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Domain-wall fermions with U(1) dynamical gauge fields
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We carry out a numerical simulation of a toy domain-wall model in22dimensions, in the presence of a
U(1) dynamical gauge field only in an extra dimension, corresponding to the weak coupling lim{twb-a
dimensiongl physical gauge coupling. Using a quenched approximation we investigate this model at
B(=1/g2)= 0.5 (“symmetric” phase, 1.0, and 5.0(“broken” phase, whereg; is the gauge coupling
constant of the extra dimension. In the broken phase, we find that there exists a critical value of the domain-
wall massmg which separates a region with a fermionic zero mode on the domain wall from one without it. In
the symmetric phase the critical value of the domain wall mass seems to exist but is very close to its upper
boundmg=1. Because of the difficulty observed in the numerical simulation mgar1 we cannot conclude
in the symmetric phase either the existence of the chiral zero matg=am§ or the realization of the layered
phase[S0556-282(96)06209-1

PACS numbsdps): 11.15.Ha, 11.30.Rd

[. INTRODUCTION the weak gauge coupling limit, gauge fields are no longer
smooth and become very “rough,” due to the gauge degrees

Construction of chiral gauge theories is one of the long-of freedom appearing to be dynamical at this edge. As a
standing problems of lattice field theories. Because of fermsesult of the rough gauge dynamics, a new chiral zero mode
ion doubling problems, a naively discretized lattice fermionwith opposite chirality to the original zero mode on the do-
field yields 2 fermion particles, half of one chirality and main wall appears at the edge, so that the fermionic spectrum
half of the other, so that the theory becomes noncliithl  inside the waveguide becomes vector like. It has been
Several lattice approaches have been proposed, but so felaimed[8,9] that this “rough gauge” problem also exists in
none of them have been proven to work successfully. the overlap formula since gauge invariance is broken by the

Kaplan has proposed a new construction of lattice chiraboundary condition at the infinity of the extra dimension
gauge theories via domain-wall mod¢B. Starting from a  [11,12. Furthermore, an equivalence between the waveguide
vectorlike gauge theory ink2+ 1 dimensions with a fermion model and the overlap formula has been pointed out for the
mass term being the shape of a domain wall in (etra) special casgl3]. Although the claimed equivalence has been
(2k+1)th dimension, he showed in the weak gauge couchallenged in Ref.14], itis still crucial for the success of the
pling limit that a massless chiral state arises as a zero modeverlap formula to solve the “rough gauge” problem and to
bound to the R-dimensional domain wall while all the dou- show the existence of a chiral zero mode in the weak gauge
blers have large masses of the lattice cutoff scale. It has beé®upling limit.
also shown that the model works well for smooth back- How about Kaplan’s original model? In this model there
ground gauge fieldg3-5]. are two inverse gauge couplingd=1/g? and B=1/g2,

Two simplified variants of the original Kaplan domain- whereg is the coupling constant iphysica) 2k dimensions
wall model have been proposed: an “overlap formu[&,7]  andgs is the one in thgextrg (2k+1)th dimension. Very
and a “waveguide model'[8,9]. Gauge fields appearing in little is known about this model except in th&,=0 case
these variants arek2dimensional and are independent of the[8,15,16 where the spectrum seems vector like. Since per-
extra (&+1)th coordinate, while those in the original turbation theory for the physical gauge coupliggis ex-
model are X+1 dimensional and depend on the extrapected to hold, the fermion spectrum of the model can be
(2k+ 1)th coordinate. These variants work successfully fordetermined in the limit thag—0. In this weak coupling
smooth background gauge field€—-12, as the original one limit, all gauge fields in physical dimensions can be gauged
does. Nonperturbative investigations for these variants seemway, while the gauge field in the extra dimension is still
easier than for the original model due to the simpler structurelynamical and its dynamics is controlled |py. Instead of
of the gauge fields. the gauge degrees of freedom at the edge of the waveguide,

However, it has been reportd8,9] that the waveguide the (2k+1)th component of gauge fields represents the
model in the weak gauge coupling limit cannot produce thaoughness of R-dimensional gauge fields. An important
chiral zero modes needed to construct chiral gauge theoriequestion is whether the chiral zero mode on the domain wall
In this limit, if gauge invariance were maintained, pure survives in the presence of this rough dynamics. The dynam-
gauge field configurations equivalent to unity by gauge transics of the gauge field in this limit is equivalent to a
formation would dominate and gauge fields would become?k-dimensional scalar model withLZ independent copies
smooth. In the setup of the waveguide model, howeverwhere 4 is the number of sites in the extra dimension. In
2k-dimensional gauge fields are nonzero only in the layergeneral at large8; such a system is in a “broken phase”
near the domain wallwaveguidg, so that gauge invariance where some global symmetry is spontaneously broken, while
is broken at the edge of the waveguide. Therefore, even iat smallB, the system is in a “symmetric” phase. Therefore
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53 DOMAIN-WALL FERMIONS WITH U(1) DYNAMICAL GAUGE FIELDS 5059
there exists a critical poingS, and it is likely that the phase whereSg is the action of a dynamical gauge field a8l is
transition atBs= B¢ is continuous(second or higher ordgr the fermionic actionSg is given by

The “gauge field” becomes rougher and rougher at smaller

Bs. Indeed we know that the zero mode disappears at Se=8 2 X {1-ReT{U,,(n,s)]}

Bs=0[15], while the zero mode exists gt= (free casg nu=v s

So far we do not know the fate of the chiral zero mode in the

intermediate range of the couplirg,. There are the follow- +,6’52 E {1-Re T(U ,4(n,9)]}, 2
nu s

ing three possibilitiesi@ The chiral zero mode always exists

exceptBs=0. In this case we may likely construct a lattice where i, » run from 1 to X, n is a k-dimensional lattice
chiral gauge theory in both brokeB{> ;) and symmetric point, and s is a coordinate of an extra dimension.
(Bs<Bg) phases, and the continuum limits may be taken au,,(n,s) is a X-dimensional plaquette anid ,4(n,s) is a
Bs=B<. This is the best case for the domain-wall mode).  plaquette containing two link variables in the extra direction.
The chiral zero mode exists only in the broken phase3 is the inverse gauge coupling for the plaquette, and
(Bs>P9). In this case the domain-wall method can describeBs iS the one for the plaquetd 4. In general 3+ ;. The

a lattice chiral gauge theory in the broken phase at finitd®rmion actionSg on the Euclidean lattice, in terms of the
cutoff. However, it is likely that the continuum limit taken at 2k-dimensional notation, is given by

Bs= BS from above leads to a vector gauge thedig). No 1 _
chiral zero mode survives exceft= . The original model SF=§2 > (M) Y, [Us (M) gs(n+p)
cannot describe lattice chiral gauge theories at all. s

It is very important to determine which possibility is in- _U;F,M(n_ﬂ)l/’s(n—ﬂ)]

deed realized in the domain-wall model. Therefore, in this
paper, in order to know the fate of the chiral zero mode, we
carry out a numerical simulation of a domain-wall model in
(2+1) dimensions with a quenched1) gauge field in the

B=c limit. Strictly speaking, there is no order parameter in
a two-dimensional (1) spin model(XY mode). On a large

but finite lattice, however, the behavior of the two- N
dimensional model is similar to the one of a four- +Ug (N—p)hs(n—p) = 2¢(n)], (©)]
dimensional scalar model. Thus, we hopefully think that use-

) . wheres,t are an extra coordinateBg,, = 5(1+ and
ful information about the fate of the zero mode can be R =215 Yawra)

+2 2 Ye(M[MoPr+MP1¢4(n)

1 —
52 2 UWUs (M vsn+ )

obtained from such a toy model int2 dimensions. In Sec. (Mg)st=Ugg(N)dgr1t—als)dsy,
II, we define our domain-wall model with dynamical gauge N N (4)
fields. We calculate a fermion propagator by using a kind of (Mg)st=Us_1,4(N)Ss-1t—al(S) sy -

mean-field approximation, to show that there is a criticalH _ . ;
. ; ere Ug ,(n),Ug4(n) (d=2k+1) are link variables con-
value of the domain-wall mass parameter above which tha s.u(M):Usa(M) ( ) i varl

! " ecting a site 1f,s) to (n+w«,s) or (n,s+1), respectively.
zero mode exist. The value of the critical mass may depen@eqqyse of a periodic boundary condition in the extra dimen-

on Bs, which controls the dyn_amics of the gauge_field. '”sion,s,t run from —L, to L.— 1, anda(s) is given by
Sec. lll, we calculate the fermion spectrum numerically us-

ing a quenched approximation A= 0.5,1.0,5.0 and at vari- a(s)=1-mg[sgn(s+3)sgnLs—s—73)]

ous values of domain-wall masses. We find that in the bro- . L

ken phase gs=1.0,5.0) there exists a range of the domain- _ 1=mo (- 3z<s<Ls~3), )
wall mass parameter in which the chiral zero mode survives 1+my (—L— i<s<-—1),

on the domain wall. In the symmetric phage,€ 0.5), how-

ever, such an allowed region of the domain-wall mass pawherem, is the height of the domain-wall mass. It is easy to

rameter for the chiral zero mode, if it exists, is found to becheck that the above fermionic action is identical to the one

very narrow. Our conclusions and a discussion are given iin 2k+1 dimensions, proposed by Kaplg2,6].

Sec. IV. In the weak coupling limit of bottB and B, it has been
shown that at &£my<<1 a desired chiral zero mode appears
on a domain wall $=0 plang without unwanted doublers.

Il. DOMAIN-WALL MODEL Because of the periodic boundary condition in the extra di-
mension, however, a zero mode of opposite chirality to the
one on the domain wall appears on the antidomain wall

We consider a vector gauge theoryds2k+1 dimen-  (s=Ls—1). Overlap between two zero modes decreases ex-
sions with a domain-wall mass term, which has the shape dponentially at large. A free fermion propagator is easily

a step function in the coordinate of an extra dimension. Thigalculated and an effective action of a2 )-dimensional

domain-wall model was originally proposed by Kaplj, ~ model including the gauge anomaly and the Chern-Simons

and the fermionic part of the action is reformulated byt€rm can be obtained for smooth background gauge fields

Narayanan-Neubergel6], in terms of a X-dimensional : . )
theory. The model is defined by the action The original Kaplan domain-wall models, however, have

not been investigated yetonperturbatively exceptBs=0
S=Sg+ S, (1) [8,15,14. The main question is whether the chiral zero mode

A. Definition of the model



5060 S. AOKI AND K. NAGAI 53

survives in the presence of rough gauge fields mentioned iof the extra dimension, is regarded as the number of inde-
the Introduction. To answer this question we will analyze thependent flavors. We use thieduced model for our numeri-
fate of the chiral zero mode in the weak coupling limit for cal investigation.

B. In this limit, the gauge field actioB; is reduced to ] o )
B. Mean-field approximation for fermion propagators

= 1-Re T{V(n,s)Vi(n+u,s)]}, (6 When the dynamical gauge fields are added even on the
Se BS}s: %{ tVnsVintu9lt (6 extra dimension only, it is difficult to calculate the fermion

) ) ) S propagator analytically. Instead of calculating the fermion
where the link variableJs 4(n) in the extra direction is re- propagatoexactly we use a mean-field approximation to see
garded as a site variab¥(n,s)[ =Usq(n)]. This action is  the effect of the dynamical gauge field qualitatively. The

identical to the one of akkdimensional spin model arglis ~ mean-field approximation we adopt is that the link variables

regarded as an independent flavor. The adt@ns invariant  are replaced as

under

V(n,s)[=Us4(n)]—2, ®
V(n,s)—g(s)V(n,s)g"(s+1) [g(s)eG], () . _

wherez is a (n,s)-independent real constant. From E8g)
whereG is the gauge group of the original model. Thereforethe fermion action in a B-dimensional momentum space
the total symmetry of the model @2"s, where 2 ¢, the size  becomes

SFHZp y(—p)| = i7,5IN(p,) 85 +[M(2)Pr+MT(2)P I | (P, C)
sit, w

v(p) V(p) <
[M(2)]ei=[Mo@]srt 5= dsr, M (@]e=[Mo(2) st ——0er, V(P)= 2 2(cop,—1), (10

[Mo(2)]s:=28s1,~a(8) 851, [M§(D)]61=285 1~ a(S) 8- (11)

Following Refs[3,6] it is easy to obtain a mean-field fermion propagator on a finite lattice with periodic boundary conditions:

-1

G(p)s,t:[i%‘z VPt M(2)Pr+ MT(2)P,

st

=“(—i2 mp_,ﬁM(Z))GL(p)s,t PLH{| —iX VMP_;L+MT(Z))GR(p)S,t]PR , (12
" "
ClP= 7 GrP) = =— (13
M aMe Y T MM
with p_#ssin(p#). For largelL  where we neglect terms @(e™ °Ls) with ¢>0, G, andGg are given by
Be *+ls7l4 (A —B)e (T4 (Ag—B)e *+(s7S7U (5,t=0),
ALe—a+S+a,t+ARe—aJr(LS—S)—a,(LS+t) (S?O,tg(:)),
[GL(p)]S,t: ALea,Sfath_f_ARe*a,(LSJrS)*og(Ls*t) (SSO,tBO),
Ce @7l (A —C)e*- (V4 (Ag—C)e @ 2Ls¥s™  (5,1<0), (14)
Be—a+|s—t|+(AR_ B)e—a+(s+t+2)+(AL_B)e—a+(2Ls—S—t—2) (S,tz_l),
ARe—a+(S+1)+a,(t+1)+ALe—our(Ls—S—l)—a,(Ls+t+1) (SZ _ 1,t$ _ 1),
[Gr(P)]st= Aget-(SFD-a (D) 4 A gma-(LetstD=ay(Lyt-1) (ss—1t=-1),
Ce—a7|s—t|+(AR_C)ea,(s+t+2)+(AL_C)e—a,(2L3+s+t+2) (s,t<—1), (15

where
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\Y

a+:z(1—(Tp)Im0):zb+, (16)

P?+7%+b2
a . =arccos T , (17)
A = ! Ar= ! 18
L a,e*v—a_e *’ "R g e*—a,e o’ (18)
B= —1 C= —1 19
" 2a,sinha,’ ~ 2a_sinha_’ (19

The termsAg, B, andC have no singularity for alf as
p—0 in the same case of free theory. The behaviohofs,
however, different. Ap—0, A_ behaves as

1
[(1-mg)®—2"]+0(p?)

AL—> (0<m0<1—Z),

(20

4ami—[(Z2—1)—m§]?
4myz°p?

— (1-z<mp<1). (21
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IIl. NUMERICAL STUDY OF THE
U(1) MODEL

(2+1)-DIMENSIONAL

A. Method of numerical calculations

In this section we numerically study the domain-wall
model in 2+ 1 dimensions with a (1) dynamical gauge field
in the extra dimension. As seen from KE), the gauge field
action can be identified with a two-dimensiona(1V spin
model(with 2L ¢ copies. In 2+ 1 dimensionsy matrices are
Pauli-matricesgq,05,073.

Our numerical simulation has been carried out by the
quenched approximation. Configurations oftiJdynamical
gauge field are generated and fermion propagators are calcu-
lated on these configurations. The obtained fermion propaga-
tors are gauge noninvariant in general under the symmetry
(7). The fermion propagatds(p)s becomes “invariant” if
and only if s=t. Thus, we take the-s layer as the propa-
gating plane £ “physical space’), and investigate the be-
havior of the fermion propagator in this layer.

To study the fermion spectrum, we assume a form of Eq.
(12) for the fermion propagator, from which we extrasgf
and Gg. We then obtain the corresponding “fermion
masses” fromG, }(p) andGx*(p) by fitting them linearly

A critical value of the domain-wall mass that separates an p?, since, from Eq(13),

region with a zero mode and a region without zero modes is

mg=1—2z. Since theA, term dominates for + z<my<1 in G, '=p?+ MM —mé(righty (p—0), (29
the G, [Eq. (14)] and Gy [Eq. (15)], a right-handed zero

mode appears in the=0 plane and a left-handed zero mode

in thes=L¢—1 plane. For 8my<<1-z the right- and left- Grl=p?+MMT—mi(left) (p—0). (25)

handed fermions are massive in alplanes. Since the terms
A (Ag) andB(C) have almost same value in this region of

Mo, a translational-invariant term dominates@ andGg e take the following setup for two-dimensional momenta.
in the positive(negative s layer, so that the spectrum be- A periodic boundary condition is taken for the first direction

comes vector like. and the momentum in this direction is fixed pa=0. An

btlf.z—:jl_, t?ﬁ. mOdi.l becomes a f:ﬁeﬂ;[heory. Tbrle.pr%paggtoéntiperiodic boundary condition is taken for the second di-
obtained In tis Section agrees wi € one obtaNed I K€Ly +ion and the momentum in this direction is variable such

3]. In the opposite limit that— 0, since there is no hoppin _ _
Eegm to the ?’Eeighboring layers, this model becomespt[r)\e %n%.s pz—(2_n+1)7-r/L, n=- L/2,... Li2=1. However, spe-
analyzed in Ref[15] in the case of the strong coupling limit Cial care is necessary in order _to see Fhe existence of _the Z€ero
Bs=0, and in Ref[16] in the case that is identified with ”_‘Ode r_‘“me“c?‘”Y at then_egatl_ve sslice. In a numerlcal
the vacuum expectation value of the link variables. This conSimulation on limited lattice sizes of two dimensions, for
sideration suggests that the region where the zero modes e&*@mpleL~10, the fermion spectrum obtained through the
ist becomes smaller and smaller ag1—z<m,<1) ap- above procedure at theegative sslice does not correspond
proaches zero. What correspondsz®Boundary conditions {0 the correct fermion masses, due to the coarseness of the
which z satisfies arg=1 at 8= andz=0 atB3,=0. The = Momentum resolution. In particular it is difficult to see the
most naive candidatel6] is expected singularity caused by the zero mode. The details of
this problem will be discussed later.

z=(V(n,s)). (22
But this is not invariant under the symmet(y); therefore,
we are not sure whether this correspondence is good or not
for the fermion propagator. The other choice, which is in-
variant under(7), is

B. Simulation parameters

Our simulation is performed in the quenched approxima-
tion onL2X 2L lattices withL =16,24,32 and_;=16. The
coordinate s in the extra dimension runs-16<s<15.
Gauge configurations are generated by the five-hit Metropo-
lis algorithm atB,= 0.5, 1.0, 5.0. For the thermalization the

If Eq. (22) is true, zero modes disappear in the symmetricfirst 1000 sweeps are discarded.

phase, wheréV(n,s))=0, while, for the case of Eq23), The fermion propagators are calculated by the conjugate
the zero modes always exist in both phases, sincgradient method on 50 configurations separated by at least 20
(TrRe(V(n,s)VT(n+pu,s)}) is insensitive to which phase sweeps, except g8s=5.0 on a 32x32 lattice where the

we are in. number of configurations are 11. We take the domain-wall

Z2=(TrReV(n,5)VT(n+pu,s)}). (23
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massmy= 0.7, 0.8, 0.9, 0.99 g8.,= 0.5,my= 0.3, 0.4, 0.5, vvs B,
0.6, 0.9 at,83= 1.0, andmO: 0.1, 0.2,0.3 a.BS: 5.0. The 1632
boundary conditions in the first and thiféxtra directions 1.0 g T ¥
are periodic and the one in the second direction is antiperi- ©
odic. The Wilson parameter has been set to=1. The o0s | &

fermion propagators have been investigated maink=at, ®
8, 15. Theses are the layers where we put the sources. The °
layer ats=0 is the domain wall, as=15, the antidomain 06
wall, and ats=8, neither. AtB;,=0.5 some data have been =
taken also as= —1,— 8,— 16 on a 24x 32 lattice. Errors are 04 L
all estimated by the jackknife method with unit bin size.

C. Quenched phase structure 02 r °

As explained before the gauge field action of our model is ®
identical to that of the (L) spin system in two dimensions. %20 10 20 30 20 50 6.0
Therefore, there is a Kosterlitz-Thouless phase transition and (@) B,
this system does not have an order parameter on the infinite
lattice. On the finite volume, however, we take a vacuum

expectation value of link variables as an order parameter ,,

vvs 1/L
L°x32

using the rotation technique: 00 © o o © ps50
1
V=<FE V(n,s) > : (26)
n s T p=1.0
06 - o
wherelL is the lattice size of the first and the second dimen- » .
sions. o4l t
The defined vacuum expectation vaMeabove is zero in

the Kosterlitz-Thouless phase bMt>0 in the spin-wave + ¢
phase on a finite latticéncreasing the lattice size, however, 021
decreasing the value of; in the infinite lattice size, the o @ B=05
value of V is zero for all gauge coupling Since we are ools o @ ° . .
interested in the dynamics of four-dimensional theories, (b) 0.000 0.020 0.040 0.060 0.080

where the phase transition separates a symmetric phase from
a broken phase, we have used this two-dimensional system

on large but finite volume as a toy model of the four- 1. 35 |attice as a function o8 (b) Volume dependence of the

dimensionql real world. Therefore, in this pape_r, we refer tOVacuum expectation values of link variablesas a function of
the Kosterlitz-Thouless phase as the symmetric phase and {q

the spin-wave phase as the broken phase. Figi@eshows
that, on a 16x 32 lattice,v behaves as if it was an order becomes very smafless than 0.latm, larger than 0.5, and
parameter. From Fig.(ly) we consider that the system is in SO we conclude that the critical valuem§~0.5. Whenever
the symmetric phase @,=0.5, while in the broken phase at the domain-wall mass is larger than this value, this model
Bs=1.0, 5.0. produ(c):es a right-handed chiral zero mode on the domain wall
ats=0.

On the antidomain wallg=15), on the other hand, the
mass of left-handed fermion becomes less than O.inat

At Bs= 1.0 and 5.0, the system is in the broken phaselarger than the critical massj~ 0.5, as seen in Fig. 5. It is
Here we mainly discuss the resultgf=1.0 in detail. noted that chiralities between the zero modes on the domain

We first consider the fermion spectrum on the layer atwall and the antidomain wall are opposite each other.
s=0. Figure 2 is a plot of the term corresponding to Finally Fig. 6 shows that, 08=8 , the layer in the middle
—sin(p,)-G, and —sin(p,)-Gg as a function ofp, at m between the domain wall and the antidomain wall, both
=0.3 and 0.5(Note that we always set;=0.) This figure right-handed and left-handed fermions stay heavy.

shows that, ap, goes to zeroG, seems to diverge an, A similar result at3,=5.0 ons=0 is given Fig. 7. .
—0.5 but stay finite at, = 0.3, whileGr stays finite at both From these results above, we conclude that the domain-

mo. Next we show Fig. 3, which is a plot 04‘5[1 and wall mod_el with the dynamiqal gauge field on Fhe extra di-
Ga? as a function op2=siré(p,) atm, =0.3 and 0.5. In the mension(i.e., the weak cquphng limit of the original Ke_lplan
R 2 o~ 1~ mode) can create the chiral zero mode on the domain wall,
limit p,—0, Gg~ remains nonzero at botimy, while G_ at least deep in the broken phase.

vanishes amy=0.5. We obtain the value G’ﬁz_, which can Does this mean that the original Kaplan model works for
be regarded as th_g mass square in a two-dimensional worlghe construction of lattice chiral gauge theories in the broken
by the linear fit inp5, and plotm; as a function ofng in Fig.  phase? In Ref8] the potential problem of the Kaplan model

4. The mass of right-handed fermions, obtained filom', in the broken phase has been pointed out. Their argument is

FIG. 1. (a) Vacuum expectation value of link variabl®on a

D. Fermion spectrum in the broken phase
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—sin(pXG,(p,) vs P, 1/G (p,) vs sin’p,

B,=1.0, 24°x32, 50 conf, s=0 B=1.0, 24%32, 50 conf, s=0
4.0 . : , . 4.0 : : :

*m,=0.3
¢ mg=0.3 Om=0.5
Om,=0.5

20t 1 a0} +

0.0-OOOQO 20 F

—O— ——

4 40) 3 +
-20 10| .
o
*
0]
-4.0 ' . ] ' 00 & : . . .
-3.0 -20 -1.0 0.0 1.0 2.0 3.0 0.0 02 04 06 0.8 1.0
(a) P, (a) sin'p,
=sin(p)xGg(p,) Vs p, 1/Gg(p,) vs sin2p2
B,=1.0, 2432, 50 conf, s=0 B.=1.0, 24’32, 50 conf, 5=0
4.0 T T T 4.0 T T T
*m=03 *m,=0.3
Om,=0.5 Om=0.5 +
20 - ] 3.0 [ 4;
+
ceee®®®®y ¢
00 ®@® ©®® 20
Poo0®®®® ' ¢
¢
-2.0 10} b
3
]
-4.0 L L L L 0.0 t . 1 )
-3.0 ~2.0 -1.0 0.0 1.0 2.0 3.0 0.0 0.2 0.4 0.6 0.8 1.0
(b) P, (b) sin‘p,
FIG. 2. —sin()[G oo and —sin(y)[Grloo in the fermion FIG. 3. [G_]os and [Grlos as a function of sif(py) with

propagator as a function op, with p;,=0 at 8,=1.0 on a p;=0 at3,=1.0 on a 24X 32 lattice, formy,=0.5 (open circles
242x 32 lattice, for my=0.5 (open circley and 0.3 (solid dia- and 0.3(solid diamonds
monds.

as follows: In the broken phase the symmetry graafys, m, vs m,

Eq. (7), breaks dov_vn to its d!agonal subgroGp and there- _ ,-1.0, 2432, 50 conf, 5=0

fore one gauge field remain massless when the physical o8 . . : .
gauge coupling is switched on. However, this massless O Right

gauge field is independent sf and couples equally to the o oLt
zero modes at the domain and antidomain walls, rendering o6} ® .
the model vector like. *

We found, however, their argument should be modified ¢

slightly for a non-Abelian grous, due to the periodicity of S04l
the extra dimension. In the broken phase the vacuum expec-

[0}
tation value ofV(n,s) at each layer should be
(V(n,s))=vV(s), V(s)eG. 27) %21 °
Q
o]
Note that V(s) can depend ons while v is an 0.0 A . . .
0.0 0.2 0.4 0.6 0.8 1.0

s-independent real number. In the case @+ U(1) this
vacuum expectation value is invariant under Eg). with
g(s)=g(s+1)=g, while such an invariant transformation  FIG. 4. m; vsm, at 8,=1.0 on a 24x 32 lattice, in the case of
does not exist in general & is non-Abelian. Hereafter we putting a source on the domain wal=0, for the right-handed
only consider the case @=SU(N) as a concrete example, fermion (open circle} and the left-handed fermiogsolid circles.

m,
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m; vs m, m; vs m,
B,=1.0, 24°x32, 50 conf, s=15 B,=1.0, 24°x32, 50 conf, s=8
0.8 : . : 0.8 . .
O Right ® O Right
oLoft o ®Left b
o ¢ ©
06 | 1 0.6 ° ©
e o
o)
041 £ 04 o 8
°
0.2 - 02+
°
.
.
0.0 . . ) . Py 0.0 - : ; y
0.0 02 0.4 06 08 1.0 0.0 0.2 0.4 06 08 1.0

m,

FIG. 5. m; vs m, at B,=1.0 on a 24X 32 lattice, in the case of

putting a source on the antidomain wsi# 15, for the right-handed
fermion (open circleg and the left-handed fermiogsolid circles.

though an extension of our argument to general non-Abeliagvhere D
groups is straightforward. Let us apply the following gaugeEN

transformation to Eq(27):

g(s)V(s)g'(s+1)=1 (28)

fors=—Lg,—Lgt+1,...Ls—3, Ls—2, which implies

g(—Ls>( H V<s>) (Le—1)=1. (29)

For s=L¢—1, the gauge transformation applied to E®7)
becomes

Ls—1
9(Ls— HV(Ls—1)g" (L) =9(— Ls>( 11 v s)) g'(Ly).

(30

Sinceg(L)=9g(—Ls) from the periodicity of the extra di-
mension, there exists a gauge transformatgy¥g(L)
=g(—Lg) such that

Le—1
go( II V(s |gi=
s=—Lg

31

m,

FIG. 6. m; vs mg at B,=1.0 on a 24X 32 lattice, in the case of
putting a source ors=8, for the right-handed fermiorfopen
circles and the left-handed fermiofsolid circles.

is a diagonal matrix: Dy,=€'%s,, with
0,=0(mod 2m). If this D belongs to a center db

[Zn for SU(N)], the transformed vacuum expectation value
(V(n,s))=v for s¥Ls—1 and=vD for s=L¢s—1 is in-
variant under further constant gauge transformations,
g(s)=g. In this case the conclusion of Rg] is valid.
Since the dynamics d¥(n,s) is completely independent at
each layer for the quenched case, however, there is no spe-
cial reason thaD belongs to the center oB; therefore,
probability havingD € Zy out of SUN) is (almos} zero. In

the presence of dynamical fermions, we cannot rule out the
possibility thatD € Zy, is always satisfied dynamically. But,
sincev2-sTrD =p2-sTrll.s V(s) =Triis L (Us.a(m) is

the Polyakov loop in the extra dlmenS|on, |t should depend
on parameters such g andmg, and it is unlikely thatD
e Zy is always satisfied, irrespective of values of such pa-
rameters. Thus, hereafter, we assuinge Zy, .

Next let us consider the effect &f ¢ Zy to the would-be
gauge boson mass terms:

ST g > D {1-Re T{U,(n,s)V(n+pu,s)Ul(n,s+1)VI(n,s)]}. (32
nu s
ReplacingV(n,s)—(V(n,s))=vV(s), we obtain
Lg—2
Spas= g 2> EL [1-Re TH{U,(n,s)U}(n,s+1)}]+[1—Re T{U ,(n,Ls—1)DU,(n,Ly)D"}]}, (33)
n,u S=— s

whereGM(n,s)zg(s)UM(n,s)gT(s). ExpandingUM(n,s)=exg[igAM(n,s)] up to O(Ai) we obtain
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2 Ls—1
s&“as%ﬁsvzg?E 2 THAUNS) AL+ DIP=2THA (ML= DDA, (M LIDT-A,(n L~ DAL L} . (39
nu | s=-Lg

For the gauge field constant on the extra dimension, these gauge bosons to the chiral zero mode is depends on
how they propagate not only in space-time at a gigesfice
but also in the extra dimension. Formula E§4) suggests
Se= _ﬁsvzgzg ALMALMTHTADT D - T2T] that the propagation in the extra dimension is suppressed by
' (35)  another “mass,” which is independent of bathandLs. A
detail analysis of this point, however, needs a nonperturba-
and tive simulation with the physical gauge fields and thus is
beyond the scope of this paper. The other problem is the
in 5 5 fermion spectrum in the limit. If the fermion spectrum stays
St — Bg?2Ls >, F2,(n). (36)  chiral in the limit, it should stay chiral also in the symmetric
M phase. This means that, in order to determine the fermion
Since TFTeDT®D'—T2T®]=0 for N—1 diagonal genera- spectrum in the scaling I_imit from the bquen phase, we have
tors T2 of SU(N) (note thatDD'=1), there ard— 1 mass- to know the spectrum in the_ symmetric phase_. The_refore,
less gauge fields constant on the extra dimension, whic om knowledge of the fermion spectrum obtalne_d in the
couples equally to the zero modes at the domain and antid _rokgn phase so far, \we cannot dr‘."lw any COI’]C|U§IOI’] on the
main walls. These generators form a subgroug oflenoted ermion spectrum, chiral or vector like, in the scaling limit.
H. The remaining l— 1)N gauge fields have nonzero mass:
m&aZx B2/ B2Lg, which controls propagation of these
gauge fields at a gives slice. The system is in the symmetric phase at=0.5. The
The above consideration shows that the symm@&fys  fermion propagator is analyzed in the same way as in the
breaks down tdd in the broken phase, Iif is finite. Since  broken phase. However, for example, on e 0 layer,
an overlap between the zero modes at the domain and anti-sin(p,)G, and —sin(p,)Ggr show similar behaviors on a
domain walls is suppressed exponentiallyLip, there is a 16°x 32 lattice, as seen in Fig. 8. Smaller lattice sizes show
window of L values where the chiral zero mode exists anda stronger similarity, which makes analysis more difficult in
masses of the gauge fields, which correspon@teH gen- the symmetric phase. To see the difference between the
erators, are nonzero. Therefore, deep in the broken phastght-handed and left-handed fermions, we have to take a
Kaplan’'s model can describe, at best, a chiral fermion interlarger lattice size such ds=24, 32.
acting with the gauge fields d&—H generators at a finite In Fig. 9, we have plotted the masg of both modes at
cutoff, if Ls is appropriately chosen. In the scaling limit s=0 as a function ofny. Although the difference of masses
(v—vra), however, there exist two problems. One is thatbetween the right-handed and the left-handed fermions is
the constant gauge fields @ —H generators have finite very small, about 0.1 or less aby=0.99, this difference
masses in this limit and thus appear in the continuum specstays finite as we increase the spatial lattice kifmm 24 to
trum, since mixBwalB2Ls. How serious the effect of 32. Therefore, at the present sizes of lattites,24 and 32,

E. Fermion spectrum in the symmetric phase

m,vs m, =sin(p,)xG r(p,) Vs P,
2,
B,=5.0, 24°x32, 50 conf, s=0 8,=0.5, 1632, 50 conf, s=0, m,=0.99
1.0 T 9.0 T T
O Right
®Left ?g
08 | ° 6.0 R
°
o 30
06 | ?
- e ® ¢ @ ?
€ 0.0 @ b b o © €
04 | +
-3.0 .
©
02t
o] -6.0
©
0.0 . . . 60 . . . s
0.0 0.1 02 03 0.4 -3.0 -2,0 -1.0 0.0 1.0 20 3.0
m, P2

FIG. 7. m; vsm, at 3,="5.0 on a 24X 32 lattice, in the case of FIG. 8. —sin(py)[G_]o o (0pen circlesand — sin(p,)[ Grlo o (solid
putting a source on the domain wal=0, for the right-handed circles as a function ofp, with p;=0 at 8,=0.5 on a 16x32
fermion (open circleg and the left-handed fermiogsolid circles. lattice.



5066 S. AOKI AND K. NAGAI 53

m, vs m, m, vs m,
B.=0.5, L°x32, 50 conf, s=0 B.=0.5, L°x32, 50 conf, s=8
0.40 : : 0.40 : :
O Right(L=24) O Right(L=24)
® Lefi(L=24) o Left(=24)
D Right(L=32) O Right(L=32)
I » Left(L=32) | u Lefi(L=32) ]
0.30 Py 0.30 | 5 Py
8 n
£ 020 f ] g o020 ]
8 ™
©
0.10 0.10 $ @
.10 o ] ) L] o
o | ]
_ . ‘ . 3 0.00 . . ‘
906 07 08 09 10 0.6 07 0.8 0.9 10
m, m,
_ 2 ; e . .
FIG. 9. m¢ vs mg at Bs=0.5 onL“X32 lattices withL =24 FIG. 11. m; vs my at Bs=0.5 onL?x 32 lattices withL =24

(circles and 32(squarepin the case of putting a source on the (circleg and 32(squaresin the case of putting a source &r=8.
domain walls=0. Open symbols stand for the right-handed ferm- open symbols stand for the right-handed fermion and solid symbols
ion and solid symbols for the left-handed fermion. The solid linefor the left-handed fermion. The solid line corresponds tont,.
corresponds to +mg.

] ) ] One may wonder whether the above results could be ex-
it seems that the right-handed fermion becomes massless ghined by the behaviors of free Wilson fermion in the lay-
mo larger than 0.9, while the left-handed fermion stays masgreqd phase. The predicted behavior of the fermion mass in
sive at allmg, so that the fermion spectrum on the domainhat case isn,=1—m, for s=0, which gives a straight line
wall is chiral. _ in the above three figures, antt =1+ mj for s<0. At first

In order to see that the difference of mass between thgjght our data seem to be consistent with="1—m, behav-
right and the left is really a signal, not a statistical fluctua-jor However, if we look at our data more closely, the data
tion, we have plottedh; vs my in the case of putting a source cannot be explained bgn;=1—m,, in particular, at large
at the antidomain wals=15 in Fig. 10. We observe, at 1 and are more consistent with the existence of zero
my=0.99, a massless fermion of the opposite chirality t0 theyodes at largen,, as explained above. Furthermore, we
s=0 zero mode and a finite difference of masses betweeRaye calculated fermion masses at a negatiskce. In Figs.
the right and the left, which stays finite as we increase thg,_14 we have plottedh; as a function ofm, at s=—1
spatial lattice size. , s=—16, ands= —8, respectively. If it were in the layered
~ Furthermore, in the case sf=38, the right-handed ferm-  yhaqe it is expected that these data are on or near of the
ion and the left-handed fermion stay massive atnajl as  gyrajght linem;=1+m, of a free Wilson fermion and the

seen in Fig. 11. masses of the left-handed part and right-handed part are
M VS Mo m, vs m;
0.40 _ P05 L2 50 conl. =18 Bs=0.5, 24’32 , 50 conf, s=-1
’ ' ‘ 2,00 . .
O Right(L=24) .
® Left(L=24)
O Right{L=32) R
0.30 [ = Left(L=32) i 1.80 | i
H 1-m, o
(U]
1.60 * © J
£ 020 + i [0}
IS [0]
1.40 | i
0.10 | ] O Right
o] ® Left
a 120 | 1+m, |
0.00 L L L ®
0.6 0.7 08 0.9 10 100 . . ,
m, "0.60 0.70 0.80 0.90 1.00

m,

FIG. 10. m; vs my at B,=0.5 onL?x 32 lattices withL =24
(circles and 32(squaresin the case of putting a source on the FIG. 12. m; vs m, at B8,=0.5 on 24 32 lattices in the case of
antidomain walls=15. Open symbols stand for the right-handed putting a source on the domain wal=—1. Open symbols stand
fermion and solid symbols for the left-handed fermion. The solidfor the right-handed fermion and solid symbols for the left-handed
line corresponds to £ mj. fermion. The solid line corresponds totin,.
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m, vs m, m, vs m,
Bs=0.5 , 24°x32 , 50 conf, s=-16 2=0.1,24°x32 , s=-1
2.00 . ; < 2.00
o]
1.90 -
o]
1.80 - o 1.80 -
© °
. 1.70
1.60 b
160 |
E g 1509
1.40
140 |
O Right -~~~ Left (mean-field)
® Left 1.30 — Right (mean-field)
120 —— 14m, 4
1.20 -
106 . ‘ . 1.10
0.60 0.70 0.80 0.90 1.00
m 1.00 : :
o 0.70 0.80 0.90 1.00
mD
FIG. 13.m; vs mq at B,=0.5 on 24X 32 lattices in the case of
putting a source on the antidomain wak- —16. Open symbols FIG. 15.m; vsm,, obtained by the mean-field propagators with
stand for the right-handed fermion and solid symbols for the left-z=0.1 on 24x 32 lattices in the case of putting a source on the
handed fermion. The solid line corresponds térfy. domain walls=—1. The solid line stands for the right-handed

fermion and dashed line for the left-handed fermion. Data at

equal particularly. Data, however, disagree with the behaviofs=0-5 (open symbols and solid symbplare given for compari-

m;=1+m, of a free Wilson fermion in the layered phase. son.

The results ats=—1 and s=—16 differ not only from

m¢=1+m, but also from the fact that the masses of the Ar, s=-1,

Ieft—hgnded part and right-handed part are equal. Although [Gr(P)]se= C+(A_,—C)e 2, s=-16, (39

the signal of zero modes at a negatiseslice cannot be .

found, the observed behaviors can be qualitatively explained C, $=-8,

by Egs.(14) and (15) of the mean-field propagator.
Neglecting the ternO(e 3%-) in Egs.(14) and(15) we  Which predictmy(right) = my(left) at s= —8 andm(right)

obtain # my(left) ats= —1 and— 16. This behavior is qualitatively
consistent with our data. However, the resolution of momen-
C+(A —C)le 2%, s=-1, tum at the current lattice size,= 24, is too coarse to see the
expected singularity oA at anegative sslice, since nu-
[GL(P)]ss= Ar> s=—16, (37  merically |C|>|(A_—C)e 2*-| for p;=0 and p,==/L
C, s=-8, with L=24. For example we have calculateg applying

the same analysis to the mean-field propagalt@s(p) lss
and[ Gg(p)]ss With a givenz ats=—1 andL=24. In Fig.
15 we have plottedn; as a function ofmy with z= 0.1
together with our data ah; in Fig. 12. Even if the singular-
. ity in A_ exists the sign of this cannot be seen both the
numerical simulation and the mean-field propagator at the
1.80 |- 1 two-dimensional lattice size~10.
Next we try to fitG, * andGr' at a givenmq using the
e | form of the mean-field propagator, Eq44) and(15), with
the fitting parametez. In Fig. 16 we have plotted obtained
by the fit as a function ofm, at s=0 on 24x32 and
140 | 1 322x 32 lattices, and the is almost independent ofi, or
o Right lattice sizes. This result shows that fermion propagators ob-
1s0 _ Sttt | tained by the numerical simulation are consistent with the
' ° form of the mean-field propagators with smzd0.1.
In summary our results ah; at both positives and nega-
1.00 : - s tive s planes favor more the existence of a chiral zero mode
0.60 0.70 0.80 0.90 1.00 . . . .
m, in the symmetric phase than the realization of the layered
phase orL?x 32 lattices withL =24 and 32. However, the
FIG. 14.m; vs m, at Bs=0.5 on 24x 32 lattices in the case of POssibility of it being in the layered phase is not denied. If
putting a source ors=—8. Open symbols stand for the right- we assume the form of the mean-field propagator, the value
handed fermion and solid symbols for the left-handed fermion. Thedf the corresponding is small, about 0.1, g8s=0.5, and
solid line corresponds tom. this may suggest that the identification tzat(V(n,s)), Eq.

m,vs m,

ps=0.5 , 24°x32 , 50 conf, s=-8
2.00 .

1.60
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mension. From this study we obtain the following results. In
the broken phase of the gauge field, there exists a critical
value of the domain-wall mass separating the region with a
chiral zero mode and the region without it. At a domain-wall
mass larger than its critical value a zero mode with one
chirality exists on the domain wall and a zero mode with
opposite chirality on the antidomain wall, and none in the
middle between the domain wall and the antidomain wall.
Although our data in the symmetric phase bfx 32 with
L=24 and 32 suggest the existence of zero modes at
my=0.99, the existence of zero modes in the symmetric
phase is not conclusive for very large This is because our

% data may well be explained by the mean-field propagator

zvs m0

Ps=0.5, L’x32, s=0, 50 conf
0.40 :

O Right(L=24)
o Left(L=24)
O Right(L=32)
® Left(L=32)
0.30

L < L B

0.20 -

-

010 | # , with a very smallz, less than 0.1, and this small may
d suggestz=(V(n,s)), which could be nonzero on the finite
# lattices. If so, the zero modes in the symmetric phase would
disappear and the layered phase would emerge in the infinite
9% .60 070 0.80 0.90 1.00 volume limit.
M, The existence of chiral zero modes in the symmetric
phase is essential for the original domain-wall model work-
FIG. 16. z vs my at B=0.5 on L*X32 lattices withL=24  ing as lattice chiral gauge theories. We will have to make a
(circles andL =32 (squarej in the case of putting a source on the definite conclusion on this point. However, in+2 dimen-
domain walls=0. Open symbols stand for the right-handed ferm-sjons, it seems very difficult to prove or disprove the exist-
ion and solid symbols for the left-handed fermion. ence of zero modes in the symmetric phase since it requires
a very largeL. Instead of investigating the model in+2L
(22), may be correct. If so, the layered phase will emerge irgimensions at large, for exampleL =512 or 1024, we are
fails to describe lattice chiral gauge theories in the symmetrigy(1) or SU(N) gauge fields in thgg=c limit. Such models
phase. Unfortunately, since our data do not change veny, the = limit have a phase transition characterized by an
much fromL =24 to 32 and in the infinite volume there does grger parameter, a vacuum expectation value of the link vari-
not exist an order parameter due to reducing theyples in the extra dimension. We hope that the finite size
(2+1)-dimensional 1) gauge system to the two- gcaling study in the model can lead to a definite conclusion
dimensional W1) spin model, so far we cannot conclude gp the existence of zero modes in the symmetric phase.
what will be the fate of chiral zero modes in the infinite
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