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Tests of the continuum limit for the SO„4… principal chiral model and the prediction for LMS

M. Hasenbusch and R. R. Horgan
D.A.M.T.P., Silver Street, Cambridge CB3 9EW, England

~Received 7 November 1995!

We investigate the continuum limit in SO~N! principal chiral models concentrating in detail on the SO~4!
model and its covering group SU~2!^SU~2!. We compute the mass gap in terms ofLMS and compare with the
prediction of Hollowood ofm/LMS53.8716. We use the finite-size scaling method of Lu¨scher, Weisz, and
Wolff to deducem/LMS and find that for the SO~4! model the computed result ofm/LMS;14 is in strong
disagreement with theory but that a similar analysis of the SU~2!^SU~2! model yields excellent agreement
with theory. We conjecture that for SO~4! violations of the finite-size scaling assumption are severe for the
values of the correlation lengthj investigated and that our attempts to extrapolate the results to zero lattice
spacing, although plausible, are erroneous. Conversely, the finite-size scaling violations in the SU~2!^SU~2!
simulation are consistent with perturbation theory and the computedb function agrees well with the three-loop
approximation for couplings evaluated at scalesL/a<j, wherej is measured in units of the lattice spacinga.
We conjecture that lattice vortex artifacts in the SO~4! model are responsible for delaying the onset of the
continuum limit until much larger correlation lengths are achieved notwithstanding the apparent onset of
scaling. Results for the mass spectrum for SO~N), N58,10 are given whose comparison with theory gives
plausible support to our ideas.@S0556-2821~96!06609-X#

PACS number~s!: 11.15.Ha, 05.50.1q, 11.10.Lm, 64.60.Fr
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I. INTRODUCTION

For many years the study of two-dimensional no
Abelian chiral models based on the manifoldM5G/H,
whereG andH are Lie groups andH,G, has provided a
deep understanding of field-theoretic methods applied
both high energy physics and critical phenomena. In partic
lar, the continuum field theories derived from these mod
are renormalizable and asymptotically free and so act
good models to test ideas applicable to four-dimension
gauge theories. For many models the exactS matrix for the
continuum field theory has been conjectured@3–5# and this
allowed a number of workers@5–7# to give exact predictions
for the mass spectrum and to use the thermodynamic Be
ansatz together with the property of asymptotic freedom
predict the ratiom/LMS for these theories, wherem is mass
gap, LMS sets the mass scale in perturbation theory, a

MS denotes the modified minimal subtraction scheme. It
important to note that solely the local properties ofM , i.e.,
the algebra which generates infinitesimal displacements
M , and not the global properties ofM are used to obtain
these results. To be able to control the approach to the c
tinuum limit for a lattice field theory is central to curren
calculations in lattice QCD where criteria based on scali
are used to determine whether dimensionless ratios for co
puted observables have attained their continuum values
so can be compared with experiment. The existence of th
retical predictions for two-dimensional~2D! chiral field theo-
ries which link the short and long range structure of th
theories gives a unique opportunity to study the approach
the continuum in a lattice model and also to test the assum
tions underlying the theoretical analysis.

The correlation length is most conveniently measured
units of the lattice spacing,a, and is denoted by the dimen
sionless variable,j, and the mass gap is defined bym51/aj.
530556-2821/96/53~9!/5075~15!/$10.00
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For j sufficiently large the mass spectrum inferred from th
correlation functions of suitably chosen interpolating oper
tors and the mass gap measured in units ofLMS should agree
with theory. Such agreement has been found for the SU~N!
matrix models@8,9# for values ofN53–15 already for mod-
erately small correlation lengths:j.5. However, the mani-
fold of SU~N) is simply connected but this is not so for man
other models for which it is important to see if any obstruc
tions or lattice artifacts delay the onset of the continuu
limit. We may then learn how to be more confident in con
trolling the approach to the continuum. Similarly good agre
ment with theory has also been found by Wolff@10# for the
O~4! and O~8! spin models but not for the O~3! spin model
@11,12#. A comparison of O~3! and RP2 models has recently
been the subject of much attention@13–17# since they are
expected to correspond to the same continuum theory
though they differ in the global properties of the definin
manifolds. It has, however, proved impossible to demo
strate the equivalence of these two models in the continu
by computer simulation alone. The study reported in th
paper highlights the difficulty of reliably controlling the ap
proach to the continuum in a number of common lattic
models.

We study the SO~N! matrix models on the lattice with the
action given by

S~U!5bL(
x,t

Tr@U~x,t !UT~x,t11!1U~x,t !UT~x11,t !#,

~1.1!

whereU(x,t) is anN3N orthogonal matrix. Our analysis
mainly uses the finite size scaling method described by Lu¨s-
cheret al. in Ref. @2#. For the lattice regularized theory we
define the coupling constantũ by

ũ~L/a,bL!5m~L/a,bL!L, ~1.2!
5075 © 1996 The American Physical Society
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5076 53M. HASENBUSCH AND R. R. HORGAN
wherem(L/a,bL! is the mass gap, or inverse correlation
length, measured on a lattice of spacinga, width L and
infinite extension in time direction. In the simulation it suf-
fices to take the extension in time directionT@L to achieve
this limit. The correlation length is determined by the deca
of the correlation function on theL3T strip in the time
direction. The physical properties can be separated from t
cutoff dependence and the continuum coupling,u(Lm`),
can be defined by writing

ũ~L/a,bL!5ū~Lm` ,a/L !5u~Lm`!1O„~a/L !v
….
~1.3!

The physical scale is set bym`51/aj` , the mass gap in the
infinite-volume limit. Apart from a trivial reparametrization,
this decomposition relies on the physical hypothesis of sca
ing with the exponentv parametrizing the corrections to
scaling. For sufficiently largebL and sufficiently smallL/a
perturbation theory can be used to computeu, and since it is
proportional to 1/bL at tree level it can be viewed as a defi
nition for a running coupling of the continuum field theory
In particularu will evolve according to the universal part of
theb function.

u(Lm`! can be calculated from a simulation of the lattice
theory. ForLm`>1 this is straightforward: for a given value
of bL computeam` and then simulate on a lattice of widthL
given in units ofa by L/a5Lm`/am` , and so compute
ũ(L/a,bL! from Eq. ~1.2!. Repeat for a sequence ofbL
values, the largest of which is determined by computer r
sources. Check whether the results are compatible with t
scaling hypothesis@Eq. ~1.3!# and, if so, takeū(Lm` ,a/L)
with the largestL/a as the best approximation tou(Lm`! or,
better still, use Eq.~1.3! to fit thea dependence and extrapo-
late toa50.

However, this direct approach cannot be used for sma
values ofLm` sinceL/a>1 andam` is bounded from be-
low by computer resources and so limits how smallLm` can
be. This problem is resolved using the renormalization grou
by computing the lattice step-scaling functionS:

S„s,ũ~L/a,bL!…5ũ~sL/a,bL!. ~1.4!

Since no reference is made tom` we can choose, for any
given value ofũ, L/a as large as the computer resource
will allow by tuning bL appropriately. Again we expect the
scaling hypothesis to hold:

S„s,ũ~L/a,bL!…5s~s,u!1O„~a/L !v
…. ~1.5!

s(s,u) is the continuum step-scaling function determine
implicitly from the b function by

ln~s!52E
u

s~s,u! du8

b~u8!
. ~1.6!

Theb function has the perturbative expansion

b~u!52u2(
l50

`

blu
l . ~1.7!

Having computedu(2), say, by the direct method a se-
quence of valuesnn[u(2sn! can be computed using
y
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un5s~s,un21!. ~1.8!

A reasonable choice fors is s51/2. For couplings,un ,
evaluated at sufficiently largen, s(s,u) is well approxi-
mated by perturbation theory andLj is given to two-loop
order by

LL5@b0u~Lm`!#2b1 /b0
2
expS 2

1

b0u~Lm`! D , ~1.9!

where, for these theories,b0 andb1 are scheme independent.
Hencem`/Lj is determined by substitutingLm`52sn. We
have labeledL by j to denote this renormalization scheme:
the ‘‘j scheme.’’ The coefficientsb0 and b1 are scheme-
independent~up to overall rescaling! and for some casesb2
is known @2# yielding a three-loop estimate forLj . A one-
loop calculation then relatesLj to LMS.

Alternatively, the approach used in Refs.@12,10,8,9# can
be employed where a bare lattice coupling is defined to be
running coupling evaluated at the scale given by the lattic
spacing,a. Two candidates are

uL~am`!5
1

bL
: the ‘‘lattice scheme,’’ ~1.10!

uE~am`!5
4^E&
C

: the ‘‘energy scheme,’’ ~1.11!

where C5nf , nf /N for spin and matrix models, respec-
tively, and nf is the number of degrees of freedom in the
field. The couplinguE was first defined by Parisi in Ref.
@18#. For j`@1 both of these couplings should scale witha
according to the perturbativeb function thus allowingaLL
andaLE to be computed fromuL anduE , respectively, ac-
cording to Eq.~1.9! with a replacingL. Sincej` is known
this allowsm/LMS to be estimated once the loop calculations
relating LMS to LL and LE have been done. However, it
should be noted that if such bare couplings are used then t
effects of scaling violations cannot be disentangled.

The main motivation for our study was the recent work by
Hollowood @1,19# in which he has given theoretical predic-
tions form/LMS for all N.3, so allowing us to compare our
lattice calculations with theory. The comparison between th
studies of the lattice and continuum models sheds light o
the approach to the continuum limit in the lattice formulation
and can provide verification of the assumptions underlyin
the theoretical analysis of the continuum theory. We calcu
late ū(Lm` ,a/L) defined in Eq.~1.3! by simulation for vari-
ous values ofam` and discuss the extrapolation of the re-
sults to a50 and we repeat the analysis for the covering
group of SO~4!, namely SU~2!^SU~2!. We also compare the
results with an analysis based on the lattice and energ
schemes for the couplings defined in Eq.~1.11!. For the
SO~4! model we find no evidence that finite-size scaling
holds for the accessible range of couplings, but that the re
sults can deceptively suggest that it does hold since the vi
lations of scaling diminish only slowly with increasingj so
giving the semblance that they are negligible. In contrast, fo
SU~2!^SU~2! finite-size scaling holds with O~a2! violations
and the value deduced form/LMS agrees well with the pre-
diction.
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We also compare the computed mass spectrums in
SO~N) model for N58,10 with theory. The interpolating
fields for the vector bound states of SO~N) can be easily
constructed andN58 is the smallest value for which there
exists more than one such state. The results show a persis
deviation from theory for the range ofj investigated.

In Sec. II we present the relevant one-loop calculatio
which relate the variousL parameters; in Sec. III we de-
scribe the simulation and measurement techniques includ
a method for variance reduction; in Sec. IV we give th
simulation results and analysis for the study of the SO~4!
matrix model; in Sec. V we give the simulation results fo
the SU~2!^SU~2! model; in Sec. VI we discuss the
N56,8,10 models and compare the mass spectrum
LMS, computed in the lattice and energy schemes, w
theory; in Sec. VII we discuss our interpretation of all th
results and how further studies may elucidate our findin
We also draw our conclusions.

II. THE ONE-LOOP CALCULATIONS RELATING
DIFFERENT SCHEMES

A. SO„N…-matrix models

The energy scheme can be related to the lattice-sche
using the one-loop calculation for̂E& expanded in
1/bL[uL . This calculation is familiar and we just give the
result for general SO~N):

^E&5^12 ~1/N! Tr„U~x,t !UT~x11,t !…&.

5
N21

8bL
S 11

N

32bL
1••• D . ~2.1!

The energy-scheme couplingbE is defined as

bE5
N21

8^E&
, ~2.2!

and the ratio betweenL parameters is then

LE

LL
5 expS A

b0
D

5 expS pN

4~N22! D , ~2.3!

wherebE5bL2A.
A calculation similar to that described in Ref.@20# gives

the result

LMS

LL
5A32 expS pN

2~N22! D . ~2.4!

Lj is related toLL by a one-loop background field calcula
tion in which the 2D theory on a strip is converted to a loc
1D theory which can be directly solved for the mass g
since there is an equivalent Schro¨dinger equation. A similar
approach was used in Ref.@21#. To analyze the 1D system it
is sufficient to study the action
the

tent

ns

ing
e

r

and
ith
e
gs.

me

-
al
ap

S~W!5bQM(
t

Tr~WtWt11!. ~2.5!

We representW by

W5 exp~f•T!,

where the generatorsTi are defined so that

Tr~TiTj !52
1

2
d i j . ~2.6!

Then for smallf we have

S~f!;
bQM

4 (
t

ḟ21••• .

This defines the quantum mechanics of a particle constrain
to the SO~N) group manifold with massm5bQM/2. The cor-
responding Schro¨dinger equation is then

2
1

2m
D2Yl~W!5ElYl~W!. ~2.7!

D is the group derivative@22# defined by

f ~ef•TW!5 f ~W!1f•Df ~W!1••• .

TheYl are group harmonics withl a generic label, and sat-
isfy @22#

D2Yl~W!1ClYl~W!50.

Using Y0}1 and Y1(W!}Tr(W! we find C050 and
C15CF , the Casimir of the fundamental representation de
duced from the generators. From Eq.~2.6! we find

CF5
N21

4

⇒

m~L !5
E12E0

2m
5
N21

4bQM
. ~2.8!

We now calculatebQM in terms ofbL to one-loop order. The
field variablesU on the 2D strip of widthL and lengthT can
be expressed in terms of fluctuations about a backgrou
field Wt which is constant across the strip and slowly vary
ing in t, the coordinate along the strip. We write

U~x,t !5Wt
1/2egf~x,t !Wt

1/2, ~2.9!

wheref(x,t)[f(x,t)•T is the fluctuation aboutWt . The
definition ofWt is given by the relation

(
x
U~x,t !5Wt

1/2StWt
1/2,

with St a positive symmetric matrix. Using Eq.~2.9! this
corresponds at lowest order to the constraint
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(
x

f~x,t !50. ~2.10!

BecauseWt is slowly varying we can expand the effectiv
1D action in terms ofD t whereD t[Dt•T and

WtWt11
T 5eDt.

To one-loop order this equation can be implemented
choosing

Wt51 andWt115e2Dt. ~2.11!

Substituting forU(x,t) andWt from Eqs.~2.9! and~2.11!
into the SO~N) action, Eq.~1.1!, we find

S~U!5bL(
x,t

Tr~egf~x,t !e2gf~x11,t !!

1bL(
x,t

Tr~egf~x,t !e2D t /2e2gf~x11,t !e2D t /2!.

~2.12!

Expanding to quadratic order, choosingg252/bL , and
using Eq.~2.6!, we find

S5S01SI ,

where

S05(
x,t

1
2f•¹•f,

SI5LbL(
t

2 1
2D t•D t1(

x,t
Tr~2f2D t

212f82D t
22f8fD t

2

2ff8D t
22fD tf8D t!. ~2.13!

The abbreviationsf for f(x,t) andf8 for f(x,t11! have
been used and¹ is the 2D lattice Laplacian. It should be
noted that there is no termlinear in D t . This is due to the
specific form of the decomposition in Eq.~2.9! and the iden-
tity

Tr~$TiTj1TjTi%Tk!50.

The absence of such terms simplifies the calculation since
contributions to the 1D effective action,Seff~D!, are simply
given by

Seff~D!5^SI&. ~2.14!

Other parametrizations require an evaluation of the quadra
terms in^SI

2&. The average is with respect to the fluctuatio
measure exp~S0! taking into account the constraint in Eq
~2.10! which eliminates the zero mode in thex direction. We
use the Gaussian results

^f if j&5G~0,0!d i j , ^f if j8&5G~0,1!d i j . ~2.15!

G(0,0) andG(0,1) are given by the expressions
e

by

all

tic
n
.

G~0,0!5E
2p

p dq

2p (
p51

L21
1

4„sin2~pp/L !1 sin2~q/2!…
.

G~0,1!5G~0,0!2 1
4 . ~2.16!

We use generators defined in Eq.~2.6! with k51 and the
identities

@Ti ,Tj #52 f i jkTk , f i jk f i j l 5
N22

2
dkl ,

~2.17!

TiTi5
N21

4
, Tr~TiTjTk!52 1

4 f i jk .

Then

^Tr~f2D2!&5^Tr~f8 2D2!&5
N21

4
G~0,0!~2 1

2D•D!,

^Tr~ff8D2!&5
N21

4
G~0,1!~2 1

2D•D!,

^Tr~fDf8D!&5
N

4
G~0,1!~2 1

2D•D!. ~2.18!

A numerical evaluation ofG(0,0) gives

G~0,0!5
1

2p
ln L2A, A50.0351637. ~2.19!

Using Eqs.~2.13!–~2.18!, we find

Seff~D!5Lbeff(
t

~2 1
2D•D!, ~2.20!

where

beff5bL2
N22

4 S 1

2p
ln L2AD2

N

16
. ~2.21!

Note that the coefficient of lnL is b0 for the coupling
uL[1/bL . Substituting into Eq.~2.8! with bQM5Lbeff gives

1

u~L !
[

1

m~L !L
5
4beff

N21
5

4

N21
„bL2b0~ ln L1gN!…,

gN5
pN

2~N22!
22pA. ~2.22!

We thus deduce that

Lj

LL
5exp~gN!5expS 22pA1

pN

2~N22! D . ~2.23!

Using Eq.~2.4! we finally get

LMS

Lj
5A32 exp~2pA!, ~2.24!

which is independent ofN.
From Eq.~2.22! we also deduce the tree-level relation
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u5
N21

4
uL . ~2.25!

B. O„N…-spin models

The results for the mass-gap for O~N)-spin models is
given to three-loop order in@2# and so we include only a
brief outline of the one-loop effective 1D calculation here fo
completeness. A similar calculation was done by Lu¨scher
@23# but it is instructive to present it in a concise formulatio
consistent with the previous section. To relate the energy a
lattice schemes we use the expansion@10#

^E&5
N21

4bL
S 11

1

8bL
D

and the definition

bE5
N21

4^E&

to give

LE

LL
5expS p

4~N22! D .
From Ref.@20# we have

LMS

LL
5A32 expS p

2~N22! D .
To calculatem(L) on the L3T strip we use the same

method as in the previous subsection with the O~N) spins
s(x,t) expressed in terms of the background fieldS t and the
fluctuation fieldf(x,t) as

s~x,t !5S tA12f~x,t !•f~x,t !1f~x,t !, ~2.26!

whereS t•S t51 andf(x,t) is an (N21!-dimensional vector
satisfying the constraint

(
x

f~x,t !50. ~2.27!

This constraint eliminates the zero-mode divergence in
calculation. We then choose

S t5S0 and S t115eD tT12S0 , ~2.28!

whereS05~1,0,0,...,0! andD t is the slowly varying 1D back-
ground field.T12 is the generator of SO(N) rotations in the
1-2 plane. As in the SO~N) case the particular form of the
parametrization in Eq.~2.1! ensures that the 1D effective
action is given by

Seff5^SI&,

there being no linear terms inD t in the expansion of theS(s!
in D andf. The calculation follows the same steps as in t
SO~N) case and gives

beff5bL2~N22!S 1

2p
lnL2AD2 1

4 , ~2.29!
r

n
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where the coefficient of lnL is identified with b0 and, as
before,A50.0351637. Then

Lj

LL
5 expS 22pA1

p

2~N22! D . ~2.30!

UsingLMS/LL from above, we conclude that

LMS

Lj
5A32 exp~2pA!, ~2.31!

which is identical to the SO(N) result. The two results in
Eqs.~2.24! and~2.31! must be the same forN53,4 since the
two models have the same continuum limit. That they a
independent ofN ensures the results are identical for allN.
The tree-level relation between couplings is then

u5
N21

2
uL . ~2.32!

III. SIMULATION AND MEASUREMENT TECHNIQUES

In the following we will give a brief description of our
updating algorithm. Similar to Ref.@24# we used an overre-
laxation update@25,26# applied to embedded O~2! models. In
terms of CPU-time requirements this algorithm outpe
formed a multigrid algorithm@27# for correlation lengths up
to about 20 in the case of the CP4 model in two dimensions.

In order to save random numbers, and hence CPU time
large fraction of the Metropolis updates have been replac
by a demon update@28#. Most of the parameters in the algo
rithm were chosen by trial based on previous experience w
the CP4 model @24#.

Our basic update steps are performed on O~2! subgroups
of the SO~N) group. We have chosen the same subgroup f
each of the sites of the lattice. After a number of sweeps
new subgroup is chosen.

The O~2! subgroups that we consider are given by rot
tions among two rows or two columns:

Uki8 ~x,t !5s1~x,t !Uki~x,t !1s2~x,t !Ukj~x,t !,
~3.1!

Ukj8 ~x,t !52s2~x,t !Uki~x,t !1s1~x,t !Ukj~x,t !,

with s1
21s2

251.

This parametrization induces an action for the embedd
O~2! model

Scond~s!52 (
^x,t;x8,t8&

(
m,n51

2

cmn~x,t,x8,t8!sm~x,t !sn~x8,t8!,

~3.2!

with

c115c225b(
k
Uki~x,t !Uki~x8,t8!1Ukj~x,t !Ukj~x8,t8!,

c1252c215b(
k
Uki~x,t !Ukj~x8,t8!2Ukj~x,t !Uki~x8,t8!.

~3.3!
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For the updating of the embedded O~2! model we used a
combination of standard Metropolis, demon updates, and
crocanonical updates. We apply the microcanonical upd
step discussed by@26# for the standardXY model in two
dimensions. First we compute the sum of the nearest ne
bor spins of the site (x,t):

Rm5 (
~x8,t8!nn~x,t !

(
n51

2

cmn~x,t,x8,t8!sn~x8,t8!. ~3.4!

The new values forsW are then obtained by reflection wit
respect toRW :

sW852
RW •sW

RW 2 RW 2sW. ~3.5!

SinceRW •sW85RW •sW this update step keeps the action consta
The aim of the demon update is to perform updates si

lar to a Metropolis update but avoid CPU-intensive parts l
the evaluation of trigonometric functions, the exponent
function, and pseudorandom numbers.

The demons are introduced by an additional term in
action

S85S1( dx,t , ~3.6!

where thedx,t are positive real numbers. Note that adding t
demon part to the action does not change the spin secto
the composite theory. However, the demons give us n
options for updates. We start a sequence of demon-upd
by a heat-bath step applied to the demons:

d52 ln~h!, ~3.7!

whereh is a pseudorandom number with a uniform distrib
tion in the interval# 0,1#. Then we perform updates that kee
the composite action of the spin model plus the demons c
stant, exchanging energy between the demons and the s
First we compute a proposal for a new spin-valuesW8 by re-
flectingsW with respect to the sum of the upper and left neig
bor spins. Then we check whether the demon at the site
take over the energy without becoming negative. If this is
case, we accept the proposalsW8 and set the demon to its new
value. After a sweep of such demon updates we translate
demons on the lattice.

For one given embedding we performed one standard M
tropolis sweep, and 10 to 60 overrelaxation sweeps, and
nally five demon updates. The number of overrelaxat
sweeps was chosen to be roughly proportional to the co
lation length.

We alternate the row embedding and the column emb
ding. The first row~column! is chosen in a fixed sequenc
from 1 toN, while the second was chosen randomly from t
remaining ones.

The improved correlation function estimator

In order to obtain a meaningful result for the step-scali
function the correlation length on the finite lattices has to
computed with an accuracy of less than 1%. In order
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achieve this aim we used the improved estimator for th
correlation function discussed in Ref.@29# for the case of
O~N) vector models.

The underlying physical idea for this improved estimator
is similar as that for the one-loop solution of the model dis
cussed in Sec. II. However, here instead of aneffectiveone-
dimensional model we rather use aconditional ~or embed-
ded! model. For a given field configurationU the conditional
model is defined by

Scond~W!52b(
t

(
x

Tr@W~ t !U~x,t !

3„W~ t11!U~x,t11!…T#, ~3.8!

whereW is the field of the conditional model. Note that there
is no spatial part in the action, sinceW(t) does not depend
on x. Performing thex summation we get

Scond~W!52(
t

Tr@Q~ t,t11!WT~ t11!W~ t !#,

~3.9!

where

Q~ t,t11!52b(
x
U~x,t !UT~x,t11!. ~3.10!

Reparametrizing the model byR(t,t11)5WT(t)W(t11)
we obtain

Scond~R!52(
t
Tr@Q~ t,t11!RT~ t,t11!#. ~3.11!

For free boundary conditions in time direction there is no
constraint on theRT(t,t11). Therefore the partition func-
tion factorizes, and the solution of the conditional 1D mode
is reduced to the solution of zero-dimensional systems. Th
conditional expectation value of the time-slice correlation
function is given by

^G~ t,t1t!&cond5Tr@S~ t !^R~ t,t11!&cond•••^R~ t1t21,

t1t!&condS~ t1t!#, ~3.12!

where

S~ t !5(
x
U~x,t !. ~3.13!

We were not able to compute the conditional expectatio
values exactly. Instead we used Monte Carlo integration fo
this task. First one has to note that finite statistics for th
conditional expectation value does not corrupt the end resu
for ^G(t,t1t)&. Secondly an enormous gain in statistical
accuracy can be obtained, since as a consequence of the f
torization in Eq.~3.1.5! the statistics of the single ‘‘baby’’
Monte Carlo’s multiply. Typically we performed 200 Me-
tropolis update steps for the evaluation of^R(t,t11!&cond.
We used the final value ofR for updating the fieldU. How-
ever, we have yet to make careful tests to determine th
efficiency gain of this measurement technique.
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IV. SIMULATION RESULTS FOR THE SO „4… MODEL

The main object of this investigation was to test the pr
dictions form/LMS for the SO(N) principal chiral models
given by Hollowood@1,19#. The action for the SO(N) matrix
models is given in Eq.~1.1!. It was found that even for
moderate values ofN (N>6) the continuum limit was dif-
ficult to achieve with any degree of confidence, all indic
tions being that a large correlation length is necessary. T
is in contrast to recent work on SU~N) models@8,9# where
the results indicate that the models are close to the c
tinuum limit even for smallj ~j.5!. In the next section we
will present some results forN56, 8, and 10 to support
these statements but will postpone our speculations conc
ing why such a difficulty occurs until the Conclusion.

In this section we concentrate on the SO~4! model and
apply the renormalization scheme described in@2#, the ‘‘j
scheme,’’ and compare it with the lattice and energy schem
used in@8,9#. The coupling constantu(Lm`! is defined in
Eq. ~1.3! @23# and to achieve the continuum limit we requir
ū(Lm` ,a/L) for fixedLm` to be essentially independent o
a and hence thatj` is large enough that thea-dependent
corrections to Eq.~1.3! are negligible. The problem is that in
practice this might requirej` to be very large indeed and
unachievable in a present-day simulation. Alternatively,
might be possible to fit thea dependence in Eq.~1.3! by
e-

a-
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on-

ern-

es

e
f

it

measuringū(Lm` ,a/L) for variousj` with Lm` fixed, and
extrapolating toa/L50. In the case that the corrections are
perturbative they behave as O~a2!. Whether or not this is the
case must be deduced from the simulation and for the SO~4!
model there is clear evidence that a simple perturbative i
terpretation of thea-dependent effects is not possible for the
values ofj` we use. Nevertheless we try to extrapolate th
results to the continuum limit in a reliable way and comput
the value ofū(2,a/L). It must be emphasized that it is cru-
cial to determine this value ofu as accurately as possible
since it is the starting point for the subsequent determinatio
of u at smaller scales, and ultimately contributes to the sy
tematic error on the computation ofm/LMS. In order to

TABLE I. The values ofū(2,a/L) in lattice and energy methods
as a function ofj` . The energy method shows plausible conver
gence to the extrapolated valueu(2)52.25~2!.

bL ^E& j`

ū(2,a/L)
Lattice method

ū(2,a/L)
Energy method

1.05 0.5411~2! 3.71~3! 1.98~1! 2.44~1!

1.10 0.4702~2! 8.34~7! 2.07~1! 2.35~2!

1.12 0.4435~1! 13.62~13! 2.11~1! 2.27~2!

1.14 0.42176~6! 25.3~4! 2.17~2! 2.26~2!
TABLE II. Couplings measured in the lattice and energy methods for different values ofL/a. The
a-dependent violations to finite-size scaling are most pronounced forLm`;1. The energy method was not
used where it gave little information in addition to the lattice method. The statistical errors ofũ(2L/a) which
are not quoted here are of similar size as those ofũ(L/a) coupling values.

L/a bL ^E& ũ(2L/a)

S„1/2,ũ(2L/a)…[ũ(L/a)

Lattice method Energy method

8 1.0908 0.4531~5! 2.25 1.590~10! 1.727~10!
14 1.1169 0.4352~3! 2.25 1.647~8! 1.720~8!

26 1.1393 0.4186~2! 2.25 1.711~7! 1.737~7!

40 1.15335 0.40915~7! 2.25 1.734~7! 1.747~7!

7 1.1088 0.4347~3! 1.747 1.416~3! 1.475~3!

13 1.1347 0.4194~2! 1.747 1.469~3! 1.480~3!

20 1.15235 0.4082~1! 1.747 1.492~3! 1.499~3!

30 1.16917 0.39778~6! 1.747 1.506~3! 1.509~3!

10 1.1484 0.4111~1! 1.517 1.323~2!

15 1.1659 0.3989~1! 1.517 1.340~3!

20 1.1803 0.3911~1! 1.517 1.345~2!

5 1.1424 0.4074~3! 1.351 1.203~2!

10 1.1789 0.3906~2! 1.351 1.212~2!

16 1.2045 0.3784~1! 1.351 1.218~2!

8 1.2028 0.3774~2! 1.222 1.113~1!

16 1.245 0.36014~9! 1.222 1.114~1!

8 1.2452 0.3587~2! 1.115 1.025~1!

16 1.2914 0.34215~8! 1.115 1.024~1!

8 1.2922 0.3408~2! 1.0234 0.9494~7!

16 1.3368 0.32681~7! 1.0234 0.954~1!

8 1.3357 0.3264~1! 0.948 0.8902~5!

16 1.3851 0.31230~6! 0.948 0.8910~4!

8 1.3849 0.3116~1! 0.891 0.8355~5!

16 1.4356 0.29861~6! 0.891 0.8342~5!
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attain the continuum limit we measuredu(2) for increasing
values ofj` and fitted thea dependence and so deduced th
continuum coupling,u(2). We characterized the theory ei-
ther by the lattice couplingbL or by the coupling defined by
Parisi @18# in terms of the internal energy, Eq.~2.1!:

bE5
N21

8^E&
. ~4.1!

Note ^E& is normalized to lie in@0,1#. We found that̂ E&
suffered from strong finite-size effects and so could not
expressed as a function ofbL alone. We chose to measur
ū(Lm` ,a/L) by keeping eitherbL or bE constant on the
lattices withL/a@j` andL/a52j` , denoted the ‘‘lattice’’
and ‘‘energy method,’’ respectively. Because of the finit

FIG. 1. Values of the couplingū(Lm` ,a/L) from Tables I and
II plotted againstL/a for Lm` fixed at the values 2,1,1/2. The
violations of the finite-size scaling assumption are clearly evide
for both versions of thej scheme used: the lattice scheme~d! and
the energy scheme~j!. In each case the value assumed for th
extrapolation toa50 is shown as the dashed line.
e

be
e

e-

size effects observed in̂E& this will lead to different esti-
mates forū(2,a/L) and by trial we can see which method
gives the better extrapolation toa/L50. WhereL/a52j`

was nonintegral, simulations were done for the integerL/a
values either side of 2j` and interpolation used to deduce
j(L). The results are shown in Table I where we can see th
the energy method shows better convergence than the latt
method. The errors shown are statistical and a naive straig
forward extrapolation gives the valueu(2)52.25(2) for the
continuum coupling constant. However, we shall argue b
low that while plausible this value foru(2) is incorrect since
the convergence to the continuum is only apparent not rea

That ^E& is sensitive to the lattice size is another indica
tion that SO~N) models are more complex in the continuum
limit than SU(N) models where no such effect is observed
We find that the finite-size effects in̂E& largely seem to
offset those inū which indicates that there is some connec
tion between the short- and long-range properties of the sy
tem. From Table I it can also be seen that thea-dependent
effects in the lattice method are not fitted by a perturbativ
parametrization: they are closer to aa1/2 dependence. This
indicates that nonperturbative contributions are strong a
that their effect on the calculation ofu(2) seems to be
largely accounted for using the energy method. These are
reasons why we should be cautious and suspicious of assu
ing that we are observing properties of the continuum theor

One reasonable test that we are simulating the continuu
theory is to check that the computed value ofm/LMS agrees
with the theoretical prediction. We thus compute the step
scaling function described in@2# and Sec. I and fit the short-
distance behavior ofu to the form deduced from perturbation
theory. We choose the factor for the scale change to bes
51/2. Therefore we consider pairs of lattices with sizes 2L
andL, respectively, andbL is adjusted so thatũ(2L/a,bL! is
a required value. Thenũ(L/a,bL! is measured in both the
lattice and energy schemes, that is, keeping eitherbL or bE
constant on the lattice pair. Various values ofL/a were cho-
sen so that thea-dependent effects can be determined an
eliminated by extrapolation. When we believe that the con
tinuum limit has been attained than the step scaling functio

nt

e

TABLE III. The sequence of continuum couplings as a function ofLm` . Also shown are the one- and
two-loop approximations tos~1/2,u) evaluated withu5u(2Lm`!. These should be compared with the
Monte Carlo results„1/2,u(2Lm`!…MC5u(Lm`!. It seems plausible that asymptotic scaling sets in for
Lm`>1/4.

Lm` u(2Lm`! u(Lm`!

s„1/2,u(2Lm`!…

One loop Two loop Three loop

1 2.25 1.754~13! 1.9305 1.9010 1.8915
0.987/2 1.747 1.517~6! 1.5481 1.5329 1.5291
0.987/4 1.517 1.351~6! 1.3647 1.3544 1.3521
0.987/8 1.351 1.222~4! 1.2289 1.2214 1.2199
0.987/16 1.222 1.1148~21! 1.1212 1.1154 1.1145
0.987/32 1.1148 1.0234~15! 1.0303 1.0259 1.0252
0.987/64 1.0234 0.9478~11! 0.9518 0.9483 0.9478
1.073/128 0.9561 0.8912~12! 0.8933 0.8904 0.8900
1.073/256 0.8912 0.8339~12! 0.8364 0.8340 0.8337
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TABLE IV. Computed values form/LMS using the two- and three-loopb function for the coupling
evaluated at the indicated scale~the small adjustments to the scale explicit in Table III are omitted fo
clarity!. The errors are calculated from the accumulation of statistical errors at all preceding steps.

Lm` 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1/1

m/LMS

Two loop
14.3~1.0! 14.3~1.0! 14.4~9! 14.4~9! 14.1~9! 14.1~9! 14.2~9! 14.0~7! 13.2~5!

m/LMS

Three loop
13.7~1.0! 13.6~1.0! 13.7~9! 13.6~9! 13.3~9! 13.2~9! 13.2~9! 12.9~7! 12.0~5!
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s can be determined from Eq.~1.5! and compared with per-
turbation theory using Eqs.~1.6! and ~1.7!:

b05
N22

2p~N21!
, b15

b0
2

2
.

The first two coefficients of theb function quoted foru are
obtained from those associated withuL51/bL @20# by using
Eq. ~2.25! gives the tree-level relation

u5
N21

4
uL .

The results are shown in Table II.
In each case the continuum coupling for a given scale w

determined by extrapolation toa50. From Table II it can be
seen that the most care needs to be taken whenLm`;1
where the corrections to finite-size scaling are the greatest
all cases the energy method was the most convergent, bu
sufficiently largeL both the lattice and energy methods we
compatible and a common value for the continuum coupli
was consistent~see Fig. 1!. For Lm`,1/2 thea-dependent
corrections were small and consistent with perturbati
theory and both schemes gave consistent results. Follow
Eq. ~1.8! we tried to use the result of a given step as th
argument of the next step. This was achieved in all ca
except whenLm`51/2 andLm`51/128 where we corrected
the small mismatches by interpolation. These correctio
lead to scale changes of 2.026 and 1.840, respectively.
sequence of continuum couplings deduced are shown
Table III.

Also shown are the one-, two-, and three-loop approxim
tions tos~1/2,u) evaluated withu5u(2Lm`!. These should
be compared with the Monte Carlo result

s„1/2,u~2Lm`!…MC5u~Lm`!.

TABLE V. The values ofm/LMS in the lattice and energy
schemes@12, 10, 8, 9# as a function ofj` for the SO~4! model. The
theoretical prediction ism/LMS53.87153@1,19#.

bL ^E& j`

m/LMS

Lattice scheme Energy scheme

1.05 0.5411~2! 3.71~3! 305~2! 20.4~2!

1.10 0.4702~2! 8.34~7! 248~2! 31.3~3!

1.12 0.4435~1! 13.62~13! 194~2! 34.1~3!

1.14 0.42176~6! 25.3~4! 133~2! 30.9~5!

1.15 0.41291~5! 33.4~8! 114~3! 29.5~7!
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Clearly asymptotic scaling sets in forLm`<1/4. It is perhaps
surprising that the two-loop approximation fits the Monte
Carlo results so well at such relatively large scales, but
gives confidence that we can probe deeply into the regio
where asymptotic scaling holds and hence that perturbati
parametrization ofu in terms ofLMS is valid. Thea depen-
dence of the results for these smaller values ofu indicates
that bL is large enough for the extrapolation to the con
tinuum limit, a50, to be reliable. The data from Table III are
shown in Fig. 2 where the computed functions~2,u) is com-
pared with its one- and three-loop approximations deduc
from Eqs.~1.6! and~1.7!. The important intermediate region
where it is crucial to maintain the continuum limit in order to
reliably relate the low and high energy scales is also in cle
evidence. This match between the small-L region and
large-L region@where triviallyu(Lm`)5Lm`# is the impor-
tant part of the simulation.

From Table III we can deduce the value ofm/Lj , i.e., in
the j scheme, using the two-loop formula, Eq.~1.9!. We
have

Lj
~2!5

1

L S u

3p D 21/2

expS 2
3p

u D . ~4.2!

In fact, since the covering group of SO~4! is SU~2!^SU~2!
and the SU~2! matrix model is isomorphic to the O~4! spin
model, we are able to use the three-loopb function in Ref.
@2# to deduce that

Lj
~3!5Lj

~2!S 12
1

6p
uD . ~4.3!

A discussion of the detailed relationship between these mo
els will be postponed until the next section but it is conve
nient to invoke this formula here. The one-loop calculatio
necessary to determine the ratioLj /LMS is given in Sec. II,
and using the result forLL/Lj and LMS/LL from Eqs.

TABLE VI. The values ofū(1,1/j`! in the lattice method as a
function of j` . Interpolation is used to calculateū at noninteger
values ofL. Clearly, finite-size scaling violations are small and
within the errors, not incompatible with the perturbative predictio
that they behave like O~a2!.

bL ^E& x j` ū(1,1/j`!

2.00 0.4230~2! 99.8~3! 7.89~2! 1.552~5!

2.20 0.3775~1! 266.6~8! 13.95~5! 1.562~4!

2.40 0.34070~5! 555.7~1.9! 25.7~1! 1.585~5!

2.60 0.31071~2! 1629.9~2.6! 47.07~8! 1.584~3!
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~2.14! and~2.23!, we give the computed two- and three-loo
results form/LMS versus length scale in Table IV. The pre
diction for this quantity can be taken from the paper by Ho
lowood @1# where the formula form/LMS for the SO~N)
matrix models can be extended down toN54 @19#. The
prediction is

m

LMS
5
27/2

Ape
53.8715. ~4.4!

As can be seen from Table IV the computer results a
wrong by a minimum of a factor of 4. The inescapable co
clusion is that we have not eliminated corrections to finit
size scaling and are not close to the continuum limit in o
simulation. Without the theoretical prediction we might hav
been persuaded that the evidence did point to the simula
having produced reliable continuum results—the step scal
function seemed to agree well with the two-loop predictio
already by scalesLm`<1/4 and from Table IV the results
seem stable across a wide range of length scales. Thi
deceptive since the crucial part of the simulation where t
finite-size scaling assumption is most strongly violated is f
lattices whereLm`;1 and the parts of the simulation which
are important for setting the scale are not probing the co
tinuum. The corollary is that we need the initial value o
j`51/am` to be considerably larger than the biggest w
have taken. The surmise is that since the SO(N) manifold is
not simply connected,P1@SO~N)#5Z2 , there are vortices
which are responsible for nonperturbative violations
finite-size scaling and much larger values ofb are needed
before their effect is sufficiently suppressed so that the co
tinuum limit can be approached in a controlled, perturbativ
way. One check is therefore to simulate the covering gro
of SO~4!, SU~2!^SU~2!, and see whether the problems wit
finite-size scaling violations are perturbative. The results a
presented in the next section.

We can also check what happens if we apply the meth
used in Refs.@12,10,8,9# for the couplings defined in Eq.
~1.11!. These bare couplings are defined to be evaluated
the scale of the lattice spacinga. TheL parameters of the
respective lattice and energy schemes,LL andLE , can be
calculated using Eq.~1.9!. Since the corresponding value o
am` is known from the simulation the estimate form/LMS
can be calculated using Eqs.~2.3! and ~2.4!. The results are
shown in Table V. The results are very poor and it is cle
that the approach is hopeless. This should be contrasted
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the success of the method applied to SU~N) matrix models
@8,9# and the O~4! and O~8! spin models@10#.

V. RESULTS FOR THE SU„2…^SU„2… COVERING OF SO„4…

The SU~2!^SU~2! matrix model consists of two indepen-
dent SU~2! models and the SU~2! matrix model is isomor-
phic to the O~4! spin model where the fields take values i
O~4!/O~3![S3. Thus we need only to simulate the O~4! spin
model which can be done using the cluster algorithm@11#.
The theoretical prediction form/LMS is given in @7,6# to be

m/LMS5A 32

pe
51.9358. ~5.1!

The only difference between the SO~4! and SU~2! matrix
models is that the lightest state of the SU~2! model is a
spinor and that of the SO~4! model corresponds to a spinor-
antispinor state which is not, in fact, bound. Thus, in th
SO~4! model, the large time asymptotics of the correlator a
controlled by the spinor-antispinor cut and not a bound sta
pole. However, in two dimensions the large time behavior
dominated by the branch point mass with only slow powe
law deviations from a pure exponential decay. Thus we sim
ply have

mSO~4!52mSU~2! . ~5.2!

This factor of 2 simply converts the SO~4! prediction of Hol-
lowood @1# into the prediction of Hasenfratzet al. @7,6# for
the O~4! spin model. It then follows that the two continuum
couplings defined as in Eq.~1.3! are related by a factor of 2:

uSO~4!52uSU~2! . ~5.3!

We shall omit the distinguishing subscript onu unless it is
necessary to avoid ambiguity.

The action for the O~4! spin model is taken to be

S~s!5bL(
n,m

sn•sn1m . ~5.4!

As before we defineu using Eqs.~1.2! and ~1.3!. The
tree-level result from Sec. II B relating thej and lattice
schemes is
TABLE VII. Couplings measured in the lattice method for different values ofL/a. The a-dependent
violations of finite-size scaling are apparent but small, even for the crucial case whereL/a;j` .

L/a bL ^E& x ũ(2L/a) S„1/2,ũ(2L/a)…[ũ(L/a)

4 1.9874 0.4037~3! 18.25~3! 1.584~5! 1.208~3!

7 2.1914 0.3714~2! 47.87~6! 1.584~4! 1.210~3!

13 2.4032 0.3378~1! 140.8~2! 1.584~3! 1.219~2!

24 2.6050 0.30941~3! 415.3~4! 1.584~3! 1.227~1!

8 2.4649 0.3264~1! 78.0~1! 1.228~3! 1.008~2!

16 2.6959 0.29735~5! 268.0~3! 1.228~2! 1.011~2!

8 2.6954 0.29579~7! 96.5~1! 1.011~2! 0.865~1!

16 2.9260 0.27185~4! 337.9~4! 1.011~2! 0.863~1!
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u5
N21

2
uL . ~5.5!

Using this result, theb function foru as defined in Eq.~1.7!
then has coefficients

b05
N22

p~N21!
, b15

N22

p2~N21!2
, b25

N22

p3~N21!2
.

~5.6!

The result forb2 is taken from Ref.@2#. In addition to the
two-loop formula forLj , Eq. ~1.9!, we have the three-loop
formula

Lj
~3!5Lj

~2!S 12
1

p~N21!
uD . ~5.7!

Because the continuum limits of the SO~4! and O~4! spin
model are controlled by the same Lie algebra the convers
ratioLj /LMS is the same for both. However, as a check a
for completeness, the one-loop calculation which yields th
conversion ratio for the general O~N) spin model is briefly
described in Sec. II B. Of course, forN54 all necessary
results can be taken from Ref.@2# .

The simulation results foru(1) for various values forj`

are shown in Tables VI and VII and the results for the co
responding step-scaling function are given in Table VI
where the values quoted have been extrapolated to thea50
limit. Clearly the violations of finite-size scaling are muc
smaller than for the SO~N) matrix model, compare with
Tables I and II, and are compatible, within errors, with th
perturbative prediction that they behave like O~a2!. In com-
paring Tables VII and II the conversion factor of two be
tween couplings, Eq.~5.3!, should be borne in mind. Note
that we have not used the energy method for the spin mo
since it is not needed.

The two-loop and three-loop computed values ofm/LMS
are given in Table IX. The two loop result is already near
the predicted value of 1.9385 forLm`;1/8 and the three-
loop result agrees with this prediction within errors even f
Lm`;1. In Fig. 2 we compare the SU~2!^SU~2! and SO~4!
results for the step-scaling function. We have plotteduSO~4!

and 2uSU~2! on the ordinate since in the continuum limit th
data points should coincide up to the small correction facto

TABLE VIII. The sequence of continuum couplings for the
O~4! spin model as a function ofLm`. Also shown are the one-,
two-, and three-loop approximations tos~1/2,u! evaluated with
u5u(2Lm`!. These should be compared with the Monte Car
results„1/2,u(2Lm`!…MC5u(Lm`!. Clearly, asymptotic scaling is
already setting in forLm`<1.

s„1/2,u(2Lm`!…

Lm` u(2Lm`) u(Lm`! One loop Two loop Three loop

2/1 4.132~10! 2.309~10! 2.5700 2.2927 2.1062
1/1 2.309~10! 1.584~4! 1.7236 1.6384 1.5925
1/2 1.584~4! 1.228~3! 1.2847 1.2495 1.2348
1/4 1.228~2! 1.011~3! 1.0401 1.0216 1.0152
1/8 1.011~2! 0.863~2! 0.8801 0.8689 0.8657
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of Table III. Also shown are the curves fors~1/2,u! derived
from the one-loop and three-loopb functions. The largeu
result,s~1/2,u!→u/2, to which all curves should eventually
be asymptotic is also shown. It can be seen that there is
clear deviation between the results for the two models in th
crucial region whereLm`;1, but that the SO~4! result lies
close to the perturbative prediction, tempting us to conclud
that the SO~4! simulation is sufficiently close to the con-
tinuum limit. This is wrong.

The calculations ofm/LMS in the lattice and energy
schemes have been done using three-loop results by Wolff
Ref. @10#. Our simulation results agree in detail with his and
he finds general agreement with the prediction form/LMS.
However, the different schemes tried by Wolff do show dif
ferent rates of convergence to theory as a function ofj` the
best being the energy scheme which agrees very well w
theory forj`;10. We have similarly good agreement for the
j scheme confirming the ease with which the continuum
limit can be controlled.

VI. RESULTS FOR SO„N…, N56, 8, 10

We attempted to analyze the SO(N) models for
N56, 8, 10 in the same way as for SO~4!. However, the

lo

TABLE IX. Computed values form/LMS using the two-loop
and three-loopb functions for the coupling evaluated at the indi-
cated scale. The errors are calculated from the accumulation
statistical errors at all preceding steps. These results are to be co
pared with the theoretical prediction@7,6# m/LMS51.9358.

L/aj` 1/8 1/4 1/2 1/1

m/LMS

Two loop
1.783~30! 1.735~28! 1.679~18! 1.609~10!

m/LMS

Three loop
1.963~33! 1.944~31! 1.930~20! 1.935~11!

FIG. 2. The step-scaling functions~1/2,u! versusu. The solid
and dashed curves are respectively the one- and three-loop per
bative calculations. Data for the SO~4! matrix model~s! and the
SU~2!^SU~2! matrix model~h!. The largeu result to which all
curves are asymptotic is shown as the long-dashed line.
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TABLE X. The values ofm/LMS computed in the lattice and energy schemes compared with the th
retical prediction forN56, 8, 10. There is no agreement between the schemes and no trend suggesting
the results will converge to the prediction.

N bL ^E& j`

m/LMS

Lattice scheme Energy scheme Theory

6 1.5 0.6786~1! 1.387~3! 48.8~1! 5.32~1! 3.87153
6 1.6 0.6226~1! 1.97~1! 62.3~3! 6.03~3! 3.87153
6 1.7 0.5181~3! 4.85~4! 46.0~4! 7.98~7! 3.87153
6 1.73 0.4784~2! 8.7~1! 30.7~3! 8.07~9! 3.87153
8 2.28 0.5727~3! 2.80~2! 35.3~3! 5.27~4! 3.65837
8 2.31 0.5362~4! 3.98~3! 28.0~2! 5.55~4! 3.65837
8 2.33 0.5073~3! 5.75~7! 21.0~3! 5.51~7! 3.65837
8 2.35 0.4851~2! 8.05~6! 16.2~1! 5.36~4! 3.65837
10 2.91 0.5623~2! 3.05~1! 25.13~8! 4.65~2! 3.523789
10 2.93 0.5341~4! 4.18~3! 19.46~14! 4.61~3! 3.523789
10 2.95 0.5054~2! 5.90~3! 14.63~7! 4.62~2! 3.523789
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CPU time required is prohibitively large and we were unab
to work with sufficiently large correlation lengths. It is in
structive, however, to compute the values ofm/LMS for each
model in the lattice and energy schemes. The results
shown in Table X. While the energy scheme does not sh
the large deviation from theory of the SO~4! model the re-
sults are clearly untrustworthy. There is no agreement
tween the different schemes and, although the range oj
used was limited, there is no indication that the results a
converging towards the correct answer. The contrary is t
for SU~N) @8,9# where the agreement with theory was goo
even for the modest values ofj similar to those used in this
present study. It is interesting to note that forN58, 10 the
energy scheme gives results which seem independent oj`

for the restricted range covered. Clearly, this cannot be tak
as indicating that the results have converged to thej`→`
limit: in light of our experience it shows very little.

Another prediction derived from the exactSmatrix is for
the mass ratios of particles in the theory. For SO(N)(N even!
the prediction is

mp

m
5
sin@pp/~N22!#

sin@p/~N22!#
, 1,p<~N22!/2, ~6.1!

where p labels thepth species andm is the mass of the
lightest state. We simulated the SO(N) model forN56, 8,
10 and measured the masses in the different channels lab
by p. Hollowood@1# has discussed the relevant interpolatin
operators for these states and we choose the simplest op
tors which couple to the desired state in each channel. T
operator for thepth state is

Op~x! i1••• i pj 1••• j p
5 (

perms of j 1••• j p

~21!PU~x! i1 j 1•••U~x! i pj p,

~6.2!

whereP is the permutation signature of the ordering of th
$ j i%. ThusOp is the outer product ofp matrices antisymme-
trized on the row and column labels, respectively. The co
responding Green function is
le
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Gp~x!5^Tr„Op~x!Op
T~0!…&c , ~6.3!

where the trace has the obvious meaning. The results for t
mass ratiosm2/m for N58, 10 andm3/m for N510 are
shown in Table XI.

There is no convincing agreement between simulation a
theory and, moreover, no trend suggesting that the discre
ancy is;a2.

VII. DISCUSSION

The main result of this paper is that the properties of th
continuum SO~4! theory cannot be observed in a simulation
of the lattice-regularized model for the values ofbL and
correlation lengths accessible to current computers. We ha
shown that no such difficulty occurs for the model based o
the SU~2!^SU~2! cover of SO~4!. We believe that both mod-
els give rise to the same continuum theory, characterized
the fixed point atbL5`, but that the ways in which this
continuum theory is approached in the lattice-regularize
versions are very different. For SU~2!^SU~2! finite-size
scaling with O~a2! deviations holds for the range of cou-
plings used, and for scalesLm`,1 the flow with L of the
renormalized coupling,u(Lm`!, is well given by the three-
loopb function. The value form/LMS computed in the simu-
lation agrees well with the theoretical prediction~Table IX!.
In contrast, for SO~4! the violations of scaling do not fit an
O~a2! form but do seem to diminish to zero~see Fig. 1! asj`

increases. This apparent or ‘‘pseudoscaling’’ can be wrong
interpreted as signalling the continuum theory and can d
ceive us into believing that the value for the continuum cou
pling can be deduced. The false nature of this pseudoscal
is exposed by comparing the resulting computed value f
m/LMS of ;14 with the theoretical prediction of 3.8715. We
also find no convergence to a result form/LMS using the
lattice and energy schemes for SO~4!. In contrast for
SU~2!^SU~2! the lattice scheme gives an acceptable resu
although clearly inferior to that of thej scheme.

We analyzed data for the SO(N) models withN56, 8, 10
and used the lattice and energy schemes to attempt to obt
an estimate form/LMS. The results are shown in Table X
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and it is clear that there is no agreement between
schemes nor with the theoretical prediction. We also co
puted the mass ratios of the fundamental masses predicte
Ogievetskyet al. @5# and the results are given in Table XI
There is a persistent discrepancy up to 10% and there is
sign of a trend to the correct values asbL increases. These
results support the conjecture that we are unable to simu
the continuum theory for SO(N) models with present com-
puter resources.

The discrepancy between the computed and theoret
values ofm/LMS is much larger than that of about 10%
reported by Lu¨scheret al. in their analysis of the O~3! spin
model@2#, which they attributed to the truncation of the pe
turbativeb function at three-loop order. This is not the reso
lution of the problem we have found for the SO~4! model.
We conjecture that the difference lies in the different co
nectivities of the underlying manifolds: the SO(N) models
containZ2 vortex lattice artifacts while the covering group
models do not. In the general SO(N) case the cover is
Spin(N) which is constructed from the associated Cliffor
algebra@30#. The vortices create an obstruction to observin
the fixed point atbL5` but are eventually suppressed a
sufficiently largebL . Recent work by Hasenbusch@16# and
Niedermayeret al. @17# has discussed a similar phenomeno
comparing the O~3! and RP2 spin models. They propose a
similar conclusion, namely that the difference between t
two models is due to lattice vortex artifacts and the onset
scaling in the RP2 model is delayed but that for restricted
ranges of the coupling the violations of scaling vary on
slowly giving rise to the misinterpretation that true scalin
has set in. From Fig. 1 we might confidently deduce th
u(2)52.25 but from our simulation of the covering grou
we find that the value should beu53.17. We expect that as
bL increases a crossover phenomenon will occur where
violations to scaling will again become large and then eve
tually diminish to become O~a2! allowing the true scaling
limit to appear. It is important to estimate the value ofbL
and j` above which finite-size scaling and the continuu
theory limit should be observed. A crude attempt can
made with current data by using the theoretical prediction
m/LMS together with

j`5
L/a

m/Lj
„b0u~Lm`!…1/2 expS 1

b0u~Lm`! D , ~7.1!

TABLE XI. The computed mass ratios forN58, 10 compared
with the predictions. There is no convincing agreement betwe
simulation and theory.

N bL j`

m2/m m3/m

Simulation Theory Simulation Theory

8 2.28 2.80~2! 1.84~1! 1.732

8 2.31 3.98~3! 1.79~3! 1.732

8 2.33 5.75~7! 1.83~2! 1.732

8 2.35 8.05~6! 1.85~2! 1.732

10 2.91 3.05~1! 1.89~2! 1.848 2.7~2! 2.414

10 2.93 4.18~3! 1.93~2! 1.848 2.73~3! 2.414

10 2.95 5.90~3! 1.91~2! 1.848 2.73~3! 2.414
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to deducej`~bL! from the data foru(Lm`! at sufficiently
smallLm` given in Table III. These results forj`~bL! can be
compared with the results forj`~bL! computed directly from
simulation. If the lattice theory is near the continuum limi
these alternative methods of computingj`~bL! should give
similar answers. There is consistency to within 10% for th
valuesj`~bL! from using similar values ofbL on lattices of
different widths corresponding to different measured value
of ũ. Where there is a choice we have taken the result fro
the smallestũ. We plot ln~j`! versusbL in Fig. 3 for both
approaches. The mismatch is clear forbL;1.15: the direct
measurement givesj`533.4~8! whereas the short-distance
result isj`;150. It seems reasonable to infer that the tw
methods will not agree untilj`@150.

The perturbative step-scaling function is well reproduce
for sufficiently small scales even though the observables
scalesLm`;1 show a large departure from continuum be
havior. In this context note thats~1/2,u! for u52.25 is actu-
ally quite close to the three-loop prediction even though th
true scale associated with this value is a factor of about
different from that assigned in the simulation. Thus nea
agreement with the perturbative prediction at small scales
not sufficient to infer that the continuum theory is being
observed at large scales: from our simulation of the coverin
group the correct value foru at the scale assigned in this case
is u53.17 ands~1/2,u! for this value agrees very well in-
deed with the three-loop perturbative prediction~see Fig. 2!.

Suppose we were able to simulate at, saybL;1.18 on a
large enough lattice. From our results we see that the pro
erties of the continuum theory are well reproduced at scal
Lm`,1/8 but from the above discussion we would expec
the direct measurement ofj` to be considerably less than the
short-distance prediction ofj`;300. So while the properties
of the continuum theory are computable at short distances
bL;1.18 the long distance results do not reflect the co
tinuum but are dominated by residual lattice artifacts: vort
ces in the SO~4! model.

en

FIG. 3. ln~j`! plotted versusbL derived from the short-distance
behavior and the two-loopb function ~d! and from direct measure-
ment in the simulation~j!. The two sets of results do not agree
indicating that the large scale properties are not controlled by t
continuum theory.
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For a Euclidian continuum field theory a field configura
tion can be viewed as a map of the spaceR2 onto the mani-
fold of the field. A vortex is now characterized by the prop
erty that the map of a loop inR2 onto the manifold of the
field is not smoothly contractible. As a consequence there
at least one singularity of the field inside such a loop.
statistical mechanics, vortices have been mainly discusse
relation with the two dimensionalXY model. The classical
energy of a vortex is given byE'p ln~R/a) whereR is the
size of the vortex. Based on the simple energy versus entr
argument that the free energy is given byF5E2TS with
S52 ln~R/a), Kosterlitz and Thouless@31# inferred the oc-
currence of a phase transition atT5p/2.

This argument does rely on the assumptions that the f
energy of a vortex at a fixed location is essentially given
its energy and that knowledge of the free energy of an is
lated vortex is sufficient to determine the critical propertie
of the system. The possibility of a Kosterlitz-Thouless-~KT!
type transition occurring also in non-Abelian models h
been suggested by Solomonet al. @32#. It has been argued
that the free energy of a vortex at a fixed location is bound
asR→` for non-Abelian theories@33# and so a simple KT
style analysis cannot be carried out. However, it has a
been suggested@34,33# that for non-Abelian theories the in-
teraction between vortices is such that the free energy
multivortex configurations cannot be inferred from the pro
erties of an isolated vortex. It is clear that further studies a
necessary to clarify the true position.

A number of approaches can be taken.
~i! The free energy of an isolated vortex can be calcula

at least in one-loop perturbation theory and in a lattice sim
lation to check that the argument above can be made. A
the free energy of multivortex configurations should be com
puted by simulation.

~ii ! The vortices of SO(N) can be suppressed by eliminat
ing any configuration which contains one or more vortice
The finite-size scaling analysis can be repeated to
whether the continuum theory is more readily observed.

~iii ! The matrix models based on Spin(N) can be simu-
lated and compared with the SO~N) models and the mass
ratios predicted from the exactSmatrix can be computed.

~iv! Study ~a! the RPN21 model with action

S~s,s!5b(
x,t

s1~x,t !s~x,t !•s~x11,t !

1s2~x,t !s~x,t !•s~x,t11!2 ln~z! (
plaquettes

P~s!,

~7.2!
-

-
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wheres is anN-component vector of unit length,sm , m51,
2 is a gauge field taking values in@1,21#, andP(s) signifies
the plaquette and~b! the model whose manifold has the sam
topology as the SO~4! manifold but in which the vortex op-
erators can be explicitly constructed. This model has actio

S~s,s,r !5b(
x,t

s1~x,t !„s~x,t !•s~x11,t !

1r ~x,t !•r ~x11,t !…

1s2~x,t !„s~x,t !•s~x,t11!

1r ~x,t !•r ~x,t11!…2 ln~z! (
plaquettes

P~s!, ~7.3!

wheres andr are four-component vectors of unit length and
sm andP(s) are as defined in~a!. In both models the renor-
malization group flow in~b,z! can be studied using Monte
Carlo methods and hence the effect of vortices, measured
P(s) and controlled by the fugacity,z, can be determined.

These projects are currently in hand.
The outcome is that we should be wary of claims that th

continuum theory has been observed which are based on
observation of scaling in a limited window in the coupling
constant. Even if properties of the continuum are observed
short distances it does not follow that observables on th
scale of the correlation length, which are sensitive to s
called nonperturbative effects, are controlled by the con
tinuum theory. This could be the case for any lattice mod
which has nontrivial topological artifacts. It has been pointe
out @32# that QCD is such a theory since the gauge group
SU~3!/Z3 whereZ3 is the center of SU~3! @35#. It is impor-
tant to determine whether such an effect exists in QCD an
at what level of accuracy it needs to be taken into account
present-day simulations. We have been unable to obse
any continuum properties in the SO(N) matrix models but it
remains to be seen whether Spin(N) models have the same
problems.
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