
ize

PHYSICAL REVIEW D 1 MAY 1996VOLUME 53, NUMBER 9

0556-282
Information entropy and particle production in branching processes
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We show that the information entropySi , wherei is the number of steps, is a good parameter to character
chaoticity in branching processes. The quantitySi2 ln^n&i , where ^n& i is the average number of particles
produced at stepi , approaches2` in Abelian processes and a finite constant in non-Abelian ones.

PACS number~s!: 13.85.Hd, 05.45.1b, 12.40.Ee
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In a branching process, particle production occurs by de
radation of virtual mass and splitting of a particle into oth
particles. The particle that initiates the process may be
quark or a gluon, in QCD, or an electron, in QED. The no
Abelian nature of QCD, with self-interacting gluons, make
the gluon distribution of QCD very different from the photo
distribution of QED. Branching processes in multipartic
production were previously used. See, for instance,@1#. For a
discussion on QCD see@2#.

Very recently, in@3#, the question of finding ways of char
acterizing the time evolution of a branching process was d
cussed. By using a QCD Monte Carlo simulation model@4#,
with appropriate splitting functions, the authors of@3# were
able to show that the quantityVi ,

Vi[~^n2& i2^n& i
2!/^n& i

2, ~1!

i being the number of steps in the branching process ann
the number of produced particles in an event, could be u
as an adequate parameter to measure chaotic behavio
relatively i independentVi , for largei , indicating chaos and
Vi decreasing withi meaning the absence of chaos. Accor
ing to @3#, in QCD chaos occurs while in an Abelian theor
chaos does not occur.

In this paper we start by presenting two very simple mat
ematical models explicitly showing the required properti
for an Abelian model~with production of noninteracting par-
ticles! and for a non-Abelian model~with production of self-
interacting particles!, models I and II, respectively.

Next, we introduce what we believe to be a more natu
and general parameter to measure chaoticity in the time e
lution of a branching process, the information entropySi ,
defined as

Si[2(
n

Pi~n!lnPi~n!, ~2!

wherePi(n) is the probability of havingn particles produced
at level i . The definition~2! was applied to particle produc-
tion in @5#.

As we limit ourselves here to studying the time evolutio
in the branching process we do not take into account m
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mentum splitting functions and momentum distributions. Th
emphasis is on event topology. We always start wi
P1~1!51, S150.

In model I, for QED, the electron has a probability~12a!
to remain an electron and a probabilitya to become an elec-
tron and a noninteracting photon. The generated probabilis
branching tree is shown in Fig. 1~a!.

In model II, for pure QCD, the gluon has a probability
~12a! to remain a gluon and a probabilitya to become two
gluons. The corresponding tree is shown in Fig. 1~b!.

In model I it is easily shown that one obtains, for th
probabilityPi(n), with 0,a,1,

Pi~n!5S i21
n21D ~12a! i2nan21, ~3!

n51,2,...,i . ~4!

This is, essentially, the binomial distribution with

^n& i511~ i21!a, ~5!

^n2& i511~ i21!3a1~ i21!~ i22!a2. ~6!

The quantityVi , Eq. ~1!, asymptotically, asi→`, goes to
zero ~as obtained in@3#!. In fact, in general,

Cq,i[
^nq& i
^n& i

q ——→
i→`

Cq51. ~7!

FIG. 1. Levelsi51,2,3, . . . in particle production of branching
processes for models I and II. Along the tree lines the numbern of
produced particles is indicated. In the case of model I, QED,n
means (n21) photons and 1 electron. In the case of model I
QCD, n is the number of gluons.
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In other words, in model I the particle distribution, asymp
totically, approaches ad function. In the limita→1 the dis-
tribution ~3! approaches first a Poisson distribution. F
larger values ofa the distribution becomes narrower.

In model II, thePi(n) can be obtained by iteration:

Pi~n!5 (
r5 d n2 e,...,n

S r
n2r Dan2r~12a!2r2nPi21~r !, ~8!

wheredn/2e5n/2 for n even anddn/2e5(n11)/2 for n odd,
and

n51,2,...,2i21. ~9!

The first two moments are

^n& i5~11a! i21 ~10!

^n2& i5~11a! i22@2~11a! i212~12a!#. ~11!

The quantityVi , ~1!, asymptotically, asi→`, approaches a
finite constant, depending ona,

Vi ——→
i→`

2

11a
21. ~12!

This result is similar to the result of the non-Abelian case
@3#. The Vi dependence on̂n& i for models I and II, with
a50.5, is shown in Fig. 2.

In general, for model II, we have shown in@6# that

Cq,i[
^nq& i
^n& i

q ——→
i→`

Cq5const.1, ~13!

with

C2511
12a

11a
, C35116

12a

~11a!2
2

~12a!~22a!

~11a!~21a!
,... .

~14!

In thea→0 limit the distribution approaches the exponenti
distribution.

We can see that the results of@3# are a particular case of
the general result:

FIG. 2. ParameterVi , as a function̂n& i for models I and II. The
obtained behavior is in qualitative agreement with the results
Ref. @3#. See Fig. 1 of@3#.
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Cq,i ——→
i→`

1 ~model I! ~15!

Cq,i ——→
i→`

const.1 ~model II!. ~16!

We shall now reformulate~15! and ~16! in terms of the
information entropy.

Let us introduce the Koba-Nielsen-Olesen~KNO! func-
tion c i @7#:

^n& iPi~n![c i~z!, ~17!

with

z[n/^n&, ~18!

and take the largei , large ^n& i , continuous approximation,
such that

E
0

`

c i~z!dz5E
0

`

zc i~z!dz51, ~19!

and

Cq,i5E
0

`

zqc i~z!dz. ~20!

From ~15!, ~16!, and~20! we see that in the case of mode
I ~Abelian model!, there is no KNO limiting function,c i

FIG. 3. The KNO function,C i[^n& i(n) as a function ofz[n/
^n&. ~a! for model I. ~b! for model II.
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indefinitely approaching ad function ~see@8# for a discus-
sion!. In the case of model II~non-Abelian model! a limiting
KNO function exists:

c i~z! ——→
i ,^n& i→`

c~z!, ~21!

in agreement with the original QCD branching calculation
@9#. The difference between model I and model II, concer
ing the KNO functionc i(z), can be directly seen in Fig. 3.

We turn finally to the information entropy~2!. In the con-
tinuous approximation one obtains

Si2 ln^n& i52E c i~z!lnc i~z!dz. ~22!

We propose to use the quantity

Qi[Si2 ln^n& i ~23!

to measure chaoticity in the evolution of a branching pr
cess. IfQi approaches a finite constant asi→`, as in the
non-Abelian case, the process is chaotic. IfQi continuously
decreases asi→` approaching2`, as in the Abelian case,
the process is not chaotic. The situation is shown in Fig
for models I and II,a50.5.

We would like to make some final remarks on the no
Abelian model II. We believe that model II has the corre
mathematical structure of QCD as far as multiplicities a
concerned. It satisfies KNO scaling and fora.0.5 the model
well reproduces the QCD gluon jet multiplicity distribution

As the range of applicability of model II varies betwee
the d-function distribution, fora→1, and the exponential
distribution, fora→0, one could think that model II is simi-
lar to the negative binomial distribution, which has the sam
limits as the negative binomial parameterk varies betweeǹ
and 1. However this is not so. Model II does not belong
the negative binomial distribution family, in the sense th
the higher-order cumulantsKq ~the normalized correlation
s
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functions! are not all related to the second cumulantK2 by
the relationKq[Aq(K2)

q21 @10#, A15A251 and, in gen-
eral,Aq.0. In model II,

K2[@^n~n21!&2^n&2#/^n&25~C221!21/̂ n& ~24!

asymptotically, aŝn&→`, is always positive,

K3[$^n~n21!~n22!&23@^n~n21!&2^n&2#^n&

2^n&3%/^n&3 ~25!

may be either positive or negative, depending on the value o
a. From ~14! it is easy to see that asymptotically,K3,0 for
a.A321. This kind of behavior, with the cumulantsKq
changing sign, has been previously discussed, in the conte
of QCD, in @11#.

Violations of scaling, for different initiating energies, may
occur as a result of varying the parametera. Asymptotic
freedom suggests that, as the energy increasesa, effectively,
decreases.

FIG. 4. The quantityQi[Si2 ln^n&i , as a function of̂ n& i for
models I and II.
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