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We study the effect of coherent and incoherent broadening on neutrino oscillations both in 
vacuum and in the presence of matter (the MSW effect). We show under very general assumptions 
that it is not possible to distinguish experimentally neutrinos produced in some region of space as 
wave packets from those produced in the same region of space as plane waves with the same energy 
distribution. 

PACS number(s): 14.6O.Pq, 12.15.Ff 
I. INTRODUCTION 

Neutrino oscillations have been the subject of intense 
theoretical and experimental research. To date there is 
no evidence for oscillations in terrestrial neutrino beams. 
The deficit of solar neutrinos can be explained by new 
trino oscillations with a (mass)’ difference Am2 N lOme 
eV’ together with the enhancement of these oscillations 
as the neutrinos pass through the Sun by the Mikheyev- 
Smirnov-Wolfenstein (MSW) effect [l]. There are also 
hints of possible neutrino oscillations with Am2 N 10m2 
eV2 in atmospheric neutrino experiments 121. 

Approximately 25 years ago an interesting suggestion 
was made for probing even lower values of Am’ using 
the 3% annual va&tion of the Earth-Sun distance [3]. 
In this case, rather than simply observing a net average 
decrease in the electron neutrino intensity by an amount 
sin’(20)/2 one could observe the actual oscillations of the 
electron neutrino flux. The idea is to use the v,‘s from 
e- capture on Be, 

‘Be + e- +’ Li + v,, (1) 

which results in a neutrino energy E, - 0.86 MeV with 
a small energy spread. Thus, if the neutrino oscillation 
length 

is within one or two orders of magnitude of the varia- 
tion AR - 5 x 1O1* cm of the Earth-Sun distance, then, 
depending on the value of sin2(20), it may be possible 
to see the neutrino oscillations provided Am’ is in the 
range 10-9-10-1’ eV2. 
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One of the most essential ingredients in making the 
above scenario work is that the spread in energy AE of 
the neutrino “beam” is not too wide. Tbis is especially 
true,in this case since R/AR >> 1. If AE is too large, 
then by the time the neutrinos arrive at the Earth the 
oscillation patterns for neutrinos of different energies get 
sticiently out of phase to wipe out any potentially ob- 
servable oscillations. This results simply in a decrease of 
“the total v, intensity by an amount sin’(28)/2. A co- 
herence length L,, is usually defined as the distance 
at which a neutrino of energy E has undergone one os- 
cillation more than a neutrino of energy E + AE. This 
coherence length is given by 

L (3) 

and the total number of complete oscillations will be 

N 
LI, 

max = -. 
L (4) 

0% 

Thus when AEfE is larger than about l/30 we can no 
longer observe the oscillations and a narrow energy range 
AE is therefore required. 

The argument above assumed that the energy spread 
of the neutrino beam is incoherent in origin in the sense 
that it is due to slightly different energies of various neu- 
trinos. The main origin of this energy spread AE is that 
the continuum electrons which are captured by Be have 
an energy spread AE, N kT which translates into a sim- 
ilar spread AE, - kT of the emerging neutrino energies. 
Another slightly smaller contribution to AE, z AE orig- 
inates from the different Doppler shifts due to thermal 
nuclear velocities (relative to the line of sight), the ana- 
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logue of the well-known Doppler broadening in atomic 
spectroscopy [4]. 

Y!oherent broadening,” namely, the quantum- 
mechanical spread 6E of a single neutrino, can also lead 
to the loss of the oscillation pattern [5]. The well-known 
natural linewidth in atomic spectroscopy, 

6.~ - r - (~eeay)-~, (5) 

is an example of coherent broadening. The finite lifetime 
7decay of the level interrupts the classical emission of the 
wave train and limits the size of the wave packet 6% to 

with the momentum (6P = SE/c) and the configuration 
space (Sz) widths being inversely related to each other 
via a Fourier transform of a Lorentzian to an exponential. 

Another example of coherent broadening is the colli- 
sional broadening (also known as the “pressure broaden- 
ing”) of the neutrino line. It stems from the interruption 
of coherent emission by collisions of the emitting atoms. 
The corresponding wave packet size is given by an am- 
logue of Eq. (6) but with 7decaY replaced by tcouision, 
the effective time interval between “relevant collisions.” 
This (nuclear) collisional broadening effect has been ex- 
tensively studied as the major contributor to the loss of 
coherence in neutrino oscillation. There have been var- 
ious estimates of the strength of the effect leading to 
estimates of the size of SI = ctcousion [4-71. 

A third contribution to the coherent broadening which 
we believe is likely to contribute even more to the energy 
spread 6E of the neutrino wave packet is the small size of 
the wave packets of the captured electrons. Since the K 
electron ionization energy in berillium, Eion = 2’4 = 
16% N 220 eV; is small in comparison with the thermal 
kT - keV energy, the capture in reaction (1) is primarily 
that of continuum electrons. An electron wave packet of 
size 6. will traverse the (pointlike) nucleus in a time 

where u. is the velocity of the electron. Because the weak 
interaction underlying the capture process (1) is local, 
the time available for the v, emission is Jt and the size 
of the outgoing v, wave packet emitted with velocity e 
(c = 1 in our units) will be 

The thermal kinetic energy of a typical electron is 
$n,v,2 - $kT. Thus 

(9) 

It remains only to estimate the appropriate wave packet 
sine 6, to be used in Eq. (7). The electrons sufTer many 
random collisions in the hot core which tend to localize 
the wave function and reduce the wave packet size. If 
the only information available is that the electrons are 
in thermal equilibrium, then 6, is expected to be of the 
order of the thermal wavelength: 

which then leads to a neutrino wave packet size 

27r 
6, = 6E, N 6 x lo-* cm. 

(10) 

This S, is smaller (and the corresponding incoherent 
broadening is larger) than all previous estimates. 

The three mechanisms described above all lead to the 
conclusion that neutrinos are emitted in the Sun as wave 
packets with a rather small size 6, corresponding to “co- 
herent broadening” of the neutrino line by an amount 
6E - 2n/6,. This coherent broadening also leads to the 
loss of the oscillation pattern [5] after a coherence length 
Lcoh which is precisely equal to the coherence length 
I,,, derived in Eq. (3). This result can be derived 
technically by decomposing the wave packet into plane 
waves of energy E with a probability distribution 

P(E) = IQ W I2 (12) 

and repeating the discussion leading to Eqs. (3) and (4). 
This leads to identical conclusions but with AE replaced 
by the energy spread bE given by 

(6E)’ = / dE P(E) (E’ - 8’). (13) 

There is, however, a simple intuitive explanation for 
how the oscillations are lost in terms of the wave packet 
of the neutrino in configuration space [5]. Consider an 
electron neutrino wave packet which is emitted at t = 0 
from the solar core. At t = 0 the v, can be written 8s 
a superposition of two wave packets with identical shape 
corresponding to the mass eigemtates 1~1) and 1~): 

Ive(t = 0)) = cos(O)lvJ + sin(O)l ,(14) 

This initial wave packet will quickly spread in the direc- 
tions (x,y) perpendicular to the direction of motion but 
the spreading in the direction of motion (z) is negligible 
due to Lorentz contraction effects. Because of the differ- 
ent mass of the y and ~2, their wave packets travel with 
a different (group) velocity 

Thus after a time t has elapsed and the neutrino has 
traveled a distance T N t from the sowce the two wave 
packets move with respect to each other by an amount 

Neutrino oscillations are simply the “beating” of the two 



53 COHERENCE EFFECTS IN NEUTRINO OSCILLATIONS 539 
wave packets as they slide relative to each other by Ar = 
X with 

A=; (17) 

the wavelength of the neutrino. The oscillation length of 
Eq. (2) is then recovered as 

4?rE 
L,,, = {value of r for which Ar = X} = & = - 

An2 

(18) 

The total number of possible neutrino oscillations is sim- 
ply the total number of wavelengths within the wave 
packet, N,,,, = 6,/X = E/6E. After this number of 
oscillations the two wave packets do not overlap at all 
and all oscillations are lost. Thus the coherence distance 
Leoh, which is the maximum distance over which we see 
oscillations, is given by 

L 
E 

eoh = Nm,Lo,, = E Lm, 
( ) 

(19) 

which is precisely the result of Eqs. (3) and (4) for the 
case of incoherent energy broadening. Indeed, once Ar 
is greater than the size 6, of the wave packet, the ~1 and 
the vz will have completely separated spatially. We would 
thus expect that they will not interfere when interacting 
locally with an electron or nucleus in a detector. 

The main aim of this paper is to study whether the 
two effects discussed above, namely, the incoherent ver- 
sus the coherent broadening, can be distinguished. They 
are clearly distinct physical phenomena which can be 
controlled (at least in principle) at the sowce. In an 
atomic physics analogue the Doppler broadening can be 
controlled relative to the natural linewidth by adjusting 
the temperature of the system or by confining the atoms 
to a narrow channel transverse to the line of sight [8]. 
The more interesting question is the following: Can we 
distinguish these effects at the detector? In this paper 
we shall show that in all physically interesting situations 
the answer is “no.” We shall discuss some simple cases in 
which tbis answer is clear and then we shall prove some 
general theorems which will show that under a wide va- 
riety of physically attainable situations these two effects 
cannot be distinguished. 

II. COHERENT VERSUS INCOHERENT 
BROADENING 

Our goals in tbis section is to see whether one can dis- 
tinguish an incoherent ensemble of plane waves with a 
mean energy E and an energy spread AE from an en- 
semble of wave packets each with the same mean energy 
E and the same energy width 6E = AE. Before pro- 
ceeding we should make one point clear. Even in the 
“incoherent” case in which we have an ensemble of plane 
waves these waves certainly do not have an infinite ex- 
tent in the E direction (the direction of motion). In fact 
even if we took each “plane wave” (with an energy in the 
MeV range) to have an energy uncertainty of the order 
of lOms eV (which is certainly a great underestimate for 
the solar neutrino case) the corresponding wave packet 
would still be only of the order of a cm in size. Thus 
when discussing “plane waves” we are in fact referring to 
wave packets which are much larger than those discussed 
in the case of coherent broadening but much smaller than 
any macroscopic scales in the problem. 

A. Example 

Our aim will be to show that the two broadening effects 
discussed above cannot be distinguished. We begin with 
a concrete suggestion for distinguishing these effects and 
we then show what goes wrong with this suggestion. 

Let us suppose that we were able to measure the en- 
ergy of a neutrino with a precision e which is much better 
than 6E = AE. We then expect that for an incoherent 
beam of neutrinos with energies in a range AE about E 
we could recover the oscillations by measuring the neu- 
trino energy to the precision e < AE. By plotting the 
observed neutrino count as a function of 

(20) 

we should see oscillations up to a new distance 

Le = (E/+o., > Lm,, (21) 

with no loss of statistics. Note that AE is replaced by e 
inEq. (3). 

If, on the other hand, we began with a wave packet 
with energy spread 6E, then, at a distance larger than 
Lcoh [Eq. (19)], the wave packet of the v1 and the ~2 are 
completely separated and one might naively expect that 
there will be no oscillations even if the energy could be 
measured more accurately. 

This argument turns out to be wrong and we can un- 
derstand what goes wrong in a very intuitive way. If 
we choose to measure the energy very accurately (to an 
accuracy e), we require a time t N l/e to make this mea- 
surement. If, during this time t, the second wave packet 
arrives at the detector, then we will once more see the 
oscillations. The condition for recovering the oscillations 
is therefore 

Al79 
t N l/e > AT - sr, 

where Ar is the distance between the wave packets and 
T is the distance from the source [Eq. (16)). The oscil- 
lations thus persist up to a new distance L: which is the 
value of T for which Eq. (22) breaks down: 

L: = (E/+mc, (23) 

which is precisely the same as the result (21) obtained 
for the incoherent neutrino beam. 

This behavior of the coherent beam is analogous to 
what occws for a high-Q oscillator hit by two successive 
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pulses. The fast pulse (in our case the vl beam) comes 
along and sets the oscillator in motion. It then continues 
to oscillate for a time t N l/e, during which time the 
second pulse (in our case the vz beam) arrives and causes 
the oscillator to be further excited. In this way coherence 
is maintained between the y and the vz beams even when 
they are spatially separated. What happens is that the 
accurate measurement of the energy picks out the plane 
wave in the wave packet which has existed coherently 
through both pulses. 

Our main goal will be to understand how general the 
above result is. In other words, to what extent is it true 
that an ensemble of plane waves will give the same re- 
sult as wave packets? Although there were some initial 
attempts to distinguish these processes, it is now widely 
believed that they are indistinguishable. Our goal in this 
paper is to prove some theorems which clarify the condi- 
tions under which this is true and to show how general 
the result is. 

B. Measuring observables which commute with 
momentum 

Before discussing the most general situation we re- 
view here the proof that the coherently and incoherently 
broadened neutrino beams lead to the same total rate 
and energy distributions for both v,‘s and vP’s. 

i. 08cillations in mcuum 

Let us consider two cases representing two possible 
electron neutrino beams? leaving some region of the Sun 
at time t = 0. In case (a) we have an incoherent 
mixture of neutrinos, each of which is a nearly ideal 
plane wave (with Some extremely small energy spread 
SEp,., <<< bE). In this mixture the probability of find- 
ing a neutrino of energy E is given by some probability 
distribution P(E) which is centered about some energy 
E0 with a width AE. In case (b) all the neutrinos come 
with the same quantum state. This state is a wave packet 
with amplitude ‘X’(E) for a plane wave component of en- 
ergy E. We choose this amplitude so that the probability 
distribution I@(E)]” precisely matches the distribution 
P(E) of case (a). Consequently the widths of the two 
distributions are also equals 6E = AE. In this section, 
for simplicity, we shall treat the plane waves of case (a) 
as ideal plane waves with bE,, = 0. 

At t = 0 the wave function for case (b) is given by 

I% = 0)) = ~%,ilP,~), 
P,i 

(24) 

where the sum (which is actually an integral) is over mo- 
menta p in the t direction (the direction of motion) and 
over mass eigenstates i = I,2 and the cr,,d are chosen 
to give an electron neutrino with the appropriate wave 
function at t = 0. Since the Ip, i) are eigenstates of the 
Hamiltonian, at a later time t, the wiwe function is given 

by 

p(t)) = c ap,<e-“4yp,i), (25) 
PSi 

,.,here $’ = m . p + rn, 1s the energy of vi with momen- 
tum p. 

Suppose now that at time t we measure an observable 
Q which commutes with the momentum operator. Q may, 
for example, be the total number of electron neutrinos 
in some range of momenta. This is, in fact, the most 
common kind of measurement which can be made. In this 
case Q has only diagonal matrix elements in momentum 
space. Therefore the expectation value of Q at time t is 
given by 
The expression inside the square brackets is precisely 
the expression for the expectation value (Q)* of Q for 
a plane wave which has a total weight (i.e., normalba- 
tion) I+,,$ + IolP,212 and a relative amplitude C+J and 
GJ,,~ for vl and VZ, respectively, at t = 0. Thus, 

(Q) = HP, 
P 

(27) 

‘They could, of course, be any linear combination of elec- 
tron and muon neutrinos. Electron neutrinos were chosen for 
definiteness only. 
which is precisely the result one obtains for the inco- 
herent beam of case (a). Thus the measurement of any 
observable which commutes with momentum yields the 
same result for case (a) and case (b). 

Although this result may seem trivial, it is, in fact 
rather powerful. From this result we can verify the result 
claimed in Sec. I that if we use the variation in the Earth- 
Sun distance to look for oscillations in the neutrinos from 
‘Be both the coherent and the incoherent neutrino beams 
give the same oscillation pattern. A ption’ the above 
theorem is not applicable since the experiment involves 
measuring the spatial dependence of the neutrino flux 
which involves the use of an operator which does not 
commute with momentum. This is, however, an example 
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for which the conversion of spatial to temporal depen- 
dence can be done reliably. Thus, &bough we measure 
the spatial variation in the neutrino flux, we can com- 
pute the temporal dependence of this flux by computing, 
for example, the total number of electron neutrinos with 
a given energy as a function of time. This estimate will 
be reliable since, as discussed previously, even the “plane 
wave” packet is still extremely small (certainly much less 
than 1 cm in size) relative to the relevant astronomical 
scales. 

2. Oscillations in matter 

The above proof, that an ensemble of plane waves can- 
not be distinguished, at the detector, from an ensemble 
of wave packets with the same energy distribution, can 
be extended to the case of neutrino oscillations in matter 
(the MSW effect) [Q]. To this end imagine that at t = 0 
an electron neutrino is produced (at the origin) in mat- 

I 
ter in which the density of electnms (along the direction 
of motion of the neutrino) is gi,ven by p.(z). (This is of 
course an approximation in which we neglect variations 
of the density in the transverse directions.) The “MC- 
uum eigenstates” Ivl) and 1~2) are no longer eigenstates 
of tbis system. Instead one can find new eigenstates of 
the Hamiltonian which include the full spatial variation 
of the density. These eigenstates will of course no longer 
be momentum eigenstates. For relativistic neutrinos one 
should, in principle, solve the Diiac Equation but for the 
present discussion since spin is not a crucial variable it 
suffices to consider the Klein-Gordon equation [lo] 

[-(;+iAm)2+Va](~~)=M:(~~), (28) 

where Mo is the vacuum mass matrix and the matrix 
A,,, accounts for the effect of charged-current scattering 
of the v, off the electrons in the medium: 
w-0 

I 
The eigenstates of this system with energy E will no 
longer be eigenstates of p, (p. and p, are assumed to be 
zero) but will be labeled by some other parameter which 
we call 7. We shall call these eigenstates 

1~1) md kr,‘+ (30) 

In the regions of space where the density vanishes these 
eigenstates will behave as plane waves2 with some mo- 
mentum p,(y). They will correspond to vacuum rn&s 
eigenstates of the system. In a region of space in which 
the electron density is nonzero but nearly constant the 
eigenstates 17, i) will again be nearly plane waves but 
now corresponding to the usual neutrino eigenstates in 
matter. 

Suppose now that at t = 0 we prepare an electron 
neutrino in a state described by some rather narrow wrive 
packet j$(t = 0)). [This is case (b) of Sec. IIB 1.1 At t, = 
0, in analdgy with Eq. (24), this state can be expanded 
in the eigenstates I7,i) described above: 

IW = 0)) = C%il%+ 
7.; 

‘It may in fact be a superposition of an incoming and an 
outgoing plane wave if there is reflection. 
We now allow the state to propagate to a later time t 
At tbis later time the state is given by 

1$(t)) = -5g2-q7,4, 

where et’ is the energy of the state I7,i). In any rea- 
sonable case the size of the wave packet at time t will 
be much smaller than the scale of variations in the elec- 
tnmdensity. (This is especially true if the measurement 
is made in vacuum.) Thus Eq. (32) amounts to an ex- 
pansion in the momentum eigenstates of the neutrinos in 
matter with density p equal to the density at the loca- 
tion of the wave packet. Every 7 corresponds to some 
momentum p(7) which depends on the density p. Thus 

IW = ~&IP,i;P)> (33) 
PSi 

where for any given value oft p and the corresponding 
value of 7 the coefficients &,,I and hp,2 are linear combi- 
nations of a,,~ and a,+ 

Now suppose that at time t we measure some operator 
Q which commutes with (the z component of the) mo- 
mentum. The off-diagonal matrix elements of Q vanish 
in the momentum basis. Thus Q will have only diag- 
onal matrix elements between the various Ip, i; p) in Eq. 
(33). Since each of these Ip, i; p) corresponds to one of the 
energy eigenstates /7,i), it follows that the expectation 
value of Q is given ‘by 
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iW,Q,W -F [ (,.:,i~%.j,) Q (~~&%i))] . (34) 
This expression is analagous to Eq. (26) in Sec. IIB 1. 
Each term in the sum is precisely the result which we 
would have obtained,for the expectation value (Q), of Q 
for a state which was initially in an approximate momen- 
tum eigenstate corresponding to 7 but with total.weight 
~u,,1~2+la,,~~2 and a relative amplitude a,,~ and a-,,2 for 
y and vz, respectively. (Recall that the realistic plane 
waves are actually extremely narrow on the scale of the 
density variations.) Thus, 

(Q) = ~CQh> (35) 
7 

which is precisely the result one obtains for the incoher- 
ent beam of case (a). There is thus no difference between 
the wave packet [case (b)] and the plane wave [case (a)] 
ensemble even in matter when only operators which com- 
mute with momentum are measured. 

C. Unrealistic measurements which can identify 
wave packets 

From the above proof it seems that a keen measure- 
ment which combines a measurement of both position 
and momentum information might be able to distinguish 
an ensemble of wave packets &mn an ensemble of plane 
waves. The simplest way of doing this would, however, 
require pr&se knowledge of the point of origin and the 
time of origin of the wave packet. Suppose, for example, 
that we knew that all the wave .&k&s in our ensemble 
[case (b)] were centered at the origin (z = 0) precisely at 
time t = 0. Suppose also that in the alternative scenario 
[case (a)] we also knew that each. (nearly ideal) plane 
wave [which is still a wave pack@ but with a much larger 
spatial extent than that of case (b)] in the ensemble was 
centered at the origin at t = 0. Under these assumptions 
about cur previous knowledge and by a careful timing 
measurement at the Earth to determine the duration of 
the neutrino pulse we could distinguish the two cases. [In 
fact in case (b) there may be two separated pulses.] This 
scenario is, of course, totally unrealistic and we shall see 
below that if we allow for an uncertainty in the, location 
of the initial packets it again becomes impossible to dis- 
tinguish the two cases by any measurement at the earth. 

There is another scenario under which it is clearly pos- 
sible to distinguish the two cases. Suppose we have a 
detailed theory for the production mechanisms of the 
two cases which lead to some different observable at the 
source. Suppose, for example, that the position or mo- 
mentum distributions for the two cases are expected to 
differ. Then clearly such information can be used to de- 
cide which mechanism is producing the neutrinos (or, 
more realistically, which mechanism dominates). How- 
ever, in the ca~e of level broadening we have no such 
information. Both the energy and the pdsition distribu- 
tions are expected to be roughly the same. The question 
which we are asking is the following: Assume we are 
given two “sources” of neutrinos (or production mech- 
anisms) with the same position (2) and momentum (p) 
distributions. Is it possible to tell by measurements at 
the detector which of the two “sources” produced these 
neutrinos? 

D. General theorem 

This question can be set up more precisely as follows: 
Consider the following two modifications of the scenarios 
case (a) and case (b) discussed above. 

In case (A) we have a nearly ideal plane wave which is 
actually a wave packet of a fairly large size AZ. (Recall 
that AZ will typically be much less than a cm.) We imag- 
ine an ensemble of such “plane waves,” each of which has 
a nearly precise momentum (in the z direction) centered 
about po with a spread ap. Assume that each plane wave 
has exactly the same spatial location. [This is precisely 
case (a) above.] 

In case (B) we have an ensemble of wave packets. Each 
wave packet has a spatial size 6t which is much smaller 
than AZ and a corresponding momentum spread Sp = 
1/6z which is precisely equal to the Jp of case (A). Up 
to this point this looks exactly like case (b) above except 
we now allow each wave packet in our ensemble to be, at 
t = 0, at a different spatial location. We assume that the 
wave packets are produced in precisely the same region 
AZ in which the neutrinos of case (A) are produced with 
precisely the same e distributiax3 The two cases are 
shown pictorially in Fig. 1. 

All the above information is given to the experimenter 
together with the additional information that the a andp 
distributions for both cases are equal at t = 6. The ques- 
tion is the following: With only this information can the 
experimenter distinguish with any experiment the cases 
(A) and (B) above? 

Intuitively one might guess that the answer is “yes.” 
There should be some way to tell if we are dealing with 
wave packets or with (almost) plane waves. But in fact 

‘In a realistic situation both the “plane waves” of case (a) 
and the wave packets of case (b) will be distributed over a 
region of space much larger than Ar. In both cases this excess 
spread is incoherent. It is thus sufficient to prove our result 
for the case when the wave packet is distributed in e by the 
size AZ of the plane wave of case (a). 
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Wave Packet 

AZ 

FIG. 1. Pictorial representation of case (a) and cme (b) 
described in Sec. IID. 

the answer iS “no.” No experiment can distinguish the 
above two cases. 

The most general proof of this statement would pro- 
ceed as follows. 

Step 0. Choose values for 6z = l/hp << At and for the 
mean momentum po which were defined above. 

Step 1. Begin with an arbitrary (smooth) but fixed 
expression for the wave function of the nearly ideal plane 
wave of case (A). The only constraints on this wave func- 
tion will be that it is centered (say) at the origin and 
that its spread in position is (a fairly large) AZ with a 
correspondingly tiny spread in momentum about some 
momentum p. Then consider an ensemble of such states 
each with a different momentum p. Choose an arbitrary 
but fixed distribution for these momenta. The constraint 
on this distribution is that it is centered about the mo- 
mentum po with the given width bp. 

Step 2. Construct the density matrix for the ensemble 
described in step 1 above. 

Step 3. One must now prove that it is always possible 
to construct the following, seemingly completely differ- 
ent ensemble, which, nonetheless, yields a density matrix 
identical to the one obtained in step 2 above. We fist 
construct a wave packet which is centered at some loca- 
tion t. We are free to choose the form of the wave func- 
tion with the only constraint that its spread in position 
be approximately equal to 6z < AZ with a correspond- 
ing momentum spread Sp = l/&z. We then construct an 
ensemble of such wave packets and choose a distribution 
of locations E with the only constraint that this distribu- 
tion be centered at the origin with a spread in position 
approximately equal to AZ. 

The claim is that we can always choose the distribu- 
tions in Step 3 so that the density matrix for Step 3 is 
identical to that of Step 2. This then implies that any 
measurement at all which is done on the two ensembles at 
any time t gives the same result. We also claim the con- 
verse of this theorem, namely, that given a “wave packet” 
ensemble constructed as in step 3 it is always possible to 
find a “plane wave” ensemble as constructed in step 1 
with the same density matrix. 

Note how the mass eigenstates VI and I+ appear 
nowhere in the above discussion. The reason for this 
and, in ow opinion, the power of this proof is that it re- 
lies entirely on properties of the system at t = 0 at which 
time the state is a pure v, state. 

1. Illustration in the simplest cose 

We can show the essence of the proof by the following 
simple example. We model the wave packet [of case (B)] 
by a superposition of only two momentum eigenstates 
1~1) and 1~2). In Step 1 above we imagine having the 
state Ip1) with probability laI* and the state Ipz) with 
probability I@[‘; (laI + I# = 1). The density matrix 
for this system is simply 

l4P*)~P11 + IPIZIPd@21. (36) 

For implementing step 3 we may construct an analogue 
of wave packets at two different locations as an ensemble 
consisting of these two states with equal probability: 

I+4 = 41) &PIP& 

The density matrix in this case, 

(37) 

lti+)(@+l + 1+-)(4-l> (38) 

is precisely the same as the density matrix for case (A) 
in Eq. (36). 

This completes the proof in this simple case. 

2. Gaussian distributions 

One case in which steps O-3 above can be carried out 
explicitly is when all distributions are Gaussian. Thus 
in step 1 we choose the “plane wave” of momentum p to 
have a wave function 

Ip; plane) = (&$ p exp (-9) I% (3% 

where o - l/At. We then consider an ensemble of these 
states with a Gaussian distribution of momenta p: 

where gP - Sp = l/&z > 0. The density matrix for this 
case [case (A)] is given by 
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We now proceed with step 3 corresponding to case (B). Consider a wave packet with mean momentum po centered 
at some location z: 

Iz;packet) = ’ 
(d%&,)f s 

We shall soon see that the correct choice for 6= is 

p=g+g 
P P 1 (43) 

which is approximately equal to oP = l/&z as required. We then consider an ensemble of these states with a Gaussian 
distribution of positions t centered at the origin of the form 

The correct choice for spread in position, ga, will turn out to be 

This nz is approximately equal to l/u = AZ as required. The density matrix for this situation [case (B)] is given by 

PB = (&) ($0,) /dl dt dz [exp (-$ - (’ ;,$)’ - (” --$)‘)I e-“(‘-“)‘Il)(1’[. (46) 

With the choices we have made for gP and nz in Eqs. (43) and (45) it turns out that the density matrices pa and 
PB are precisely equal. The calculation is straightforward and most easily done by computing the matrix elements 
(Zlpa,~I1’). In order to compute the matrix elements of ~a only the integration over p must be done. This is a 
Gaussian integral. For pb only the integral over z must be done. This is simply the Fourier transform of a Gaussian. 
The result is the same for PA and PB and is given by 

(47) 
We thus establish, for the Gaussian case, that the two 
ensembles are identical. 

a. General proof 

In the Gaussian case described above we did not use 
the fact that 6z < AZ. In the case of a more general 
shape for the “plane wave” and the wave packet we shall 
present a proof which does rely on tbis approximation. 
We conjecture that it is possible to slightly modify the 
theorem4 so that it will be valid for general values of Sz 
and AZ but we do not have a proof at this time. 

4The modification we have in mind is to relax the unneces- 
sary restriction that the shape of the wave packet be indepen- 
dent of z. It is reasonable to consider an ensemble of wave 
packets, all of which have the same width but with slightly 
different shapes. The same could be done for the “nearly 
plane waves.” 
We begin again with step 1 for which we choose a 
“plane wave” of momentum p to have a wave function 

lp;pl=ne) = 
J 

dl f.z(l -~)ll), (48) 

where the function #,,(2 - p) has a width n N l/At. We 
then consider an ensemble of these states with a distri- 
bution of momenta p given by some function go, (p - p,,) 
with a width vP N Sp = l/&t > r. The density matrix 
for tbis case [case (A)J is given by 

PA = 
s 

dl dl’ & [f:(l’ - p)f,(l -~)a& -PO)] ll)(Vl. 

(4% 

We now proceed with step 3 corresponding to case (B). 
Consider a wave packet with mean momentum po ten- 
tered at some location t: 
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le; packet) = 
s 

dl e-“‘“a,~(1- p#), (50) 

which has approtinmately a width np. We then consider an 
ensemble of these states with a distribution of positions z 
centered at the origin given by some function hoz (z) with 
a width 0, which is approximately equal to l/u = At. 
The density matrix for tbis situation [case (B)] is given 

by 
where &(1- 1’) is the Fourier transform of h,,(z) which has a width approximately equal to C. 
.The requirement that the two density matrices be equal is now simply stated as 

“&(I - P&op(~ - POP4 - 1’) = 
s 

dP fZ(Z’ - P)fG - Pkb,(P -Pd. (52) 

[It is now clear why the theorem, as stated, cannot be true in general. Given arbitrary smooth functions ge, and fn 

with the restrictions described previously, it is certainly not possible, in general, to find functions 01,~ and h, which 
satisfy Eq. (52) since the integral in (52) will not always factorize in the required form.] The result is, however, valid 
when the width o,, of gOp is much larger than the width CT of fm. If c < op and if the function gms is sticiently 
smooth, 

f~(z’-P)f~(l-P)%,(P-Po)=f~(~‘-P)f~(l-P) J&iKrJ)&?-%i++o E 
( > 

(53) 

Thus, 

(54) 
Thus if we identify the function aOn with the square root 
of gbp and the function hOz(t) with the square of the 
Fourier transform of fO(p), then the equality in Eq. (52) 
is satisfied to order bz/Az as required. 

E. Consequences 

Although the result proven above is not entirely gen- 
eral, it is sufficient for all cases of practical interest. The 
reason for this is that we have actually proven three 
things. The result that measurements which commute 
with momentum could not distinguish coherent from in- 
coherent broadening was completely general and did not 
depend on the shape of the wave packet or on its width. 
Second the proof that for Gaussian wave packets the two 
effects could not be distinguished with any measurement 
was also general and it did not depend on the width of the 
Gaussian% Third, our extension of the proof to arbitrary 
wave packet shapes was possible in the limit 61 < AZ. A 
practical attempt to distinguish the two mechanisms of 
broadening would likely begin with a theoretical calcula- 
tion which assumes Gaussian wave packets for simplicity. 
Furthermore, it would likely compare the wave packets 
to actual plane waves for which AZ + ca. We have 
shown that any such attempt is doomed to failure. We 
conjecture that the result is more general so that for an 
arbitrary shape of wave packet it is possible to find an 
ensemble of nearly plane waves which mimic its behavior 
exactly. 

An interesting corollary to the result proved in the pre- 
vious section is that one cannot tell, on an event-by-event 
basis, whether one has a wave packet or a “plane wave.” 
The proof is as follows. Suppose it were possible, on an 
event-by-event basis, to distinguish a wave packet from 
a plane wave. It would then be trivially possible to dis- 
tinguish the Casey (A) and (B) above since in one case 
we are presented with a plane wave and in the other case 
with a wave packet. In fact in just one event we would 
know with which case we are dealing. But as we saw in 
the previous section, we cannot do this since the density 
matrices for the two cases are identical. It follows that 
no such determination can be made on an event-by-event 
basis. 

This result does not contradict the recent work of sw- 
eral authors [ll] on the ability to measure the wave func- 
tion of a single particle via a “protective measurement.” 
There are at least two requirements for such a measure- 
ment to be possible. The tist is that the system needs an 
energy gap so that successive (soft) measurements keep 
the particle in the same state. The second requirement is 
that it is known a ptiori that the system is in an eigen- 
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state of the Hamiltonian. Thus, for example, it is in prin- 
ciple possible to measure the ground state wave function 
of a typical atom even on a single atom, but if we do 
not know whether the atom is in an eigenstate of the 
Hamiltonian 01 in a superposition of eigenstates, then 
tbis cannot be determined on a single atom. An argu- 
ment very similar to that in the previous paragraph can 
be used to prove this result. In our case neither of these 
conditions is satisfied. We do not have a gap and we cer- 
tainly are not in an eigenstate of the Hamiltonian when 
we are dealing with a wave packet and/or we start with 
a pure flavor state such as a Iv.). 

The theorem presented in the previous section also pro- 
vides a general tool for understanding how the size of a 
quantum-mechanical wave packet affects physical results 
in various circumstances. In fact the style of our proof 
which relies on the initial properties of the system rather 
than on the details of its time evolution is extremely use- 
ful. There have been several instances in which either 
careless approximations or faulty logic have led to con- 
clusions which disagree with our very general result. To 
illustrate this point imagine, instead of using our gem 
era1 proof, that we evolve each of the two ensembles to a 
later time t and then compared them. We must, by our 
theorem, get the same density matrix for each ensemble. 
But in doing this calculation we might make several ap- 
proximations to simplify the calculation. We might, for 
example, neglect the longitudinal spreading of the wave 
packet. It turns out that even when tbis spreading is 
negligible compared to the size of the wave packet it has 
a significant effect on the final density matrices and we 
would find significant differences between the two ensem- 
bles. We know from our theorem that this cannot be the 
case. Indeed when the effect of longitudinal spreading is 
included all results computed with PA and pb agree. 

III. SUMMARY AND CONCLUSIONS 

The main focus of this paper was the question of our 
ability experimentally (even in principle) to distinguish 
incoherent broadening of a neutrino line (such as the ‘Be 
solar neutrino line) from coherent broadening of such a 
line. Of particular interest was whether these two types 
of broadening would have different effects on neutrino 
oscillations and the MSW effect. We began by identi- 
fying processes which contribute to these mechanisms of 
broadening. Coherent broadening results from several 
processes including the natural width of the emitting nu- 
clew, pressure broadening caused by collisions of this 
nucleus and the finite size of the wave packet of the cap. 
twed electron. We argued that this last process leads to 
the smallest estimate for the spatial size of the neutrino 
wave packet (- 6 x IO-’ cm). Incoherent broadening re- 
sults mainly from the thermal energy spread of the cap- 
tured electron as well as from the Doppler shift ‘due to 
the thermal motion of the emitting nucleus. 

We then began to present OUT argument that although 
the two forms of broadening were distinct physical pro- 
ce&es which could be controlled at the source they could 
not be distinguished at the detector. We first showed 
that if the detector had an excellent energy resolution, 
not only could oscillations due to an incoherent ensem- 
ble of (nearly) monoenergetic neutrinos be restored, but 
oscillations of a coherent neutrino beam could also be re- 
stored despite the physical separation of the v1 and the 
vz at the detector. We then proved that the measure- 
ment of any operator which commuted with momentum 
could never distinguish a wave packet from a plane wave. 
We extended the proof of this result to the case in which 
the neutrino propagates in matter (the MSW effect). 

The next stage was to show that if we had no a ptiori 
knowledge of any difference in the properties of the coher- 
ent versus the incoherent neutrino “beams” there was no 
measurement which could distinguish them. Our method 
was to show that it was possible to construct two ensem- 
bles, one corresponding to “nearly plane waves” and the 
other to have packets which had the same density ma- 
trix at t = 0. This would imply that the density matrices 
were equal at all later times and that no measurements 
could distinguish the two cases. We presented a complete 
proof in the case of Gaussian wave packets by showing 
that the density matrix at the source for an ensemble of 
plane waves with a given (Gaussian) energy distribution 
was equal to that of an ensemble of wave packets each 
with a much narrower z distribution but distributed, in- 
coherently, over the same range of positions as the “inco- 
herent” ensemble. We extended this proof to the case of 
non-Gaussian wave packets in the limit that the spatial 
size of the wave packet was much smaller than the spatial 
size of the “nearly plane wave.” We conjectured that the 
result is even more general and that given any ensemble 
of “nearly plane waves” with a given energy and posi- 
tion distribution we can construct an ensemble of wave 
packets which has precisely the same density matrix. 

There have been claims in the literature that wave 
packets could give different results than plane waves 
with the same momentum distribution. These differ- 
ences show up either when the neutrinos are nearly non- 
relativistic or when their momentum distribution is ex- 
tremely broad so that Sp - p. This of course implies that 
some of the components of the neutrino wave function are 
nonrelativistic and that some of the neutrinos are moving 
“backwards.” In all these cases it is essential to include 
the longitudinal spreading of the neutrino wave packet 
and to remember that if one calculates the number of 
neutrinos which should be observed at some location t 
one must compute the flux of neutrinos which involves 
the neutrino velocity. If these cautions are kept in mind 
one conf?rms the results of our theorem, that there are 
no differences between the two scenarios. 

Although we have chosen to focus this paper on neutri- 
nos and neutrino oscillations, it is clew that the result is 
much more general. It applies to any particle for which 
the question of the distinguishability of a wave packet 
from plane waves is relevant. Some examples include 
neutral Kaon oscillations and the effect of wave packets 
in scattering theory. 



12 COHERENCE EFFBCTS IN NBUTRINO OSCILLATIONS 547 
ACKNOWLEDGMENTS 

We would like to thank Yakir Aharonov, Eric Carlson, 
Fred Goldhaber, and Bill Unruh for helpful discussions; 
This work was supported in part by the Natural Sciences 
and Engineering Research Council of Canada. Their sup- 
port is gratefully acknowledged. K.K. and N.W. would 
like to thank the Weizmam Institute apd Tel Aviv Uni- 

versity for their support and hospitality. 
[l] Some of the experimental results can be found in P. 
Anselmann et ai., Phys. Lett. B 327, 377 (1994); R. 
Davis, in Proceedings of the International Symposium 
on Neutrino Astrophysics, Frontiers of Neutrino Astro- 
physics, edited by Y. Suzuki and N. Nakamura (Universal 
Academic, Tokyo, 1993), p. 47; K. S. Hirata et al., Phys. 
Rev. D 44, 2241 (1991); V. N. Gavrin, in Proceedings 
of the XXVI International Conference on High Energy 
Physics, Dallas, Texas, 1992, edited by J. Sanford, AIP 
Conf. Proc. No. 272 (AIP, New York, 1993). MSW anal- 
yses of some of the data can be found in S. A. Bludman 
et d., Phys. Rev. D 47, 2220 (1993); P. I. Kr&w and 
S. T. P&w, Phys. Lett. B 299, 99 (1993); L. Krauss et 
al., ibid. 299, 94 (1993). 

[2] Some experimental results can be found in K. S. Hirata 
et al., Phys. Lett. B 280, 146 (1992); D. Caper et al., 
Phys. Rev. Lett. 66, 2561,(1991); R. Becker-Szendy et al., 
Phys. Rev. D 46, 3720 (1992); Ch. Berger et al., Phys. 
Lett. B 246, 305 (1990); M. Aglietta et al., Europhys. 
Lett. 8, 611 (1989). An analysis of the results is given by 
E. W. Beier et al., Phys. Lett. B 283, 446 (1992). Also 
see C. W. Kim and A. Pevsner, Neutrinos in Physics 
and Astrophysics, Contemporary Concepts in Physics, 
Vol. 8, edited by H. Feshbach (Harwood Academic, Chur, 
Switzerland, 1993) pp. 151-158. 
[3] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968); V. Gri- 
bov and B. Pontecorvo, Phys. Lett. 28B, 493 (1969). 

(41 L. Kraauss and F. Wilczek, Phys. Rev. Lett. 56, 122 
(1985). 

[5] S. Nussinov, Phys. Lett. 63B, 201 (1976). 
[6] A. Loeb, Phys. Rev. D 39, 1009 (1989). 
[7] C. W. Giunti, C. W. Kim, and U. W. Lee, Phys. Lett. B 

274, 87 (1992). 
[8] F. Low (private communication). 
[9] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. P. 

Mikheyev and A. Yu. Smirnbv, Sov. 3. Nucl. Phys. 42, 
913 (1985); Nuovo Cimento BC, 17 (1986). For an excel- 
lent review see also T. K. Kuo and J. Pantaleone, Rev. 
Mod. Phys. 61, 937 (1989). 

[lo] This version of the Klein-Gordon equation is similar to 
that encountered in the context of optical potential mod- 
els in nuclear physics. See, for example, E. H. Auerbach, 
D. M. Fleming, and M. M. Sternheim, Phys. Rev. 162, 
1683 (1967); 171, 1781 (1968). 

[ll] Y. Aharonov and L. Vaidman, Phys. Lett. A 178, 38 
(1993); Y. Aharonov, J. Anandan, and L. Vaidman, 
Phys. Rev. A 47, 4616 (1993). See also W. G. Unruh, 
ibid. 60, 882 (1994); W. G. Unruh, Ann. N.Y. Acad. Sci. 
766, 560 (1995). 


	I. INTRODUCTION
	II. COHERENT VERSUS INCOHERENT
	III. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS

