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We carry out a numerical simulation of a toy domain-wall model in 211 dimensions, in the presence of a
U~1! dynamical gauge field only in an extra dimension, corresponding to the weak coupling limit of a~two-
dimensional! physical gauge coupling. Using a quenched approximation we investigate this mode
bs(51/gs

2)5 0.5 ~‘‘symmetric’’ phase!, 1.0, and 5.0~‘‘broken’’ phase!, wheregs is the gauge coupling
constant of the extra dimension. In the broken phase, we find that there exists a critical value of the do
wall massm0

c which separates a region with a fermionic zero mode on the domain wall from one without it
the symmetric phase the critical value of the domain wall mass seems to exist but is very close to its u
boundm051. Because of the difficulty observed in the numerical simulation nearm051 we cannot conclude
in the symmetric phase either the existence of the chiral zero mode atm0>m0

c or the realization of the layered
phase.@S0556-2821~96!06209-1#

PACS number~s!: 11.15.Ha, 11.30.Rd
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I. INTRODUCTION

Construction of chiral gauge theories is one of the lon
standing problems of lattice field theories. Because of fer
ion doubling problems, a naively discretized lattice fermio
field yields 2d fermion particles, half of one chirality and
half of the other, so that the theory becomes nonchiral@1#.
Several lattice approaches have been proposed, but so
none of them have been proven to work successfully.

Kaplan has proposed a new construction of lattice chi
gauge theories via domain-wall models@2#. Starting from a
vectorlike gauge theory in 2k11 dimensions with a fermion
mass term being the shape of a domain wall in the~extra!
(2k11)th dimension, he showed in the weak gauge co
pling limit that a massless chiral state arises as a zero m
bound to the 2k-dimensional domain wall while all the dou-
blers have large masses of the lattice cutoff scale. It has b
also shown that the model works well for smooth bac
ground gauge fields@3–5#.

Two simplified variants of the original Kaplan domain
wall model have been proposed: an ‘‘overlap formula’’@6,7#
and a ‘‘waveguide model’’@8,9#. Gauge fields appearing in
these variants are 2k dimensional and are independent of th
extra (2k11)th coordinate, while those in the origina
model are 2k11 dimensional and depend on the extr
(2k11)th coordinate. These variants work successfully f
smooth background gauge fields@10–12#, as the original one
does. Nonperturbative investigations for these variants se
easier than for the original model due to the simpler structu
of the gauge fields.

However, it has been reported@8,9# that the waveguide
model in the weak gauge coupling limit cannot produce t
chiral zero modes needed to construct chiral gauge theor
In this limit, if gauge invariance were maintained, pur
gauge field configurations equivalent to unity by gauge tran
formation would dominate and gauge fields would becom
smooth. In the setup of the waveguide model, howev
2k-dimensional gauge fields are nonzero only in the laye
near the domain wall~waveguide!, so that gauge invariance
is broken at the edge of the waveguide. Therefore, even
5321/96/53~9!/5058~11!/$10.00
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the weak gauge coupling limit, gauge fields are no long
smooth and become very ‘‘rough,’’ due to the gauge degre
of freedom appearing to be dynamical at this edge. As
result of the rough gauge dynamics, a new chiral zero mo
with opposite chirality to the original zero mode on the do
main wall appears at the edge, so that the fermionic spectr
inside the waveguide becomes vector like. It has be
claimed@8,9# that this ‘‘rough gauge’’ problem also exists in
the overlap formula since gauge invariance is broken by t
boundary condition at the infinity of the extra dimensio
@11,12#. Furthermore, an equivalence between the wavegu
model and the overlap formula has been pointed out for t
special case@13#. Although the claimed equivalence has bee
challenged in Ref.@14#, it is still crucial for the success of the
overlap formula to solve the ‘‘rough gauge’’ problem and t
show the existence of a chiral zero mode in the weak gau
coupling limit.

How about Kaplan’s original model? In this model ther
are two inverse gauge couplingsb51/g2 and bs51/gs

2 ,
whereg is the coupling constant in~physical! 2k dimensions
andgs is the one in the~extra! (2k11)th dimension. Very
little is known about this model except in thebs50 case
@8,15,16# where the spectrum seems vector like. Since pe
turbation theory for the physical gauge couplingg is ex-
pected to hold, the fermion spectrum of the model can
determined in the limit thatg→0. In this weak coupling
limit, all gauge fields in physical dimensions can be gaug
away, while the gauge field in the extra dimension is st
dynamical and its dynamics is controlled bybs . Instead of
the gauge degrees of freedom at the edge of the wavegu
the (2k11)th component of gauge fields represents th
roughness of 2k-dimensional gauge fields. An importan
question is whether the chiral zero mode on the domain w
survives in the presence of this rough dynamics. The dyna
ics of the gauge field in this limit is equivalent to a
2k-dimensional scalar model with 2Ls independent copies
where 2Ls is the number of sites in the extra dimension. I
general at largebs such a system is in a ‘‘broken phase’
where some global symmetry is spontaneously broken, wh
at smallbs the system is in a ‘‘symmetric’’ phase. Therefore
5058 © 1996 The American Physical Society
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53 5059DOMAIN-WALL FERMIONS WITH U ~1! DYNAMICAL GAUGE FIELDS
there exists a critical pointbs
c , and it is likely that the phase

transition atbs5bs
c is continuous~second or higher order!.

The ‘‘gauge field’’ becomes rougher and rougher at smal
bs . Indeed we know that the zero mode disappears
bs50 @15#, while the zero mode exists atbs5` ~free case!.
So far we do not know the fate of the chiral zero mode in t
intermediate range of the couplingbs . There are the follow-
ing three possibilities.~a! The chiral zero mode always exist
exceptbs50. In this case we may likely construct a lattic
chiral gauge theory in both broken (bs.bs

c) and symmetric
(bs,bs

c) phases, and the continuum limits may be taken
bs5bs

c . This is the best case for the domain-wall model.~b!
The chiral zero mode exists only in the broken pha
(bs.bs

c). In this case the domain-wall method can descri
a lattice chiral gauge theory in the broken phase at fin
cutoff. However, it is likely that the continuum limit taken a
bs5bs

c from above leads to a vector gauge theory.~c! No
chiral zero mode survives exceptbs5`. The original model
cannot describe lattice chiral gauge theories at all.

It is very important to determine which possibility is in
deed realized in the domain-wall model. Therefore, in th
paper, in order to know the fate of the chiral zero mode, w
carry out a numerical simulation of a domain-wall model
(211) dimensions with a quenched U~1! gauge field in the
b5` limit. Strictly speaking, there is no order parameter
a two-dimensional U~1! spin model~XYmodel!. On a large
but finite lattice, however, the behavior of the two
dimensional model is similar to the one of a four
dimensional scalar model. Thus, we hopefully think that us
ful information about the fate of the zero mode can b
obtained from such a toy model in 211 dimensions. In Sec.
II, we define our domain-wall model with dynamical gaug
fields. We calculate a fermion propagator by using a kind
mean-field approximation, to show that there is a critic
value of the domain-wall mass parameter above which
zero mode exist. The value of the critical mass may depe
on bs , which controls the dynamics of the gauge field. I
Sec. III, we calculate the fermion spectrum numerically u
ing a quenched approximation atbs50.5,1.0,5.0 and at vari-
ous values of domain-wall masses. We find that in the b
ken phase (bs51.0,5.0) there exists a range of the domai
wall mass parameter in which the chiral zero mode surviv
on the domain wall. In the symmetric phase (bs50.5), how-
ever, such an allowed region of the domain-wall mass p
rameter for the chiral zero mode, if it exists, is found to b
very narrow. Our conclusions and a discussion are given
Sec. IV.

II. DOMAIN-WALL MODEL

A. Definition of the model

We consider a vector gauge theory ind52k11 dimen-
sions with a domain-wall mass term, which has the shape
a step function in the coordinate of an extra dimension. T
domain-wall model was originally proposed by Kaplan@2#,
and the fermionic part of the action is reformulated b
Narayanan-Neuberger@6#, in terms of a 2k-dimensional
theory. The model is defined by the action

S5SG1SF , ~1!
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whereSG is the action of a dynamical gauge field andSF is
the fermionic action.SG is given by

SG5b (
n,m.n

(
s

$12Re Tr@Umn~n,s!#%

1bs(
n,m

(
s

$12Re Tr@Umd~n,s!#%, ~2!

wherem,n run from 1 to 2k, n is a 2k-dimensional lattice
point, and s is a coordinate of an extra dimension.
Umn(n,s) is a 2k-dimensional plaquette andUmd(n,s) is a
plaquette containing two link variables in the extra direction
b is the inverse gauge coupling for the plaquetteUmn and
bs is the one for the plaquetteUmd . In general,bÞbs . The
fermion actionSF on the Euclidean lattice, in terms of the
2k-dimensional notation, is given by

SF5
1

2(nm
(
s

c̄s~n!gm@Us,m~n!cs~n1m!

2Us,m
† ~n2m!cs~n2m!#

1(
n

(
s,t

c̄s~n!@M0PR1M0
†PL#c t~n!

1
1

2(nm
(
s

c̄s~n!@Us,m~n!cs~n1m!

1Us,m
† ~n2m!cs~n2m!22cs~n!#, ~3!

wheres,t are an extra coordinates,PR/L5 1
2(16g2k11) and

~M0!s,t5Us,d~n!ds11,t2a~s!ds,t,
~4!

~M0
†!s,t5Us21,d

† ~n!ds21,t2a~s!ds,t .

Here Us,m(n),Us,d(n) (d52k11) are link variables con-
necting a site (n,s) to (n1m,s) or (n,s11), respectively.
Because of a periodic boundary condition in the extra dime
sion,s,t run from2Ls to Ls21, anda(s) is given by

a~s!512m0@sgn~s1 1
2 !sgn~Ls2s2 1

2 !#

5H 12m0 ~2 1
2,s,LS2

1
2 !,

11m0 ~2Ls2
1
2,s,2 1

2 !,
~5!

wherem0 is the height of the domain-wall mass. It is easy to
check that the above fermionic action is identical to the on
in 2k11 dimensions, proposed by Kaplan@2,6#.

In the weak coupling limit of bothb andbs , it has been
shown that at 0,m0,1 a desired chiral zero mode appear
on a domain wall (s50 plane! without unwanted doublers.
Because of the periodic boundary condition in the extra d
mension, however, a zero mode of opposite chirality to th
one on the domain wall appears on the antidomain wa
(s5Ls21). Overlap between two zero modes decreases e
ponentially at largeLs . A free fermion propagator is easily
calculated and an effective action of a (211)-dimensional
model including the gauge anomaly and the Chern-Simo
term can be obtained for smooth background gauge fiel
@3#.

The original Kaplan domain-wall models, however, hav
not been investigated yetnonperturbatively, exceptbs50
@8,15,16#. The main question is whether the chiral zero mod
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survives in the presence of rough gauge fields mentioned
the Introduction. To answer this question we will analyze t
fate of the chiral zero mode in the weak coupling limit fo
b. In this limit, the gauge field actionSG is reduced to

SG5bs(
s

(
n,m

$12Re Tr@V~n,s!V†~n1m,s!#%, ~6!

where the link variableUs,d(n) in the extra direction is re-
garded as a site variableV(n,s)@5Us,d(n)#. This action is
identical to the one of a 2k-dimensional spin model ands is
regarded as an independent flavor. The action~6! is invariant
under

V~n,s!→g~s!V~n,s!g†~s11! @g~s!PG#, ~7!

whereG is the gauge group of the original model. Therefo
the total symmetry of the model isG2Ls, where 2Ls , the size
in
he
r

re

of the extra dimension, is regarded as the number of ind
pendent flavors. We use this~reduced! model for our numeri-
cal investigation.

B. Mean-field approximation for fermion propagators

When the dynamical gauge fields are added even on
extra dimension only, it is difficult to calculate the fermion
propagator analytically. Instead of calculating the fermio
propagatorexactly, we use a mean-field approximation to se
the effect of the dynamical gauge field qualitatively. Th
mean-field approximation we adopt is that the link variable
are replaced as

V~n,s!@5Us,d~n!#→z, ~8!

wherez is a (n,s)-independent real constant. From Eq.~3!
the fermion action in a 2k-dimensional momentum space
becomes
ions:
SF→(
s,t,p

c̄s~2p!S (
m

igmsin~pm!ds,t1@M ~z!PR1M†~z!PL#s,tDc t~p!, ~9!

@M ~z!#s,t5@M0~z!#s,t1
¹~p!

2
ds,t , @M†~z!#s,t5@M0

†~z!#s,t1
¹~p!

2
ds,t , ¹~p![ (

m51

d21

2~cospm21!, ~10!

@M0~z!#s,t5zds11,t2a~s!ds,t , @M0
†~z!#s,t5zds21,t2a~s!ds,t . ~11!

Following Refs.@3,6# it is easy to obtain a mean-field fermion propagator on a finite lattice with periodic boundary condit

G~p!s,t5F i(
m

gmp̄m1M ~z!PR1M†~z!PLG
s,t

21

5F H S 2 i(
m

gmp̄m1M ~z! DGL~p!s,tJ PL1H S 2 i(
m

gmp̄m1M†~z! DGR~p!s,tJ PRG , ~12!

GL~p!5
1

p̄21M†~z!M ~z!
, GR~p!5

1

p̄21M ~z!M†~z!
, ~13!

with p̄m[sin(pm). For largeLs where we neglect terms ofO(e2cLs) with c.0, GL andGR are given by

@GL~p!#s,t55
Be2a1us2tu1~AL2B!e2a1~s1t !1~AR2B!e2a1~2Ls2s2t ! ~s,t>0!,

ALe
2a1s1a2t1ARe

2a1~Ls2s!2a2~Ls1t ! ~s>0,t<0!,

ALe
a2s2a1t1ARe

2a2~Ls1s!2a1~Ls2t ! ~s<0,t>0!,

Ce2a2us2tu1~AL2C!ea2~s1t !1~AR2C!e2a2~2Ls1s1t ! ~s,t<0!, ~14!

@GR~p!#s,t55
Be2a1us2tu1~AR2B!e2a1~s1t12!1~AL2B!e2a1~2Ls2s2t22! ~s,t>21!,

ARe
2a1~s11!1a2~ t11!1ALe

2a1~Ls2s21!2a2~Ls1t11! ~s>21,t<21!,

ARe
a2~s11!2a1~ t11!1ALe

2a2~Ls1s11!2a1~Ls2t21! ~s<21,t>21!,

Ce2a2us2tu1~AR2C!ea2~s1t12!1~AL2C!e2a2~2Ls1s1t12! ~s,t<21!, ~15!

where
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a65zS 12
¹~p!

2
7m0D5zb6 , ~16!

a65arccoshF p̄21z21b6
2

2zb6
G , ~17!

AL5
1

a1e
a12a2e

2a2
, AR5

1

a2e
a22a1e

2a1
, ~18!

B5
1

2a1sinha1
, C5

1

2a2sinha2
. ~19!

The termsAR , B, andC have no singularity for allz as
p→0 in the same case of free theory. The behavior ofAL is,
however, different. Asp→0, AL behaves as

AL→
1

@~12m0!
22z2#1O~p2!

~0,m0,12z!,

~20!

→
4m0

22@~z221!2m0
2#2

4m0z
2p2

~12z,m0,1!. ~21!

A critical value of the domain-wall mass that separates
region with a zero mode and a region without zero modes
m0
c512z. Since theAL term dominates for 12z,m0,1 in

the GL @Eq. ~14!# andGR @Eq. ~15!#, a right-handed zero
mode appears in thes50 plane and a left-handed zero mod
in thes5Ls21 plane. For 0,m0,12z the right- and left-
handed fermions are massive in alls planes. Since the terms
AL(AR) andB(C) have almost same value in this region o
m0 , a translational-invariant term dominates inGL andGR
in the positive~negative! s layer, so that the spectrum be
comes vector like.

If z→1, the model becomes a free theory. The propaga
obtained in this section agrees with the one obtained in R
@3#. In the opposite limit thatz→0, since there is no hopping
term to the neighboring layers, this model becomes the o
analyzed in Ref.@15# in the case of the strong coupling limi
bs50, and in Ref.@16# in the case thatz is identified with
the vacuum expectation value of the link variables. This co
sideration suggests that the region where the zero modes
ist becomes smaller and smaller asz (12z,m0,1) ap-
proaches zero. What corresponds toz? Boundary conditions
which z satisfies arez51 atbs5` andz50 atbs50. The
most naive candidate@16# is

z5^V~n,s!&. ~22!

But this is not invariant under the symmetry~7!; therefore,
we are not sure whether this correspondence is good or
for the fermion propagator. The other choice, which is i
variant under~7!, is

z25^Tr Re$V~n,s!V†~n1m,s!%&. ~23!

If Eq. ~22! is true, zero modes disappear in the symmet
phase, wherêV(n,s)&50, while, for the case of Eq.~23!,
the zero modes always exist in both phases, sin
^Tr Re$V(n,s)V†(n1m,s)%& is insensitive to which phase
we are in.
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III. NUMERICAL STUDY OF THE „211…-DIMENSIONAL
U„1… MODEL

A. Method of numerical calculations

In this section we numerically study the domain-wal
model in 211 dimensions with a U~1! dynamical gauge field
in the extra dimension. As seen from Eq.~6!, the gauge field
action can be identified with a two-dimensional U~1! spin
model~with 2Ls copies!. In 211 dimensions,g matrices are
Pauli-matrices,s1 ,s2 ,s3 .

Our numerical simulation has been carried out by th
quenched approximation. Configurations of U~1! dynamical
gauge field are generated and fermion propagators are cal
lated on these configurations. The obtained fermion propag
tors are gauge noninvariant in general under the symme
~7!. The fermion propagatorG(p)s,t becomes ‘‘invariant’’ if
and only if s5t. Thus, we take thes-s layer as the propa-
gating plane (' ‘‘physical space’’!, and investigate the be-
havior of the fermion propagator in this layer.

To study the fermion spectrum, we assume a form of E
~12! for the fermion propagator, from which we extractGL

and GR . We then obtain the corresponding ‘‘fermion
masses’’ fromGL

21(p) andGR
21(p) by fitting them linearly

in p̄2, since, from Eq.~13!,

GL
215 p̄21M†M→mf

2~right! ~p→0!, ~24!

GR
215 p̄21MM†→mf

2~ left! ~p→0!. ~25!

We take the following setup for two-dimensional momenta
A periodic boundary condition is taken for the first direction
and the momentum in this direction is fixed onp150. An
antiperiodic boundary condition is taken for the second d
rection and the momentum in this direction is variable suc
asp25(2n11)p/L, n52L/2, . . . ,L/221. However, spe-
cial care is necessary in order to see the existence of the z
mode numerically at thenegative sslice. In a numerical
simulation on limited lattice sizes of two dimensions, fo
exampleL;10, the fermion spectrum obtained through th
above procedure at thenegative sslice does not correspond
to the correct fermion masses, due to the coarseness of
momentum resolution. In particular it is difficult to see the
expected singularity caused by the zero mode. The details
this problem will be discussed later.

B. Simulation parameters

Our simulation is performed in the quenched approxima
tion onL232Ls lattices withL516,24,32 andLs516. The
coordinate s in the extra dimension runs216,s,15.
Gauge configurations are generated by the five-hit Metrop
lis algorithm atbs5 0.5, 1.0, 5.0. For the thermalization the
first 1000 sweeps are discarded.

The fermion propagators are calculated by the conjuga
gradient method on 50 configurations separated by at least
sweeps, except atbs55.0 on a 322332 lattice where the
number of configurations are 11. We take the domain-wa
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massm05 0.7, 0.8, 0.9, 0.99 atbs5 0.5,m05 0.3, 0.4, 0.5,
0.6, 0.9 atbs5 1.0, andm05 0.1, 0.2, 0.3 atbs5 5.0. The
boundary conditions in the first and third~extra! directions
are periodic and the one in the second direction is antipe
odic. The Wilson parameterr has been set tor51. The
fermion propagators have been investigated mainly ats5 0,
8, 15. Theses are the layers where we put the sources. T
layer ats50 is the domain wall, ats515, the antidomain
wall, and ats58, neither. Atbs50.5 some data have bee
taken also ats521,28,216 on a 242332 lattice. Errors are
all estimated by the jackknife method with unit bin size.

C. Quenched phase structure

As explained before the gauge field action of our model
identical to that of the U~1! spin system in two dimensions
Therefore, there is a Kosterlitz-Thouless phase transition a
this system does not have an order parameter on the infi
lattice. On the finite volume, however, we take a vacuu
expectation value of link variables as an order parame
using the rotation technique:

V5K U 1L2(n V~n,s!U L
s

, ~26!

whereL is the lattice size of the first and the second dime
sions.

The defined vacuum expectation valueV above is zero in
the Kosterlitz-Thouless phase butV.0 in the spin-wave
phase on a finite lattice~increasing the lattice size, however
decreasing the value ofV; in the infinite lattice size, the
value of V is zero for all gauge coupling!. Since we are
interested in the dynamics of four-dimensional theorie
where the phase transition separates a symmetric phase
a broken phase, we have used this two-dimensional sys
on large but finite volume as a toy model of the fou
dimensional real world. Therefore, in this paper, we refer
the Kosterlitz-Thouless phase as the symmetric phase an
the spin-wave phase as the broken phase. Figure 1~a! shows
that, on a 162332 lattice,v behaves as if it was an orde
parameter. From Fig. 1~b! we consider that the system is in
the symmetric phase atbs50.5, while in the broken phase a
bs51.0, 5.0.

D. Fermion spectrum in the broken phase

At bs5 1.0 and 5.0, the system is in the broken phas
Here we mainly discuss the result atbs51.0 in detail.

We first consider the fermion spectrum on the layer
s50. Figure 2 is a plot of the term corresponding t
2sin(p2)•GL and 2sin(p2)•GR as a function ofp2 at m0
50.3 and 0.5.~Note that we always setp150.) This figure
shows that, asp2 goes to zero,GL seems to diverge atm0
50.5 but stay finite atm0 5 0.3, whileGR stays finite at both
m0 . Next we show Fig. 3, which is a plot ofGL

21 and
GR

21 as a function ofp̄2
2[sin2(p2) atm0 50.3 and 0.5. In the

limit p2→0, GR
21 remains nonzero at bothm0 , while GL

21

vanishes atm050.5. We obtain the value ofmf
2 , which can

be regarded as the mass square in a two-dimensional wo
by the linear fit inp̄2

2 , and plotmf as a function ofm0 in Fig.
4. The mass of right-handed fermions, obtained fromGL

21 ,
ri-
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becomes very small~less than 0.1! atm0 larger than 0.5, and
so we conclude that the critical value ism0

c;0.5. Whenever
the domain-wall mass is larger than this value, this mode
produces a right-handed chiral zero mode on the domain wa
at s50.

On the antidomain wall (s515), on the other hand, the
mass of left-handed fermion becomes less than 0.1 atm0
larger than the critical massm0

c;0.5, as seen in Fig. 5. It is
noted that chiralities between the zero modes on the doma
wall and the antidomain wall are opposite each other.

Finally Fig. 6 shows that, ons58 , the layer in the middle
between the domain wall and the antidomain wall, both
right-handed and left-handed fermions stay heavy.

A similar result atbs55.0 ons50 is given Fig. 7.
From these results above, we conclude that the domai

wall model with the dynamical gauge field on the extra di-
mension~i.e., the weak coupling limit of the original Kaplan
model! can create the chiral zero mode on the domain wal
at least deep in the broken phase.

Does this mean that the original Kaplan model works fo
the construction of lattice chiral gauge theories in the broke
phase? In Ref.@8# the potential problem of the Kaplan model
in the broken phase has been pointed out. Their argument

FIG. 1. ~a! Vacuum expectation value of link variablesV on a
162332 lattice as a function ofbs . ~b! Volume dependence of the
vacuum expectation values of link variablesV as a function of
1/L.
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as follows: In the broken phase the symmetry groupG2Ls,
Eq. ~7!, breaks down to its diagonal subgroupG, and there-
fore one gauge field remain massless when the phys
gauge coupling is switched on. However, this massle
gauge field is independent ofs and couples equally to the
zero modes at the domain and antidomain walls, render
the model vector like.

We found, however, their argument should be modifie
slightly for a non-Abelian groupG, due to the periodicity of
the extra dimension. In the broken phase the vacuum exp
tation value ofV(n,s) at each layer should be

^V~n,s!&5vV~s!, V~s!PG. ~27!

Note that V(s) can depend ons while v is an
s-independent real number. In the case ofG5U(1) this
vacuum expectation value is invariant under Eq.~7! with
g(s)5g(s11)5g, while such an invariant transformation
does not exist in general ifG is non-Abelian. Hereafter we
only consider the case ofG5SU(N) as a concrete example

FIG. 2. 2sin(p2)@GL#0,0 and 2sin(p2)@GR#0,0 in the fermion
propagator as a function ofp2 with p150 at bs51.0 on a
242332 lattice, for m050.5 ~open circles! and 0.3 ~solid dia-
monds!.
ical
ss

ing

d

ec-

,

FIG. 3. @GL#0,0
21 and @GR#0,0

21 as a function of sin2(p2) with
p150 at bs51.0 on a 242332 lattice, form050.5 ~open circles!
and 0.3~solid diamonds!.

FIG. 4.mf vsm0 at bs51.0 on a 242332 lattice, in the case of
putting a source on the domain walls50, for the right-handed
fermion ~open circles! and the left-handed fermion~solid circles!.
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though an extension of our argument to general non-Abe
groups is straightforward. Let us apply the following gau
transformation to Eq.~27!:

g~s!V~s!g†~s11!51 ~28!

for s52Ls ,2Ls11, . . . ,Ls23, Ls22, which implies

g~2Ls!S )
s52Ls

Ls22

V~s!D g†~Ls21!51. ~29!

For s5Ls21, the gauge transformation applied to Eq.~27!
becomes

g~Ls21!V~Ls21!g†~Ls!5g~2Ls!S )
s52Ls

Ls21

V~s!D g†~Ls!.
~30!

Sinceg(Ls)5g(2Ls) from the periodicity of the extra di-
mension, there exists a gauge transformationg05g(Ls)
5g(2Ls) such that

g0S )
s52Ls

Ls21

V~s!D g0†5D, ~31!

FIG. 5.mf vsm0 at bs51.0 on a 242332 lattice, in the case of
putting a source on the antidomain walls515, for the right-handed
fermion ~open circles! and the left-handed fermion~solid circles!.
lian
ge
where D is a diagonal matrix: Dab5eiuadab with
(a51
N ua[0(mod 2p). If this D belongs to a center ofG

@ZN for SU(N)#, the transformed vacuum expectation value
^V(n,s)&5v for sÞLs21 and5vD for s5Ls21 is in-
variant under further constant gauge transformations
g(s)5g. In this case the conclusion of Ref.@8# is valid.
Since the dynamics ofV(n,s) is completely independent at
each layer for the quenched case, however, there is no sp
cial reason thatD belongs to the center ofG; therefore,
probability havingDPZN out of SU(N) is ~almost! zero. In
the presence of dynamical fermions, we cannot rule out th
possibility thatDPZN is always satisfied dynamically. But,
sincev2LsTrD5v2LsTr)s52Ls

Ls21 V(s) 5Tr)s52Ls

Ls21
^Us,d(n)& is

the Polyakov loop in the extra dimension, it should depen
on parameters such asbs andm0 , and it is unlikely thatD
PZN is always satisfied, irrespective of values of such pa
rameters. Thus, hereafter, we assumeD¹ZN .

Next let us consider the effect ofD¹ZN to the would-be
gauge boson mass terms:

FIG. 6.mf vsm0 at bs51.0 on a 242332 lattice, in the case of
putting a source ons58, for the right-handed fermion~open
circles! and the left-handed fermion~solid circles!.
SG
mass5bs(

n,m
(
s

$12Re Tr@Um~n,s!V~n1m,s!Um
† ~n,s11!V†~n,s!#%. ~32!

ReplacingV(n,s)→^V(n,s)&5vV(s), we obtain

SG
mass5bsv

2(
n,m

H (
s52Ls

Ls22

@12Re Tr$Ũm~n,s!Ũm
† ~n,s11!%#1@12Re Tr$Ũm~n,Ls21!DŨm

† ~n,Ls!D
†%#J , ~33!

whereŨm(n,s)5g(s)Um(n,s)g
†(s). ExpandingŨm(n,s)5exp@igAm(n,s)# up toO(Am

2 ) we obtain
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SG
mass5bsv

2
g2

2 (
n,m

F (
s52Ls

Ls21

Tr$Am~n,s!2Am~n,s11!%222Tr$Am~n,Ls21!DAm~n,Ls!D
†2Am~n,Ls21!Am~n,Ls!%G . ~34!
on

by

a-
is
he
s
c
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e
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.
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n
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a
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For the gauge field constant on the extra dimension,

SG
mass52bsv

2g2(
n,m

Am
a ~n!Am

b ~n!Tr@TaDTbD†2TaTb#

~35!

and

SG
kin}2bg22Ls(

n,mn
Fmn
2 ~n!. ~36!

Since Tr@TaDTbD†2TaTb#50 for N21 diagonal genera-
torsTa of SU(N) ~note thatDD†51), there areN21 mass-
less gauge fields constant on the extra dimension, wh
couples equally to the zero modes at the domain and anti
main walls. These generators form a subgroup ofG, denoted
H. The remaining (N21)N gauge fields have nonzero mas
mG
2 a2}bsv

2/b2Ls , which controls propagation of these
gauge fields at a givens slice.

The above consideration shows that the symmetryG2Ls

breaks down toH in the broken phase, ifLs is finite. Since
an overlap between the zero modes at the domain and a
domain walls is suppressed exponentially inLs , there is a
window of Ls values where the chiral zero mode exists an
masses of the gauge fields, which correspond toG2H gen-
erators, are nonzero. Therefore, deep in the broken ph
Kaplan’s model can describe, at best, a chiral fermion int
acting with the gauge fields ofG2H generators at a finite
cutoff, if Ls is appropriately chosen. In the scaling lim
(v→vRa), however, there exist two problems. One is th
the constant gauge fields ofG2H generators have finite
masses in this limit and thus appear in the continuum sp
trum, sincemG

2}bsvR
2/b2Ls . How serious the effect of

FIG. 7.mf vsm0 at bs55.0 on a 242332 lattice, in the case of
putting a source on the domain walls50, for the right-handed
fermion ~open circles! and the left-handed fermion~solid circles!.
ich
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these gauge bosons to the chiral zero mode is depends
how they propagate not only in space-time at a givens slice
but also in the extra dimension. Formula Eq.~34! suggests
that the propagation in the extra dimension is suppressed
another ‘‘mass,’’ which is independent of bothv andLs . A
detail analysis of this point, however, needs a nonperturb
tive simulation with the physical gauge fields and thus
beyond the scope of this paper. The other problem is t
fermion spectrum in the limit. If the fermion spectrum stay
chiral in the limit, it should stay chiral also in the symmetri
phase. This means that, in order to determine the ferm
spectrum in the scaling limit from the broken phase, we ha
to know the spectrum in the symmetric phase. Therefo
from knowledge of the fermion spectrum obtained in th
broken phase so far, we cannot draw any conclusion on
fermion spectrum, chiral or vector like, in the scaling limit

E. Fermion spectrum in the symmetric phase

The system is in the symmetric phase atbs50.5. The
fermion propagator is analyzed in the same way as in t
broken phase. However, for example, on thes50 layer,
2sin(p2)GL and 2sin(p2)GR show similar behaviors on a
162332 lattice, as seen in Fig. 8. Smaller lattice sizes sho
a stronger similarity, which makes analysis more difficult i
the symmetric phase. To see the difference between
right-handed and left-handed fermions, we have to take
larger lattice size such asL524, 32.

In Fig. 9, we have plotted the massmf of both modes at
s50 as a function ofm0 . Although the difference of masses
between the right-handed and the left-handed fermions
very small, about 0.1 or less atm050.99, this difference
stays finite as we increase the spatial lattice sizeL from 24 to
32. Therefore, at the present sizes of lattices,L524 and 32,

FIG. 8.2sin(p2)@GL#0,0 ~open circles! and2sin(p2)@GR#0,0 ~solid
circles! as a function ofp2 with p150 at bs50.5 on a 162332
lattice.
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it seems that the right-handed fermion becomes massles
m0 larger than 0.9, while the left-handed fermion stays ma
sive at allm0 , so that the fermion spectrum on the doma
wall is chiral.

In order to see that the difference of mass between
right and the left is really a signal, not a statistical fluctu
tion, we have plottedmf vsm0 in the case of putting a source
at the antidomain walls515 in Fig. 10. We observe, at
m050.99, a massless fermion of the opposite chirality to t
s50 zero mode and a finite difference of masses betwe
the right and the left, which stays finite as we increase t
spatial lattice size.

Furthermore, in the case ofs58, the right-handed ferm-
ion and the left-handed fermion stay massive at allm0 , as
seen in Fig. 11.

FIG. 9. mf vs m0 at bs50.5 on L2332 lattices withL524
~circles! and 32 ~squares! in the case of putting a source on th
domain walls50. Open symbols stand for the right-handed ferm
ion and solid symbols for the left-handed fermion. The solid lin
corresponds to 12m0 .

FIG. 10. mf vs m0 at bs50.5 onL2332 lattices withL524
~circles! and 32 ~squares! in the case of putting a source on th
antidomain walls515. Open symbols stand for the right-hande
fermion and solid symbols for the left-handed fermion. The so
line corresponds to 12m0 .
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One may wonder whether the above results could be e
plained by the behaviors of free Wilson fermion in the lay
ered phase. The predicted behavior of the fermion mass
that case ismf512m0 for s>0, which gives a straight line
in the above three figures, andmf511m0 for s,0. At first
sight, our data seem to be consistent withmf512m0 behav-
ior. However, if we look at our data more closely, the da
cannot be explained bymf512m0 , in particular, at large
m0 , and are more consistent with the existence of ze
modes at largem0 , as explained above. Furthermore, w
have calculated fermion masses at a negatives slice. In Figs.
12–14 we have plottedmf as a function ofm0 at s521,
s5216, ands528, respectively. If it were in the layered
phase, it is expected that these data are on or near of
straight linemf511m0 of a free Wilson fermion and the
masses of the left-handed part and right-handed part

e
-
e

e
d
lid

FIG. 11. mf vs m0 at bs50.5 onL2332 lattices withL524
~circles! and 32~squares! in the case of putting a source ons58.
Open symbols stand for the right-handed fermion and solid symb
for the left-handed fermion. The solid line corresponds to 12m0 .

FIG. 12.mf vsm0 at bs50.5 on 242332 lattices in the case of
putting a source on the domain walls521. Open symbols stand
for the right-handed fermion and solid symbols for the left-hande
fermion. The solid line corresponds to 11m0 .
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equal particularly. Data, however, disagree with the behav
mf511m0 of a free Wilson fermion in the layered phase
The results ats521 and s5216 differ not only from
mf511m0 but also from the fact that the masses of th
left-handed part and right-handed part are equal. Althou
the signal of zero modes at a negatives slice cannot be
found, the observed behaviors can be qualitatively explain
by Eqs.~14! and ~15! of the mean-field propagator.

Neglecting the termO(e230a2) in Eqs.~14! and ~15! we
obtain

@GL~p!#ss5H C1~AL2C!e22a2, s521,

AR , s5216,

C, s528,

~37!

FIG. 13.mf vsm0 at bs50.5 on 242332 lattices in the case of
putting a source on the antidomain walls5216. Open symbols
stand for the right-handed fermion and solid symbols for the le
handed fermion. The solid line corresponds to 11m0 .

FIG. 14.mf vsm0 at bs50.5 on 242332 lattices in the case of
putting a source ons528. Open symbols stand for the right
handed fermion and solid symbols for the left-handed fermion. T
solid line corresponds to 11m0 .
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@GR~p!#ss5H AR , s521,

C1~AL2C!e22a2, s5216,

C, s528,

~38!

which predictmf~right! 5 mf~left! at s528 andmf~right!
Þ mf~left! at s521 and216. This behavior is qualitatively
consistent with our data. However, the resolution of mome
tum at the current lattice size,L524, is too coarse to see the
expected singularity ofAL at a negative sslice, since nu-
merically uCu@u(AL2C)e22a2u for p150 and p25p/L
with L524. For example we have calculatedmf applying
the same analysis to the mean-field propagators@GL(p)#ss
and @GR(p)#ss with a givenz at s521 andL524. In Fig.
15 we have plottedmf as a function ofm0 with z5 0.1
together with our data ofmf in Fig. 12. Even if the singular-
ity in AL exists the sign of this cannot be seen both th
numerical simulation and the mean-field propagator at t
two-dimensional lattice sizeL;10.

Next we try to fitGL
21 andGR

21 at a givenm0 using the
form of the mean-field propagator, Eqs.~14! and ~15!, with
the fitting parameterz. In Fig. 16 we have plottedz obtained
by the fit as a function ofm0 at s50 on 242332 and
322332 lattices, and thez is almost independent ofm0 or
lattice sizes. This result shows that fermion propagators o
tained by the numerical simulation are consistent with th
form of the mean-field propagators with smallz.0.1.

In summary our results ofmf at both positives and nega-
tive s planes favor more the existence of a chiral zero mo
in the symmetric phase than the realization of the layer
phase onL2332 lattices withL524 and 32. However, the
possibility of it being in the layered phase is not denied.
we assume the form of the mean-field propagator, the va
of the correspondingz is small, about 0.1, atbs50.5, and
this may suggest that the identification thatz5^V(n,s)&, Eq.

ft-

-
he

FIG. 15.mf vsm0 , obtained by the mean-field propagators wit
z50.1 on 242332 lattices in the case of putting a source on th
domain wall s521. The solid line stands for the right-handed
fermion and dashed line for the left-handed fermion. Data
bs50.5 ~open symbols and solid symbols! are given for compari-
son.
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5068 53S. AOKI AND K. NAGAI
~22!, may be correct. If so, the layered phase will emerge
the infinite volume limit, and thus, the original Kaplan mod
fails to describe lattice chiral gauge theories in the symme
phase. Unfortunately, since our data do not change v
much fromL524 to 32 and in the infinite volume there doe
not exist an order parameter due to reducing
(211)-dimensional U~1! gauge system to the two
dimensional U~1! spin model, so far we cannot conclud
what will be the fate of chiral zero modes in the infini
volume limit.

IV. CONCLUSIONS AND DISCUSSION

Using the quenched approximation, we have performe
numerical study of the domain-wall model in 211 dimen-
sions with the U~1! dynamical gauge field on the extra d

FIG. 16. z vs m0 at b50.5 on L2332 lattices withL524
~circles! andL532 ~squares!, in the case of putting a source on th
domain walls50. Open symbols stand for the right-handed ferm
ion and solid symbols for the left-handed fermion.
in
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mension. From this study we obtain the following results. I
the broken phase of the gauge field, there exists a critic
value of the domain-wall mass separating the region with
chiral zero mode and the region without it. At a domain-wa
mass larger than its critical value a zero mode with on
chirality exists on the domain wall and a zero mode wit
opposite chirality on the antidomain wall, and none in th
middle between the domain wall and the antidomain wal
Although our data in the symmetric phase onL2332 with
L524 and 32 suggest the existence of zero modes
m050.99, the existence of zero modes in the symmetr
phase is not conclusive for very largeL. This is because our
data may well be explained by the mean-field propagat
with a very smallz, less than 0.1, and this smallz may
suggestz5^V(n,s)&, which could be nonzero on the finite
lattices. If so, the zero modes in the symmetric phase wou
disappear and the layered phase would emerge in the infin
volume limit.

The existence of chiral zero modes in the symmetr
phase is essential for the original domain-wall model work
ing as lattice chiral gauge theories. We will have to make
definite conclusion on this point. However, in 211 dimen-
sions, it seems very difficult to prove or disprove the exis
ence of zero modes in the symmetric phase since it requir
a very largeL. Instead of investigating the model in 211
dimensions at largeL, for exampleL5512 or 1024, we are
planning to study realistic (411)-dimensional models with
U~1! or SU(N) gauge fields in theb5` limit. Such models
in theb5` limit have a phase transition characterized by a
order parameter, a vacuum expectation value of the link va
ables in the extra dimension. We hope that the finite siz
scaling study in the model can lead to a definite conclusio
on the existence of zero modes in the symmetric phase.
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