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We discuss possible symmetries of effective theories describing spinless and spin-1 bosons, mainly to
concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak
sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting
bosons may possess a discrete symmetry imposing degeneracy of the two sets of(édegensrate BESS
mode). In such a case its effects at low energies become almost invisible and the model easily passes all low
energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling,
contrary to models with only vectors. For large mass of the degenerate spin-one bosons the model becomes
identical at the classical level to the standard model taken in the limit of infinite Higgs boson mass. For these
reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations,
and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is
conceivable that degenerate BESS has low mass spin-one states and gives quite visible signals at existing or
forthcoming accelerators.

PACS numbes): 12.60.Cn, 11.15.Ex

I. INTRODUCTION It will be a formal expedient to consider the new vector
and axial vector fields as gauge bosons of a local symmetry
In a first part of this work we shall give a general discus-H’, which is spontaneously broken. The local symmetry
sion of possjble _properties of low-energy effective theorieg_w is usually referred to as hidden symmefty3]. The spin-
which describe light pseudoscalar mesons, vector and axigye hosons acquire their mass, in this description, by absorp-
vector mesons, such as, for instance, the bosonic sector ghy, of the would-be Goldstone bosons related to the sponta-
low-energy QCD. Indeed QCD itself may be a testing,q, g preaking oH’. Indeed the peculiar feature of this

Cifecive theories to be ciscussed. However aur main teraPPOaCh is the explicit presence of these modes. The sym-
i metry group gets enlarged @ =G®H', whereG is global

here will not be QCD, but rather an alternative possible ; . ; ,
specification of the low energy theory which may be relevan ndH’ local. The diagonal subgroup ¢f@H' (H'2H),

for an effective description of the phenomenology arising’omally isomorphic toH, is calledHp and it is the invari-
from schemes of strong electroweak breaking. ance group of the vacuum.

The bulk of this work will be devoted to the formulation ~ We shall mainly consider the casé&s=SU(2),
of such a highly symmetric form of low energy effective ® SU(2)z, H'=SU(2) ® SU(2)z, and Hp=SU(2),,
theory and to the derivation of the very remarkable elecwhereHp is the diagonal SU(2) subgroup Gf'. The group
troweak phenomenology that it would originate. In a simpleG’ breaks down spontaneously iy, and gives rise to nine
model one would think of Goldstone bosons absorbed to giv&oldstone bosons. Of these, six are absorbed by the vector
masses t&W andZ and, in addition, vector and axial vector and axial vector bosons, which are triplets of SUf2)'he
resonances as the most visible manifestations at low enerdiiree Goldstone bosons remaining in the spectrum are mass-
of the strong interacting sector. less, at least as long as a part®is not promoted to a local

We shall callG the symmetry group of the theory, spon- group. This situation is discussed|i#i] for QCD and in[4]
taneously broken, of which the pseudoscalars are the Goldr the context of dynamical electroweak symmetry breaking.
stone bosons. The vector and axial vector mesons will trans- The detailed study of the symmetries of the effective
form under the unbroken subgrotip of G. In the sense of theory shows however that in special cases the resulting
the method used by Callan, Coleman, Wess, and Zumineymmetry can be larger than the one requested by the con-
(CCW2) [1] the vector and axial vector mesons can bestruction. For particular choices of the parameters, a maxi-
treated as matter fields. mal symmetnyf SU(2)® SU(2)]2 can be realized for the low
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5202 R. CASALBUONI et al. 53
energy effective Lagrangian of the pseudoscalar, vector, andances we shall also discuss their direct production. To this
axial vector bosons. Two choices are possible. One can bam full couplings to fermions and the trilinear couplings
seen as the natural generalization of the vector symmetry agimong the physical bosons are needed; physical quantities
Georgi[5] for the case when axial vector mesons are alsanust be carefully identified by renormalizing the occurring
included in addition to the vector mesons of the vector sym-expressions and choosing the electric chargeZtheass, and
metry; this choice has been considered in Réf. the Fermi constant as physical inputs. Our phenomenological

The second choice is the one on which we shall focuspplications include discussion of the properties of the heavy
here. In this case the subgroup SURU(1)yCG resonancegmasses, partial widthsand studies of their ef-
=SU(2).® SU(2)g is promoted to the local Weinberg- fects at Tevatron, a&*e~ colliders, and at hadron colliders.
Salam group. It may be useful in relation to schemes offhe Tevatron limits oW’ can be used to limit the parameter
strong electroweak breaking. In fact it has the interestingpace of degenerate BESS. A feature of degenerate BESS, as
feature of allowing for a low energy strong electroweak resocompared to BESS with only vector resonances, comes from
nant sector while satisfying at the same time the severe cofhe absence of direct coupling of the new resonances to the
straints from low energy experiments, particularly from thejgngitudinal weak gauge bosons. This implies larger widths
CERN e”e” collider LEP or the SLAC Linear Collider jnto fermion pairs as compared to widths into pairs of weak
(SLC). As such it offers possibilities of experimental test gauge bosons. Comparison of the limits one can get from the
even with future or existing machines of relatively low en- Collider Detector at FermilaCDF) to those from LEP
ergy. The phenqmenol_ogical implications will be a SUl:)S‘tan'shows that CDF is more efficient in limiting low resonance
tial part of our discussion below. masses while LEP is more efficient for larger masses.

The type of realization of the maximal symmetry o .
[SU(2)® SU(2)]® on which we shall focus in this work au- 1€ Sensitivity of degenerate BESS at LEP2 and higher
energy linear colliders will be discussed by comparing cross

tomatically implies degenerate vector and axial vector me : L S ;
sons which have the property of not coupling to the pseudog,ectlons and asymmetries in the fermionic pair channels and

scalars. The model, after introducing the gauge couplings of/ W channel between the model and SM. For LEP2 the gen-
the electroweak vector bosons, will be called degenerat§@! conclusion will be that the bounds on the model would
BESS (BESS stands for breaking electroweak symmetryot be much stronger that those from LEP. Substantial im-
strongly. We shall study in detail its phenomenology. We Provements are expected from a 500 Ge\e™ collider for
stress immediately its main property and what makes it s@0 fo~*, even without beam polarization. TRéW final state
attractive: in degenerate BESS, also when extended to @oes not contribute in an important way to the attainable
larger initial symmetry[for instance, SU(8) in place of bounds which come essentially from the fermion channels
SU(2)], one generally derives that all deviations in the lowalone(this is a characteristics of degenerate BESS, as already
energy parameters from their standard mo@®W) values said. Hadron colliders would be complementary éde™

are strongly suppressed. This would make it possible that eolliders and hopefully will allow for direct study of the new
strong electroweak sector at relatively low energies existgesonant states. For instance, a charged resonance with mass
within the precision of electroweak tests, such that it may bef 500 GeV could give at the CERN Large Hadron Collider
accessible with existing acceleratgfermilab Tevatronor  (LHC) a spectacular signal. Higher masses up to 1.5 TeV
with accelerators in construction or projected for the neakyoyld still give significant signals. Degenerate BESS would
future. In fact one can sho_w that the Lagrangian of degenely, ;s pe comparatively much more evident than ordinary
ate BESS becomes identical to that of the standard mOd%ESS, and probably than any other strong electroweak

(ﬁxczpt for the Higgs sect)()jfor ;ulfﬂmently large masls th model not sharing its peculiar symmetry properties.
the degenerate vector and axial vector mesons. In Other |, gec |1 we recall briefly the effective Lagrangian for-

words, different form ordinary BESE], where such a high .malism we employ in describing vector and axial vector

(rjnass decoupling is not satisfied, the decoupling occurs Pesonances. In Sec. Il we introduce the Lagrangian describ-
egenerate BESS.

The decoupling theorem valid for degenerate BESS rei_ng our model with extended symmetry of degenerate vector

quires an accurate study of the contributions of momenturffi’md axial veptqr resonances. ',n Secs..IV—VII we consider the
dependent terms to virtual effects of the heavy particles. OnW €nergy limit of the model, integrating out the new vector
can then evaluate such virtual effects for LEP and Tevatron2nd axial vector bosons, both considering the leading order
and subsequently examine what modification of the trilinea@nd the next-to-leading order. Implication for the LEP ob-
gauge couplings may be visible at higher eneegg~ col- servables are derived as well as other virtual effects of the
liders. The discussion requires careful redefinition of theheavy particles that may be relevant at low energy. In Secs.
physical constants in terms of the parameters of the effectiv¥lll-X we consider the possibility of direct production of
Lagrangian. As well known, in the low energy limits one canthe heavy resonances, so the predictions of the complete La-
parameterize the modifications due to the heavy sector igrangian of the theory are derived, such as mass formulas
terms of three independent parameteds |, Ak, Ap, or  and eigenstates of the new particles, fermionic, and trilinear
equivalentlye;, €,, €3). Radiative corrections have also to couplings. In Sec. Xl the physical quantities of the model are
be taken into account. The result of this analysis, that wedentified with the usual renormalization procedures. In Sec.
shall present first, shows that in degenerate BESS relativel}{Il width formulas of relevance in the study of the model are
light resonances are indeed compatible with the electroweatterived. In Secs. XIII-XV we discuss the phenomenological
data, as given by LEP and Tevatron. implications of the model at present and future high energy
Besides studying the virtual effects of the heavy reso-accelerators.
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Il. EXTENDED VECTOR-AXIAL SYMMETRY 1 1
“%/kin:Ftr[F/Lv(L)]z_'— Wtr[FMD(R)]Z, (7)

Let us consider the following group structure:

G=SU(2).®SU(2), H'=SU(2).®SU(2)r and  whereg” is the gauge coupling constant for the gauge fields
Hp=SU(2)y, as already stated in the Introduction. The ninel. and R,.

Goldstone bosons resulting from the spontaneous breaking o

G'=G®H’ to Hp, can be described by three independent Fuo(L)=d,L,—d,L,+[L,,L,] 8
SU(2) elementst, R andM, transforming with respect to .
G andH' as and the same definition holds fér,,(R). In Eq.(3) v rep-

resents a physical scale related to the spontaneous symmetry
L'=g,Lh_, R'=grRhg, M’=hJFQM h, (1) breaking of the theory, depending on the particular context
under investigation.
with g re G andh_ ge H'. Moreover we shall require the  The quantitied/*(i=0,1,2) are invariant under the global
invariance under the discrete left-right transformation, desymmetryG and covariant under the gauge grodp:
noted byP:
(V&) =h{VEh,. 9
P: L&R, MeMT, )

. ) ) Using theV} one can build six independent quadratic invari-
WhICh ensures that the low energy theory is parity conservants "which reduce to the four listed above, when parity
Ing. _ _ conservation is required.

If we ignore the transformations of Eq@l), the largest For generic values of the parametars a,,as,as, the
possible global symmetry of the low energy theory is give”Lagrangian%’ is invariant unde’ ® P=G&H'® P. There

by the requirement of maintaining for the transformed vari-5.6 " nowever special choices which enhance the symmetry
ablesL’, R" andM’, the character of SU(2) elements. group[6].

The maximal syr;]metry_ Is given Dby the group = The case of interest for the electroweak sector is provided
Gmax=[SU(2)®SU(2)]", consisting of three independent py the choicea,=0, a,=as. In order to discuss the sym-

SU(2)®SU(2) factors, acting on each of the three variableSyetry properties it is useful to observe that the invariant
separately. It happens that, for specific choices of the paramen pe rewritten as

eters of the theory, the symmet@’ gets enlarged to

Gmax- l1=—tr(d,UTo*U) (10
The most generdb’ ® P invariant Lagrangian is given by
[4] with
. U=LM'R’ (11)
;(,/J’G:__[a1|1+32|2+a3|3+a4|4] (3)
4 and the Lagrangian becomes
plus the kinetic terms”%,;,. The termsl; (i=1,...,4) are 02
given by ,,%Gzz{altr(aﬂuwuwr 2ay[tr(D,LTDAL)
— _ _ 2
=t (Vo= V1= V2)7], +tr(D,,R'D*R)]}. (12
L=t (Vo+V2)?], Each of the three terms in the above expression is invariant

under an independent SU(@BU(2) grou
|3=tl’[(V0—V2)z], p T ( S ( )g p
U'=w Uwg, L'=gLh, R'=ggRhz. (13
I4=tr[V§] @ L R LLi rRRMR
Moreover, whereas these transformations act globally on the
and U fields, for the variabled andR, an SU2) subgroup is
local. The overall symmetry i$G,=[SU(2)®SU(2)]3,

“—| tpur
Vo=L"D"L, with a partH' realized as a gauge symmetry.
VE=MTDAM The field redefinition from the variablds, R, andM to
1 ' L, R, andU has no effect on the physical content of the
LM RTD~ theory.
Ve=MI(RIDIR)M. ® The extra symmetry related to the independent transfor-
The covariant derivatives are mation over theJ field can also be expressed in terms of the
original variableM. Indeed the Lagrangian of E¢3), for
D,L=4d,L-LL,, a,=0, a,=a3, possesses the additional invariance
D,R=3,R-RR,, L'=L, R'=R, M'=QgMQ/[, (14)
D,M=¢,M-ML,+R,M. (6)  with

The kinetic term is Q. =LTw L, Qgr=RTwgR. (15)
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By expanding the Lagrangian in E(B) in powers of the We have used tilded quantities to remember that, due to
Goldstone bosons one finds, as the lowest order contributiothe effects of the. andR particles, they are not the physical
the mass terms for the vector and axial vector mesons:  parameters and fields. In the next sections we will derive the

relations between the tilded quantities and the physical ones.
It is natural to think about the model we are considering
as a perturbation around the SM picture. The SM relations
(16)  are obtained in the limi”>g,g’. Actually, for a very large
o ] ) g", the kinetic terms for the fields,, andR,, drop out, and
where the ellipsis stands for terms at least Ilnear in th.e Gold~, reduces to the first term in E@L9). This term reproduces
stone modes. The mixing between andR, is vanishing,  precisely the mass term for the ordinary gauge vector bosons
and the states are degenerate in mass. Therefore, in the fQl he SM, provided we identify the combinatiafa, with

Ig).wmlg WebW'” r.‘?]t \évgk W|:thvector and aX|aII\Xector COM- " 1/(2G¢), Gg being the Fermi constant. Therefore in the
inations but with the. , andR,, components. Moreover, as following we will assumd4]

it follows from Eqg. (12), the longitudinal modes of the,,
andR, fields are entirely provided by the would-be Gold- a;=1. (22)
stone bosons il andR. This means that the pseudoscalar

particles remaining as physical states in the low energy sped=inally let us consider the fermions of the SM and denote
trum are those associatedo They in turn can provide the them byy, andyr. They couple td. andR via the mixing
longitudinal components to thé&/ andZ particles, in an ef-  with the standardv andY :

fective description of the electroweak breaking sector.

2
[
Zo=— glagtr(L,+ R, )*+aptr(L,—R,)?]+ -,

_ - i ~
L — e T Ak _(R—

Il. THE DEGENERATE BESS MODEL Frermion= Y1 ¥"| Gt W 5 (B L)Y*‘) n
We now consider the coupling of the model to the elec- —
troweak SU(2)®@U(1)yCG=SU(2).®SU(2)x gauge + YRl Y*

fields via the minimal substitution

~ i ~
A, +Y ,+ E(B_ L)YM> Yr, (22

DMLHDML+VV L whereB(L) is the baryon(lepton number, and

~ Py
D,R—D,R+Y ,R, lp:(l/ld ) (23
D,M—D M, 1 " . .
w7 (7 In addition, we also expect direct couplings to the new vector
where bosons since they are allowed by the symmetriesZdi7],
but, for simplicity, this possibility will not be considered
~ T = o 7 here. In order to have canonical kinetic terms for the gauge
W =W, 5 Y u=Y 7, fields one needs to perform the following rescaling:
W,—GW,, Y,—G'Y,, L,—g'L,/\2, R,—~g'R,/\2.
2 2 This transformation defines the couplings of the fermions
Lu:”—if' RM:|R;‘1§, (18 [see Eqg. 22
with 72 the Pauli matrices. IV. THE LOW ENERGY LIMIT
; ; ; ; ; a
By introducing the canonical kinetic terms v, and We want to study the effects of te andR particles in
Y, we get the low energy limi{8]. This can be done by eliminating the
v2 L andR fields with the solution of their equations of motion
P=— Z[altr(w =Y M)2+ 2a,tr(W M_L#)Z for M| g—. In fact, in this limit the kinetic terms of the

new resonances are negligible. Neglecting electromagnetic
corrections the common mass of the resonances is given by
M2=a,(v?/4)g"?.
1 The M— limit can be taken in two different waysve
ka(vv ,?,L,R)thr[FW(VV)F (VT/)] consider_u fixeq to its exp_erimental valt)g by sending
2 mv " n
2 g”"—o0 with a, fixed or by fixingg” and sendin@,—<. In
the first case thé andR bosons trivially decouple. We will

+2a,tr(Y ,—R,)%+ Z"(W Y L,R), (19

1 S ~ now show that also in the second case we have decoupling
+ Zglztr[':# (YIF(Y)] due to the extended symmefrgU(2)® SU(2)]3.
Let us solve the equations of motion forandR in this
1 limit. We get
+ Wtr[F’”(L)FW(L)]
1 L,U-:W M
_ nv ~
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where the last equation means that only the third isospiWe see that all the corrections to the SM Lagrangian depend
component oR is different from zero. By substituting these on the value of the parameter In the case we are consid-
equations in the total Lagrangiasee Eqs(19) and(22) for ering,a,=0, a,=as, we havez=1, so the corrections van-

the case of SU(2)we get ish. Notice that the requirement1 implies onlya,=0, so
the corrections would be zero also fag#as, but in this
v - ~ o, 1 - - case we would not have an enlargement of the symmetry and
Lett= = 7 W(W =Y ) 2_§2tr[FW(W JF (W] correspondingly there would be no protection from radiative

corrections. The corrections would vanish also #ef —1
1 B _ 1 _ _ but again this case does not correspond to an extra symme-
+ —SUFR(Y )F (Y ) 1+ ot FA7 (W F (W) Try- _ _ o
29’ g We note that the decoupling remains also valid in the
1 general case of an extended symmdt8U(N)®SU(N)]3
+ vy )+ % provided of a suitable redefinition of the SU(Z)U(1)y
QTZU[F (VI kY )]+ Zrermion @ gauge coupling constants. When $U& SU(N)DSU(3)
] o and one considers also the SU{3) gauging, a redefinition
From Eq.(25) we see that the effective contribution of the of the strong gauge coupling constagtis necessary as well.
L andR particles give additional terms to the kinetic terms This happens for instance in the model considered in Ref.
of the standardV andY . By the following redefinition of [9]. In the case of an extended symmetry

the coupling constants, [SU(8)®SU(8)]° we find
1 1 N 1 1 1 1
29° 252 9" Ezzz_gﬁw'
1 1 1 1 1 51
2 2= ~,2+721 (26) s=——+= =3
g 29 g 2gr 2.-g..,2 3 g" ,
the effective Lagrangian becomes identical to the one of the
SM (except for the Higgs sectpshowing the decoupling of i+ 1 , (30)
2 ne -

the theory in the limitM —co. In fact in this case the rescal- 493 432 29
ing which makes the gauge fields canonicalWg—gW,,,

Y ,—9g'Y,, with g andg’ defined in Eq.(26). Obviously
the gauge couplings to the fermions will peandg’ [see Eq.
(22)]. Let us comment about this fact. If one starts from the
most general Lagrangian, E(), gauged according to Eq. Since the degenerate BESS model is indistinguishable

(17), in the limit M—« the solutions of the equations of from the SM at the leading order in the low energy limit

V. THE LOW ENERGY LIMIT, NEXT-TO-LEADING
ORDER

motion forL andR are (M—®) let us consider the solution of the classical equa-
tions of motion for thel andR fields by retaining also terms
LM:%(1+Z)W ot %(1_2)\7;&' of the orderg?/M?2. As in Sec. IV we will eliminate the
andR fields with the solutions of their equations of motion
. ~ . ~ and we will consider the virtual effects of the heavy par-
R,=2(1-2)W ,+ 3 (1+2)Y ,, (27 ticles. We will study the effective theory by considering the
. limit g”—o0 with corrections up to order (47)2.
with Let us solve the equations of motion forandR in this
limit. We get
as
Tastar 0 L=l1- 2 |W o+ aL
. . . . v MZ v v
By substituting in the Lagrangian
2 1 1 R 219 4R (31
v IRV S B 2 e R irys 7 v
Fo= 4tr(w WY ) 7 + 29,,2(1+z ) M
with

Xt FA/ (W )F (W )]+

B 1422
— z
57 2g2(1+7) N P T T

AL =15 (070, W #=3,[W * W "]=[W , F#/(W)]),

Xt FA (Y )F, (Y )]+ %(1—#)

1 -
~ ~ - AR"=—%(9"d,Y ), 32
XULFA(T ) (W )]+ Ziemion 29 Wz (70X ") %2
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where the equation foR means that only the third isospin The corrections tdZgy, are U(l)aminvarignt and produce
component of the field is different from zeralL, and a wave- -function renormalization &, Wi plus a mix-
AR, contain linear terms proportional to the divergences ofing termA Zu We will absorb these correctlons by a
the fields andAL, contains also bilinear and trilinear terms convenient redefinition of the fields. Actually there are only
which do not affect the Self-energles and contribute to tthree renorma“zaﬂon transformations of the fields

anomalous trilinear and quadrilinear couplings. _ A, Z W without changing the physics. This means that
We will examine the virtual effects of the andR fields  ee of the four deviations, ,z, ,z,,z,,, are nonphysical.
on the observables. In particular, in the next section, we will 1 identify the physical quantltles We define new fields in

focgsf on the %hys'cs a; LEP and Tevalltron ﬁl‘or WE'Ch trl‘fe'such a way to have canonical kinetic terms and to cancel the
modifications due to the heavy particles affect the selfy o termA,~Z, . They are

energies only. After we will discuss the modifications in the
trilinear gauge couplings which will be studied at future

e*te” colliders. ~ z,
To discuss the LEP physics we neglédt , andAR,, in Au=|1- 2 1- M Autzy |1 M2 Zys
the solutiong31). By substituting in the Lagrangiaid9) we
get, for the bilinear partneglecting again divergences of the _
vector fields, ~ Zy M\ZN O N
1 1 WM_ 1—? 1+W_W WM'
L == 7 (AHZ) AL A= S (142 Wy W
~ z M2 O]
1 - = 1 z=1——z(1+———)z : (36)
—7(1+2)Z,, 7"+ EzzyAWz VL W’”W ~ 2 M2 M2?) |7

Z OZwr 4 yA COAKY Working at the first order in M2 and in 18”2, we do not
2 m 2 " make distinction in the coefficients of these parameters be-
tween “tilded” and physical quantities. By substituting in

(33 (33 we get

1...2....”...
+§MZZ Z,+ M2

-2z,.Z,,0A*"+ 2, W+ OW#*

Zye-uv

where o 1 R T
L= g AA — S W W
_ 1
W, =— (W, FiW,), 2
y23 ~ —
V2 4ZWZ/“’+M\2N 1-z7,| 1+ |v|2 WA W
W :S(’A#+CHZM, 1~2 M% ;
~ o~ ~ +§MZ 1-z, 1+W Z Z’u. (37
Y/.L:CG M_SGZ/-L’
€=05,=0'Cy, From which we obtain the values of the physical masses
2
—~ v°__
M\%v:zgzy , M3,
MW MW 1-z, 1+ W
_ W2
MZ=—-, (34) 5
Cy 2_172 Mz
= MZ:MZ 1_22 1+W . (38)
0,,=4,0,-d,0,, (O=W~,A,Z), and
7 =482 9 2 S 9 ? The field renormalization affects also all the couplings of the
Y Ng'| ' W g’’’ standard gauge bosons to the fermions. By separating the

charged and the neutral fermionic sector and substituting Eq.

1+c2,( g2 Sy g\? (36) iN Ziermion given in (22) we get
z, C2 a , Zzyz - 2C—029 - (35)
0 0 g

Notice thatg,g’,e,S,,C, have the same definitions as in the gehaged. ___—_y ou ‘/’u[
SM. As stated before, due to the effects of theand R ¢ \/— 'S

particles, these are not the physical quantities in our model.
In Eq. (35) we have not used the tilded quantities since these

X
parameters are already of the order ofg()f.

MG O
1+W_W>

W, +H.c., (39
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VI. CALCULATION OF THE € PARAMETERS

neutral_ _i - 3 1- Y5 _C_9 _%
el - 3,C, VY Ti— Q"s%(l '§0227 VY Let us now discuss how the effects of theandR modify
the observables measured at LEP and Tevatron.
z, M2 O Since, in our model, the modifications due to heavy par-
XY=\ 1+ 2= w2 4w ticles are contained in the propagators of the standard gauge
bosons(the so-called oblique correctionsve can apply the
_ ( . 0 ) analysis made in terms of theparameter$10].
Yy Qull— L 1— —| |A,, (40) Let us start from théM,, measurement. It is customary to
2 M g define
with the standard definitions M2 2
S =cZ1- —ZAr } (46)
2 B-L [ i |
Q=+,
2 2 _ o~
From the relatiorM,=M3¢% we get
3
T= g, Tevr=0, (41) ME M2 M\ZN)
M% cyl1+z| 1+ M2 Z,| 1+ M2
and (1, operates only on th& field. > 5
The physical constants as the electric charge, the Fermi _ i(z a1+ M2 } 47)
constant and the mass of tde which are the input param- Cog\ 7 7 M2
eters for the physics at LEP, must be redefined in terms of
the parameters appearing in our effective Lagrangian. Theo, for comparison,
physical mass of th& is given in Eq.(38). The physical
electric charge is defined at zero momentum, then, from Eq. Cog M3\ ¢35 2
(40), Arw=z,+ ST(;ZW 1+ MZ ggzz 1+ w2 = X, (48
e:"e'( 1— %) (42)  where in the second equality we have used B§) and
- N MZ(g)|?
The Fermi constanGg, is defined from theu-decay pro- xzz_z(_”) (49)
cess, again at zero momentum. Since the charged current M

coupling [see Eq. (39] is modified by a factor _ _
[1—2z,(1+M2/M?)/2] and theW mass is given in Eq:38) The neutral current couplings to tieare defined by
we get

neutra)] € Ap T “w
M2 zn tZ)=—; 1"’7 Z, YLy gyt v ysgaly,
B 1-2,| 1+ —7 e
N (50
2 MZ, -
ER2M2| 12, 1+ —» with
T3
2 2 2
€ MZ gV___ l
— _ _< 2 o
§%5§M§ 1-z,| 1+ M2 +z,, (43
T3
where in the second equality we have used E&4), (38), ga=— —L,
and (42). Finally, we defines, andc, by equating the last 2
expression to the one in the SM(ree leve: 5
Gr/\2=€?/(8s2c2M2). We get ;= (1+AK)sj. (51)
M2 By using Egs(42) and (44) we get
ST Liz| 14 E| -, e O WSMOEEEZAand@ameg
. I Y Y Mg” (52
that is SICr 3,8, 2 M2/ |
2 2
Cy Mz 2 . . . .
ng“sﬂa 1+ _(Zz 1+ M2 -z,]|ch For comparison with Eq40), and using Eq(35), we obtain
26
2 2 M2 ci+s)
S M z 0T >0
=73 1—0—‘9(2Z 1+WZ -z, (45) Ap:_ZZW:__Z_c,, X, (53
20
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2 All these deviations are of ordet which contains a double

suppression factav %/M2 and @/g”)2. These are the same

results one obtains from the definitions of teparameters
2¢2s? in terms of the self-energigd.1,6]. In the M — oo limit, the

- X. model decouples, as already noticed in Sec. VI, anditige

to zero. The fact that in the degenerate BESS meglelO in
Summarizing, we have the following correspondence bethis limit, follows from the SU(2)® SU(2)g custodial sym-

tween corrections and observablesr,, is equivalent to metry[12].

M,/M which is measured at Tevatroak modifies the The sum of the SM contributions, functions of the top

vector couplingg,, and Ap modifies the neutral coupling quark and Higgs boson masses, and the previous deviations

overall strength. At LEPAk can be obtained by measuring has to be compared with the experimental values forethe

the forward-backward asymmetry at tAepeak. Then, hav- parameters, determined from the available LEP data and the

ing fixed Ak, Ap can be determined by the leptonic width. My measurement from Tevatrga3]:

All these quantities receive contributions also from weak ra-

2

Co
Ak=—
Cog

2,77, 1+ =5

Cag

diative corrections. In particular they depend quadratically €1=(3.48-1.49 X103,

from the top mass which is still affected by a large error.

From the point of view of data analysis it turns out to be €,=(—5.74.19x 1073,

more convenient to isolate such contributionAp and de-

fine two other linear combinations which depend only loga- €3=(3.25+1.40 X 10" 3. (56)

rithmically on m,,. They are the so-called parameters

[10]: Taking into account the SM valuese)gy=4.4x10"3,
(e2)su=—7.1X1073, (e3)su=6.5x10"% for my,=180

€,=Ap, GeV andmy=1000 GeV, we find, from the combinations of

the previous experimental results, the 90% C.L. limit in the
plane M,g/g”) given in Fig. 1. We see that there is room
for relatively light resonances beyond the usual SM spec-
trum.

2
2 So 2
€,=CoAp+ —Ary—2sAK,
C20

€3=C5Ap+CypyAk. (54)

. VIl. ANOMALOUS TRILINEAR GAUGE COUPLINGS
Using Eqgs.(48) and(53) we get

4 2 Let us evaluate the anomalous contributions to the trilin-
_ Gt SaX ear gauge couplings at the ordg®/M?. As previously ob-
€1 c§ ’ served, sincdR,, in Eq. (32) does not contain bilinear and
trilinear terms, the elimination of thR field does not give
€= —ch, any contribution to the anomalous trilinear and quadrilinear
terms.
e3=—X. (55) Substituting the solution&31) in Eq. (19) we get

. _ _— o~ o~ _— o~ o~ _ o~ z _— o~ o~
SR = —iG] (14 2,) (WS W AW+ WEE(W, W — W W) — M—Wz[(D3+ O_+0,) (W3 WHew—
+WBH(W, W= W W)+ (9,0 W) (8, ") WP+ (3,04W3) (9" W YW — (d,0W, ) (3, W3")W*P

+(3,0°W,,) (" WBY W — (9,04W,, ) (3" W' P)W3+(3,0W, ) ("W ") W3—H.c)]|, (57)

where we have used the notatibh, to denote the action of the D’Alembert operator on the fi%gniwe have freely
integrated by parts. This result has been independently checked by evaluating directly the W&~ coupling as
coming from the mixing. —W (see Fig. 2 and expanding the propagators of thdields up to the ordeq®/M?.

The physical vertices are obviously obtained by substitutirdytdts expression in terms of the photon and théelds and
by performing fields and couplings renormalization according to Sec. V.
Since the physical process which is relevant for studying the trilinear gauge coupliegieis=W*"W~, we have

d MWi"= 0 (58
because the findlV's are on shell. Also

3,Z"=3,A*=0 (59)
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because th& and the photon are coupled to light fermions. Therefore we can neglect all the divergences of the fields in Eq.
(57) and we get

Z; M% ZWDJr_'—M\ZN ZWD*—‘_M\ZN ZZDZ—’_M%

<« _=_ = _ " __£ 2%V + v - wt + mw—
2020 MZ 2 MZ 2 M2 2 MZ [Z W,u,Wv +Z (W,U,VW W,uVW )]

K =je ctgh| 1+

NA/\WW T v — + -
[AW, W+ AY (W, WAEF —WE WET)]. (60)

1—

, z,0.+M§ z,0_+M§ [z,
+ie 5

A

— —_— Z —

2 M? NV E 2 W) M2
We see that the tensor structure of this correction is the same of the trilinear couplings in the SM.

In the study of the reactiore"e”—W*'W~ at linear colliders, the structure of the corrections is of the form

(A+B/M?s), that is we have nontrivial form factof44]. However, notice that the electric charge of Weés as measured by
the coupling with the photon, turns out to be correct, being defined at zero transferred momentum and Withaheshell.

VIIl. MASSES AND EIGENSTATES OF SPIN-1 BOSONS

Up to now we have been interested in the virtual effects only. In the following we will consider also the possibility of
producing directly the heavy resonances. Therefore we need to keep explicitly the corresponding fields in the formalism.
By writing the quadratic part of#, given in Eq.(19), in terms of the charged and the neutral fields one finds

2
v e~ |~ ~ ~ ~, ~ - ~ o~ ~ o~
;%(2)=Z[(1+2a2)92WZW‘“+azg”2(L;LM‘+R;R“‘)—\/Eazgg”(WZL”‘+W;L“+)]

2
+ (14 22,) (GPW2+ G V) + a,0"2(L2+ R2) — 256G Wa, V4 — 2\2a,0" (GWLE+G' Y RE 61
g [(1+2a,)(g°W5+9"7Y%) +2,0" (L3 +Rs) — 299" W3, a,9"(gWsL5+0'Y,R5)]. (6D

The reason to introdude andR is to distinguish them from We will parameterize the model in terms gf and M.

the mass eigenstates. The mass matrix in the charged sectﬁv,f:) is
In the charged sector the field&" are unmixed for any
value ofg”. Their mass is given by X2 X
1%
2 M2 =—0° (63
2 v "o charged™ 4 ’
M= a0 2=M2, (62 _\/E? %
glg" where
200 800 1400 2000
——————————————— 0.5 = 2 52
] g v™ g
X v r= W2 (64)
4 04 _
At the orderx? the eigenvalues are
4 0.3
-1 02
-1 0.1
oo L L L g
200 800 1400 2000
M(GeV)

FIG. 1. 90 % C.L. contour on the plan®( g/g”) obtained by
comparing the values of the parameters from the degenerate
BESS model with the experimental data from LEP. The allowed FIG. 2. Feynman diagram contributing to the anomalous trilin-

region is below the curve. ear gauge coupling.
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) UZ~2 X2 We then finally obtain
M= 1-27-+-|, ) , ,
v@ Ul G2izs Y G- 2
M2 B Uz.g.z s X2 N . =““neutral” 8 3 RV 3 EV 3
L= 4 1—-r €9 B3 . G. |2
+F GW;+ E_A3 , (73
Let us callC the matrix which transforms the fields appear- A
ing in the Lagrangiar{61) into the charged eigenstates. We where
have
-+ ' Yas . ' Yes R= "‘TZ ’
W= W= cosp sing | [ W~ Cy
+ =C71 ~_ = . ~4 | (66)
L- L=* —sing cosp/\ L™
R
where V14 ax72
k 2\/§X X
tanp= ———, k= —7—F—. 6 E,=—,
R 1-r—2x2 (©7 A3,
The physical particle.* are a combination of = and W=, e Y X
Whi_ch, for small values QI><+, and f-OrMHOO- (r—0), are V_C_(,—’—l+4x2§%'
mainly oriented along thé.~ direction, as it can be seen
from the relations Ro—T
- - Ag=— 2 (74)
W= (1—x2)W* + 2xL*, 2
L*=—2xW* +(1—x?)L*. (6g) The mass matrix for the neutral case in the basis
(W3,V3,Az) is
In the neutral sector there is, as expected, a strictly mass- ) 5
less combination which corresponds to the physical photon EV Ea Ev Ea
associated to the unbroken(1) gauge group. As already 1+ R_v+ R Ry R
discussed in Ref4] we perform the substitution 2
Cy e o vz, gzl = L o 7
W3: CgWg_ S.gY, neutral 4 RV RV
V=3, W4T, (69) e o 1
20 o' R R
The neutral part of the Lagrangidfl) is then given b .
P grangiaél) g y At the orderx? the eigenvalues are
2 N2_RNr2 I~ ”
2y U ~o g°—g - 99 -~ 9 2 ~2
:%(ne)utral_g GZW3+a2 TW3+ZFY_ ﬁ M%:U—Gz 1— 1+029X2+ )1
4 -
4
2 g,, 2
X(LstRs) | +a, GWs_E(Ls_Ra) : , v2G? 12155+ \C5,+ 4175, |
MLm 7R = e
(70) o
whereG = \/g%+7’?2. Inspecting this expression, it is natural , v°G? 1-2r55—\Co,+ 4175, |
to define the new linear combinations R:™ 4 R 1+ 2 Xot
0
~ = 76
R L;+Rs | (76)
y=Ycos)+ 72 sing, The relation between theat fields and the mass eigenstates
is given by
A L+R 2
V3= —Ysing+ ———cosy, (71 \fv?’ z
\/5 V3 =V I—3 : (77)
where As Rs

tang = 2S,X. (72 with
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1-A,Ry 1-A3R
Nl 2T — N3
Ev Ea
Ey Ey 1-23R
= N “Na—e — "5
v Nll_Rv)\l 2 N3EA l_}\SRV , (78)
E Ear1—N5R
— Nlﬁ — NZ—A - 2V N3
— R\ Ey 1-)\R
|
where where we have used the Eq§9), (71), (74), and(78). We
see tha¥Z, L3, andR; are essentially aligned along the com-
2 Mfs M2R3 binations €,W5;—S,Y), L3, and R;, respectively. Unlike
MZA'W’ )\2:4W’ )\3:4W (79 the charged case, however, the physical $Ratés not com-
pletely decoupled, in fact at the leading order, it possesses a
and tiny component along th& direction. ThelL; state has in
turn a small contribution from thev field.
E\Z/ E,ZA —-1/2
Ny=|1+ A-R2 T (1—R7\1)2) ) IX. FERMIONIC COUPLINGS
5 1 From the charged part of the fermionic Lagrangian given
No=|1 (1-RyAy)? A in Eq. (22), by using the relation&6), we can read directly
2= |1 \2/ + (1-R\y)? ' the couplings to the fermions
(1-R)y)? g2 |1 Lonarged™ ~ (@uW,, +a L) +He., (83
Ny=|1+ 1+ 80
: [ Ex ( (1- Rv?\s)z) (€0 where
Let us callN the matrix which transforms the fields appear- (]
ing in the Lagrangiari61) into the neutral eigenstates aW:ECMv
y v _
z W a =—=Cu, (84)
=N 2P (81) V2
Ly L,
R B whereC;; are the matrix elements of the matfxdefined in
3 3 Eq. (66), and
In thellimit of r—0 and smallx, by retaining only the first J(L:MZILWT@)%, (85)
order inx, we get
_ _ _ _ with
y s Se VZSx  Z5,x
~ Tli | T
~ ~ - S ()= : 86
Z —Sp Co \/ECaX - \/ZT‘QX i 2 %
Cy
= 0 _ \/Ex 1 0 Let us notice that th&®* are not coupled to the fermions. In
Ls fact one can easily check that they have no mixing whatso-
Sy 0 0 1 ever and therefore these states will be absolutely stable as
Rs - ZXE_ ensured by the phase invariariRé —exp(*ria)R™.
o For the neutral part we get
Y ’ (3)
Zneutral™ — {eJleLmyﬂ+ [AJT#+BIEn Z,u
W, +[CIPH+ DI JLg,+[EIDH+FIL IR},
<{ | (82 (87)
L3
where
Rs e=0s,cos) (88)
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and Concerning the Fermi constant there is a general proof in
Ref.[4] stating that its relation witb? is the same of the SM
one. Let us summarize the principal steps of the proof. Keep-
' ing into account th&W= andL* exchanges in the.-decay

C
A=GV,,, B=—G&| Vit ~LsingVy,

S
o process, the Fermi constant is given by
— Ee . G 92/ Cc2 c? =2 1
C=GVy,, D=—GS5| Vot —SingVy,|, SF_9 tu 12 =g_(|\/|2 Py (94)
Se \/E 8 M\ZN: ME: 8 charged 11 202:
B Ty . where C;; are given in Eq.(66) and Mﬁhargedin (63). The
E=GVys, F=—GSj| Via+ ,§—S|n¢//V23 » (89 second equality in the previous equation follows from the
0 .
relation
with V;; are the matrix element of the matrikgiven in Eq. 2\l ap2 1
(78). In the usual limit we get, at the ordgf, CMp) "C™"=(MGharged (95)
S 1— ¢ whereM32 is the diagonal form of the charged mass matrix.
A=G| 1— "~2 val B~-G&| 1- — "XZ) , Recalling that the electric charge and the mass ofztae
Cy Cy given by
C=—2GTx, D=0, e=1gS,c0s/, (96)
~ = M %: M %)\11 (97)
S5 S 90
E= \/EG:X, Fz—\/EG:X. ( ) .
Co Cy with
~, 1 .9°
M2="p22 98)
X. TRILINEAR COUPLINGS 4° ¢

Starting from the original trilinear couplings given in EQ. 54, s obtained by the diagonalization of the matrix in E
(20) and using the relation®6) and(81), we can evaluate all (75). ! y 9 4

the trilinear couplings among the physical particles of the By using the previous equations we can write the relation

model. We get (a=e?/4m)

"%kin (3):| E gOaVi+Vj_[OgvVi7/LVj+v+ O;(Vlju.vvjtl, EZ‘S"Q_ Ta i )\1 (99)
an =0 J2G, M2 cosy’
_VitLVVj_,L)]JFiEa do.r+r-[O4'R, R, from which
+0YR;,RE—R: R, (91) = 1. \/1 w1\ 100

L ) 4 \2Gp MZcosy
whereO,=1v,Z,L3,R; (a=1,2,3,4),V; :=W*,L* (i=1,2)
and From Eq.(72) and using Eq(97) we obtain
" 1 . e
o,v; v, =9 XC1iCyqjN2at+ ECZiCZjN&a , (92 sing= 2? (101
1 from which
gOaFﬁR’:g”ENAa- (93 _ o
g= ——— . (102
As we noticed in the previous section, there are no mixings 3 ~/1- 4_92
of theR™ with W= andL™* [see Eq(61)], as a consequence 0 9"

there are no trilinear couplings involving a single charged

R particle. Furthermore it is easy to check tiggly- - =0. Let us notice that Eq.100), after using(102), involves only

the angled and the measured quantities. Solving this equa-

tion in # we can obtairg with the help of Eq(102). In this

way all the original parameters of the Lagrangian are ex-
To identify the physical quantities in our model we pro- pressed in terms of the observed quantities. In the numerical

ceed in the same way as in Sec. V. We again choose as inpwork we solve Eq(100) by iteration taking advantage of the

parameters the following physical constants: the electridact that in the limitg”—c we get back the SM. One can

charge, the mass of tti& and the Fermi constant. also solve the equation perturbativelyxinlt is easy to verify

Xl. RENORMALIZATION PROCEDURE
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that, at the ordex? and at the first order in [see Eq(64)],

the procedure coincides with the one of Sec. V, and one

recovers Eq(45). In fact this follows immediately from the
expansion ofx; [see Eqs(79) and (76)] and coéy at the
same order:

M2
N=1-2, 1+M—§, cody=1-z,. (103
XIl. WIDTHS

LOW ENERGY STRONG ELECTROWEAK SECTR. ..

5213
W= My 2 1_4% ¥ ﬂ )
V= 1927 dvwiw- MZ) | My
My 2 Mw\*
1420 1| +12 1] |- (109
\% \%

Concerning the charged resonances, only ltfiedecay
into fermions(see Sec. IX The leptonic width neglecting
the fermionic mass corrections is

In the neutral sector the couplings of the fermions to the

gauge bosons are

— 5 YLyt ¥sa)) v, 2"+ (vl + ¥sal ) vuLh

+(vR,t ¥s8R,) YuRE 1Y, (104

wherev’ anda’ are the vector and axial vector couplings

given by
vh=AT5+2BQem.
ab=ATS,
f _ L
v(,=CT5+2DQem,
al,=CT;,
vk, =ET5+2F Qep,

ag, =ETs, (105

with A,B,C,D,E,F given in Eq.(89). The total width of a

vector bosonV corresponding to the decay into fermion-
antifermion is

Lym™on=T0+3(I'y+17), (106)

wherel'!) includes the contribution of all the allowed quark-
antiquark decays. The partial widths are given by

ri= YT Y F(m mZ/M2), (107)

with

F(ro=(1-4r)" (vl)2(1+2r()+(al)?(1—4r})]
(108

andm; the mass of the fermion.

The other possible decay channel for a neutral vector bo-

sonV is the one corresponding to the decay inté/aV pair.
The partial width is

1
L(L™ =)= a,_M,_—FO (110
with a; given in Eq.(84).
The decays into quark pairs are given by
I'(L™—a'q)=3|Vq4q|°T?, (111

whereV,, are the relevant Kobayashi-Maskawa matrix el-
ements. In the case of thet decay, we have taken into
account the correction from the mass of the top quark:
T(L™—bt)=3|Vyp|2(1— 3r+ 3r31°, (112
wherer =mZ/MZ.
The other possible decay channel for is the one cor-
responding to the decay intoVdZ pair. The partial width is

pwz_ M o _ MZ-M§\? 4M2 20 m¢
LT 1907 J2wrL M? MZ| | MZMm2
MZ+M2\  MG+M3+10M5M2
X|1+10 — i :
L L

(113

Let us now give the previous formulas for the widths in
the g”—o limit [at the order ¢/g”)?] and neglecting the
mass corrections. For the fermionic channel we get

V2GeME, g\?
+ - == — —
F(L3*>e e ) 1277 I\/|L3 grr) y
5\2GeM3, s4 2
M(Ry—e'e )= —1 — 3 Rs(g,,),
T Cy g
V2GeM 2
[(L™—en)= WML(E,,) (114
6 g
and the total fermionic widths are
2 2
Ffermlon \/EGFM w M g
T L3 g/I 1
2 4 2
Ffermion: 10\/§GFMW % g
R3 377 CA; R3 grr ’
- 2\2G:M2 2
piepmion_ Z 12 W WMU(%) . (115
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By reading the relevant trilinear gauge couplings from Eq.

(92), and performing the same limit we hamsith r defined
in (64)]

—~ 9
L wrw-= J2gr g

n.Q

So~ 9
ORwrw-= \/E,ngr o

c, 9

OzwrL-=V2=I — . (116
cy 9
Then, substituting in Eq$109 and (113, we get
TWw_ ‘/EGFMSVM 9 i
L3 24 L3 g// ’
FWwW_ V2GeME, s_‘; g\
Rs ~ " 24m  chRslgr)
W —ﬁGFM‘Z’VM 9y’ 11
LE 24/77 L* gll ( 7)

It may be useful to compare the widths Iof, andR, into
vector boson pairs with those into fermions:

F[ermlon: 48F\vawv
3 3
fermion_ WWw

remons 4gr V2. (118
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TABLE I. Comparison between the degenerate BESS model
(D mode) and the BESS model with only vector resonanc¥s (
mode) for the total width(GeV) and branching ratios dof = (D
mode) and V" (V mode) with the choice of parameterdd =1
TeV, g"=13 and no direct coupling df */V™* to fermions.

D model I+ B(L*—evr) B(L*—ud) B(L*—W2
0.18 8.1x10°2 2.4x10°1t 2.2x10°2
Vmodel Ty+ B(V'—er) B(V'—ud) B(V'—=W2
121  5%10°* 1.7x107°2 9.9x10°*

the W boson. Indeed the fictitious width of, into these
scalars provides, via the equivalence theofdm®], a good
approximation to the width o¥, into a pair of longitudinal
W and it is precisely given by Eq119).

On the contrary, if there is no direct coupling among the
new gauge bosons and the would-be Goldstone bosons
which provide the longitudinal degree of freedom to the
W, then their partial width into longitudinalV’s will be
suppressed compared to the leading behavior in(Et9),
and the width into &V pair could be similar to the fermionic
width. In fact, as we have explicitly checkésee Eq(116)]
the trilinear couplings between the new gauge bosons and a
W pair is no longer of order ¢/g”), but of the order
(g/g”)r. The same argument also holds for the charged case.

Numerically, the comparison between the degenerate case
(D mode) and the BESS model with only vector resonances
(V mode) is shown in Table I, for a choice of the parameters
of the model M +=1 TeV, g”"=13 and no direct coupling
of L* to fermions. TheV model features an enhancement of
the WZ channel, common to the usual strong interacting
models. TheD model has no such enhancement.

As already noticed, in usual strong interacting models an

We see that the total fermionic channel is dominant due t&nhancement ofV, W, scattering is expected. Due to the

the multiplicity.

previous considerations, our case is quite different. If we

We conclude this section with some remarks about théstudy W, W, scattering the lowest order result violates uni-

tarity at energies above 1.7 TeV, as in the standard model in

decay of the vector mesoits, andR,,. In the present, ef- -1d \
fective, description of the electroweak symmetry breakingthe formal limitmy— . So we expect our model to be valid
the Goldstone bosons described by the figldjiven in Eq.  ONly Up to energies of this order.
(11) become unphysical scalars eaten up by the ordinary
gauge vector boson®/ and Z. The absence of couplings
amongU and the statek andR results in a suppression of
the decay rate of these states iMband Z. Consider, for Data from the Fermilab Tevatron Collider, collected by
instance, the decay of the new neutral gauge bosons intothe CDF Collaboratior{17] establish limits on the model
W pair. In a model with only vector resonances this decayparameter space. Their search was done through the decay
channel is largely the dominant one. The correspondingV’'—€v, assuming standard couplings of & to the fer-
width is indeed given by15] mions. Their result can be easily translated into a limit for
the degenerate BESS model parameter space. In Fig. 3 these
J2Gg M® [ g\? limits are shown in terms of the mass of tRé resonance
1927 WZN(?) [equivalent toM; see EQ.(62)] and the ratio of coupling
constantgy/g”. Actually the parameter of the modelxsas
and it is enhanced with respect to the partial width into agiven in Eq.(64). Here, for simplicity of notation, we call it
fermion pair, by a factor N1/M)* [15] g/g”. The limit from CDF(dotted ling is compared with the
result obtained from LERcontinuous ling The excluded
region is above the two curves. The figure was obtained us-
ing the CDF 95 % C.L. limit on th&V’ cross section times
the branching ratio and comparing this limit with the predic-
This fact is closely related to the existence of a coupling oftions of our model at fixed)/g”, thus giving a limit for the
orderg” amongV, and the unphysical scalars absorbed byR™ mass. This procedure was then iterated for various values

XIll. DEGENERATE BESS AT TEVATRON

I'(Vo—WW) = (119

- 2
F(V0—>ff)~GFM\2N(§> M. (120
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. from the collider energy, due to beamstrahlung and synchro-
4 tron radiation, in a high energy collider, one expects to see
0.5 —————————————— 0.5 two very close narrow peaks below the maximum c.m. en-
[ 1 ergy even without having to tune the beam energies. How-
i 1 ever, in this paper we do not consider the direct production
04 4 04 of R; andL; from e"e™. If instead the masses are higher
N ] than the maximum c.m. energy, they will give rise to indirect
i effects in thee*e —f*f~ andete”—=W'"W~ cross sec-
0.3 -1 03 tions, which we discuss below.
L T For the purposes of our calculation we have assumed that
it will be possible to separatee’e W W,
ete =W,/ W;, andete”—W;W; . A similar analysis
for the BESS model with only vector resonances was given

in Ref.[15].
In the fermion channel our study is based on the observ-
ables
00 L e T gy ot M,
200 300 400 500 o
M(GGV) A'e:;eig’,u+,u7’ A'e;é674' bb ’

FIG. 3. 95% C.L. upper bounds aiig” vs M from LEP data P R .
(continuous ling and CDF(dotted ling. LEP bounds are obtained ABLE s pg e b o pe e mhad (g0
from the e parameters, while CDF limits come from ]
oB(pp—/v) at/s=1.8 TeV and with an integrated luminosity of whereAgg andA, g are the forward-backward and left-right
19.7 pb L. asymmetries, and"(*) is the total hadronicg* ) cross

section.

of g/g”. The statistical significance of the plot is that of a  The total cross section for the processe™—f*f~ is
95% C.L. limit in one variable, the mass, at a given value ofgiven by (at tree level
g/g”. The limit from CDF is more restrictive for low reso-

nance masses, while LEP limit is more restrictive for higher o= __° > |F(hs,he)l?, (122
mass values. 3X 256 1ihe
with
XIV. DEGENERATE BESS AT e*e~ COLLIDERS f f
4deq (Ua+hfaa)(va+ heda)
We have considered the sensitivity of the model at LEP2 F(Nf,he)=——=+ _ T MT M.
and futuree™ e~ linear colliders, for different options of total a=sls R a aa (123

center of mass energies and luminosities.

We have analyzed cross sections and asymmetries for twehereh; .= +1 are the helicities of ande, respectively,
channelete” —f*f~ ande*e”—W*W™ in the standard q; is the electric charge of , v,=v§, a,=ai, with
model and in the degenerate BESS model at tree level. Th@=Z,L5,R;, andI', are the widths of the neutral gauge
BESS states relevant for the analysiseae™ colliders are  bosons. The partial widths of tHe; and R; bosons corre-

L; andR;. The two vector bosons are degenerate in mass i8ponding to decays into fermion-antifermion aWw\W are

the largeg” limit. The L; mass is larger than the; mass given in Sec. XII.

due to terms of the ordeg(g”)? and highefsee Eq(76)]. The forward-backward asymmetry in the present case is
If the masses of the resonances are below and not very fgiven by

3 (1=P)Zp, nhtheF(hy,he)|?+ 2P, helF(he,1)|?

Ae*e’ef*ff_ , 12
s 27 (1=P)Sy, nJF(hy B[P+ 2PS, [F(hy DI (129

where P is the degree of longitudinal polarization of the The notations are the same as for the forward-backward
electron beam. asymmetry.
The left-right asymmetry is given by In our study we consider also th¥W channel, with one
5 W decaying leptonically and the other hadronically. The rea-
Zh, 'hehe“:(hf he)l (125 son for choosing this decay channel is to get a clean signal to
Ehf,he||:(hf,he)|2 ' reconstruct the polarization of thé/'s (see for example

N e
—f7f
Aee —
LR
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[18]). For thee*e™ —WW channel the relevant observables Inthee*e™ center of mass frame the angular distribution

are do/d cosd and the left-right asymmetry red@0]
do
(efe"-WW")
d cosf do pi44+ rnZa(l 4
- = Sl —
N dcosd  amys| M7 P M | P
Ae e —-W"W™ (P P)
d cosd s sp
2 - .
do . ) do +2Fp W—\/Jr 3+ T Sirfe
dcog'Te= P d cost’ 2 02
(126) +F 8l 1+ -2 | +16-
whered is thee™ e~ center of mass scattering angle. Assum- 2 2 S S
ing that the finalW polarization can be reconstructed by +p—sin26 _4_2_2__4_)“ (127)
using theW decay distributions, it is convenient to consider Mw My it
the cross sections fav, W, , W;W,_, W;W; and the corre-
sponding left-right asymmetries as additional observables
[19]. and
|
4 1 4S
A r(cosf)=—P { MZ, +p sm20< — +2F,p? — +| 3+ —4 p2 smze}
477'\/— W W W
g 10 M +16p—2+'02 o] S 2S4S do 128
L t S [YES M\ZN t d co’ (128

where
p=3\s(1-4M2/s)¥2 (129

t=M3— 3 s[1—cos9(1—4MZ/s)*?].

The quantityay, is given in(84) and
<2e2 2

+
a=Z,L3,R3

iy

s o e2 s—M?2
(Ua+'5‘a)9aWW(S_,\/@1)24_'\/';2;&21 S agaWW(S Ma)2+M2F62J
azb (s—M2)(s—M2)+ M, ,M,T,
Bl iy (Vo Re) S 7 T (W P AT

(130

+ JawwVataa)

131
S a=7,3.R; (s— a)2+M2F2 (133

—2e? s—M2 }

4¢? s—M2 1

a +2 a,v40>
s a:Z,ZLS,R3 aFaWW(sTM2)Z M2 T E L A g, BV aawW Ty 22y 22
a#b

SE : (5= M) (5= Mp)+Mal'aMpl,
+ avpt U4 ,
abElyr, 20T VaB0)awnBowWE (T2 V2P (5= M) 2+ MTZ]

(132

wheregzww, gL ww, anngsWW are given in Eq(92).
The cross sections fav, W, , W{W,_, andW;W5 are
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do. p aw 3 2 . Fi 3 4
Tcoss 6477\/_[ oM™, t2[s (1+ cog6)—4ME(3s+4M2)—4(s+2M3)p/ss cosd]siP o+ msmze(s —12sM,
1 1 1 3 4 6

—16MW)+Fls|n20 PS\s COB =7 (5+2M2) — —— (3 — 125 My, — 16M &) | | , (133

2M3, VIVES

dor p 2 2
dcos 64 N aWZt M2 [s2(1+cog'0) +4aMG(1+coL0) — 4(4p+s co$O)py/s coh+2s(s—6M2)cosH—4sM2 ]

T
p’ pys )

+4F13M2 (1+cog0)+2F ] — tMZ, [cosf(4p?+s cofh) —2py/s(1+cosh)] |, (134
dorr _ Pl L Is(1+co20)-2M3-2p15 in? 6+ 4F , p2sir? F’Sm264[ 8p’]f. (13
4 cod 6477\/— [(+co 0)— pvs cod|sin 6+ 4F p“sint 6+ 12—t[psc039—p].( 5

The left-right asymmetries for longitudinal and/or transverseLEP2 at+/s=190 GeV does not substantially alter the result.
polarizedW can be easily obtained as in E4Q.28 by sub-  The comparison with LEP boundsee Fig. 1 shows that
stituting F, by F» in Egs. (133, (134, (135), and dividing  LEP2 will not improve considerably the existing limits. Of
by the corresponding differential cross section. course one has to be careful in this comparison, since in the
At LEP2 we can add to the previous observables\We case of LEP we have experimental values, whereas for LEP2
mass measurement, coming from tee” —WW channel.  case the limits are obtained by using deviations from the SM
In Fig. 4 we show a 90% C.L. contour plot in the parameterresults.
space of the model. The limits are obtained considering To further test the model is necessary to consider higher
s=175 GeV and an integrated Iuminosity of 500 pb energy colliders. We study two options for a high energy
combining the deviations ofly,, o*, o", A%, A2, For  e*e™ collider: \/s=500 GeV with an integrated luminosity
My we assume a total erro(rstatlst|cal and systemajic of 20 fo~! andy/s=1 TeV with an integrated luminosity of
AM,,=50 MeV. Forg" the total error assumed is 2%. For 80 fo~ L.
the other observable quantities we assume only statistical |n |:|g_ 5 we present the 90% C.L. contour on the plane
errors. If the possibility of having polarized beams at LEP2
is considered, the improvement with respect to the unpolar-

ized case is only marginal. Also, considering the option of glg"
500 1000 1500 2000
0.5 i — T —
g/g"
200 300 400 500 i
0.5 T 71— 0.5 04
04 1 04 0.3
03 F Sk 02 L
02 | 1 02 o1 [
0.1 —:0.1 oo Lo v v T gy
_ 500 1000 1500 2000
L ] M(GeV)
00 —————1 LS g9
200 300 400 500 FIG. 5. 90% C.L. contour on the plan¥( g/g”) frome*e™ at
M(GeV) Js=500 GeV with an integrated luminosity of 20 4 for various

observables. The dashed-dotted line represents the limit &8m
FIG. 4. 90% C.L. contour on the plan®( g/g”) from LEP2. with an assumed error of 2%; the dashed line near to the preceeding
The limits are obtained considerin&z 175 GeV and with an in- one isa* (error 1.3%; the dotted line isAgg (error 0.5%; the
tegrated luminosity of 500 pb!, combining the deviations of uppermost dashed line istB (error 0.9%. The continuous line
My, o*, o, ALy, Als. represents the combined limits.
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g/g" 'g/g"
500 1000 1500 2000 1000 1250 1500 1750 2000
. — 05 05 ——1 ] 0.5
1 0.4 04 |
4 0.3 0.3 |
102 02 |
101 01 |
0.0 Ty oo L T gy
500 1000 1500 2000 1000 1250 1500 1750 2000
M(GeV) M(GeV)

FIG. 6. 90% C.L. contour on the plandl( g/g”) frome*e at FIG. 7. 90% C.L. contour on the plan#( g/g") frome*e™ at
J5=500 GeV with an integrated luminosity of 208 and a po-  vs=1000 GeV with an integrated luminosity of 80 b for vari-
larization of 0.5 for various observables. The dashed-dotted lin@us observables. The dashed-dotted line represents the limit from
represents the limit froni/; with an assumed error of 0.6%; the o With an assumed error of 2%; the dashed line near to the pre-
dashed line i\ (error 0.4%; the dotted line isAP; (error 1.1%.  ceeding one isr (error 1.3%; the dotted line isAgg (error 0.5%;

The continuous is obtained by combining the polarized and théhe uppermost dashed lineA (error 0.9%. The continuous line
unpolarized observables”, o#, Ay, Alg, Al's, Alr, Alg. represents the combined limits.

d observables given in E¢126). In Fig. 10 we show the plot
from the combinedWW observables. An angular cut has
been imposed ofW scattering angle|¢os9|<0.95) and 18
angular bins have been considered. We have assumed an
overall detection efficiency of 10% including the branching

(M, g/g") frome*e  at \Js=500 GeV with an integrate
luminosity of 20 fb ! for various observables. The dashed-
dotted line represents the limit froot'; the dashed line near
to the preceding one is*, the dotted line isAfg and the
uppermost dashed Iine&B. As it is evident more stringent
bounds come from the cross-section measurements. Asym-

metries give less restrictive bounds due to a compensation g/g"

between the_; and R; exchange. By combining all the de- 051000 1250 1500 1750 200005
viations in the previously considered observables we getthe ~° [~ 7T T T T T T S
limit shown by the continuous line. !

Polarized electron beams allow to get further limit in the 04 L 104
parameter space as shown in Fig. 6. We neglect the erroron ™" } ’
the measurement of the polarization and use a polarization
value equal to 0.5. The dashed-dotted line represents the 03 L
limit from A#;, the dashed line fromA;, and the dotted Tt
line from AbLR. Combining all the polarized and unpolarized
beam observables we get the bound shown by the continuous g5 |
line. In conclusion we get a substantial improvement with [
respect to the LEP bounds, even without polarized beams. o

The previous analysis has been repeated/—satl TeV 01 | -
with an integrated luminosity of 80 fb'. The results are [
shown in Figs. 7 and 8. - 1

In Fig. 9 we show a combined picture of the 90% C.L. 0.0 ———— L L — 0.0
contours on the planéM, g/g”) frome*e™ at two values of 1000 1250 1500 1750 MZ(OGOQI)

c

\/5. The dotted line represents the limit from the combined
unpolarized observables gs=500 GeV with an integrated

FIG. 8. 90% C.L. contour on the plan#1( g/g”) frome*e™ at

. . _1_ . . . .
luminosity of 20 fb™*; the dashed line is the limit from the J5=1000 GeV with an integrated luminosity of 80 Th and a

combined unpolarized observables,at= 1000 GeV with an polarization of 0.5 for various observables. The dashed-dotted line

integrated luminosity of 80 fb'. As expected increasing the represents the limit from, with an assumed error of 0.6%; the

energy of the collider and rescaling the integrated luminositydashed line iA; (error 0.4%:; the dotted line iAPs (error 1.1%.

result in stronger bounds on the parameter space. The continuous line is obtained by combining the polarized and the
We have then studied th&'W final state, considering the unpolarized observables”, o#, AL;, ALy, Ay, AL, AP .
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g/g" , g/g"

500 1000 1500 2000 500 1000 1500 2000
0.5 [————T———T1——— 05 0.5 ————"T—————T7— | 05
04 F 104 04 | 1 04
03 | 1 03 03 L 103
02 | 1 02 02 F 4 02
0l : //,,, 1.

~~. \\\\\ ,,,/ i
- N/ . T F 4
00— 1 —! 0.0 o0 L 1 v 1T gy
500 1000 1500 2000 500 1000 1500 2000
M(GeV) M(GeV)

FIG. 9. 90% C.L. contour on the plan#( g/g”) frome*e™ at
two /s values: the dotted line represents the limit from the com-
bined unpolarized observables @=500 GeV with an integrated

FIG. 11. 90% C.L. contour on the plan®( g/g”) from total
cross section opp— L=, W=— /v (/=e,u). We have assumed a
systematical error of 5% in the cross-section and the statistical error

luminosity of 20 fb™*; the dashed line is the limit from the com- ptained considering a luminosity of ¥0cm~2s~* (continuous
bined unp0|arized ObservableS\&: 1000 GeV with an integrated |ine) or a |uminosity of 163 Cm72 Sfl (dashed |in§3and one year

luminosity of 80 fb 2.

ratio B=0.29 and a loss of luminosity from beamstrahlung.
All these new bounds do not alter the strong limits obtained 11 ot~

run at LHC (10 s).

XV. DEGENERATE BESS AT HADRON COLLIDERS

colliders give the possibility to explore the

using the fermion final state. This is because, as we havge ira| sector of symmetry breaking by the production of the

already noticed, the degenerate model has no strong ep

eutral vector and axial vector gauge bosons of the model.

hancement of th&/W channel, present in the usual strong y,q4r0n colliders are complementary é5e~ machines, in

electroweak models.

the sense that they also allow to study the new charged vec-
tor and axial vector resonances.
The physics of large hadron colliders has been extensively

“?’S/go 1000 1500 2000 discussed in a number of papdsee for examplé21] and
0.5 ——————————— — 0.5 references thereip such a machine will be able either to
discover the new resonances or to constrain the physical re-
, gion left unconstrained by previous data.
04 - 04 Let us consider first the case in which no new resonances
’ are discovered. In this case limits can be imposed on the
, parameter space of the model. As a preliminary analysis
03 F e 403 we can consider the total cross section pp— L=, W™=
—/v (/=e,u), which has a clear signature and a large
: number of events, to be compared with the standard model
02 F 402 production of/v. We have calculated the total cross section
he s | pp—L*,W*—/v and, by comparing with the SM back-
ground, we have obtained a contour plot at 90% C.L. in the
01 1 01 two variablesM and g/g”, shown in Fig. 11. The applied
! cuts were|p;,,|>min(M_ =/2—50 GeV, 400 GeVin order to
: . maximize the deviation of BESS model cross section with
0.0 —————li————1— — 00 respect to the standard model one. In this analysis we do not
500 1000 1500 Mz(gg) optimize cuts and an improvement is still possible studying

in more detail specific cases. We have assumed a systemati-
cal error of 5% in the cross section and the statistical error

FIG. 10. 90% C.L. contour on the plan&( g/g"”) from WW ’ o s
differential cross section and the corresponding left-right asymmeObtained considering a luminosity of ¥ocm 2s™* (con-
tries, considering also tHa/ polarization reconstruction. The dotted tinuous ling or a luminosity of 16° cm~2s™* (dashed ling
line represents the limit from/s=500 GeV with an integrated lu- and one year run (10s) at LHC (\/gz 14 TeV). The new
minosity of 20 fb 1; the dashed line is the limit from/s=1000 resonances of the model can be discovered directly for a
GeV with an integrated luminosity of 80 ft. wide range of values of the parameter space of the model.
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FIG. 12. Differential distribution ofop—L~,W*— uv events FIG. 14. Differential distribution opp—L~,W*=— uv events

at LHC with a luminosity of 18 cm~2s7%, for M_==500 GeV,  at LHC with a luminosity of 1&* cm=2?s%, for M :=1.5 TeV,
9/g”"=0.15. The following cuts have been appligg,,|.|Pimisd g/g”"=0.1. The following cuts have been appli¢d;,|>400 GeV,
>150 GeV. The continuous line represents the standard modep,.d>400 GeV. The continuous line represents the standard
background while the dashed one is the degenerate BESS modelodel background while the dashed line is the degenerate BESS
expectation. model expectation.

The discovery limit in the mass of the resonance depends o@vents at LHC ofpp—L~,W*— uw in the transverse mo-
the value ofg/g”. For example ifg/g”=0.1, the resonance mentum of the muon for different values ol - and
is visible over the background at least up to 2 TeV, in thed/g”. As stated before we choose this channel due to the
channelpp— uv. clean signature and the large cross section. The events where
In Figs. 12—14 we show the differential distribution of Simulated using the@yTHIA Monte Carlo prograni22]. A
rough simulation of the detector was also performed. The
energy of the leptons was smeared according to

:51000 R S AE
2 —=15% (136
5 E
S 800 | ] and the error in the three-momentum determination was as-
g . sumed of 5%.
3 K In particular in Fig. 12 a spectacular case is presented for
) : a low resonance mad4, - =500 GeV andy/g”"=0.15. The
§ 600 T total L™ width is I, -=0.907 GeV, with the corresponding
S B(L"— ur)=8.5x10 2. The following cuts have been ap-
s I plied: [p,|,|Ptmisd > 150 GeV. The number of signal events
400 per year is approximately 128 000, the corresponding back-
i ground consists of 51 500 events.
In Fig. 13 we show a case correspondingvtp-=1 TeV,
200 g/g9”=0.075 andl’ == 0.454 GeV. The following cuts have
- been appliedp;,|,|Pimisd>300 GeV, ancE s> 100 GeV.
i The number of signal events per year is approximately 2800,
L T e the corresponding background consists of 4600 events.
%00 400 500 600 700 In Fig. 14 we show a case correspondingMg ==1.5

TeV,g/g”"=0.1, andl' = =1 GeV. The following cuts have
been appliedtp;,|,|Pimisd>400 GeV, ancE s> 200 GeV.
The number of signal events per year is approximately 850,

FIG. 13. Differential distribution ofpp—L~,W*— uv events . -
at LHC with a luminosity of 18 cm~2s1, for M, -=1 Tev, the corresponding background consists of 1500 events. The

g/g"=0.075. The following cuts have been applied: statistical significance of the _signal&it\/§= 22. _
|Pel, | Pimisd > 300 GeV. The continuous line is the standard model ~ Notice that the reconstruction of resonance mass requires
background; the dashed line represents the degenerate BESS modetareful study of the experimental setup, due to the small-
signal. ness of the resonance width.

muon pt (GeV)
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In this preliminary study we did not consider the produc-theorem to the absorbed Goldstone bosons, are decoupled
tion and decay of the corresponding neutral resonances of tfeom the new resonances. This is due to the absence of cou-
model. pling betweenJ andL, R (see Sec. )

For what concerns virtual effects of the new resonances,
XV]. CONCLUSIONS the model has almost no deviations at low energy with re-
spect to the SM. The situation is completely different if the

We have discussed an effective theory describing neVjrect production of the new resonances is considered. This
vector and axial vector resonances within the scheme of &ill be possible with the next generation of colliders.

strong electroweak breaking sector. We have shown that the |, ihe case ot*e colliders, LEP2 will not improve the
model has a symmetry which is larger than the one requested;«in o hounds from LEP and Tevatron. A substantial im-
by construction. No Higgs particles are required in this ef-

fective theory, and moreover the enlarged symmetry guararErO\./ement can be obtalned.from h|ghe_r energy eleqtron—
tees that even with a relatively low energy strong elecPositron colliders, even without considering polarized

troweak resonant sector, the severe constraints coming frtheamS' The most §tr|ngent bOU’FdS come from cr ogs—sectlon
experimental data, in particular from LEP, are respected. measurements, while asymmetries are less restrictive due to
The new vector and axial vector particles are degenerafgoMpensations between the two neutral resonances.

in mass(at the leading ordgrand their virtual effects are High energy hadron colliders, such as LHC, will allow
suppressed. In the low energy limW(— with the gauge one to study also _the new charged resonances. If the new
coupling of the new resonances fijethe new particles particles are not discovered, stringent bounds on the model
are decoupled due to the extended symmetryf@N beimposed by the study of cross sectionsgs /v, in
[SU(2)®SU(2)]° and we classically obtain the effective & W&y similar to the one in which bounds are searched for at

Lagrangian of the standard model. If we parameterize thd €vatron. The direct observation of the new resonances is
deviations from the SM at low energy in terms of tee possible in a wide window of the parameter space of the

parameters, we obtain a deviation from the standard mod&l'©de€l, up to the TeV range, in some case with a spectacular

values only in the next-to-leading order, with a double sup"Umber of events over the background.

pression factoM2/M? and (g/g")?.

A well known feature of the usual strong interacting mod-
els is the relevance of th&/W final state. Our model is in This work was partially supported by the Swiss National
this respect different, as th&/W final state is on the same Foundation and OFES 95.0200. This work is part of the EEC
footing with the fermionic final state. The reason is that theProject “Tests of electroweak symmetry breaking and future
longitudinal parts of thew'’s, related via the equivalence European colliders,” No. CHRXCT94/0579.
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