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Information entropy and particle production in branching processes
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We show that the information entrof8y, wherei is the number of steps, is a good parameter to characterize
chaoticity in branching processes. The quan8y-In{n);, where(n); is the average number of particles
produced at step, approaches-« in Abelian processes and a finite constant in non-Abelian ones.

PACS numbg(s): 13.85.Hd, 05.45tb, 12.40.Ee

In a branching process, particle production occurs by degmentum splitting functions and momentum distributions. The
radation of virtual mass and splitting of a particle into otheremphasis is on event topology. We always start with
particles. The particle that initiates the process may be #,(1)=1, S;=0.
quark or a gluon, in QCD, or an electron, in QED. The non- In model I, for QED, the electron has a probabilify— «)
Abelian nature of QCD, with self-interacting gluons, makesto remain an electron and a probabilisto become an elec-
the gluon distribution of QCD very different from the photon tron and a noninteracting photon. The generated probabilistic
distribution of QED. Branching processes in multiparticle branching tree is shown in Fig(d.
production were previously used. See, for instaftg,For a In model Il, for pure QCD, the gluon has a probability
discussion on QCD s€e]. (1— @) to remain a gluon and a probabilityto become two

Very recently, in 3], the question of finding ways of char- gluons. The corresponding tree is shown in Fig)1
acterizing the time evolution of a branching process was dis- In model | it is easily shown that one obtains, for the
cussed. By using a QCD Monte Carlo simulation mddé)  probability P;(n), with 0<a<1,
with appropriate splitting functions, the authors[8] were

iy -1 i—n n-

able to show that the quantity; , P,(n)= ( i1 (1—a) a1, 3)

Vi=((n?)i —(m{) ()7, @ n=1,2,...i. (4)
i being the number of steps in the branching processrand This is, essentially, the binomial distribution with
the number of produced particles in an event, could be used (N)=1+(i-1)a (5)
as an adequate parameter to measure chaotic behavior: a : '
relativelyi independenV,, for largei, indicating chaos and (N, =1+(i—1)3a+(i—1)(i—2)a? 6)

i .

V,; decreasing withi meaning the absence of chaos. Accord-
ing to [3], in QCD chaos occurs while in an Abelian theory The quantityvi , Eq (]_)’ asymptotica”y, asg— oo, goes to

chaos does not occur. _ _ zero(as obtained if3]). In fact, in general,
In this paper we start by presenting two very simple math-
ematical models explicitly showing the required properties (n%);
for an Abelian mode{with production of noninteracting par- Cqi= (n)d - Cq=1. @)
| —o0

ticles) and for a non-Abelian modélith production of self-
interacting particles models | and I, respectively.

Next, we introduce what we believe to be a more natural  Model I Model 11
and general parameter to measure chaoticity in the time evo-
lution of a branching process, the information entrdgy 1 i=1
defined as
1 2
1 2 3
§=-2 Pi(minPi(n), 2

whereP;(n) is the probability of having particles produced FIG. 1. Levelsi=1,2,3 . .. in particle production of branching
at leveli. The definition(2) was applied to particle produc- processes for models | and I1. Along the tree lines the numbefr
tion in [5]. produced particles is indicated. In the case of model |, QED,

As we limit ourselves here to studying the time evolutionmeans (—1) photons and 1 electron. In the case of model II,
in the branching process we do not take into account mogCD, n is the number of gluons.
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FIG. 2. Paramete¥; , as a functio{n); for models | and II. The
obtained behavior is in qualitative agreement with the results of Model 1l

Ref.[3]. See Fig. 1 of3].

In other words, in model | the particle distribution, asymp-
totically, approaches & function. In the limita—1 the dis-
tribution (3) approaches first a Poisson distribution. For

larger values ofx the distribution becomes narrower.
In model Il, theP;(n) can be obtained by iteration:

a"(1=a)? Py (1), (8

where[n/2]=
and

n/2 for n even andn/2]=

n=1,2,....2° % 9)
The first two moments are
(n)i=(1+a)'* (10

(Mi=1+a) J2(1+a) 1-(1-a)]. (11

(n+1)/2 forn odd,

FIG. 3. The KNO function¥;=(n);(n) as a function oz=n/
(n). (@ for model I. (b) for model II.

Cq.i — 1 (model ) (15

| —o00

Cqi — const>1 (model II). (16)

| —®

We shall now reformulatél5) and (16) in terms of the

The quantityV;, (1), asymptotically, as— o, approaches a information entropy.

finite constant, depending an

Y/ — (12)

j—o

Let us introduce the Koba-Nielsen-OlesétNO) func-

tion ¢; [7]:

(NM)iPi(n)=¢;(2), (17

This result is similar to the result of the non-Abelian case ofwith

[3]. The V; dependence okin); for models | and II, with

a=0.5, is shown in Fig. 2.
In general, for model Il, we have shown [ii] that

C (n, Cq= 1, 13
ai= o >q —— C,=const> (13
with
- l-« Com146 l-a (Q1-a)(2—a)
=ity TN w2

(14

In the a—0 limit the distribution approaches the exponential

distribution.

We can see that the results[&] are a particular case of

the general result:

z=n/(n), (18

and take the largé, large(n);, continuous approximation,
such that

fx(,lfi(Z)dZ: fmz:,[/i(z)dz=1, (19
0 0

and

Cqi= f:zq%(z)dz. (20

From(15), (16), and(20) we see that in the case of model
| (Abelian mode), there is no KNO limiting function,;
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indefinitely approaching & function (see[8] for a discus- 1.0
sion). In the case of model linon-Abelian modela limiting
KNO function exists: 0.5
Yi(2) —— ¥(2), (21) e
in)j— A- T
S
in agreement with the original QCD branching calculations = 051
[9]. The difference between model | and model II, concern- n-
ing the KNO functiony;(z), can be directly seen in Fig. 3. 1.0 1 « Model |
We turn finally to the information entropi2). In the con- = Model Il
tinuous approximation one obtains 1.5 —
100 101 102
<n>
Si—In(n);= _f $i(2)Ing(z)dz. (22 i
FIG. 4. The quantityQ;=S;—In{n);, as a function ofn); for
We propose to use the quantity models | and 1.
Qi=S—In(n); (23 functiong are not all related to the second cumul&it by

L : . the relationK ,=A,(K,)9 ! [10], A;=A,=1 and, in gen-
m . q— Mgl 1= A2
to measure chaoticity in the evolution of a branching pro eral, A,>0. In model Il

cess. IfQ; approaches a finite constant ias«, as in the
non-Abelian case, the process is chaotioQ|fcontinuously Ko=l{n(n=1)—(m21/{n\2=(C.—1)—1/n) (24
decreases as—« approaching-o, as in the Abelian case, 2=[{n( D= W)= (Co= 1)~ 1hn) (24
the process is not chaotic. The situation is shown in Fig. Aasymptotically agn)—, is always positive
for models | and 11,a=0.5. ’ ’ ’

We would like to make some final remarks on the non- k. =f(n(n—1)(n—2))—3[(n(n—1))—(n)2}(n)
Abelian model Il. We believe that model Il has the correct
mathematical structure of QCD as far as multiplicities are —(n)3{/(n)? (25

concerned. It satisfies KNO scaling and te=0.5 the model

well reproduces the QCD gluon jet multiplicity distribution. may be either positive or negative, depending on the value of
As the range of applicability of model Il varies between «. From(14) it is easy to see that asymptoticallgs<0 for

the &function distribution, fora—1, and the exponential «>3—1. This kind of behavior, with the cumulants,

distribution, fora—0, one could think that model Il is simi- changing sign, has been previously discussed, in the context

lar to the negative binomial distribution, which has the sameof QCD, in[11].

limits as the negative binomial paramekevaries betweem Violations of scaling, for different initiating energies, may

and 1. However this is not so. Model Il does not belong tooccur as a result of varying the parameter Asymptotic

the negative binomial distribution family, in the sense thatfreedom suggests that, as the energy increasefectively,

the higher-order cumulant€, (the normalized correlation decreases.
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