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Large-scale structure formation with global topological defects
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We investigate cosmological structure formation seeded by topological defects which may form during a
phase transition in the early Universe. First, we derive a partially new, local, and gauge-invariant system of
perturbation equations to treat microwave background and dark matter fluctuations induced by topological
defects or any other type of seeds. We then show that this system is well suited for numerical analysis of
structure formation by applying it to seeds induced by fluctuations of a global scalar field. Our numerical
results cover a larger dynamical range than those covered by previous investigations and are complementary to
them since we use substantially different methods. The resulting microwave background fluctuations are
compatible with older simulations. We also obtain a scale-invariant spectrum of fluctuations although with
somewhat higher amplitude. On the other hand, our dark matter results yield a smaller bias parameter com-
patible withb~2 on scales of 207 Mpc in contrast with previous work which yielded larger bias factors.

Our conclusions are thus more positive. According to the aspects analyzed in this work, global topological
defect-induced fluctuations yield viable scenarios of structure formation and do better than standard CDM on
large scales.S0556-282(196)00510-3

PACS numbd(s): 98.80.Cq, 98.80.Bp, 98.80.Hw

I. INTRODUCTION All observations together clearly rule out the simplest
model of a purely baryonic universe with density parameter
The formation of cosmological structure in the Universe,()~0.1 and adiabatic initial fluctuation&ither the initial
inhomogeneities in the matter distribution such as quasars @lerturbations are too large to satisfy CMB limits, or they are
redshifts up taz~5, galaxies, clusters, super clusters, voids,too small to develop into the observed large scale structure
and walls, is an outstanding basically unsolved problem The most conservative way out, where one just allows for
within the standard model of cosmology. At first sight, it nonadiabatic initial perturbationgminimal isocurvature
seems obvious that small density enhancements can gromode), also faces severe difficulti¢8—6]. In other models,
sufficiently rapidly by gravitational instability. But global one assumes that initial fluctuations are created during an
expansion of the Universe and radiation pressure counteraﬁ{ﬂaﬁonary epoch, but that the matter content of the Uni-

gravity, so that, e.g., in the case of a radiation-dominatedq se js dominated by hot or cold dark matter or a mixture of

fe;(sagp(tjr:g% Ignglrﬁ?meicgl(l) dEe\?:rIPi/nIghjmfgigeégm?sgte%r%%om' Dark matter particles do not interact with photons other
9 Y- Ythan gravitationally and thus induce perturbations in the

pressureless matter, cosmic dust, the growth of density PeEmB only via gravitation. In these models, inflation generi-

i i I h i f th - . . . .
t/ljergae'[lons 's strongly reduced by the expansion of the UnlcaIIy leads to) =1, while the baryonic density parameter is

On the other hand, we know that the Universe was ex®™Y Qth,NO'Ol’ compatible with nucleosynthesis con-
tremely homogeneous and isotropic at early times. This folStraints. With one component of dark matter, these models
lows from the isotropy of ta 3 K cosmic microwave back- 40 not seem to agree with observatigds], however, if a
ground (CMB), which represents a relic of the plasma of suitable mixture of hot and cold dark matter is adopted, the
baryons, electrons, and radiation at times before protons arf@sults from numerical simulations look quite promising
electrons combined to form hydrogen. After a long series of8—10], although they might have difficulties to account for
upper bounds, measurements with the Cosmic Backgrounitie existence of clusters at a redshift 1 [11].

Explorer (COBE) satellite have finally established anisotro-  In these dark matter models initial fluctuations are gener-
pies in this radiatiori1] at the level of ated during an inflationary phase. Since all worked out mod-
els of inflation face difficultieqall of them have to invoke
fine tuning to obtain the correct amplitude of density inho-
<?(0)> ~10° on angular scales & §=<90°. mogeneitiel we consider it very important to investigate yet
another possibility: Density perturbations in dark matter and
baryons might have been triggered by seeds. Seeds are an
On smaller angular scales, the observational situation is ahhomogeneously distributed form of energy which makes
present somewhat confusing and contradicf@lybut many up only a small fraction of the total energy density of the
upper limits requireAT/T<4x 10 ° on all scaley<8°. Universe. Particularly, natural seeds are topological defects.
They can form during symmetry-breaking phase transitions
in the early Universd12,13. Depending on the symmetry
*Present address: Universile Gerge, Departement de Physique being gauged or global, the corresponding defects are called
Theorique, 24 quai E. Ansermet, CH-1211 GeagSwitzerland. local or global.
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We solve the equations numerically in a cold dark matter
(CDM) universe with global texture. In this paper, we detail
the results outlined in a previous let{@1]. Furthermore, we
present explicit derivations of the equations, a description of
our numerical methods, and we briefly discuss some tests of
our codes. Since there is no spurious gauge mode in our
initial conditions, there is no danger that these may grow in
time and some of the difficulties to choose correct initial
conditions (see, e.g.[18]) are removed. However, as we

shall discuss in Sec. lll, the results do depend very sensi-
tively on the choice of initial conditions.

Nevertheless, we should keep in mind that we are inves-
tigating models of structure formation which rely on the par-
ticle physics and cosmology at temperatures of
T~Tgur~ 10'® GeV. An energy scale about which we have
no experimental evidence whatsoever. The physical model
adopted for our calculations should thus always be consid-
ered as a toy model, which we hope, captures the features
relevant for structure formation of the “realistic physics” at
these energies. Therefore, we suggest, to not to take the re-

FIG. 1. The scaling behavior fop¢+ 3p)a? found numerically  sults seriously much beyond about a factor of 2 or so. On the
in (128)* simulations for different O) models. The time is given other hand, our models show that the particle physics at the
in units of the grid spacing\x. For comparison, a dashed line grand unified theoryGUT) scale may have left its traces in
«1/? is also shown. After some initial oscillations, fo&f>3 the  the distribution of matter and radiation in the present Uni-
scaling is very clean until~80, where finite-size effects can be- yerse, yielding the exciting possibility to learn about the
come important. physics at the highest energies, smallest scales, by probing

the largest structures of the Universe.

The fluctuation spectrum on large scales observed by \we calculate the CMB anisotropies on angular scales
COBE is not very far from scale-invariafit4]. This has which are larger than the angle subtended by the horizon

been considered a great success for inflationary modelkgale at decoupling of matter and radiatioft 64. For
which generically predict a scale invariant fluctuation specq)—1 andz,~ 1000,

trum. However, as we shall see, also models in which per-
turbations are seeded by global topological defects, yield
scale-invariant spectra of CMB fluctuations. To be specific,
we shall mainly consider texturer; defects which lead to Itis therefore sufficient to study the generation and evolution
event singularities in four-dimensional spacetifib,16.  of microwave background fluctuations after recombination.
Global defects are viable candidates for structure formationpuring this period, photons stream freely, influenced only by
since the scalar field energy density of global topological ~cosmic gravitational redshift and by perturbations in the
defects scales likgsx1/(at)? (up to a logarithmic correc- gravitational field(if the medium is not reionized

tion for global strings and thus always represents the same In Sec. Il we derive a local and gauge-invariant perturba-
fraction of the total energy density of the Universe i¢ tion equation to calculate the CMB fluctuations. In Sec. I,

conformal time: we put together the full system of equations which has to be
solved to investigate gravitationally induced CMB fluctua-

tions and the dark matter perturbation spectrum in a model
with global topological defects. We discuss the choice of
where » determines the symmetry-breaking scédee Fig. initial conditions and the numerical treatment of this system
1). For the background spacetime we assume a Friedmanrin Sec. IV. The next section is devoted to the presentation
Lematre universe with) =1 dominated by cold dark matter and analysis of our numerical results. We end with conclu-
(CDM). We choose conformal coordinates such that sions in Sec. VI.

Notation We denote conformal time bly Greek indices
run from O to 3, Latin indices run from 1 to 3. The metric
signature is chosen—(+ + +). We setf = c=Kggjtzman= 1
throughout.
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pslp~8mG7n°=2e, (1)

ds?=a%(—dt?+ 5;dx'dx).

A numerical analysis of CMB fluctuations from topological
defects on large scales has been performedllihlg; a
spherically symmetric approximation is discussed[189].
Results for intermediate scales angular are presentgzlin
All these investigationgexcept 19]) use linear cosmological
perturbation theory in synchronous gauge #exicept[18]) Collisionless particles are described by their one-particle
take into account only scalar perturbations. Here, we derive gistribution function which lives on the seven-dimensional
fully gauge-invariant and local system of perturbation equaphase space:

tions. The (nonloca) split into scalar, vector, and tensor
modes on hypersurfaces of constant time is not performed.

II. A LOCAL AND GAUGE-INVARIANT FORM
OF THE PERTURBED LIOUVILLE EQUATION

Fm=1{(x,p) € T.Z|g(X)(p,p) = —m?}.
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Here, .7 denotes the spacetime manifold ahdZ its tan-

gent space. The fact that collisionless particles move on geo-
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I bbP=T",

desics translates to the Liouville equation for the one-particle

distribution functionf. The Liouville equation reads2]

Xq(f)=0. (3)
In a tetrad basise(u)i:0 of .7, the vector fieldXy on 77, is
given by (see, e.g.[]22)])

p ) (4)

where w; are the connection one-forms of4,g) in the

(p"e — o), (p>p“ ’

basise”, and we have chosen the basis
3
(e,)5-0 and o) on T%m,  P=p"e,.

i=1

We apply this general framework to the case of a perturbed
Friedmann universe. The metric of a perturbed Friedmann

universe with density parametef)=1 is given by
ds?=g,,dx“dx” with
gMV:az( 77,uv+hp,v):a2§;tvi (5)

where (,,)=diag(—,+,+,+) is the flat Minkowski met-
ric and (,,) is a small perturbatiorfh,,,|<1. We now use

For this step it is crucial that the particles are massless. For
massive particles, the statement is of course not true. Insert-
ing this result into the Liouville equation, we find

a?Xyf=wH a,,f| 2 bI -T A— ot (8
W b™ o)~ LasW WIS
whered , f|, denotes the derivative dfwith respect toc* at

constant b'). Using

9, flp=0,f|w+2—2 "’“b' B

we see that the braces in E@) just correspond to?Mf|W.
Therefore,

, o I al
aXqf(x,p)=w*d,f|,—T Bw oy =Xgf(x,ap).

We have thus shown that the Liouville equation in a per-
turbed Friedmann universe is equivalent to the Liouville
equation in perturbed Minkowski space,

(XghH(x,v)=0, (€)

it 1l
the fact that the motion of photons is conformally invariant, With

We show that, for massless particles and conformally re-

lated metrics,

— 2N
g,u,v_a g,uv!

(Xgf)(x,p)=0 is equivalent t¢X3f)(x,ap)=0. (6)

This is easily seen if we writ&, in a coordinate basis:

b”‘bﬁ

Xg=b*a,~T' 4 b’

with

1
rlﬁ 2g (gap. B+gﬁp.1a gaﬁv/.t)

The b* are the components of the momentpmwith respect
to the coordinatebasis:

p=p~e,=b*d,.

If (e,) is a tetrad with respect 19, thene =ae, is a tetrad
baS|s forg. Therefore, the coordlnates osip ap"~
=a p"e —azb“a with respect taJ,, on (#,9) are given
by azb“ In the coordlnate basis, thus our statement (By.
follows, if we can show that

(Xgf)(x*,a?p")=0 if (X4f)(x#,b")=0 (7)
Setting v=ap=v e =w*g,, we have v*=ap” and
wH#=a’b*. Using p?=0, we obtain the following relation
for the Christoffel symbols off andg:

—yH8 —ap“e
v=vte,=ap‘e,.

We now want to derive a perturbation equation for Eq.
(9). If e” is a tetrad in Minkowski spac@,=e,+3h’e, is
a tetrad with respect to the Eerturbed_geoméjty For
(x,v*e,) e Py, thus, k,v*€,) e Py. Here, Py denotes the
zero-mass one-particle phase space in Minkowski space and
P, is the phase space with respect & perturbed
Minkowski space. We define the perturbation of the distribu-
tion functionF by

f(x,v*e )—f(x vhe, ) HE(X, vhe, ) (10

Liouville’s equation forf then leads to a perturbation equa-
tion for F. We choose the natural tetrad

1
=9,—=h"g

€u wo o u

with the corresponding basis of one-forms

~ 1
O*=dx*+ Eh’jdx”.

INote that also Friedmann universes with nonvanishing spatial
curvature,K#0, are conformally flat and thus this procedure can
also be applied foK+#0. Of course, in that case the conformal
factora? is no longer just the scale factor but depends on position.
A coordinate transformation which transforms the metridka£ 0
Friedmann universes into a conformally flat form can be found, e.g.,
in [23].
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Inserting this into the first structure equatiomfé#:—wg experiment located at a fixed position in the Universe, the
Adx”, one finds monopole and dipole contributions @ cannot be measured.
They cannot be distinguished from a background component
1 N and from a dipole because of our peculiar motion with re-
®u= = 5 (=) 07 spect to the CMB radiation.

_ Multiplying Eq. (12) with v® and integrating ovev, we
Using the background Liouville equation, namely, tifiat  obtain the equation of motion fon:
only a function ofv =ap, we obtain the perturbation equa- _ : . o
tion am+y'om=H_+(A,;+3B)y'+(H;— 3B 7j)7|7’]-(15)

(+ 9 d)F=— %[(hio—hoo,i)yi+(hij —hgj )Y yi]g—f, It is well known that the equation of motion for photons
v only couples to the Weyl part of the curvatuimull geode-

sics are conformally invariantThe right-hand sidéRHS) of

Eq. (15) is given by first derivatives of the metric only which

could at most represent integrals of the Weyl tensor. To ob-

—2A B; tain a local, nonintegral equation, we thus rewrite 8d) in

(11)  terms ofV?m. It turns out that the most suitable variable is,

however, notV?m but y, which is given by

where we have set'=vy', with v?>=3>_,(v')?. Let us pa-
rametrize the perturbations of the metric by

() ={ g 2H, & +2H;; )"

with H!=0. Inserting this above, we obtain , R B . .
I
(It Y a)F=—[H + (A, +3B)y Y=V (VH =2 = 5 (VB = 3d0) 7,
t i - L i T 2B

where

) . df
+(Hij— 2B v Yl v 12 1 1 _
oij =~ 5(Bi,j+Bj.i)+ §5ijBil+Hij :
From Eq.(12) we see that the perturbation in the distribution

function in each spectral band is proportionaludf/dv. Note thaty andV2m only differ by the monopole contribu-
This shows once more that gravity is achromatic. We thus dg,,, V2H, — (1/2)Hl ;. and the dipole contribution, (1/2)
il 1|J il

not lose any information if we integrate this equation OVGI’X(VZB__sajO___),yi The higher multipoles of and V2m
i ij .

photon energies. We define agree. An observer at fixed position and time cannot distin-
- guish a monopole contribution from an isotropic background
m= 4f Fv3du. and a dipole contribution from a peculiar motion. Only the
Pr higher multipoles] =2, contain information about tempera-
ture anisotropies. For a fixed observer, therefore, we can
identify V =2y with §T/T.
In terms of metric perturbations, the electric and magnetic

4m is the fractional perturbation of the brightness

Lza*“f foidv. parts of the Weyl tensor are given ksee, e.g.[26,25)
. . . . 1 )
This is obtained using the relation E;| :E[Aij(A_ H)— o~ V2H; — %Hi:{]n@j
df —
4’7Tf $v4dv=—4f fv3dde=—4pra4. (13 +Hi'|| 1j+Hj||;i]a (16)
1

Setting t=¢(T(7y,X)), one finds thate=(mw/60)T*(y,x).
Hence,m corresponds to the fractional perturbation in the
temperature:

Bij:_E(filmo'jm:|+fj|m0'im,|), (17)

with

T(y,x)=T(L+m(y,X)). (14) A= 0~ (138, V2.

Another derivation of Eq(14) is given in[25]. Since they

dependence df is of the formvdf/dv, we have, with Eq.
(13,

Explicitly working out (9,+ v'd,) x using Eq.(15), yields
after some algebra, the equation of motion for

re (0c+ 7' 3)x=3Y' PE;; + ¥V €id B =Sr(t,x, ),
F(x*,y'\v)= —m(x“,yi)va. (18

whereey; is the totally antisymmetric tensor in three dimen-
This shows tham is indeed the quantity which is measured sions with e;53=1. The spatial indices in this equation are
in a CMB anisotropy experiment, where the spectral infor-raised and lowered with5; and thus index positions are
mation is used to verify that the spectrum of perturbations isrrelevant. Double indices are summed over irrespective of
the derivative of a blackbody spectrum. Of course, in a reatheir positions.
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Equation(18) is the main result of this section. We now If we take into account that the directionin Eq. (20), the
discuss it, rewrite it in integral form, and specify initial con- direction of anincomingphoton, corresponds te vy in Eq.
ditions for adiabatic CDM perturbations plus seeds. (19), we find that Eq(20) coincides with Eq(19) for scalar

In Eq. (18) the contribution from the electric part of the perturbations, and that
Weyl tensor does not contain tensor perturbations. On the
other hand, scalar perturbations do not induce a magnetic b ox =EV2D(” tox =1V2D(”(t- —(t-t))
gravitational field. The second contribution to the source X%, 7) 4 g (ti:xi) 4 g (G x=(t=t).
term in Eq.(18) thus represents a combination of vector and (22

tensor perturbations. If vector perturbations are negligible ) ) o
the two terms on the right-hand sid@HS) of Eq. (18) thus We now want to investigate this initial value and decompose

yield a split into scalar and tensor perturbations which isEd- (21 into terms caused by CDM and terms coming from

local. the seeds, the scalar field. We assume that dark matter and
Since the Weyl tensor of Friedmann Léitnaiuniverses radiation perturbations are adiabatic superhorizon scales

vanishes, the RHS of E¢18) is manifestly gauge invariant D= (4/3D®

(this is the so-called Stewart-Walker lemri28]). Hence, 9 9 -

also the variabley is gauge invariant. Another proof of the gjnce radiation and CDM probably have been a single fluid

gauge invariance of, discussing the behavior &f under gt yery early timege.g., at the time of the phase transition
infinitesimal coordinate transformations, is presentef®6}.  this assumption is reasonable. It is, however, inconsistent to

The general solution to Eq18) is given by setD{’=4/3D{” on subhorizon scales. Because of the dif-
ferent equations of state for the two components, adiabaticity

t
x(t,x, y)=j St(t’ x4+ (1" —t)y,y)dt’ cannot be maintained on subhorizon scf®g. We can then
ti derive, from Eqs(2.36), (2.37), (2.45—(2.47) in [25],
+X(t| 1X+(ti_t)7! 7)! (19) 1

05 2.

whereS; is the source term on the RHS of Ed.8). Let us 4
compare this result with the more familiar one, where one , , )
calculatessT/T by integrating photon geodesiéshich is of ~ ©N superhorizon scales. Here, the Bardeen potentials are split
course equivalent to solving the Liouville equatioRor sim- N0 parts due to cold dark matteg)( and the scalar field
plicity, we specialize to the case of pure scalar perturbation§s): "espectively. For cold dark matte¥c=—dc. Using

[the expressions for vector and tensor perturbations given ifiS: We can bring Eq(19) into the form

[25] can be compared with E¢L9) in the same manngrFor T 1 5.

F;:Sa]lar perturbations, integration of photon geodesics yields ?(tf X ,n)= §‘Pc(ti X)) — §‘Pc/(a/a)(ti ;)

f
ST . N f -
St X M= —[3DY V0 (W - ) 2 J; Fedtt @s(ti %)

f
+J_f(\'1r—<'1>)d>\. (20) —fi V7284t X — (ty—t)n,n)dt,

. ) 23
Here, ¥ and ® denote the Bardeen potentials as defined, @3

e.g., in[27,29. On super-horizon scaldwhich are the im-  whereS; 5 denotes the portion of the source term due to the
portant scales for the Sachs-Wolfe contribujidi- n' can be  scalar field only:

neglected. Furthermore, the contributions of the square o _

brackets of Eq(20) from the final timet=t;, only lead to Srs= —3n'dE(Y +n*niey; 9B} . (24)
uninteresting monopole and dipole terms. We now use that

the electric contribution to the Weyl tensor for purely scalarFrom an analysis analogous to the one presented here for
perturbations is given bf25] scalar perturbations, one can conclude that initial contribu-

tions to ST/T from vector perturbations can be neglected on

1 1 superhorizon scales and that those for tensor perturbations
Eii:i(‘;iaj_%5iiV2)(\P_CD)E§Aii(\I’_(D)' vanish. Equation(23) is thus the general solution on super-
. horizon scales\ >t; for our adiabatic moddiincluding vec-
Therefore,d;(W — ®)=34'E;; . Using furthermore tor and tensor perturbations of the seedsguation(23) is
f much better suited for numerical investigation than the gen-
E Y Sy & _ i eral expression Eq19). This can be demonstrated by con-
(¥—@)] j. (W= P+ (V= P),inJdh, sidering the case of pure CDM without source term: In this
cased-=—V=const and from Eq23) we easily recover
Eq. (20) leads to the well-known result

5T 1., L 5T 1
T (txn)=7Dg (Y in)—3f_ V7SEn'dt. (21 = (txn)=zWc(ti x—n(t—t)),
I
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whereas Eq(19) in this case leads to afl(aB”-)”—VzBij =87TG,,‘/’§]-B), (27)
T oT with
?(t,x,n)= ?(t, WX ,n)+2\lfc(ti ,Xi).
D= = @miTor s jym €imi Tyt om-
In other words, the unknown initial condition in E¢L9) _ S _
cancels 5/6 of the naive result for the case of adiabatic CDM7€re, (. . .. j) denote ;(g/)r11metr|zat|ons in indicésandj.
fluctuations. Even though because of the existenceVgf To the source term/"™, only vector and tensor pertur-

terms, the cancellation is slightly less substantial in our casd?ations contribute. It is thus entirely determined by the en-

the assumption of adiabaticity on superhorizon scales is 89y momentum tensor of the scalar field.

crucial ingredient of the model. Equat|ons_(23), _(25), (26), and(27) constltut_e a fully local _
The electric and magnetic parts of the Weyl tensor arénd gauge—mvanant system of _cosmologlcal perturbation

determined by the perturbations in the energy momenturfduations for CDM and photons in the presence of seeds.

tensor via Einstein’s equations. We assume that the source

for the geometric perturbations is given by the scalar field 1ll. THE SYSTEM OF EQUATIONS FOR GLOBAL

and dark matter. The contributions from radiation may be SCALAR FIELD-INDUCED FLUCTUATIONS

neglected. Furthermore, vector perturbations of dark matter

(which decay quickly are neglected. The divergence Bf

is then given by(see the Appendijx

In this section we collect all the equations which deter-
mine the system under consideration. We also repeat equa-
tions which have been derived in Sec. Il. Let us begin with
the scalar field equation of motion.

The energy momentum tensor of the scalar field is a small
perturbation. In first-order perturbation theory, we can thus
; (25  solve the equation of motion of the scalar field in the back-

ground, Friedmann-Lemiae geometry, neglecting geometric

where the first term on the RHS is the dark matter sourc@€rturbations. The equation of motion for the scalar figl

term pc, denoting the dark matter energy density. The sec91Ven by
ond contribution is due to the scalar field: The energy mo-

3J'E;j=8mGpca’D;

+87G

a .
&i5T00+3(a) 5T0i_(3/2)‘9j7-ij

i oV
mentum tensor of the scalar field uv =
gV, VvV, ¢+ P 0, (28
1
wa= b,y hin— ng@'”qﬁ,x where g#” denotes the unperturbed metric afg, is the

covariant derivative with respect to this metric. For our nu-
merical computations, we consider &n(4) model. In
O(N) models, the scalar fieldpcRY and the zero-
temperature potential is given by,=\/4(4>— 5?)? for
some energy scalg. At high temperaturesf >T.~ 7, one-
s - loop corrections to the effective potential dominate and the
6Toj=Toj= o), minimum of the effective potential is ap=0. Below the
critical temzperature, the r?inignum is shift¢ieh the simplest
1 . case to (¢p°)=[1—(T/T.)°]%° (see[12,16 and references
Too= T§0=§[(¢>)2+(V¢>)2], thereir).<The> vacuum manifold, i.e., the space of minima of
the effective potential, then becomes &l -1)-sphere,
andD; is a gauge invariant perturbation variable for the denSN"1. Since
sity gradient. For scalar perturbatioriy,= ¢;D. The evolu-
tion equation for the dark matter density perturbation is B 0, k<m,
given by (see[24] and[29]) m(S") = Z k=m,

yields

7 =Tij—(%3)8; Ti=7, = ¢.i,j— (1/3)8;(V $)?,

the lowest nonvanishing homotopy group ofrasphere is

always,,. Since probably higher defects are unstable and

decay into lower one%the m-sphere is a suitable vacuum

During the radiation-dominated erar&pgDg, in principle, ~ manifold to study,, defects.

has to be included in Ed26). But since radiation perturba- If the system under consideration is at a temperaiure

tions cannot grow substantially on subhorizon scales, anthuch below the critical temperaturd,<T., it becomes

since dark matter fluctuations do not grow in a radiation-more and more improbable for the field to leave the

dominated universg30], their influence is not very impor- vacuum manifold¢ will leave the vacuum manifold only if

tant. It leads to a slight decrease of the CDM perturbations.

(We haved checked this and found differences of up to 20%

on small scales but much less on large scales. 2This is an unproven conjecture, motivated, e.g., by observations
The equation of motion foB;; is more involved. A some-  of the density of textures and monopoles in liquid crystals and by

what cumbersome derivatigsee the Appendixyields numerical experimentsl3,31.

D;—47Ga2pcDi=87Gd(¢?).  (26)

. (a
Di+(—
a



5400 RUTH DURRER AND ZHI-HONG ZHOU 53

it would otherwise be forced to gradients of order 8 )
(Vp)2~\d? 72, thus only over length scales of order &Eij:_?GPCa D;
|=1/(\\ )= m¢, (I is the transversal extension of the de-

fects. For GUT scale phase transitiohs 103 cm, where ' 1
cosmic distances are of the order of Mpcl0?* cm. If we —87G 3‘7 i0Toot | 5 5T0i+ §f7j 7ij |» (32
are willing to lose the information of the precise field con-
figuration over these tiny regions, it seems well justified toand
fix ¢ to the vacuum manifold/". Instead of discussing the
field equation(28), we require¢/ e SN~1. The remaining 1 - /
field equation[J¢ =0, then demands that - (@By) _VZBiJZSWGyi(jB)’ (33
q ¢ a
dlyg=B : #—SN"D with
(N-1). /(B)— €lm( i(To) Jym Tyl vml

is a harmonic map from spacetimg into S
The topological defects we are interested in are singulari- d
ties of these maps. When the gradients¢gobecome very an
large, such as, e.g., towards the center of a global monopole, 1
the field leaves the vacuum manifold and assumes nonvan- =i~ U(V(ﬁ)z
ishing potential energy. IBe SN~V is enforced, a singular-
ity develops by topological reasons.
In the physics literature, harmonic maps are knownras
models. The action of @ model is given by

The source term for the perturbation of the Liouville equa-
tion is given by Eq.(24):

—3n'JE[Y +n*nley;0,B{P=Ss(t,x,n). (39
So= f 90,80, vas(B)Igld*x,  (29)

The CMB fluctuations are then determined according to

wherey,g denotes the metric o8 ! andg,,, is the metric J' T ,
of spacetime. We fix8 to lay in the vacuum manifold T (t XM= | St x+ (' =tn,mdt
SV~1 by introducing a Lagrange multiplier. We then obtain

the followi tion of motion foB: 1
e following equation of motion fop Dtk (=N, + Wl %)

up—(B-0p)B=0, (30) 2. .
- E‘Ifcl(a/a)(ti ,xi)+2j Vdt. (35
which shows that ther model is scale free. There are thus '
two possible evolution equations for the scalar field at low
temperature. We call Eq28) the “potential model” evolu-
tion equation and Eq30) the o-model approach.
The energy-momentum tensor of the scalar field perturb
spacetime geometry and induces perturbations in the dar,
matter energy density according to Eg6):

Equations(28) and(31)—(35) form a closed, hyperbolic sys-
tem of partial differential equations. Actually, all except the
scalar field equatiori28), are linear perturbation equations
ith source terms. The differential equations #®F/T, D,
dB;j; can thus be solved, e.g., by the Wronskian method,
i.e., by some integrals over the source term. The correspond-
ing solution forST/T is given in Eq.(35), the general solu-
tion of the dark matter equation is given below in EG),
(46), and(47).

Let us briefly describe the general solution # :
switch to Fourier space, because there Yeis a S|mple
multiplication by —k? and Eq.(33) becomes an ordinary
nc\iifferential equation with scalar homogeneous solutions

. a\ - .
D+{~ D—47Ga?pcD=8nG¢? (31)

where D is a gauge-invariant variable for the dark matter
perturbationg29]. On subhorizon scaleB~ Sp/p. In co-
moving coordinates, the total perturbed energy-momentu
tensor is given by

1
bi=aexr(iikt). (36)
b, ¢”——6”¢,A-¢'*+pcD6265-

The general solution to the inhomogeneous equation is given

by
As already mentioned in Sec. Il, the perturbed Einstein equa- A
tions to this energy momentum tensor yield an algebraic Bij=(b*C+b C)+B{°", (37)

equation for the divergence of the electric part of the Weyl
tensor and an evolution equation for the magnetic part of thevhereB"°™ denotes an arbitrary homogeneous solution and
Weyl tensor(see the Appendjx C™*, C™ are given by
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TAB)p-

100 vy ——

f_ il
Here,W denotes the Wronskian determinant of the solutions 1k -
which amounts to —~ 3
< ]
. [ ]
. . 2ik
W=b" b —b b =—. (40 o1 X 3
a R —— P o N
.................... 2l 7Y AN
S NE
L ////—F ~_ </ J
IV. INITIAL CONDITIONS AND NUMERICAL METHODS 0.01k ;;//r i
VE —— g7 E
A. The scalar field i \\\;5/ 1
As already shown in the previous section, the equation of r -
motion of the scalar field is given by 0.001 ST
K
wy V., o+ N 0 41
9TVLV ap (41) FIG. 2. The quantities|(T4;,)|*> (dotted ling, |(T¥;,)I?

(dashed linesand |(T9/t)|? (solid line) are shown as functions of
where g#” is the backgroundunperturbed metric With k. The inaccuracy in energy- and momentum-conservation is below
B=¢/nandm= \/Xn, Eq. (41) yields, for QN) models ina  10% fork=32=128/4. This hints that our code is accurate to better
Friedmann universe, than 10% for wavelengths of four grid spacings and larger.

code should mimic the true field evolution on scales larger
than w. But, to our knowledge, there exists no rigorous
mathematical approximation scheme leading to the above
This equation as it stands cannot be treated numerically itfreatment of the scalar field which would then also yield the
the regime which is interesting for large-scale structure for-optimal choice fora.
mation. The two scales in the problem are the horizon scale Alternatively, we can treat the scalar field in the
t~(a/a) ! and the inverse symmetry-breaking scale, the coo-model approximation given in the previous section. This
moving scale 4m) 1. At recombination, e.g., these scales approach is opposite to the one outlined above in which the
differ by a factor of about 1§ and thus both cannot be scalar field mass is much too small, since thenodel cor-
resolved in one computer code. responds to setting the scalar field mass equal infinity.
There are two approximations to treat the scalar field nu- The o-model equation of motion cannot be treated nu-
merically. As we shall see, they are complementary and thugerically with a leap frog scheme, since it involves nonlin-
the fact that both approximations agree with each otheear time derivatives. In this case, a second-order accurate
within about 10% is reassuring. The first possibility is to integration scheme has been developed by varying the dis-
replace &m) ! by w, the smallest scale which can be re- cretized action with respect to the figltig].
solved in a given simulation, typically twice the grid spacing, The two different approaches have been extensively
w~2Ax. The time dependence cfi(n) ! which results ina  tested by us and other workers in the field, and good agree-
steepening of the potential is mimicked by an additionalment has been found on scales larger than about 3—-4 grid
damping term: 24/a)— aal/a, with a~3 [32]. Numerical  sizes[34,35. We have compared our potential code with the
tests have shown that this procedure, which usually is impleexact spherically symmetric scaling solutip®6] and with
mented by a modified staggered leap frog schg88§ is not  our old spherically symmetrie-model code[19]. Outside
very sensitive on the values of andw chosen. With this the unwinding events which extend over approximately three
method, we have replaced the growing comoving nass grid sizes, the different approaches agree within about 5%.
by the largest mass which our code can resolve. For dhis is very encouraging, especially since the two treatments
(256)% grid which simulates the evolution of the scalar field are complementary: In the model, we let the scalar field
until today, we obtain 256x~t,~4x 10'" sech,, so that massm go to infinity. In the potential approach, we replace
W~4x 10 sechy, i.e.,am~ na ..~ 107 GeV is replaced M by ~1/Ax~200k,~2008,/10'% ~10"* GeV.
by aboutw '=a,10"2° GeV ~10 % GeV, where we set The integration of the scalar field equation is numerically
aeq=1. the hardest part of the problem, since it involves the solution
We are confident that this modified equation mimics theof a system of nonlinear partial differential equations. A
behavior of the field, since the actual mass of the scalar fiel@ood test of our numerical calculations, next to checking the
is irrelevant as long as it is much larger than the typicalscaling behavior opg, is energy-momentum conservation of
kinetic and gradient energies associated with the field whiclthe scalar field,'l';(f)‘”=0. Energy-momentum conservation
are of the order of the inverse horizon scale. Therefore, a the potential model, with about 15% accuracy, is slightly
soon as the horizon scale is substantially larger thanthe  worse than in ther model, where it is about 5% accurate

2B+2(ala)o,B—V2B= %azmz(ﬁz— nHB. (42
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(see Fig. 2 Therefore, the final results presented here are alis the Wronskian determinant of the homogeneous solutions.
obtained with theo-model approach. Our checks lead us toThe integralgEq. (47)] have to be performed numerically
the conclusion that we can calculate the scalar field energywith S= €3%. When discussing the initial conditions fBrin
momentum tensor, which then is the source of dark mattegec. IV D, we shall present an analytic approximation for the
and CMB fluctuations, to an accuracy of about 10%. Thesource terns.

problem of choosing the correct initial condition may induce

another(syste.matica)l error in our calculations which we C. The CMB anisotropies
hope to remain below 20%. Other sources of error are neg- ] ) ]
ligible. The CMB anisotropies are given by
oT -2
B. Dark matter T =V~ %y

Once the scalar fielgg(x,t) is known, the dark matter
perturbations can easily be calculated by either using thep to monopole and dipole contributions which we disregard.
Wronskian methodsee below or some standard ordinary Here, y is a solution of Eq.(18). The source ternS; is
differential equation solver. We have performed both methdetermined via Eqgs(25) and (27). However, using this
ods and they agree very well. For later use, we briefly destraightforward approach results in a big waste of computer
scribe the Wronskian method. We normalize the scale factamemory(which we cannot afford We would be satisfied to
by calculate5T/T for about 30 observers in each simulations,
which means we need 2y only at 30 positions. But since
we have to perform an inverse Laplacian which is done by
fast Fourier transforms, we have to calculgten the whole
. grid, which consists of 1$2-7x 10° positions. In addition,
with to calculate the spherical harmonic amplitude$df T up to

aboutl ~40 (angular resolution of abouyt®), we need typi-
r=1N(47G3)p o= cally 5x10* directionsn. The y variable along(in double
eq 2(\/5 1) precisior) would thus require 700 Gbytes of memory, an
amount which is not available on present-day computers.
Here,t. denotes the time of equal matter and radiation denThe way out is to take the inverse Laplacian already in the
Sity, pradteq =pc(t e =(1/2)p(tey). We have normalized equation of motion(18). This results in
a such thatagg=a(te) =1. Transformed to the variabke,
the dark matter equatiof26) then yields

t
=—(1+3t/7),
-

. OT ) ) .
(9+ Ylai)?: —3Y'V 2(JEij)) — ¥V iV 2(9,B;;)

d?D . 2+3a dD 3 5 .
da? " 2a(1+a) da 2a(l+a) =V 7Sr(tx,y). (48)
. [da 2 ) Here, the inverse Laplacian has to be performed for a vector
=2ep (d_ =(1+a)S/7, (43 field and a symmetric traceless tensor field, a total of eight
scalar variables which only depend wmand not ony. For a
S=2¢8? and e=4nGr. 192 grid, the total code then reaches a size of about 1 Gbyte

of memory, no problem for presently available machines.

The homogeneous solutions to this linear differential equaFduation(48) has the general solutidsee Eq(23)]
tion are well known37]:

-
?(tovxoﬁ’)Z +dg(t,X)

3
D1=1+7a, (44)

va+1+1
ya+1—1

The general solution to E¢43) is given by

—ffV*Z&S(t,xo—(tf—t)n,n)dt

D,= 1+a

2

(49)

)3@.

1 2. .
+ §‘l’c(ti X)) — §‘I’c/(a/a)(ti Xi)

f.
D(t)=cy(1)Da(t) +Co()Da(1) (46) +2 f Yedt, (49
with . . . .
with Sy given in Eq.(24). Here, vector perturbations of the
dark matter[which are not seeded by the defects, see Eq.
—J (SD,/W)dt, Csz (SD,/W)dt, (26), and thus decay quick]yare neglected. The first term of
Eq. (49 determines the initial condition of the CMB
anisotropies caused by the source. In the numerical simula-
_ (47)  tion, we just set it-3n'V "% E(Y)(ti . x)t; . This assumes
aya+1 ar that the source term is approximately constant unténd

. a(l+32a)® (1+32a)d
W:DlDz_DlDZZ =
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that magnetic contributions can be neglected. The resulting
amplitude is not very sensitive to this assumption, but chang-
ing it can somewhat influence the spectral index. We have
solved Eq.(49) numerically by just summing up the contri- -
butions from each time step for 27 observer positiaps
The value of the source term at positigg+ (t—ty) is de- 1 _
termined by linear interpolation. The quantH&Eﬁ is deter- i A
mined by Eq.(25) and its inverse Laplacian is calculated by [ Y
fast Fourier transforms. To obtaﬁrzBﬁ from Eq.(27), we - 8
directly calculateV ~2S® in k-space, then solve the ordi- i }
nary, linear differential equation fo‘V*ZBij in k-space by L .
the Wronskian method. Since all compone‘ﬁﬁ in average
scale such a#\/\t on superhorizon scales;(®~At~12 01F .
and thereforeC* «t>2 on superhorizon scales. Therefore, we C ]
can neglect the contribution ©~ from the lower boundary [ 1
in the integral. Furthermore, since the homogeneous solution
B{"°™ is decaying, we drop it entirely. This procedure cor- L
responds to setting(t;) =0 and calculating3(t) according 0.1
to Eq. (37).

£}

kt/2m

D. Initial conditions FIG. 3. The spectrum of the electric part of the Weyl tensor as a

- _ ) o ) function ofkt at timet=28 for a grid of size 160. On large scales,
Initially, the field ¢ itself and/or the velocitieg) are laid  kt/(27)<1, the spectrum is flat, white noise.

down randomly on the grid points. The initial tintg, is
chosen to be the grid sizg=Ax, so that the field at differ- then yield initial conditions for the dark matter fluctuations
ent grid points should not be correlated. The configuration i$ and the photon variablg. But these, let us call them
then evolved in time with one of the approximation schemes'strict isocurvature” initial conditions, are not natural since
discussed above. they do not propagate in time: Even if we start wihand
Because our initial conditions for dark matter and photonsB vanishing on superhorizon scales, after some time residual
very sensitively depend on the scaling behavior of the scalaffuctuations have leaked into these scales and one obtains the
field (see below, we can only start the dark matter or photon white noise fluctuations spectrum on superhorizon scales
simulations when scaling is fully reacheg,=8Ax. Starting  shown in Fig. 3. This does not violate causality, since white
our simulations, e.g., dt=4Ax, changes the results by about noise is uncorrelated and just results from the residuals of
a factor of 2. Further doubling of the initial time, changes ourcorrelated fluctuations on smaller scales. The correct initial
results by less than 20%, we thus believe thataBAX  values forD andD would, of course, be those obtained by
scaling is sufficiently accurate. Unfortunately, this late initial solving the equation of motion E26) from the symmetry-
time reduces our dynamical range to about 19228 for a  preaking time until the start of the simulation. We found a

192 grid, which is seen clearly in our results for the CMB method to incorporate this at least approximately: The spec-
anisotropies discussed below.

It is very important to choose the correct initial conditions
for the dark matter and the photon perturbations induced b
the dark matter. Changing them can change the CMB fluc- _ _ 1
tuation amplitudes by more than a factor of 2. Since these 8wG|¢Z|=ZeBZ=e\/:J d3xB2(x) ek
fluctuations are used to normalize the model, i.e., to deter- v
mine e, this reflects in corresponding changesinNVe want
to do better than a factor of 2 by choosing physically plau- ~ €A
sible initial conditions. The cleanest way would be to simu- Vt[1+akt+ay(kt)?]’
late the evolution of perturbations through the phase transi-
tion, assuming that before the phase transition, the universgith
was an unperturbed Friedmann universe witi0. On the )
other hand, since we want to calculate the perturbation spec- ~ A=3.3, a;=-0.7/2m), a,=0.7/2m)".

trum on scales of up to 1000 Mpc with a (286)rid, we Th b h b btained byZaminimizati
cannot start our dark matter and CMB simulation earlier than 'S¢ NUMDErS have been o tained by“aminimization

at a time when the horizon distance is approximately>S€Me: The approximation is not very good. It yields a
8Ax~30 Mpc. At the beginning of the scalar field simula- X~ 2000 for about 1000 data points. Its comparison with

tion, our grid scaleAx~4 Mpc is of the order of the horizon the real data in Figs. 4 and 5 ShO\(')VS that E) approxi-
scale. We therefore have to decide on the amplitudes of sy- ates the source term to about 10% on superhorizon scales,

perhorizon perturbations. One possibility is setting all geo- utldoessnot follow trTe”mg?Ies p{ﬁsefr_ltt mthet()jrz]ita_ on smalller
metrical perturbations initially to zero. The requirements ~ SC&/€S. SInce we shall not use he Tit on subhorizon scales,

this is not important for our simulations. However, in gen-

trum of the dark matter source termr&|$2|2 can be ap-
{})roximated by

(50

j — (B _ 5. . . .
JE;(t)=0 and {P(t)=0 eral, ¢? is complex and setting it equal to its absolute value,
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FIG. 4. The dashed curves and the triangles sbﬁvas a func-
tion of t for fixed values ofk=n/n for n,,;=128. The solid lines
show the fits according to the fitting formula given in the text.

FIG. 6. The dark matter contribution to th€,’s from a
(160)° simulation. ¢'+2)(/+1)/C 124 is shown. For/< 20,
which is the dynamic range of this simulation, a white noise,

. . ) _n=0, spectrum fits reasonably well.
we neglect the evolution of phases. Again, by causality, this

will not severely affect scales larger than the horizon, sincéy — ¢, p, +¢,D,, even with the simple source term equation
on these scales the phases @pproximately frozen. Buton (51) pecomes rather complicated. But in the radiation- and

subhorizon scales, our fit is not very useful because the inyatter-dominated regimes, we find the simple approxima-
coherent evolution of phases. Assuming this form of the;gns

source term, we can solve E@6) analytically on superho-

rizon scales, where we approximate the source term by D = (4/7)1%S: D=(6/7)t28 radiation dominated

(52)
2e52= 2 hori | 51
€p= N on superhorizon scales.  (51) D= —(4/9)t°S; D=—(2/3)t’S matter dominated.
(53
The homogeneous solutions of E@6) are given by Egs. )
(44 and (45. The general inhomogeneous solution, FromD we can calculaté' -, leading to the dark matter
contribution to the CMB anisotropies.

As mentioned above, the initial contribution of the scalar
field is approximated by

Sty , %)~ —3tn'V A JEP).

The result does not depend very strongly on this initial con-
dition, however, it is very sensitive to tliark matterinitial
conditions: If we choose some arbitrary, nonadiabatic initial
3 condition, the resultingC,’'s increase by nearly a factor of
] 10 and the dark matter induces 80% of the total fluctuation.
Choosing adiabatic initial conditions as discussed in Sec. lll,
leading to Eq.(49), dark matter only contributes about 20%
to the angular power spectrum and the main contribution is
because of the defects. The dark matter contribution to the
= CMB anisotropies is not scale invariant, but is white noise. It
] has a spectral index= 0. This result was found numerically
(see Fig. 6 but it is also clear from Eq(50) which shows
again that on superhorizon scaleéd and therefore als®
have white noise spectra.

Our value ofe obtained with these physical isocurvature

FIG. 5. The crosses and triangles shﬁ\?\/as a function of, and on superhorizon scale adiabatic initial conditions, is in
with k=n/ny, for fixed values ott. The solid curves show the fits reasonable agreement with the values obtainefdl& and
according to the fitting formula given in the text. [17].

a2(p+3P)

0.01}
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FIG. 7. The pixel distribution oBT/T for one observer.
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FIG. 8. The values’(/+1)C,/6 for 27 observers are plotted
for e=1. The crosses are the individual observers and the solid line

Let us also present a heuristic derivation of the numericaindicates the average. The sharp drop after30 is because of
finding equation(51) on superhorizon scales: We know that finite resolution(our dynamical range is approximately)25

the average valu(aﬁz)_ocl/tz, the usual scaling behavior. The
Fourier transform of3? determines the fluctuations on this

“background” on a given comoving scale=2mw/k. As
long as this scale is superhorizon>t, a patch of sizex®

consists of N=(\/t)3-independent horizon size volumes.

5T 6T 1 ,
<7(n)7(n )> =2 2 (2741

(n-n’ =co9) 4m

XC, P (cod), (56)

The fluctuations on this scale should thus be proportional to

B2 (BN 1A,

Gaussian-distributed CMB fluctuations are fully determined
by the C,’s. However, as can be seen from Fig. 7, in our
case the distribution of the CMB fluctuations is not quite
Gaussian. It is slightly negatively skewed. We find an aver-

which is just the behavior which we have found numericallyage skewness of-0.5 and a kurtosis of 0.7. In Fig. 8 we

on superhorizon scales.

As soon as a given scale becomes subhorixeat, 32

starts decaying from this large scale value proportional t

142,

V. RESULTS
A. CMB anisotropies

To analyze the CMB anisotropies, we expafd/T in
spherical harmonics

oT
T (t0.%,7) =2 An(X)Yim( 7). (54

As usual, we assume that the average dvgdifferent ob-
server positions coincides with the ensemble avefadend
of “ergodic hypothesis’j. We define

1
—- 2 %

m,x

()

show the harmonic amplitudes for five simulations on a
192° grid with 27 different observer positions for each simu-
lation. The low-order multipoles depend strongly on the ran-
dom initial conditions(cosmic variancg as was found in the
spherically symmetric simulatiof9].

It is well known that cold dark matter fluctuations with a
power spectrum of spectral index gravitationally induce
CMB anisotropies with a spectrum given p38]

T+ (n=1)/2r(9-n)/2)
_Czra +(5—n)/2T((n+3)/2)

C, (57)

We have performed a least square fit of;il§&,) from our

numerical results fitted with lgg(C,) obtained from Eg.
(57).2 If we take into account all th€,’s reliably calculated
in our simulations, which limits us approximately lte= 22,

we find a very nice scale-invariant spectrum,

n=0.9+0.2, (59

3In the case of topological defect-induced fluctuations, e
spectrum does not have precisely this form, since CMB fluctuations

Gaussian fluctuations are characterized by the two-point comre not only induced by the dark matter but mainly by the scalar
relation function. Since the angular two-point correlationfield perturbations and the assumptions made for the derivation of
function is given by this formula are not valid.
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FIG. 9. They? contour plots for 66%, 95%, and 99% confidence

levels from fitting theC,, to a spectrum with inder with quad-
rupole amplitudeQ according to Eq(57) for /'<20. In total, 81
observers from three different (1$23imulations have been taken
into account.

with quadrupole amplitude

The 1, 2, and 3 sigma contour plot is shown in Fig. 9. Th

minimal x? is 0.56.

It is very interesting that the dark matter contribution to
the CMB anisotropies does not yield a scale-invariant spec-
trum, but white noise. This can be understood analytically:

The ¥ contributions tosT/T in Eq. (23) are not very im-
portant and

1
(5T/T)C(to,k)"" §\Pc(t| ,k)exp(l k nto)

€A explik-nty)
6t k2
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FIG. 10. The root mean square of the temperature fluctuation at
given angular scale is shown as a function of angleefer10 5.

This value is somewhat smaller, but still comparable with the
results obtained if17,18. But even taking into account the
considerable uncertainties, the difference of nearly a factor
of 2 between the resul61) and Refs[17,18 (normalized to
the two-year COBE dajais somewhat disturbing and de-
serves future investigation.

Another method to determinegis the following: The total

etemperature fluctuation amplitude on a given angular scale

6c is given by
200 =i2 CA2/+1)exp —/26212). (62
o1(6c) e A2/ exp( c/2).

In Fig. 10 we showot as a function ofé-. In a recent
analysis of the COBE datp40] o{“°®%)(7°)~44 uK and
o{COBE)(10°)~ 40 uK for a spectral index~ 1, which leads
again to the result given in E@61).

B. Dark matter fluctuations

Using fast Fourier transforms, we calculate the spectrum

on superhorizon scales. For the second equal sign, we us&{k)=|5(k)|? of the dark matter density fluctuations as

kW .=47GDc~eAl2\t;. By standard argumentssee,
e.g.,[38]), one then finds

2p2
C“Eif
718,

corresponding to Eq57) with n=0. This is also what we
find numerically(see Fig. 6 The dark matter contribution
caused the spectral indexof the total CMB anisotropies to
drop slightly belown=1.

To reproduce the COBE amplitud@coge= (20=5) uK,

dk I'(/-0.5

" /
pl/(kto)OC T(/+25 (60)

shown in Fig. 11. The fit represented as dashed line in Fig.
11 is given by

[14] we have to normalize the spectrum by choosing the

phase transition scalg according to

e=47G7?=(0.8£0.4x 10 °. (61)

Ck
PUON2m) = o s i 9
with h=0.5 and
C=215"1 Mpc?, (64)
a=10h"? Mpc (=0.57), (65)
B=1.25"2 Mpc ~7/(4m), (66)
y=2.3"? Mpc ~7/(2m), (67)
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FIG. 11. The dark matter power spectrufwithout bias and FIG. 12. The dark matter pixel distribution from linear pertur-

”;’ggr;eaf devo}!utloh d‘_l;fhe resulli |s_av|erag|e d 01\_/§ ris S"EUIa.t'an N hation theory. The positive skewne&76) and positive kurtosis
(256)° grids of two different physical scales. The error bar in |cates(1_2) are clearly visible.

one standard deviation. The dashed line shows the fit given in the

text. esting that the skewness of the dark matter distribution is

where we have used=19.362 Mpc, which is approxi- positive, where theST/T skewness is negative.

mately the comoving time at equal matter and radiation.
The paramete€, which is most important to determine VI. CONCLUSIONS
the bias factor, can also be obtained by the following rough
analytical argument, valid in the relevant, matter-dominate
era: On superhorizon scaldf)|?~ (0.5¢A)?t® according to
Eqg. (53). As soon as the perturbation enters the horizon
t=2mx/k, the source term disappears dhdtarts growing as

We have derived a new local, gauge-invariant cosmologi-

¢al perturbation equation for the treatment of free massless
articles in a perturbed Friedmann universe. The gravita-
ional field enters in this equation only via the Weyl curva-
ture which is geometrically very satisfactory. We have ap-

2 .
t*, leading to plied this equation to determine the CMB anisotropies in the
(0.5¢A)? (2m)3 texture scenario of structure formation.
P(K,to)~ '2 kta= 03 Cark. (69) Our simulations show that global texture leads to a scale-
a

invariant spectrum of microwave background fluctuations on
large scales, such as inflationary models of structure forma-
tion. This is one of the main results of this investigation.
However, the dark matter contribution to the CMB anisotro-
pies is not scale invariant, but is white noise. It is important
that the initial conditions for dark matter and radiation are

Inserting the numberg=0.8x10"5 A=3.3, t3=4a,7,
ag~2.5h?x 10%, we obtainC,,~19th~ ! Mpc* in excellent
agreement with Eq64). Figure 11 can be compared directly
with the Infrared Astronomy Satellit€lRAS) observation

[39] and it is compatible with a bias factor of order 1. A

~adiabatic in which case the dark matter contribution to the

more deta_uled _calculatlon with Gaiusssmn or square hat W'n'C/’s is small and the flat spectrum caused by the defects is
dow function yields, fore=0.8xX10" >,

maintained.
osm(10 MPQ=1/b;y~0.5-1 Our second main result is the dark matter fluctuation
spectrum. The spectrum is very close to scale invariant and
oopor(10 MP9=1 for h=0.5, (69  the bias factor needed foe normalized by the CMB

anisotropies is around~1-2. As already mentioned, we
yielding b1p~1-2 for the value ofe found by comparison have neglected radiation-density perturbations in our calcu-
with COBE, Eq.(61). A value even somewhat closer to 1 is lations. These lead to some additional damping of the dark
found for b,g. Observations and simulations of nonlinear matter perturbations on scales smaller than. The bias
clustering of dark matter and baryofél] suggest a bias factor can be somewhat enhanced by this effect. However,
factor b;g~1—-2 which is compatible with our results. It is the resulting value is certainly acceptable and smaller than
remarkable that unlike in the simulations by Retral.[18],  the bias factor obtained in previous investigatiphb8].
our bias factor is approximately constant and physically ac- The deviation from Gaussian statistics seems to us not
ceptable.(To determine our power spectrum, we have notvery significant(see Figs. 7 and 12and it is thus important
taken into account any smoothing which might change théo develop other means to distinguish topological defects
results by at most 15%lIn Fig. 12 we have shown the dark from inflationary scenarios. A clean and promising candidate
matter pixel distribution from a 1§0simulation. It is inter-  for this distinction are the Doppler peaks which are calcu-
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lated for the texture scenario [A3]. the projection onto the subspace of tangent space normal to
From our investigations we thus conclude that, concernu. The decomposition of the Weyl tensor yields its electric

ing the large scale CMB anisotropies and the linear darkand magnetic contributions:

matter perturbation spectrum, the texture scenario and prob-

ably also other models with global defects are compatible E.=CnwouMu’, (A4)

with present observations. 1
szicmﬁu*ngjua, (A5)
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APPENDIX: THE EQUATION OF MOTION FOR THE _ (S v
ps=Turu?, (AB)
MAGNETIC PART OF THE WEYL TENSOR M
The Weyl tensor of a spacetime#,q) is defined b 1
y P 4.9) y ps=5 T, (A7)
nv % [ v] 1 M v]
CH = RM" =20l R+ §Rg{ 9", (A1) o 1
qME_h;TVaua' Qi=— aTOi , (A8)
where[ u, .. .,v] denotes antisymmetrization in the indices
o’ anq v. The Weyl curvature has the same symmetries as TMVEhthBVT(aSB_thS_ (A9)
the Riemann curvature and it is traceless. In addition, the
Weyl tensor is invariant under conformal transformations: \We then can write
C*,ep(9)=CH,,,(3%Q). T =psu,u,+psh,,+0,u,+u,0,+7,,. (AL0)

(Careful: This equation only holds for the given index posi-This is the most general decomposition of a symmetric

tion.) In four-dimensional spacetime, the Bianchi identitiessecond-rank tensor. It is usually interpreted as the energy-
together with Einstein’s equations yield equations of motionmomentum tensor of an imperfect fluid. In the frame of an

for the Weyl curvature. In four dimensions, the Bianchi iden-observer moving with four-velocity, pg is the energy den-

tities sity of the scalar fieldpg is the isotropic pressurg, is the
energy flux,u-q=0, and 7 is the tensor of anisotropic
Ruiopn1=0 stressesy, ,h*"=r7,,u*=0.
We now want to focus on a perturbed Friedmann uni-
are equivalent t¢23] verse. We therefore consider a four-velocity fieldvhich

deviates only in first order from the Hubble flow:

wBvé. wpl L u=(1/a)dy+first order. Friedmann universes are confor-

CaPre; p=RoLeibl 697[ R, (A2) mally flat, and we require the scalar field to be a small per-

turbation on a Universe dominated by radiation and cold

This, together with Einstein’s equations, yields dark matter(CDM). The energy-momentum tensor of the
scalar field and the Weyl tensor are thus of first order, and

CoBY, =8uG(TN®Bl— LghaTihl) (A3) (up to first ordey their decomposition does not depend on the

choice of the first-order contribution to, they are gauge

whereT ,, is the energy-momentum tensdr~= Tﬁ. invariant. But the decomposition of the dark matter depends

Let us now choose some timelike unit vector fiaig  On this choice. Cold dark matter is a pressureless perfect
u?=—1. We then can decompose any tensor field into lonfluid. We can thus choose to denote the energy flux of the

gitudinal and transverse components with respeat.tove — dark matter, THu”=—pcu. Then the energy-momentum
define tensor of the dark matter has the simple decomposition

h*,=g*, +uku,, Ty =Peliul. (ALD)
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With this choice, the Einstein equation®3) linearized In Eq. (A16) and the following equations, summation over
about anQ)=1 Friedmann background witfﬁf)?ckgmundzo double indices is understood, irrespective of their position.

yield the following “Maxwell equations” forE andB [42]. To obtain the equation of motion for the magnetic part of
(i) Constraint equations: the Weyl curvature, we take the time derivative of El4),
A . usingu= (1/a)do+ 1.order andpg;jx =a’e;;x . This leads to
J'Bij=4mwG n;,,uPq ], (A12) .
. a .
A 1 1 1 a (aBij)":—a[ €im(i Ej)|+an)|}-m—47TG€|m(i i)l 'm

(9|E|J:87TG §aZpCD,J—+§a2ps,j—§(9'7ij—gij . )
a

(A13) T3 m } , (A17)

(i) Evolution equations:
where we have again usad as a gradient field and thus

aBij +aBj; —a’h] ﬂj)By(;u’BEZ;(s terms such as;juj; ,x vanish. We now insert E§A15) into
) B oy the first square bracket above and replace product expres-
= —4mGah,7))p,, 0" 7 (Al4)  sions of the formejj€im and ejjx iy With double- and
4 triple-Kronecker deltas. Finally, we replace divergences of
Eij+ —E;j+ah} ﬂj)BvSUBBZ;5 B.Wlth the help of Eq.(A12). After some algebra, one ob-
a tains
a_ . . a ) .
=—4nGlag;— o mjtmjtapcy |, (ALS)  gp Ejyi+ ZEppm= ~VBij—47Gemi| 280 mj+ 7jim
where (, ... ,j) denotes symmetrization in the indiceand a
j. The symmetric traceless tensor fields, andu,, are T 27iml
defined by

Inserting  this into Eq. (Al17) and using

1 __1S_ - - : -
aq=-—Tg=—¢¢,;, we finally find the equation of motion
qw=q(ﬂ;,,)—§hwq;”)\, fo?lB: o=~ Pd, y q
v o—u 1 . a '(aB); —~V?B;;=87G./ ", (A18)
v Y(uv) T g HurH
A with
In Egs.(A14) and(A15), we have also used that, for the dark B = € -[—TS S o]
matter perturbations, only scalar perturbations are relevant, . m or+pym = Dt m
vector perturbations decay quickly. Therefangs a gradient and
field, u;=U, for some suitably chosen functid. Hence, 1
the vorticity of the vector fieldi vanishesy,,.,;=0. With = brichi— §5ij(V b2 (A19)

— a4 _A—2TS _ -17S
Noik=a"€jk, ps=a “Tgo, Gi=—a Tg, . . .
! ! I ' Since dark matter only induces scalar perturbations and
we obtain, from Eq(A13), Bj; consists of vector and tensor perturbations, it is indepen-
1 1 1 . dent of the dark matter fluctuations. Equatia#sl6) and
i a A18) are used in Sec. Il, where we neélE;; andB; as
JE; =87G| ZpcalD, i+ =TS, — cami+ TS |. (A1) . c. II, . i i
1 =87G| 3pc@ D0t 3T00, = 547+ 3 Toj (A16) source terms in the Liouville equation.
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