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We discuss possible symmetries of effective theories describing spinless and spin-1 bosons, mainly to
concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak
sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting
bosons may possess a discrete symmetry imposing degeneracy of the two sets of bosons~degenerate BESS
model!. In such a case its effects at low energies become almost invisible and the model easily passes all low
energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling,
contrary to models with only vectors. For large mass of the degenerate spin-one bosons the model becomes
identical at the classical level to the standard model taken in the limit of infinite Higgs boson mass. For these
reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations,
and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is
conceivable that degenerate BESS has low mass spin-one states and gives quite visible signals at existing or
forthcoming accelerators.

PACS number~s!: 12.60.Cn, 11.15.Ex
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I. INTRODUCTION

In a first part of this work we shall give a general discu
sion of possible properties of low-energy effective theori
which describe light pseudoscalar mesons, vector and a
vector mesons, such as, for instance, the bosonic secto
low-energy QCD. Indeed QCD itself may be a testin
ground for one particular specification among the low ener
effective theories to be discussed. However our main inter
here will not be QCD, but rather an alternative possib
specification of the low energy theory which may be releva
for an effective description of the phenomenology arisin
from schemes of strong electroweak breaking.

The bulk of this work will be devoted to the formulation
of such a highly symmetric form of low energy effectiv
theory and to the derivation of the very remarkable ele
troweak phenomenology that it would originate. In a simp
model one would think of Goldstone bosons absorbed to g
masses toW andZ and, in addition, vector and axial vecto
resonances as the most visible manifestations at low ene
of the strong interacting sector.

We shall callG the symmetry group of the theory, spon
taneously broken, of which the pseudoscalars are the Go
stone bosons. The vector and axial vector mesons will tra
form under the unbroken subgroupH of G. In the sense of
the method used by Callan, Coleman, Wess, and Zum
~CCWZ! @1# the vector and axial vector mesons can b
treated as matter fields.
53-2821/96/53~9!/5201~21!/$10.00
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It will be a formal expedient to consider the new vecto
and axial vector fields as gauge bosons of a local symme
H8, which is spontaneously broken. The local symmetr
H8 is usually referred to as hidden symmetry@2,3#. The spin-
one bosons acquire their mass, in this description, by abso
tion of the would-be Goldstone bosons related to the spon
neous breaking ofH8. Indeed the peculiar feature of this
approach is the explicit presence of these modes. The sy
metry group gets enlarged toG85G^H8, whereG is global
andH8 local. The diagonal subgroup ofH^H8 (H8$H),
formally isomorphic toH, is calledHD and it is the invari-
ance group of the vacuum.

We shall mainly consider the caseG5SU(2)L
^ SU(2)R , H85SU(2)L^SU(2)R , and HD5SU(2)V ,
whereHD is the diagonal SU(2) subgroup ofG8. The group
G8 breaks down spontaneously toHD and gives rise to nine
Goldstone bosons. Of these, six are absorbed by the vec
and axial vector bosons, which are triplets of SU(2)V . The
three Goldstone bosons remaining in the spectrum are ma
less, at least as long as a part ofG is not promoted to a local
group. This situation is discussed in@2# for QCD and in@4#
in the context of dynamical electroweak symmetry breaking

The detailed study of the symmetries of the effectiv
theory shows however that in special cases the resulti
symmetry can be larger than the one requested by the co
struction. For particular choices of the parameters, a max
mal symmetry@SU(2)^SU(2)#3 can be realized for the low
5201 © 1996 The American Physical Society
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5202 53R. CASALBUONI et al.
energy effective Lagrangian of the pseudoscalar, vector,
axial vector bosons. Two choices are possible. One can
seen as the natural generalization of the vector symmetry
Georgi @5# for the case when axial vector mesons are al
included in addition to the vector mesons of the vector sy
metry; this choice has been considered in Ref.@6#.

The second choice is the one on which we shall foc
here. In this case the subgroup SU(2)L^U(1)Y,G
5SU(2)L^ SU(2)R is promoted to the local Weinberg-
Salam group. It may be useful in relation to schemes
strong electroweak breaking. In fact it has the interesti
feature of allowing for a low energy strong electroweak res
nant sector while satisfying at the same time the severe c
straints from low energy experiments, particularly from th
CERN e1e2 collider LEP or the SLAC Linear Collider
~SLC!. As such it offers possibilities of experimental tes
even with future or existing machines of relatively low en
ergy. The phenomenological implications will be a substa
tial part of our discussion below.

The type of realization of the maximal symmetr
@SU(2)^SU(2)#3 on which we shall focus in this work au-
tomatically implies degenerate vector and axial vector m
sons which have the property of not coupling to the pseud
scalars. The model, after introducing the gauge couplings
the electroweak vector bosons, will be called degener
BESS ~BESS stands for breaking electroweak symmet
strongly!. We shall study in detail its phenomenology. W
stress immediately its main property and what makes it
attractive: in degenerate BESS, also when extended t
larger initial symmetry@for instance, SU(8) in place of
SU~2!#, one generally derives that all deviations in the lo
energy parameters from their standard model~SM! values
are strongly suppressed. This would make it possible tha
strong electroweak sector at relatively low energies exi
within the precision of electroweak tests, such that it may
accessible with existing accelerators~Fermilab Tevatron! or
with accelerators in construction or projected for the ne
future. In fact one can show that the Lagrangian of degen
ate BESS becomes identical to that of the standard mo
~except for the Higgs sector! for sufficiently large mass of
the degenerate vector and axial vector mesons. In ot
words, different form ordinary BESS@7#, where such a high
mass decoupling is not satisfied, the decoupling occurs
degenerate BESS.

The decoupling theorem valid for degenerate BESS
quires an accurate study of the contributions of momentu
dependent terms to virtual effects of the heavy particles. O
can then evaluate such virtual effects for LEP and Tevatr
and subsequently examine what modification of the triline
gauge couplings may be visible at higher energye1e2 col-
liders. The discussion requires careful redefinition of t
physical constants in terms of the parameters of the effec
Lagrangian. As well known, in the low energy limits one ca
parameterize the modifications due to the heavy sector
terms of three independent parameters (DrW , Dk, Dr, or
equivalentlye1 , e2 , e3). Radiative corrections have also t
be taken into account. The result of this analysis, that
shall present first, shows that in degenerate BESS relativ
light resonances are indeed compatible with the electrowe
data, as given by LEP and Tevatron.

Besides studying the virtual effects of the heavy res
and
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nances we shall also discuss their direct production. To th
aim full couplings to fermions and the trilinear couplings
among the physical bosons are needed; physical quantit
must be carefully identified by renormalizing the occurring
expressions and choosing the electric charge, theZ mass, and
the Fermi constant as physical inputs. Our phenomenologic
applications include discussion of the properties of the hea
resonances~masses, partial widths! and studies of their ef-
fects at Tevatron, ate1e2 colliders, and at hadron colliders.
The Tevatron limits onW8 can be used to limit the parameter
space of degenerate BESS. A feature of degenerate BESS
compared to BESS with only vector resonances, comes fro
the absence of direct coupling of the new resonances to t
longitudinal weak gauge bosons. This implies larger width
into fermion pairs as compared to widths into pairs of wea
gauge bosons. Comparison of the limits one can get from t
Collider Detector at Fermilab~CDF! to those from LEP
shows that CDF is more efficient in limiting low resonance
masses while LEP is more efficient for larger masses.

The sensitivity of degenerate BESS at LEP2 and high
energy linear colliders will be discussed by comparing cros
sections and asymmetries in the fermionic pair channels a
WWchannel between the model and SM. For LEP2 the ge
eral conclusion will be that the bounds on the model woul
not be much stronger that those from LEP. Substantial im
provements are expected from a 500 GeVe1e2 collider for
20 fb21, even without beam polarization. TheWWfinal state
does not contribute in an important way to the attainab
bounds which come essentially from the fermion channe
alone~this is a characteristics of degenerate BESS, as alrea
said!. Hadron colliders would be complementary toe1e2

colliders and hopefully will allow for direct study of the new
resonant states. For instance, a charged resonance with m
of 500 GeV could give at the CERN Large Hadron Collide
~LHC! a spectacular signal. Higher masses up to 1.5 Te
would still give significant signals. Degenerate BESS woul
thus be comparatively much more evident than ordina
BESS, and probably than any other strong electrowea
model not sharing its peculiar symmetry properties.

In Sec. II we recall briefly the effective Lagrangian for-
malism we employ in describing vector and axial vecto
resonances. In Sec. III we introduce the Lagrangian descr
ing our model with extended symmetry of degenerate vect
and axial vector resonances. In Secs. IV–VII we consider th
low energy limit of the model, integrating out the new vecto
and axial vector bosons, both considering the leading ord
and the next-to-leading order. Implication for the LEP ob
servables are derived as well as other virtual effects of th
heavy particles that may be relevant at low energy. In Sec
VIII–X we consider the possibility of direct production of
the heavy resonances, so the predictions of the complete
grangian of the theory are derived, such as mass formu
and eigenstates of the new particles, fermionic, and triline
couplings. In Sec. XI the physical quantities of the model ar
identified with the usual renormalization procedures. In Se
XII width formulas of relevance in the study of the model are
derived. In Secs. XIII–XV we discuss the phenomenologica
implications of the model at present and future high energ
accelerators.
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II. EXTENDED VECTOR-AXIAL SYMMETRY

Let us consider the following group structure
G5SU(2)L^SU(2)R , H85SU(2)L^SU(2)R and
HD5SU(2)V , as already stated in the Introduction. The nin
Goldstone bosons resulting from the spontaneous breakin
G85G^H8 to HD , can be described by three independe
SU(2) elements:L, R andM , transforming with respect to
G andH8 as

L85gLLhL , R85gRRhR , M 85hR
†MhL ~1!

with gL,RPG andhL,RPH8. Moreover we shall require the
invariance under the discrete left-right transformation, d
noted byP:

P: L↔R, M↔M†, ~2!

which ensures that the low energy theory is parity conse
ing.

If we ignore the transformations of Eq.~1!, the largest
possible global symmetry of the low energy theory is give
by the requirement of maintaining for the transformed va
ablesL8, R8 andM 8, the character of SU(2) elements.

The maximal symmetry is given by the grou
Gmax5@SU(2)^SU(2)#3, consisting of three independen
SU(2)^SU(2) factors, acting on each of the three variabl
separately. It happens that, for specific choices of the para
eters of the theory, the symmetryG8 gets enlarged to
Gmax.

The most generalG8^P invariant Lagrangian is given by
@4#

LG52
v2

4
@a1I 11a2I 21a3I 31a4I 4# ~3!

plus the kinetic termsLkin . The termsI i ( i51, . . . ,4) are
given by

I 15tr@~V02V12V2!
2#,

I 25tr@~V01V2!
2#,

I 35tr@~V02V2!
2#,

I 45tr@V1
2# ~4!

and

V0
m5L†DmL,

V1
m5M†DmM ,

V2
m5M†~R†DmR!M . ~5!

The covariant derivatives are

DmL5]mL2LLm ,

DmR5]mR2RRm ,

DmM5]mM2MLm1RmM . ~6!

The kinetic term is
:
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Lkin5
1

g92
tr@Fmn~L !#21

1

g92
tr@Fmn~R!#2, ~7!

whereg9 is the gauge coupling constant for the gauge fields
Lm andRm ,

Fmn~L !5]mL n2]nLm1@Lm ,L n# ~8!

and the same definition holds forFmn(R). In Eq. ~3! v rep-
resents a physical scale related to the spontaneous symme
breaking of the theory, depending on the particular contex
under investigation.

The quantitiesVi
m( i50,1,2) are invariant under the global

symmetryG and covariant under the gauge groupH8:

~Vi
m!85hL

†Vi
mhL . ~9!

Using theVi
m one can build six independent quadratic invari-

ants, which reduce to the fourI i listed above, when parity
conservation is required.

For generic values of the parametersa1 ,a2 ,a3 ,a4 , the
LagrangianL is invariant underG8^P5G^H8^P. There
are however special choices which enhance the symmetr
group @6#.

The case of interest for the electroweak sector is provide
by the choice:a450, a25a3 . In order to discuss the sym-
metry properties it is useful to observe that the invariantI 1
can be rewritten as

I 152tr~]mU
†]mU ! ~10!

with

U5LM†R† ~11!

and the Lagrangian becomes

LG5
v2

4
$a1tr~]mU

†]mU !12a2@ tr~DmL
†DmL !

1tr~DmR
†DmR!#%. ~12!

Each of the three terms in the above expression is invarian
under an independent SU(2)^SU(2) group

U85vLUvR
† , L85gLLhL , R85gRRhR . ~13!

Moreover, whereas these transformations act globally on th
U fields, for the variablesL andR, an SU~2! subgroup is
local. The overall symmetry isGmax5@SU(2)^SU(2)#3,
with a partH8 realized as a gauge symmetry.

The field redefinition from the variablesL, R, andM to
L, R, andU has no effect on the physical content of the
theory.

The extra symmetry related to the independent transfor
mation over theU field can also be expressed in terms of the
original variableM . Indeed the Lagrangian of Eq.~3!, for
a450, a25a3 , possesses the additional invariance

L85L, R85R, M 85VRMVL
† , ~14!

with

VL5L†vLL, VR5R†vRR. ~15!
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5204 53R. CASALBUONI et al.
By expanding the Lagrangian in Eq.~3! in powers of the
Goldstone bosons one finds, as the lowest order contributio
the mass terms for the vector and axial vector mesons:

LG52
v2

4
@a2tr~Lm1Rm!21a2tr~Lm2Rm!2#1•••,

~16!

where the ellipsis stands for terms at least linear in the Gol
stone modes. The mixing betweenLm andRm is vanishing,
and the states are degenerate in mass. Therefore, in the
lowing we will not work with vector and axial vector com-
binations but with theLm andRm components. Moreover, as
it follows from Eq. ~12!, the longitudinal modes of theLm
andRm fields are entirely provided by the would-be Gold
stone bosons inL andR. This means that the pseudoscala
particles remaining as physical states in the low energy spe
trum are those associated toU. They in turn can provide the
longitudinal components to theW andZ particles, in an ef-
fective description of the electroweak breaking sector.

III. THE DEGENERATE BESS MODEL

We now consider the coupling of the model to the elec
troweak SU(2)L^U(1)Y,G5SU(2)L^SU(2)R gauge
fields via the minimal substitution

DmL→DmL1W̃ mL,

DmR→DmR1Ỹ mR,

DmM→DmM , ~17!

where

W̃ m5 iW̃m
a ta

2
, Ỹ m5 iỸm

t3

2
,

Lm5 iLm
a ta

2
, Rm5 iRm

a ta

2
, ~18!

with ta the Pauli matrices.
By introducing the canonical kinetic terms forWm

a and
Ym we get

L52
v2

4
@a1tr~W̃ m2Ỹ m!212a2tr~W̃ m2Lm!2

12a2tr~Ỹ m2Rm!2#1Lkin~W̃ ,Ỹ ,L ,R!, ~19!

Lkin~W̃ ,Ỹ ,L ,R!5
1

2g̃2
tr@Fmn~W̃ !Fmn~W̃ !#

1
1

2g̃82
tr@Fmn~Ỹ !Fmn~Ỹ !#

1
1

g92
tr@Fmn~L !Fmn~L !#

1
1

g92
tr@Fmn~R!Fmn~R!#. ~20!
n,

d-

fol-

-
r
c-

-

We have used tilded quantities to remember that, due
the effects of theL andR particles, they are not the physical
parameters and fields. In the next sections we will derive th
relations between the tilded quantities and the physical one

It is natural to think about the model we are considerin
as a perturbation around the SM picture. The SM relation
are obtained in the limitg9@g̃,g̃8. Actually, for a very large
g9, the kinetic terms for the fieldsLm andRm drop out, and
L reduces to the first term in Eq.~19!. This term reproduces
precisely the mass term for the ordinary gauge vector boso
in the SM, provided we identify the combinationv2a1 with
1/(A2GF), GF being the Fermi constant. Therefore in the
following we will assume@4#

a151. ~21!

Finally let us consider the fermions of the SM and denot
them bycL andcR . They couple toL andR via the mixing
with the standardW̃ and Ỹ :

L fermion5c̄Lig
mS ]m1W̃ m1

i

2
~B2L !ỸmDcL

1c̄Rig
mS ]m1Ỹ m1

i

2
~B2L !ỸmDcR , ~22!

whereB(L) is the baryon~lepton! number, and

c5S cu

cd
D . ~23!

In addition, we also expect direct couplings to the new vecto
bosons since they are allowed by the symmetries ofL @7#,
but, for simplicity, this possibility will not be considered
here. In order to have canonical kinetic terms for the gaug
fields one needs to perform the following rescaling
W̃m→g̃W̃m , Ỹm→g̃8Ỹm , Lm→g9Lm /A2, Rm→g9Rm /A2.
This transformation defines the couplings of the fermion
@see Eq. 22#.

IV. THE LOW ENERGY LIMIT

We want to study the effects of theL andR particles in
the low energy limit@8#. This can be done by eliminating the
L andR fields with the solution of their equations of motion
for ML,R→`. In fact, in this limit the kinetic terms of the
new resonances are negligible. Neglecting electromagne
corrections the common mass of the resonances is given
M2.a2(v

2/4)g92.
TheM→` limit can be taken in two different ways~we

consider v fixed to its experimental value!: by sending
g9→` with a2 fixed or by fixingg9 and sendinga2→`. In
the first case theL andR bosons trivially decouple. We will
now show that also in the second case we have decoupl
due to the extended symmetry@SU(2)^SU(2)#3.

Let us solve the equations of motion forL andR in this
limit. We get

Lm5W̃ m ,

Rm5Ỹ m , ~24!
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53 5205LOW ENERGY STRONG ELECTROWEAK SECTOR . . .
where the last equation means that only the third isosp
component ofR is different from zero. By substituting these
equations in the total Lagrangian@see Eqs.~19! and~22! for
the case of SU(2)# we get

Leff52
v2

4
tr~W̃ m2Ỹ m!21

1

2g̃2
tr@Fmn~W̃ !Fmn~W̃ !#

1
1

2g̃82
tr@Fmn~Ỹ !Fmn~Ỹ !#1

1

g92
tr@Fmn~W̃ !Fmn~W̃ !#

1
1

g92
tr@Fmn~Ỹ !Fmn~Ỹ !#1L fermion. ~25!

From Eq.~25! we see that the effective contribution of the
L andR particles give additional terms to the kinetic term
of the standardW̃ and Ỹ . By the following redefinition of
the coupling constants,

1

2g2
5

1

2g̃2
1

1

g92
,

1

2g82
5

1

2g̃82
1

1

g92
, ~26!

the effective Lagrangian becomes identical to the one of t
SM ~except for the Higgs sector! showing the decoupling of
the theory in the limitM→`. In fact in this case the rescal-
ing which makes the gauge fields canonical isW̃m→gW̃m ,
Y˜m→g8Ỹm , with g andg8 defined in Eq.~26!. Obviously
the gauge couplings to the fermions will beg andg8 @see Eq.
~22!#. Let us comment about this fact. If one starts from th
most general Lagrangian, Eq.~3!, gauged according to Eq.
~17!, in the limit M→` the solutions of the equations of
motion forL andR are

Lm5 1
2 ~11z!W̃ m1 1

2 ~12z!Ỹ m ,

Rm5 1
2 ~12z!W̃ m1 1

2 ~11z!Ỹ m , ~27!

with

z5
a3

a31a4
. ~28!

By substituting in the Lagrangian

Leff52
v2

4
tr~W̃ m2Ỹ m!21S 1

2g̃2
1

1

2g92
~11z2!D

3tr@Fmn~W̃ !Fmn~W̃ !#1S 1

2g̃82
1

1

2g92
~11z2!D

3tr@Fmn~Ỹ !Fmn~Ỹ !#1
1

g92
~12z2!

3tr@Fmn~Ỹ !Fmn~W̃ !#1L fermion. ~29!
in

s

he

e

We see that all the corrections to the SM Lagrangian depe
on the value of the parameterz. In the case we are consid-
ering,a450, a25a3 , we havez51, so the corrections van-
ish. Notice that the requirementz51 implies onlya450, so
the corrections would be zero also fora2Þa3 , but in this
case we would not have an enlargement of the symmetry a
correspondingly there would be no protection from radiativ
corrections. The corrections would vanish also forz521
but again this case does not correspond to an extra symm
try.

We note that the decoupling remains also valid in th
general case of an extended symmetry@SU(N)^SU(N)#3

provided of a suitable redefinition of the SU(2)L^U(1)Y
gauge coupling constants. When SU(N)^SU(N).SU(3)
and one considers also the SU(3)color gauging, a redefinition
of the strong gauge coupling constantgs is necessary as well.
This happens for instance in the model considered in Re
@9#. In the case of an extended symmetry
@SU(8)^SU(8)#3 we find

1

2g2
5

1

2g̃2
1

1

g92
,

1

2g82
5

1

2g̃82
1
5

3

1

g92
,

1

4gs
2 5

1

4g̃s
2

1
1

2g92
. ~30!

V. THE LOW ENERGY LIMIT, NEXT-TO-LEADING
ORDER

Since the degenerate BESS model is indistinguishab
from the SM at the leading order in the low energy limi
(M→`) let us consider the solution of the classical equa
tions of motion for theL andR fields by retaining also terms
of the orderq2/M2. As in Sec. IV we will eliminate theL
andR fields with the solutions of their equations of motion
and we will consider the virtual effects of the heavy par
ticles. We will study the effective theory by considering the
limit g9→` with corrections up to order (1/g9)2.

Let us solve the equations of motion forL andR in this
limit. We get

L n5S 12
h

M2D W̃ n1DL n ,

Rn5S 12
h

M2D Ỹ n1DRn , ~31!

with

DL n5
1

M2 ~]n]mW̃
m2]m@W̃ m,W̃ n#2@W̃ m ,F

mn~W̃ !# !,

DRn5
1

M2 ~]n]mỸ
m!, ~32!



y
s
t

he

e-

e
the
q.
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where the equation forR means that only the third isospin
component of the field is different from zero.DLm and
DRm contain linear terms proportional to the divergences
the fields andDLm contains also bilinear and trilinear term
which do not affect the self-energies and contribute to t
anomalous trilinear and quadrilinear couplings.

We will examine the virtual effects of theL andR fields
on the observables. In particular, in the next section, we w
focus on the physics at LEP and Tevatron, for which t
modifications due to the heavy particles affect the se
energies only. After we will discuss the modifications in th
trilinear gauge couplings which will be studied at futur
e1e2 colliders.

To discuss the LEP physics we neglectDLm andDRm in
the solutions~31!. By substituting in the Lagrangian~19! we
get, for the bilinear part~neglecting again divergences of th
vector fields!,

Leff
~2!52

1

4
~11zg!ÃmnÃ

mn2
1

2
~11zw!W̃mn

1 W̃mn2

2
1

4
~11zz!Z̃mnZ̃

mn1
1

2
zzgÃmnZ̃

mn1M̃W
2 W̃m1W̃m

2

1
1

2
M̃Z

2Z̃mZ̃m1
1

2M2 Fzz2 Z̃mnhZ̃mn1
zg

2
ÃmnhÃmn

2zzgZ̃mnhÃmn1zwW̃mn
1 hW̃2mnG , ~33!

where

W̃m
65

1

A2
~W̃17 iW̃2!,

W̃m
35 s̃uÃm1 c̃uZ̃m ,

Ỹm5 c̃uÃm2 s̃uZ̃m ,

ẽ5g̃ s̃u5g̃8c̃u ,

M̃W
2 5

v2

4
g̃2,

M̃Z
25

M̃W
2

c̃u
2
, ~34!

Omn5]mOn2]nOm , (O5W̃6,Ã,Z̃), and

zg54su
2S gg9D

2

, zw52S gg9D
2

,

zz5
11c2u

2

cu
2 S gg9D

2

, zzg522
su

cu
c2uS gg9D

2

. ~35!

Notice thatg̃,g̃8,ẽ,s̃u ,c̃u have the same definitions as in th
SM. As stated before, due to the effects of theL and R
particles, these are not the physical quantities in our mod
In Eq. ~35! we have not used the tilded quantities since the
parameters are already of the order of (1/g9)2.
of
s
he

ill
he
lf-
e
e

e

e

el.
se

The corrections toLSM are U(1)em invariant and produce
a wave-function renormalization ofÃm ,Z̃m ,W̃m

6 plus a mix-
ing term Ãm2Z̃m . We will absorb these corrections by a
convenient redefinition of the fields. Actually there are onl
three renormalization transformations of the field
Ãm ,Z̃m ,W̃m

6 without changing the physics. This means tha
three of the four deviationszg ,zw ,zz ,zzg are nonphysical.

To identify the physical quantities we define new fields in
such a way to have canonical kinetic terms and to cancel t
mixing term Ãm2Z̃m . They are

Ãm5F12
zg

2 S 12
h

M2D GAm1zzgS 12
h

M2DZm ,

W̃m
65F12

zw
2 S 11

MW
2

M2 2
h

M2D GWm
6 ,

Z̃m5F12
zz
2 S 11

MZ
2

M2 2
h

M2D GZm . ~36!

Working at the first order in 1/M2 and in 1/g92, we do not
make distinction in the coefficients of these parameters b
tween ‘‘tilded’’ and physical quantities. By substituting in
~33! we get

Leff
~2!52

1

4
AmnA

mn2
1

2
Wmn

1 Wmn2

2
1

4
ZmnZ

mn1M̃W
2 F12zwS 11

MW
2

M2 D GWm1Wm
2

1
1

2
M̃Z

2F12zzS 11
MZ

2

M2D GZmZm . ~37!

From which we obtain the values of the physical masses

MW
2 5M̃W

2 F12zwS 11
MW

2

M2 D G
MZ

25M̃Z
2F12zzS 11

MZ
2

M2D G . ~38!

The field renormalization affects also all the couplings of th
standard gauge bosons to the fermions. By separating
charged and the neutral fermionic sector and substituting E
~36! in L fermion given in ~22! we get

Leff
charged52

ẽ

A2s̃u

cdg
m
12g5

2
cuF12

zw
2

3S 11
MW

2

M2 2
h

M2D GWm
21H.c., ~39!
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Leff
neutral52

ẽ

s̃u c̃u

cgmFTL3 12g5
2

2Qs̃u
2X12

c̃u

s̃u
zzgS 12

hZ

M2D CG
3cX12

zz
2 S 11

MZ
2

M2 2
h

M2D CZm

2ẽcgmQcX12
zg

2 S 12
h

M2D CAm , ~40!

with the standard definitions

Q5
t3

2
1
B2L

2
,

TL
3cL5

t3

2
cL , TL

3cR50, ~41!

andhZ operates only on theZ field.
The physical constants as the electric charge, the Fe

constant and the mass of theZ, which are the input param
eters for the physics at LEP, must be redefined in terms
the parameters appearing in our effective Lagrangian.
physical mass of theZ is given in Eq.~38!. The physical
electric charge is defined at zero momentum, then, from
~40!,

e5ẽS 12
zg

2 D . ~42!

The Fermi constantGF , is defined from them-decay pro-
cess, again at zero momentum. Since the charged cu
coupling @see Eq. ~39!# is modified by a factor
@12zw(11MW

2 /M2)/2# and theW mass is given in Eq.~38!
we get

GF

A2
5

ẽ2F12zwS 11
MW

2

M2 D G
8s̃u

2M̃W
2 F12zwS 11

MW
2

M2 D G
5

e2

8s̃u
2c̃u

2MZ
2 F12zzS 11

MZ
2

M2D 1zgG , ~43!

where in the second equality we have used Eqs.~34!, ~38!,
and ~42!. Finally, we definesu and cu by equating the last
expression to the one in the SM~tree level!:
GF /A25e2/(8su

2cu
2MZ

2). We get

su
2cu

25 s̃u
2c̃u

2F11zzS 11
MZ

2

M2D 2zgG , ~44!

that is

su
25 s̃u

2F11
cu
2

c2u
XzzS 11

MZ
2

M2D 2zgCGcu
2

5 c̃u
2F12

su
2

c2u
XzzS 11

MZ
2

M2D 2zgCG . ~45!
rmi
-
of
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VI. CALCULATION OF THE e PARAMETERS

Let us now discuss how the effects of theL andR modify
the observables measured at LEP and Tevatron.

Since, in our model, the modifications due to heavy pa
ticles are contained in the propagators of the standard gau
bosons~the so-called oblique corrections!, we can apply the
analysis made in terms of thee parameters@10#.

Let us start from theMW measurement. It is customary to
define

MW
2

MZ
2 5cu

2F12
su
2

c2u
DrWG . ~46!

From the relationM̃W
2 5M̃Z

2c̃u
2 we get

MW
2

MZ
2 5cu

2F11zzS 11
MZ

2

M2D 2zwS 11
MW

2

M2 D
2

su
2

c2u
Xzg2zzS 11

MZ
2

M2D CG ~47!

so, for comparison,

DrW5zg1
c2u

su
2 zwS 11

MW
2

M2 D 2
cu
2

su
2 zzS 11

MZ
2

M2D 52X, ~48!

where in the second equality we have used Eq.~35! and

X52
MZ

2

M2 S gg9D
2

. ~49!

The neutral current couplings to theZ are defined by

Lneutral~Z!52
e

sucu
S 11

Dr

2 DZmc@gmgV1gmg5gA#c,

~50!

with

gV5
TL
3

2
2sū

2
Q,

gA52
TL
3

2
,

sū
2

5~11Dk!su
2 . ~51!

By using Eqs.~42! and ~44! we get

e

sucu
5

ẽ

s̃uc̃u
F12

zz
2 S 11

MZ
2

M2D G . ~52!

For comparison with Eq.~40!, and using Eq.~35!, we obtain

Dr52zz
MZ

2

M2 52
cu
41su

4

cu
2 X, ~53!
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Dk5
cu
2

c2u
Fzg2zzS 11

MZ
2

M2D G2
cu

su
zzgS 11

MZ
2

M2D
52

2cu
2su

2

c2u
X.

Summarizing, we have the following correspondence b
tween corrections and observables:DrW is equivalent to
MW /MZ which is measured at Tevatron,Dk modifies the
vector couplinggV , andDr modifies the neutral coupling
overall strength. At LEP,Dk can be obtained by measuring
the forward-backward asymmetry at theZ peak. Then, hav-
ing fixedDk, Dr can be determined by the leptonic width
All these quantities receive contributions also from weak r
diative corrections. In particular they depend quadratica
from the top mass which is still affected by a large erro
From the point of view of data analysis it turns out to b
more convenient to isolate such contribution inDr and de-
fine two other linear combinations which depend only log
rithmically on mtop. They are the so-callede parameters
@10#:

e15Dr,

e25cu
2Dr1

su
2

c2u
DrW22su

2Dk,

e35cu
2Dr1c2uDk. ~54!

Using Eqs.~48! and ~53! we get

e152
cu
41su

4

cu
2 X,

e252cu
2X,

e352X. ~55!
e-

.
a-
lly
r.
e

a-

All these deviations are of orderX which contains a double
suppression factorMZ

2/M2 and (g/g9)2. These are the same
results one obtains from the definitions of thee i parameters
in terms of the self-energies@11,6#. In theM→` limit, the
model decouples, as already noticed in Sec. VI, and thee i go
to zero. The fact that in the degenerate BESS modele350 in
this limit, follows from the SU(2)L^SU(2)R custodial sym-
metry @12#.

The sum of the SM contributions, functions of the top
quark and Higgs boson masses, and the previous deviatio
has to be compared with the experimental values for thee
parameters, determined from the available LEP data and t
MW measurement from Tevatron@13#:

e15~3.4861.49!31023,

e25~25.764.19!31023,

e35~3.2561.40!31023. ~56!

Taking into account the SM values (e1)SM54.431023,
(e2)SM527.131023, (e3)SM56.531023 for mtop5180
GeV andmH51000 GeV, we find, from the combinations of
the previous experimental results, the 90% C.L. limit in th
plane (M ,g/g9) given in Fig. 1. We see that there is room
for relatively light resonances beyond the usual SM spe
trum.

VII. ANOMALOUS TRILINEAR GAUGE COUPLINGS

Let us evaluate the anomalous contributions to the trilin
ear gauge couplings at the orderq2/M2. As previously ob-
served, sinceDRm in Eq. ~32! does not contain bilinear and
trilinear terms, the elimination of theR field does not give
any contribution to the anomalous trilinear and quadrilinea
terms.

Substituting the solutions~31! in Eq. ~19! we get
Leff
kin~3!52 i g̃ H ~11zw!„W̃mn

3 W̃1mW̃2n1W̃3m~W̃mn
2 W̃1n2W̃mn

1 W̃2n!…2
zw
M2 @~h31h21h1!„W̃mn

3 W̃1mW̃2n

1W̃3m~W̃mn
2 W̃1n2W̃mn

1 W̃2n!…1„~]n]mW̃m
3 !~]rW̃

2n!W̃1r1~]n]mW̃m
3 !~]nW̃1r!W̃r

22~]n]mW̃m
2!~]rW̃

3n!W̃1r

1~]n]mW̃m
2!~]nW̃3r!W̃r

12~]n]mW̃m
2!~]nW̃1r!W̃r

31~]n]mW̃m
2!~]rW̃1n!W̃r

32H.c.…#J , ~57!

where we have used the notationha to denote the action of the D’Alembert operator on the fieldsW̃a, and we have freely
integrated by parts. This result has been independently checked by evaluating directly the trilinearW̃3W̃1W̃2 coupling as
coming from the mixingL2W̃ ~see Fig. 2! and expanding the propagators of theL fields up to the orderq2/M2.

The physical vertices are obviously obtained by substituting toW̃3 its expression in terms of the photon and theZ fields and
by performing fields and couplings renormalization according to Sec. V.

Since the physical process which is relevant for studying the trilinear gauge couplings ise1e2→W1W2, we have

]mW
6m50 ~58!

because the finalW’s are on shell. Also

]mZ
m.]mA

m.0 ~59!
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because theZ and the photon are coupled to light fermions. Therefore we can neglect all the divergences of the fields
~57! and we get

Leff
kin~3!5 ie ctguS 11

zz
2c2u

MZ
2

M2 2
zw
2

h11MW
2

M2 2
zw
2

h21MW
2

M2 2
zz
2

hZ1MZ
2

M2 D @ZmnWm
2Wn

11Zn~Wmn
2 Wm12Wmn

1 Wm2!#

1 ie F12
zz
2

h11MW
2

M2 2
zw
2

h21MW
2

M2 1 S zy22zwD hA

M2G @AmnWm
2Wn

11An~Wmn
2 Wm12Wmn

1 Wm2!#. ~60!

We see that the tensor structure of this correction is the same of the trilinear couplings in the SM.
In the study of the reactione1e2→W1W2 at linear colliders, the structure of the corrections is of the for

(A1B/M2s), that is we have nontrivial form factors@14#. However, notice that the electric charge of theW’s as measured by
the coupling with the photon, turns out to be correct, being defined at zero transferred momentum and with theW’s on shell.

VIII. MASSES AND EIGENSTATES OF SPIN-1 BOSONS

Up to now we have been interested in the virtual effects only. In the following we will consider also the possibili
producing directly the heavy resonances. Therefore we need to keep explicitly the corresponding fields in the formal

By writing the quadratic part ofL, given in Eq.~19!, in terms of the charged and the neutral fields one finds

L~2!5
v2

4
@~112a2!g̃

2W̃m
1W̃m21a2g92~ L̃m

1L̃m21R̃m
1R̃m2!2A2a2g̃g9~W̃m

1L̃m21W̃m
2L̃m1!#

1
v2

8
@~112a2!~ g̃

2W̃3
21g̃82Ỹ2!1a2g92~ L̃3

21R̃3
2!22g̃g̃8W̃3mỸ

m22A2a2g9~ g̃W̃3L̃3
m1g̃8ỸmR̃3

m!#. ~61!
-

The reason to introduceL̃ andR̃ is to distinguish them from
the mass eigenstates.

In the charged sector the fieldsR6 are unmixed for any
value ofg9. Their mass is given by

MR6
2

5
v2

4
a2g92[M2. ~62!

FIG. 1. 90 % C.L. contour on the plane (M , g/g9) obtained by
comparing the values of thee parameters from the degenerat
BESS model with the experimental data from LEP. The allow
region is below the curve.
We will parameterize the model in terms ofg9 andM .
The mass matrix in the charged sector (W̃,L̃) is

M charged
2 5

v2

4
g̃2S 112

x2

r
2A2

x

r

2A2
x

r

1

r

D , ~63!

where

x5
g̃

g9
, r5

v2

4

g̃2

M2 . ~64!

At the orderx2 the eigenvalues are

e
ed FIG. 2. Feynman diagram contributing to the anomalous trilin
ear gauge coupling.
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MW6
2

5
v2

4
g̃ 2F122

x2

12r
1••• G ,

ML6
2

5
v2

4

g̃2

r F112
x2

12r
1••• G . ~65!

Let us callC the matrix which transforms the fields appea
ing in the Lagrangian~61! into the charged eigenstates. W
have

SW6

L6 D 5C21S W̃6

L̃6 D 5S cosf sinf

2sinf cosf D S W̃6

L̃6 D , ~66!

where

tanf5
k

11A11k2
, k5

2A2x
12r22x2

. ~67!

The physical particleL6 are a combination ofL̃6 andW̃6,
which, for small values ofx, and forM→` (r→0), are
mainly oriented along theL̃6 direction, as it can be seen
from the relations

W65~12x2!W̃61A2xL̃6,

L652A2xW̃61~12x2!L̃6. ~68!

In the neutral sector there is, as expected, a strictly ma
less combination which corresponds to the physical pho
associated to the unbroken U~1! gauge group. As already
discussed in Ref.@4# we perform the substitution

Ŵ35 c̃uW̃
32 s̃uỸ,

Ŷ5 s̃uW̃
31 c̃uỸ. ~69!

The neutral part of the Lagrangian~61! is then given by

Lneutral
~2! 5

v2

8 FG2Ŵ3
21a2S g̃22g̃82

G
Ŵ312

g̃g̃8

G
Ŷ2

g9

A2

3~ L̃31R̃3!D 21a2SGŴ32
g9

A2
~ L̃32R̃3!D 2G ,

~70!

whereG5Ag̃21g̃82. Inspecting this expression, it is natura
to define the new linear combinations

g5Ŷcosc1
L̃31R̃3

A2
sinc,

V̂352Ŷsinc1
L̃31R̃3

A2
cosc, ~71!

where

tanc52s̃ux. ~72!
r-
e

ss-
ton

l

We then finally obtain

Lneutral
~2! 5

v2

8 FG2Ŵ3
21

EV
2

RV
SGŴ32

G

EV
V̂3D 2

1
EA
2

R SGŴ31
G

EA
Â3D 2, ~73!

where

R5
r

c̃u
2
,

RV5
R

114x2s̃u
2
,

EA5
x

c̃u

,

EV5
c̃2u

c̃u

x

A114x2s̃u
2
,

Â35
R̃32L̃3

A2
. ~74!

The mass matrix for the neutral case in the bas
(Ŵ3 ,V̂3 ,Â3) is

Mneutral
2 5

v2

4
G2S 11

EV
2

RV
1
EA
2

R
2
EV

RV

EA

R

2
EV

RV

1

RV
0

EA

R
0

1

R

D . ~75!

At the orderx2 the eigenvalues are

MZ
25

v2

4
G2S 12

11 c̃2u
2

c̃u
22r

x21••• D ,
ML3

2 5
v2

4

G2

R S 11
122rs̃u

21Ac̃2u
2 14r 2s̃u

4

c̃u
22r

x21••• D ,
MR3

2 5
v2

4

G2

R S 11
122rs̃u

22Ac̃2u
2 14r 2s̃u

4

c̃u
22r

x21••• D .
~76!

The relation between thehat fields and the mass eigenstate
is given by

S Ŵ3

V̂3

Â3

D 5VS Z

L3

R3

D , ~77!

with
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V5S N1 N2

12l2RV

EV
2N3

12l3R

EA

N1

EV

12RVl1
N2 2N3

EV

EA

12l3R

12l3RV

2N1

EA

12Rl1
2N2

EA

EV

12l2RV

12l2R
N3

D , ~78!
a

s

where

l154
MZ

2

v2G2 , l254
ML3

2

v2G2 , l354
MR3

2

v2G2 ~79!

and

N15S 11
EV
2

~12RVl1!
2 1

EA
2

~12Rl1!
2D 21/2

,

N25F11
~12RVl2!

2

EV
2 S 11

EA
2

~12Rl2!
2D G21/2

,

N35F11
~12Rl3!

2

EA
2 S 11

EV
2

~12RVl3!
2D G21/2

. ~80!

Let us callN the matrix which transforms the fields appea
ing in the Lagrangian~61! into the neutral eigenstates

S g

Z

L3

R3

D 5N21S Ỹ

W̃3

L̃3

R̃3

D . ~81!

In the limit of r→0 and smallx, by retaining only the first
order inx, we get

S g

Z

L3

R3

D .S c̃u s̃u A2s̃ux A2s̃ux

2 s̃u c̃u A2c̃ux 2A2
s̃u
2

c̃u

x

0 2A2x 1 0

2A2x
s̃u

c̃u

0 0 1

D
3S Ỹ

W̃3

L̃3

R̃3

D , ~82!
r-

where we have used the Eqs.~69!, ~71!, ~74!, and~78!. We
see thatZ, L3 , andR3 are essentially aligned along the com-
binations (c̃uW̃32 s̃uỸ), L̃3 , and R̃3 , respectively. Unlike
the charged case, however, the physical stateR3 is not com-
pletely decoupled, in fact at the leading order, it possesses
tiny component along theỸ direction. TheL3 state has in
turn a small contribution from theW̃3 field.

IX. FERMIONIC COUPLINGS

From the charged part of the fermionic Lagrangian given
in Eq. ~22!, by using the relations~66!, we can read directly
the couplings to the fermions

Lcharged52~aWWm
21aLLm

2!JL
~1 !m1H.c., ~83!

where

aW5
g̃

A2
C11,

aL5
g̃

A2
C12, ~84!

whereCi j are the matrix elements of the matrixC defined in
Eq. ~66!, and

JL
~6 !m5c̄Lg

mt~6 !cL , ~85!

with

t~6 !5
t16 i t2

2
. ~86!

Let us notice that theR6 are not coupled to the fermions. In
fact one can easily check that they have no mixing whatso-
ever and therefore these states will be absolutely stable a
ensured by the phase invarianceR6→exp(6ia)R6.

For the neutral part we get

Lneutral52$eJem
m gm1@AJL

~3!m1BJem
m #Zm

1@CJL
~3!m1DJem

m #L3m1@EJL
~3!m1FJem

m #R3m%,

~87!

where

e5g̃s̃ucosc ~88!
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and

A5GV11, B52Gs̃u
2S V111

c̃u

s̃u

sincV21D ,
C5GV12, D52Gs̃u

2S V121
c̃u

s̃u

sincV22D ,
E5GV13, F52Gs̃u

2S V131
c̃u

s̃u

sincV23D , ~89!

with Vi j are the matrix element of the matrixV given in Eq.
~78!. In the usual limit we get, at the orderx2,

A.GS 12
s̃u
41 c̃u

4

c̃u
2

x2D , B.2Gs̃u
2S 12

122c̃u
4

c̃u
2

x2D ,
C.2A2Gc̃ux, D.0,

E.A2G
s̃u
2

c̃u

x, F.2A2G
s̃u
2

c̃u

x. ~90!

X. TRILINEAR COUPLINGS

Starting from the original trilinear couplings given in Eq
~20! and using the relations~66! and~81!, we can evaluate all
the trilinear couplings among the physical particles of t
model. We get

Lkin ~3!5 i(
a,i , j

gOaVi
1V

j
2@Oa

mnVim
2 Vjn

1 1Oa
n~Vimn

2 Vjm
1

2Vimn
1 Vjm

2 !#1 i(
a

gOaR
1R2@Oa

mnRm
2Rn

1

1Oa
n~Rmn

2 Rm
12Rmn

1 Rm
2!#, ~91!

whereOa5g,Z,L3 ,R3 (a51,2,3,4),Vi
65W6,L6 ( i51,2)

and

gOaVi
1V

j
25g9S xC1iC1 jN2a1

1

A2
C2iC2 jN3aD , ~92!

gOaR
1R25g9

1

A2
N4a . ~93!

As we noticed in the previous section, there are no mixin
of the R̃6 with W̃6 andL̃6 @see Eq.~61!#, as a consequenc
there are no trilinear couplings involving a single charg
R particle. Furthermore it is easy to check thatggW1L250.

XI. RENORMALIZATION PROCEDURE

To identify the physical quantities in our model we pr
ceed in the same way as in Sec. V. We again choose as i
parameters the following physical constants: the elec
charge, the mass of theZ, and the Fermi constant.
.

he

gs
e
ed

o-
nput
tric

Concerning the Fermi constant there is a general proof
Ref. @4# stating that its relation withv2 is the same of the SM
one. Let us summarize the principal steps of the proof. Kee
ing into account theW6 andL6 exchanges in them-decay
process, the Fermi constant is given by

GF

A2
5
g̃2

8 S C11
2

MW6
2 1

C12
2

ML6
2 D 5

g̃2

8
~M charged

2 !11
215

1

2v2
, ~94!

whereCi j are given in Eq.~66! andM charged
2 in ~63!. The

second equality in the previous equation follows from th
relation

C~MD
2 !21C215~M charged

2 !21, ~95!

whereMD
2 is the diagonal form of the charged mass matri

Recalling that the electric charge and the mass of theZ are
given by

e5g̃s̃ucosc, ~96!

MZ
25M̃Z

2l1 , ~97!

with

M̃Z
25

1

4
v2
g̃2

c̃u
2

~98!

andl1 is obtained by the diagonalization of the matrix in Eq
~75!.

By using the previous equations we can write the relatio
(a5e2/4p)

c̃ u
2s̃u

25
pa

A2GF

1

MZ
2

l1

cos2c
, ~99!

from which

c̃ u
25

1

2
1A1

4
2

pa

A2GF

1

MZ
2

l1

cos2c
. ~100!

From Eq.~72! and using Eq.~97! we obtain

sinc52
e

g9
~101!

from which

g̃5
e

s̃uA12
4e2

g92

. ~102!

Let us notice that Eq.~100!, after using~102!, involves only
the angleũ and the measured quantities. Solving this equ
tion in ũ we can obtaing̃ with the help of Eq.~102!. In this
way all the original parameters of the Lagrangian are e
pressed in terms of the observed quantities. In the numeri
work we solve Eq.~100! by iteration taking advantage of the
fact that in the limitg9→` we get back the SM. One can
also solve the equation perturbatively inx. It is easy to verify
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that, at the orderx2 and at the first order inr @see Eq.~64!#,
the procedure coincides with the one of Sec. V, and o
recovers Eq.~45!. In fact this follows immediately from the
expansion ofl1 @see Eqs.~79! and ~76!# and cos2c at the
same order:

l1.12zzS 11
MZ

2

M2D , cos2c.12zg . ~103!

XII. WIDTHS

In the neutral sector the couplings of the fermions to t
gauge bosons are

2 1
2 c̄@~vZ

f 1g5aZ
f !gmZ

m1~vL3
f 1g5aL3

f !gmL3
m

1~vR3
f 1g5aR3

f !gmR3
m#c, ~104!

wherev f and af are the vector and axial vector coupling
given by

vZ
f 5AT3

L12BQem,

aZ
f 5AT3

L ,

vL3
f 5CT3

L12DQem,

aL3
f 5CT3

L ,

vR3
f 5ET3

L12FQem,

aR3
f 5ET3

L , ~105!

with A,B,C,D,E,F given in Eq.~89!. The total width of a
vector bosonV corresponding to the decay into fermion
antifermion is

GV
fermion5GV

h13~GV
l 1GV

n !, ~106!

whereGV
h includes the contribution of all the allowed quark

antiquark decays. The partial widths are given by

GV
f 5

MV

48p
F~mf

2/MV
2 !, ~107!

with

F~r f !5~124r f !
1/2@~vV

f !2~112r f !1~aV
f !2~124r f !#

~108!

andmf the mass of the fermion.
The other possible decay channel for a neutral vector

sonV is the one corresponding to the decay into aWWpair.
The partial width is
ne

he

s

-

-

bo-

GV
W5

MV

192p
gVW1W2
2 S 124

MW
2

MV
2 D 3/2S MV

MW
D 4

3F1120SMW

MV
D 2112SMW

MV
D 4G . ~109!

Concerning the charged resonances, only theL6 decay
into fermions~see Sec. IX!. The leptonic width neglecting
the fermionic mass corrections is

G~L2→ l n̄ l !5
1

24p
aL
2ML[GL

0 ~110!

with aL given in Eq.~84!.
The decays into quark pairs are given by

G~L2→q8q̄!53uVqq8u
2GL

0 , ~111!

whereVqq8 are the relevant Kobayashi-Maskawa matrix el
ements. In the case of thebt̄ decay, we have taken into
account the correction from the mass of the top quark:

G~L2→bt̄!53uVtbu2~12 3
2 r t1

1
2 r t

3!GL
0 , ~112!

wherer t5mt
2/ML

2 .
The other possible decay channel forL6 is the one cor-

responding to the decay into aWZ pair. The partial width is

GL
WZ5

ML

192p
gZW1L2
2 F S 12

MZ
22MW

2

ML
2 D 224

MW
2

ML
2 G3/2S ML

4

MW
2 MZ

2D
3F1110SMW

2 1MZ
2

ML
2 D 1

MW
4 1MZ

4110MW
2 MZ

2

ML
4 G .

~113!

Let us now give the previous formulas for the widths in
the g9→` limit @at the order (g/g9)2# and neglecting the
mass corrections. For the fermionic channel we get

G~L3→e1e2!5
A2GFMW

2

12p
ML3S gg9D

2

,

G~R3→e1e2!5
5A2GFMW

2

12p

su
4

cu
4MR3S gg9D

2

,

G~L2→en̄ !5
A2GFMW

2

6p
MLS gg9D

2

~114!

and the total fermionic widths are

GL3
fermion5

2A2GFMW
2

p
ML3S gg9D

2

,

GR3
fermion5

10A2GFMW
2

3p

su
4

cu
4MR3S gg9D

2

,

GL6
fermion

5
2A2GFMW

2

p
ML6S gg9D

2

. ~115!
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By reading the relevant trilinear gauge couplings from E
~92!, and performing the same limit we have@with r defined
in ~64!#

gL3W1W2.A2g̃r
g

g9
,

gR3W1W2.A2
s̃u
2

c̃u
2
g̃r

g

g9
,

gZW1L2.A2
g̃

c̃u

r
g

g9
. ~116!

Then, substituting in Eqs.~109! and ~113!, we get

GL3
WW5

A2GFMW
2

24p
ML3S gg9D

2

,

GR3
WW5

A2GFMW
2

24p

su
4

cu
4MR3S gg9D

2

,

GL6
WZ

5
A2GFMW

2

24p
ML6S gg9D

2

. ~117!

It may be useful to compare the widths ofLm andRm into
vector boson pairs with those into fermions:

GL3
fermion548GL3

WW,

GR3
fermion580GR3

WW,

GL6
fermion

548GL6
WZ . ~118!

We see that the total fermionic channel is dominant due
the multiplicity.

We conclude this section with some remarks about t
decay of the vector mesonsLm andRm . In the present, ef-
fective, description of the electroweak symmetry breakin
the Goldstone bosons described by the fieldU given in Eq.
~11! become unphysical scalars eaten up by the ordin
gauge vector bosonsW and Z. The absence of couplings
amongU and the statesL andR results in a suppression o
the decay rate of these states intoW and Z. Consider, for
instance, the decay of the new neutral gauge bosons in
W pair. In a model with only vector resonances this dec
channel is largely the dominant one. The correspond
width is indeed given by@15#

G~V0→WW!5
A2GF

192p

M5

MW
2 S gg9D

2

~119!

and it is enhanced with respect to the partial width into
fermion pair, by a factor (M /MW)

4 @15#

G~V0→ f̄ f !'GFMW
2 S gg9D

2

M . ~120!

This fact is closely related to the existence of a coupling
orderg9 amongV0 and the unphysical scalars absorbed b
q.

to
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the W boson. Indeed the fictitious width ofV0 into these
scalars provides, via the equivalence theorem@16#, a good
approximation to the width ofV0 into a pair of longitudinal
W and it is precisely given by Eq.~119!.

On the contrary, if there is no direct coupling among th
new gauge bosons and the would-be Goldstone boso
which provide the longitudinal degree of freedom to th
W, then their partial width into longitudinalW’s will be
suppressed compared to the leading behavior in Eq.~119!,
and the width into aW pair could be similar to the fermionic
width. In fact, as we have explicitly checked@see Eq.~116!#
the trilinear couplings between the new gauge bosons and
W pair is no longer of order (g/g9), but of the order
(g/g9)r . The same argument also holds for the charged ca

Numerically, the comparison between the degenerate ca
(D model! and the BESS model with only vector resonance
(V model! is shown in Table I, for a choice of the parameter
of the model (ML151 TeV, g9513 and no direct coupling
of L1 to fermions!. TheV model features an enhancement o
the WZ channel, common to the usual strong interactin
models. TheD model has no such enhancement.

As already noticed, in usual strong interacting models a
enhancement ofWLWL scattering is expected. Due to the
previous considerations, our case is quite different. If w
studyWLWL scattering the lowest order result violates uni
tarity at energies above 1.7 TeV, as in the standard model
the formal limitmH→`. So we expect our model to be valid
only up to energies of this order.

XIII. DEGENERATE BESS AT TEVATRON

Data from the Fermilab Tevatron Collider, collected by
the CDF Collaboration@17# establish limits on the model
parameter space. Their search was done through the de
W8→en, assuming standard couplings of theW8 to the fer-
mions. Their result can be easily translated into a limit fo
the degenerate BESS model parameter space. In Fig. 3 th
limits are shown in terms of the mass of theR6 resonance
@equivalent toM ; see Eq.~62!# and the ratio of coupling
constantsg/g9. Actually the parameter of the model isx as
given in Eq.~64!. Here, for simplicity of notation, we call it
g/g9. The limit from CDF~dotted line! is compared with the
result obtained from LEP~continuous line!. The excluded
region is above the two curves. The figure was obtained u
ing the CDF 95 % C.L. limit on theW8 cross section times
the branching ratio and comparing this limit with the predic
tions of our model at fixedg/g9, thus giving a limit for the
R6 mass. This procedure was then iterated for various valu

TABLE I. Comparison between the degenerate BESS mod
(D model! and the BESS model with only vector resonances (V
model! for the total width~GeV! and branching ratios ofL1 (D
model! andV1 (V model! with the choice of parameters:M51
TeV, g9513 and no direct coupling ofL1/V1 to fermions.

D model GL1 B(L1→en) B(L1→ud) B(L1→WZ)
0.18 8.131022 2.431021 2.231022

V model GV1 B(V1→en) B(V1→ud) B(V1→WZ)
12.1 5.931024 1.731023 9.931021
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of g/g9. The statistical significance of the plot is that of
95% C.L. limit in one variable, the mass, at a given value
g/g9. The limit from CDF is more restrictive for low reso-
nance masses, while LEP limit is more restrictive for high
mass values.

XIV. DEGENERATE BESS AT e1e2 COLLIDERS

We have considered the sensitivity of the model at LEP
and futuree1e2 linear colliders, for different options of total
center of mass energies and luminosities.

We have analyzed cross sections and asymmetries for
channele1e2→ f1 f2 and e1e2→W1W2 in the standard
model and in the degenerate BESS model at tree level. T
BESS states relevant for the analysis ate1e2 colliders are
L3 andR3 . The two vector bosons are degenerate in mass
the largeg9 limit. The L3 mass is larger than theR3 mass
due to terms of the order (g/g9)2 and higher@see Eq.~76!#.

If the masses of the resonances are below and not very

FIG. 3. 95% C.L. upper bounds ong/g9 vs M from LEP data
~continuous line! and CDF~dotted line!. LEP bounds are obtained
from the e parameters, while CDF limits come from
sB(pp̄→l n) atAs51.8 TeV and with an integrated luminosity o
19.7 pb21.
a
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from the collider energy, due to beamstrahlung and synch
tron radiation, in a high energy collider, one expects to s
two very close narrow peaks below the maximum c.m. e
ergy even without having to tune the beam energies. Ho
ever, in this paper we do not consider the direct producti
of R3 andL3 from e1e2. If instead the masses are highe
than the maximum c.m. energy, they will give rise to indirec
effects in thee1e2→ f1 f2 ande1e2→W1W2 cross sec-
tions, which we discuss below.

For the purposes of our calculation we have assumed t
it will be possible to separate e1e2→WL

1WL
2 ,

e1e2→WL
1WT

2 , and e1e2→WT
1WT

2 . A similar analysis
for the BESS model with only vector resonances was giv
in Ref. @15#.

In the fermion channel our study is based on the obse
ables

sm,sh,

AFB
e1e2→m1m2

, AFB
e1e2→ b̄b ,

ALR
e1e2→m1m2

, ALR
e1e2→ b̄b , ALR

e1e2→had, ~121!

whereAFB andALR are the forward-backward and left-righ
asymmetries, andsh(m) is the total hadronic (m1m2) cross
section.

The total cross section for the processe1e2→ f1 f2 is
given by ~at tree level!

s5
s

33256p (
hf ,he

uF~hf ,he!u2, ~122!

with

F~hf ,he!52
4eqf
s

1 (
a5Z,L3 ,R3

~va
f 1hfaa

f !~va1heaa!

s2Ma
21 iM aGa

,

~123!

wherehf ,e561 are the helicities off ande, respectively,
qf is the electric charge off , va5va

e , aa5aa
e , with

a5Z,L3 ,R3 , and Ga are the widths of the neutral gauge
bosons. The partial widths of theL3 andR3 bosons corre-
sponding to decays into fermion-antifermion andWW are
given in Sec. XII.

The forward-backward asymmetry in the present case
given by

f

AFB
e1e2→ f1 f2

5
3

4

~12P!(hf ,he
hfheuF~hf ,he!u212P(hf

hf uF~hf ,1!u2

~12P!(hf ,he
uF~hf ,he!u212P(hf

uF~hf ,1!u2
, ~124!
rd

a-
l to
where P is the degree of longitudinal polarization of th
electron beam.

The left-right asymmetry is given by

ALR
e1e2→ f1 f2

5P
(hf ,he

heuF~hf ,he!u2

(hf ,he
uF~hf ,he!u2

. ~125!
e The notations are the same as for the forward-backwa
asymmetry.

In our study we consider also theWW channel, with one
W decaying leptonically and the other hadronically. The re
son for choosing this decay channel is to get a clean signa
reconstruct the polarization of theW’s ~see for example
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@18#!. For thee1e2→WW channel the relevant observable
are

ds

d cosu
~e1e2→W1W2!

ALR
e1e2→W1W2

5S ds

d cosu
~Pe51P!

2
ds

d cosu
~Pe52P! D Y ds

d cosu
,

~126!

whereu is thee1e2 center of mass scattering angle. Assum
ing that the finalW polarization can be reconstructed b
using theW decay distributions, it is convenient to conside
the cross sections forWLWL , WTWL , WTWT and the corre-
sponding left-right asymmetries as additional observab
@19#.
s

-
y
r

les

In thee1e2 center of mass frame the angular distributio
ds/d cosu and the left-right asymmetry read@20#

ds

d cosu
5

p

64pAs H aW4 F 4

MW
2 1p2sin2uS 1

MW
4 1

4

t2D G
12F1p

2F 4sMW
2 1S 31

sp2

MW
4 D sin2uG

1F18F8S 11
MW

2

t D 116
p2

MW
2

1
p2

s
sin2uS s2

MW
4 22

s

MW
2 24

s

t D G J ~127!

and
ALR~cosu!52P
p

64pAs H aW4 F 4

MW
2 1p2sin2uS 1

MW
4 1

4

t2D G12F2p
2F 4sMW

2 1S 31
sp2

MW
4 D sin2uG

1F18F8S 11
MW

2

t D 116
p2

MW
2 1

p2

s
sin2uS s2

MW
4 22

s

MW
2 24

s

t D G J Y ds

d cosu
, ~128!

where

p5 1
2As~124MW

2 /s!1/2, ~129!

t5MW
2 2 1

2 s@12cosu~124MW
2 /s!1/2#.

The quantityaW is given in ~84! and

F15S 2e2s D 21 (
a5Z,L3 ,R3

F ~va
21aa

2!gaWW
2 1

~s2Ma
2!21Ma

2Ga
2 24

e2

s
vagaWW

s2Ma
2

~s2Ma
2!21Ma

2Ga
2G

1 (
a,b5Z,L3 ,R3

aÞb

~vavb1aaab!gaWWgbWW

~s2Ma
2!~s2Mb

2!1MaGaMbGb

@~s2Ma
2!21Ma

2Ga
2#@~s2Mb

2!21Mb
2Gb

2#
, ~130!

F185aW
2 F22e2

s
1 (

a5Z,L3 ,R3
gaWW~va1aa!

s2Ma
2

~s2Ma
2!21Ma

2Ga
2G , ~131!

F252
4e2

s (
a5Z,L3 ,R3

aagaWW

s2Ma
2

~s2Ma
2!21Ma

2Ga
2 12 (

a5Z,L3 ,R3
aavagaWW

2 1

~s2Ma
2!21Ma

2Ga
2

1 (
a,b5Z,L3 ,R3

aÞb

~aavb1vaab!gaWWgbWW

~s2Ma
2!~s2Mb

2!1MaGaMbGb

@~s2Ma
2!21Ma

2Ga
2#@~s2Mb

2!21Mb
2Gb

2#
, ~132!

wheregZWW, gL3WW, andgR3WW are given in Eq.~92!.

The cross sections forWLWL , WTWL , andWTWT are
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dsLL

d cosu
5

p

64pAs H aW
4

16MW
4

1

t2
@s3~11 cos2u!24MW

4 ~3s14MW
2 !24~s12MW

2 !pAss cosu#sin2u1
F1

8MW
4 sin

2u~s3212sMW
4

216MW
6 !1F18sin

2u
1

2t FpsAs cosu 1

2MW
4 ~s12MW

2 !2
1

4MW
4 ~s3212sMW

4 216MW
6 !G J , ~133!

dsTL

d cosu
5

p

64pAs H aW4 1

2t2MW
2 @s2~11cos4u!14MW

4 ~11cos2u!24~4p21s cos2u!pAs cosu12s~s26MW
2 !cos2u24sMW

2 #

14F1s
p2

MW
2 ~11cos2u!12F18

pAs
tMW

2 @cosu~4p21s cos2u!22pAs~11cos2u!#J , ~134!

dsTT

d cosu
5

p

64pAs H aW4 1

t2
@s~11cos2u!22MW

2 22pAs cosu#sin2u14F1p
2sin2u1F18

sin2u

2t
@4pAs cosu28p2#J . ~135!
lt.
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The left-right asymmetries for longitudinal and/or transver
polarizedW can be easily obtained as in Eq.~128! by sub-
stituting F1 by F2 in Eqs. ~133!, ~134!, ~135!, and dividing
by the corresponding differential cross section.

At LEP2 we can add to the previous observables theW
mass measurement, coming from thee1e2→WW channel.
In Fig. 4 we show a 90% C.L. contour plot in the paramet
space of the model. The limits are obtained consideri
As5175 GeV and an integrated luminosity of 500 pb21,
combining the deviations ofMW , sm, sh, AFB

m , AFB
b . For

MW we assume a total error~statistical and systematic!
DMW550 MeV. Forsh the total error assumed is 2%. Fo
the other observable quantities we assume only statist
errors. If the possibility of having polarized beams at LEP
is considered, the improvement with respect to the unpol
ized case is only marginal. Also, considering the option

FIG. 4. 90% C.L. contour on the plane (M , g/g9) from LEP2.
The limits are obtained consideringAs5175 GeV and with an in-
tegrated luminosity of 500 pb21, combining the deviations of
MW , sm, sh, AFB

m , AFB
b .
se

er
ng

r
ical
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LEP2 atAs5190 GeV does not substantially alter the resu
The comparison with LEP bounds~see Fig. 1! shows that
LEP2 will not improve considerably the existing limits. O
course one has to be careful in this comparison, since in
case of LEP we have experimental values, whereas for LE
case the limits are obtained by using deviations from the S
results.

To further test the model is necessary to consider high
energy colliders. We study two options for a high energ
e1e2 collider: As5500 GeV with an integrated luminosity
of 20 fb21 andAs51 TeV with an integrated luminosity of
80 fb21.

In Fig. 5 we present the 90% C.L. contour on the plan

FIG. 5. 90% C.L. contour on the plane (M , g/g9) from e1e2 at
As5500 GeV with an integrated luminosity of 20 fb21 for various
observables. The dashed-dotted line represents the limit fromsh

with an assumed error of 2%; the dashed line near to the preceed
one issm ~error 1.3%!; the dotted line isAFB

m ~error 0.5%!; the
uppermost dashed line isA FB

b ~error 0.9%!. The continuous line
represents the combined limits.
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(M , g/g9) from e1e2 at As5500 GeV with an integrated
luminosity of 20 fb21 for various observables. The dashed
dotted line represents the limit fromsh; the dashed line near
to the preceding one issm, the dotted line isAFB

m and the
uppermost dashed line isAFB

b . As it is evident more stringent
bounds come from the cross-section measurements. As
metries give less restrictive bounds due to a compensa
between theL3 andR3 exchange. By combining all the de
viations in the previously considered observables we get
limit shown by the continuous line.

Polarized electron beams allow to get further limit in th
parameter space as shown in Fig. 6. We neglect the erro
the measurement of the polarization and use a polarizat
value equal to 0.5. The dashed-dotted line represents
limit from ALR

m , the dashed line fromALR
h , and the dotted

line fromA LR
b . Combining all the polarized and unpolarize

beam observables we get the bound shown by the continu
line. In conclusion we get a substantial improvement wi
respect to the LEP bounds, even without polarized beam

The previous analysis has been repeated atAs51 TeV
with an integrated luminosity of 80 fb21. The results are
shown in Figs. 7 and 8.

In Fig. 9 we show a combined picture of the 90% C.L
contours on the plane (M , g/g9) from e1e2 at two values of
As. The dotted line represents the limit from the combine
unpolarized observables atAs5500 GeV with an integrated
luminosity of 20 fb21; the dashed line is the limit from the
combined unpolarized observables atAs51000 GeV with an
integrated luminosity of 80 fb21. As expected increasing the
energy of the collider and rescaling the integrated luminos
result in stronger bounds on the parameter space.

We have then studied theWW final state, considering the

FIG. 6. 90% C.L. contour on the plane (M , g/g9) from e1e2 at
As5500 GeV with an integrated luminosity of 20 fb21 and a po-
larization of 0.5 for various observables. The dashed-dotted l
represents the limit fromALR

m with an assumed error of 0.6%; the
dashed line isALR

h ~error 0.4%!; the dotted line isALR
b ~error 1.1%!.

The continuous is obtained by combining the polarized and
unpolarized observables:sh, sm, AFB

m , AFB
b , ALR

m , ALR
h , ALR

b .
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observables given in Eq.~126!. In Fig. 10 we show the plot
from the combinedWW observables. An angular cut has
been imposed onW scattering angle (ucosuu<0.95) and 18
angular bins have been considered. We have assumed
overall detection efficiency of 10% including the branching

ine

the

FIG. 7. 90% C.L. contour on the plane (M , g/g9) from e1e2 at
As51000 GeV with an integrated luminosity of 80 fb21 for vari-
ous observables. The dashed-dotted line represents the limit fr
sh with an assumed error of 2%; the dashed line near to the pr
ceeding one issm ~error 1.3%!; the dotted line isAFB

m ~error 0.5%!;
the uppermost dashed line isA FB

b ~error 0.9%!. The continuous line
represents the combined limits.

FIG. 8. 90% C.L. contour on the plane (M , g/g9) from e1e2 at
As51000 GeV with an integrated luminosity of 80 fb21 and a
polarization of 0.5 for various observables. The dashed-dotted li
represents the limit fromALR

m with an assumed error of 0.6%; the
dashed line isALR

h ~error 0.4%!; the dotted line isALR
b ~error 1.1%!.

The continuous line is obtained by combining the polarized and th
unpolarized observables:sh, sm, AFB

m , AFB
b , ALR

m , ALR
h , A LR

b .
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ratio B50.29 and a loss of luminosity from beamstrahlun
All these new bounds do not alter the strong limits obtain
using the fermion final state. This is because, as we ha
already noticed, the degenerate model has no strong
hancement of theWW channel, present in the usual stron
electroweak models.

FIG. 9. 90% C.L. contour on the plane (M , g/g9) from e1e2 at
two As values: the dotted line represents the limit from the com
bined unpolarized observables atAs5500 GeV with an integrated
luminosity of 20 fb21; the dashed line is the limit from the com
bined unpolarized observables atAs51000 GeV with an integrated
luminosity of 80 fb21.

FIG. 10. 90% C.L. contour on the plane (M , g/g9) from WW
differential cross section and the corresponding left-right asymm
tries, considering also theW polarization reconstruction. The dotted
line represents the limit fromAs5500 GeV with an integrated lu-
minosity of 20 fb21; the dashed line is the limit fromAs51000
GeV with an integrated luminosity of 80 fb21.
g.
ed
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XV. DEGENERATE BESS AT HADRON COLLIDERS

The e1e2 colliders give the possibility to explore the
neutral sector of symmetry breaking by the production of th
neutral vector and axial vector gauge bosons of the mode
Hadron colliders are complementary toe1e2 machines, in
the sense that they also allow to study the new charged ve
tor and axial vector resonances.

The physics of large hadron colliders has been extensive
discussed in a number of papers~see for example@21# and
references therein!; such a machine will be able either to
discover the new resonances or to constrain the physical r
gion left unconstrained by previous data.

Let us consider first the case in which no new resonance
are discovered. In this case limits can be imposed on th
parameter space of the model. As a preliminary analys
we can consider the total cross section ofpp→L6,W6

→l n (l 5e,m), which has a clear signature and a large
number of events, to be compared with the standard mod
production ofl n. We have calculated the total cross section
pp→L6,W6→l n and, by comparing with the SM back-
ground, we have obtained a contour plot at 90% C.L. in th
two variablesM and g/g9, shown in Fig. 11. The applied
cuts wereuptmu.min(ML6/2250 GeV, 400 GeV! in order to
maximize the deviation of BESS model cross section with
respect to the standard model one. In this analysis we do n
optimize cuts and an improvement is still possible studying
in more detail specific cases. We have assumed a systema
cal error of 5% in the cross section and the statistical erro
obtained considering a luminosity of 1034 cm22s21 ~con-
tinuous line! or a luminosity of 1033 cm22s21 ~dashed line!
and one year run (107 s! at LHC (As514 TeV!. The new
resonances of the model can be discovered directly for
wide range of values of the parameter space of the mode

-

-

e-

FIG. 11. 90% C.L. contour on the plane (M , g/g9) from total
cross section ofpp→L6,W6→l n (l 5e,m). We have assumed a
systematical error of 5% in the cross-section and the statistical err
obtained considering a luminosity of 1034 cm22 s21 ~continuous
line! or a luminosity of 1033 cm22 s21 ~dashed line! and one year
run at LHC (107 s!.
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The discovery limit in the mass of the resonance depends
the value ofg/g9. For example ifg/g950.1, the resonance
is visible over the background at least up to 2 TeV, in th
channelpp→mn.

In Figs. 12–14 we show the differential distribution o

FIG. 12. Differential distribution ofpp→L6,W6→mn events
at LHC with a luminosity of 1034 cm22 s21, for ML65500 GeV,
g/g950.15. The following cuts have been applied:uptmu,uptmissu
.150 GeV. The continuous line represents the standard mo
background while the dashed one is the degenerate BESS m
expectation.

FIG. 13. Differential distribution ofpp→L6,W6→mn events
at LHC with a luminosity of 1034 cm22s21, for ML651 TeV,
g/g950.075. The following cuts have been applied
uptmu,uptmissu.300 GeV. The continuous line is the standard mod
background; the dashed line represents the degenerate BESS m
signal.
on

e

f

events at LHC ofpp→L6,W6→mn in the transverse mo-
mentum of the muon for different values ofML6 and
g/g9. As stated before we choose this channel due to th
clean signature and the large cross section. The events wh
simulated using thePYTHIA Monte Carlo program@22#. A
rough simulation of the detector was also performed. Th
energy of the leptons was smeared according to

DE

E
515% ~136!

and the error in the three-momentum determination was a
sumed of 5%.

In particular in Fig. 12 a spectacular case is presented f
a low resonance massML65500 GeV andg/g950.15. The
total L6 width is GL650.907 GeV, with the corresponding
B(L1→mn)58.531022. The following cuts have been ap-
plied: uptmu,uptmissu.150 GeV. The number of signal events
per year is approximately 128 000, the corresponding bac
ground consists of 51 500 events.

In Fig. 13 we show a case corresponding toML651 TeV,
g/g950.075 andGL650.454 GeV. The following cuts have
been applied:uptmu,uptmissu.300 GeV, andE miss.100 GeV.
The number of signal events per year is approximately 280
the corresponding background consists of 4600 events.

In Fig. 14 we show a case corresponding toML651.5
TeV, g/g950.1, andGL651 GeV. The following cuts have
been applied:uptmu,uptmissu.400 GeV, andE miss.200 GeV.
The number of signal events per year is approximately 85
the corresponding background consists of 1500 events. T
statistical significance of the signal isS/AB522.

Notice that the reconstruction of resonance mass requir
a careful study of the experimental setup, due to the sma
ness of the resonance width.

del
odel

:
el
odel

FIG. 14. Differential distribution ofpp→L6,W6→mn events
at LHC with a luminosity of 1034 cm22 s21, for ML651.5 TeV,
g/g950.1. The following cuts have been applied:uptmu.400 GeV,
uptmissu.400 GeV. The continuous line represents the standa
model background while the dashed line is the degenerate BE
model expectation.
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In this preliminary study we did not consider the produ
tion and decay of the corresponding neutral resonances of
model.

XVI. CONCLUSIONS

We have discussed an effective theory describing n
vector and axial vector resonances within the scheme o
strong electroweak breaking sector. We have shown that
model has a symmetry which is larger than the one reques
by construction. No Higgs particles are required in this e
fective theory, and moreover the enlarged symmetry guar
tees that even with a relatively low energy strong ele
troweak resonant sector, the severe constraints coming f
experimental data, in particular from LEP, are respected.

The new vector and axial vector particles are degener
in mass~at the leading order! and their virtual effects are
suppressed. In the low energy limit (M→` with the gauge
coupling of the new resonances fixed! the new particles
are decoupled due to the extended symme
@SU(2)^SU(2)#3 and we classically obtain the effective
Lagrangian of the standard model. If we parameterize
deviations from the SM at low energy in terms of thee
parameters, we obtain a deviation from the standard mo
values only in the next-to-leading order, with a double su
pression factorMZ

2/M2 and (g/g9)2.
A well known feature of the usual strong interacting mod

els is the relevance of theWW final state. Our model is in
this respect different, as theWW final state is on the same
footing with the fermionic final state. The reason is that th
longitudinal parts of theW’s, related via the equivalence
c-
the

ew
f a
the
ted
f-
an-
c-
rom

ate

try

the

del
p-

-

e

theorem to the absorbed Goldstone bosons, are decoup
from the new resonances. This is due to the absence of co
pling betweenU andL, R ~see Sec. II!.

For what concerns virtual effects of the new resonance
the model has almost no deviations at low energy with re
spect to the SM. The situation is completely different if th
direct production of the new resonances is considered. Th
will be possible with the next generation of colliders.

In the case ofe1e2 colliders, LEP2 will not improve the
existing bounds from LEP and Tevatron. A substantial im
provement can be obtained from higher energy electro
positron colliders, even without considering polarized
beams. The most stringent bounds come from cross-sect
measurements, while asymmetries are less restrictive due
compensations between the two neutral resonances.

High energy hadron colliders, such as LHC, will allow
one to study also the new charged resonances. If the n
particles are not discovered, stringent bounds on the mod
can be imposed by the study of cross sections aspp→l n, in
a way similar to the one in which bounds are searched for
Tevatron. The direct observation of the new resonances
possible in a wide window of the parameter space of th
model, up to the TeV range, in some case with a spectacu
number of events over the background.
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