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We reevaluate the hadronic part of the electromagnetic vacuum expectation value using the standard dis-
persion integral approach that utilizes the hadronic cross section measueée inexperiments as input.
Previous analyses are based upon point-by-point trapezoidal integration which does not treat experimental
errors in an optimal way. We use a technique that weights the experimental inputs by their stated uncertainties,
includes correlations, and incorporates some refinements. We find the five-flavor hadronic contribution to the
fractional change in the electromagnetic coupling constagfatM 2, Aa(M2), to be 0.027 520.000 46,
which leads to a value of the electromagnetic coupling constari,M 2) =128.96+0.06.

PACS numbgs): 13.40.Ks, 12.15.Lk, 13.60.Hb, 13.65.

[. INTRODUCTION only upon the assumption that the real partibf, is much
larger than its imaginary pafthe next-order correction is
At the current time, a large program of precise elec-proportional to IrﬁH,/)/|Hw|2 which is approximately
troweak measurements is being conducted throughout th@x10 *atg?=M 2). It is straightforward to evaluate E¢()
world. The object of this program is to test the electroweakfor the continuum leptonic cross sectidi2g. In the limit that
standard model by comparing the measured values of a largbe scaley? is much larger than the square of the lepton mass
set of electroweak observables with the predictions of then?, the contribution of the continuum leptonic cross sections
minimal standard modéMSM). The standard model calcu- is given by the expression

lations have been performed to full one-loop accuracy and )

partial two-loop precision by a large community of research- A 2y %o S| - E | a 4
ers. In all of these calculations, it is necessary to evaluate (99 = 37 4 3 +n m|2 ' “)
the one-patrticle-irreducible contributions to the photon

self-energy I1,(g?) or the related quantityIl)(qg?) The remaining contributions t&,, consist of the con-

=[IL,, (qz)f_r[yy(o)]/qz at the Z mass ScaleCIZIM'%.- tinuum hadronic cross section and tiB=1" resonances
These quantities are usually absorbed into the definition o&nd are labelledr, 4. Since the cross sections for the reso-

the running electromagnetic couplingq?): nances and low-energy continuum are not accurately calcu-
lable from first principles, experimental inputs are used to

a(g?)= @0 (1) evaluate their contributions to E¢3). The contribution of
1—[H;y(q2)—H;y(O)]’ open top quark production to the integral is accurately cal-

culable and since the top quark mass is not known precisely,
where a,=1/137.035 989 &1) is the electromagnetic fine only the five-flavor hadronic cross section is included in
structure constant. This quantity is also represented as th®, .. The corresponding contribution tha(q?) is, there-
fractional change in the electromagnetic coupling constanfgre,

Aa:
o0 2
2y _ A a 2)=ﬂP dSq—Ra 5). (5)
%qz)ao:n;y(qz)_n;y(o)- (2) ned 9= 37 Lmi had

Using analytic techniques and the optical theorem applied Equation(5) has been evaluated at tHeoson mass scale

. . a number of timeg3—8|. The most recent evaluations by
to the amplitude fos-channel Bhabha scattering, the quan- . :
tity Aa has been related to the cross section for the proces'gIartln and Zeppenfeld6], Eideiman and Jegerlehngr]

e'e —y* —all (o) as[1] and Burkhardt and Pietrzyfi8] yield

Aa(g?)= s(q°—s)

wy (= o 0.027 39-0.000 42 Ref[6],
2\ -
Aa(@?) =3 Pngdss(qz_S) Riot(S)s 3 Aapad M2)=1¢ 0.0280=0.0007, Ref[7], (6)
0.0280+0.007, Ref.[8].

where R(s) is the ratio of the total cross section to the

(masslessmuon pair cross sectioar,, () =47a?(s)/3s at  The authors of Ref.6] use perturbative QCD to parametrize
the center-of-mass energys. The cross sectiom, is the  the continuunR,,{s) above\s=3 GeV and linear interpo-
physical cross section which has been corrected for initialtation of measured data below that point. The two-body final
state radiation. The actual quantity measured in most experstatesz* 7~ andK*K™ are fit to parametrizations which in-
ments is discussed in the Appendix. It should be noted irtlude thep, w, and ¢ resonances. The remaining resonance
passing that Eq(3) is correct to all orders iy, and relies  contributions are calculated from an analytic expression
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53 REEVALUATION OF THE HADRONIC CONTRIBUTION TOa (M 2) 5269

which results from integrating a Breit-Wigner Iine_ shap_e andresult consists of several poirﬁz}iﬁad: Rnad W) measured at
depends upon the masses, widths, and leptonics widths @fpsely spaced energy pointg, . Each set of measurements
each resonance. The authors of R&{.use linear interpola- js accompanied by a set of point-to-point uncertaint&a-
tion (trapezoidal |ntegrat|<+jn9f meas‘fe‘j‘ data points 10 igtical and systematiar;(PTP and an overall normalization
evaluate the continuumg” @™, and K _K contributions. uncertainty o(norm). Quite often, the point-to-point uncer-
Above \s=40 GeV, t_hey use perturbative QCD to evaluateiginties are much smaller than the normalization uncertainty.
Rpag- The contributions of thew, ¢, J/y-family, and A tynical experimental result therefore consists of an accu-
Y-family resonances are included by integrating a Breit-rately measured shape of less certain normalizationthis
Wigner line shape. The authors of R¢8] use smoothed (45¢ the values of the measured points are strongly intercor-
averages of data to evaluate the continuum contribution, g|ated. For future reference, we label these as type | corre-
parametrization to evaluate the" 7 contribution, and the |ations.
anglytic expression to evaluate the contribution of the re- The normalization uncertainties usually incorporate
maining resonances. , _ purely detector-related effects, acceptance uncertainties, and
_ This document reports on an evaluation of Es).which  ncertainties on radiative corrections and background correc-
is performed in a somewhat different way from those listedijgns. The largest normalization uncertaintié§—20 % are
above. In particular, the technique employed makes bettefssociated with the oldest measurementsRaf, in the
use of the information provided by the varioBg,qmeasure- \w=1_5 GevV region. These experiments typically had lim-
ments, avoids some pitfglls inherent in the trgpezoidal techied acceptance which when combined wittcammon lim-
nique, and naturally provides an accurate estimate of the Ueq understanding of the event structure lead to large uncer-
certainty on the result. We find tainties in the overall detection efficienciesThe
2 normalization errors associated with different sets of mea-

Adnad Mz) =0.027 52-0.000 46, surements performed at similar energies and times may be
strongly correlated These correlations are distinct from
those discussed aboyehich must be presentind are la-
Helled as type Il correlations. When combining the results of
separate experiments, one must be careful to include the pos-
sible presence of type Il correlations in a conservative esti-
nate of the overall experimental uncertainty.

Most previous analyses @ «,,4 €valuate various contri-
butions to Eq.(5) by performing a trapezoidal integration
with measured values d®,,,q. Different data sets are com-
bined by weighting nearby points by the quadrature sums of
their point-to-point and normalization uncertaintigssum-

Ij]ng that all points are uncorrelatedrhe effects of possible
type Il correlations on the overall uncertainty are accounted
fqr differently in different analyses. Eidelman and Jegerleh-
of Ry, Near charm threshold which alters the result bynerl[7] surEhthedunczrtal_ntles assocz:lted with fear\]ch p0||r_1t lin-
5.8x10 *. Although the net result is somewhat closer to early. Burkhardt an P|etrzy38] and most of the earlier
analyses assign typical normalization uncertainties to various

those given above, a detailed comparison of the actual inte?

grated cross section with one used in a trapezoidal integrd'—qtervals inW and sum the corresponding uncertainties on

tion (see Sec. Il Gindicates that significant differences per- Adtpgg i quadra'Fu.rej. The'use of trapezoidal !ntggratlon has
sist. two advantages: it is unbiased by human prejudice about the

functional form of R,{S), and it would automatically ac-
L THE ANALYSIS count for undiscovered resonances which are broad as com-
' pared with the spacing of measurements. Unfortunately, this

Any attempt to combine the results of many experimentgechnique also has a serious shortcoming: it ignores the type
is a perilous undertaking. Many different techniques and apl correlations present in each data set.
proaches have been used. Not all researchers have addressed reating the combinethormalization and point-to-point
all possible problems nor are systematic error estimates pe#ncertainties on the points in each set as independent loses
formed in uniform ways or to uniform standards. We there-the (often precisgshape information associated with the set.
fore adopt some the techniques of the Particle Data Groupwo examples of the loss of shape information are illustrated
[9]. Older measurements which are contradicted by newefig. 1. In part(a), a data set with small point-to-point errors
more precise work are excluded from the analysis. Parametéshown as solid dojsand a large normalization uncertainty
uncertainties that are extracted from fits wjth per degree (illustrated to the right of the dakés combined with a single

of freedom(DF) larger than one are rescaled by the factorPrecise measureme(ghown as the open dofThe statistical
Y2 Npr. averaging procedure used in the trapezoidal integrations

would yield the function shown as the solid curve. The shape
defined by the solid dots would be distorted near the single
precise point and the accurate normalization information

The experimental measurementspf,{s) are performed contained in the single measurement would be ignored. A
over limited regions ofW=\/s. Typically, an experimental more optimal procedure would use the shape information

which appears to be consistent with Ref§—~8| within
quoted errors.

The result reported here updates an earlier version whic
was more discrepant with Ref&—8|. The updated value of
AapadM 2) is larger than the previous one by &80 * for
five reasons. The previous analysis used the six-flavor def
nition of Aay,,qWhich differs from the five-flavor quantity by
0.6x10™*. A (hopefully) less controversial choice af,(M 2)
shifts the result by-0.5x10"“. The fitting procedure used in
the previous analysis was biased toward smallgy values;
correction of this problem gives a difference of 280 “.
Small corrections to the analysis of the resonant contributio

A. Analysis technique
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of R,q[10]. The bias that resulted to our previous analysis

(a) Normalization . . . . .
Uncertainty \ from the application of the incorrect technique was approxi-
Trapezoidal mately 39% of the uncertainty on the final result. We avoid
Method the bias by defining? as
R .
[Rhag— (1+XNja)Ra(si;a)]?
2_ 2
P < ) HPTP 2@
Best i .
»: Estimate where Ry, is the value of R,,q measured at energy
s;,a;=oj(norm/R},,4 is the fractional normalization uncer-
o tainty associated with théeth measurement, any; are fit
®) Nag"gg'r'tza‘]‘;'g," parameters which are constrained to have zero mean and unit
Trapezoidal Method width. This _form preserves.shape_ information and propagates
AW the normalization uncertainties into the parameters of the
SR * function Ry, . For each fit, two choices of the parametgys
R - are investigated. In the first case, a separate normalization
______ Best parameten; is assigned to each data set. This choice incor-
Estimate porates type | correlations only and makes no assumptions
™ Normalization Uncertainty about correlations between experiments. In the second case,

the normalizations of experiments of similar age and energy
region are assumed to be 100% correlated. A separate nor-
malization parameter is assigned to each correlated group

. . . . instead of each set of measurements. This choice includes the
FIG. 1. Two examples of the shape information loss inherent in

the averaging procedures used by trapezoidal analvses effects of type | and type Il correlations, produces larger
ging p y frap yses. error estimatega consequence of including the type Il cor-

relations, and is the one quoted as tofficial result. The
provided by the solid dots and the normalization informationdifference in Aay,q resulting from the two weighting
provided by the open dot yielding the dashed curve. schemes is included in the parametrization uncertainty dis-

Part(b) of Fig. 1 shows the result of combining two partly cussed below.
overlapping sets which have small point-to-point uncertain- Equation(5) is evaluated by performing a Simpson’s rule
ties and large normalization uncertaintiéshown as open integration using the functioR;; and the best estimate of the
and solid dots, respectivelyin the region of overlap, the parameters. The parameter uncertaintiés, reflect the
sets define a consistent shape but differ in normalization. Apoint-to-point and normalization uncertainties to some ex-
optimal averaging procedure would average the normalizatent. Unfortunately, the process of fitting a large number of
tions and produce the dashed curve. The procedure adoptegeasurements with a function of a smaller number of param-
as part of the trapezoidal analyses would yield the solickters necessarily involves some loss of information. The re-
curve which agrees with the dashed one only in the region o$ulting uncertainty on the fitting function at some poiitis
overlap and does not preserve the shape determined by tigually smaller than the uncertainties on nearby data points.
data sets. The trapezoidal analyses described in[Rgf5],  If we adda priori information to the problem by choosing a
and[7] are checked by first integrating individual data setsphysically motivated fitting function, the information con-
and then by averaging the integrals. While it might appeatained in the parameter error matrix may be appropriate. To
that this procedure preserves shape information, the actuahderstand this problem better, we evaluate the uncertainty
averaging of the integrals can be carried out only in energyn Aay,,{M 2) by two techniques. In the first, the parameter
intervals where the data sets overlap. The net result therefoigncertainties are propagated to the calculated value of
looks much like the solid curve in pa(th). It is not surprising  Ag;,,{ M 3) using the following expression which is valid for
that consistent results were obtained. Optimal use of thany function of the parameters:
shape information can occur only in techniques that allow
the normalizations of the data sets to vary. The consequences IAapay)  IAanag
of these examples will become clearer in Sec. Il G 52(A“had)e><pt =2 Ex ' ®
. . K| day 0q,
We incorporate correlations into the analysis by fitting the

data to an appropriate functional forRy(s;a,) wherea,  \yhere the derivatives are calculated numerically and
are the parameters of the function. Ir_| the absence Qf U”d"Ek|=<6ak5a|>, is the parameter error matrix that is extracted
covered resonance®,.q can be described by a continuous rom the fitting procedure. The second-error estimate is per-

function. A X fit has the virtue that measurements can b&grmed by constructing a large ensemble of data sets by
weighted by their experimental errors and correlations A hiting the measured data poiris, (meas as
straightforward to include. The previous version of this &

analysis u.sed a nonqiagonal d(iafinitioméfconstructed from ihao(SEt j)= Riha(( meas+ fﬁTPO_i(PTFD_I_ fijnormo_i(norm),

the covariance matri;;= (AR, AR}, of the measured (9)
points R4 Unfortunately, it has been shown that if the
off-diagonal elementf;; scale with the measured values of where the factors;; are Gaussian-distributed random num-
RhagOr Rlag, the resulting fit will be biased to smaller values bers of unit variance. The entire fitting and integration pro-

W (GeV)
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cedure is then applied to each member of the ensemble. The 6
uncertainty onAa,,{M 2) is determined from the central
68.3% of the ensemble distribution.

The use of a fitting function has the problem that one may
introduce bias through the choice of parametrization. We at-
tempt to evaluate this effect by varying parametrizations as
much as ingenuity and computer time allow. The quoted con-
tributions toAa,, M 2) are those corresponding to the best
fits. Each contribution is assigned a parametrization uncer-
tainty &(Adhadparam based upon the spread of results corre-

. . o . 3 —
sponding to reasonable fits. The parametrization uncertainty
also includes a contribution from the difference observed in B .
the two x? weighting schemes. o | |
4 6 8 10
B. The data W (GeV)
The approach to the evaluation of E§) is driven by the FIG. 2. The R,,q measurements of the Mark [27] (solid

form of the data themselves. The total hadronic cross sectiosguares PLUTO[29] (open triangles Crystal Ball[31] (open dia-
can be decomposed into four pieces: the hadronic continuumonds, LENA [32] (open squargs DASP[28] (open inverted tri-
above W= \/§:1 GeV, the charged two-body final states angle, and DESY-Heidelberd35] (open circlg collaborations in
ﬂ-+ﬂ-_ and K+K_ from their respective thresholds to 2.6 the region betweeWW=5 GeV andW=9.4 GeV. The error bars
GeV, and hadronic resonancescluding charged two-body include_point-to-point uncertainties onIy._A recent QCD ca_lcu_lation
final states Since Eq.(5) is linear in the hadronic cross [36] wzhlch includes quark mass effects is shown as a solid line for
section, we decomposka;,, AS as(M2)=0.125.

5 conty .2 I K K=, 2 several broace™ e~ resonances between th#1020 and
Aapad gD =Aafdi(gd) + Aamy™ (G2 +Aafd (9?) W=2 GeV are implicitly contained in the two-body or
=3 ; ; +,_— +1e— ;
+Aa®(0?), (10) had Categories. Since the m and K"K cross sections
are very small atW,, the R4 and total continuunR,4
] ) measurements should be continuous at this point.
where the four terms on the right-hand side correspond to the At center-of-mass energies larger they, many mea-
four pieces of the hadr_onlc Cross sgqtlon_- surements of the hadronic continuum and resonances exist.
The rationale for this decomposition is as follows. TheThe only precise measurement in the region between 2.6
region belowW=1 GeV is dominated by thg, , and¢  Gev and 5.0 GeV is a single data point just below charm
resonances. The electromagnetic form factors for the progyreshold atw=23.670 GeV by the Crystal Ball Collabora-
+ a0 + - + o +pe— )
cessee’ e —m 7 [11-18 ande’e —K'K™ [18-23  {jon [30]. This measurement has a normalization uncertainty
are measured well from thre)rshcild\Mz%G_eV. Resonances of 705, Since the next most precise measurements in the re-
do not account for all of ther” 7~ andK"K ™ cross sections  gion helow 5 GeV have normalization uncertainties of 15%,

in this region. On the other hand, essentially all other two+his measurement represents an important constraint on the
body and three-body final states are associated with the réSgragnitude of the cross section in the entire region. The re-

nances. Measurements of three-pion final states Wead gion above charm threshold frolv=3.77 GeV toW=5.0
GeV[23] show the nonresonant portion to be consistent withgey/ is complicated and not well measured. The Mark I,

zero. Similarly, measurements of various two-body finalpasp, pLUTO, and Crystal Ball collaborations all observe
states such ak|Ks show small nonresonant cross sectionsap enhancement beyond the expected threshold shape. The
[20]. The cross sections for four-pion final states becomeyasp data show three resolved resonances. The Mark | and
significant above 1 GeV but are small below that energyp| yTo data are consistent with the DASP data but do not
[24]. The yy2 experimen{25] at the ADONE storage ring at cleanly resolve the resonances. The Crystal Ball measure-
Frascati has measured the hadronic cross section ratio fekants are somewhat smaller than the older ones and do not
three or more hadron final statd¥.% from W=1.42 GeVto  resolve the second resonantehich appears as a broad
W=3.09 GeV. They have also presented several points fronshoulde). We choose to follow the Particle Data Group

1 GeV to 1.4 GeV that are composed of various multipion(ppG) and recognize the DASP resonances4040,
cross sections from Novosibirsk and Ord®8,24,26 and (4160, and(4415. The ¢ family therefore consists of six
are claimed to approximaf,., Measurements beginning at states.

W=2.6 GeV by the Mark [27], DASP[28], PLUTO [29], Between 5 GeV and 10.4 GeV, the Mark |, DASP,
and Crystal Ball[30] collaborations claim to measure the PLUTO, Crystal Ball[31], LENA [32], CLEO[33], CUSB
entire cross section. We therefore conclude ®ayis well  [34], and DESY-Heidelberd35] collaborations have pub-
approximated belowV,=2.6 GeV by a sum of ther" 7~ lished R}, measurements which are plotted in Fig. 2. The
and K"K~ contributions from threshold t@V, (where they error bars include only point-to-point uncertainties. The re-
are much smaller thaR;>); the RS measurements from 1 cently published Crystal Ball measurements have a system-
GeV toW,; and thep, w, and ¢ resonances where the had- atic normalization uncertainty of 5.2%. The other measure-
ronic widths are adjusted to remove thé 7~ and K"K~ ments have normalization uncertainties in the range 6.8—
final states that are already included explicitly. Note that thel0%. The data are also compared with the recent QCD
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prediction of Chetyrkin and Kuhf86] which includes quark r;=1.9857-0.1153;

mass effects. AW=5 GeV, the Mark | data are consistent (13)
with other measurements. A¥ increases, they show a sys- 3Q)2
tematic increase ifRy,qand suggest the presence of a struc-  r,=—6.6368- 1.200N; — 0.005N?—1.239 .

ture near 6.6 GeV. Including the quoted 10% normalization 32Qf
uncertainty, the Mark | data are larger than the more precise

measurements by approximately two standard deviations'he resulting value oR,,{M3) is

The reader is reminded that first generation detectors like

Mark |, DASP, and PLUTO were small acceptance devices Rhad Mz) = 3.807=0.006. (14)

that necessarily involved large acceptance corrections with-

out the benefit of good event structure modeling. After ac- The following three subsections describe the evaluation of

ceptance corrections andrdepton subtraction, the Mark | the continuum contributiod\efoq, the contributions of the

group observed that two-charged-prong events constitutegharged two-body final stat g;dﬂ_ and Aaﬁ;d'(_, and the
nearly 20% of the hadronic cross sectiorFoat W=7 GeV.  resonance contributionas,.
This is about 1.5 times the two-prong rate duerte final
states and three times the rate that is predi¢8dd by the
JETSET7.3 Monte Carlo prograrf88]. While this may not be
wrong, we choose to exclude data from the first generation The first step in the evaluation of E() for the hadronic
experiments when more modern results are available. Suatontinuum is to formulate a suitablpiecewise-continuous
data are available above charm threshold. Unfortunately, wparametrizatioR(s;a,). We choose to use the perturbative
are constrained to use very old continuum measurements b@CD expression given in E412) in the regionW=15 GeV
low charm threshold. and an empirical parametrization in the region 1 GaV
The PDG lists siXY-family resonances between 9.4 GeV <15 GeV. In the high-energy region, the only free parameter
and 11 GeV. All are included in the resonance contributionis ag(M 2) which is evolved to other scales numerically us-
Aboveb-quark threshold, a number B ,;measurements ing the Runge-Kutta method applied to the ordef
have been carried out by the experiments at the CER& renormalization-group equatidd6.
collider LEP, the SLACe*e™ collider PEP, and DESY In the portions of the low-energy region that are measured
e*e” collider PETRA. However at energies abowe=34  well, polynomials are used to parametrigg,{W). To en-
GeV, Z-y interference becomes significant. We therefore useure that the function is continuous across several pwifjts
only those measurements in the regdh<34 GeV where the polynomials are constructed x3=W—W, and the ze-
the correction for electroweak interference is less than 1%.roth order terms excluded:
We expect thatRy.q is well described by perturbative
QCD in the region abové-quark threshold. This implies a . ai
that the world average value of the strong coupling constant Pn(x)=;1 diXa, (15
ag(M2) compiled by the PDG9] provides a precise mea-

;ulr_emerr:t ORpaq atl\(;V;_ Mzt'hs'g(:? possk;!e anomazhefs in the wherea is a label to distinguish different regions. Separate
ine shape would bias the determinationa(M z) from polynomials are used to describe the following regions: 1

the !ine-shape parameters, we exclungtH'me shape infor- GeV=W=1.9 GeV (labeled regions), 1.9 Ge\KW=3.6
mation from the PDG average. Additionally, since we ex-gq, (labeled regionc), and 5.0 GeWxW=10.4 GeV (la-
pI|C|.tIy include the PEP.'PETR'Rhad measurements in our fit eled regiorb). Although a single, large-order polynomial is
(which uses perturbative QCD to describe the PEP-PETR dequate to describe the data betwdén1 GeV and charm

energy region they are also excluded from the PDG averag&hreshold at 3.6 GeV, the data show a distinct shape change
yielding the following value, nearW=1.9 GeV (where the four-pion cross section is be-
coming small. It was possible to obtain better fits by intro-
aS(M§)=0.llﬁt 0.005. (11 ducing an additional polynomial to describe the region from
1 GeV to 1.9 GeV. A comparison of the two possible forms is
used to assess the parametrization sensitivity of the final re-
sult.
Since there are no measurements of the continRpygin
the b-quark andc-quark threshold regiongpublished mea-
2 surements include a mixture of continuum and resonances
it is necessary to extrapolate the formRyf,;from 3.6 GeV
to 5.0 GeV and from 10.4 GeV to 15 GeV with functions that
3] are physically motivated. In the case of the charm threshold

C. The hadronic continuuum

n

To convertay(M 2) into a determination oR,{( M), we
use the third-order QCD expressipib]

ag(s)

3—p? <
RQCD(S):E'Ef Q%Bf( zﬁf)(l‘F[Q (S)%'rl

ag(S
S—) (12)  region, the DASP Collaboration has publish@u graphical
form) the shape of the continuum that was preferred by their
fit to the (4040, (4160, and (4415 resonances. The
whereQ; is the final state fermion chargﬁ,f=\/1—4mf2/2 function which characterizes the shape of the threshold,
is the fermion velocity in the™ e~ center-of-mass fram@n; foasf (W), does not increase as sharply as the free-quark
is the fermion magsand the coefficients are functions of the threshold factor3(3—2)/2 but increases more rapidly than
number of active flavorsl; , the 82 threshold factor for pointlike scalar particles. To con-

+r
2|
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struct the functiorRy; , all three possibilities are used for the
c-quark threshold and the two extreme possibilities are used
for the b-quark threshold:

Rhad

B(3— B2,
f(W)=1 foasp(W), fo(W)=
B,

where thec- andb-quark masses are taken to be lh@ndB
meson masses, respectively. The actual size of the charm- i T
associated step iRy,,q, AR, is left as a free parameter. The
size of the bottom-associated stefRigqis constrained to be 5 10 20 50 100
the difference between the value of the fit function at W (Gev)

W=10.4 GeV and the value of the QCD portion\&t=15

B(3—p3)12,
e (16

Rhad

N

GeV, AR,=Rcp(15—R(10.4. FIG. 3. The continuuni;,,gmeasurements including normaliza-
The actual form of the fitting function is given by the tion uncertainties. The entries in the region below charm threshold
expression consist of a compilation of low energy exclusive cross sections

[24,23,24 (solid inverted trianglesand the measurements of the
vy2 [25] (solid dotg, Mark | [27] (open diamonds DASP [28]

( Ro+ Py (W—1.0), 1<W=<1.9, (X's), Crystal Ball[30] (solid squarg and PLUTO[29] (solid dia-
s mongd collaborations. The entries in the region between charm and

Ri(1.9+ P} (W=1.9), 1.9<W=<3., bottom thresholds are the measurements of Crystal[Ba]l(open
diamond$, PLUTO [29] (open triangles LENA [32] (solid
Ry (W)= Rii(3.6) + AR:f((W), 3.6<W=5.0, square DASP[28] (diamond-X overlay, DESY-Heidelberd 35]
fit R(5.0) + PRIb(W_ 5.0, 5.0<W<=10.4, .(square-x_overla),{ CusB [_34] (solid doD,_anC_i CLEO[3_3] (solid

inverted trianglg collaborations. The entries in the region between

Riit(10.4 +ARpfp(W),  10.4<W<15.0, above bottom threshold and below theole are the measurements

(. Raco(W), 15<W, of CELLO [41] (open diamonds PLUTO [29] (open triangles

(17) JADE [32] (open squargs Mark J[43] (open inverted triangles
TASSO[44] (circle-X overlay, HRS[39] (open circlg, and MAC

whereR, the value ofR,,;at W=1 GeV, is a free parameter [40] (X) collaborations. The fit used to evaluate the central value of
a ! cont ; ;
and the order of the polynomials is varied from 1 to 7. The®®had iS Shown as the solid curve.

X’ is constructed from Eq(7) assuming that normalization . .
uncertainties are completely correlated in four groups: théjnderstand formalities. We have therefore recast(&gnto

20% uncertainties of the lowest energy measurement& form which is more suitable for electronic evaluation:

[25,26 (1.0 Ge\xW<3.09 GeV}, the 15—-20 % uncertain-

ties of the Mark I, DASP, and PLUTO measuremeg— ao@? [ Ru(q®)  [q?—s
29] (2.6 Ge\xW<4.9 Ge\), the 5-10 % uncertainties of Aapdqd)= — e in 0
the measurement$31-35 between charm and bottom 3m q So

thresholds(the Crystal Ball measurement at 3.670 GeV is
treated as a member of the higher-energy Crystal Bal| set 2.5 Re(S)—Re(q?)
and the 1.7-7.0% uncertainties of the PEP and PETRA ex- — fq dg—m>l e S

periments[39—-44 above bottom threshold. Each fit is re- So s(s—q?)
peated with a separate normalization parameter for the 20 2
| ; IR, g°t+A
sets of data in the analysis. 2N —
The data are corrected for electroweak interference and dJs @ q—A

incomplete vacuum polarization correctiofsee Appendix

before the fitting procedure is applied. In the course of vary- B

| i = Ra(S)—Ru(d?)

ing the orders of the polynomials and the number of normal- _ fit fit

Y : S———— |, (198

ization parameters, the number of free parameters varies a’+A s(s—q°)

from 12 to 44. The fit quality does not improve substantially

when the number of parameters exceeds 14. The data and the _ _

result of the fit used to evaluate the central valuedefgy ~ Where we have assumed thy, is well approximated by a

are shown in Fig. 3. The error bars include the point-to-poiniinear expansion over the interval”~A<s<qg“+A (in

and the normalization uncertainties. The fit quality is reasonpractice, we usé=0.5 GeV). The evaluation of Eq(18)

able (y ¥Npg=110/100. requires thatr be evolved to scales larger than thquark
The various hypotheses f@®;, are used to evaluate the mass. For this purpose, the top quark mass is assumed to be

integral in Eq.(5) from sy=1 Ge\? to »=10° Ge\2. Al- 172.3 GeV which is the modified minimal subtraction

though the singularity in the integrand is formally well con- scheme(MS) mass corresponding to a pole mass of 180

trolled, digital computers are famous for their inability to GeV.
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FIG. 4. The uncertainty on the integrand of tespace disper- 1.0 14 1.8
sion integral in arbitrary units. The dashed curve shows the uncer- W (GeV)
tainty before the Crystal Ball data point is included in the fit and the
solid curve shows the uncertainty after its inclusion. FIG. 5. Measurements dF ,(W)|? by the OLYA [11] (solid

dotg, CMD [11] (open diamonds TOF[13] (solid triangle$, NA7
The contribution of the hadronic continuum to [12] (open squargsu [16] (solid squares MEA [18] (solid dia-
Aay,{M 2) is found to be fairly insensitive to the form of Mmonds, DM1 [15] (open triangles and DM2[17] (open circles
Ry and the number of normalization parameters used. Theollaborations are compared with the best fit which is shown as a
central value ofA ey, M %) corresponds to the best estimate solid line. The error bars include normalization uncertainties.

of the parameters of the function which uses: the DASFyashed curve shows the uncertainty before the Crystal Ball
shape for thee-quark threshold, the free-quark shape for theqa(a point is included in the fit and the solid curve shows the

b-quark threshold, the value®,3,3 for (Ny,N¢,Ny), and — ncertainty after its inclusion. Note that the overall uncer-
four normalization parameters. The maximum dev'at'ontainty on Aat is dominated by the poor precision of the
from this value occurs whehl,=1 and 4(instead of 20 data in the 1aGeV to 3.5 GeV region.

normalization parameters are usiglde deviation is insensi-
tive to the choice of threshold functionsThe size of the
maximum deviation is taken as an estimate of the parametri-
zation uncertainty. The experimental uncertainty given by The processes’e —m' 7 ande’e” —K'K™ are de-
Eq. (8) is found to be in excellent agreement with the esti-Scribed by the electromagnetic form factots,(s) and

mate derived from an ensemble of 500 fluctuated data set§x(S). which are related to the hadronic cross section ratio

D. The w* %~ and K*K™ final states

The resulting contribution tay,(M 2) is Riad for each process as
af2M(M2)=0.022 106~ 0.000 366exph Riad” (9= 5F ()85 Riad (5)= %leK<s>|2ﬂ%,20)
+0.000 196param. (19

where,, and B¢ are the velocities of the final state particles

This result differs from our previous result by in the e’e” center-of-mass frame. It is clear that measure-
+0.000 678. Most of the difference is caused by inclusion ofments of the form factors are equivalent to measurements of
Crystal Ball data point at 3.670 Gel#0.000 575. The re-  Rhad-
maining difference is due to the use of the five-flavor defini- Measurements of the square of the pion form fadfql®
tion of Aay,q(+0.000 059, a change in the value af,(M 2)  have been performed by the OLYA1], CMD [12], TOF
used as input—0.000 05}, and the change to the unbiased [13], NA7 [12], um [16], MEA [18], M2N [14], DM1 [15],
fitting technique(-+0.000 095. The inclusion of the Crystal and DM2[17] collaborations and are shown in Fig. 5. The
Ball point pulls the fit to somewhat larger valuesRyf,;and ~ error bars include the normalization uncertainties which
substantially constrains the normalization in the charmrange from about 2% in the region around teminan p
threshold region. The Mark Il angy2 data span a large resonance to about 12% Vat=2 GeV.
energy region and constrain the shapeRaf(W) down to The data are first corrected for incomplete vacuum polar-
W=1.4 GeV. The effect of the single precise point is there-ization corrections as described in the Appendix. They are
fore propagated to smaller energies. This type of effect ighen fit to a function which is a sum of the Gounaris-Sakurai
illustrated in Fig. 1a) and is demonstrated in Fig. 4, which form [48] used by Kinoshita, Nizic, and Okamofd9] and
displays the uncertainty on the integrand of tespace dis- three resonances:
persion integral in arbitrary unitf47]. The uncertainty is 2 3
calculated using Eq@8) (with A4 replaced byRy;) to es- F_(s)= A1~ MzA, + S
timate the uncertainty oR;(W) at each energy point. The m Ar+A0°+1F(s) =1 s— mﬁ+imn1“n’

iCnm?2
Bne'™~nmy

(21)
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whereA,; andA, are free parameters),. is the pion masgj
andf(s) are defined as

q=ys/4—m2

%

(22)

Vs+2q

2¢° g
2m,_

+ In I —, .
m/é \/5 1.00

and wherem,, I',,, B,,, andC,, are the mass, width, ampli-
tude, and phase of each resonance. The mass and with of the
first resonance are set to those of h@82). All other pa-
rameterg12 in tota) are allowed to vary. Thg? function is
constructed assuming that all normalization uncertainties are
100% correlatedone normalization paramejeand that the
normalizations are uncorrelatéseven normalization param-
eters. As in the case of the continuum, the two fits give FIG. 6. Measurements dF(W)|* by the OLYA [19] (solid
nearly identical results but the error estimate is larger whe§lots, CMD [20] (open diamonds MEA [18] (open squargsDM1
only one normalization parameter is used. The result of thé21l (open triangles and DM2[22] (open circles collaborations
single-normalization-parameter-fit is shown as a solid line in2"® compared with the best fit which is shown as a solid line. The
Fig. 5. The fit preferred a resonance of width 0.44 GeV af'™or bars include normalization uncertainties.

mass 1.15 GeV and a second resonance of width 0.18 GeV at
mass 1.71 GeV. The fit quality is found to be good
(X*Npe=138.3/127.

To evaluate the sensitivity of the result to the parametri-
zation, the complete function used by the authors of Ref.
[49] was also fit to the data. This function did not fit the \yhere A, is the amplitude of thep, m,, is the mass of the
newesf(largeW) data from DM2 as well as our chosen form 41020 'm., T,,, B, andC,, are the mass, width, amplitude,
(XZ/NDF:201-5/13% Both functions were used to evaluate ang phase of the resonances. The energy-dependent width
Eq.(5) from s=4m? to s=4 Ge\? (erere_| F.|”is measured I',(s) is assumed to consist of contributions from kK
to be very smajl We find the =" 7~ contribution to K, Ks, and 3r final states:

Aap,d M 2) to be
Js
My,

-
(=]
=
-
(=)
@

3

f(s)z%{mi—E

™
w100

107

1.2 14

W (GeV)

-
=]
-

.8

4 _
A, B,e'Cn

= - + - ,
s—my+imgl 4(s) =1 s—mi+im, T,

Fk(s)
(24)

B(s) B3(s)
0.49%7 347
52 me) " O34 3 )

Aaly" (M2)=0.003 246-0.000 057exph
+0.000 169Qparam).

r¢(s)=r?ﬁ[

(23)
- 0-15&332(5)} , (25
The two techniques for the estimation of the experimental

uncertainty(discussed in Sec. Il Ayield consistent results. wherel“% is the nominal valu9] of the ¢ width, B, (s)=

The result given in Eq(23) differs from our previous . _ .
result by +0.000 153. The difference is due entirely to the V1—4m,./s is the velocity of the charged kaogy(s) =

use of the unbiased fitting technique and represents the Iargf1_4mi0/s is the velocity of the neutral kaon, a@i$,_(s)
est problem found with the older technique. is a function which is normalized to unity at=m3 and is

Measurements of the square of the kaon form faldiQt?
have been performed by the OLYA9], CME [20], MEA
[18], DM1 [21], and DM2[22] collaborations and are shown

proportional to the decay rate fgr— 37 assumingo domi-
nance[50].
The masses and widths of the first two resonances were

in Fig. 6. The data span+th§(102() resonance and continue get to those of the(770 and w(782). Following the proce-
to W=1.8 GeV whereR,/ is less than 0.01. The normal- dure of Ref.[22], the amplitude ratios8,/A; and B,/A,
ization uncertainty on the CMD measurements is 6%. Thavere constrained to the measured values and the phases were
other groups do not report normalization uncertainties. Earlyget to zero. The mass, width, and amplitude of ¢hevere
|F_|? measurements suffered from the same problem of unallowed to vary. The masses, widths, amplitudes, and phases
reported normalization uncertainties. A bit of historical re-of two larger mass resonances were free parametersyThe
search shows that the normalization uncertainties were ustitnction was constructed with the assumptions that all nor-
ally not included in the point-to-point errors. We therefore malizations uncertainties are 100% correlatede normal-
arbitrarily assign a 20% systematic normalization uncertaintyzation parametérand the normalization uncertainties are
to all unreported cases. The data and total uncertainties atmcorrelated(five normalization parametérsThe |F|? fit
shown in Fig. 6. was the only instance for which the different assumptions
The data are fit to a function which is a sum of a Breit-about the correlation of the normalizations yielded notice-
Wigner resonance with an energy-dependent width forfthe ably different fit results. In this case, the assumption that the
and four resonances: normalizations are uncorrelatéflve normalization param-
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eters3 produced a substantially better fit to the data Js

(X*/Npe=48.9/44 than did the assumption that they are cor- INo(s)= —=T'ie(M), (29
related(x°Npe="73.6/49. The better fit is plotted as a solid m
line in Fig. 6. The fit preferred a resonance of width 0.17

GeV at mass 1.35 GeV and a second resonance of width O. her_e m is the mass Of. the resonance ﬁﬁfét(m) is the
GeV at mass 1.68 GeV. nominal value of the width. Ally and Y final states are

Jincluded in the resonance contributidr¢(s) =I";(s)]. The
nergy-dependent total width of tl1020 is given by Eq.
25). The widthT;¢(s) for the ¢ is adjusted to exclude the

KK~ final state (discussed in Sec. IID The energy-

dependent total width of the(782) is given by the following

expression which assumes that all final states 7arer

770')/, or w7 %

To evaluate the sensitivity of the result to the parametri
zation, a second fit was performed with the amplitudes an
phases of the andw allowed to vary as free parameters. No
appreciable differences from the first pair of fits were ob-
served. Evaluating Eq5) from s=4m7. to s=3.24 GeV,
we find theK"K™ contribution toAay,,{ M 2) to be

Aol K (M2)=0.000 356-0.000 032exph

Vs B(S) (1-mi/s)®
10 l 77
+0.000 03Qparam (26) Fols) _P“" m—w{o.oz B3 (m?) +0.08 (1-m2/m?)3
where the parametrization uncertainty reflects the difference ©
obtained frgm the two/? definitions. Tﬁ/e two techniques for + 0'89333”(3)] ' (30
the estimation of the experimental uncertaifdyscussed in
Sec. Il A) yield consistent results in this case. wherem,, is the mass of the, I' is the nominal valug9] of
the o width, B.(S)= \/1—4mi/s is the velocity of the
E. The resonances charged pion, an& §,.(s) is a function which is normalized

. _ 2 . .
The resonances comprise the remaining portion of the tol® Unity ats=mj, and is proportional to the decay rate for
tal e*e~ cross section. The total cross section for each reso®?—37 assuming a constant matrix elemefphase-space
nance can be represented by a relativistic Breit-Wigner fornﬁe'ght'”@- The widthI'ys(s) for the w is adjusted to exclude

with an energy-dependent total widtB1]: t 'E 1: «~ final states which are included in thg .| con-
ribution.

127 \/51“ e 1<(S) The masses and widths used to evaluate(Eg).are taken
Tred )= - (s—mD)2+sT2(s)’ (27)  from the 1994 Particle Data Groy@]. The PDG does not
tot apply a consistent set of definitions to the parameters of all
resonances. The electronic widths of thandY families are
defined to be the physical ones and are derived from fits

) : . erformed by the PDG itself. The electronic widths of the
energy-dependent width corresponding to the final state .
- ; . L and ¢ resonances are determined from measurements of the
considered in the analysis. Note that the electronic widths ar:

physical widths(not corrected for vacuum polarization ef- fotal widihs and electronic branching fractioBg,. In both

; N . __cases, the total widths are the correct physical ones. The
fects. In order to incorporate the Breit-Wigner cross schonavera e value oB, () is dominated by peak cross section
described by Eq(27) into Eq. (5), it must be scaled to the 9 ee\® yp

electromagnetic point cross sectionw(s)=47ra2(s)/3s, measurements of the CM[32] and ND[53] c_olla_borations
yielding which are correcteaqurtly) for \gacuum polarization effgcts
and lead to a determination df.(w). The case of theb is
2ot (= Tred S) less clear. Of the three most precise measuremelﬁge(}fa),
Aal®(q?)= LZ_ pJ ds———,—, (28 those of the DM154] and OLYA[55] collaborations are not
Am m2 a“(s)[q°—s] corrected for vacuum polarization effects and lead to a de-
termination ofI'.(¢). The most precise measurement is a
which has the slightly unpleasant feature that it incorporategater OLYA result which has about the same precision as the
a(s), the quantity that we are attempting to evaluate, into thecombination of the two preceding results but is reported in
integrand. To avoid this problem, we use the,{S) pa-  an unpublished preprint which is no longer available for in-
rametrization given in Ref4] to generate a first-order esti- spection. The result mayor may noj} be corrected for
mate ofa(s) for use in Eq.(28). Note that Eq(28) is often  vacuum polarization effects We make the assumption that the
written with a(s) replaced bye,. This is correct only if the  PDG value ofl.((¢) is the physical one. This assumption
cross sectiono,s is replaced by the tree-level one, cannot be wrong by more than one half of the total vacuum
0% 0§ o?(s). The factorad/a?(s) is often absorbed into  polarization correctior{1.6% which we include in the un-
Eq. (27) by defining the tree-level electronic width certainty onlyq(¢).
'S =T, .3 a’(m?). The leptonic widths are corrected for incomplete vacuum
Equation (28) is evaluated for thew(782), (1020, polarization correction to the normalizing cross sectitwes
yfamily, and Y-family resonances by performing a Simp- Appendix before Eq.(28) is evaluated. The results are listed
son’s rule integration over the intervan—60'; to  in Table | along with those derived in Secs. Il C and Il D.
m-+ 60l (the lower limit of thew integration is the thresh- The experimental uncertainties are evaluated by assuming
old for 37 decay. The energy-dependent total widths of the that the uncertainties on the masses, total widths, electronic
¢randY resonances are assumed to scale/és widths, and relevant branching ratios are uncorrelated. The

wherem, I'.., and Ty, are the mass, electronic width, and
energy-dependent total width of the resonance,lagds the
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TABLE I. Summary of the various contributions tow,q.

Contribution W region (GeV) Acpad M 2) SAapgexpt SAap,gparam
Continuum 1.0% 0.022 106 0.000 366 0.000 196
at 0.280-2.0 0.003 240 0.000 057 0.000 169
KYK™ 0.987-1.8 0.000 356 0.000 032 0.000 030
Resonance »® 0.000 307 0.000 010 0.000 003
" ¢° 0.000 296 0.000 012 0.000 004
" i (6 statep 0.001 101 0.000 059 0.000 023
" Y (6 stateg 0.000 118 0.000 005 0.000 003
Total 0.02752 0.00038 0.00026

@Does not includer ™ 7~ final states.
bDoes not includeK " K~ final states.

parametrization uncertainties are evaluated by repeating theveraged data points. Only the narrow resonances are treated
calculation with a constant-width, constant-mass Breit-parametrically. EJ have published their composite compila-
Wigner cross section. tion of the functionr,,,{ W) in a series of figures and include
a detailed breakdown of the contributions of various energy
E. Einal result intervals toAaha((M i). Since the EJ compilation excludes
narrow resonances, we construct the funciyyy, to include

The various contributions tAa,,d{ M ) are summarized the same final states:

and summed in Table I. The resulting value is
Raund W) =Re(W) + 5[F (W)[287+ 2|Fi(W)I 2B

A Sarpad M2) =0.027 52=0.000 46, 31)
5
Including the leptonic contribution, we find (M 2) to be + 2 Tred W), (33
i=1
a~1(M3)=128.96-0.06, (32)

o i where the sum includes the(782, $(1020, (4040,
where the uncertainties on the lepton masses contribute Neg4160, andy(4415 resonances. A comparison of thBir
ligibly to the total uncertainty. This result differs by one of compila,tion(REaJd) with Ry,in the regionw=1—50 Geva}s
its standard deviations from th@ommon result given in  ghown in Figs. 7 and 8. THREZ, compilation is shown as the
Refs.[7] and[8] and it differs by 0.3 standard deviations gjig curve in both figures. The dashed curve in Fig. 7 shows
from the result given in Ref6]. However, since the differ- _ phetore the inclusion of the Crystal Ball measurement at
ent analyses make use of many of the same inputs, the resuf57 cev. The dashed curve in Fig. 8 shoRg,, after the
are not independent measurementa\ef,{M 7) but reflect  inciusion of the new data point. The peak of tihebetween

differences in assumptions and technique. 1.00 GeV and 1.04 GeV is suppressed in both figures.
_ _ _ A comparison of Figs. 7 and 8 shows the effect of the
G. Detailed comparison with Ref.[7] Crystal Ball measurement quite clearly. Before the point is

The result of Eidelman and JegerlehtEd) [7] is based added to the analysis, there is reasonable agreement between

almost entirely upon the trapezoidal integration of locallythe functionsRe,{W)RE{W) in the region 1.0-1.8 GeV.

P L1 I I ] 2 Lo I 1 i
6 10 20 50 6 10 20 50
W (GeV) W (GeV)
FIG. 7. A comparison of our totdR;,,4 function (dashed curve FIG. 8. A comparison of our totdR,,,4 function (dashed curje

before the inclusion of the Crystal Ball measurement at 3.67 Ge\after the inclusion of the Crystal Ball measurements at 3.67 GeV
with that from Ref[7]. with that from Ref[7].
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TABLE II. Comparison of the various contributions to more accurate approximation than the use of the factor fa-
AanadM %) with those published in Ref7] (in units of lQA)-_The vored by the authors of Reff7]. A comparison of our result
entries in parentheses are from Rf] before the application of with the bracketed quantitie®r the means of the pairs of

corrections for incomplete vacuum polarization correction. quantitie3 is probably the more relevant one. Note that our
value for the contribution ofr* 7~ final states in the interval

Final state W interval (GeV)  This work Ref.[7] W=0.28-0.81 GeV of 24.11in units of 10 %) is somewhat

p 0.28-0.81 2411 26.0826.23 smaller than the vaIL_Je of 26.08 given in REf]. The differ_-

w 0.42-0.81 287 2.932.96 ence may be due |9 part to the preference of our fit for

b 1.00-1.04 503 5.085.15 smaller values ofF _|* than the central values of the OLYA

I 11.01 11.34(11.93 measurements betwgen_O.G GeV and 1.0 G&¢ Fig[5]). .

Y 118 1.18(1.29) Thedqp;;r?5|te blehawcf)rK!s otk)fstervsidiwherli 'gf fu&;tg]mctlon
used in the analysis of Kinoshita, Nizic, an amiet] is

All'hadrons 0.81-1.40 1355 13.833.99 fit to the data. Tr)(e large-energy tail of this function decreases

Al hadrons 1.40-3.10 30.42 21.628.23 with energy more steeply than do the data points. A fit to this

Al hadrons 3.10-3.60 5.62 5.85.98 function prefers larger values [ _|? than the central values

All hadrons 3.60-9.46 48.16 50.660.50  of the OLYA measurements between 0.6 GeV and 1.0 GeV

All'hadrons 9.46-40.0 90.67 93.07 yielding a contribution toAap,dM 2) of 25.39. Excluding

All hadrons 40.0< 42.64 42.82 the influence of the steeply falling tail by restricting the fit of

Total 275.2 280.4(282.1) the KNO function to the regioklV<<1.0 GeV relaxes some of

the bias and vyields a\a,,{M32) contribution of 24.76.

These differences are reflected in the large size of the param-
EJ ; etrization uncertainty given in Table I.

Between 1.8 GeV and 3.6 GeRygqis generally larger than - =y B e ot the agreement of our analysis with one

Rsum- After the introduction of the Crystal Ball measure- based al t entirel t dal int ton i hat
ment, theyy” measurements are renormalized to larger val- ased aimost entirély on trapeézoidal integration 1S somewna

- : than a comparison of the finAky,,{M 2) results
ues and the fitting function generally exceeds Rjg, com- poorer th . had 1% Z
pilation throughout the region. would indicate. Part of the discrepancy is caused by the loss

The agreement betweeR.,,, and REJ, in the charm of shape information from multi-point measurements inher-

threshold region between 3.6 GeV and 5.0 GeV is also quitgm in the averagin_g procedure which treats the_individual_
poor. TheR.. function follows the shape of the DASP fit to measurements as independent. An gssomated S|d<_a effect is
the continusljnr;] under the{4040, {4160, ¢(4415 reso- that sparse, newer measurements influence the integrated
nances and includes the resonances explicitly for comparf—uncuon only over an "?t.ef"a' between_ neighboring olde_r
son. The size of the continuum portion is determined at 3. easurements. The adqmqn of the precise Crystal Ball point
GeV and 5.0 GeV by the most precise data in those region hich f|xe§ the normallza_mon Rag over a large region in
(Crystal Ball data in both casggielding a continuous result. our analysis to_ a trapezoidal analysis WOUI‘.j affect on_ly a
The REJ, compilation generally exceeds, . throughout the very small region. Conversely, the trapezmdql analysis re-
region reflecting the fact that DASP and PLUTO generallyma'ns influenced by older measurements until they are re-
measured large values 8,.4in the region. The more pre- placed by newer measurements at the same or very nearby

cise Crystal Ball measurements begin at 5.0 GeV and puﬁnergies. The_ effect of the apparent structure in the charm
the RE), function to smaller values, creating an apparenthreShOIOI region or the_ Iargé_zhad values f_rom the PEP-
structure in the 4.4-5.0 GeV region. The apparent structur ETRA region will persist until replace@b.r influenced by
is not seen by any of the experiments that have measured ghigwer measurements at the same energies. The use of a con-
shape and magnitude &, ,{W) in this region and is en- tinuous fitting function in our'anaIyIS|s allows us to interpo-
tirely a consequence of ignoring the shape information inherl-ate. betweﬁn sparse but precise points. For these_ reasons, we
ent in the datda more correct procedure would renormalizedo indeed _belle_ve more |n”the integration of our fits than in
the data sets so that the integrated function was smooth arﬁ € trapezoidal integration” as noted by the authors of Ref.
continuous in the 5-5.2 GeV regipn 1

In the regionW=5-10 GeV, the agreement of tte,,,
and RE), functions is somewhat better except for some
wiggles inRE), at the larger energies. Abovethreshold and
below W=40 GeV (where the authors of Ref7] begin to We have reevaluated the hadronic part of the electromag-
use perturbative QCD the RE), compilation is somewhat netic vacuum expectation value using the standard dispersion
larger tharRg,, reflecting the fact that the PEP-PETRA mea- integral approach that utilizes the hadronic cross section
surements oR;,q are somewhat larger than those predictedmeasured ire" e~ experiments as input. Previous analyses
by perturbative QCD with currently favored values of are based upon point-by-point trapezoidal integration which
ay(M2). does not treat experimental errors in an optimal way. We use

The differences shown qualitatively in Fig. 8 are quanti-a technique that weights the experimental inputs by their
fied in Table Il using the detailed breakdown scheme prestated uncertainties, includes correlations, and incorporates
sented in Ref[7]. The entries in parentheses are from Ref.some refinements. We find the five-flavor hadronic contribu-
[7] before the application of corrections for incomplete tion to the fractional change in the electromagnetic coupling
vacuum polarization correction. In the Appendix, we demon-constants ag®=M 2, Aa(M 2), to be 0.027 520.000 46,
strate that the nonapplication of this correction is generally avhich leads to a value of the electromagnetic coupling con-

IIl. CONCLUSIONS
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stant,a (M 2)=128.96-0.06. to all measurements @4, |F |2 and|F¢|*> below theJy

The current generation af-pole asymmetry measure- and to the Mark | measurements below charm threshold.
ments have already determined the effective weak mixing Unfortunately, the integrated luminosity for each mea-
angle sif 08\7 to a precision of+0.000 28[56]. Future mea- surement must be determined from the measurement of an
surements may improve the determination to #@000 20 additional physical process. Thus, experiments rarely mea-
level. This is comparable to the theoretical uncertainty ofsure cross sections directly but nearly always meatuge
+0.000 16 which follows from the+0.06 uncertainty on ratios of cross sectiondn this case, the measured value of
a Y (M2). Itis clear that improved understanding@fM %)  Rnaq(0r [F|?8%4) is determined from the ratio of the number
is desirable and it is also cledirom Fig. 4 that improved of observed hadronic evenit,,qto the number of observed
understanding requires improved data in tNe=1-5 GeV  normalizing eventdN, ;m:
region. Additionally, the differences with the trapezoidal ap-
proach noted in Sec. Il G stem from questions dealing with R _ Nhad 1+ rc) TnomlS)
the optimal use of rather poor quality data. Improved data had™ " N o 0'2,“(5) ’
will tend to make these issues less important. Among the
active experimental programs of the world, only the BESwhere 8z incorporates all radiative corrections to the had-
collaboration at the Beijing Electron Positron Collider is po-ronic yield, ¢ is the efficiency-acceptance product for had-
sitioned to make improved measurementsRgf, in the re-  ronic events, and,,, is the physical cross section for the
gion W=2-5 GeV. They are urged to include them in their normalizing eventsgincluding all radiative effecsintegrated
long term planning. over the acceptance used for the luminosity measurement.
We note that the incomplete application of vacuum polariza-
tion corrections is a problem that applies to both the hadronic
and normalizing cross sections. In this case, the actual cor-
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Fields of the American Physical Society. The author would @i (S) onornd(S)  @gl1+2Aa((S)] oo S)
like to thank Michael Peskin for his useful discussions, tech! ¢~ a?(S) opoml(S) a@?(s) homiS)
nical advice, and comments on this manuscript. The author
would also like to thank Tatsu Takeuchi and Bill Lockman where ¢(s) and o'lnorn{S) incorporate leptonic vacuum po-
for pointing out the existence of Refd.0] and[30], respec- I|arization corrections only. The difference between the two
tively. This work was supported by Department of Energyright-hand terms involves thénumerically insignificant
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Contract No. DE-AC03-76SF00515. question of whether the original vacuum polarization correc-
tions were performed to all orders or to first order only.
APPENDIX: VACUUM POLARIZATION CORRECTIONS All of the early measurements s, |F»|°, and|F|* are
normalized to the number of lepton pairs observed in some
1. Corrections t0 Rpaq portion of each apparatus. Most of the experiments did not
The quantityRy,,q is the ratio ofs-channel cross sections have(or did not usg small-angle Bhabha scattering luminos-
and can be written as follows, ity monitors but relied instead upon large-angle lepton pairs
observed in the central region of each detector. The combi-
0hadS)  ThadS) nation of the leptonic final states and geometric acceptance
Rhad= = (A1) used by the major experiments is summarized in Table Ill.

=—3 ,
o,.(8) o, (s , ; . ;
me wulS) Several experiments use muon pairs to normalize their re-

sults. Since the vacuum polarization corrections-thannel

where the tree-level cross sections) are related to the processes can be factorizésee Eq.(A1)], the correction

physical onegalready corrected for initial state radiatidoy factor given by Eq(A4) is identically 1. The remaining ex-

t_he simple .expre55|onr.(s)—a(s)c_x0/a (s). Since rad_|a periments use a combination ef e~ and u* u~ events or
tive corrections calculations combine external photonic cor- +

. d virtual i it traiahtf 4 e’ e events alone to normalize their results. The electron-
rections and virtua corroec lons, 1t1s more straigntiorwar Orpair final states are produced by the suns-oéndt-channel
experiments to extraaty,{s) from their data than it is to

5 X ) . subprocesses. The vacuum polarization corrections to the
extractoy,{s). Note thato, ,(s) is a simple numerical con-

lack =2 . . dominant t-channel contributions are proportional to
stant which is applied to the measured cross section aftecrvz(_t) Since thet-channel contribution dominates the
radiative corrections, . Bhabha cross section, the correction factqris given

In Ref.[7], Eidelman and Jegerlehner point out that many, o iqhl ;
. > 2 ghly by the expression

of the earlier measurements Bf,,q, |F,|°, and|Fy|* were
corrected for leptonic vacuum polarization effects but were a?(—t) alz(s)
not corrected for hadronic vacuum polarization effects. To fe~—— 75—
rectify this problem, they make the assumption that indi- a’(s) ai(-1)
vidual experiments directly measure hadronic cross sectio
and apply the factor

(A5)

"Phe key point in this discussion is that the dependence of
a(g?) upon the scalg? is logarithmic and the magnitude of
5 —t at the large angles used by most of the experiments is
o i _ — e —
rEJ:[1+2Aa|(S)] 0 (A2) comparable tos (typically, —t/s=0.2—0.4). For this—t

a?(s) range, the first ratio in EqLA5) is typically a few percent
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TABLE lll. Summary of the incomplete vacuum polarization correction factoand that of Ref[7]
EJ

re.

Expt. Meas. Norm. |cog )| W (GeV) re r&
NA7 [12] IF .2 o —0.875-0.997 0.320 1.0000  0.9982
0.422 1.0000  0.9972
OLYA[11,19 IF.% |Fkl? eetuu <0.71 0.400 0.9984  0.9974
1.397 0.9952  0.9893
CMD [11,20 IF.12 [Fk? eetuu <0.60 0.360 0.9988  0.9978
0.820 0.9970  0.9934
TOF [13] IF .2 eetuu <0.24 0.400 0.9990  0.9974
0.460 0.9988  0.9968
w [16] IF .2 ee <0.61 1.250 0.9958  0.9902
1.520 0.9955  0.9886
MEA [18] IF.|% |Fkl? ee <0.77 1.6 0.9941  0.9826
m 1.43 1.0000  0.9838
DM1 [15,2]] IF.|2 |Fgl? ee <0.50 0.480 0.9983  0.9966
2.060 0.9960  0.9860
DM2 [17,22 IF.I2, |Fkl? L <0.87 1.350 1.0000  0.9896
2.400 1.0000  0.9848
yy2 [25] Rhad ee <0.64 1.42 0.9933  0.9839
3.09 0.9935  0.9757
Mark | [27] Rhad ee <0.60 2.60 0.9936  0.9772
3.65 0.9958  0.9756
DASP[28] Rhad ee <0.7P 3.6 0.9946  1.0000
PLUTO [29] Rhad ee 0.9816-0.9977 3.6 0.9756  1.0000
CMD [52] (o) eetuu <0.60 0.782 0.9971  0.9904
ND [53] ' (w) ee <0.65 0.782 0.9942  0.9904

4nterval in co9.
byUsed small-angle™ e~ events normalized to this large angle region.

less than unity and the second ratio is a few percent largghe authors of Ref{7]. The EJ analysis did not correct the

than unity. The net correction is therefore quite small. Ahadronic continuum measurements of the DASP and PLUTO
complete calculation of the correction factor fiQr requires  collaborations at charm threshold although it appears that
that all luminosity event selection criteria be incorporatedneither group applied hadronic vacuum polarization correc-
into complete calculations af,m and oo, (incorporating  tions[57]. The normalization DASP measurements were de-
all radiative corrections Rather than undertake such an ar-termined from the total number of large-angle Bhabha scat-
duous procedure, we estimate the size of the correction frofering events and are subject to a small correction. The
a simplified calculation which accounts for vacuum polariza-p_LUTO experiment normalized its measurements with a
tion effects and approximate angular acceptance. The estimal-angle luminosity monitor which sampled a region of

mate uses the low energy parametrizatiol\af,qfound in - gma|| —t The cancellation of the vacuum polarization cor-

Ref. [4]._The results o_f this estimate are listed in Table Il \ottions is correspondingly smaller and the correction is
along with the correction advocated by the authors of Ref arger

[7]. Note that the corrections to the pseudoscalar form factors
are estimated assuming that the original leptonic vacuum po-
larization corrections included electron and muon contribu-
tions. The corrections to th&;,,qy measurements are esti-
mated assuming that the original corrections included only The Breit-Wigner cross section used in Sec. Il E to calcu-
the electron contribution. late the resonant contribution tAa,,{M 2) requires the
The reader should note several things. The corrections ttnass, total width, and electronic width of each resonance as
the R,q, |F |2 and|Fy|?> measurements are always a factorinput. The electronic width§, are defined to be physical
of seven or more smaller than systematic normalization unguantities(not corrected for vacuum polarization effecand
certainties associated with the measurements. In all cases, tHigfer from the tree-level quantitieE 2, that have been used
correction applied by the authors of RET], overestimates often in the past. The electronic widths for narrow and broad
the true size of the correction. This overestimate is smaltesonances are determined by different techniques but are
where the correction is small but becomes significant a@lways proportional to the peak hadronic cross section of the
larger energies where the Eidelman-Jegerlehner correctioiesonancémeasured ire" e~ collisions or to the measured
exceeds 1%. In this region, the nonapplication of the correcenergy-integral of the hadronic cross sectitaken over the
tion (r.=1.0) is a better approximation than the one used byesonance

2. Corrections to resonance parameters
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Npad 1+ 5§c) TABLE IV. Summary of the incomplete vacuum polarization
Mo ———0nom(9S), (AB) correction factorg, .
Nnorme
Expt. Res. Norm. |coq )| dc

where all quantities are defined in E@6) except for S,
which accounts for radiative corrections to the hadronic yield®M?1 [54] $(1020  ee <0.50 1.0071
but excludes vacuum polarization corrections. The inclusiorPLYA [55] $(1020 ee <0.71 1.0052
of vacuum polarization corrections intégc (pe— Srd) ~ Mark 158 J/¢(1S) ~ ee  0.9997-0.9999  1.0000
yields a measurement of the tree-level quariif. yy2 [59] JY(1S) ee  0.9945-0.9986  1.0002

As in the case of the cross section and form factor meaMEA [60] Il p(1S) ee <0.77 1.0158
surements, many of the older measurements of the electronRASP[61] J/(1S) ee <0.71 1.0169
widths were not corrected for hadronic vacuum polarizatiorMark 1 [62]  J/y/(2S) ee <0.69 1.0204
effects. It is clear that measurementsIbZe must be cor- DASP[61] Jiy(29) ee <0.71 1.0189

rected by the same correction factqrdefined in Eq.(37).
However, for measurements df.., vacuum polarization
corrections to the hadronic yield are not applied and the apyonic widths. The weighted average of tiecorrection fac-
propriate (_:orrection factog, pertains to the normalizing g5 is applied to the PDG value Bf(¢). The corrections to
cross section only: the y-family measurements are quite small if the original
measurement was normalized to small-angle Bhabha scatter-

:"norm(s) (A7) ing and can be as large as 2% if the large angle cross section
=T o N .
TnomlS) was used as a normalization. Unfortunately, since the quoted

electronic widths are derived from global fits, it is difficult to
As was discussed in Sec. Il E, the Review of Particleestimate the effect on the final value Bf.. Therefore, we
Properties lists physical widths for the andY-family reso-  do not apply any corrections to the electronic widths of the
nances as derived from their own fitting procedure. The elecy-family but we do inflate the uncertainties dh, by the
tronic width of the¢(1020 is either the physical value or an gjze of the largest correction.
average of the tree-level and physical values and is assumed ypjike the other resonances, the electronic width of the
to be the physical one. The oldest measurements of thesg7g) jisted by the Particle Data Group is the tree-level one.

guantities were corrgcted for ellect(on vacuum p_qlarizatiorwe therefore apply the weighted average of the correction
eﬁepts only and require the appll|cat|on of the.addm_onal Cor'factorsrc listed in Table Il for the dominant CMD and ND
rection factorg, . Estimates of this factor are listed in Table measurements
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