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We consider the strongly coupled standard model (Abbott-F&i model) including an isotriplet of 
W’ vector bosons. First we calculate the corrections to the low-energy theory, which can be effec- 
tively summaized,in terms of the parameters S, T, and U. Then we use high-precision electroweak 
measurements to constrain the mass and couplings of the W’. The W’ couplings are restricted to 
be unnaturallv small. and we conclude that this model is no longer compelling as a theory of the . 
electroweak interactions. 
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I. INTRODUCTION 

With the ever-increasing precision of electroweak mea- 
surements, viable theories of physics beyond the stan- 
dard model have become somewhat scarce. In tbis pa- 
per, we reexamine a candidate theory which promises a 
rich spectrum of resonances and other strong-interaction 
phenomena beyond the weak scale: the strongly coupled 
standard model (SCSM), or Abbott-Farhi model [l]. 

The SCSM is based on an underlying Lagrangian iden- 
tical in form to the standard-model Lagrangian. How- 
ever, the parameters of the gauge-Higgs sector are ad- 
justed so that the Higgs field does not spontaneously 
break the SU(2)& gauge symmetry. Instead, the SU(2)L 
interactions become confining, and the observed particle 
spectrum consists of Sum singlets. Nevertheless, given 
dynamical assumptions such as unbroken chiral symme- 
try, the low-energy theory of the SCSM looks very much 
like the spontaneously broken standard model. The strik- 
ing similarity of the confining and spontaneously broken 
phases of the theory exemplifies the concept of “comple- 
mentarity.” The exciting possibility that nature might 
in fact be described by a confining version of the stan- 
dard model, which predicts the discovery of new particles 
and strong interactions at future colliders, motivates the 
study of the SCSM. 

Of course, if the SCSM really is the theory of the weak 
interactions, evidence for particle compositeness must 
eventually emerge. The effective theory of the SCSM 
must deviate ticm the renqrmalizable standard-model 
Lagrangian: resonances and higher-dimensional interac- 
tions should appear. In this work we ask: Are the de- 
viations expected in the SCSM allowed by current ex- 
perimental constraints? We will attempt to answer tbis 
question by studying a test case in which we introduce an 
isotriplet of W’ vector bosom into the effective theory. 
We calculate the corrections to standard-model predic- 
tions which result from including the W’ bosons. Then 
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we use high-precision electroweak data to constrain these 
co+rections, and thereby bound the allowed region of the 
W’ ma.s~ and couplings. 

In an earlier analysis of experimental constraints on the 
SCSM, Korpa and Ryzak [2,3] added both a W’ isotriplet 
and an i&c&r vector ‘boson to the usual standard- 
model particle content. They concluded that experiment 
could accommodate these new particles without severely 
restricting their masses and couplings. ,Since then many 
new electroweak observables have been measured, and 
the accuracy of earlier measurements has been greatly 
increased. Here we exploit tbis new data to find much 
stronger constraints on the model. In particular, the pre- 
cise measurement of the Z mass permits a new approach 
to parametrizing the corrections to standard-model pm- 
dictions in the SCSM. 

In the original formulation of the model [l], the W 
and Z were not expected to have the masses predicted 
by the standard model. However, it was known that 
the standard-model values could be recovered by invok- 
ing vector dominance [4]. Specifically, they follow from 
the assumption that the W-pole graph saturates the 
isovector electromagnetic form factor of the composite 
fermions. It was further argued [5], by analogy to QCD, 
that vector dominance should hold in a composite model 
lie the SCSM, so that standard-model masses would 
be expected. When the W and Z were later discovered 
with masses near the standard-model values, vector dom- 
inance of necessity became an additional assumption of 
the SCSM. In our analysis we find that vector dominance 
must hold to an accuracy of a few percent. We consider 
this, and other severe constraints we find, highly unnat- 
ural and conclude that, in its present form, the SCSM 
is no longer a candidate for a theory of the electroweak 
interactions. 

In the next section we review the effective theory for 
the SCSM in a limit where nonstandard particle content 
and higher-dimensional interactions are absent, and show 
that it reduces to the standard model in this limit. In 
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Sec. ,111 we introduce a W’ isotriplet and discuss the 
resulting modification of vector-dominance relations. In 
Sec. IV we calculate the W’-induced corrections to elec- 
troweak observables, which we summarize in terms of 
contributions to S, T, and U in Sec. V. We then use 
high-precision electroweak measurements in Sec. VI to 
determine the allowed region of the W’ mass and cou- 
plings, and present our conclusions in the final section. 

II. REVIEW OF THE SCSM 

The fundamental insight which underlies the SCSM is 
that the particle spectrum and interactions in the strong- 
coupling version of the standard model could closely re- 
semble those of the familiar spontaneously broken stan- 
dard model. This is an example of complementarity: 
there is no phase transition between confinement and 
spontaneous symmetry breaking in an SU(2) gauge-Higgs 
theory with a Higgs boson in the fundamental representa- 
tion [i’]. In this section we review how the effective theory 
of the SCSM approximates the ordinary standard model 
(given certain dynamical assumptions). We closely follow 
the presentation and notation of Claudson, Farhi, and 
Jaffe [6]. In the next section we will begin our discussion 
of the deviations from standard-model predictions which 
appear when a W’ isotriplet is added. 

The SCSM is based on an underlying Lagrangian which 
has the same form as the standard-model Lagrangian. 
However, the parameters of the theory are adjusted so 
that the Sum interactions are not spontaneously bro- 
ken, and instead become confining at low energies. All 
the observed particles are then Sum singlets. 

Consider the potential for the fundamental scalar field: 

where 

V(Q) = s@ fl’cl- 2v2)2 , (1) 

O=(lfJ “,=($ --$). (2) 

Note that 0’0 = 1#1. By expressing the potential in 
terms of 0, we make explicit the invariance of the poten- 
tial under the custodial SU(2)w symmetry, defined by 
S? + Clh for h ~Su(2)w. This symmetry is an invariance 
of the full Lagrangian when the hypercharge and Yukawa 
couplings of the fermion8 are turned off. 

The scale dependence of the Sum gauge coupling 
is characterized by a scale parameter AZ, analogous to 
AQ~D. This scale parameter and the constant w2, which 
appears in the scalar-field potential in Eq. (l), together 
control whether the SU(2)r. interactions are confining or 
spontaneously broken. The Sum gauge symmetry will 
not be spontaneously broken if v2 < 0 or if 21’ < A$, in 
which case the gauge interactions get strong at energies 
well above v= and prevent spontaneous symmetry break- 
ing. The fundamental fields which carry Sum charge 
will then be confined into Sum singlets. These can be 
classified using the custodial symmetry, SU(2)w. 
For example, the elementary left-handed fermion8 $2 
[where a = l,.. .,I2 labels the SU(2), doublet] bind 
with the scalar particles 4 to form composite left-handed 
fermions, 

which transform as SU(2)w doublets. Here a and fl are 
Sum indices, which are contracted so that the F; are 
sum singlets. The hypercharge of a composite fermion 
is the sum of the elementary fermion and scalar hyper- 
charges, y0 + ?/2. This is simply the electric charge Q” 
of the fermion, which implies that the hypercharge U(1) 
in the SCSM is actually electromagnetism. 

From the scalar fields alone we can form a composite 
Higgs field, H = i tr (OffI), which is an SU(2)w singlet. 
We can also form an SU(2)w triplet of vector bosom, 
with interpolating field W, =tr (a+D,%). In these ex- 
amples we can see the crucial role played by the custodial 
symmetry in organizing the composite particles into mul- 
tiplets analogous to the familiar SU(2)r. multiplets of the 
standard model. (We will later see how this symmetry 
also ensures that the interactions of the composite parti- 
cles have the standard form.) 

Of course, in addition to the particles that are con- 
tained in the standard model, experience with the strong 
interactions leads us to expect in the SCSM a rich spec- 
trum of bound states, including excited W’ bosom, lep- 
toquarks, and so on. Since these particles have yet to 
be observed, we must assume that these exotic states are 
considerably more massive than the left-handed fermion* 
and the W bosons. 

Claudson, Farhi, and Jai% [6] enumerated three dy- 
namical assumptions concerning the confining SU(2)& 
sector of the theory, which must hold if the SCSM is 
to describe the observed electroweak phenomena. 

(i) The approximate SU(12) chiral symmetry which 
relates the 12 Sum fermion doublets is not sponta- 
neously broken by a condensation of left-handed fermion* 
(i.e., ($z&) = 0). This chiral symmetry then protects 
the composite left-handed fermion8 F; from acquiring 
large masses. (If this chiral symmetry were broken, there 
would be light Goldstone bosons consisting of two left- 
handed fermion*, and the composite fermion* would be 
heavy, as their analogues are in QCD.) 

(ii) The W vector bosom are much lighter than the 
typical mass scale in the theory (e.g., AZ), and in particu- 
lar, the Wand 2 are much lighter than their recurrences, 
the W’ and Z’. 

(iii) The effective coupling of the W bosom to left- 
handed fermions is small (g = 0.66) even while the un- 
derlying theory is strongly coupled. 

Subsequent to Ref. [6], R&s. [8,9] have argued that 
assumption (i) does not hold, i.e., the chiral symmetry 
breaks when the Sum interactions become confining. 
In particular, Aoki, Lee, and Shrock [8] have used an- 
alytical and numerical lattice techniques to argue that 

when fermion8 are added to an SU(2) gauge-Higgs theory, 
the property of complementarity is lost; a phase bound- 
ary develops which separates a confining phase from a 
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phase of broken gauge symmetry. Moreover, the con- 
fining phase transition appears to coincide with a chiral- 
symmetry-breaking phase transition. Hsu [9] has reached 
similar conclusions working in the framework of contin- 
uum quantum field theory. 

Whether these same conclusions apply to the SCSM, 
including the hypercharge and strong SU(S)-color inter- 
actions, and the non-negligible Yukawa coupling of the 
top quark, remains an open question. In this paper, we 
adopt a purely phenomenological approach for determin- 
ing whether the SCSM, can describe the weak interac- 
tions. We construct an effective Lagrangian consistent 
with assumptions (i)-(iii) above, and con&ont it with the 
current electroweak data. Furthermore, these assump- 
tions define a wider class of composite models than just 
the SCSM alone, and our analysis applies just as well this 
larger set of theories. 

Granted assumptions (i)-(iii), we can write down the 
low-energy effective Lagrangian for the SCSM. Interac- 
tions with dimension greater than four should be sup- 
pressed by the characteristic mass scale, AZ, which by 
assumption (ii) is much larger than MW. As long as we 
work at energies no higher than the 2 mass, we should 
be able to omit these higher-dimensional operators from 
the effective theory. Then the most general SU(2)w- 
symmetric effective Lagrangian involving the composite 
fermion and vector-boson fields is 

L& = i&,~F; - ;Wpv. W,, + ;M$W”. W, 

+GW, f je + . . , (4) 

where the W self-couplings have not been listed. Here 
j: = i&,~,ry’F;, and W,, = a,W, -&W,. Electro- 
magnetism, which breaks the custodial symmetry, can 
then be added by minimal substitution of the vector 
potential aP and insertion of the field strength FPV = 
apa, -a+ 

L& = c:s + i&afw~ + ea& - ;P’Fp” 

-+p” + . (5) 

Again, cubic and quartic vector-boson interactions have 
not been listed. Here j&, is the contribution of the 
fermions to the electromagnetic current. If we now as- 
sume vector dominance, so that the isovector electromag- 
netic form factor of the F; is saturated by the W boson, 
then, as will be discussed in the next section, we find 
that the strength k of the photon-W3 mixing’ is given 
in terms of the U(1) coupling and the W~LFL coupling 
its k = e/g. Diagonalizing the quadratic terms in the La- 
grangian (5), which involve the neutral vector bosons, we 
find the propagating fields 

‘This mixing is analogous to then familiar case of photon-p 
mixing. 
A,=a,+kW;, 

Z, = (1 - k2)f’2W3 P) 

which couple to the neutral currents as 

(6) 

&.q~=eA.j,,+Z. *(c $k) (7) 

Hence the value of sin’ 0 that would be measured in low- 
energy neutrino scattering is sin’ 0 = ek /g = k2, where 
we have used the vector-dominance result k = e/g. This 
implies that g = e/sine, which leads to the standard pre- 
diction for the mass of the W: M& = na/(\/ZGp sin’ 0). 
In the above diagonalization process one additionally 
finds a Z mass of Mz = MW/~. Applying the 
vector-dominance result again, we recover the standard- 
model relation 

M& 1 

Mz2 ms= e = 

We see therefore how the additional assumption of vector 
dominance leads to the standard-model predictions for 
the masses of both the W and the Z. A vector-dominance 
analysis of the electromagnetic form factors of the W 
shows that the cubic and quartic self-couplings of the 
W are those of an SU(2) gauge theory with coupling 8, 
and that the corresponding couplings of the propagating 
fields, A and Z, are just those of the standard model (61. 

III. INCLUDING A W’ ISOTRIPLET 

We have just seen that with certain dynamical assump 
tions, and invoking vector dominance, the effective the- 
ory of the SCSM approximates the standard model. We 
now begin our analysis of the corrections to the effective 
theory that result when we introduce an isotriplet of W’ 
vector bosons. A W’ should arise in this model as a ra- 
dial excitation of the W, analogous to the p’ in QCD. 
Because there is no evidence yet for deviations from the 
standard model, the W’ must be considerably more mas- 
sive than the W and/or less strongly coupled. We will 
therefore treat the inclusion of the W’ as a perturbation 
of the standard model. 

Of course, we could include other nonstandard parti- 
cles in the theory. Alternatively, we could include in the 
Lagrangian all operators up to some dimension which are 
consistent with the symmetries of the theory. However, 
as we will sdon show, the W’ is the degree of freedom 
which corresponds to relaxing the assumption that the 
W saturates the isovector electromagnetic form factor. 
Adding a W’ thus allows us to consider corrections to 
the effective theory because of new particle content, and 
also to study deviations from exact vector dominance. 
At the same time, including a W’ isotriplet adds only 
three new parameters to the low-energy effective theory, 
and therefore it is possible to significantly constrain the 
theory. The Lagrangian terms for the W’ are similar in 
form to those for the W, Eqs. (4) and (5): 
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&$ =-1 4 W”” W’,, + ;M&’ W” WtP 

+g’WZ. j: _ $P”Wt3,, + . . (9) 

In constructing L$ we have proceeded much as before 
in arriving at Eqs. (4) and (5). We have first constructed 
the most general SU(2)w-symmetric Lagrangian. Next 
we have diagonalized the Lagrangian to eliminate terms 
which mix the W and W’ bosom. Finally we have in- 
cluded electromagnetism, which leads to mixing of the 
photon with W3 and W’3. For later purposes, we note 
that by substituting W’ + -W’ we can reverse the signs 

of both 3’ and k’, showing that only the relative sign of 
these two couplings is meaningful. 

A. Vector dominance 

We now show how the W’ parametrizes the deviation 
from vector-meson dominance: Consider the isovector 
electromagnetic form factor of the composite fermion% 
Fv (q2), defined through 

e(&,, F,alJ&JO) = e~&‘y% + e Fv(q’) &VL 

(10) 

Here .7&, is the total electromagnetic current, which in- 
cludes terms linear in W3 and W’3. The sum of the con- 
tributions to the form factor (see’Fig. 1) from direct mu- 
pling of the current to the left-handed fermions and from 
the W3- and W’3-pole diagrams is 

eFv(q2) = e - kg ” - k’g’ q2 
qZ-M& $-MG’ (11) 

Because the Fr. are composite and the confining SU(2)r. 
interactions are asymptotically tie, Fv(q’) -+ 0 as 
(qz( + 00. Then, assuming that Fv(q2) is saturated by 

the W3 and Wf3 poles (i.e., there are no other contribu- 
tions to the form factor, such as from a W”), we conclude 
that 

e = kg + k’g’ = kg(l + ~7) , (12) 

where we have introduced the ratios of W and W’ cou- 
plings 

Had we assumed strict vector dominance so that only 
the W-pole diagram contributed, we would have ~found 
the result e = kg, which leads to the standard-model 
Lagrangian as was shown in Sec. II. By including the W’, 

FIG. 1. Diagrammatic expansion of the isovector electra- 
magnetic form factor including the direct-coupling graph and 
the W- and W’-pole graphs. 
however, we depart from exact vector dominance. The 
W’ contributes a fraction k’ij’/e FC: wy to the saturation of 
Fv(q2), so that ~7 measures the degree of the departure. 

For the model to approximately reproduce the stan- 
dard model, the W must nearly saturate this form fac- 
tor. Here We have further assumed that the W’ contribu- 
tion to the saturation, though of necessity much smaller 
than that of the W, is nevertheless more important than 
contributions from higher-lying resonances, which have 
b&n ignored. In essence, we are claiming that the W’ 
can be viewed as a stand-in for all the resonances beyond 
the W which contribute to Fv(q2). The quantity nr ac- 
cordingly represents the combined contributions of these 
resonances to the ,satwation of this form factor. 

B. The physical neutr@ vector bosoms 

The mixing of the photon with the neutral W3 and 
W’3 bosoms introduces off-diagonal terms into the free 
(quadratic) part of the Lagrangian. We need to diago: 
n&e the free Lagrangian to find the physical photon, Z 
and Z’ fields. In the previous section we gave expressions 
for then physical photon and Z fields that diagonalize the 
free part of Lagrangian in the absence of the W’ bosom. 
These expressions, and also the result for the Z mass, are 
modified by the mixing of the photon with W13. For the 
mssses of the Z and Z’ we find 

Here s 3 sin6 c k, c s cos 0, and p is the ratio of the W 
and W’ squared masses: 

p = M&/M& (15) 

Terms containing extra factors of pn2 have been omitted. 
Note that we must restrict )c to the interval InI < cot 8, 
since otherwise the Z’ would have a negative squared 
mass and be a tachyon. The neutral vector-boson fields, 
a, Ws, and W13, are given in terms of the physical fields, 
A, Z, and Z’, as 

~=A-s(W~+KW’~), 

Corrections to the coefficients of Z and Z’ are suppressed 
by additional factors of fin’. If we substitute these’ex- 
pressions into the interaction terms that couple a, W, 
and W’ to the fermimis, we find the couplings of the Z 
and Z’ to left-handed and electromagnetic currents. 



12 CONSTRAINING THE STRONGLY COUPLED STANDARD MODEL. 531 

) 
These results for the Z and Z’ masses (14) and the 

expressions for W3 and WI3 in terms of Z and Z’ (16) 
were calculated by expanding in powers s2p~/(c2 -II) << 
1, which is assumed to be small. Tbis assumption reflects 
our intuition that th@. W’ should be heavier than the 
W (fi < 1) and should also mix more weakly with the 
photon (K (< 1). 

Note that all of the above corrections to statidard- 
model relations, the vector-dominance result for the elec- 
tromagnetic coupling (12) and the mass and couplings of 
the W and Z [Eqs. (14) and (16)], contain factors of at 
least two of the W’ parameters n, 7, and fi. The same 
is true’of corrections to four-Fermi interactions mediated 
by W’ exchange, which are of order ~7~. Hence if aby 
two of the W’ parameters vanish, the effective low-energy 
theory reduces to that of the standard model, leaving the 
remaining W’ parameter cdmpletely unconstrained. This 
means that we will be unable to obtain constraints on any 
individual parameter independent of the other parame- 
ters. We will either have to fix one of the parameters and 
then constrain the other two, or else constrain products 
of the parameters, e.g., the product 67. 

As mentioned above, Korpa and Ryzak in their ear- 
lier analysis of SCSM constraints considered the SCSM 
with not only an isotriplet of W’ w&or bdsons but 
also with isoscalar vector bosom which are bound states 
of a left-handed ‘fermipn and a left-handed antifermion: 
(VP): N ~~~7~&. Assuming that those V bosons which 
are color octets, and thus mix with gluons, saturate the 
(isoscalar) color form factor of the composite, left-handed 
quarks, they were able to place a very stringent bound 
on then mass of the isoscalar bosom (rn” > 700 GeV), so 
that the V bosons would be just as massive as the rest 
of the nonstandard resonances. This called into quee 
tion the assumption of vector dominance of, the isoscalar 
form factors. Of course, vector dominance of the isoscalar 
channel is not a’ necessary ingredient in the SCSM. By 
contrast, vector doniinance of the isovectorchannel must 
at lea& approximately hold in order to account for the W 
and Z masses. By including a W’ we can determine to 
what accuracy vector dominance must be maintained in 
the isovector channel in order to retain agreement with 
el&troweak data. 

IV. CORRECTIONS TO STANDARD-MODEL 

PREDICTIONS 

We have seen that the SCSM as formulated here re- 
duces to the standard model if the W’ is absent or if 
it has infinite mass and vanishing couplings. And, of 
course, the standard model is in impressive agreement 
with experiment. It is therefore logical to treat the SCSM 
with a W’ as a perturbation of the standard model and 
calculate the corrections t&M predictions because of the, 
W’. 

A. Corrections to the mass and couplings of the W 

The corrections induced by the W’ are not simply 
given by the sum of the new graphs that include W’s, 
The three quantities a, GF, and Mz are known to very 
high accuracy, and their values cannot change when the 
W’ bosom are added to the theory. In the standard 
model, their values determine the masses and couplings 
of the vector bosons. However, as the W’ parameters are 
turned on, the W parameters must deviate fr&m their 
standard-model values if (x, GF, and MZ are to remain 
f&d. There are then two’ways in which the W’ mod- 
ifies the effective theory: (1) W’ exchange induces new 
effective (four-Fermi) interactions, and (2) the W mass 
and couplings depart from their standard-model values 
in order to p&ewe the values of u, GF, and Mz. 

Let us first compute the deviations of the W mass and 
couplings from their standard-model values by working 
at tree level. We define M,,, go, and ko ‘As the mass and 
couplings of the W when the W’ is absent, and we define 
MW, 3, and k as the mass and couplings when the W’ 
is included. We compute e, GF, and Mz (at tree level) 
in the standard model ivhen the W’ is absent, and then 
in the SCSM, with a W’ in the theory. Combining these 
results we have 

e = k,,g,, = kg(1 + ~7) , 

Here co q cos 0, = a, and as before, s = k and c = 

Q. The expressions for e = &% and MZ come 
from the previous section [Eqs. (12) and (14)]. The result 
for GJJ is simply the sum of W and W’ exchange. These 
formulas can be used to express the deviations of the W 
mass and couplings from their standard-model values in 
terms of MW,, g’, and A’ (or, equivalently, in terms of P, 
n, and 7). Let 6Mw = MW - Mwo, 60 = g - $0, and 
6k = k - ko. Then 

6k 1 1 

-Q @K7 

8-4 

--__ - 
k 2 c2 _ s2 

c’f~7~ + ~/UC= 1 c 
-lJ (18

Terms containing more powers of ~7, ~7~, or pnZ have 
been omitted. The corrections to standard-model predic- 
tions we will find, such as all those found above, will in 
general be linear in these quantities, and so they will be 
forced to be small by our constraint analysis. In Eq. (18) 
where s and c multiply small quantities like ~7, we could 
just as well use so and co, since the expressions would be 
unchanged within the accuracy to which we are working. 
Here and in the following,. wherever the choice of sinew 
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is immaterial, we will use sin0 = k and write simply s 
(and c) for brevity. It should be ur+derstood however, 
that another convention would do just as well. 

These results have been obtained at tree level. Of 
course, in addition to the IV-induced corrections to the 
effective theory, there are also radiative corrections. Ra- 
diative corrections to the small W’-induced corrections 
are negligible, comparable @J two-loop corrections in the 
standard mddel. Hence the effective theory is well ap- 
proximated by adding ~the kV-induced corrections cal- 
culated here at tree level to the standard-model effective 
theory calculated to one-loop accua~y. In particular, thk 
mass and couplings of t&e W in the SCSM are obtained 
km their renormalized standard-model values by simply 
adding the deviatidns 6&fw, @, and 6k calculated above. 
B. Neutral-current interactions at the Z pole 

Having calculated the correction to MW, we need to 
compute the corrections to the neutral-current interac- 
tions in order to obtain the remaining constraints on the 
W’ parameters. (Charged-current interactions are pri 
cisely constrained only at low energy, and there they are 
completely fixed by the value of GF.) Above we pre- 
sented expressions for the fields a, W, and W’ in terms 
of the physical neutral vector bosom A, 2, and Z’ [Eq. 
(X)]. Using those results we can write down the cm- 
pling of the physical bosom to the fermion currents ji 
and j,, (again, we only need to calculate the kV-induced 
corrections at tree level): 
I 
From the coupling of the Z in Eq. (20), we see that 
corrections to observables measured at the Z pole are 
summarized by the quantities 6~ and C, which are given 

by 

2 2 1 7 =-- (lf2SQ 
cz 1 --fm= - + - 

82 c= p c= - n7--1”12 1 , 
p 

c=-p 7+-&h)2. 
( 

6~ is the fractional deviation of sin’0 that is measured 
by the Z-pole asymmetries, and C (2 0) is the fractional 
deviation of the coupling of the Z to jz. In deriving 
Eqs. (20)-(22) we have used the results for 6Mw, Sg and 
6k given in Eq. (18). 

C. Neutral-current interactions at low energy 

Experimental constraints on the effective value of sin’ 6 
measured at low energy, via neutrino scattering and 
atomic parity violation, no longer match the precision 
of measurements at high energy which mnstrain bz, C, 
and MW, and thus will not be part of our constraint 
analysis, which will be the subject of the next section. 
Nevertheless, such a low-energy measurement of sin’ 13 
can in principle have different sensitivity to Z’ bosom, 
and so we conclude this section by presenting the cm- 
rection to the low-energy value of sin’@ that would be 
measured in this model. We can use the results for zNC 
to calculate the neutral-current matrix element, MNC, 
at zero momentum transfer. To establish notation, we 
first mention that in the standard model, MNC is given 
(at the tree level) by 

Mf&’ w 0) = $QQ’ -4&G&3 - s;Q)(I; - si&‘), 

(23) 

where (Is, Q) and (I;, Q’) stand for the matrix elements 
of the neutral SU(2)w and electromagnetic currents in 
the external fermionic states,. respectively. The ma- 
trix element including corrections resulting from the W’ 
isotriplet, MNC, is then given at zero-momentum trans- 
fer by 
~~~(~2 m 0) z $QQ! - 4hG~ [ (Is - sip+ b)Q) (14 - siCl+ GQ') + (260 + Pb - 7)‘) S'QS'Q'] . (24) 
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Here, 60 is the q2 = 0 analogue of 6~: 

(25) 

The correction to the coefficient of Q. Q’ is unobservable 
in practice. Note the absence of a correction to the term 
proportional to 13 . Ii in MNC, i.e., p($ = 0) is exactly 
one (apart from the usual standard-model radiative cor- 
rections), which is due to the custodial symmetry and 
the constraint on GF measured in low-energy charged- 
current interactions. This removes some of the possible 
sensitivity to Z’ bosom. 

We see that corrections to the low-energy theory due 
to the W’ enter through four independent functions of 
the W’ parameters: GMw/Mw, C, 62, and 60. Again, it 
should be noted that all corrections to standard-model 
predictions vanish if any two of the W’ parameters n, 
7, and /I vanish. As mentioned, the fmt three of these 
functions, GMw/iVIw, C, and Sz, are measured with much 
greater accuracy than the last, 6,. We therefore ignore So 
in our constraint analysis, which we now present. 

V. SUMMARY OF CORRECTIONS IN 
TERMS OF S, T, AND U 

The above corrections to standard-model predictions 
which result from adding an isotriplet of W’ bosom can 
be conveniently summarized by the S, T, and U pa- 
rameters introduced by Peskin and Takeuchi [lO,ll]. At 
a fundamental level, S, T, and U are defined to mea- 
sure oblique corrections to standard-model predictions, 
i.e., corrections due to nonstandard particles appearing 
in vacuum polarization graphs for the photon, W, md 
Z. However, at a practical level, S, T, and U sim- 
ply parametrize corrections to the three standard-model 
quantities that are measured with high precision (putting 
aside a, GF, and Mz, which are fixed): MW, the mu- 
pling of the Z to j;, and sin’ 0 measured at the Z pole. 
Therefore, although corrections due to the W’ are in gen- 
eral nonoblique, by comparing the corrections to these 
three quantities due to the W’ with their expressions in 
terms of S, T, and V, we can find the effective contribu- 
tions of the W’ to S, T, and U. 

Contributions to GMw/Mw, 6z, and C are given in 
terms of S, T, and U as [lo] 

6Mw 1 a -=-- 
MV 2c2 - 32 

-hc2T+$$l , 
2 1 .., 

6,=-&[&S-c’T] , 

c=aT. (26) 

Equating these expressions with the corresponding ex- 
pressions for these quantities in terms of the W’ param- 
eters [Eqs. (18) and (22)], we obtain the contributions of 
the W’ to S, T, and u: 
5s = -(l - /+(!J~ + 7) , 

aT’ = -/.L(E + 7)2 , 

$$= P(@ + %‘? + 7’) . (27) 

Here we have introduced II = s’K/(c’ - p), in terms of 
which the contributions of the W’ to S, T, and U can 
be expressed very concisely. We denote the contribution 
of the W’ to T as T’ because there is another important 
contnbutmn to T, Ttop, due to the top quark. Using these 
expressions, limits on S, T, and U can be converted into 
limits on the mass and couplings of the W’. However, 
the contribution to T from the top quark must fist be 
removed, as we now describe. 

The likelihood function 

The electroweak constraints on S, T, and U are com- 
bined [lo] by first constructing xi: 

2 
x;(s, T, u) = c 4% TV g) - 4-‘” 1 (28) 

i I 

Here the z; are electroweak observables, namely, MW, 
the Z width,’ and sin’ B(Mz), as shown in Table I. The 
z;(S, T, V) xe the theoretical predictions for these ob- 
servables obtained by adding the oblique corrections lin- 
ear in S, T, and U to standard-model predictions; zpp” 
are the experimental values; and oi are the experimental 
errors. All these are shown in Table I. The theoretical ML 
ues are given for a 1000 GeV Higgs boson with standard- 
model couplings. Of course, we do not know the mass 
of the Higgs boson in the SCSM, though it should be of 
order the weak scale. Further, unlike the standard-model 
Higgs boson, the couplings’of the SCSM Higgs boson to 
the W bosons are unspecified. However, this represents a 
small uncertainty in the predictions of the SCSM which 
does not alter our basic conclusions. 

As mentioned above,~ there is a contribution from the 
top quark to T, which is quadratic in mt and can be 
sizable if the top quark is heavy. (There are also small 
contributions from the top which are only logarithmic 
in mt, which can safely be neglected.) In the absence 
of information about the top quark mass, an arbitrarily 
negative value of T’ could be canceled by an opposite, 
positive value of Ttop due to a heavy top quark. In this 
case, bounds on T would tell us nothing about T’, and 
only the bounds on S and U would constrain the W’ 
parameters. 

‘In particular, we use the measurement of the leptonic width 
of the Z, which is free of the theoretical uncertainties from 
a. and rb(Z) that plague the hadronic component of the Z 
width. 
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TABLE I. Theoretical and measured values of the electroweak observables used to constrain the 
W’ couplings. The theoretical values correspond to vanishing W’ couplings, a top quark mass of 
174 GeV, and a Higgs boson of mass 1000 GeV (with standard-model couplings). 

Observable Theoretical value Measured value Experiment 

MW SO.23 GeV 80.23 zk 0.18GeV CDF and DO [13]; UA2 1141 
l-(Z --t leptons) 83.68 MeV 83.96 zt O.lSMeV CERN e+e- collider LEP [15] 
sinat? 0.2331 0.2317 5 0.0004 LEP [16]; SLAC Large Detector (SLD) [17] 
Of course, we now have information about the top 

quark mass from the Collider Detector at Fermilab 
(CDF), and we use the result of their fit: mt = 174 + 
16 GeV [12]. However, the error in this measurement is 
not negligible, which can be seen by noting that an S-T- 
U analysis of the standard model predicts the top mass 
with comparable uncertainty. To incorporate the CDF 
result for rn*, including the error, we convert it to a mea- 
surement of TtoP: TtoP = T&, h 6Ttop. We then add a 

term to x& 

This leads to a likelihood function Lt(S, T’, U; TtoP) = 
Ntexp[-xt/2]. Since we are here interested in the W’ 
parameters, and not ne, we integrate over Tt,, to find a 
likelihood function of S, T’, and U alone: 

L(S,T’,U)= jdTto,Lt(S,T’,U;Tto,) 

E Nexp[-xZ(S,T’,U)/2] . (30) 

In L(S,T’, U) the only unknowns are @, tc, and 7, i.e., 
the W’ mass and couplings. We will now exploit this 
likelihood function to constrain these parameters. 

VI. CONSTRAINTS ON A W’ IN THE SCSM 

A. Bounds on ny 

From the expressions in Eq. (27) for S, T’, and U in 
terms of n, 7, and p, we can derive bounds on the product 
ny. We first express the product i?7 as 

1 -US-@, 
n7=-l-p4eZ 

Using a(T’ + U/4s2) = -p(l - p)i2, we find 

c2--p a 
w-f=-- 

1-p s2 
-&+T’+$ (32) 

Then, because (c’-p)/(l-p) is at most c’, ny is bounded 
as 

ac= 
z -$+T’+-$ < n7 < -“zsrni,, (33) 

min 62 

where in deriving the upper bound we used a(T’ + 
U/43’) = -p(l-@)k’ < 0. Here, Smin refers to the small- 
est (nonpositive) allowed value of S. From the 95% con- 
fidence level (CL.) bounds on S and on (-S/4c2 + T’ + 
V/4s2), obtained from the likelihood function in Eq. (30), 
we find that 

-0.049 < ny < 0.0055 (95% C.L.) . (34) 

B. Allowed region of W’ mass and couplings 

Our remaining results are obtained by exploring the 
volume of n-7-p space allowed by the likelihood function 
(30). Specifically, we consider points (6, y, ti) for which 
(S,T’, V) falls inside an S-TI-U ellipsoid defined by the 
value of x2 corresponding to 95% C.L. This maximum 
allowed value, x2=,, depends on the number of degrees 
of freedom being constrained: for just one degree of free- 

dom, x&,x = 4, which corresponds to two standard de- 
viations, while for two degrees of &adorn, x2,, N 6.18. 

A numerical search of the boundary of the allowed re- 
gion of (n,7, p), defined by x2 < 4, shows that n7 is 
bounded as 

-0.028 < tc.7 < 0.0052 (95% C.L.) . (35) 

Hence we can state, with a confidence level of 95%, that 
the W boson must saturate the isovector electromagnetic 
form factor to within 3%. 

Figures 2 and 3 correspond to slices of the allowed re- 
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FIG. 2. Contours bounding the regions of the n-7 plane 

allowed at 95% CL for MW, = 150 GeV (dashes) and 400 GeV 
(dots). The solid lines are hyperbolas defined by the bound 
on ny at the same value of x=. 
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FIG. 3. Contours bounding the allowed region of the 
n-MW/MW, plane for ,y = 1 (solid), 7 = l/2 (dashes), 
‘y = l/3 (dot dash), and 7 = l/4 (dots). 

gion of (K, 7, fi) at fixed p and 7, respectively. In Fig. 2 
we show the allowed regions (XL, I 6.18) of (n,~) for 
MW, = 150 and 400 GeV. These regions necessarily lie 
inside the hyperbolic bounds (solid lines) which corre- 
spond to the extreme values of wy allowed for this value of 

2 xmax. Note that most of each allowed region corresponds 
to both n and ^I much smaller than one. However, when 
either n or 7 is extremely small, the other can become 
large, particularly when the W’ is heavy. This is expected 
since, as was pointed out in Sec. IIIB, if any two of ft, y, 
and p vanish, the remaining quantity is unconstrained. 

In Fig. 3 we show the allowed range of n (x” 5 4) as a 
function of MW /MW, for 7 = 1, I/2, l/3, and l/4. Here 
we exploit the symmetry noted after Eq. (9), namely, in- 
variance under simultaneous change of sign of y and n, in 
order to restrict attention to positive 7. From this figure 
we conclude that for reasonable values of 7, n must be 
extremely small; in other ‘words the W’ must mix much 
more weakly with the photon than the W. In particular, 
for j’/g > l/4, K < 0.025. 

In Fig. 4 we show the maximum value of g’ allowed by 
our constraints (x” 5 4) as a fmction of MW,, and we 
compare our constraints with those obtained in the direct 
W’ search at CDF [18]. Note that our bounds are more 
restrictive than the CDF bounds. Further, the CDF anal- 
ysis assumes that the W’ decays entirely into left-handed 
fen&ms, whereas in the SCSM a W’ will primarily decay 
into WZ for MW, above the decay threshold, MW + Mz. 
Hence the CDF bounds do not help us bound 7 in the 
SCSM. Our constraint analysis indicates that at a:mod- 
erate value of MW,, such as 300 GeV, the W’ coupling to 
fermions must be less than a quarter of the W coupling. 

Also in Fig. 4 we show the bound on 7 which re- 
sults when we make the plausible assumption that the 
W’-photon mixing is inversely proportional to MW,, i.e., 
k’/k = J;MwfMwg, or equivalently tc2 = p. With tbis 
additional assumption, 7 is constrained to be smaller 
than 1/20th for MW, below 750 GeV. In words, the W’ 
can couple to the left-handed fermions with only l/20 
100 200 300 400 500 

M,. (GeV) 

FIG. 4. Bounds on 7 (95% CL.) for a range of MW,. The 
dashed curve interpolates through the bounds obtained in the 
direct W’ search at CDF [18] while the solid curve shows the 
bounds obtained in our analysis of electroweak constraints ap- 
plied to the SCSM. The dotted curve shows the constraints 
on 7 which result from our analysis when we restrict the 
W’-photon mixing to be inversely proportional to the W’ 
mass, i.e., 6’ = p. For MW, below 160 GeV, we find K’ = p 
is not allowed by the electroweak constraints. 

the strength of the W even when the W’ is allowed to be 
up to nearly ten times more massive than, the W. 

VII. CONCLUSION 

Comparing ow results with the earlier analysis by Ko- 
rpa and Rysak [2], we can see how the continually im- 
proving electroweak measurements have drastically pared 
away the allowed parameter space in tbis model. In their 
Fig. 4 they found my was allowed to be as large as 0.2, 
compared to our upper bound of 0.0052. Similarly, for 
^I = 1 they found that the W’ could be as light as 170 GeV 
and K. could be as large as 0.13, while for .y = 1 we now 
find that the W’ must be heavier than 1075 GeV and n 
can at most be 0.006. Moreover, our much more restric- 
tive bounds hold at 95% C.L., while the earlier bounds 
held only at 68% d.L. 

Korpa and Ryzak concluded from their analysis that 
there was plenty of room for the nonstandard particle 
content predicted by the SCSM. From~ our analysis of 
the SCSM exploiting recent electroweak data, we con- 
clude that the currently allowed parameter space is so 
small as to strongly argue against the model. There is 
no reason to expect vector dominance to hold at a level 
of 3%, although in QCD vector dominance does repro- 
duce the pion form factor surprisingly well. Nor can we 
understand how the W’ could mix with the photon only 
1/40th as much as the W mixes; yet we have found that 
this would have to be the case even if the coupling of 
the W’ to the left-handed fermions is allowed to be as 
small as 1/4th the W coupling (itself already small for a 
strongly coupled theory). Finally, we have seen that even 
allowing the W’-photon mixing to fall off as Z/MW* the 



536 ERIC SATHER AND WITOLD SKIBA 33 
W’ can couple to left-handed fern&ns with only 1/20th 
the strength of the W, even for a W’ up to nearly ten 
times heavier than the W. This is far f&n the case in 
QCD where the p’ couples to pions with about half the 

strength of the p. 
It is possible that by including more resonances in our 

analysis we could find regions in the enlarged parameter 
space where the various corrections to standard-model 
predictions cancel, without forcing the rnasse~ and cow 
plings of the resonances to be unnaturally small. But 
from our analysis it is clear that these cancellations would 
have to be rather delicate, and the agreement of the 
SCSM with experiment would be just as inexplicable. 

Of course, we can never completely exclude the SCSM 

solely on the basis of experimental constraints. The 
strongly coupled dynamics underlying the effective the- 
ory do not allow us to find predictions for masses and 
couplings which could be contradicted by experiment. 
However, the model offers no natural understanding of 
how it could continue to evade detection, disguised as 
the spontaneously broken standard model. For this rea- 
son, we conclude that unless there emerges from a study 
of the strong dynamics an explanation of how it could be 
so nearly indistinguishable from the standard model, the 
strongly coupled standard model can no longer be viewed 
as a possible theory of the electroweak interactions. 
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