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We investigate the continuum limit in §8) principal chiral models concentrating in detail on the(&0
model and its covering group $2)®@SU(2). We compute the mass gap in termsAgfis and compare with the
prediction of Hollowood ofm/Ays=3.8716. We use the finite-size scaling method od¢her, Weisz, and
Wolff to deducem/A s and find that for the S@) model the computed result of/ Azs~ 14 is in strong
disagreement with theory but that a similar analysis of th&2B&SU(2) model yields excellent agreement
with theory. We conjecture that for 0 violations of the finite-size scaling assumption are severe for the
values of the correlation lengthinvestigated and that our attempts to extrapolate the results to zero lattice
spacing, although plausible, are erroneous. Conversely, the finite-size scaling violations in(2he SUj2)
simulation are consistent with perturbation theory and the comg@ifadction agrees well with the three-loop
approximation for couplings evaluated at scdléa< ¢, whereé is measured in units of the lattice spacimg
We conjecture that lattice vortex artifacts in the (80model are responsible for delaying the onset of the
continuum limit until much larger correlation lengths are achieved notwithstanding the apparent onset of
scaling. Results for the mass spectrum for(I8)) N=8,10 are given whose comparison with theory gives
plausible support to our ideasS0556-282(96)06609-X

PACS numbsgs): 11.15.Ha, 05.56-q, 11.10.Lm, 64.60.Fr

I. INTRODUCTION For ¢ sufficiently large the mass spectrum inferred from the
correlation functions of suitably chosen interpolating opera-
For many years the study of two-dimensional non-tors and the mass gap measured in unitd g should agree
Abelian chiral models based on the manifold=G/H,  Wwith theory. Such agreement has been found for theéNSU
whereG andH are Lie groups antHC G, has provided a Mmatrix modeld8,9] for values ofN=3-15 already for mod-
deep understanding of field-theoretic methods applied t&rately small correlation lengthg>5. However, the mani-
both high energy physics and critical phenomena. In particufold of SUN) is simply connected but this is not so for many
lar, the continuum field theories derived from these model®ther models for which it is important to see if any obstruc-

are renormalizable and asymptotically free and so act gons or lattice artifacts delay the onset of the continuum

good models to test ideas applicable to four-dimensionafMit: We may then learn how to be more confident in con-

gauge theories. For many models the ex@abatrix for the trolling the approach to the continuum. Similarly good agree-

continuum field theory has been conjectuf&d-5] and this ment with theory has also been found by WQI0] for the

allowed a number of workelf$—7] to give exact predictions r;(d') and 8) spin models but not for the (@) spin model

for the mass spectrum and to use the thermodynamic Bet 11,1, A comparison of @8) and RF models has recently

. . een the subject of much attentiph3—17 since they are
ansatz together with the property of asymptotic freedom tcéxpected to correspond to the same continuum theory al-

predict the ration/ Ags for these theories, whera is mass  ho,gh they differ in the global properties of the defining

gap, Ays sets the mass scale in perturbation theory, angnanifolds. It has, however, proved impossible to demon-

MS denotes the modified minimal subtraction scheme. It isstrate the equivalence of these two models in the continuum

important to note that solely the local properties\f i.e., by computer simulation alone. The study reported in this

the algebra which generates infinitesimal displacements opaper highlights the difficulty of reliably controlling the ap-

M, and not the global properties ® are used to obtain Proach to the continuum in a number of common lattice

these results. To be able to control the approach to the cornodels.

tinuum limit for a lattice field theory is central to current ~ We study the SON) matrix models on the lattice with the

calculations in lattice QCD where criteria based on scalingiction given by

are used to determine whether dimensionless ratios for com-

puted observables have attained their continuum values an _ T T

so can be compared with experiment. The existence of theog(u)_ﬁ'-% TTUGHU Gt DUV,

retical predictions for two-dimensioné2D) chiral field theo- (1.2

ries which link the short and long range structure of the

theories gives a unique opportunity to study the approach tavhere U(x,t) is an NXN orthogonal matrix. Our analysis

the continuum in a lattice model and also to test the assumpwnainly uses the finite size scaling method described T Lu

tions underlying the theoretical analysis. cheret al. in Ref. [2]. For the lattice regularized theory we
The correlation length is most conveniently measured irdefine the coupling constant by

units of the lattice spacin@, and is denoted by the dimen-

sionless variables, and the mass gap is definedtoy= 1/a¢. U(L/a,B)=m(L/a,B)L, (1.2
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wherem(L/a,B,) is the mass gap, or inverse correlation Up=0(S,Up_1). (1.8
length, measured on a lattice of spaciag width L and

infinite extension in time direction. In the simulation it suf- A reasonable choice fog is s=1/2. For couplingsy,,,
fices to take the extension in time directiderL to achieve evaluated at sufficiently large, o(s,u) is well approxi-
this limit. The correlation length is determined by the decaymated by perturbation theory ant; is given to two-loop
of the correlation function on th& X T strip in the time  order by

direction. The physical properties can be separated from the

cutoff dependence and the continuum couplingl-m..), _ b /b2 B
can be defined by writing LA=[bou(Lm.)] "1 ex bou(Lm,) |’ (1.9
U(L/a,B)=u(Lm,,a/L)=u(Lm,)+O((a/L)*). where, for these theorieby andb, are scheme independent.

(1.3 Hencem./A, is determined by substitutingm,,=2s". We
have labeled\ by ¢ to denote this renormalization scheme:
the “¢ scheme.” The coefficientd, and b, are scheme-
independentup to overall rescalingand for some cases,
is known [2] yielding a three-loop estimate fax,. A one-
loop calculation then relate$, to Ays.

Alternatively, the approach used in Ref$2,10,8,9 can
be employed where a bare lattice coupling is defined to be a
running coupling evaluated at the scale given by the lattice
spacing,a. Two candidates are

The physical scale is set g, =1/a&.., the mass gap in the
infinite-volume limit. Apart from a trivial reparametrization,
this decomposition relies on the physical hypothesis of scal
ing with the exponeniw parametrizing the corrections to
scaling. For sufficiently largg, and sufficiently smalL/a
perturbation theory can be used to computeand since it is
proportional to 18, at tree level it can be viewed as a defi-
nition for a running coupling of the continuum field theory.
In particularu will evolve according to the universal part of
the B function.

u(Lm,,) can be calculated from a simulation of the lattice u (am,)=—: the “lattice scheme,” (1.10
theory. ForLm, =1 this is straightforward: for a given value AL
of 8. computeam,, and then simulate on a lattice of widtth AE
given in units ofa by L/a=Lm,/am,, and so compute uE(amm)zﬁ: the “energy scheme,” (1.11)
u(L/a,B,) from Eq. (1.2. Repeat for a sequence @& C

values, the largest of which is determined by computer re- ) _
sources. Check whether the results are compatible with th¢here C=n¢, n¢/N for spin and matrix models, respec-
scaling hypothesi§Eq. (1.3)] and, if so, takeu(Lm,, ,a/L)  tively, andny is the number of degrees of freedom in the
with the largest./a as the best approximation tfLm..) or, field. The couplingug was first de.fmed by Parisi in Ref.
better still, use Eq(1.3) to fit thea dependence and extrapo- [18]- For &>1 both of these couplings should scale with
late toa=0. according to the perturbativg function thus allowingaA
However, this direct approach cannot be used for smaffnd@Ag to be computed fronu, andug, respectively, ac-
values ofLm,. sincel/a=1 andam. is bounded from be- cording to Eq.(1.9) with a replacingL. Sinceg, is known
low by computer resources and so limits how srhafl,. can this allowsm/ A s to be estimated once the loop calculations
be. This problem is resolved using the renormalization groupelating Ays to A and Ag have been done. However, it

by computing the lattice step-scaling functidin should be noted that if such bare couplings are used then the
effects of scaling violations cannot be disentangled.
3(s,u(L/a,B,))=u(sl/a,B,). (1.4 The main motivation for our study was the recent work by

Hollowood [1,19] in which he has given theoretical predic-
Since no reference is made te, we can choose, for any tions form/Ays for all N>3, so allowing us to compare our
given value oft, L/a as large as the computer resourceslattice calculations with theory. The comparison between the
will allow by tuning 8, appropriately. Again we expect the studies of the lattice and continuum models sheds light on

scaling hypothesis to hold: the approach to the continuum limit in the lattice formulation
_ . and can provide verification of the assumptions underlying
(s, u(L/a,B))=o(s,u)+0O((a/L)®). (1.9 the theoretical analysis of the continuum theory. We calcu-

lateu(Lm,, ,a/L) defined in Eq(1.3) by simulation for vari-
ous values ofam, and discuss the extrapolation of the re-
sults toa=0 and we repeat the analysis for the covering

o(s,u) is the continuum step-scaling function determined
implicitly from the B function by

sw du’ group of S@4), namely SW2)®SU(2). We also compare the
o(s, u . . .
|n(3):_f —_— (1.6) results with an analysis based on the lattice and energy
u B(u’) schemes for the couplings defined in HG4.11). For the
] ] , SO(4) model we find no evidence that finite-size scaling
The g function has the perturbative expansion holds for the accessible range of couplings, but that the re-

sults can deceptively suggest that it does hold since the vio-
(1.7) lations of scaling diminish only slowly with increasirigso
' giving the semblance that they are negligible. In contrast, for
SU(2)@SU(2) finite-size scaling holds with @) violations
Having computedu(2), say, by the direct method a se- and the value deduced fon/ Ayg agrees well with the pre-
quence of values,=u(2s") can be computed using diction.

B(u)= —uzzb bu'.
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We also compare the computed mass spectrums in the
SON) model for N=8,10 with theory. The interpolating SW)=Bom> THW Wi, ). (2.9
fields for the vector bound states of @) can be easily ‘
constructed andN=38 is the smallest value for which there \y,o representV by
exists more than one such state. The results show a persistent
deviation from theory for the range @finvestigated. W= exp(¢-T),
In Sec. Il we present the relevant one-loop calculations
which relate the various\ parameters; in Sec. lll we de- where the generato& are defined so that
scribe the simulation and measurement techniques including
a method for variance reduction; in Sec. IV we give the 1
simulation results and analysis for the study of the(80 Tr(TiTj) =~ 2 8ij - (2.6
matrix model; in Sec. V we give the simulation results for
the SU2)®@SU(2) model; in Sec. VI we discuss the Then for small¢ we have
N=6,8,10 models and compare the mass spectrum and

Ays, computed in the lattice and energy schemes, with .
ws, COmp _ _ gy S S(¢>)~'8QME¢2+"'-
theory; in Sec. VII we discuss our interpretation of all the 4 <
results and how further studies may elucidate our findings.
We also draw our conclusions. This defines the quantum mechanics of a particle constrained
to the SAN) group manifold with masg.= Bo\/2. The cor-
Il. THE ONE-LOOP CALCULATIONS RELATING responding Schitinger equation is then
DIFFERENT SCHEMES
1
A. SO(N)-matrix models “ 2 D2Y,(W)=E,Y;(W). 2.7

The energy scheme can be related to the lattice-scheme
using the one-loop calculation foKE) expanded in D is the group derivativg22] defined by
1/8,=u, . This calculation is familiar and we just give the

result for general SQN): f(e?TW)=f(W)+ ¢-DF(W)+--- .
(E)=(1— (1/N) Tr(U(x,HUT(x+1}))). TheY, are group harmonics witha generic label, and sat-
isfy [22]
Nt 1+ N + 2.1 2
=88, 328, 21 D2Y(W)+C,Y,(W)=0.

L ) Using Ygx1 and Y;(W)xTr(W) we find Cy=0 and
The energy-scheme couplir: is defined as C,=Cg, the Casimir of the fundamental representation de-
duced from the generators. From Eg.6) we find

~N-1 0 5
,BE—@, (2.2 N-1
CF: 4
and the ratio betweeh parameters is then
=
v o 5,
AL bO El_ EO N_ l
m(L)= = . 2.8
N
= ex 4(N——2) ) (23 We now calculatg8qy in terms of 3, to one-loop order. The

field variablesJ on the 2D strip of width. and lengthT can

be expressed in terms of fluctuations about a background
field W, which is constant across the strip and slowly vary-
ing in t, the coordinate along the strip. We write

where 8= B, —A.
A calculation similar to that described in R¢20] gives
the result

U(x,t) = WHZeadxOwliz (2.9

AMS _ \/3—2 7TN 2 4
AL ex 2(N=-2) )° 2.4 where ¢(x,t)=¢(x,t)- T is the fluctuation abouw,. The
definition of W, is given by the relation
A, is related toA; by a one-loop background field calcula-
tion in which the 2D theory on a strip is converted to a local U(x.1) = WY2s w12
1D theory which can be directly solved for the mass gap Ex: (XD =WESWE,
since there is an equivalent ScHioger equation. A similar
approach was used in R¢21]. To analyze the 1D system it with S, a positive symmetric matrix. Using E¢2.9) this
is sufficient to study the action corresponds at lowest order to the constraint
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L-1

B ™ dq 1
_o. 2. - =
2 p(x,n=0 (210 G(0.0 f_w 27 & ASi(ap/L)+ sink(a/2))’

BecauseW, is slowly varying we can expand the effective G(0,1)=G(0,0)— 2. (2.16
1D action in terms ofA; whereA,=A;-T and
We use generators defined in EQ.6) with k=1 and the

WW/, =€, identities
To one-loop order this equation can be implemented by N—-2
choosing [T Til==TixTes fipcfip === .
W,=1 andW,,,=e 4., (2.11) N—1 (217
TiTi=—7—, THT T T =—Zfijic-
Substituting forU(x,t) andW, from Egs.(2.9) and(2.1)
into the SAN) action, Eq.(1.1), we find Then
= go(x,t) o= gh(x+1,t) , N—1
S(U)=pL Tr(enxVe ) (Tr(¢?A%))=(Tr(¢' 2A%) = —— G(0,0/(~ 3A-A),
+ T gd(X,1) a— At 12— gd(X+1,t) n— A /2 . N—1
Bugy Trerleie e (Tr( ¢’ A%)=—1— G(01(~3A-A),
(2.12
N
Expanding to quadratic order, choosigd=2/3,, and (Tr(¢pA¢’A)) =7 G(0,D)(—3A-4). (218
using Eq.(2.6), we find
A numerical evaluation 06(0,0) gives
S=5+S5,
1
where G(0,00= pye InL—A, A=0.0351637. (2.19
50:2 1.V o, Using Egs.(2.13—-(2.18), we find
X,t
Ser(4)=LBen 2 (~3A-4), (2.20

SI=LALY —3Ac At 2 Tr2¢2AT+2¢"2A0— ¢/ oA
' where

—pd' AZ— pAD'A). (2.13

The abbreviationg for ¢(x,t) and¢’ for ¢(x,t+ 1) have
been used an& is the 2D lattice Laplacian. It should be
noted that there is no terfimear in A,. This is due to the Note that the coefficient of lh is b, for the coupling
specific form of the decomposition in E¢.9) and the iden- U =1/8. . Substituting into Eq(2.8) with Som=L B gives

_ N—-2[ 1 N
Bett=PBL— _4 Z InL—-A]| - 1_6 (2.2])

v ! L _ e bo(In L+
= = = —bg(In ,
Tr({T,T;+ T, T} T =0. WD - moL N-1 . N-1 APl b))
The absence of such terms simplifies the calculation since all 7N
contributions to the 1D effective actio.«(A), are simply VNZZ(N_Z)_ZWA- (222
given by
We thus deduce that
Seft(A)=(S). (2.14
A§ o
Other parametrizations require an evaluation of the quadratic A explyn) =expg —2mA+ 2(N=2) | (2.23
terms in{S?). The average is with respect to the fluctuation
measure ex®,) taking into account the constraint in Eq. Using Eq.(2.4) we finally get
(2.10 which eliminates the zero mode in tkeadirection. We
. A_
use the Gaussian results AMS= /32 ex2mA), (2.24
&

(id))=G(0,08;, (¢i¢{)=G(0,1)g;. (2.19
which is independent dfl.

G(0,0) andG(0,1) are given by the expressions From Eq.(2.22 we also deduce the tree-level relation
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N—1 where the coefficient of In is identified with b, and, as
U=—7—u.. (2.29  pefore,A=0.0351637. Then
Ag T
B. O(N)-spin models A_L: exp —2m7A+ m . (2.30

The results for the mass-gap for(KD-spin models is '
given to three-loop order ifi2] and so we include only a Using Ays/A from above, we conclude that
brief outline of the one-loop effective 1D calculation here for A
completeness. A similar calculation was done bysther MS _ 35 exti 2 7A 23
[23] but it is instructive to present it in a concise formulation A \/_ H2mA), (239

consistent with the previous section. To relate the energy and ) )
lattice schemes we use the expandibél which is identical to the SQ) result. The two results in

Egs.(2.24 and(2.31) must be the same fdi= 3,4 since the
N—1 1 two models have the same continuum limit. That they are
(BE)= 4_,3L <1+ 8_,3L ) independent o ensures the results are identical for [dll
The tree-level relation between couplings is then
and the definition

N—1
N—1 U=——u.. (2.32

SIG)

to give Ill. SIMULATION AND MEASUREMENT TECHNIQUES

A - In the following we will give a brief description of our
—Ezexp{ - ) updating algorithm. Similar to Ref24] we used an overre-
AL 4(N-2) laxation updat¢25,26 applied to embedded(@) models. In

terms of CPU-time requirements this algorithm outper-
formed a multigrid algorithnj27] for correlation lengths up
Awis - to about 20 in the case of the Emodel in two dimensions.
A J32 ex;{ 2(N-2) ) In order to save random numbers, and hence CPU time, a

From Ref.[20] we have

large fraction of the Metropolis updates have been replaced

To calculatem(L) on the LT strip we use the same by a demon updatg28]. Most of the parameters in the algo-

method as in the previous subsection with theNDspins
s(x,t) expressed in terms of the background figldand the
fluctuation field¢(x,t) as

the CF model[24].
Our basic update steps are performed d2)@ubgroups

X)) =31 d(x,1)- B, 1) + B(x,t) (2.26 each of the sites of the lattice. After a number of sweeps a
’ ‘ ' ' Y new subgroup is chosen.

where3,- 3,=1 and¢(x,t) is an (N— 1)-dimensional vector The Q(2) subgroups that we consider are given by rota-
satisfying the constraint tions among two rows or two columns:

U|’('(X7t):Sl(xat)uk'(xit)+SZ(X1t)Uk'(X1t)1
g H(x,t)=0. (2.27) ' ' : 3.0
Ugj(X,1) = = S2(X, 1) Uy (X, 1) + 81.(X, D U (X, 1),
This constraint eliminates the zero-mode divergence in the

calculation. We then choose with sf+s5=1.
3.=3, and 3, =eMs, (2.28 This parametrization induces an action for the embedded
0O(2) model
whereX;=(1,0,0,...,0 andA, is the slowly varying 1D back- 5
ground field.T,, is the generator of SQ) rotations in the D .
1-2 plane. As in the SO) case the particular form of the StondS)=— 2 , m;:l Cnn(X, LX) Si(X, 1) Sp(X', 1),
parametrization in Eq(2.1) ensures that the 1D effective botix’ ) T (3.2

action is given by
with
Sett=(S1),
there being no linear terms ik, in the expansion of th&(s) C11=Cpo= B, Ui(X,t)Upi(x',t")+ Uij(X,)Uy;(x",t"),
in A and ¢. The calculation follows the same steps as in the K
SQ(N) case and gives

1 C1o= _C21:BEk Uii(X, DU (X7, = Uy (X, H U (X 1),
,BeffZ,BL_(N_Z)( o InL—A)—%, (2.29 (3.3

rithm were chosen by trial based on previous experience with

of the SGN) group. We have chosen the same subgroup for



5080 M. HASENBUSCH AND R. R. HORGAN 53

For the updating of the embeddedZDmodel we used a achieve this aim we used the improved estimator for the
combination of standard Metropolis, demon updates, and mieorrelation function discussed in RdR9] for the case of
crocanonical updates. We apply the microcanonical updat®(N) vector models.

step discussed bj26] for the standardXY model in two The underlying physical idea for this improved estimator
dimensions. First we compute the sum of the nearest neighs similar as that for the one-loop solution of the model dis-
bor spins of the sitext): cussed in Sec. Il. However, here instead ofefiectiveone-

dimensional model we rather usecanditional (or embed-
2 L ded model. For a given field configuratids the conditional
Rn= X > Conn(X X U)So(X 1) (3.4 model is defined by

(x’ tHnn(x,t) N=1

The new values fos are then obtained by reflection with SeondW)=— B2, 2, TITW(HU(x,t)
respect toR: tox
. X (W(t+1)U(x,t+1))], (3.9
., Rs-o
S _Z_R’_2 R=s. 39 WwhereW s the field of the conditional model. Note that there

) ) is no spatial part in the action, sind®(t) does not depend
SinceR-§'=R-$ this update step keeps the action constanton x. Performing thex summation we get
The aim of the demon update is to perform updates simi-
lar to a Metropolis update but avoid CPU-intensive parts like S (W)=— THO(t t+ YW (t+ 1)W(t
the evaluation of trigonometric functions, the exponential ond W) Z’ [QILE+DW (t+ WL,

function, and pseudorandom numbers. (3.9
The demons are introduced by an additional term in the
action where
S'=5+3 dy,, (3.6) Q(t,t+1)=—ﬂ§ Ux,HuT(x,t+1).  (3.10

where thed, ; are positive real numbers. Note that adding theReparametrizing the model bR(t,t+ 1)=WT(t)W(t+1)
demon part to the action does not change the spin sector @fe obtain
the composite theory. However, the demons give us new
options for updates. We start a sequence of demon-updates _ T
by a heat-bath step applied to the demons: Seond R)= _Z TRLIFDRI(L+D)]. (31D
d=—In(7), (3.7 For free boundary conditions in time direction there is no
constraint on theR'(t,t+1). Therefore the partition func-

where is a pseudorandom number with a uniform distribu-tion factorizes, and the solution of the conditional 1D model
tion in the interval] 0,1]. Then we perform updates that keep is reduced to the solution of zero-dimensional systems. The
the composite action of the spin model plus the demons coreonditional expectation value of the time-slice correlation
stant, exchanging energy between the demons and the spifignction is given by
First we compute a proposal for a new spin-vaflieoy re-
flectings with respect to the sum of the upper and left neigh- (G(t,t+ 7))cong= TITS((R(t,t+ 1)) cong - - (R(t+7—1,
bor spins. Then we check whether the demon at the site can
take over the energy without becoming negative. If this is the t 7)) condS(t+ 7], 312
case, we accept the proposaland set the demon to its new h
value. After a sweep of such demon updates we translate th¥nere
demons on the lattice.

For one given embedding we performed one standard Me- S(t)=>, U(x,t). (3.13
tropolis sweep, and 10 to 60 overrelaxation sweeps, and fi- X
nally five demon updates. The number of overrelaxation . i
sweeps was chosen to be roughly proportional to the corre- We were not able to compute the condmongl expectation
lation length. values exactly. Instead we used Monte Carlo integration for

We alternate the row embedding and the column embeot-his task. First one has to note that finite statistics for the
ding. The first row(column is chosen in a fixed sequence conditional expectation value does not corrupt the end result

from 1 toN, while the second was chosen randomly from thefo" (G(t,t+7)). Secondly an enormous gain in statistical
remaining ones. accuracy can be obtained, since as a consequence of the fac-

torization in Eq.(3.1.5 the statistics of the single “baby”
Monte Carlo’'s multiply. Typically we performed 200 Me-
tropolis update steps for the evaluation (&(t,t+1))cong-

In order to obtain a meaningful result for the step-scalingWe used the final value d&® for updating the fieldJ. How-
function the correlation length on the finite lattices has to beever, we have yet to make careful tests to determine the
computed with an accuracy of less than 1%. In order tcefficiency gain of this measurement technique.

The improved correlation function estimator
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IV. SIMULATION RESULTS FOR THE SO (4) MODEL TABLE I. The values olu(2,a/L) in lattice and energy methods

as a function of¢,.. The energy method shows plausible conver-

The main object of this investigation was to test the Pre-gence to the extrapolated valu¢2)=2.252).

dictions for m/Agzs for the SOQN) principal chiral models

given by Hollowood1,19]. The action for the SQ{) matrix u(all) u(alL)
models is given in Eq(1.1). It was found that even for g (E) &, Lattice method Energy method
moderate values dil (N=6) the continuum limit was dif-

ficult to achieve with any degree of confidence, all indica-1.05 0.54112) ~ 3.71(3) 1.981) 2.441)
tions being that a large correlation length is necessary. Thi$.10 0.47022)  8.347) 2.011) 2.352)

is in contrast to recent work on $N) models[8,9] where  1.12 0.443%1) 13.6213 2.1%1) 2.272)

the results indicate that the models are close to the cont.14 0.421765) 25.34) 2.172) 2.262)

tinuum limit even for smalk (£>5). In the next section we
will present some results fol=6, 8, and 10 to support L
these statements but will postpone our speculations concermeasuringu(Lm,, ,a/L) for various&, with Lm,, fixed, and
ing why such a difficulty occurs until the Conclusion. extrapolating taa/L=0. In the case that the corrections are
In this section we concentrate on the @Dmodel and perturbative they behave aga3). Whether or not this is the
apply the renormalization scheme described2f the “¢  case must be deduced from the simulation and for thel5O
scheme,” and compare it with the lattice and energy schemesodel there is clear evidence that a simple perturbative in-
used in[8,9]. The coupling constani(Lm,,) is defined in  terpretation of the-dependent effects is not possible for the
Eqg. (1.3 [23] and to achieve the continuum limit we require values of¢,, we use. Nevertheless we try to extrapolate the
u(Lm,, ,a/L) for fixed Lm.. to be essentially independent of results to the continuum limit in a reliable way and compute
a and hence that, is large enough that tha-dependent the value ofu(2,a/L). It must be emphasized that it is cru-
corrections to Eq(1.3) are negligible. The problem is that in cial to determine this value ai as accurately as possible
practice this might requir€, to be very large indeed and since it is the starting point for the subsequent determination
unachievable in a present-day simulation. Alternatively, itof u at smaller scales, and ultimately contributes to the sys-
might be possible to fit tha dependence in Eq1.3) by  tematic error on the computation @f/Ays. In order to

TABLE II. Couplings measured in the lattice and energy methods for different valuégaof The
a-dependent violations to finite-size scaling are most pronounceldrfor~1. The energy method was not
used where it gave little information in addition to the lattice method. The statistical erra¢@bfa) which
are not quoted here are of similar size as thosg(bf'a) coupling values.

S(1/2T(2L/a))=T(L/a)

L/a BL (E) U(2L/a) Lattice method Energy method
8 1.0908 0.453(b) 2.25 1.59010) 1.72710)
14 1.1169 0.4353) 2.25 1.6478) 1.72Q8)
26 1.1393 0.418@) 2.25 1.7117) 1.7377)
40 1.15335 0.40913) 2.25 1.7347) 1.7477)
7 1.1088 0.434B) 1.747 1.413) 1.4753)
13 1.1347 0.4192) 1.747 1.468) 1.4803)
20 1.15235 0.4082) 1.747 1.493) 1.4993)
30 1.16917 0.39778) 1.747 1.5063) 1.5093)
10 1.1484 0.4111) 1.517 1.32®)
15 1.1659 0.3989) 1.517 1.34B)
20 1.1803 0.391(1) 1.517 1.34®)
5 1.1424 0.407®) 1.351 1.20%)
10 1.1789 0.390@) 1.351 1.21®)
16 1.2045 0.3784) 1.351 1.21®)
8 1.2028 0.377¢®) 1.222 1.1181)
16 1.245 0.36014) 1.222 1.114)
8 1.2452 0.3582) 1.115 1.0281)
16 1.2914 0.34218) 1.115 1.0241)
8 1.2922 0.3408) 1.0234 0.9494)
16 1.3368 0.32687) 1.0234 0.9541)
8 1.3357 0.3264) 0.948 0.890%)
16 1.3851 0.31236) 0.948 0.891(%)
8 1.3849 0.311@) 0.891 0.8356)

16 1.4356 0.298686) 0.891 0.83415)




5082 M. HASENBUSCH AND R. R. HORGAN 53
size effects observed KE) this will lead to different esti-
25 ‘ , [ mates foru(2,a/L) and by trial we can see which method
gives the better extrapolation ®@'L=0. WhereL/a=2¢,
was nonintegral, simulations were done for the intelgkx
o values either side of £ and interpolation used to deduce
20 . | &L). The results are shown in Table | where we can see that
‘ * the energy method shows better convergence than the lattice
method. The errors shown are statistical and a naive straight-
————————— ¥y e forward extrapolation gives the valug2)=2.25(2) for the
. continuum coupling constant. However, we shall argue be-
1.5 T R 1 low that while plausible this value far(2) is incorrect since
the convergence to the continuum is only apparent not real.
That(E) is sensitive to the lattice size is another indica-
tion that SGN) models are more complex in the continuum
1.0 ‘ : . . ‘ limit than SUN) models where no such effect is observed.
0.0 100 200 300 400 500 600 We find that the finite-size effects iE) largely seem to
Lattice width L/a offset those inu which indicates that there is some connec-
tion between the short- and long-range properties of the sys-
FIG. 1. Values of the coupling(Lm,. ,a/L) from Tables | and tem. From Table | it can also be seen that &elependent
Il plotted againstL/a for Lm,, fixed at the values 2,1,1/2. The effects in the lattice method are not fitted by a perturbative
violations of the finite-size scaling assumption are clearly evidenparametrization: they are closer toad? dependence. This
for both versions of thé scheme used: the lattice schef®) and indicates that nonperturbative contributions are strong and
the energy scheméll). In each case the value assumed for thethat their effect on the calculation af(2) seems to be
extrapolation toa=0 is shown as the dashed line. largely accounted for using the energy method. These are all
) ] o ] ) reasons why we should be cautious and suspicious of assum-
attain the continuum limit we measured2) for increasing  jng that we are observing properties of the continuum theory.
values ofé,, and fitted thea dependence and so deduced the “ong reasonable test that we are simulating the continuum

continuum cou_plingu(z_). We characterized_ the th_eory el- theory is to check that the computed valuenofA 5 agrees
ther by the lattice couplings, or by the coupling defined by i, the theoretical prediction. We thus compute the step-
Parisi[18] in terms of the internal energy, E(2.1): scaling function described if2] and Sec. | and fit the short-
distance behavior af to the form deduced from perturbation
B :E_ 4.1) theory. We choose the factor for the scale change t® be
E 8(E) =1/2. Therefore we consider pairs of lattices with sizés 2
andL, respectively, ang, is adjusted so thai(2L/a,8,) is
Note (E) is normalized to lie in[0,1]. We found that(E) a required value. Then(L/a,B,) is measured in both the
suffered from strong finite-size effects and so could not bdattice and energy schemes, that is, keeping eieor B¢
expressed as a function @ alone. We chose to measure constant on the lattice pair. Various valued.@é were cho-
u(Lm,, ,a/L) by keeping eithe3, or B¢ constant on the sen so that the-dependent effects can be determined and
lattices withL/a> ¢, andL/a=2¢,,, denoted the “lattice” eliminated by extrapolation. When we believe that the con-
and “energy method,” respectively. Because of the finite-tinuum limit has been attained than the step scaling function

(L)

TABLE lll. The sequence of continuum couplings as a functiorLof,, . Also shown are the one- and
two-loop approximations tar(1/2u) evaluated withu=u(2Lm,,). These should be compared with the
Monte Carlo resulte(1/2u(2Lm..))yc=u(Lm,,). It seems plausible that asymptotic scaling sets in for

Lm,=1/4.
o(1/2u(2Lm,))
Lm, u(2Lm,,) u(Lm,,) One loop Two loop Three loop
1 2.25 1.75413) 1.9305 1.9010 1.8915
0.987/2 1.747 1.51®) 1.5481 1.5329 1.5291
0.987/4 1.517 1.358) 1.3647 1.3544 1.3521
0.987/8 1.351 1.223) 1.2289 1.2214 1.2199
0.987/16 1.222 1.11481) 1.1212 1.1154 1.1145
0.987/32 1.1148 1.02345) 1.0303 1.0259 1.0252
0.987/64 1.0234 0.94781) 0.9518 0.9483 0.9478
1.073/128 0.9561 0.891®) 0.8933 0.8904 0.8900

1.073/256 0.8912 0.838B2) 0.8364 0.8340 0.8337
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TABLE V. Computed values fom/Aws using the two- and three-loog function for the coupling
evaluated at the indicated scdline small adjustments to the scale explicit in Table 11l are omitted for
clarity). The errors are calculated from the accumulation of statistical errors at all preceding steps.

Lm,, 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1/1
m/ Ay 14.31.00 14.31.0 1449 14.49 1419 14.19 14.29 14.07) 13.25
Two loop

m/ Ay 13.711.0 13.61.0 13.719 13.69 13.39 13.29 13.29 12.97) 12.05
Three loop

o can be determined from E{L.5 and compared with per- Clearly asymptotic scaling sets in fom,<1/4. It is perhaps

turbation theory using Eq$1.6) and (1.7): surprising that the two-loop approximation fits the Monte
Carlo results so well at such relatively large scales, but it
N—2 b% gives confidence that we can probe deeply into the region
bozm' bl:?- where asymptotic scaling holds and hence that perturbative

parametrization ofi in terms of Ay is valid. Thea depen-
The first two coefficients of thg8 function quoted fou are  dence of the results for these smaller valuesiohdicates

obtained from those associated with=1/8, [20] by using  that B is large enough for the extrapolation to the con-
Eq. (2.25 gives the tree-level relation tinuum limit, a=0, to be reliable. The data from Table Il are
shown in Fig. 2 where the computed functiet2,u) is com-

u_

~N-1

u .

The results are shown in Table II.

pared with its one- and three-loop approximations deduced
from Egs.(1.6) and(1.7). The important intermediate region
where it is crucial to maintain the continuum limit in order to
reliably relate the low and high energy scales is also in clear

In each case the continuum coupling for a given scale wagvidence. This match between the sniallregion and

determined by extrapolation t—=0. From Table Il it can be largeL region[where trivially u(Lm.;) =Lm..] is the impor-
seen that the most care needs to be taken when~1  tant part of the simulation. o
where the corrections to finite-size scaling are the greatest. In From Table Il we can deduce the valuerafA,, i.e., in
all cases the energy method was the most convergent, but ffi€ ¢ scheme, using the two-loop formula, EQ..9). We
sufficiently largeL. both the lattice and energy methods werenave
compatible and a common value for the continuum coupling 1/ 4 |\~ 3
was consistensee Fig. 1 For Lm,<1/2 thea-dependent A= ) exp( - ) 4.2
corrections were small and consistent with perturbation £ oL 37 u
theory and both schemes gave consistent results. Following _ _ .
Eq. (1.8) we tried to use the result of a given step as thell! fact, since the covering group of $0 is SU2)®SU(2)
argument of the next step. This was achieved in all case@nd the SW2) matrix model is isomorphic to the (@) spin
except wherm,,=1/2 andLm,, =1/128 where we corrected model, we are able to use the three-lg@gunction in Ref.
the small mismatches by interpolation. These correction$?] to deduce that
lead to scale changes of 2.026 and 1.840, respectively. The 1
sequence of continuum couplings deduced are shown in A(;):A(;)(l——u). 4.3
Table Il 6m

Also shown are the one-, two-, and three-loop approxima-
tions too(1/2,u) evaluated withu=u(2Lm.,). These should ) - ) o
be compared with the Monte Carlo result e!s will pe postpo_ned until the next section but it is conve-
nient to invoke this formula here. The one-loop calculation
o(1/2,u(2Lm,.))yc=u(Lm..). necessary to determine the rafig/A s is given in Sec. I,

and using the result fo\ /A, and Ags/A from Egs.
TABLE V. The values ofm/Aws in the lattice and energy

scheme$12, 10, 8, 9 as a function ok, for the SA4) model. The TABLE VI. The values ofu(1,1/£,.) in the Iatti_ce method as a

theoretical prediction isn/ A ys=3.87153[1,19]. function of &.. Interpolation is used to calculate at noninteger
values ofL. Clearly, finite-size scaling violations are small and,

m/ A s within the errors, not incompatible with the perturbative prediction

that they behave like @2).

BL (E) F Lattice scheme Energy scheme

105 05412)  3.713) 3052) 20.42) A (& X b u(. 1)

1.10 0.470R) 8.347) 2482) 31.33) 2.00 0.423®©) 99.83) 7.892) 1.5525)

1.12 0.44381) 13.6213 194(2) 34.1(3) 2.20 0.37781) 266.68) 13.955) 1.5624)

1.14 0.42176) 25.34) 133(2) 30.95) 2.40 0.3407(b) 555.11.9 25.11) 1.5855)

1.15 0.4129(5) 33.48) 1143) 29.57) 2.60 0.310702) 1629.92.6) 47.078)  1.5843)

A discussion of the detailed relationship between these mod-
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(2.14 and(2.23), we give the computed two- and three-loop the success of the method applied to(H) matrix models
results form/ Ay versus length scale in Table 1V. The pre- [8,9] and the @4) and O8) spin modelq 10].
diction for this quantity can be taken from the paper by Hol-

lowood [1] where the formula fom/Awys for the SAGN) V. RESULTS FOR THE SU(2)@SU(2) COVERING OF SO(4)
matrix models can be extended down No=4 [19]. The

prediction is The SU2)®SU(2) matrix model consists of two indepen-
dent SU2) models and the S@@) matrix model is isomor-
m 2712 phic to the @4) spin model where the fields take values in
=T =3.8715. (4.4 0O(4)/0(3)=S>. Thus we need only to simulate thé4D spin
s \me model which can be done using the cluster algoriftir].

The theoretical prediction fam/Ays is given in[7,6] to be
As can be seen from Table IV the computer results are

wrong by a minimum of a factor of 4. The inescapable con- 32
clusion is that we have not eliminated corrections to finite- m/Ays=\/ —=1.9358.
size scaling and are not close to the continuum limit in our me
simulation. Without the theoretical prediction we might have ) )
been persuaded that the evidence did point to the simulatioh® only difference between the 80 and SU2) matrix
having produced reliable continuum results—the step scalin§’0dels is that the lightest state of the @Jmodel is a
function seemed to agree well with the two-loop predictionSPinor and that of the S@) model corresponds to a spinor-
already by scaletm..<1/4 and from Table IV the results antispinor state which is not, in fac;, bound. Thus, in the
seem stable across a wide range of length scales. This 20(4) model, the Iarge time asymptotics of the correlator are
deceptive since the crucial part of the simulation where th&ontrolled by the spinor-antispinor cut and not a bound state
finite-size scaling assumption is most strongly violated is fofP0l€. However, in two dimensions the large time behavior is
lattices where_m,,~1 and the parts of the simulation which d0minated by the branch point mass with only slow power-
are important for setting the scale are not probing the conl@W deviations from a pure exponential decay. Thus we sim-
tinuum. The corollary is that we need the initial value of Py have

¢.=1/am, to be considerably larger than the biggest we

have taken. The surmise is that since the ISDfhanifold is Msoa)=2Msy() - (5.2

not simply connectedII,{SON)]=Z,, there are vortices

which are responsible for nonperturbative violations ofThis factor of 2 simply converts the 34 prediction of Hol-
finite-size scaling and much larger values @fare needed lowood[1] into the prediction of Hasenfratet al. [7,6] for
before their effect is sufficiently suppressed so that the conthe Q4) spin model. It then follows that the two continuum
tinuum limit can be approached in a controlled, perturbativecouplings defined as in E¢L.3) are related by a factor of 2:
way. One check is therefore to simulate the covering group

(5.9

of SO4), SU2)®SU(2), and see whether the problems with Usos) = 2Usy) - (5.3
finite-size scaling violations are perturbative. The results are
presented in the next section. We shall omit the distinguishing subscript anunless it is

We can also check what happens if we apply the methodecessary to avoid ambiguity.
used in Refs[12,10,8,9 for the couplings defined in Eq. The action for the @) spin model is taken to be
(1.12). These bare couplings are defined to be evaluated at
the scale of the lattice spacireg The A parameters of the
respective lattice and energy schemés, and Ag, can be — ) _ _
calculated using Eq.1.9). Since the corresponding value of s BL% S Sep 64
am,, is known from the simulation the estimate fiov A4z
can be calculated using Eq2.3) and(2.4). The results are As before we definau using Egs.(1.2) and (1.3). The
shown in Table V. The results are very poor and it is cleartree-level result from Sec. Il B relating thé and lattice
that the approach is hopeless. This should be contrasted wilithemes is

TABLE VII. Couplings measured in the lattice method for different valued &d. The a-dependent
violations of finite-size scaling are apparent but small, even for the crucial case lfteere., .

L/a BL (E) X U(2L/a) S(1/2u(2L/a))=u(L/a)
4 1.9874 0.403B) 18.253) 1.5845) 1.2083)
7 2.1914 0.3714®) 47.876) 1.5844) 1.21Q03)
13 2.4032 0.3378) 140.82) 1.5843) 1.2192)
24 2.6050 0.309438) 415.34) 1.5843) 1.2271)
8 2.4649 0.3264) 78.01) 1.2283) 1.0082)
16 2.6959 0.29735) 268.03) 1.2282) 1.0112)
8 2.6954 0.29579) 96.51) 1.0112) 0.8651)

16 2.9260 0.27188) 337.94) 1.0112) 0.8631)
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TABLE VIIl. The sequence of continuum couplings for the TABLE IX. Computed values fom/Aws using the two-loop
O(4) spin model as a function dfm,,. Also shown are the one-, and three-loop3 functions for the coupling evaluated at the indi-
two-, and three-loop approximations t@(1/2u) evaluated with cated scale. The errors are calculated from the accumulation of
u=u(2Lm,). These should be compared with the Monte Carlostatistical errors at all preceding steps. These results are to be com-
result o(1/2u(2Lm.,))yc=u(Lm,,). Clearly, asymptotic scaling is pared with the theoretical predictidi,6] m/Ayps=1.9358.
already setting in foLm,<1.

L/aé., 1/8 1/4 1/2 1/1
o(1/2u(2Lm,))
m/ Aws 1783300 1.73528 1.67918 1.60910)
Lm, u(2Lm,) u(Lm,) Oneloop Two loop Three loop Two loop
/ Awis 1.96333) 1.94431) 1.93020) 1.93511
2/1 4132100 2.309100 2.5700 2.2927 2.1062 'rphrehésloop 33 431 120 11

11 2.30910) 1.5844) 1.7236 1.6384 1.5925
1/2 1.5844) 1.2283) 1.2847 1.2495 1.2348

14 12282 1.0113) 1.0401  1.0216 1.0152  of Table Ill. Also shown are the curves fof1/2u) derived
1/8  1.0112) 0.8632) 0.8801  0.8689 0.8657  from the one-loop and three-logp functions. The largau
result, o(1/2,u)—u/2, to which all curves should eventually
be asymptotic is also shown. It can be seen that there is a
N—-1 clear deviation between the results for the two models in the
2 Uc - (5.9 crucial region wherd.m_~1, but that the S@) result lies
close to the perturbative prediction, tempting us to conclude
Using this result, thes function foru as defined in Eq(1.7)  that the S@®4) simulation is sufficiently close to the con-

then has coefficients tinuum limit. This is wrong.
The calculations ofm/Aps in the lattice and energy
N—2 N—2 N—2 schemes have been done using three-loop results by Wolff in
bo:mv blzm’ bzzm- Ref.[10]. Our simulation results agree in detail with his and

(5.6) he finds general agreement with the prediction fon 5.
However, the different schemes tried by Wolff do show dif-
The result forb, is taken from Ref[2]. In addition to the ferent rates of convergence to theory as a functiog.ahe
two-loop formula forA;, Eqg. (1.9), we have the three-loop best being the energy scheme which agrees very well with

formula theory for¢,~10. We have similarly good agreement for the
¢ scheme confirming the ease with which the continuum
AP @] 1 1 . limit can be controlled.

VI. RESULTS FOR SO(N), N=6, 8, 10
Because the continuum limits of the 81 and Q4) spin

model are controlled by the same Lie algebra the conversion We attempted to analyze the S0 models for
ratio A ./ As is the same for both. However, as a check andN=6, 8, 10 in the same way as for 8. However, the
for completeness, the one-loop calculation which yields this

conversion ratio for the general(®) spin model is briefly

described in Sec. Il B. Of course, f?d=4 all necessary 6.0 ; ; :
results can be taken from R¢2] .
The simulation results fou(1) for various values fog,, 50 i

are shown in Tables VI and VIl and the results for the cor-
responding step-scaling function are given in Table VI
where the values quoted have been extrapolated tath@
limit. Clearly the violations of finite-size scaling are much =
smaller than for the S@) matrix model, compare with & 3.0
Tables | and Il, and are compatible, within errors, with the
perturbative prediction that they behave likéa€). In com- 20t
paring Tables VII and Il the conversion factor of two be-
tween couplings, Eq(5.3), should be borne in mind. Note
that we have not used the energy method for the spin model
since it is not needed.

The two-loop and three-loop computed valuesToi\ s 20,5 20 20 6.0 80 100
are given in Table IX. The two loop result is already near to u(SO(4)) or 2*u(SU(2))
the predicted value of 1.9385 fdrm,,~1/8 and the three-
loop result agrees with this prediction within errors even for g, 2. The step-scaling functiom(1/2,u) versusu. The solid
Lm,~1. In Fig. 2 we compare the B)®SU(2) and S@4)  and dashed curves are respectively the one- and three-loop pertur-
results for the step-scaling function. We have plotteghs,  bative calculations. Data for the $0 matrix model(O) and the
and gy, on the ordinate since in the continuum limit the SU(2)®SU(2) matrix model(CJ). The largeu result to which all
data points should coincide up to the small correction factorgsurves are asymptotic is shown as the long-dashed line.
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TABLE X. The values ofm/Ays computed in the lattice and energy schemes compared with the theo-
retical prediction folN=6, 8, 10. There is no agreement between the schemes and no trend suggesting that
the results will converge to the prediction.

m/ Ay

N BL (E) F Lattice scheme Energy scheme Theory
6 1.5 0.67861) 1.3873) 48.91) 5.321) 3.87153

6 1.6 0.62261) 1.971) 62.33) 6.033) 3.87153

6 1.7 0.51813) 4.854) 46.04) 7.997) 3.87153

6 1.73 0.478@) 8.7(1) 30.713) 8.079) 3.87153

8 2.28 0.572@) 2.802) 35.33) 5.274) 3.65837

8 231 0.536%) 3.983) 28.02) 5.554) 3.65837

8 2.33 0.507@®) 5.757) 21.03) 5.51(7) 3.65837

8 2.35 0.485(2) 8.056) 16.21) 5.364) 3.65837
10 291 0.562) 3.051) 25.138) 4.652) 3.523789
10 2.93 0.5341) 4.183) 19.4614) 4.61(3) 3.523789
10 2.95 0.505@®) 5.9013) 14.637) 4.622) 3.523789

CPU time required is prohibitively large and we were unable Gp(x) =<Tr(Op(x)O;(0))>c, (6.3

to work with sufficiently large correlation lengths. It is in-

structive, however, to compute the valueswifA s for each  where the trace has the obvious meaning. The results for the

model in the lattice and energy schemes. The results an@ass ratiosn,/m for N=8, 10 andmg/m for N=10 are

shown in Table X. While the energy scheme does not shovghown in Table XI.

the large deviation from theory of the $0 model the re- There is no convincing agreement between simulation and

sults are clearly untrustworthy. There is no agreement betheory and, moreover, no trend suggesting that the discrep-

tween the different schemes and, although the rangé of ancy is~a?.

used was limited, there is no indication that the results are

converging towards the correct answer. The contrary is true

for SU(N) [8,9] where the agreement with theory was good

even for the modest values éfsimilar to those used in this The main result of this paper is that the properties of the

present study. It is interesting to note that fé=8, 10 the continuum S@4) theory cannot be observed in a simulation

energy scheme gives results which seem independeét of of the lattice-regularized model for the values gf and

for the restricted range covered. Clearly, this cannot be takeoorrelation lengths accessible to current computers. We have

as indicating that the results have converged toghe«~  shown that no such difficulty occurs for the model based on

limit: in light of our experience it shows very little. the SU2)®@SU(2) cover of S@4). We believe that both mod-
Another prediction derived from the exa@tmatrix is for  els give rise to the same continuum theory, characterized by

the mass ratios of particles in the theory. For SQ(N ever)  the fixed point atB, =, but that the ways in which this

VII. DISCUSSION

the prediction is continuum theory is approached in the lattice-regularized
versions are very different. For $2J@SU(2) finite-size
m, sin7p/(N—2)] scaling with Ga®) deviations holds for the range of cou-

™ Sial(N=2)] 1<p=(N-2)/2, (6.1) plings used, and for scaldsm,.<1 the flow withL of the
renormalized couplingy(Lm,,), is well given by the three-
loop B function. The value fom/ Ays computed in the simu-

wherep labels thepth species andn is the mass of the lation agrees well with the theoretical predictirable 1X).

lightest state. We simulated the SO( model forN=6, 8, o : .
10 and measured the masses in the different channels label CgmraSt’ for S@) the V'O!at!o.”s of scaling d.o not fit an
a“) form but do seem to diminish to zefsee Fig. 1asé,

by p. Hollowood[1] has discussed the relevant interpolating. ; Thi rent or * q lina” can be wronal
operators for these states and we choose the simplest opefgg eases. 1his apparent or “pseudoscaiing - can bé wrongly

tors which couple to the desired state in each channel. Th@tgrpretgd as si_gnglling the continuum theory a_md can de-
operator for thepth state is ceive us into believing that the value for the continuum cou-

pling can be deduced. The false nature of this pseudoscaling
is exposed by comparing the resulting computed value for
Op(X)iomii jyonj. = > (—1)PU(X); U0, m/ A s of ~14 with the theoretical prediction of 3.8715. We
LR pemsaty.. v PP also find no convergence to a result for Ay using the
(6.2 lattice and energy schemes for &D In contrast for
SU(2)®@SU(2) the lattice scheme gives an acceptable result
whereP is the permutation signature of the ordering of thealthough clearly inferior to that of thé scheme.
{ji}. ThusOy, is the outer product op matrices antisymme- We analyzed data for the S®f models withN=6, 8, 10
trized on the row and column labels, respectively. The corand used the lattice and energy schemes to attempt to obtain
responding Green function is an estimate fom/Awg. The results are shown in Table X
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TABLE Xl. The computed mass ratios fdf=8, 10 compared

with the predictions. There is no convincing agreement between 10.0

simulation and theory. : °
[}
my/m mg/m 80 L b ]
[
N BL &, Simulation Theory Simulation Theory .
8 228 2802 1.841) 1.732 = 60T o® * ]
8 231 398) 1.793) 1.732 £ o
8 233 57%7) 1832  1.732 40 . 1
8 235 80%) 1.852)  1.732 .
10 291 3.081) 1.892 1.848 2.12) 2414 20 . .
10 2.93 4.18) 1.932) 1.848 2.783) 2414 .
10 2.95 59(MB) 1.912) 1.848  2.78) 2.414 0.0 . ‘ s ,
1.00 1.10 1.20 1.30 1.40 1.50

B
and it is clear that there is no agreement between the '

schemes nor with the theoretical prediction. We also com-
puted the mass ratios of the fundamental masses predicted Bg

Ogievetskyet al. [S] and the results are given in Table XI. ment in the simulation(M). The two sets of results do not agree

T_here is a persistent discrepancy up to _10% and there is r‘ﬁ:fdicating that the large scale properties are not controlled by the
sign of a trend to the correct values As increases. These continuum theory.

results support the conjecture that we are unable to simulate

the continuum theory for S®() models with present com- tg deduceé.(B,) from the data foru(Lm.,) at sufficiently
puter resources. smallLm,, given in Table Ill. These results f@t,(8,) can be
The discrepancy between the computed and theoreticglompared with the results f@.(3,) computed directly from
values ofm/Ays is much larger than that of about 10% simulation. If the lattice theory is near the continuum limit
reported by Lscheret al. in their analysis of the (3) spin  these alternative methods of computi&ig/3,) should give
model[2], which they attributed to the truncation of the per- similar answers. There is consistency to within 10% for the
turbative 8 function at three-loop order. This is not the reso-valuesé.(8,) from using similar values oB, on lattices of
lution of the problem we have found for the 8 model.  different widths corresponding to different measured values
We conjecture that the difference lies in the different con-of Ti. Where there is a choice we have taken the result from
nectivities of the underlying manifolds: the S models  the smallesti. We plot In&,) versusB, in Fig. 3 for both
containZ, vortex lattice artifacts while the covering group approaches. The mismatch is clear fgr~1.15: the direct
models do not. In the general SR case the cover is measurement give§.=33.48) whereas the short-distance
Spin(N) which is constructed from the associated Clifford result is £,~150. It seems reasonable to infer that the two
algebra[30]. The vortices create an obstruction to observingmethods will not agree untg..>150.
the fixed point at3 = but are eventually suppressed at  The perturbative step-scaling function is well reproduced
sufficiently larges, . Recent work by Hasenbus¢h6] and  for sufficiently small scales even though the observables on
Niedermayeet al.[17] has discussed a similar phenomenonscalesLm,,~1 show a large departure from continuum be-
comparing the @) and RP spin models. They propose a havior. In this context note that(1/2,u) for u=2.25 is actu-
similar conclusion, namely that the difference between theyly quite close to the three-loop prediction even though the
two models is due to lattice vortex artifacts and the onset ofrye scale associated with this value is a factor of about 4
scaling in the RP model is delayed but that for restricted different from that assigned in the simulation. Thus near
ranges of the coupling the violations of scaling vary only agreement with the perturbative prediction at small scales is
slowly giving rise to the misinterpretation that true scalingnot sufficient to infer that the continuum theory is being
has set in. From Fig. 1 we might confidently deduce thabbserved at large scales: from our simulation of the covering
u(2)=2.25 but from our simulation of the covering group group the correct value far at the scale assigned in this case
we find that the value should he=3.17. We expect that as s u=3.17 ando(1/2u) for this value agrees very well in-
B increases a crossover phenomenon will occur where th@eed with the three-loop perturbative predictisee Fig. 2
violations to scaling will again become large and then even- Suppose we were able to simulate at, gay-1.18 on a
tually diminish to become @?) allowing the true scaling large enough lattice. From our results we see that the prop-
limit to appear. It is important to estimate the value&f  erties of the continuum theory are well reproduced at scales
and £, above which finite-size scaling and the continuum|m_<1/8 but from the above discussion we would expect
theory limit should be observed. A crude attempt can behe direct measurement gf to be considerably less than the
made with current data by using the theoretical prediction foshort-distance prediction @,~300. So while the properties
m/ Aws together with of the continuum theory are computable at short distances for
B.~1.18 the long distance results do not reflect the con-
- ) (7.1  tinuum but are dominated by residual lattice artifacts: vorti-
bou(Lm.,) ces in the SO model.

FIG. 3. In¢,) plotted versusB, derived from the short-distance
havior and the two-loop function (®) and from direct measure-

_ L/a b L 1/2
gm_m( ou(Lm,))* ex
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For a Euclidian continuum field theory a field configura- wheresis anN-component vector of unit lengtlo;,, ©=1,
tion can be viewed as a map of the sp&onto the mani- 2 is a gauge field taking values|it,—1], andP (o) signifies
fold of the field. A vortex is now characterized by the prop- the plaquette antb) the model whose manifold has the same
erty that the map of a loop iR? onto the manifold of the topology as the S@) manifold but in which the vortex op-
field is not smoothly contractible. As a consequence there isrators can be explicitly constructed. This model has action
at least one singularity of the field inside such a loop. In
statistical mechanics, vortices have been mainly discussed in
relation with the two dimension&Y model. The classical S(a,s,r)zﬂz aq(X,t)(s(x,t)-s(x+11t)
energy of a vortex is given b~ 7 In(R/a) whereR is the xt

size of the vortex. Based on the simple energy versus entropy +r(x,t)-r(x+11))
argument that the free energy is given By=E—TS with
S=2 In(R/a), Kosterlitz and Thoulesg31] inferred the oc- +oy(X, 1) (S(X, 1) - s(x,t+1)
currence of a phase transition Bt /2.
This argument does rely on the assumptions that the free Fr(xt) - r(xt+1)—In(z) 2 P(o), (7.3
energy of a vortex at a fixed location is essentially given by plaguettes

its energy and that knowledge of the free energy of an iso-

lated vortex is sufficient to determine the critical propertiesneres andr are four-component vectors of unit length and
of the system. The possibility of a Kosterlitz-ThouleksF) o, andP(o) are as defined ifg). In both models the renor-
type transition occurring also in non-Abelian models hasyjization group flow in(3,z) can be studied using Monte

been suggested by Solometal. [32]. It has been argued ario methods and hence the effect of vortices, measured by
that the free energy of a vortex at a fixed location is boundeq>(a) and controlled by the fugacitg, can be determined.
asR—oo for non-Abelian theorie$33] and so a simple KT These projects are currently in hand.

style analysis cannot be carried out. _However_, it has_ also The outcome is that we should be wary of claims that the
been suggestef84,33 that for non-Abelian theories the in- continuum theory has been observed which are based on the
teraction between vortices is such that the free energy fpservation of scaling in a limited window in the coupling
multivortex configurations cannot be inferred from the prop-constant. Even if properties of the continuum are observed at
erties of an isolated vortex. It is clear that further studies argqrt distances it does not follow that observables on the
necessary to clarify the true position. scale of the correlation length, which are sensitive to so-
A number of approaches can be taken. called nonperturbative effects, are controlled by the con-
(i) The free energy of an isolated vortex can be calculategi,,ym theory. This could be the case for any lattice model
at least in one-loop perturbation theory and in a lattice simuyyhich has nontrivial topological artifacts. It has been pointed
lation to check that thg argument'abovga can be made. Alsg; [32] that QCD is such a theory since the gauge group is
the free energy of multivortex configurations should be COM-5Y(3)/Z, whereZ, is the center of S(B) [35]. It is impor-
puted by simulation. __ tant to determine whether such an effect exists in QCD and
_ (i) The vortices of SOl) can be suppressed by eliminat- 5¢ \yhat level of accuracy it needs to be taken into account in
ing any configuration which contains one or more vortices yresent-day simulations. We have been unable to observe
The finite-size scaling analysis can be repeated to Se€gny continuum properties in the S matrix models but it

whether the continuum theory is more readily observed.  amains to be seen whether Spin(models have the same
(iii) The matrix models based on Sph) can be simu- problems.

lated and compared with the $0) models and the mass
ratios predicted from the exa& matrix can be computed.
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