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Critical behavior of the Schwinger model with Wilson fermions
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We present a detailed analysis, in the framework of the MFA approach, of the critical behavior of the latt
Schwinger model with Wilson fermions on lattices up to 242, through the study of the Lee-Yang zeros and the
specific heat. We find compelling evidence for a critical line ending atk50.25 at largeb. Finite size scaling
analysis on lattices 82,122,162,202, and 242 indicates a continuous transition. The hyperscaling relation is
verified in the exploredb region.
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I. INTRODUCTION

Although apparently far from physical reality, the
Schwinger model, i.e., the theory describing the interacti
between photons and electrons in 111 dimensions, has been
a favorite framework for theoretical and numerical exercis
for at least two reasons.

First, the massless Schwinger model can be analytica
solved in the continuum and this is the reason why it h
always been used as a laboratory for the development
numerical algorithms for dynamical fermions.

Second, and due to the special low dimensionality dyna
ics, this model shares many physical properties with fou
dimensional QCD~QCD4), the gauge theory describing th
strong interaction of hadrons. In fact the charge is confin
in the Schwinger model and long range forces are absen
it. Of course the Schwinger model has also some charac
istic features which are not common to QCD like the pro
erty of superrenormalizability or ultraconfinement~it effec-
tively describes free bosons! and the absence of the
Goldstone boson. However we expect a phase diagram in
lattice regularized Schwinger model qualitatively similar t
that of lattice QCD, in particular since, as can be deriv
from dimensional arguments, the continuum limit is reach
at infinite gauge coupling. This is one of the motivations f
this paper.

The Schwinger model on the lattice, using the Kogu
Susskind regularization for the fermion fields, has been
subject of extensive analysis. The phase structure of
model in the gauge couplingb and fermion massm plane is
well known and the continuum value for the chiral conde
sate has been reproduced within three decimal places@1#, the
best numerical result to our knowledge, using the microc
nonical fermionic average~MFA! approach@2#. In the Wil-
son regularization for fermion fields, however, the situatio
is not so clear. In this scheme, chiral symmetry is explicit
broken even for vanishing bare fermion mass and this is
unavoidable price to pay to overcome the species doubl
problem @3#. Therefore no order parameter can be used
analyzing the phase diagram, which, in addition to the larg
number of degrees of freedom if compared with the Kogu
Susskind regularization, makes the analysis far from trivia

Furthermore almost all the standard algorithms to sim
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late numerically dynamical fermions, such as the hybr
Monte Carlo algorithm, which are based on the inclusion
the fermion determinant in the integration measure, need
duplicate the number of fermion species in order to avo
negative values for the determinant of the Dirac operato
which makes it impossible to investigate the phase structu
of the one-flavor Schwinger model. This is the reason wh
until very recently, when an analysis of the phase diagram
the Schwinger model in the Wilson regularization using no
standard methods was performed@4#, very little was known
about it.

In this work we will report the results of a numerica
simulation of the one-flavor Schwinger model in the Wilso
regularization, by means of MFA simulations. The structu
of the Lee-Yang zeros in the complex hopping parameterk
plane strongly suggests the existence of a critical line: in o
simulations the criticalk is 0.27 at b52, ending at
k50.25,b→`, the critical point where the continuum limit
is recovered. We also describe results concerning the spec
heat showing a sharp peak along a linekc5 f (bc) in the
k,b plane, in good numerical agreement with prediction
from the Lee-Yang zero analysis. The results of the fini
size scaling analysis for the Lee-Yang zeros and chiral s
ceptibility allow the determination of the critical exponents
and the fulfillment of the hyperscaling relation gives a defi
nite confirmation that we are dealing with a real secon
order phase transition line.

II. THEORETICAL GROUNDS

The lattice action for the massive Schwinger model wit
Wilson fermions is given by

S~b,k!5SF~k!1bSG , ~1!

whereSF(k) contains the kinetic and mass terms for th
fermion field as well as the fermion-gauge interaction term
and we have chosen for the pure gauge actionSG the stan-
dard noncompact regularization for the Abelian model. Th
fermionic actionSF(k) reads
5069 © 1996 The American Physical Society
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SF~k!5k(
m,x

@c̄~x1m!~11gm!Um
† ~x!c~x!

1c̄~x!~12gm!Um~x!c~x1m!#2(
x

c̄~x!c~x!.

~2!

Equation~2! defines the Dirac matrix operatorD which
can be written as

D52I1kM , ~3!

whereI is the unit matrix andM a matrix of dimension equal
to the lattice volume times the number of Dirac componen

The use of the MFA approach in the numerical simul
tions of the system described by action~1! has at least two
very important advantages when compared with other st
dard approaches. First, since MFA is based on the compu
tion of the fermion effective action defined as the logarith
of the mean value of the fermion determinant at fixed pu
gauge energy and this mean value is positive definite at le
in the physically interesting region, we have no problems
simulate the one-flavor model. Second, since thek depen-
dence factorizes in the nontrivial part of the fermionic oper
tor ~3!, we do not need to repeat the numerical simulatio
when changing the value of the hopping parameterk, which
is mandatory for exploring the zeros of the partition functio
in the complexk plane. Let us notice also that, while MFA
has been extensively used and checked in lattice gauge t
ries with Kogut-Susskind fermions, this is the first time it
applied to a lattice model with Wilson fermions.

The technical details of MFA can be found by the inte
ested reader in@2#. As stated before, all the applications o
MFA to lattice gauge theories in these references were do
using staggered fermions. The main difference between s
gered and Wilson fermions comes from the different stru
ture that the Dirac operator has in each formulation. In t
Wilson case, where the fermion matrix has the structu
given by Eq.~3!, the MFA approach works as follows: firs
we generate well-decorrelated gauge field configurations
fixed noncompact gauge energy

E5
1

V (
x,m,n

@Am~x!1An~x1m!2Am~x1n!2An~x!#

~4!

and then we diagonalize theM matrix for each generated
configuration. Because of the non-Hermiticity of the matr
we can not use the standard Lanczos algorithm; the eig
values are found using a standard library diagonalizati
routine. From the eigenvalues of theM matrix we can recon-
struct the determinant of the Dirac operatorD at any value of
the hopping parameterk in a trivial way. The partition func-
tion associated with the action~1! can be written then as

Z~b,k!5(
n

Cn~b!kn5E dEn~E!e2bVE(
n

Cn~E!kn,

~5!

wheren(E) is the density of states at fixed pure gauge e
ergy andCn(E) in ~5! stands for the mean value of thenth
ts.
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coefficient of the polynomial describing the fermionic dete
minant, the average being computed over gauge field co
figurations at fixed pure gauge energy, i.e.,

Cn~E!5E @dAm#Cn„Am~x!…dS (
x,m,n

@Am~x!1An~x1m!

2Am~x1n!2An~x!#2VED . ~6!

Since the density of states at fixed pure gauge energy

n~E!5E @dAm#dS (
x,m,n

@Am~x!1An~x1m!2Am~x1n!

2An~x!#2VED ~7!

can be analytically computed in the noncompact model, w
can reconstruct the partition function~5! from the knowledge
of the coefficientsCn(E) through interpolation and one-
dimensional integration. Had we used the more standa
compact Wilson formulation for the gauge fields, the sta
dard procedure would be very similar with the only differ
ence that in such a case, the density of states, in gene
would have to be computed numerically.

If on the other hand we are interested in the computati
of vacuum expectation values of physical operators like t
chiral condensate, the standard procedure is the one
scribed in @2#. We will not repeat here the details of this
procedure but only will remember that it is based on th
computation of the fermion effective action as a function o
the gauge energy and the computation of the mean value
the operator times the fermion determinant over gauge fie
configurations of fixed pure gauge energy.

III. THE LEE-YANG ZEROS IN THE COMPLEX k PLANE

The first step to the determination of the position of th
Lee-Yang zeros in the complexk plane is the computation of
the coefficientsCn(E) of the averaged determinant of the
Dirac operator. For the calculation ofCn(E) we proceed as
follows: first we chose a set of values of energy, in the ran
selected to cover the support of the weight function in~5! for
the values ofb we are interested in. Then for every value o
E in the set we generate gauge field configurations using
microcanonical code; the generation of gauge fields at fix
energy is not the costly part of the whole procedure, so w
can well decorrelate the configurations used for measur
the fermionic operator. Then, as stated before, we comp
exactly the eigenvalues of theM matrix from which we re-
construct by a recursion formula the coefficients of the fe
mionic determinant.

At the end we have the coefficientsCn(E) evaluated at
discrete energy values: a polynomial interpolation allows t
reconstruction at arbitrary values of the energyE, in order to
perform the numerical integration in~5! and obtain the coef-
ficientsCn(b) that can be regarded as the final product
this part of the numerical procedure for the determination
the Lee-Yang zeros. These coefficients are then used for
determination of the roots of the polynomialZ(b,k).
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The main features ofZ(b,k) are the following: in a vol-
ume V, the partition function is a polynomial of orde
N52V in k and the typical range of the coefficients is o
ordereV. Thus, the main numerical problem is the efficienc
of standard root finders in the determination of the zero
Here we have used a method@5# developed in order to ana-
lyze the partition function zeros in the four-dimension
compact U~1! model. This algorithm is based on well-know
properties of analytic functions on the complex plane whic
in particular, allows the determination of the number of zer
for a given function inside a region of the complex plan
provided the function has no singularities inside this regio

In Fig. 1 we plot the location of all the zeros~in the
complexk plane! in a 162 lattice atb57. Figures 2~a! and
2~b! contain the zeros closest to the real axis in all the lattic
used atb57,10.

To estimate the statistical errors on the position of t
Lee-Yang zeros we followed the procedure described in@5#:
a standard jackknife method is used to producen averaged
partition functions andn estimates of the location of a given
zero. The largest error on the distance of critical zeros~those
with smallest imaginary part! with respect to the free fermion
critical point ~0.25,0.0! is of order 2%. In all the cases re
ported in these figures, we can see how the nearest zer
the real axis approaches it with increasing lattice size, th
suggesting the existence of a phase transition line in theb-
k plane.

In Fig. 3 we show the phase diagram in theb-k plane
obtained from 82,162, and 242 lattices. The real part of the
location of the zero lying nearest to the real axis gives
estimate of the value of the criticalk. Note that the critical
line moves upward with increasing volume.

A detailed analysis of the scaling behavior for the Le
Yang zeros andkc with the lattice size will be presented in
Sec. V.

At smaller values ofb our procedure has some problem
the signature is the appearance of unphysical real zero
finite volume, so that the estimation of the critical point b
comes unsafe. This behavior is related to the large fluct
tions in the averaging procedure for the coefficients, alrea
pointed out in@4#. Nevertheless, if we take the zeros wit
smaller, but not zero, imaginary part as the critical zeros
can continue the critical line down tob50, ending at

FIG. 1. Position of all the zeros atb57.0, 162 lattice.
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kc50.36 for a 82 lattice andkc50.35 for a 162 lattice. Note
that in @4# an exact result for the partition function atb50
for a 82 lattice is reported, giving a critical point at
kc50.377.

IV. THE SPECIFIC HEAT

Chiral symmetry is always explicitly broken and there is
no order parameter in this realization of the model, sok
cannot be identified with an external field. We take it instea

FIG. 2. Zeros closest to real axis,b57 ~a!,82,122,
162,202,242, b510 ~b!.

FIG. 3. b-k phase diagram from Lee-Yang zeros.
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as a temperature, defining the the associated specific hea
usual:

Ck5
]2F

]k2 ,

whereF is the free energy density.
The specific heat is related to the chiral susceptibilityx,

defined as

x522k2
d

dk
^c̄~x!c~x!& ~8!

differing only through a regular function ofk which does not
influences the critical behavior. The susceptibility, which
what we have measured, diverges at the transition in
thermodynamical limit, the divergence becoming a sha
peak on finite lattices.

The study of the position of the maximum at differen
lattice sizes gives a way to search for the phase transit
line which is numerically independent from that presented
the previous section. We remind that, as the model is n
chirally invariant, the analogy with a magnetic system fail

Figures 4~a! and 4~b! contain the results for the suscept
bility ~8! at two typical values of the gauge couplingb
againstk in 82, 122, 162, 202, and 242 lattices. As ex-
pected for a real phase transition, the susceptibility show
well-defined maximum at some critical valuekc , the height
of these peaks increasing with the lattice size and eventu
diverging in the infinite volume limit. If we define the critica

FIG. 4. Chiral susceptibility vsk at b56.9 ~a! andb59.9 ~b!;
the error shown is the typical one.
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kc at eachb as the value at which the susceptibilityx takes
its maximum value, we get for the lattices analyzed the pha
diagram reported in Fig. 5, in very good agreement, in th
largest lattices, with the one obtained from the analysis of th
Lee-Yang zeros. The discrepancies between the results in
smaller lattices can be understood taking into account th
finite volume effects are different for different operators
Figure 5 shows that finite size corrections for the suscep
bility and Lee-Yang zeros are opposite in sign. Neverthele
the extrapolated infinite volume values are compatible with
the estimated statistical errors~see next section for finite size
scaling analysis!.

V. FINITE SIZE SCALING ANALYSIS

We will now present a detailed analysis of the scalin
behavior for the Lee-Yang zeros and specific heat, main
based on simulations on 162,202, and 242 lattices.

In the analysis of the phase diagram from the location o
the Lee-Yang zeros of Fig. 3, the real part of the zero lyin
next to the real axis defines the criticalk at each lattice size.
In order to have a real phase transition, the imaginary part
the critical zero should vanish in the infinite volume limit.
This has been explicitly checked by assuming that the imag
nary part of the critical zerozc(L) as a function of lattice
size is described by the function

Imzc~L !5a01a1L
21/n. ~9!

In all theb region explored, the value ofa0 is compatible
with zero. The scaling analysis at this point is made using th
relations@6#

kc~L !2kc~`!;L21/n,

Imzc~L !;L21/n. ~10!

for the real and imaginary parts of the critical zero.
In Fig. 6 we show the typical scaling behavior as a func

tion of the volume for the imaginary part of the critical zero
at b510. Similar results have been obtained at differentb.
From the slopes of the lines fitting the data from
162,202,242 we determine the scaling exponentn as a func-

FIG. 5. Theb-k phase diagram from chiral susceptibility~upper
curves!, 82,162,242 lattices, the lines are the data of Fig. 3.
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tion of b. This is shown in Fig. 7. The value of the critica
index clearly indicates that the transition is continuous at a
value ofb. We note, moreover, that our results are comp
ible with n52/3, at anyb.

Concerning the susceptibilityx, the criticalk reported in
Fig. 5 was defined, as stated before, as the value ofk at
which the susceptibility takes its maximum value. Both th
heightH(L) of the peak as well as its positionkc(L) depend
on the lattice sizeL. Standard finite size scaling theory te
us that these quantities scale with the lattice size as@7#

H~L !;La/n, ~11!

wherea in ~11! is the specific heat exponent.
In Fig. 7 we present also the scaling index ofH as a

function ofb. Its value is again consistent with a continuou
phase transition. The value obtained impliesa;n.

Since in the critical region the singular part of the fre
energy behaves as

F sing;~k2kc!
22a ~12!

and given that the only relevant length in this region shou
be the correlation length, we get

FIG. 6. Imaginary part of the critical zero vs lattice sizeL,
b510.0.

FIG. 7. n , n/a vs b, 162,202,242 lattices.
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F sing;j2d;~k2kc!
dn ~13!

from which the standard hyperscaling relation between th
correlation length and specific heat exponents follows:

dn522a. ~14!

Our data for the critical exponents satisfy relation~14!
within the errors, in the whole 5,b,12.5 region; the typi-
cal deviation from~14! is of the order of 0.07.

We can conclude from the finite size scaling analysis o
the Lee-Yang zeros and chiral susceptibility that the lattic
Schwinger model with Wilson fermions has a real continu-
ous phase transition ending atbc5`,kc50.25. We are able
to derive the critical exponents of the model and we find
perfect agreement with the hyperscaling relation.

In Fig. 8 we show the scaling behavior of the real part o
the critical zero atb510. The infinite volume value ofkc
can be inferred using the finite size scaling in~10!. In prin-
ciple this analysis, carried out for several values ofb, could
give an estimate of the infinite volume criticalk as a func-
tion of the gauge coupling constant. However it seems ver
difficult to get reliable values forkc(`) from the relation
~10! for the real part of the critical zeros@8# since this is not
a universal relation.

VI. DISCUSSION

In the previous sections we have shown that the
Schwinger model regularized on a lattice and with Wilson
fermions has a continuous phase transition in the (b,k)
plane, where the correlation length diverges. The finite siz
scaling analysis shows a correlation length exponentn taking
a value around 2/3 along this transition line, a result which
appears very reliable since, as previously shown, the hype
scaling relation~14! is always verified. This value ofn is in
contrast with the valuen51 obtained at the end point
b5` of the transition line as well as with the value, again
n51, at b50 suggested by the analysis reported in@8,9#.
We would like to notice that violations to universality in
fermionic systems, probably due to the long range force
induced by the fermion fields, have been previously observe
in the gauged Nambu–Jona-Lasinio model@10,11# as well as

FIG. 8. Real part of the critical zero vsL,b510.0; the line is the
best fit using~10!.



as
it

-

r
n.
T

5074 53AZCOITI, DI CARLO, GALANTE, GRILLO, AND LALIENA
in a fermion-gauge-scalar model@12#.
Let us finally comment on the physical meaning of th

continuous phase transition line. In QCD4 this transition
line, the existence and location of which are not as clear
here, is assumed to be the line along which the pion is ma
less. In two-dimensional models, as is well known, Gol
stone bosons are absent. In addition, the correlation len
we have analyzed and found divergent is the one associa
with the scalar operator, while we cannot make any sta
ment about the pseudoscalar correlation length. Our res
suggest that the spectrum of the massive Schwinger mo
contains also a scalar particle. Clearly a complete und
e

as
ss-
d-
gth
ted
te-
ults
del
er-

standing of this point requires the analysis of the spectrum
well as of the continuum limit of the model; nevertheless,
is tempting to argue that, analogously to QCD4, the critical
line we have found is the line along which the fermion re
mains massless.
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