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Bimodal coherence in dense self-interacting neutrino gases
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Analytical solutions are obtained to the nonlinear equations describing neutrino oscillations when exp
neutrino-antineutrino asymmetries are present. Such a system occurs in the early Universe if neutrinos h
nonzero chemical potential. Solutions to the equations lead to a new type of coherent behavior governe
two modes. These bimodal solutions provide new insight into dense neutrino gases and into neutrino os
tions in the early Universe, thereby allowing one to surmise the flavor behavior of neutrinos with a nonz
chemical potential.@S0556-2821~96!01010-7#

PACS number~s!: 95.30.Cq, 13.15.1g, 14.60.Lm
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I. INTRODUCTION

In this work we undertake a theoretical study of flav
oscillations in dense neutrino gases. Such gases appe
physically interesting systems. An example occurs during
early Universe when neutrinos are self-interacting and
space densely@1, 2#. Likewise, during the final collapse of a
supernova, neutrinos are emitted copiously@2, 3#. If neutri-
nos have masses and mix then oscillations among neut
flavors can affect the physics of these systems.

The treatment of neutrino oscillations in a dense gas is
so straightforward. The flavor behavior of a particular ne
trino depends on the flavor content of background neutrin
However, the background neutrinos also oscillate. To kn
the flavor content of background neutrinos, it is necessary
know the oscillations of all individual neutrinos. Nonethe
less, a Hartree-Fock-like self-consistent formalism has
peared which can handle the system@4#. The behavior of the
gas depends on certain statistical properties such as the
ergy distribution, the nature of density perturbations, and
initial production of neutrinos. For the case in which only a
energy distribution is involved, the formalism has been fu
ther developed for the neutrino-antineutrino gas in Re
@5–7#. The physical effects of neutrino oscillations on supe
novae is treated in Ref.@8#.

Since the system is self-interacting and nonlinear, o
usually has to resort to numerical methods to determine
physics and flavor behavior. This approach was used in R
@6, 7, 9–11# to analyze neutrino oscillations in the early Un
verse for the case in which neutrinos have a chemical pot
tial mn which is zero. In a gas for whichmn50, the total
number of antineutrinos is equal to the total number of ne
trinos. It is unknown whethermn50 in the early Universe.
Indeed, the excess of electrons over positrons implies
the chemical potential for charged leptons is nonzero. B
cause this excess is tiny, being related to the baryon as
metry of the Universe, the chemical potential for electrons
quite small. Nevertheless, because neutrinos are so den
one second after the big bang, when the temperature of
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Universe is about an MeV, even a tinymn can have an effect.
One purpose of the current work is to surmise the flav
behavior of neutrino oscillations in the early Universe whe
mnÞ0. Various aspects of neutrino oscillations in the ear
Universe are also addressed in Refs.@12–20#.

Thus one is led to consider the system when the to
number of antineutrinos is not necessarily equal to the to
number of neutrinos. We assume the gas is homogene
and isotropic. Under this assumption, the averaged spa
neutrino currents are zero and one needs only to consi
neutrino densities. We also assume that the energy distrib
tion is the most important statistical property of the gas. F
simplicity, two flavors, electron and muon, are treated. I
many regions of parameter space, the three-flavor case
accurately approximated by the two-flavor case. Finally, w
consider situations in which hard scattering processes
much smaller than forward-scattering phase effects so th
hard scattering can be and is ignored. This occurs for tim
greater than one second after the big bang and outside
neutrino sphere of a supernova. In these situation
GFE

2!1, whereGF.1.17310211 MeV22 is the Fermi
coupling constant andE is the energy of a typical neutrino.
The analytic results as well as the graphs displayed in t
figures hold only for the case in which nonforward scatterin
can be neglected.

Several parameters describe the system. Two importa
ones areD, which is the mass squared difference betwee
the two mass-eigenstate neutrinos, andu, which is the
vacuum mixing angle:

D5~m2
22m1

2! ~1.1!

and

n15neLcosu2nmLsinu, n25neLsinu1nmLcosu.
~1.2!

Here, n1 and n2 are the mass-eigenstate neutrinos, whic
have massesm1 andm2 , andneL andnmL are the left-handed
electron and muon neutrinos, which are the states entering
the currents of the weak interactions.

Let Nn andN n̄ be respectively the number of neutrinos
and the number of antineutrinos in the gas. We use labelj
and k to enumerate respectively the neutrinos and the a
tineutrinos. Thus the indexj runs from 1 toNn and the index

of
:
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53 5383BIMODAL COHERENCE IN DENSE SELF-INTERACTING . . .
k runs from 1 toN n̄ . The energy of thej th neutrino and the
kth antineutrino is denoted byEj andĒk. The system is put
in a box of volumeV . The neutrino and antineutrino densi
tiesnn andn n̄ are given bynn5Nn /V andn n̄ 5N n̄ /V .

The wave function forj th neutrino is governed by a two-
component vectorn j in flavor space: i.e.,

n j5S ne
j

nm
j D , ~1.3!

wherene
j* ne

j ~respectively,nm
j* nm

j ) is the probability that the
j th neutrino is an electron neutrino~respectively, muon neu-
trino!. Likewise, for thekth antineutrino, the flavor wave
function is

n̄k5S n̄e
k

n̄m
k D . ~1.4!

Since, under the assumption of no hard scattering, neutri
and antineutrinos are not created or destroyed but mer
change flavor, conservation of probability implies that

ne
j* ne

j 1nm
j* nm

j 51, n̄e
k* n̄e

k1 n̄m
k* n̄m

k 51. ~1.5!

The equations governing neutrino oscillations are eas
to understand intuitively and visually by using vectorsvW j and
wW k associated with Eqs.~1.3! and ~1.4! given by @13#

vW j[„ne
j* ne

j 2nm
j* nm

j , 2 Re~ne
j* nm

j !, 2 Im~ne
j* nm

j !…,

wW k[„n̄e
k* n̄e

k2 n̄m
k* n̄m

k , 2 Re~ n̄e
k* n̄m

k !, 2 Im~ n̄e
k* n̄m

k !…,
~1.6!

where Re and Im denote the real and imaginary parts o
complex number.

The equations governing the flavor behavior of a gas
self-interacting neutrinos and antineutrinos are@4–6, 20#

dvW j

dt
5vW j3BW n

j ,
dwW k

dt
5wW k3BW w

k , ~1.7!

whereBW v
j andBW w

k are given by

BW n
j 5

DW

2Ej 2VW nn , BW w
k 5

DW

2Ēk 1VW nn* , ~1.8!

with

DW [D~cos2u,2sin2u,0!. ~1.9!

Here

VW nn5
A2GF

V
~^vW &2^wW * &! ~1.10!

implements the interactions of neutrinos and antineutrin
among themselves. An asterisk on a vector indicates
change in sign of the third component so tha
wW *5(w1 ,w2 ,2w3). In Eq. ~1.10!,
-
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^vW &5(
j
vW j , ^wW &5(

k
wW k. ~1.11!

The neutrino-neutrino termVW nn makes the system of equa-
tions in Eq.~1.7! nonlinear. The equations in Eq.~1.7! re-
semble the motion of charged particles in ‘‘magnetic fields
BW v
j andBW w

k .
The conservation of individual neutrinos in Eq.~1.5! cor-

responds to

vW j•vW j~ t !51, wW k
•wW k~ t !51. ~1.12!

The total number of neutrinosNn and antineutrinosN n̄ is
thusNn5( j uvW j u andN n̄ 5(kuwW ku.

If at time t50, the j th neutrino andkth antineutrino begin
as an electron neutrino and an electron antineutrino then

vW j~0!5~1,0,0!, wW k~0!5~1,0,0!. ~1.13!

If they begin as a muon neutrino and muon antineutrino th

vW j (0)5(21,0,0) andwW k(0)5(21,0,0). If there are both
electron and muon neutrinos initially, then only the excess
relevant for neutrino oscillations. Thus if there are more ele
tron neutrinos than muon neutrinos att50 then Eq.~1.13! is
general. In the current work, the initial conditions in Eq
~1.13! are referred to asinitial flavor eigenstates.

II. REDUCTION OF THE PROBLEM

The ratio of the strength of the vacuum term to the max
mum possible neutrino-interaction term for thej th neutrino
and kth antineutrino is given by the parametersk j and k̄k,
where

k j5
D

A2GFE
j~nn1n n̄ !

, k̄k5
D

A2GFĒ
k~nn1n n̄ !

.

~2.1!

When k j!1 and k̄k!1, the vacuum term is much smaller
than the nonlinear neutrino term. This corresponds to t
case when the neutrino gas is dense. Under these circu
stances, Ref.@7# found that alignment holds. Alignment has
been observed numerically@7# and is understood theoreti-
cally @21#. When alignment holds,

vW j~ t !'
^vW &
Nn

[rWv~ t !, wW k~ t !'
^wW &

N n̄

[rWw~ t ! ~2.2!

are good approximations. Throughout the rest of this wor
the dense neutrino case is treated, so that Eq.~2.2! hold quite
accurately.

When Eq. ~2.2! is an exact equality, the system of
3Nn13N n̄ differential equations in Eq.~1.7! reduce to six
equations. One sums overj andk in Eq. ~1.7! to obtain@21#

drWv
dt

5rWv3S DW

2E0
2VW nnD , drWw

dt
5rWw3S DW

2Ē0
1VW nn* D ,

~2.3!

where
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VW nn5A2GF~nnrWv2n v̄ rWw* !, ~2.4!

and 1/E0 and 1/Ē0 are the average inverse neutrino and a
tineutrino energies given by

1

E0
[

1

Nn
(
j

1

Ej ,
1

Ē0
[

1

N n̄
(
k

1

Ēk . ~2.5!

Initial flavor eigenstates correspond to

rWv~0!5~1,0,0!, rWw~0!5~1,0,0!. ~2.6!

III. THE SOLUTION

It is convenient to change variables. First, we uset in lieu
of t, where

t[
1

2

D

E0
S 1k0

D 1/2t, ~3.1!

with

k0[
D

2A2GFE0nn

. ~3.2!

Second, we use a mass eigenstate basis. This involves a
tation of vectors by an angle of 2u. We denote the new
vectors for neutrinos byyW and for antineutrinos byzW. They
are given by

y1~t![r v1~ t !cos2u2r v2~ t !sin2u,

y2~t![r v1~ t !sin2u1r v2~ t !cos2u,

y3~t![r v3~ t !, ~3.3!

and

z1~t![
nn

n n̄
@r w1~ t !cos2u2r w2~ t !sin2u#,

z2~t![
nn

n n̄
@r w1~ t !sin2u1r w2~ t !cos2u#,

z3~t![2
nn

n n̄
r w3~ t !. ~3.4!

For antineutrinos, a factor ofnn /n n̄ is included for conve-
nience, and the sign of the third component is flipped, whi
corresponds to using the ‘‘*’’ vector. Equation~2.3! be-
comes

dyW

dt
5yW3S gê12

1

g
~yW2zW ! D , dzW

dt
52zW3S ḡê11

1

g
~yW2zW ! D ,

~3.5!

where

g[Ak0, ḡ[
E0

Ē0
g. ~3.6!
n-

ro-

ch

Initial flavor eigenstates correspond to

yW ~0!5~cos2u,sin2u,0!, zW~0!5
nn

n n̄

~cos2u,sin2u,0!.

~3.7!

Equation~3.5! is solved for arbitrary initial conditions in
the Appendix. The solution fory1 and w1 is in terms of
Jacobi elliptic functions. Thus the motion of the first compo
nents ofyW and wW is period in t with a period which we
denote byT f . See Eqs.~A18! and~A20!. The solutions for
the second and third components are

y2~t!5A12y1
2~t!cosw~t!, y3~t!5A12y1

2~t!sinw~t!,

~3.8!

z2~t!5AS nn

n n̄
D 22@k12y1~t!#2cosw̄~t!,

FIG. 1. Components ofyW as a function of scaled timet for
0,t,20 for the case sin2u50.8, nn /n n̄ 50.9, g50.1, and ḡ
50.12 and with initial conditions as in Eq.~3.7!. ~a! The compo-
nenty1 . ~b! The componenty2 . ~c! The componenty3 .
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53 5385BIMODAL COHERENCE IN DENSE SELF-INTERACTING . . .
z3~t!5AS nn

n n̄
D 22@k12y1~t!#2sinw̄~t!, ~3.9!

where k15y1(0)2z1(0) and wherew and w̄ are compli-
cated functions ofy1 . Becausey1 is periodic, cosw(t) and
sinw(t) are periodic with a periodT s . Likewise, cosw̄(t) and
sinw̄(t) are periodic with a periodT̄ s . See Eq.~A25!. The
periods in t are related to those int by the factor
2E0Ak0/D according to Eq.~3.1!.

Hence the motion of the second and third components
bimodal. They involve two periodic functions each with
different period. In terms of the original variablesrWv and
rWw , all components are bimodal becauser v1 andr w1 involve
y2 andw2 when Eqs.~3.3! and~3.4! are inverted. In general,
the periods are not compatible and the curves forr v1 , r v2 ,
r v3 , r w1 , r w2 , and r w3 appear irregular. When the gas ha

FIG. 2. The three-dimensional orbits for the example in Fig.
~a! The neutrino orbit.~b! The antineutrino orbit.
is
a

s

only neutrinos and no antineutrinos, the slow mode go
away and the behavior is purely periodic. This was the ca
observed in Ref.@4#. Likewise, in theCP-symmetric case, in
which Nn5N n̄ andE05Ē0 , the periodsT s and T̄ s go to
infinity and the motion also becomes periodic with perio
T f . This is the case treated in Ref.@21#.

IV. EXPLICIT EXAMPLES

The analytic solution in the Appendix is quite compli-
cated. To obtain insight, it is useful to consider specifi
cases. Below, the values for sin22u, D, nn , n n̄ , etc., are not
chosen to correspond to those in physical systems, such a
the early Universe, but to best illustrate different behavior

It is convenient to uset in Eq. ~3.1! since then the system
depends on only four parameters, namely, sin2u, g, ḡ, and
nn /n n̄ . Although solutions also depend on the initial value
of yW (0) andzW(0), in this section, we avoid this dependenc
by using the initial flavor eigenstates in Eq.~3.7!. We select
sin2u50.8. The large value for the vacuum mixing angl
amplifies effects.

Figure 1 shows the three components ofyW (t) for the case
nn /n n̄ 50.9, g50.1, and ḡ50.12. Since the solution for
y1(t) is always in terms of a Jacobi elliptic function, the
graph ofy1(t) is periodic. This is evident in Fig. 1~a!. Since
two periods are involved iny2(t) andy3(t), the correspond-
ing curves are bimodal and irregular, as Figs. 1~b! and 1~c!
show. The plots forz1(t), z2(t), andz3(t) are qualitatively
similar to y1(t), y2(t), andy3(t). In other words,z1(t) is
periodic, andz2(t) andz3(t) are bimodal and irregular. To
save space, we do not display them. Additional insight
gained by examining the orbit for neutrinos, i.e., the traje
tory „y1(t),y2(t),y3(t)… in three-space. Figure 2~a! displays
the neutrino orbit. The motion is as though one were movin
back and forth over a cup-shaped surface in which the cap
also slowly rotating. These two motions crudely represe
the two modes: The back-and-forth mode has a period
T f . The other mode corresponds to the rotation of the cu
is governed by the periodT s , and is controlled byw(t).
The antineutrino orbit, given byzW(t), is similar toyW (t) ex-
cept that ‘‘little loops’’ are made near the ‘‘edge’’ of the cup
See Fig. 2~b!. In the flavor eigenstate basis, all componen
are bimodal and irregular. Figure 3 displays
r v1(t)[cos2uy1(t)1sin2uy2(t). Qualitatively r w1(t) is
similar to r v1(t). The case in this paragraph is near th
CP-symmetric limit for whichnn /n n̄ 51.0 andg5ḡ. In that

1.

FIG. 3. The flavor componentr v1 as a function oft. Parameters
are the same as in Fig. 1.
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5386 53STUART SAMUEL
limit, the motion is back and forth over the cup but the cu
does not rotate@21# so that the motion is a single mode an
periodic in all variables.

Whennn /n n̄ is reduced, the amplitude for the back-and
forth motion becomes smaller and does not pass over
‘‘top’’ of the cup. Figure 4~a! shows the orbit ofyW (t) for the
casenn /n n̄ 50.75, g50.1, andḡ50.12. The antineutrino
orbit is similar to the neutrino orbit and again has little loop
See Fig. 4~b!. In terms of components,y1(t) andz1(t) have
graphs similar to the one in Fig. 1~a! but the amplitude is
smaller. The graphs fory2(t), y3(t), z2(t), z3(t) look like
cosine and sine functions with ‘‘small bumps.’’ Figure 5, th
plot of y2 versust, exemplifies this.

Whennn /n n̄ 50, one obtains the pure neutrino gas wit
no antineutrinos. The orbit for the neutrinos in this limitin
case, which was analytically obtained in Ref.@21#, is a circle.

FIG. 4. The orbits during 0,t,10 for the case sin2u50.8,
nn /n n̄ 50.75,g50.1, andḡ50.12 and with initial conditions as in
Eq. ~3.7!. ~a! The neutrino orbit.~b! The antineutrino orbit.
p
d

-
the

s.

e
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Figure 6~a! displays the neutrino orbit for the case
nn /n n̄ 50.4, g50.5, andḡ50.6. As expected, the orbit is
approximately a circle. However, becausenn /n n̄Þ0, there
are ‘‘wiggles.’’ The orbit looks somewhat like a ‘‘lasso.’’
The antineutrino orbit is ‘‘flowerlike.’’ See Fig. 6~b!.

It turns out that, in the above three examples,T̄ s5T s .
For g and ḡ not too large, this equality is general and holds
for other values of the parameters sin2u, nn /n n̄ , etc. Hence
the angular motions,w(t) andw̄(t), do not get out of phase.
As a consequence, the initialCP asymmetry is not amplified
in time. For the discussion in Sec. VI, we refer to this phe
nomenon asw-phase locking.

However, wheng and ḡ become sufficiently large, the
equalityT̄ s5T s is suddenly violated. For initial flavor con-
ditions, this happens at the point in parameter space when

nn

n n̄

~12cos2u!5y1 , ~4.1!

wherey1 is given in Eq.~A17!. This is the point at which
the denominator factor (nn /n n̄ )

22(y12k1)
2 in dw̄/dt van-

ishes for the maximum value obtained byy1 . See Eq.~A23!.
For g or ḡ above the critical point,T̄ sÞT s . In this case,
even a small initialCP asymmetry can eventually grow into
a largeCP asymmetry at certain times.

As an example of this phenomenon, consider the ca
with nn /n n̄ 50.9, g50.5, and ḡ50.5. One finds
T f'2.2832, T s'3.8383, andT̄ s'4.3235. Figures 7~a!
and 7~b! comparey2(t) andz2(t). By the timet is 10, y2
andz2 are about one-sixth of a period out of phase so that
sizeableCP asymmetry is built up, even though the initial
CP asymmetry, as measured by the difference ofnn /n n̄

from one, is 10%. The orbits for this case are fairly irregular
See Figs. 8~a! and 8~b!.

V. RELATION TO BEHAVIORS OBSERVED
IN THE EARLY UNIVERSE

In a certain region of parameter space forD,0, Ref. @9#
observed irregular flavor behavior. It is interesting to as
whether this could be bimodal self-maintained coherenc
The equations governing neutrino oscillations in the earl
Universe@6, 7# differ from those in Eq.~1.7! in two respects:
First, there areCP-asymmetric effects. This means that the
medium-induced linear term, the analog ofDW in Eq. ~1.8! is
slightly different for neutrinos and antineutrinos. Second
BW v
j andBW w

k are time dependent due to the expansion of th

FIG. 5. A plot of y2 versust for the example in Fig. 4.
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Universe. However, in much of parameter space, interact
rates are faster than the expansion rate of the Universe
that for short timesBW v

j andBW w
k can be considered constan

Over long times, however, effects due to a nonzero Hub
constant can be important.

TheCP-asymmetric effects, which are due to the exce
of electrons over positrons, are relatively small. Howev
they can eventually lead to a situation in which antineutri
vectors are not exactly aligned with neutrino vectors. Sin
the neutrino gas is extremely dense, smallCP asymmetries
in the neutrino sector may lead to a sizeable interaction
VW nn . Hence the electron-positron asymmetry might be i
portant indirectly via the nonlinear neutrino-neutrino term

Given this idea, it is reasonable to assume that the sim
fied model in Sec. II can represent the coherent behaviors
the early Universe, for the case where the energy distri

FIG. 6. The orbits during 0,t,20 for the case sin2u50.8,
nn /n n̄ 50.4, g50.5, andḡ50.6 and with initial conditions as in
Eq. ~3.7!. ~a! The neutrino orbit.~b! The antineutrino orbit.
ion
, so
t.
ble

ss
er,
no
ce

in
m-
.
pli-
for
bu-

tions of neutrinos and antineutrinos are the same. The m
effect of the positron-electron asymmetry is to misalignyW

and zW. Hence it is of interest to examine solutions to Eq
~2.3! with E05Ē0 , nn5n n̄ , and urWvu5urWwu, but with rWv(0)
ÞrWw(0).

We perform the same change of variables as in Eqs.~3.3!
and ~3.4!. TheCP-asymmetric effects are then represente
as a change in the initial conditions forzW via

zW~0!5
nn

n n̄

„cos~2u22a!, sin~2u22a!cos2b,

sin~2u22a!sin2b…, ~5.1!

while keeping yW (0) as in Eq. ~3.7!, so that
yW (0)5(cos2u,sin2u,0). Here,a andb are angles that con-
trol theCP asymmetry in the neutrino sector in the 1-2 plan
and in the 3 direction.

Figure 9 displays the orbits for the neutrinos and an
tineutrinos for sin2u50.8, sin2a50.01, sin2b50.0,
g5ḡ50.1, andnn /n n̄ 51.0. The motion is mostly back and
forth as in theCP-symmetric case of Ref.@21# but the sec-
ond mode causes the back-and-forth cycle to shift somew
and not retrace over itself. When botha andb are nonzero,
fairly irregular behavior can arise. See Fig. 10 which dis
plays the orbits for the neutrinos and antineutrinos fo
sin2u50.8, sin2a50.1, sin2b50.1, andg5ḡ50.1. These
examples show that bimodal self-maintained coherence a

FIG. 7. A comparison ofy2 andz2 whenw-phase locking does
not hold for the case sin2u50.8, nn /n n̄ 50.9, andg5ḡ50.5. ~a!
The componenty2 . ~b! The componentz2 .
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5388 53STUART SAMUEL
irregular flavor dependence arise even when the onlyCP
asymmetry is in the initial conditions for neutrinos and a
tineutrinos.

We have examined some of the orbits in the simulatio
of Refs.@9, 11# to see whether bimodal coherence occurs
the early Universe. Because of the variety of manifestatio
of bimodal solutions, as typified in Figs. 1–10, it is not a
ways so easy to be sure that the irregular behavior seen
responds to bimodal coherence. However, many results fr
oscillations in the early Universe are similar to the examp
considered here. One clear case from Ref.@11# occurs for the
simulations withD521.031024 eV2, sin22u50.49 at ap-
proximately 0.13 sec after the big bang. Figure 11 displa
the orbit for the neutrinos in the flavor basis. The orbit f
antineutrinos is virtually the same because of t
CP-suppression mechanism discovered in Refs.@6, 7#. Two
modes are clearly seen. The orbit in Fig. 11 is qualitative
similar to the orbit in Fig. 2. Another example from Ref.@11#

FIG. 8. The orbits during 0,t,10 for parameters as in Fig. 7
~a! The neutrino orbit.~b! The antineutrino orbit.
n-

ns
in
ns
l-
cor-
om
les

ys
or
he

ly

occurs forD521.031026 eV2, sin22u51.031028 at ap-
proximately 0.94 sec. Although we do not display the orbit
it is similar to Fig. 9~a!.

Bimodal self-maintained coherence might be the gener
behavior of many dense neutrino gas systems. All three b
haviors observed in the simulations of Refs.@7, 9, 11# are
qualitatively obtained as limits. Irregular behavior corre
sponds to bimodal coherence when both modes have sizea
amplitudes. Residual self-maintained coherence occurs wh
only one mode has a sizeable amplitude. Finally, smoo
behavior arises when vectors point in the directions of th
linear terms in the effective magnetic fields, so that bot
modes have small amplitudes. Indeed, for a dense neutri
gas in the early Universe, tiny rapid fluctuations were ob
served in the simulations of Refs.@6, 7, 9–11# in the smooth

.
FIG. 9. The orbits during 0,t,10 for the case sin2u50.8,

nn /n n̄ 51.0, andg5ḡ50.1 and using the initial conditions in Eq.
~5.1! with sin2a50.01 and sin2b50.0. ~a! The neutrino orbit.~b!
The antineutrino orbit.
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region of the phase diagrams. One possible explanation
them is that they correspond to small-amplitude bimodal c
herence. Of course, when the amplitudes for oscillations
tiny, other effects may create them. Even if all the behavio
in parameter space forD,0 correspond to bimodal coher
ence, it is still useful to characterize them by irregular, r
sidual self-maintained coherence, and smooth as in Fig. 1
Ref. @9#.

VI. NEUTRINO BEHAVIOR IN THE EARLY UNIVERSE
FOR µnÞ0

The studies of neutrino oscillations in the early Univer
in Refs. @6, 7, 9–11# were performed under the assumptio
that nn5n n̄ and that the energy distributions for neutrino

FIG. 10. The orbits during 0,t,10 for the case sin2u50.8,
nn /n n̄ 51.0, andg5ḡ50.1 and using the initial conditions in Eq
~5.1! with sin2a5sin2b50.1. ~a! The neutrino orbit.~b! The an-
tineutrino orbit.
for
o-
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-
e-
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se
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and for antineutrinos are the same. Given that there i
CP asymmetry for charged leptons, namely the excess
electrons over positrons, it is possible that the numbers
neutrinos and antineutrinos are not equal, in which cas
chemical potentialmn for neutrinos needs to be introduced

One purpose of the current work is to gain insight into th
asymmetric neutrino-antineutrino gas. With this insight, it
possible to speculate on the phase diagram and on the fla
behavior. To rigorously determine these, simulations must
performed, but some computer studies are numerically int
sive because one must explore a phase space of three pa
eters:u, D, andmn . A thorough study cannot be undertake
with the power of present computers. However, an educa
guess as to the results can be made.

Because of the explicit asymmetry between neutrinos a
antineutrinos whenmnÞ0, residual self-maintained coher
ence, which corresponds to a situation in which only a sin
mode is excited, is unlikely to appear, except for perha
brief periods for exceptional values of parameters. Inste
irregular flavor, as governed by bimodal coherence, sho
replace it. Thus the diagram forD,0 probably has only two
phases: smooth and irregular. WhenmnÞ0, irregular behav-
ior should arise in the regions of the phase diagrams of R
@9, 11# where irregular or residual self-maintained coheren
occurred.

For D.0, it is likely that both neutrino and antineutrino
vectors follow their respectively effective magnetic field
thereby maintaining themselves in approximate nonline
mass eigenstates. Hence, smooth behavior is generally
pected forD.0. However, if Ē0 is significantly different
from E0 then transitory weak irregular behavior should tak
place in the ‘‘crossover region.’’ The crossover region is t
period during which neutrinos evolve from approximate fl
vor eigenstates to approximate vacuum mass eigenstates@7#.
Small amplitude irregular behavior should appear there
cause neutrinos and antineutrinos make the transition to m
eigenstates at different times. This causes neutrino and
tineutrinos vectors to point in different directions. The effe
should be most pronounced for smallD, particularly when

.

FIG. 11. A neutrino orbit with axes in the flavor basis fo
D521.031026 eV2 and sin22u51.031028 during a small time
interval at approximately 0.13 sec after the big bang.
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D,1029 eV2. After the transition region, the behavior
should become smooth again. A similar transitory effec
might also occur in the smooth phase forD,0.

One motivation for considering a nonzero neutrino chem
cal potential is that it introduces additionalCP asymmetry
into the system. Reference@14# showed that a large neutrino-
antineutrino asymmetry can have an effect on nucleosynth
sis. However, for the values of the parameters of the ear
Universe,w-phase locking is expected. This implied that the
CP asymmetry due tomnÞ0 should not be amplified in
time. Hence neutrino oscillations formnÞ0 are likely to af-
fect nucleosynthesis at the same level as in the case of
neutrino masses and mixing@22, 23#. Constraints on the
chemical potential of neutrinos from big bang nucleosynthe
sis have been obtained in Ref.@16#.

VII. SUMMARY

In this work, we analyzed neutrino oscillations in a dens
gas in which there is an explicit neutrino-antineutrino asym
metry. The energy distribution for antineutrinos was not nec
essarily the same as the energy distribution for neutrinos, n
did the numbers of antineutrinos and neutrinos have to be t
same.

In the dense gas limit, alignment is expected to hold. Us
ing this property, the nonlinear multiequation system wa
simplified to six equations in Sec. II. Remarkably, the si
nonlinear equations were solvable. The solution was st
quite complicated. After performing some transformations i
Sec. III, most solution details were relegated to the Appen
dix. The generic behavior was bimodal self-maintained co
herence. This is a collective solitonlike solution in which
neutrino behavior is cooperative and in which two modes o
different frequencies are present.

Bimodal self-maintained coherence exhibits a wide rang
of behaviors depending on parameters and initial condition
Particular illustrative cases were presented in Sec. IV.

When the amplitude for one of the modes vanishes, ord
nary self-maintained coherence is obtained. Such behav
was first observed in text simulations in Ref.@4#. It was
subsequently observed in numerical simulations of the ear
Universe in Ref.@9# and understood analytically in Ref.@21#.
Another neutrino flavor behavior, which has been seen in th
early Universe, is smooth@6, 7#. It corresponds to a bimodal
solution in which the amplitudes of both modes are sma
Finally, irregular behavior, which can occur for an inverted
mass hierarchy@9#, is mimicked by bimodal coherence when
both amplitudes are present. These results suggest that bim
dal coherence may be the general flavor behavior for ma
dense neutrino gases. As discussed in Sec. V, our resu
provide new insight into the simulations of neutrino oscilla
tions in the early Universe performed in Refs.@6, 7, 9–11#.

With this additional understanding, it was possible to su
mise the neutrino flavor dependence in the early Univers
when neutrinos have a chemical potential, so that there is
explicit neutrino-antineutrino asymmetry. The expected be
havior for D.0 is smooth with a possible weak bimodal
coherent phase for a short time period. The expected beh
iors for the inverted mass hierarchy case,D,0, are smooth
and bimodal coherence. Bimodal coherence probably aris
where irregular or residual self-maintained coherence aro
t
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for themn50 case of Refs.@9, 11#. Because of the phenom
enon ofw-phase locking, effects on nucleosynthesis are n
expected to be amplified by neutrino oscillations, as o
might havea priori thought. The effects are probably limite
to those directly due to a nonzero neutrino chemical poten
@16#.

In short, our work has shown that dense neutrino ga
can exhibit interesting and nonintuitive phenomenon. T
gases often have collective, cooperative, and coherent fla
behavior.
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APPENDIX

It turns out that Eq.~3.5! can be solved for arbitrary initial
conditions. Four conserved quantities play a role. The fi
two

y1
21y2

21y3
251 ~A1!

and

z1
21z2

21z325S nn

n n̄
D 2 ~A2!

correspond to conservation of neutrinos and of antineutrin
Equation~3.5! also implies that

y12z15k1 , ~A3!

and that

y12
1

2g~ḡ1g!
@~y22z2!

21~y32z3!
2#5k12, ~A4!

wherek1 and k12 are time-independent constants. They a
determined by initial conditions: i.e.,

k15y1~0!2z1~0!,

k125y1~0!2
1

2g~ḡ1g!
$@y2~0!2z2~0!#2

1@y3~0!2z3~0!#2%. ~A5!

For initial flavor eigenstates,

k1→cos2uS 12
nn

n n̄
D ,

k12→cos2u2
sin22u

2g~ḡ1g! S 12
nn

n n̄
D 2. ~A6!
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It turns out to be useful to solve for the quantit
y2z21y3z3 using Eqs.~A1!–~A4!. One finds

y2z21y3z35
1

2 F12k1
21S nn

n n̄
D 2G1g~ḡ1g!~k122y1!

1k1y12y1
2 . ~A7!

Thus, Eqs.~A1!–~A4! allow one to eliminate four combi-
nations of variables in favor ofy1:

y2
21y3

2→12y1
2,

z1→y12k1 ,

z2
21z3

2→S nn

n n̄
D 22~y12k1!

2,

y2z21y3z3→
1

2 F12k1
21S nn

n n̄
D 2G1g~ḡ1g!~k122y1!

1k1y12y1
2 . ~A8!

Take the first order differential equation fory1 in Eq.
~3.5!, differentiate it with respect tot, and use the equation
for the second and third components in Eq.~3.5!. It is a
miracle that precisely the four quantities on the left-hand s
of Eq. ~A8! enter. Straightforward but lengthy algebra give

d2y1
dt2

5S 11
ḡ

g D ~y2z21y3z3!

1
~y11z1!~y2z21y3z3!2y1~z2

21z3
2!2~y2

21y3
2!z1

g2

523Ây1
222B̂y12Ĉ, ~A9!

where, in the last equality, the substitutions in Eq.~A8! are
used. The constantsÂ, B̂, andĈ are given by

Â5
ḡ1g

g
,

B̂5
~ ḡ1g!2

2
1

k1
2

2g2 2
~ ḡ1g!~k11k21!

g
,

Ĉ52~ ḡ1g!2k122
k1
2g2 F11k1

22S nn

n n̄
D 2G

1
~ ḡ1g!

g H k1k122 1

2 F12k1
21S nn

n n̄
D 2G J . ~A10!

Thus the motion ofy1 corresponds to a classical particl
moving in a one-dimensional cubic potential. This syste
can be solved by quadratures. Multiply Eq.~A9! by
dy1 /dt and integrate to obtain

1

2 S dy1dt D 252V~y1!, ~A11!
y

s

ide
s

e
m

where

V~y1!52
1

2 S dy1dt
~0! D 21Ĉ@y12y1~0!#1B̂$y1

22@y1~0!#2%

1Â$y1
32@y1~0!#3%. ~A12!

The potentialV(y1) has three zeros and is negative betwe
the two larger zeros. The motion ofy1 is between these two
larger zeros whereV(y1)<0. Integration of Eq.~A11! leads
to

t5E
y1~0!

y1~t! dy

A22V~y!
. ~A13!

This equation givest in terms of y1(t) where the latter
appears as the upper limit of integration. Equation~A13! is
inverted to obtainy1 as a function oft.

Since the potential is cubic, the solution is always relat
to Jacobi elliptic functions. In general, a cubic equation mu
be solved, so that the explicit solution is rather complicate
However, when

dy1
dt

~0!50, ~A14!

one can avoid this difficulty. The initial condition in Eq
~A14! is an important case because it includes the init
flavor eigenstates in Eq.~3.7!. When Eq.~A14! holds, the
potential becomes1

V@y11y1~0!#5y1~Ay1
21By11C!

5
ḡ1g

g
y1~y12y1!~y11y2! ~A15!

where

A5Â,

B5B̂13Ây1~0!,

C5Ĉ12B̂y1~0!13Â@y1~0!#2. ~A16!

The zeros of the potential arey1(0)2y2 ,y1(0), and
y1(0)1y1 where

y15
2B1AB224AC

2A
, y25

B1AB224AC

2A
. ~A17!

Thusy1 oscillates betweeny1(0) andy1(0)1y1 .
The integral in Eq.~A13! is

y1
sol~t!5y1~0!1

y2y1

y0

sn2FtS y0~ ḡ1g!

2g D 1/2,y1

y0
G

dn2FtS y0~ ḡ1g!

2g D 1/2,y1

y0
G ,
~A18!

where

1For the case of general initial conditions one must shifty1 by a
constant which renders the middle zero at 0. Then one proceed
in the special case explicitly carried out here.
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y0[
AB224AC

A
5y11y2 , ~A19!

and wheresn and dn are the sine-amplitude and delta
amplitude Jacobi elliptic functions.

Hencey1 undergoes periodic motion with a periodT f in
t given by

T f52S 2g

y2~ ḡ1g! D
1/2

K~2q2!, ~A20!

where

K~2q2!5E
0

1 dw

A~12w2!~11q2w2!
, ~A21!
-

with q2[y1 /y2 . The periodTf in t is

Tf52
E0

D
Ak0T f . ~A22!

The solution forz1(t) is given by using Eqs.~A3! and
~A18!.

Finding the solution of the second and third component
of yW andzW is not so straightforward. One proceeds by using
the polar coordinate angles in the two-three plane, i.e., le
w5arctan(y3 /y2) and w̄5arctan(z3 /z2). Differentiate w
with respect tot and use Eq.~3.5!. Do the same forw̄.
Miraculously, only the four quantities in Eq.~A8! enter.
Hence the substitutions in Eq.~A8! can be used to express
dw/dt anddw̄/dt in terms ofy1(t). After straightforward
but lengthy algebra, one finds
dw

dt
52g1

k11H g~ḡ1g!~k122y1!2
1

2 F11k1
22S nn

n n̄
D 2G J y1

g~12y1
2!

,

dw̄

dt
5ḡ1

H 12 F12k1
21S nn

n n̄
D 2G1g~ḡ1g!~k122y1!J ~k12y1!1S nn

n n̄
D 2y1

gF S nn

n n̄
D 22~y12k1!

2G . ~A23!
Thus

w~t8!5w~0!1E
0

t8
dt

dw

dt
, w̄~t8!5w̄~0!1E

0

t8
dt

dw̄

dt
,

~A24!

wheredw/dt anddw̄/dt are given in Eq.~A23! and where

w~0!5arctanS y3~0!

y2~0! D , w̄~0!5arctanS z3~0!

z2~0! D .
The solutions for the second and third components are t
given via Eqs.~3.8! and ~3.9!.

Sincey1 is periodic, the angular motion in the two-thre
plane is also periodic but with a period different fromT f .
hen

e

For neutrinos, letT s denote the period int. For antineutri-
nos, letT̄ s be the period. Then,

T s5
2pT f

U E
0

T f
dt

dw

dtU
, T̄ s5

2pT f

U E
0

T f
dt

dw̄

dtU
, ~A25!

whereuu indicates absolute value. The subscriptsf ands on
T f and T s stands for ‘‘fast’’ and ‘‘slow.’’ In the extreme
dense gas limitT f is much smaller thanT s , i.e., T f is the
period for the faster motion. The periodsTs andT̄s in terms
of t are

Ts52
E0

D
Ak0T s , T̄s52

E0

D
Ak0T̄ s . ~A26!
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