible with our results. It i
remarkable that unlike in the simulations by Penet al. @18#,
our bias factor is approximately constant and physically a
ceptable.~To determine our power spectrum, we have n
taken into account any smoothing which might change
results by at most 15%.! In Fig. 12 we have shown the dar
matter pixel distribution from a 1003 simulation. It is inter-

FIG. 11. The dark matter power spectrum~without bias and
nonlinear evolution!. The result is averaged over 15 simulations o
(256)3 grids of two different physical scales. The error bar indicat
one standard deviation. The dashed line shows the fit given in
text.
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esting that the skewness of the dark matter distribution
positive, where thedT/T skewness is negative.

VI. CONCLUSIONS

We have derived a new local, gauge-invariant cosmolo
cal perturbation equation for the treatment of free mass
particles in a perturbed Friedmann universe. The grav
tional field enters in this equation only via the Weyl curv
ture which is geometrically very satisfactory. We have a
plied this equation to determine the CMB anisotropies in
texture scenario of structure formation.

Our simulations show that global texture leads to a sca
invariant spectrum of microwave background fluctuations
large scales, such as inflationary models of structure for
tion. This is one of the main results of this investigatio
However, the dark matter contribution to the CMB anisotr
pies is not scale invariant, but is white noise. It is importa
that the initial conditions for dark matter and radiation a
adiabatic in which case the dark matter contribution to
Cl ’s is small and the flat spectrum caused by the defect
maintained.

Our second main result is the dark matter fluctuat
spectrum. The spectrum is very close to scale invariant
the bias factor needed fore normalized by the CMB
anisotropies is aroundb;1–2. As already mentioned, w
have neglected radiation-density perturbations in our ca
lations. These lead to some additional damping of the d
matter perturbations on scales smaller thant rec . The bias
factor can be somewhat enhanced by this effect. Howe
the resulting value is certainly acceptable and smaller t
the bias factor obtained in previous investigations@18#.

The deviation from Gaussian statistics seems to us
very significant~see Figs. 7 and 12! and it is thus important
to develop other means to distinguish topological defe
from inflationary scenarios. A clean and promising candid
for this distinction are the Doppler peaks which are calc

n
es
the

FIG. 12. The dark matter pixel distribution from linear pertu
bation theory. The positive skewness~0.76! and positive kurtosis
~1.2! are clearly visible.
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lated for the texture scenario in@43#.
From our investigations we thus conclude that, conce

ing the large scale CMB anisotropies and the linear da
matter perturbation spectrum, the texture scenario and p
ably also other models with global defects are compati
with present observations.
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APPENDIX: THE EQUATION OF MOTION FOR THE
MAGNETIC PART OF THE WEYL TENSOR

The Weyl tensor of a spacetime (M,g) is defined by

Cmn
sr5Rmn

sr22g@m
@sR

n]
r]1

1

3
Rg@m

@sg
n]

r] , ~A1!

where@m, . . . ,n# denotes antisymmetrization in the indice
m and n. The Weyl curvature has the same symmetries
the Riemann curvature and it is traceless. In addition,
Weyl tensor is invariant under conformal transformations

Cm
nsr~g!5Cm

nsr~a2g!.

~Careful: This equation only holds for the given index pos
tion.! In four-dimensional spacetime, the Bianchi identitie
together with Einstein’s equations yield equations of moti
for the Weyl curvature. In four dimensions, the Bianchi ide
tities

Rmn@sr;l#50

are equivalent to@23#

Cabgd;d5Rg@a;b#2
1

6
gg@aR;b] . ~A2!

This, together with Einstein’s equations, yields

Cabgd;d58pG~Tg@a;b#2 1
3g

g@aT;b] !, ~A3!

whereTmn is the energy-momentum tensor,T5Tl
l .

Let us now choose some timelike unit vector fieldu,
u2521. We then can decompose any tensor field into lo
gitudinal and transverse components with respect tou. We
define

hm
n[gm

n1umun ,
rn-
rk
rob-
ble

e-
ic
nn
ore

es-
p
u-
nk

un-

s
as
the
:

i-
s
on
n-

n-

the projection onto the subspace of tangent space norma
u. The decomposition of the Weyl tensor yields its electr
and magnetic contributions:

Emn5Cmlnsu
lus, ~A4!

Bmn5
1

2
Cmlgdu

lhns
gdus, ~A5!

wherehabgd denotes the totally antisymmetric four-tenso
with h01235A2g. Due to symmetry properties and th
tracelessness of the Weyl curvature,E andB are symmetric
and traceless, and they fully determine the Weyl curvatu
One easily checks thatEmn and Bmn are also conformally
invariant. We now want to perform the corresponding d
composition for the energy-momentum tensor of the sca
field f:

Tmn
S 5f,mf,n2

1

2
gmnf ,lf,l .

We define

rS[Tmn
~S!umun, ~A6!

pS[
1

3
Tmn

~S!hmn, ~A7!

qm[2hm
nTna

~S!ua, qi52
1

a
T0i

~S! , ~A8!

tmn[ha
mh

b
nTab

~S!2hmnpS . ~A9!

We then can write

Tmn
~S!5rSumun1pShmn1qmun1umqn1tmn . ~A10!

This is the most general decomposition of a symmet
second-rank tensor. It is usually interpreted as the ener
momentum tensor of an imperfect fluid. In the frame of a
observer moving with four-velocityu, rS is the energy den-
sity of the scalar field,pS is the isotropic pressure,q is the
energy flux, u•q50, and t is the tensor of anisotropic
stresses,tmnh

mn5tmnu
m50.

We now want to focus on a perturbed Friedmann un
verse. We therefore consider a four-velocity fieldu which
deviates only in first order from the Hubble flow
u5(1/a)]01first order. Friedmann universes are confo
mally flat, and we require the scalar field to be a small p
turbation on a Universe dominated by radiation and co
dark matter~CDM!. The energy-momentum tensor of th
scalar field and the Weyl tensor are thus of first order, a
~up to first order! their decomposition does not depend on th
choice of the first-order contribution tou, they are gauge
invariant. But the decomposition of the dark matter depen
on this choice. Cold dark matter is a pressureless per
fluid. We can thus chooseu to denote the energy flux of the
dark matter,Tn

mun52rCu
m. Then the energy-momentum

tensor of the dark matter has the simple decomposition

Tmn
~C!5rCumun . ~A11!
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With this choice, the Einstein equations~A3! linearized
about anV51 Friedmann background withTbackground

(S) 50
yield the following ‘‘Maxwell equations’’ forE andB @42#.

~i! Constraint equations:

] iBi j54pGh jbmnu
bq@m;n#, ~A12!

] iEi j58pGS 13 a2rCD, j1 1

3
a2rS , j2

1

2
] it i j2

ȧ

a2
qj D .

~A13!

~ii ! Evolution equations:

aḂi j1ȧBi j2a2h~ i
ah j )bgdu

bEa
g;d

524pGa2ha~ ih j )bmnu
btam;n ~A14!

Ėi j1
ȧ

a
Ei j1ah~ i

ah j )bgdu
bBa

g;d

524pGS aqi j2 ȧ

a
t i j1 ṫ i j1arCui j D , ~A15!

where (i , . . . ,j ) denotes symmetrization in the indicesi and
j . The symmetric traceless tensor fieldsqmn and umn are
defined by

qmn5q~m;n!2
1

3
hmnq;l

l ,

umn5u~m;n!2
1

3
hmnu;l

l .

In Eqs.~A14! and~A15!, we have also used that, for the dar
matter perturbations, only scalar perturbations are relev
vector perturbations decay quickly. Therefore,u is a gradient
field, ui5U ; i for some suitably chosen functionU. Hence,
the vorticity of the vector fieldu vanishes,u@m;n#50. With

h0i jk5a4e i jk , rS5a22T00
S , qi52a21T0i

S ,

we obtain, from Eq.~A13!,

] iEi j58pGS 13 rCa
2D, j1

1

3
T00
S , j2

1

2
] it i j1

ȧ

a
T0 j
S D . ~A16!
k
ant,

In Eq. ~A16! and the following equations, summation ove
double indices is understood, irrespective of their position

To obtain the equation of motion for the magnetic part o
the Weyl curvature, we take the time derivative of Eq.~A14!,
usingu5(1/a)]011.order andh0i jk5a4e i jk . This leads to

~aBi j !
••52aH e lm~ iF Ėj ) l1

ȧ

a
Ej ) l G ,m24pGe lm~ iF ṫ j ) l ,m

1
ȧ

a
t j ) l ,mG J , ~A17!

where we have again usedu as a gradient field and thus
terms such ase i jkul j ,k vanish. We now insert Eq.~A15! into
the first square bracket above and replace product expr
sions of the forme i jke i lm and e i jke lmn with double- and
triple-Kronecker deltas. Finally, we replace divergences
B with the help of Eq.~A12!. After some algebra, one ob-
tains

e lm~ iF Ėj ) l1
ȧ

a
Ej ) l ] ,m52¹2Bi j24pGe lm~ iF2aql ,mj)1 ṫ j l ,m

2
ȧ

a2
t j l ,mG .

Inserting this into Eq. ~A17! and using
aql52T0l

S 52ḟf, i , we finally find the equation of motion
for B:

a21~aB! i j
••2¹2Bi j58pGS i j

~B! , ~A18!

with

S i j
~B!5e lm~ i@2T0l

S , j )m1 ṫ j ) l ,m#,

and

t i j5f, if, j2
1

3
d i j ~¹f!2. ~A19!

Since dark matter only induces scalar perturbations a
Bi j consists of vector and tensor perturbations, it is indepe
dent of the dark matter fluctuations. Equations~A16! and
~A18! are used in Sec. II, where we need] iEi j andBi j as
source terms in the Liouville equation.
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