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We adapt a general method to solve both the full and reduced Salpeter equations and system- 
atically explore the conditions under which these two equations give equivalent results in meson 
dynamics. The effects of constituent mass, angular momentum state, type of interactions, and the 
nature of confinement are all considered in an effort to clearly delineate the range of validity of the 
reduced Salpeter approximations. We find that for J # 0 the solutions are strikingly similar for all 
constituent masses. For zero angular momentum states the full and reduced Salpeter equations give 
different results for a small quark mass, especially with a large additive constant coordinate space 
uotential. We also show that 1 corrections to heavy-light energy levels can be accurately computed 
with the reduced equation. 

PACS number(s): 12.39.Pn, 12.38.Aw, 12.39.Ki 
I. INTRODUCTION 

The instantaneous Bethe-Salpeter 
Salpeter equation [I], is by far the most 

equation, or 
commonly em- 

ployed relativistic wave equation in meson models with 
fermionic constituents. Until recently, almost all explicit 
calculations had used a simplified version known as the 
reduced Salpeter equation. The latter becomes identical 
to the full Salpeter equation if at least one of the con- 
stituent masses is infinite. 

The reduced Salpeter equation is of the standard 
eigenvalue- (Hermitian-)type whereas the full equation 
is not. Its solutions are thus algebraically and numeri- 
cally simpler than that of the full equation. For example, 

the reduced equation does not have negative energy so- 
lutions, nor does it have solutions with zero norm, both 
of which exist for the full Salpeter equation [2,3]. More 
importantly, the reduced equation has variationally sta- 
ble solutions for a wider range of kernel types than does 
the full equation [4,5]. For example, there are no vxi- 
ationally stable solutions to the full Salpeter equation 
corresponding to pure scalar confinement. The reduced 
Salpeter equation, on the other hand, has well-defined 

variationally stable solutions with scalar con&em&. 
Also, the reduced equation is equivalent to the “no-pair” 
equation [S] proposed to cure the “continuum dissocia- 
tion” problem in relativistic atomic physics. There are 
therefore historical, practical, and physical reasons for 
using the reduced equation. We outline here the condi- 
tions under which this can be done without sacrificing 
WCUKiCy. 

In the real world the constituent mass is never infinite, 
so one faces a quantitative question as to the practical 
region of validity of the reduced Salpeter equation. Our 
results here establish that for many purposes the reduced 
Salpeter equation is quite adequate and one can take ad- 
vantage. An analysis involving heavy-light mesons with 
c or b quarks, or b6, CE, or ss onia states, does not incur 

serious error by using the reduced Salpeter equation. It is 
only for J = 0 states and with small quark masses where 
there can be significant differences between the full and 

reduced Salpeter solutions. Dynamical models involving 
light pseudoscalar states, such as the ?r, II, or K mesons, 

can lead to serious errors if the full Salpeter equation is 
not used. 

Our analysis draws heavily upon previous work [5] in 
which we have adopted Lag&% method [2] to investi- 
gate the nature of full Salpeter solutions. Our principal 
conclusion was that the only linearly confining potential 
which yields linear Regge trajectories and has variation- 

ally stable solutions is a time component Lorentz vector. 
This confirms previous work done for the equal mass case 

[4,71. 
In the present work we use the fact that stable solu- 

tions exist for the time component vector coniinement in 
order to estimate the range of applicability of the reduced 
Salpeter equation. The desirable properties of the time 
component vector potential in the Salpeter equation does 
not mean that it should be used as a coni?ne.ment poten- 

tial, since it yields wrong sign of the spin-orbit interac- 
tion, disagreeing both with QCD and the experiment. 
We also compare solutions to the full equation and its 
reduced version for an equal mixture of scalar and time 
component vector confmement. This type of mixed con- 
fining kernel has been recently used in Ref. [3] for the in- 
vestigation of weak decays of heavy mesons. The vector 
confinement stabilizes the scalarconfining part up to the 
case of equal mixtures. Phenomenologically, the scalar 
confining part is necessary to reduce the P-wave spin- 
orbit splitting. For this mixed confinement case we also 
explicitly demonstrate that the reduced Salpeter equa, 
tion is adequate for the investigation of the heavy-light 
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12 VALIDITY OF THE REDUCED SALPETER EQUATION 505 
systems, such as D and B mesons, as well as for heavy 
onia. We also examine the extent to which 5 corrections 
to heavy-light systems depend on which wave equation 
is used. We find that the difference is negligible even for 

D mesons. 
In Sec. II we adapt Lagag’s formalism [2] to the reduced 

Salpeter equation. Our numerical results are contained in 
Sec. III where we compare the full and reduced Salpeter 
solutions for both onia and heavy-light mesons. Our con- 
clusions are summarized in Sec. IV. In the Appendix we 
provide the complete reduced Salpeter radial equations 

for the three Lorentz-type kernels: 7’ @ y” [time compo- 
nent vector], 1 @ 1 [scalar], and yp @ yP [full vector]. 

II. REDUCED SALPETER EQUATION 

Recently Lag&! has proposed an elegant formalism [2] 
for the reduction of the full Salpeter equation to a sys- 
tem of equations involving only radial wave functions. 
One of the nice things about his method is that the tran- 
sition from full to reduced Salpeter equations can be ac- 
complished easily. In this section we briefly sketch the 
main points of this formalism as adapted to the reduced 
Salpeter equation. 

We start from the Salpeter equation for a fermion- 
antifermion system in the an. frame of the bound state: 

h$(k)-y”(V(k,k’)@(k’)]+‘A:(-k) 

M-El -Es 

Al(k)7’[V(k,k’)~(k’)lr”AS(-k) 

M+El+Ez I 

(1) 

Here, A$‘s are the usual energy projection operators, 

given by 

A: = Ed’4 * Wk) 
2E;(k) ’ 

with B+ being the generalized Dirac Hamiltonians, 

H;(k) = A;(k)a G + B<(k)@ , (3) 

and Ed(k) = A;(k)2 + Bi(k)“. Again, we will consider 

constituent quarks of masses mi so that 

A<(k) = k , (4) 

B+(k) = rn; , (5) 

Ei(k) = ,/G. (6) 

The formal product of V+ in Eq. (1) represents the sum 
of scalar potentials Vi and bilinear covariants: 

V(k, k’)@(k’) + c K(k, k’)G@(k’)G< , (7) 
i 

where the G;‘s are Dirac matrices. 
The reduced Salpeter equation is obtained by dropping 

the second term from (l), and this is usually justified for 
heavy-quark systems on the grounds that 
The resulting equation 

M@(k) = (EI + E@(k) 

+ 
s 

~A:(k)y’[V(k,k’)~(k’)]r’AZ(-k) , 

(9) 

is a standard eigenv+e equation, and it has been used 
in a number of studies of relativistic bound states [&lo]. 

In order to apply Lag&% formalism [2] to the reduced 
Salpeter equation, we multiply (9) by 7O, and define 

x(k) = Who , 00) 

I-i = y”Gi , (11) 

so that (9) becomes 

where notation f = f(k), f’ = f(k’) is employed. V;(k- 
k’) has the Fourier transform V(T) in the case of Lorentz 

vector kernel, and -V(T) in the case of Lorentz scalar 
kernel. 

Using properties of projection operators, it can be eas- 
ily shown that the full Salpeter amplitude satisfies 

For the reduced equation, this constraint breaks into two 
parts: 

f&x=&x > (14) 

xH, = -E,x (15) 

Taking these constraints into account, the norm of the 
reduced Salpeter amplitude (11-13) can be written a 

and is related to the normalization of bound states as 

llxl12 = &BIB) (17) 

Using (12) inside of (16), one obtains 

MIIxl12 = / &PI + &I Wx’xl 

xTr[xtrix’ri] (18) 
This equation will be used for obtaining radial equations 
from the variational principle as outlined in (21. It is 
interesting to note that it has the same form for both 
full and reduced Salpeter equations. 

Now, in the case of the full Salpeter equation, one ex- 
pands the amplitude as 
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X=cCo+cCiPi+~~~u+f~~PiO, (19) 
with 16 Hermitian matrices whose squares are unity 
(l,pi, o,pia) defined in 121. Using this decomposition, 
it is easily seen that constraint (13) can be satisfied by 
expressing the 16 components of x (L’s and ws) in terms 
of eight functions (LI, Lz, NI, Nz). The correct form for 
L’s and A& is given in [5]. For the reduced Salpeter 
equation, both constraints (14) and (15) can be simulta- 

neously satisfied if LI = Lz q L and NI = Nz q N. 
Following [13], we obtain the radial equations by ex- 

pressing L and N in terms of spherical harmonics and 
vector spherical harmonics [14], so that 

L(k) = W+JM(~) > (20) 

N(k) = iV-(k)Y-(1;) + N&Y&) + N+(k)Y+(ir) , 

(21) 

where Y-. Yn. and Y+ stand for Y.,J-~M, YJJM, and 
ely. We also introduce functions ‘I+ 

-. 
YJJ+~M, respective 
and TL, defined as 

[I [ n+ = !Jv n- -“P 1 
with 

l--r 
T . 

Jtl 
ti= 

v 
- v = +- 
2.J+1’ 2Jfl 

(23) 

N+ [I N- ' c-9 

Using these definitions inside expressions for the L’s and 
A& as given in [5], together with properties of spheri- 
cal and vector spherical harmonics, Eq. (18) can be ex- 
pressed in terms of radial wave functions only. Then by 
taking variations with respect to L*(k), N;(k), n;(k), 
and n?(k), as explained in [2], one obtains the set of 
coupled equations for the radial wave functions of the 
reduced Salpeter amplitude. We summariie these equa- 
tions in the Appendix for the kernels 7’%7’, 1@ 1, and 

7’ @ 7P. 

III. NUMERICAL RESULTS 

As outlined in Appendix B of [5], one can solve the sys- 
tem of radial equations by expanding the wave functions 
in terms of a complete set of basis states, which depend 
on a variational parameter 0, and then truncating the 
expansion to a finite number of basis states. In tbis way, 

a set of coupled radial equations can be transformed into 
a matrix equation, ‘?L$J = M$. The eigenvalues M of 
the matrix 31 will depend on 0, and by looking for the 
extrema of M(P), one can find the bound state energies. 
If the calculation is stable, increasing the number of basis 

states used will decrease the dependence of the eigenval- 

ues on p. Regions of 0 with the same eigenvalues should 
emerge and enlarge. For each of the results discussed 
in the remainder of this paper we have verified that this 

indeed occurs. 
A. Equal nmss ease with 7” @I 7” kernel 

In Fig. 1 we compare solutions of reduced and full 
Salpeter equations for equal mass systems with a pure 
time component vector confinement (V(T) = ar, a = 

0.2 GeV’]. We have varied the quark masses (ml = 
rn2 e rn) from 0 to 1 GeV, solved both equations for all 
J = 0, 1, and 2 states (which involve all S, P, and most 
D waves), and plotted the difference between state mass 

and rest mass of the two quarks. As one can see, the 
difference between the two solutions is noticeable only 
for Jpc = 0-+ and 0++ states, and then only for very 
small quark masses. For example, for zero quark masses 
the difference for the O-+ state is about 25 MeV, while 
already for quark masses of 0.3 GeV it is only 6 MeV. On 
the other hand, for the l-- state the difference between 
the two solutions is about 1 MeV even for zero quark 
masses. Another interesting thing to observe in Fig. 1 
is that for both equations and for zero quark mass we 

have degeneracy of 0-+ and 0++, l-- and l++, and also 
2++ and 2-- states. Tbis parity degeneracy can be eas- 
ily explained by referring to the radial equations for the 
full Salpeter equation given in Appendix A of [5]. In the 
limit where both masses go to zero, it can be easily seen 
that O-+ and O+‘+ equations are the same. Similarly, for 
J > 0 states the four radial equations for P = (-l)J and 
C = (-l)J (involving nl+, nz+, nl-, and nz-) decouple 
into two systems of two equations each. The first one 
(involving nl+ and nz+) is the same as the system de- 
scribing P = (-l)Jc’ and C = (-l)J+’ states, while the 
second one (involving nl- and ns-) is equivalent to the 
system describing P = (-l)=+’ and C = (-l)J states 
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FIG. 1. Equal mass comparison of the reduced (dashed 
lines) and full Salpeter (full lines) equations for the time com- 
ponent vector kernel with V(T) = av (a = 0.2 GeV*). The 
energies of all states with J = 0, 1, and 2 are shown as a 
function of the quark mass. We have used 15 basis states. 
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(and higher in energy, as can be seen in Fig. 1). The 
rn = 0 degeneracy is an example of the chiral symmetry 

of the vector potential and its Wigner-Weyl realization 
through parity doublets. 

In order to see the effects of the short range Coulomb 
potential, we have performed a similar analysis with 
V(T) = ar - F, using a = 0.2 GeV’ and n = 0.5. The 
results are shown in Fig. 2. Again, the difference between 
full and reduced Salpeter solutions is noticeable only for 
the Jpc = 0-+ and 0++ states. For the 0-C state, the 
difference is now about 35 MeV for rn1 = rn2 = rn = 0, 
and about 10 MeV for rn1 = nz2 = rn = 0.3 GeV. For the 
I-- state, the difference is only about 3 MeV for zero 
quark masses. 

Finally, in Fig. 3 we show the results of the same analy- 
sis as above, but this time including an additive constant, 
V(T) = ar + C - ; (a = 0.2 GeV’, C = -1.0 GeV, and 
K. = 0.5). One might expect that adding a constant to 
the potential would not change the difference between 
the two equations. However, as one can see from Fig. 3, 
it is not quite like that. Now the solutions to the’ full 
Salpeter equation for the Oe+ and O++ states are consid- 

erably lower in energy than the solutions to the reduced 
Salpeter equation. For the O-+ (lm-) state the differ- 
ence is about 106 MeV (7 MeV) with aero quark masses 
and about 3 MeV (1 MeV) with rn1 = rn2 = 1.0 GeV. 

The reason for tbis somewhat unexpected behavior is 
that a negative constant C added to the kernel of the full 
Salpeter equation lowers the eigenvalues by an amount 
larger than ICI, while for the reduced Salpeter equation 
it is exactly ICl. For example, adding C = -1.0 GeV 
to the potential V(T) = ar - F with a = 0.2 GeV’ and 
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FIG. 2. Equal mass comparison of solutions to the re- 
duced (dashed lines) and full Salpeter (full lines) equations 
for the time component vector kernel with V(r) = m - 4 
(a = 0.2 GeV’,& = 0.5). The energies of all states with 
J = 0, 1, and 2 are shown as a function of the quark mass. 
We have used 15 basis states. 
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FIG. 3. Equal mass comparison of the reduced (dashed 
lines) and full Salpeter (full lines) equations for the time com- 
ponent vector kernel with V(T) = ar + C - : (a = 0.2 GeV', 
C = -1.0 GeV, n = 0.5). The energies of all states with 
J = 0, 1, and 2 are shown as a function of the quark mass. 
We have used 15 basis states. 

n = 0.5, the lowest eigenvalue for the O-+ state (with 

zero quark masses) is lowered by about 1.0’72 GeV for 
the full Salpeter equation with a time component vector 
kernel. This effect is much less noticeable with larger 

quark masses, and higher J states, e.g., for the l-- state 
with zero quark masses and same a and n as before, the 
lowest eigenvalue was lowered by 1.004 GeV after adding 
C = -1.0 GeV. We also note that these numerical results 
were obtained with 25 basis states, so that dependence 
of the results on the variational parameter characterizing 
the basis states was negligible. 

In order to further explore the relationship between 
the full Salpeter equation and the reduced one, we have 
plotted the radial wave functions for the O-+ case and 

for V(T) = ar + C - : (a = 0.2 GeV’, C = -1.0 GeV, 
and K = 0.5). Just as a reminder, the reduced Salpeter 
equation for the pseudoscalar case has only one wave 
function (L), as opposed to two (L1 and Lz) in the full 
equation. Also, when the reduced Salpeter equation is 
valid, then LI and LZ are equal. As we can see from 
Fig. 4, for very small quark masses (rn1 = nZ = 0), 
the difference between LI and Lz is large, and the re- 
duced equation cannot replace the fu!.l one. However, 
with rni = rn2 = 1.0 GeV (Fig. 5), the reduced Salpeter 
result is much more closer to the full one. In these two 
figures we use a Cornell potential with an additive con- 
stant (a = 0.2 GeV’, C = -1.0 GeV, and n = 0.5). 

From this analysis, it is clear that the solutions of the 

reduced Salpeter equation are nearly the same as those 
of the full one for the description of the heavy-heavy (CE 
and 66) mesons, and a very good first approximation even 
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FIG. 4. Pseudoscalar (Jpc = O-+) radial wave functions 
in coordinate space for the reduced (L, dashed line) and full 
Salpeter equations (LI, lower full line, and Lz, upper full line), 
with time component vector kernel and V(r) = a? + C - 4 

(a = 0.2 GeV’, C = -1.0 GeV, n = 0.5). The quark masses 
were ml = ns = 0, and the calculation was done with 25 
basis states. 

for the s3 mtxms (with s quark mass of about 500 MeV). 
This justifies the assumption of Gara et al. [IO] that the 
reduced Salpeter equation could be used for the descrip- 
tion of 33 mesons. 

L,. Lz (ft4 

----------. L (reduced) 

0 2 4 6 8 
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FIG. 5. Pseudoscalar (J pc = Oe+) radial wave functions 
in coordinate space for the reduced (L, dashed line) and full 
Salpeter equations (LI, lower full line, and Lz, upper full line), 
with time component vector kernel and V(T) = a~ + C - e 
(a = 0.2 GeV’, C = -1.0 GeV, n = 0.5). The quark masses 
ml = rn2 = 1 GeV, and the calculation was done with 25 
basis states. 
B. Heavy-light case with r” By” kernel 

0 0.2 0.4 0.6 0.8 1 
m, [GeV] 

A similar analysis can be performed for the “heavy- 
light” systems. For V(T) = ar + C - f, with a = 

0.2 GeV’, C = -1.0 GeV, and K. = 0.5, we fixed the 
“light” quark mass at ml = 0, varied the “heavy” anti- 
quark mass rn2 tian 0 to 1 GeV, and solved both equa- 

tions for all J = 0, 1, and 2 states. The results are shown 
in Fig. 6. The degeneracy of states with the same J and 
different parity can be again explained easily by looking 
into the radial equations for the full Salpeter equation 
given in Appendix A of [5]. In the limit where ml + 0, 
41 + 0, and $ --t B, which makes equivalent the two sets 
of equations for different parities. As far as the differ- 
ence between the full and reduced Salpeter equations are 
concerned, it is again important only for J = 0 states. 

For example, for O- and O+ (l- and l+) it is only about 
7 MeV (1 MeV) at rn2 = 1.0 GeV. Figure 7 shows that 
for ml = 0, rn2 = 1 GeV, L is already a very good 
approximation to L1 and Lz. One also has to remember 
that with such a large negative constant the c quark mass 
must be considerably larger than 1.0 GeV in order to de- 
scribe D mesons. Given all this, we conclude that the 
reduced Salpeter equation is an excellent approximation 
to the full one for the description of D and B mesons. 

Although the time component vector interaction has 
many nice properties, it is flawed as a realistic quark 
confinement interaction. As pointed out earlier, it pre- 
dicts “parity doubling” of meson states in the limit of 
zero quark mass. For large quark masses this difficulty 
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2 0.6 

N 
$: 0.4 
% 

FIG. 6. Comparison for heavy-light mesons of the reduced 
(dashed lines) and full Salpeter (full lines) solutions for the 
time component vector kernel with V(r) = ar + C - ; (a = 

0.2 GeV’, C = -1.0 GeV, n = 0.5). The lighter quark mass 
was fixed at ml = 0, and we show the light degree of freedom 
energy M - rn2 as a function of rnz for the lowest angular 
momentum states Jp. We have used 15 basis states. 
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FIG. 7. Heavy-light pseudoscalar ( Jp = OK) radials wave 
functions in coordinate space for the reduced (L, dashed line) 
and full Salpeter equations (LI, lower full line, and Lz, upper 
full line), with time component vector kernel and V(r) = 
ar + C - 0 (a = 0.2 GeV’, C = -1.0 GeV, n = 0.5). The 
quark masses were ml = 0 and mx = 1 GeV. The calculation 
was done with 25 basis states. 

appears as the “wrong sign” spin-orbit interaction which 
conflicts both with the experiment and QCD. 

C. Mixed confinement potentials 

As already mentioned, recently a half-half mixture of 
the time component vector and scalar confinement has 
been proposed in Ref. [3], together with a one gluon ex- 
change kernel, for the investigation of weak decays of B 

and D mesons. In order to compare the full Salpeter 
equation with its reduced version in this type of model, 
we adopt the mixed confining kernel 

with 

K(T) = ar + c , (25) 

and for the short range potential we simply take 

where 

Vg(T) = -; . (27) 

A confinement mixture of this type has been shown to 
have a stable variational solution [5]. For the parame- 
ters of the potential we choose a = 0.2 GeV’, C = -1.0 
GeV, and n = 0.5. Computation of the equal nxw ase 
is shown in Fig. 8 (for the Oe+ and O++ states). As,one 
ca~l see, the differences between full and reduced Salpeter 
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FIG. 8. Equal mass comparison of the reduced (dashed 
lines) and full Salpeter (full lines) ground state O-+ and 
O++ energies. An equal mixture of the time component vex- 
tor and scalar confinement [V,(r) = ar + C], together with 
time component vector short range potential [Vg(r) = -f], 

was used. The potential parameters were a = 0.2 GeVa, C 
= -1.0 GeV, and n = 0.5. Fifteen basis states were used for 
calculation. Comparison with Fig. 3 shows the breaking of 
the parity degeneracy at rn = 0. 

solutions are only slightly different than in the case with 
a pure time component vector kernel. For the O-+ state 

and rn1 = rn2 = rn = 1.0 GeV the difference between 
the two equations is about 7 MeV. The heavy-light case 
calculation (for the same potential parameters) is shown 
in Fig. 9. The difference between the two solutions for 
the O- state, and for rn1 = 0 and rn2 = 1.0 GeV, is 
about 9 MeV. Therefore, we again conclude that the re- 
duced Salpeter equation is as good as the full Salpeter 
equation for the description of the CE and b6 mesons, a 

very good first approximation even for the ss‘ mesons, 
and would serve as well as the full Salpeter equation for 
the description of the heavy-light systems, such as D and 
B mesons. 

Of course, these results are dependent on parameters of 
the particular model. However, in our analysis we have 
used values for a and n that are typical in the hadron 
spectroscopy, and constant C that is perhaps slightly 
larger than usual. We have also restricted ourselves to 
constituent Massey that are smaller than the usually as- 
sumed c quark mass. Therefore, we feel that our main 

conclusions would not be drastically altered if a different 
set of realistic parameters was used. 

In order to illustrate this, we have chosen parameters of 

the potential to be as close as possible to the ones used 

in [3] (as given in their Table l), i.e., rn1 = 0.2 GeV, 
rn2 = 1.738 GeV, a = 0.335 GeV’, C = -1.027 GeV, 
and n = 0.521 (which corresponds to ~l.,~ = 0.391 in [3]), 
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FIG. 9. Heavy-light mixed confinement comparison of the 
reduced (dashed lines) and full Salpeter (full lines) ground 
state O- and O+ energies. An equal mixture of the time 
component vector and scalar confinement [V,(r) = ar + C], 

together with time component vector short range potential 
[VP(r) = -11, was used. The potential parameters were 
a = 0.2 GeV’, C = -1.0 GeV, and x = 0.5, while the lighter 
constituent mass was fixed at ml = 0. Fifteen basis states 
were used in the calculation. By comparing with Fig. 6 we 
observe the lifting of the parity degeneracy present in a pure 
time component vector interaction at rn = 0. 

and solved both equations for the O- and O+ states, with 
the kernel described by Eqs. (24-27). The differences 
between ground state energies were 5 MeV and 0 MeV, 
respectively, despite the large value of a. For the O- state, 
where the difference between the two solutions should be 
most obvious, we have plotted the radial wave functions 
in Fig. 10. As one can see, the reduced wave function is 
a very good approximation for the full wave functions. 

For the sake of simplicity, in the previous calculations 

we have used a short range potential with a fixed cou- 
pling constant, for which Mwota [12] has shown that 
most of the Salpeter amplitudes are divergent as T --t 0. 
If one uses a running coupling constant, this divergence 
is less pronounced, but still present. That is precisely the 
reason why the short range potential used in [3] was reg- 

ularized. In order to show the effects of regularization, 
instead of Eq. (27) we now take as in Ref. (31: 

The constants ag and bg are determined by the condition 

that Vs(~) and its derivative are continuous functions. 

The running coupling constant is parametrized exactly 
as in Ref. [3], with their value of ~0 = 0.507 GeV-‘, and 
the saturation value for the coupling constant aaat = 
0.391. The string tension and constant were again a = 
” 2 4 6 8 10 
i- [GeV’] 

FIG. 10. Pseudoscalar (Jp = O-) radial wave functions 
in coordinate space for the reduced (L, dashed line) and full 
Salpeter equations (L,, lower full line, and La, upper full 
line), with a half-half mixture of the time component vector 
and scalar confinement [Vc(r) = ar + C], together with time 
component vector short range potential [V,(r) = -f], The 
potential parameters were a = 0.335 GeV’, C = -1.027 GeV, 
and n = 0.521, while the quark masses were ml = 0.2 and 
mz = 1.738 GeV. The calculation was done with 25 basis 
states, and represents a model of Ref. [3], but with a singular 
short range potential. 

----------. L (reduced) 

0.335 GeV’ and C = -1.027 GeV, and quark mawas 
were ml = 0.2 GeV and rn2 = 1.738 GeV, as for the pre- 
vious calculation. Using these parameters, we have again 
solved both equations for the O- and O+ states. The dif- 
ferences between ground state energies were 3 MeV and 0 
MeV, respectively, showing that a regularized short range 
potential reduces the differences between the reduced and 
the full Salpeter equations. For the O- state, we have 
again plotted the radial wave functions in Fig. 11. As 
one can see, all wave functions are now finite at the ori- 
gin, and the reduced Salpeter wave function is an even 
better approximation to the full ones than it was before. 

We can also use this model to estimate the accuracy of 
$ recoil corrections to the heavy-light limit. &Fig. 12 
we show the difference between the O- ground states for 
a finite and an infinite heavy mass (mz) with a mass- 
less light quark (ml) in both cases. We see that these 
“recoil” corrections are quite important even for the b 

quark mesons where correction is nearly 40 MeV (at 
1 N 0.2 GeV-‘). On the other hand, the difference 
l%veen full and reduced Salpeter solutions is small. For 
a charmed meson (A N 0.66 GeV-‘) the difference is 

about 3.5 MeV, while for a meson with a b quark it is 

about 0.2 MeV. 
In Ref. [3] the mixed confinement (24) was used in part 

because the full Salpeter equation does not have stable 
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0 2 4 6 8 10 
I [GeV’] 

FIG. 11. Pseudoscalar ( Jp = OK) radial wave functions 
in coordinate space for the reduced (L, dashed line) and full 
Salpeter equations (LI, lower full line, and Lz, upper full 
line), with a half-half mixture of the time component vector 
and scalar confinement [V,(r) = ar + C], together with the 
regularized time component vector short range potential [as 
defined in Eq. (28) in the text]. The potential parameters were 
a = 0.335 GeV’, C = -1.027 GeV, asat = 0.391, and po = 
0.507 GeV-‘, while quark masses were ml = 0.2 and rn2 = 
1.738 GeV. The calculation was done with 25 basis states, and 
represents a model of Ref. [3], including a regulariaed short 
range potential. 
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FIG. 12. $ corrections to the heavy-light O- ground state 
energy as a function of & using the model of Ref. [3], with 
tight quark mass rn, = 0, and potential parameters the same 
as before. The correction ranges from about 40 MeV for the 
B meson to about 100 MeV for the D meson. The difference 
between the full and reduced solutions is 0.2 MeV and 3.5 
MeV for the B and D mesons, respectively. 

1 
solutions unless the scalar confinement part is equal or 
less than the time component vector part. We should 
note that the pure scalar confmement could have been 

used with the reduced Salpeter equation. 

IV. CONCLUSIONS 

The reduced Salpeter equation, also known as the no- 
pair equation, has long been used in dynamical models 
of mesons. It has also been long appreciated that it is 

an approximation to the full Salpeter equation and that 
the discarded portion only vanishes if at least one of the 
constituent masses is infinite. The reduced equation has 
nevertheless been used because it has the standard Her- 

mitian form. 
In this paper we have examined the conditions under 

which the reduced equation can be employed without sig- 
nificant loss in accuracy. The critical factors turn out to 
be constituent mass, Jp state, and the nature of the in- 
teraction. If the total quark mass exceeds about 1.0 GeV 
very little difference is found between the full and re- 
duced Salpeter solutions. Also, with the exception of the 
O- and O+ states, very little difference is found even at 
zero quark mass. Finally, even for 0* states and van- 
ishing quark mass, the differences between the full and 
reduced Salpeter solutions are small if there is no large 
constant in the coordinate space confining potential. 

There remain a number of hadronic states with light 

quark masses in which the full Salpeter equation must 
be used. Differences up to 100 MeV were found between 
pseudoscalar masses at zero quark mass for the two equa- 
tions. 

In OUT comparison between the full and reduced 
Salpeter solutions we have considered both energies and 
wave functions. As was the case with the energy eigen- 
values, we see large differences between the O- full and 
reduced wave functions for zero quark mass (see Fig. 4). 
The differences are largest at the origin, T = 0. As ob- 
served in subsequent figures, increasing the quark mass 
and considering higher states cams the reduced Salpeter 
wave functions to become more similar to the full ones. 
The difference between the two solutions is always most 
noticeable at the origin. 

We have primarily considered the time component 
vector kernel, since its solutions with the full Salpeter 
equation are variationally stable and yield normal linear 
Regge trajectories in the case of linear confinement [5]. 
Although the solutions with a time component vector 
potential have many desirable properties, a quark con- 
finement of this type has a spin-orbit interaction of the 
wrong sign. The addition of up to equal parts Lorentz 
scalar cotinement has been advocated recently [3] for 
the study of weak decays of heavy-light mesons. The 
variational stability is retained in this case and the re- 
duced Salpeter equation is shown to be accurate under 
similar conditions as in the pure time component vector 
case. The reduced equation has the additional advantage 
of variational stability with pure scalar conlinement. 
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APPENDIX: RADIAL EQUATIONS 

In this appendix we give the final form of the radial 
equations for the reduced Salpeter equation for the ker- 
nels 7’@7’, 181, and 7’@7,,. These equations represent 
a general case with a quark of mass ml and an antiquark 
of mass m2. However, one has to keep in mind that for 
.7 = 0 two wave functions vanish; i.e., we have No = 0, 
and n+ = 0. 

As in Refs. [5, Z] we have used the notatioq 

S,=sin+, C+=cos$, C-41) 

SO = sin@, Co = COSO, (A% 

with angles 4 and 0 defined as 

while 4;‘s are defined through 

(A3) 

(A4) 

Ai, Bi, and Ei are defined in Eqs. (4)-(6). 
In the equal mass case the equations given below some- 

what simplify, since one has E1 = Ez, q5 = & = &, 
and 0 = 0, so that So = 0 and Co = 1. Also, since 
charge conjugation is a good quantum number in the 
equal mass case, the two P = (-l)J+’ state equations 
decouple into two separate equations, one corresponding 
to C = (-l)J (involving L), and the other corresponding 
to C = (-l)=+l (involving No). 

The heavy-light limit (rn2 + co) is obtained by setting 
Ez --t m~, r$z + ;, so that S, + C, and C, + S,. 
As expected, in the heavy-light limit equations for the 
7’ @ 7’ and 7’ @ 7u kernels are the same. Also, in this 
case spin of the heavy quark decouples from the spin of 
the light quark, so that total angular momentum j of the 

light quark becomes a good quantum number. Inverting 

Eq. (2% 

N+=pn+-vn-, (A5) 

N-=vn++pn-, 

and also putting 

W) 

L+=vL-pNo, (A7) 

Lm=pL+vNo, 648) 

from the heavy-light limit equations in terms of n+, n-, 
No, and L, one can obtain decoupled equations in terms 
of N+, N-, L+, and L-, describing heavy-light states 
with quantum number j. There will always be a pair of 
degenerate states, described with N- and L+ (J = L + 1 
and J = L, for the state withj = L+ i), and N+ and L- 

(J=L-landJ=L,forthestatewithwithj=L-i). 
For any mixture of different kernels, only the kernel 

parts of the radial equations should be added. The ki- 
netic energy terms are always the same. In the 1 @ 1 
case, we have introduced an additional minus sign in the 
kernel, so that V(T) has the same form for all three cases 
considered, e.g., for the Cornell potential V(T) = ar - F. 
1. y” By0 kernel 

States with parity P = (-I)‘+‘: 

ML=[El+Ez]L+i 2 
J 

Om g+vJc~Lr + S,VJ‘!$L’ + s&iw-* + v2vJ+l)s;L’ 

+%‘2v~-~ + “2v~+dc;L’ + P’S,(VJ-, - VJ+I)C;N; + ~~C&‘J-I - VJ+#;N;] , 

MNo = [EI + EzJN,, + 1 2 
J 

o(a $c,W;N; + S+V,S$‘; + C&h-, + $VJ+I)C$N; 

+sd~2V~-~ + &‘J+$%% + /~&(VJ-, - VJ++;L’ + p&~(v~-~ - v~+~)c$L’] 

States with parity P = (-l)J: 

(Ag) 
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2. 1@ 1 kernel 

States with parity P = (-l)J+l: 

ML=[E,+&]Ld 2 
s 

Om ~[Cdw~L~ + S,VJS$L’ - s&vJ-, + vwJ+&9;L’ 

-%‘2v~-~ + “‘VJ+I)+ - ~~%(VJ-I - VJ+I)C$,N; - jwC,(V,-, - VJ+&7;N;] , 

MNo=[E, +Ez]No+ 1 2 om~[Cev~~~N~+~~~J~~~~-c~(VZv~_l+~~v~+I)c~~~ 
J 

-w~2vJ-l +P2vJ+I)sx -!JvC+(VJ-I- vJ+&s~L'-p"s.4(vJ-1 - vJ+#;L’] 

States with parity P = (-I)~: 

1 
Mn+ = [EI + Ez]n+ + z 

J 
Om g+,vJc$n; - ssv&n; + s+(v”vJ-1 + /AvJ+l)s&; 

+ceVvJ-1 + P”vJ+l)ch: + PVS#J-1 - vJ+l)C;nl+ pvce(vJ.4 - V,+,)S@J ) 

(All) 

GW 

States with parity P = (-l)=+‘: 

3. y” 123 7,. kernel 

ML=[EI +Ez]L+ 
s 

Om ~[2CBVJC~L~ - S&S$L 

+SS(P~~J-, +~'VJ+~)S~L'+ILVSB(VJ-~ - VJ+&$N;] , c.413) 

MNo=[& +&]No+ 
J 
Om $$[WC$% +C&'VJ-I +&'J+I)C;N; -tpvC,(V,-, - VJ++;L'] . 
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114) For the extensive discussion of generic wave functions 

and identification of the quantum numbers of the bound 
states the reader is again referred to [2]. 


	I. INTRODUCTION
	II. REDUCED SALPETER EQUATION
	III. NUMERICAL RESULTS
	IV. CONCLUSIONS
	ACKNOWLEDGMENTS
	APPENDIX: RADIAL EQUATIONS

