PHYSICAL REVIEW D VOLUME 53, NUMBER 10 15 MAY 1996

Bimodal coherence in dense self-interacting neutrino gases
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Analytical solutions are obtained to the nonlinear equations describing neutrino oscillations when explicit
neutrino-antineutrino asymmetries are present. Such a system occurs in the early Universe if neutrinos have a
nonzero chemical potential. Solutions to the equations lead to a new type of coherent behavior governed by
two modes. These bimodal solutions provide new insight into dense neutrino gases and into neutrino oscilla-
tions in the early Universe, thereby allowing one to surmise the flavor behavior of neutrinos with a nonzero
chemical potentialfS0556-282(196)01010-7

PACS numbegps): 95.30.Cq, 13.15:g, 14.60.Lm

I. INTRODUCTION Universe is about an MeV, even a tigy, can have an effect.
One purpose of the current work is to surmise the flavor
In this work we undertake a theoretical study of flavor behavior of neutrino oscillations in the early Universe when
oscillations in dense neutrino gases. Such gases appear in# 0. Various aspects of neutrino oscillations in the early
physically interesting systems. An example occurs during théJniverse are also addressed in R¢f2—20.
early Universe when neutrinos are self-interacting and fill Thus one is led to consider the system when the total
space denseljl, 2]. Likewise, during the final collapse of a nhumber of antineutrinos is not necessarily equal to the total

supernova, neutrinos are emitted copiougly 3. If neutri-  number of neutrinos. We assume the gas is homogeneous
nos have masses and mix then oscillations among neutrindd isotropic. Under this assumption, the averaged spatial
flavors can affect the physics of these systems. neutrino currents are zero and one needs only to consider

The treatment of neutrino oscillations in a dense gas is noeutrino densities. We also assume that the energy distribu-
so straightforward. The flavor behavior of a particular neu-ion is the most important statistical property of the gas. For
trino depends on the flavor content of background neutrinossimplicity, two flavors, electron and muon, are treated. In
However, the background neutrinos also oscillate. To knownany regions of parameter space, the three-flavor case is
the flavor content of background neutrinos, it is necessary taccurately approximated by the two-flavor case. Finally, we
know the oscillations of all individual neutrinos. Nonethe- consider situations in which hard scattering processes are
less, a Hartree-Fock-like self-consistent formalism has apmuch smaller than forward-scattering phase effects so that
peared which can handle the systeth The behavior of the hard scattering can be and is ignored. This occurs for times
gas depends on certain statistical properties such as the egreater than one second after the big bang and outside the
ergy distribution, the nature of density perturbations, and théeutrino sphere of a supernova. In these situations,
initial production of neutrinos. For the case in which only anGgE?<1, where Ge=1.17x10"! MeV 2 is the Fermi
energy distribution is involved, the formalism has been fur-coupling constant ané is the energy of a typical neutrino.
ther developed for the neutrino-antineutrino gas in RefsThe analytic results as well as the graphs displayed in the
[5-7]. The physical effects of neutrino oscillations on super-figures hold only for the case in which nonforward scattering
novae is treated in Ref8]. can be neglected.

Since the system is self-interacting and nonlinear, one Several parameters describe the system. Two important
usually has to resort to numerical methods to determine thenes areA, which is the mass squared difference between
physics and flavor behavior. This approach was used in Ref¢he two mass-eigenstate neutrinos, afd which is the
[6, 7, 9—1] to analyze neutrino oscillations in the early Uni- vacuum mixing angle:
verse for the case in which neutrinos have a chemical poten- T
tial 4, which is zero. In a gas for whicx,=0, the total A=(m;—mj)
number of antineutrinos is equal to the total number of neu-
trinos. It is unknown whether.,=0 in the early Universe. and
Indeed, the excess _of electrons over positrpns implies that V1= 16 COH— 1, SING, V=g SiNO+ v, COS.
the chemical potential for charged leptons is nonzero. Be- (1.2
cause this excess is tiny, being related to the baryon asym-
metry of the Universe, the chemical potential for electrons idHere, v; and v, are the mass-eigenstate neutrinos, which
quite small. Nevertheless, because neutrinos are so densehatve masses); andm,, andv,_andv,, are the left-handed
one second after the big bang, when the temperature of th&lectron and muon neutrinos, which are the states entering in

the currents of the weak interactions.
Let N, and N,-be respectively the number of neutrinos
*Permanent address: Physics Department, City College ofnd the number of antineutrinos in the gas. We use labels
New York, New York, NY 10031. Electronic address: andk to enumerate respectively the neutrinos and the an-
samuel@scisun.sci.ccny.cuny.edu tineutrinos. Thus the indexruns from 1 toN, and the index

(1.1
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k runs from 1 toN-~ The energy of th¢th neutrino and the
kth antineutrino is denoted b! andEX. The system is put

in a box of volume7”. The neutrino and antineutrino densi-

tiesn, andn-are given byn,=N, /7 andn;=N7/7"
The wave function foijth neutrino is governed by a two-
component vector! in flavor space: i.e.,

(1.3

wherevl* v} (respectively s v),) is the probability that the
jth neutrino is an electron neutrirfeespectively, muon neu-
trino). Likewise, for thekth antineutrino, the flavor wave

function is
—

vl - (1.9
"
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=> 0, (vT/>=§k) WK, (1.12)

j
The neutrino-neutrino terv,, makes the system of equa-
tions in Eq.(1.7) nonlinear. The equations in E¢L.7) re-
semble the motion of charged particles in “magnetic fields”
B! andBE .

The conservation of individual neutrinos in E4.5) cor-
responds to

vlol(t)=1, wk-wk(t)=1. (1.12

The total number of neutrinoll, and antineutrinos\--is
thusN,==;|v’| andN5=X,|wX.

If at timet=0, thejth neutrino andth antineutrino begin
as an electron neutrino and an electron antineutrino then

01(0)=(1,0,0, wK(0)=(1,0,0. (1.13

Since, under the assumption of no hard scattering, neutrinos
and antineutrinos are not created or destroyed but mereIU they begin as a muon neutrino and muon antineutrino then

change flavor, conservation of probability implies that

j* [ - TRx TR TR TR
ve vht v vl =1, +vg v, =1 (1.5

Ve Ve

v1(0)=(—1,0,0) andwX(0)=(—1,0,0). If there are both
electron and muon neutrinos initially, then only the excess is
relevant for neutrino oscillations. Thus if there are more elec-
tron neutrinos than muon neutrinostat0 then Eq.(1.13 is

The equations governing neutrino oscillations are easiegeneral. In the current work, the initial conditions in Eq.

to understand intuitively and visually by using vectotsand
wK associated with Eqg1.3) and (1.4 given by[13]

(1.13 are referred to amitial flavor eigenstates

II. REDUCTION OF THE PROBLEM

= (% i — % )] J*J J*]
vI=(vg v v, vy, 2Reve vy), 2IM(rgtyy)), The ratio of the strength of the vacuum term to the maxi-
R mum possible neutrino-interaction term for thié neutrino
wh= (W uE= VN, 2 REVEY), 2 Im(bEE)), andkth antineutrino is given by the parametersand ¥,
(1.6)  where
where Re and Im denote the real and imaginary parts of a A A
complex number. 1= : PLE — .
The equations governing the flavor behavior of a gas of V2GRE!(n,+ny) V2GEEX(n,+ )
self-interacting neutrinos and antineutrinos pte 6, 20 (2.9

L«
WZUJXBJV, WZWXBW, (17)

whereB! andBY, are given by

When kl<1 and«x¥<1, the vacuum term is much smaller
than the nonlinear neutrino term. This corresponds to the
case when the neutrino gas is dense. Under these circum-
stances, Ref.7] found that alignment holds. Alignment has
been observed numerically?] and is understood theoreti-
cally [21]. When alignment holds,

. A .. A
Bl=——V BK=—— +V* (1.8 -
v 2E] vy w k vy < > N N <W N
2E GO~ (=), WD~ =R (22
with '
_ are good approximations. Throughout the rest of this work,
A=A(cos29,—sin26,0). (1.9 the dense neutrino case is treated, so tha{ZE#) hold quite
accurately.
Here When Eq. (2.2) is an exact equality, the system of
36 3N, + 3N -differential equations in Eq1.7) reduce to six
- Gr equations. One sums ovpelandk in Eqg. (1.7) to obtain[21
Vo= (0) = (W) (L9 R a7 (21]
dr, . [ & dry, - A
implements the interactions of neutrinos and antineutrinos gy ~'v X Z—EO—VW , WZTWX E+VVV '
among themselves. An asterisk on a vector indicates a 0 2.3
change in sign of the third component so that '
W* = (W5 ,Wo, —Ws). In Eq.(1.10, where
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\71/1/: \/EGF(nVFU_nUF\Tv)y (24)

and 1E, and 1E, are the average inverse neutrino and an-

tineutrino energies given by

1_121 1_121 25

Eo N, E’ E, N;%EN '
Initial flavor eigenstates correspond to

r,(0)=(1,0,0, ry(0)=(1,0,0. (2.6

Ill. THE SOLUTION

It is convenient to change variables. First, we wde lieu

of t, where
1 A 1 1/2
TEEE—O(K—O) t, (3.1
with
. (3.2
Kp=E——""". .
® 2\2GEqn,

Second, we use a mass eigenstate basis. This involves a ro-

tation of vectors by an angle of 2 We denote the new

vectors for neutrinos bf and for antineutrinos bi. They
are given by

yi(7)=r,1(t)cos20—r ,,(t)sin26,

Yo(T)=r,1(t)Sin26+r ,,(t)cos2,

yS(T)Eru3(t)1 (33)
and
Z,(7)= :—jrwl(t)cosm— rwo(t)sin26],
Z(7)= :—L[rwl(t)sin26+ rw2(t)cos29],
nV
23(1) =~ Tualt). (3.4

14

For antineutrinos, a factor af,/n-is included for conve-

nience, and the sign of the third component is flipped, which

corresponds to using the “*” vector. Equatiof2.3) be-
comes

dy . (. 1. .\ dz . [_. 1. .
a. - Yx 781—;()/—2)), PR 2e yeﬁ;(y—z)),
(3.5
where
_ E
Y=\ Ko VEE—O (3.9

STUART SAMUEL

Initial flavor eigenstates correspond to

- n, )
y(0)=(co0s24,sin26,0), z(0)=—(c0s20,sin26,0).
n—

(3.7
Equation(3.5) is solved for arbitrary initial conditions in

the Appendix. The solution foy; and w; is in terms of
Jacobi elliptic functions. Thus the motion of the first compo-

nents ofy andw is period in 7 with a period which we
denote by7;. See Eqs(A18) and(A20). The solutions for
the second and third components are

yao(7)=\1-yi(r)cosp(7), ys(7)=\1-yi(7)sing(7),

(3.9
n, 2 _
zy(7)= - —[ky—yi1(7)]1%cosp(7),

0.8
Y.
1
0.6

time in 1
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FIG. 1. Components of as a function of scaled time for
0<7<20 for the case sin®=0.8, n,/n;=0.9, y=0.1, andy
=0.12 and with initial conditions as in E¢3.7). (a) The compo-
nenty,. (b) The componeny,. (c) The componeny;.
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1 FIG. 3. The flavor componenmt,; as a function ofr. Parameters
are the same as in Fig. 1.

time in T

only neutrinos and no antineutrinos, the slow mode goes
away and the behavior is purely periodic. This was the case
observed in Refl4]. Likewise, in theC P-symmetric case, in
which N,=N--and Eq=E,, the periods7s and.75 go to
infinity and the motion also becomes periodic with period
7+ . This is the case treated in R¢R1].

(a)

IV. EXPLICIT EXAMPLES

N The analytic solution in the Appendix is quite compli-
cated. To obtain insight, it is useful to consider specific
cases. Below, the values for &, A, n,, n;, etc., are not
chosen to correspond to those in physical systems, such as in
the early Universe, but to best illustrate different behaviors.
It is convenient to use in Eq. (3.1) since then the system
depends on only four parameters, namely, 8in2 vy, and
n,/n5~ Although solutions also depend on the initial values

of y(0) andz(0), in this section, we avoid this dependence
by using the initial flavor eigenstates in E&.7). We select
sin20=0.8. The large value for the vacuum mixing angle
amplifies effects.

Figure 1 shows the three components?()f) for the case
n,/n;=0.9, y=0.1, andy=0.12. Since the solution for
y1(7) is always in terms of a Jacobi elliptic function, the

(b) graph ofy,(7) is periodic. This is evident in Fig.(4). Since
two periods are involved ig,(7) andys(7), the correspond-
FIG. 2. The three-dimensional orbits for the example in Fig. 1.ing curves are bimodal and irregular, as Fig&)Jand 1c)
(a) The neutrino orbit(b) The antineutrino orbit. show. The plots for,(7), z,(7), andzz(7) are qualitatively
similar toy,(7), y,(7), andys(7). In other wordsz,(7) is

n\?2 L periodic, andz,(7) andzz(7) are bimodal and irregular. To
Z3(7)= (—j —[ky—y1(7)]?sine(7), (3.9 save space, we do not display them. Additional insight is
n, gained by examining the orbit for neutrinos, i.e., the trajec-
tory (y1(7),Y2(7),y5(7)) in three-space. Figurg® displays
g . o the neutrino orbit. The motion is as though one were moving
Cf"‘ted functlon_s 0_5/1' _ Becaus_eyl IS p_er|o<_j|c, cog(r) and back and forth over a cup-shaped surface in which the cap is
sing(7) are periodic with a periodt’s . Likewise, cog(r) and 5155 slowly rotating. These two motions crudely represent
sing(7) are periodic with a period’s. See Eq(A25). The  the two modes: The back-and-forth mode has a period of
periods int are related to those inr by the factor 7  The other mode corresponds to the rotation of the cup,
2EgVKolA according to Eq(3.1). _ is governed by the period’, and is controlled byp(7).
_ Hence the motion of the second and third components i antineutrino orbit, given bg(7), is similar toy(7) ex-
bimodal. They involve two periodic functions each with acept that “little loops” are made near the “edge” of the cup.

different period. In terms of the original variables and  See Fig. 2b). In the flavor eigenstate basis, all components
rw. all components are bimodal becauseandr,, involve  are bimodal and irregular. Figure 3 displays
y» andw, when Eqs(3.3) and(3.4) are inverted. In general, r,1(7)=cosdy;(7)+sin20y,(7). Qualitatively r(7) is
the periods are not compatible and the curvesrfgr, r -, similar to r,1(7). The case in this paragraph is near the
r,3, Twi» Fw2, andr,s appear irregular. When the gas has C P-symmetric limit for whichn, /n;=1.0 andy=y. In that

where k;=y,(0)—z,(0) and whereg and ¢ are compli-
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FIG. 5. A plot ofy, versusr for the example in Fig. 4.

Figure Ga) displays the neutrino orbit for the case
n,/n;=0.4, y=0.5, andy=0.6. As expected, the orbit is
approximately a circle. However, becausg/n,#0, there
are “wiggles.” The orbit looks somewhat like a “lasso.”
The antineutrino orbit is “flowerlike.” See Fig.(B).
(a) It turns out that, in the above three exampleS=.75.
For y andy not too large, this equality is general and holds
for other values of the parameters stha,/n-, etc. Hence
the angular motionsp(7) ande(7), do not get out of phase.
As a consequence, the initi@lP asymmetry is not amplified
in time. For the discussion in Sec. VI, we refer to this phe-
nomenon asp-phase locking
However, wheny and y become sufficiently large, the
equality.7s=.7 is suddenly violated. For initial flavor con-
ditions, this happens at the point in parameter space when

w

n—:(1—00520)=y+, (4.

14

wherey, is given in Eq.(A17). This is the point at which
1 the denominator factom(,/n-)?— (y;—k;)? in de/dr van-
ishes for the maximum value obtained yy. See Eq(A23).
For y or y above the critical point7;#.75. In this case,
even a small initialC P asymmetry can eventually grow into
a largeCP asymmetry at certain times.
As an example of this phenomenon, consider the case
with n,/n;=0.9, y=0.5, and y=0.5. One finds
FIG. 4. The orbits during € <10 for the case sin2=0.8, 7~2.2832,.7~3.8383, and.,y””sm4.3235.. Flggres @
n,/n>=0.75, y=0.1, andy=0.12 and with initial conditions as in and 7b) comparey(7) _and z(7). By the time is 10,y,
Eq. (3.7). (@ The neutrino orbit(b) The antineutrino orbit. andz, are about one-sixth of a period out of phase so that a
sizeableCP asymmetry is built up, even though the initial
limit, the motion is back and forth over the cup but the cupCP asymmetry, as measured by the differencengfn-
does not rotat¢21] so that the motion is a single mode and from one, is 10%. The orbits for this case are fairly irregular.
periodic in all variables. See Figs. &) and 8b).
Whenn, /n;-is reduced, the amplitude for the back-and-
forth motion becomes smaller and does not pass over the V. RELATION TO BEHAVIORS OBSERVED
“top” of the cup. Figure 4a) shows the orbit of/(7) for the IN THE EARLY UNIVERSE
casen,/n;=0.75, y=0.1, andy=0.12. The antineutrino
orbit is similar to the neutrino orbit and again has little loops.
See Fig. 4b). In terms of componenty, (7) andz,(7) have
graphs similar to the one in Fig(d but the amplitude is
smaller. The graphs for,(7), y3(7), z(7), z3(7) look like

(b)

In a certain region of parameter space f0 0, Ref.[9]
observed irregular flavor behavior. It is interesting to ask
whether this could be bimodal self-maintained coherence.
The equations governing neutrino oscillations in the early

cosine and sine functions with “small bumps.” Figure 5, the g.niverﬁe[G, 7]£:if|:f)er from thoge ir]!qu(l._|7_)hi_n two respﬁcts:h
plot of y, versusr, exemplifies this. irst, there areCP-asymmetric effects. This means that the

Whenn,/n;=0, one obtains the pure neutrino gas with medium-induced linear term, the analog/fin Eq. (1.8) is
no antineutrinos. The orbit for the neutrinos in this limiting Slightly different for neutrinos and antineutrinos. Second,
case, which was analytically obtained in RgX1], is a circle. B} and B\‘fv are time dependent due to the expansion of the
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time in T

(a)

=

z
5 0.5
0.25
(a) time in 1

w

(b)

FIG. 7. A comparison of, andz, when ¢-phase locking does
not hold for the case sir2-0.8, n,/n;=0.9, andy=y=0.5. (a)
The componeny,. (b) The component,.

tions of neutrinos and antineutrinos are the same. The main
effect of the positron-electron asymmetry is to misalign
and z. Hence it is of interest to examine solutions to Eq.
(2.3 with Eq=E,, n,=n- and|r,|=|r,/, but withr,(0)
#1,(0).
We perform the same change of variables as in E)8)
1 and (3.4). The CP-asymmetric effects are then represented

as a change in the initial conditions forvia
(b}

FIG. 6. The orbits during € 7<20 for the case sin2=0.8, >y v _ . _
n,/n;=0.4, y=0.5, andy=0.6 and with initial conditions as in 2(0) _(00320 2a), sin(20-2a)cos2B,
Eq. (3.7). (8 The neutrino orbit(b) The antineutrino orbit.

. ) . . sin(26—2a)sin2B), (5.0

Universe. However, in much of parameter space, interaction

rates are faster than the expansion rate of the Universe, so

that for short timesé{, and é\'}, can be considered constant. while  keeping 37(0) as in Eq. (3.7, so that

Over long times, however, effects due to a nonzero Hubblg?(o):(cosgglsinzg,o)_ Here,a and B are angles that con-

constant can be important. trol the CP asymmetry in the neutrino sector in the 1-2 plane
The CP-asymmetric effects, which are due to the excessnd in the 3 direction.

of electrons over positrons, are relatively small. However, Figure 9 displays the orbits for the neutrinos and an-

they can eventually lead to a situation in which antineutrinctineutrinos  for sin2=0.8, sin&x=0.01, sin=0.0,

vectors are not exactly aligned with neutrino vectors. Sincey="y=0.1, andn,/n;=1.0. The motion is mostly back and

the neutrino gas is extremely dense, sn@i asymmetries  forth as in theC P-symmetric case of Ref21] but the sec-

in the neutrino sector may lead to a sizeable interaction ihnd mode causes the back-and-forth cycle to shift somewhat

V,,. Hence the electron-positron asymmetry might be im-and not retrace over itself. When bathand 3 are nonzero,

portant indirectly via the nonlinear neutrino-neutrino term. fairly irregular behavior can arise. See Fig. 10 which dis-
Given this idea, it is reasonable to assume that the simpliplays the orbits for the neutrinos and antineutrinos for

fied model in Sec. Il can represent the coherent behaviors f@in20=0.8, sinzx=0.1, sin8=0.1, andy=y=0.1. These

the early Universe, for the case where the energy distribuexamples show that bimodal self-maintained coherence and
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(a) @

w

(b)
(b}

FIG. 8. The orbits during & 7<<10 for parameters as in Fig. 7.

(a) The neutrino orbit(b) The antineutrino orbit. FIG. 9. The orbits during €& 7<<10 for the case sin2=0.8,
n,/n;=1.0, andy=y=0.1 and using the initial conditions in Eq.

irregular flavor dependence arise even when the @B/  (5.1) with sin2¢=0.01 and sin=0.0. (a) The neutrino orbit(b)
asymmetry is in the initial conditions for neutrinos and an-The antineutrino orbit.
tineutrinos.

We have examined some of the orbits in the simulation®ccurs forA=—1.0x10"® eV?, sinf26=1.0x10"2 at ap-
of Refs.[9, 11] to see whether bimodal coherence occurs inproximately 0.94 sec. Although we do not display the orbit,
the early Universe. Because of the variety of manifestation# is similar to Fig. 9a).
of bimodal solutions, as typified in Figs. 1-10, it is not al- Bimodal self-maintained coherence might be the general
ways so easy to be sure that the irregular behavior seen casehavior of many dense neutrino gas systems. All three be-
responds to bimodal coherence. However, many results fromhaviors observed in the simulations of Reffg, 9, 11] are
oscillations in the early Universe are similar to the examplegjualitatively obtained as limits. Irregular behavior corre-
considered here. One clear case from IREf] occurs for the  sponds to bimodal coherence when both modes have sizeable
simulations withA=—1.0x 10 % eV?, sirf26=0.49 at ap- amplitudes. Residual self-maintained coherence occurs when
proximately 0.13 sec after the big bang. Figure 11 display®nly one mode has a sizeable amplitude. Finally, smooth
the orbit for the neutrinos in the flavor basis. The orbit forbehavior arises when vectors point in the directions of the
antineutrinos is virtually the same because of thelinear terms in the effective magnetic fields, so that both
CP-suppression mechanism discovered in RE@s.7]. Two  modes have small amplitudes. Indeed, for a dense neutrino
modes are clearly seen. The orbit in Fig. 11 is qualitativelygas in the early Universe, tiny rapid fluctuations were ob-
similar to the orbit in Fig. 2. Another example from REf1]  served in the simulations of Ref$, 7, 9—11 in the smooth
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FIG. 11. A neutrino orbit with axes in the flavor basis for
A=-1.0x10"° eV? and sif26=1.0x 108 during a small time
interval at approximately 0.13 sec after the big bang.

(a)

and for antineutrinos are the same. Given that there is a

CP asymmetry for charged leptons, namely the excess of

electrons over positrons, it is possible that the numbers of

neutrinos and antineutrinos are not equal, in which case a
2 chemical potential, for neutrinos needs to be introduced.

One purpose of the current work is to gain insight into the
asymmetric neutrino-antineutrino gas. With this insight, it is
possible to speculate on the phase diagram and on the flavor
behavior. To rigorously determine these, simulations must be
performed, but some computer studies are numerically inten-
sive because one must explore a phase space of three param-
eters:4, A, andu, . A thorough study cannot be undertaken
with the power of present computers. However, an educated
guess as to the results can be made.

Because of the explicit asymmetry between neutrinos and
antineutrinos whenu,#0, residual self-maintained coher-
ence, which corresponds to a situation in which only a single
mode is excited, is unlikely to appear, except for perhaps
brief periods for exceptional values of parameters. Instead,

FIG. 10. The orbits during € <10 for the case sir2=0.8,  irregular flavor, as governed by bimodal coherence, should
n,/n>=1.0, andy=y=0.1 and using the initial conditions in Eq. eplace it. Thus the diagram far<0 probably has only two
(5.1) with sin2x=sin28=0.1. (a) The neutrino orbit(b) The an-  Phases: smooth and irregular. Whep+ 0, irregular behav-
tineutrino orbit. ior should arise in the regions of the phase diagrams of Refs.

[9, 11] where irregular or residual self-maintained coherence
region of the phase diagrams. One possible explanation fagyccurred.
them is that they correspond to small-amplitude bimodal co- For A>0, it is likely that both neutrino and antineutrino
herence. Of course, when the amplitudes for oscillations argectors follow their respectively effective magnetic fields,
tiny, other effects may create them. Even if all the behaviorghereby maintaining themselves in approximate nonlinear
in parameter space fax<0 correspond to bimodal coher- mass eigenstates. Hence, smooth behavior is generally ex-
ence, it is still useful to characterize them by irregular, re-pected forA>0. However, ifE, is significantly different
sidual self-maintained coherence, and smooth as in Fig. 1 dfom E, then transitory weak irregular behavior should take
Ref.[9]. place in the “crossover region.” The crossover region is the
period during which neutrinos evolve from approximate fla-
vor eigenstates to approximate vacuum mass eigensgt@tes
Small amplitude irregular behavior should appear there be-
cause neutrinos and antineutrinos make the transition to mass

The studies of neutrino oscillations in the early Universeeigenstates at different times. This causes neutrino and an-
in Refs.[6, 7, 9-1] were performed under the assumption tineutrinos vectors to point in different directions. The effect
that n,=n-and that the energy distributions for neutrinos should be most pronounced for smal| particularly when

w

(b)

VI. NEUTRINO BEHAVIOR IN THE EARLY UNIVERSE
FOR 1, #0
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A<107° eV?2 After the transition region, the behavior for the u,=0 case of Refd9, 11]. Because of the phenom-

should become smooth again. A similar transitory effectenon of ¢-phase locking, effects on nucleosynthesis are not

might also occur in the smooth phase fo<0. expected to be amplified by neutrino oscillations, as one
One motivation for considering a nonzero neutrino chemi-might havea priori thought. The effects are probably limited

cal potential is that it introduces addition@lP asymmetry to those directly due to a nonzero neutrino chemical potential

into the system. Referen¢&4] showed that a large neutrino- [16].

antineutrino asymmetry can have an effect on nucleosynthe- In short, our work has shown that dense neutrino gases

sis. However, for the values of the parameters of the earlgan exhibit interesting and nonintuitive phenomenon. The

Universe,p-phase locking is expected. This implied that thegases often have collective, cooperative, and coherent flavor

CP asymmetry due tqu,#0 should not be amplified in behavior.

time. Hence neutrino oscillations far,# 0 are likely to af-

fect nucleosynthesis at the same level as in the case of no ACKNOWLEDGMENTS
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In this work, we analyzed neutrino oscillations in a dense

gas in which there is an explicit neutrino-antineutrino asym-
metry. The energy distribution for antineutrinos was not nec- APPENDIX

essarily the same as the energy distribution for neutrinos, nor |+ turns out that Eq(3.5) can be solved for arbitrary initial

did the numbers of antineutrinos and neutrinos have to be thgsnditions. Four conserved quantities play a role. The first
same. i

In the dense gas limit, alignment is expected to hold. Us—W0
ing this property, the nonlinear multiequation system was y§+y§+y§:1 (A1)
simplified to six equations in Sec. Il. Remarkably, the six
nonlinear equations were solvable. The solution was stilgnd
quite complicated. After performing some transformations in
Sec. lll, most solution details were relegated to the Appen- n\?
dix. The generic behavior was bimodal self-maintained co- z§+ z§+ 232=(—j (A2)
herence. This is a collective solitonlike solution in which ny
neutrino behavior is cooperative and in which two modes of . . . .
different frequencies are present. correspond to conservation of neutrinos and of antineutrinos.
Bimodal self-maintained coherence exhibits a wide rangézq“at'on(SS) also implies that
of behaviors depending on parameters and initial conditions.
Particular illustrative cases were presented in Sec. IV.
When the amplitude for one of the modes vanishes, ordi-
o . X .and that
nary self-maintained coherence is obtained. Such behavior
was first observed in text simulations in R¢&]. It was
subsequently observed in numerical simulations of the early yi— —
Universe in Ref[9] and understood analytically in R¢R1]. 2y(y+7)
Another neutrino flavor behavior, which has been seen in the . .
early Universe, is smootf6, 7]. It corresponds to a bimodal Wwhere k_l and kl? are “me'_"?der’_‘?”de”t constants. They are
solution in which the amplitudes of both modes are sma".determmed by initial conditions: i.e.,
Finally, irregular behavior, which can occur for an inverted
mass hierarchj@], is mimicked by bimodal coherence when
both amplitudes are present. These results suggest that bimo-
dal coherence may be the general flavor behavior for many
dense neutrino gases. As discussed in Sec. V, our results
provide new insight into the simulations of neutrino oscilla-
tions in the early Universe performed in Ref§, 7, 9-11.

With this additional understanding, it was possible to SUr e 1 init :

. . . . or initial flavor eigenstates,
mise the neutrino flavor dependence in the early Universe
when neutrinos have a chemical potential, so that there is an
explicit neutrino-antineutrino asymmetry. The expected be- k1—>c0520< 1- n—j
havior for A>0 is smooth with a possible weak bimodal n;

nﬁ ?
1-— . (AB6)
nV

Y1—21=Kq, (A3)

[(Y2—22)%+(Y3—23)?]=ki2, (A4)

k1=Yy1(0)—2,(0),

1
K1o=Yy1(0)— W{[YZ(O) - Zz(o)]2

+[y3(0)—23(0)]%. (A5)

coherent phase for a short time period. The expected behav-

iors for the inverted mass hierarchy cades 0, are smooth sirt26
and bimodal coherence. Bimodal coherence probably arises ki,—cos20— o ——
where irregular or residual self-maintained coherence arose 2y(y+7)
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It turns out to be useful to solve for the quantity where

Y2Zo+Y3Z3 using Eqs(Al)—(A4). One finds
2

nV

nVJ

Thus, Egs(A1)—(A4) allow one to eliminate four combi-
nations of variables in favor of;:

1-ki+ +y(y+ 7) (K~ Y1)

1
YoZyt+Y3Z3= >

+Kyy1 Y3 (A7)

y3+ys—1-vyi,

Z,—Yy1—Kq,

2
n
2, .2 v 2
22+Z3_’(n_4) —(y1—kp*,
14
2
nV
nV

Take the first order differential equation fgr in Eq.

1 _
Y2Zy+Y3Zz— > 1-Ki+ +y(y+y) (K= Y1)

+kyy; -3 (A8)

(3.5, differentiate it with respect t@, and use the equations

for the second and third components in E§.5). It is a

miracle that precisely the four quantities on the left-hand sid
of Eq. (A8) enter. Straightforward but lengthy algebra gives

%y _
7'2

d

Y
1+ ;j(yzzz +Y323)

N (Y1+20)(YaZo+Y323) — V(25 +25) — (Y3 +Y3)Za
2
Y

= —3AyZ-2By,-C, (A9)
where, in the last equality, the substitutions in E48) are
used. The constants, B, andC are given by

~ +
AlYTY
Y

O ? K () (katka)
2 2y° y '

n 2
1+k§—(—j 1
nV
2
nV

>

LK
C=—(y+vy) k12_2_y2

(y+v)

+ . (A10)

[kk —3[1—k2+
1712 2 1

Thus the motion ofy,; corresponds to a classical particle

2
+C[y;—y1(0)]+B{yi—[y1(0)]%

1/d
Vo =-3| o)

+Alyi-[y1(0)1%). (A12)
The potentiaM(y,) has three zeros and is negative between
the two larger zeros. The motion gf is between these two
larger zeros wher¥(y;)<0. Integration of Eq(A11) leads

to

Jyw) dy
T= —_—.
y1(0) = 2V(y)
This equation givesr in terms of y,(7) where the latter
appears as the upper limit of integration. Equati6i3) is
inverted to obtairy; as a function ofr.

Since the potential is cubic, the solution is always related
to Jacobi elliptic functions. In general, a cubic equation must

be solved, so that the explicit solution is rather complicated.
However, when

(A13)

dy;
F(O)_O’ (A14)

one can avoid this difficulty. The initial condition in Eq.
(A14) is an important case because it includes the initial

élavor eigenstates in Eq3.7). When Eq.(A14) holds, the

potential becomés
VIy1+y1(0)]=y1(Ayi+By; +C)

+y
= 5 yi(y1—y+)(yaty-) (AlDH)
where
A=A,
B=B+3Ay;(0),
C=C+2By;(0)+3A[y;(0)]% (A16)

The zeros of the potential arg;(0)—y_,y;(0), and
y1(0)+y. where

—B+B?—4AC B+ JB?—4AC
y+= oA , ysz- (AL17)
Thusy; oscillates betweew,(0) andy;(0)+vy, .
The integral in Eq(A13) is
ol {27 v
sol Y-Y+ 27 ,YO
=y,(0)+ — ,
y1 (7)=Yy1(0) Yo Yoy 7) 1/2y+
dn?f 7| ——~~| ,—
2y Yo
(A18)

moving in a one-dimensional cubic potential. This systemwhere

can be solved by quadratures. Multiply E@A9) by
dy,/dr and integrate to obtain

1{dy;
2\ dr

2

=—V(y1), (A11)

IFor the case of general initial conditions one must shifby a
constant which renders the middle zero at 0. Then one proceeds as
in the special case explicitly carried out here.
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with g?=y, /y_. The periodT; in t is

VBZ—4AC

A (A19)

Yo= =y+ty-,

szz%w_off. (A22)
and wheresn and dn are the sine-amplitude and delta-
amplitude Jacobi elliptic functions.

Hencey; undergoes periodic motion with a period; in

7 given by

The solution forz,(7) is given by using Eqs(A3) and
(A18).

Finding the solution of the second and third components
of 37 andz is not so straightforward. One proceeds by using
the polar coordinate angles in the two-three plane, i.e., let
p=arctanf/3/y,) and g=arctangs/z,). Differentiate ¢
with respect tor and use Eq(3.5). Do the same forp.

1/2

2y K(—9g?),

y_(y+7y)

Ti= 2( (A20)

where

1 dw

fo JA-w?)(1+g2w?)’

K(—a?) (A21)

kit [ Y(y+y)(Kip—

Miraculously, only the four quantities in EqA8) enter.
Hence the substitutions in EGA8) can be used to express
de/dr andde/dr in terms ofy, (7). After straightforward
but lengthy algebra, one finds

=l

1+ki—

1
Y1) 5

+y(y+

3

2
nV
— | Y1
nV

y(1-y7)

7)(k12_Y1)] (ki—y+

Y

[

Thus

o d — — 7 de
s(=o0+ [arZE, Grn=gto+ [ Tdrgt,
(A24)

wherede/dr andde/dr are given in Eq(A23) and where

y3(0) 23(0))

y2(0) z,(0)

0(0)= arctaré . o(0)= arctars

2

(A23)
—(y1— k1)2

|

For neutrinos, let7 denote the period in. For antineutri-
nos, let7; be the period. Then,

7:27T—7f /7:2#—7} (A25)
s fffd de[* 7® fffd de’
o 975 o 975

where|| indicates absolute value. The subscriptands on

7+ and.7 stands for “fast” and “slow.” In the extreme

dense gas limit/; is much smaller tharvg, i.e., 7% is the
period for the faster motion. The periodig and T in terms

The solutions for the second and third components are thegf t are

given via Egs(3.8) and(3.9).
Sincey; is periodic, the angular motion in the two-three
plane is also periodic but with a period different fromy .

E —  E _
Te=23ko7s, Ts=23\Ko75  (A26)
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