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Critical behavior of the Schwinger model with Wilson fermions
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We present a detailed analysis, in the framework of the MFA approach, of the critical behavior of the lattice
Schwinger model with Wilson fermions on lattices up t& 2through the study of the Lee-Yang zeros and the
specific heat. We find compelling evidence for a critical line ending=a0.25 at large3. Finite size scaling
analysis on lattices B122,1&,207, and 24 indicates a continuous transition. The hyperscaling relation is
verified in the exploregB region.
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[. INTRODUCTION late numerically dynamical fermions, such as the hybrid
Although apparently far from physical reality, the Monte Carlo algorithm, which are based on the inclusion of
Schwinger model, i.e., the theory describing the interactiorihe fermion determinant in the integration measure, need to
between photons and electrons it 1 dimensions, has been duplicate the number of fermion species in order to avoid
a favorite framework for theoretical and numerical exercisegiegative values for the determinant of the Dirac operator,
for at least two reasons. which makes it impossible to investigate the phase structure
First, the massless Schwinger model can be analyticallpf the one-flavor Schwinger model. This is the reason why
solved in the continuum and this is the reason why it hagintil very recently, when an analysis of the phase diagram of
always been used as a laboratory for the development dhe Schwinger model in the Wilson regularization using non-
numerical algorithms for dynamical fermions. standard methods was performied, very little was known
Second, and due to the special low dimensionality dynamabout it.
ics, this model shares many physical properties with four- In this work we will report the results of a numerical
dimensional QCD(QCD,), the gauge theory describing the simulation of the one-flavor Schwinger model in the Wilson
strong interaction of hadrons. In fact the charge is confinedegularization, by means of MFA simulations. The structure
in the Schwinger model and long range forces are absent i@f the Lee-Yang zeros in the complex hopping parameter
it. Of course the Schwinger model has also some characteplane strongly suggests the existence of a critical line: in our
istic features which are not common to QCD like the prop-simulations the criticalx is 0.27 at =2, ending at
erty of superrenormalizability or ultraconfinemeitteffec-  «=0.25, B—, the critical point where the continuum limit
tively describes free bosonsand the absence of the isrecovered. We also describe results concerning the specific
Goldstone boson. However we expect a phase diagram in tHteat showing a sharp peak along a ling=f(8;) in the
lattice regularized Schwinger model qualitatively similar to «,3 plane, in good numerical agreement with predictions
that of lattice QCD, in particular since, as can be derivedrom the Lee-Yang zero analysis. The results of the finite
from dimensional arguments, the continuum limit is reachedsize scaling analysis for the Lee-Yang zeros and chiral sus-
at infinite gauge coupling. This is one of the motivations forceptibility allow the determination of the critical exponents,
this paper. and the fulfillment of the hyperscaling relation gives a defi-
The Schwinger model on the lattice, using the Kogut-nite confirmation that we are dealing with a real second-
Susskind regularization for the fermion fields, has been th@rder phase transition line.
subject of extensive analysis. The phase structure of the
model in the gauge coupling and fermion masm plane is
well known and the continuum value for the chiral conden- Il. THEORETICAL GROUNDS
sate has been reproduced within three decimal plddethe
best numerical result to our knowledge, using the microcaWi
nonical fermionic averagéMFA) approach 2]. In the Wil-
son regularization for fermion fields, however, the situation
is not so clear. In this scheme, chiral symmetry is explicitly S(B,«)=Se(k)+ BSs, )
broken even for vanishing bare fermion mass and this is the
unavoidable price to pay to overcome the species doubling
problem[3]. Therefore no order parameter can be used fowhere S-(«) contains the kinetic and mass terms for the
analyzing the phase diagram, which, in addition to the largefermion field as well as the fermion-gauge interaction term,
number of degrees of freedom if compared with the Kogut-and we have chosen for the pure gauge ac8grthe stan-
Susskind regularization, makes the analysis far from trivial.dard noncompact regularization for the Abelian model. The
Furthermore almost all the standard algorithms to simufermionic actionSg(«) reads

The lattice action for the massive Schwinger model with
Ison fermions is given by
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— : coefficient of the polynomial describing the fermionic deter-
SF(K)ZKZ( [f(X+ ) (14 y,)U ,(X) p(X) minant, the average being computed over gauge field con-
- figurations at fixed pure gauge energy, i.e.,

000 (1= y UL () X+ )] = S (X)),
4 VU009t )] = 20 g (x) Co(E) = f [dAﬂ]cn<A,L<x))5( S A0 +A(X+p)
X, u<v

2
Equation(2) defines the Dirac matrix operatdr which —AL(X+ V)—AV(X)]—VE)- (6)
can be written as
A=—1+kM, ) Since the density of states at fixed pure gauge energy

wherel is the unit matrix andv a matrix of dimension equal (g :f dA 18 A OO+A (X+ ) —A (X+ v
to the lattice volume times the number of Dirac components. (E) [dA,] xgév[ p0F A 1) = Al )

The use of the MFA approach in the numerical simula-
tions of the system described by actith) has at least two —A (x)]—VE) @)
very important advantages when compared with other stan- !
dard approaches. First, since MFA is based on the computa-
tion of the fermion effective action defined as the logarithmcan be analytically computed in the noncompact model, we
of the mean value of the fermion determinant at fixed purecan reconstruct the partition functi¢s) from the knowledge
gauge energy and this mean value is positive definite at leasf the coefficientsC,(E) through interpolation and one-
in the physically interesting region, we have no problems tadimensional integration. Had we used the more standard
simulate the one-flavor model. Second, since #hdepen- compact Wilson formulation for the gauge fields, the stan-
dence factorizes in the nontrivial part of the fermionic opera-dard procedure would be very similar with the only differ-
tor (3), we do not need to repeat the numerical simulationgnce that in such a case, the density of states, in general,
when changing the value of the hopping parametewhich ~ would have to be computed numerically.
is mandatory for exploring the zeros of the partition function If on the other hand we are interested in the computation
in the complexx plane. Let us notice also that, while MFA of vacuum expectation values of physical operators like the
has been extensively used and checked in lattice gauge theehiral condensate, the standard procedure is the one de-
ries with Kogut-Susskind fermions, this is the first time it is scribed in[2]. We will not repeat here the details of this
applied to a lattice model with Wilson fermions. procedure but only will remember that it is based on the

The technical details of MFA can be found by the inter- computation of the fermion effective action as a function of
ested reader ifi2]. As stated before, all the applications of the gauge energy and the computation of the mean value of
MFA to lattice gauge theories in these references were doriée operator times the fermion determinant over gauge field
using staggered fermions. The main difference between stagonfigurations of fixed pure gauge energy.
gered and Wilson fermions comes from the different struc-
ture that the Dirac operator has in each formulation. In thq)|. THE LEE-YANG ZEROS IN THE COMPLEX « PLANE
Wilson case, where the fermion matrix has the structure
given by Eq.(3), the MFA approach works as follows: first The first step to the determination of the position of the

we generate well-decorrelated gauge field configurations dt€€-Yang zeros in the complexplane is the computation of
fixed noncompact gauge energy the coefficientsC,(E) of the averaged determinant of the

Dirac operator. For the calculation €,(E) we proceed as
1 follows: first we chose a set of values of energy, in the range
E= VXMEQ [ALOO+A X+ p) = Au(x+v) = AL(X)] selected to cover the support of the weight functiotBinfor
' (4) the values of3 we are interested in. Then for every value of
E in the set we generate gauge field configurations using a
and then we diagonalize thid matrix for each generated microcanonical code; the generation of gauge fields at fixed
configuration. Because of the non-Hermiticity of the matrix energy is not the costly part of the whole procedure, so we
we can not use the standard Lanczos algorithm; the eiger¢an well decorrelate the configurations used for measuring
values are found using a standard library diagonalizatiothe fermionic operator. Then, as stated before, we compute
routine. From the eigenvalues of tMe matrix we can recon- exactly the eigenvalues of théd matrix from which we re-
struct the determinant of the Dirac operatoat any value of ~construct by a recursion formula the coefficients of the fer-
the hopping parameter in a trivial way. The partition func- mionic determinant.
tion associated with the actig) can be written then as At the end we have the coefficien,(E) evaluated at
discrete energy values: a polynomial interpolation allows the
_ reconstruction at arbitrary values of the eneEyyin order to
Z('B’K):zn: C”('B)Kn:f dEn(E)e BVEEH: Ca(E)x", perform the numerical integration i®) and obtain the coef-
(5) ficients Cy(B) that can be regarded as the final product of
this part of the numerical procedure for the determination of
wheren(E) is the density of states at fixed pure gauge enthe Lee-Yang zeros. These coefficients are then used for the
ergy andC,(E) in (5) stands for the mean value of tin¢h ~ determination of the roots of the polynomié({g, ).
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The main features oZ(3,«) are the following: in a vol- i ; 16 S 1
ume V, the partition function is a polynomial of order 0.06 [~ 222 * -
N=2V in « and the typical range of the coefficients is of (k) ; N
ordere”. Thus, the main numerical problem is the efficiency 0.04 [ ? ]
of standard root finders in the determination of the zeros. i % j
Here we have used a methps] developed in order to ana- 0.0z X B
lyze the partition function zeros in the four-dimensional - ¥
. . . X
compact W1) model. This algorithm is based on well-known r | * 1
properties of analytic functions on the complex plane which, 00 T T T o oz 028

in particular, allows the determination of the number of zeros (,
for a given function inside a region of the complex plane,
provided the function has no singularities inside this region.

In Fig. 1 we plot the location of all the zerdn the
complexx plane in a 1€ lattice at3=7. Figures 2a) and

2(b) conta_ln the zeros closest to the real axis in all the Iattlceiczol36 for a & lattice andk,=0.35 for a 16 lattice. Note
used at3=7,10.

To estimate the statistical errors on the position of the}g‘?t ;n [8A§] ?:ttizacitsrerzul(t)ri%rdthe i\efrl]rtltlzn erjiggg?n 'a(;t;to at
Lee-Yang zeros we followed the procedure describeldbjn K.—0.377 P » gving P
a standard jackknife method is used to prodacaveraged "¢ T
partition functions anah estimates of the location of a given
zero. The largest error on the distance of critical zétlogse IV. THE SPECIFIC HEAT
with smallest imaginary partvith respect to the free fermion ) ) o )
critical point (0.25,0.0 is of order 2%. In all the cases re-  Chiral symmetry is always explicitly broken and there is
ported in these figures, we can see how the nearest zero § order parameter in this realization of the model, xso
the real axis approaches it with increasing lattice size, thu§annot be identified with an external field. We take it instead
suggesting the existence of a phase transition line insthe
x plane.

In Fig. 3 we show the phase diagram in tBex plane 0.30 —
obtained from 8,167, and 24 lattices. The real part of the [

Re(k)

FIG. 2. Zeros closest to real axisB=7(a),8%,12%
16%,20%,24, =10 (b).

2
location of the zero lying nearest to the real axis gives an ; ?62
estimate of the value of the critical. Note that the critical r + 242
line moves upward with increasing volume. 028~ 7
A detailed analysis of the scaling behavior for the Lee- L g
Yang zeros andk. with the lattice size will be presented in k - Ean
Sec. V. 0261 °83 ]

At smaller values of3 our procedure has some problems:
the signature is the appearance of unphysical real zeros at
finite volume, so that the estimation of the critical point be-

458
ggﬁagg@’@@‘@@g

comes unsafe. This behavior is related to the large fluctua- O I RN I B RN
tions in the averaging procedure for the coefficients, already 0.0 25 5.0 75 100 125
pointed out in[4]. Nevertheless, if we take the zeros with f

smaller, but not zero, imaginary part as the critical zeros we
can continue the critical line down t@=0, ending at FIG. 3. 8-« phase diagram from Lee-Yang zeros.
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FIG. 5. TheB-« phase diagram from chiral susceptibilitypper
curves, 82,1624 lattices, the lines are the data of Fig. 3.

k. at eachB as the value at which the susceptibiljytakes
its maximum value, we get for the lattices analyzed the phase
diagram reported in Fig. 5, in very good agreement, in the
largest lattices, with the one obtained from the analysis of the
Lee-Yang zeros. The discrepancies between the results in the
] smaller lattices can be understood taking into account that
N finite volume effects are different for different operators.
0.24 0.26 0.28 0.30 Figure 5 shows that finite size corrections for the suscepti-
(b) k bility and Lee-Yang zeros are opposite in sign. Nevertheless
the extrapolated infinite volume values are compatible within
FIG. 4. Chiral susceptibility v at 8=6.9 (a) and 3=9.9 (b); the estimated statistical errofsee next section for finite size

the error shown is the typical one. scaling analysis
as a temperature, defining the the associated specific heat as V. FINITE SIZE SCALING ANALYSIS
usual: '
., We will now present a detailed analysis of the scaling
c 2'9 7 behavior for the Lee-Yang zeros and specific heat, mainly
AP based on simulations on 4@, and 24 lattices.

. . In the analysis of the phase diagram from the location of
where.7"is the free energy density. _ the Lee-Yang zeros of Fig. 3, the real part of the zero lying
The specific heat is related to the chiral susceptibility next to the real axis defines the criticalat each lattice size.
defined as In order to have a real phase transition, the imaginary part of

q the critical zero should vanish in the infinite volume limit.
x=— ZKZEW(X) $(x)) (8) This has been explicitly checked by assuming that the imagi-

nary part of the critical zera.(L) as a function of lattice

I ) ) size is described by the function
differing only through a regular function af which does not

influences the critical behavior. The susceptibility, which is Imz(L)=ag+a;L . (9)
what we have measured, diverges at the transition in the
thermodynamical limit, the divergence becoming a sharp In all the 8 region explored, the value af, is compatible

peak on finite lattices. with zero. The scaling analysis at this point is made using the
The study of the position of the maximum at different relations[6]

lattice sizes gives a way to search for the phase transition

line which is numerically independent from that presented in ko(L)— k() ~L ™,
the previous section. We remind that, as the model is not
chirally invariant, the analogy with a magnetic system fails. Imzg(L)~L ", (10

Figures 4a) and 4b) contain the results for the suscepti-
bility (8) at two typical values of the gauge coupling for the real and imaginary parts of the critical zero.
againstk in 82, 122, 16%, 20?, and 24 lattices. As ex- In Fig. 6 we show the typical scaling behavior as a func-
pected for a real phase transition, the susceptibility shows @on of the volume for the imaginary part of the critical zero,
well-defined maximum at some critical valug, the height at 8=10. Similar results have been obtained at differgnt
of these peaks increasing with the lattice size and eventuallifrom the slopes of the lines fitting the data from
diverging in the infinite volume limit. If we define the critical 16%,207,24° we determine the scaling exponents a func-
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FIG. 6. Imaginary part of the critical zero vs lattice size FIG. 8. Real part of the critical zero ¥s3=10.0; the line is the
B£=10.0. best fit using(10).
tion of B. This is shown in Fig. 7. The value of the critical Fsing= € I~ (k=Ko)W (13

index clearly indicates that the transition is continuous at any _ _ )
value of 8. We note, moreover, that our results are Compat.from Wh|ch the standard hyperscahng relation between the
ible with »=2/3, at anyg. correlation length and specific heat exponents follows:
Concerning the susceptibility, the critical « reported in
Fig. 5 was defined, as stated before, as the value ot
which the susceptibility takes its maximum value. Both the
heightH(L) of the peak as well as its positiof(L) depend
on the lattice sizd.. Standard finite size scaling theory tell
us that these quantities scale with the lattice sizE7as

dv=2—oa. (14

Our data for the critical exponents satisfy relatici#)
within the errors, in the whole § 8<12.5 region; the typi-
cal deviation from(14) is of the order of 0.07.

We can conclude from the finite size scaling analysis of
the Lee-Yang zeros and chiral susceptibility that the lattice

alv
H(L)~L*, 1D Schwinger model with Wilson fermions has a real continu-
. _ - ous phase transition ending A==, «x.=0.25. We are able
wherea in (11) is the specific heat exponent. to derive the critical exponents of the model and we find

In Fig. 7 we present also the scaling indexldfas a perfect agreement with the hyperscaling relation.
function of 8. Its value is again consistent with a continuous  |n Fig. 8 we show the scaling behavior of the real part of

phase transition. The value obtained implies v. the critical zero at8=10. The infinite volume value ok,
Since in the critical region the singular part of the freecan be inferred using the finite size scaling(i9). In prin-
energy behaves as ciple this analysis, carried out for several valuegofcould
give an estimate of the infinite volume criticalas a func-
Feing™ (k= 1)* ™ (12)  tion of the gauge coupling constant. However it seems very

difficult to get reliable values fok () from the relation
and given that the only relevant length in this region should10) for the real part of the critical zerd8] since this is not
be the correlation length, we get a universal relation.

VI. DISCUSSION

Schwinger model regularized on a lattice and with Wilson
fermions has a continuous phase transition in tj#ex]
i ] plane, where the correlation length diverges. The finite size
0.75 [~ 3 ] scaling analysis shows a correlation length expomeaking
f ] a value around 2/3 along this transition line, a result which
0.50 [~ - appears very reliable since, as previously shown, the hyper-
C ] scaling relation14) is always verified. This value af is in
0asl ¢ v/ . contrast with the valuev=1 obtained at the end point
h ] B=o of the transition line as well as with the value, again
ool Lo v b L] v=1, at =0 suggested by the analysis reported 89].
4 6 8 10 12 We would like to notice that violations to universality in
B fermionic systems, probably due to the long range forces
induced by the fermion fields, have been previously observed
FIG. 7. v, vla vs B, 16,207, 24 lattices. in the gauged Nambu—Jona-Lasinio mofdd),11] as well as

{; In the previous sections we have shown that the
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in a fermion-gauge-scalar moddl2]. standing of this point requires the analysis of the spectrum as
Let us finally comment on the physical meaning of thewell as of the continuum limit of the model; nevertheless, it

continuous phase transition line. In Q¢Dhis transition is tempting to argue that, analogously to Q& he critical

line, the existence and location of which are not as clear abne we have found is the line along which the fermion re-

here, is assumed to be the line along which the pion is massnains massless.

less. In two-dimensional models, as is well known, Gold-

stone bosons are absent. In addition, the correlation length

we have analyzed and found divergent is the one associated ACKNOWLEDGMENTS
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