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General treatment of t semileptonic decays by polarized-partial-width measurements
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The most general Lorentz-invariant spin-correlation functions fort2→r2n, a 1
2n, K*2n, p2n, K2n are

expressed in terms of eight semileptonic parameters. The parameters are physically defined in terms oft-decay
partial-width intensities for polarized final states. The parameters are also expressed in terms of a ‘‘(V2A) 1
additional chiral coupling’’ structure in theJlepton

chargedcurrent, so as to bound effective-mass scalesL for ‘‘new
physics’’ such as arising from lepton compositeness, leptonicCP violation, leptonicT violation, t weak
magnetism, weak electricity, and/or second-class currents. The two tests for leptonicCP violation in t→rn
decay are generalized tot→a1n decay and to two additional tests if there arenR and n̄L couplings. For
107~t2,t1! pairs at 10 GeV, from the$r2,r1% mode and using the four-variable distributionI 4 , the ideal
statistical percentage errors are, forj, 0.6%, forz, 0.7%, fors, 1.3%, and forv, 0.6%.CP tests are typically
A2 worse. Parameters sensitive to leptonicT violation arev, and the following from the$a 1

2 ,a 1
1% mode: using

I 5
2 the errors are, forh, 0.6%; usingI 7 , for h8, 0.013; and usingI 7

2, for v8, 0.002. In the future, by stage-two
spin-correlation techniques, polarized-partial-width measurements should be useful in studying top quark,W6,
Z0, and Higgs boson decays.@S0556-2821~96!05509-9#

PACS number~s!: 13.35.Dx, 11.30.Er, 14.60.Fg
e
p-

es
I. INTRODUCTION

The principal purpose of this paper is to provide a gene
treatment of two-bodyt decays@1# which only assumes Lor-
entz invariance and exploits the treelike structure of t
dominant contributions to thet2t1 production-decay se-
quence. In particular,CP invariance and a mixed (V7A)
structure of thet charged current is not assumed. For in
stance, we introduce eight parameters to describe the m
general spin-correlation function for the decay sequen
Z0,g*→t2t1→~r2n!~r1n̄! followed byrch→tchp0 including
both nL ,nR helicities and bothn̄R ,n̄L helicities. Thus, by
including the r polarimetry information that is available
from therch→pchp0 decay distribution, the polarized partia
widths for t2→r2n are directly measurable. Dependin
principally on the absence of other interfering decay mod
direct measurements of polarized partial widths and of t
associated ‘‘longitude-transverse’’ interference intensiti
should also be possible in top quark decays, inW6 andZ0

boson decays, and in Higgs meson decays.
The eight t semileptonic decay parameters fo

t2→r2n, . . . , aredefined for the four polarizedrL,TnL,R
final states: The first parameter is simplyG[G L

11G T
1 , i.e.,

the full partial width fort2→r2n. The second is the chirality
parameterj[(G L

21G T
2)/G. Equivalently, j[~Prob nt is

nL!2~Probnt is nR!, or

j[u^nLunt&u22u^nRunt&u2. ~1!

So a valuej51 means the couplednt is purenL . nL (nR)
means the emitted neutrino has left- (L-)handed~R-handed!
polarization. For the special case of a mixture of onlyV and
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A couplings andmnt
50, j→(ugLu

22ugRu2)/(ugLu
21ugRu2)

and the ‘‘stage-one spin correlation’’ parameterz→j; see
below.

The subscripts on theG’s denote the polarization of the
final r2, either ‘‘L5longitudinal’’ or ‘‘T5transverse;’’ su-
perscripts denote ‘‘6 for sum/difference of thenL versusnR
contributions.’’ Such final-state-polarized partial widths ar
physical observables and, indeed, the equivalent semile
tonic parametersj,z, . . . can bemeasured by various spin-
correlation techniques.

The remaining partial-width parameters are defined by

z[~GL
22GT

2!/~S rG!, s[~GL
12GT

1!/~S rG!. ~2!

To describe the interference between therL and rR ampli-
tudes, we define

v[IR
2 /~RrG!, h[IR

1 /~RrG!,

v8[I I
2/~RrG!, h8[I I

1/~RrG!, ~3!

where the measurableLT-interference intensities are

IR
6 5uA~0,2 1

2 !uuA~21,2 1
2 !ucosba

6uA~0,12 !uuA~1,12 !ucosba
R ,

I I
65uA~0,2 1

2 !uuA~21,2 1
2 !usin ba

6uA~0,12 !uuA~1,12 !usin ba
R . ~4!

Hereba[f 21
a 2f0

a , andb a
R[f 21

a 2f0
aR are the measur-

able phase differences of the associated helicity amplitud
A(lr ,ln)5uAuexp~if!.

The definition fors in Eq. ~2! implies thats̃[~Probr is
rL!2~Probr is rT!, where
5001 © 1996 The American Physical Society
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s̃5S rs,

is the analogue of the neutrino’s chirality parameter in E
~1!. Thus the parameters, or s̃, measures the degree o
polarization of the emittedr. The parameterz̃[S rz charac-
terizes the remaining odd-odd mixture of then and r spin
polarizations. The full partial-widthG characterizes the even
even mixture. Notice that we introduce ‘‘tilde’’ accents t
denote the relative-partial-width-intensity parameters whi
occur when the hadronic factorsS r , orRr , are factored out.
Similarly, we define ṽ[Rrv, ṽ8[Rrv8, h̃[Rrh,
h̃8[Rrh8.

In Sec. II, there is further discussion of these polariz
partial widths in the helicity formalism~in the Jacob-Wick
phase convention!.

Important remarks

~1! The numerical values of ‘‘j,z,s,...’’ are very distinct
for different unique Lorentz couplings; see Tables I and I

~2! Primed parametersv8Þ0 and/orh8Þ0⇒T̃FS is vio-
lated ~see Sec. II below!.

~3! Barred parametersj̄,z̄, . . . have the analogous defini-
tions, see Sec. II, for theCP conjugate modes,
t1→r1n̄, . . . . Therefore, anyj̄Þj,z̄Þz, . . .⇒CP is vio-
lated. That is, ‘‘slashed parameters’’j”[j2j̄, . . . , could be
introduced to characterize and quantify the degree ofCP
violation.

~4! These same parameters appear in the general ang
distributions for the polarizedt2→r2n→~p2p0!n decay
chain,

dN

d~cosu1
t !d~cosũa!df̃a

5na@16facosu1
t #

7~1/A2!sinu1
tsin2ũaRr

3@v cosf̃a1h8sinf̃a#, ~5!

with upper ~lower! signs for aL-handed~R-handed! t2,
where

TABLE I. Comparison of parameters’ values for unique Loren
couplings: entries are forr2 ~a 1

2, if value differs!. Numerical val-
ues are to one digit. The first three parameters~j,z,s!, plus the full
partial width G~t2→r2n!, give the polarized-final-state partia
widths,G, for the fourrL,TnL,R final-state combinations. The latte
four parameters~v,h,v8,h8! give the completerL2rT interference
intensities,GLT .

V7A S6P fM1 f E f M2 f E

G’s
j 61 61 1 21
S rz 60.5~0! 61 20.8~20.6! 0.3
S rs 0.5~0! 1 20.8~20.6! 20.3
GLT’s
Rrv 60.4~60.5! 0 0.3~0.5! 20.2~20.7!
Rrh 0.4~0.5! 0 0.3~0.5! 0.2~0.7!
v8 0 0 0 0
h8 0 0 0 0
q.
f

-
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na5
1
8 ~31cos 2ũa1sS r@113 cos 2ũa# !,

nafa5
1
8 ~j@113 cos2ũa#1zS r@31cos2ũa# !. ~6!

Such formulas for the associated ‘‘stage-two spin
correlation’’ ~S2SC! functions in terms of these eight semi-
leptonic parameters are discussed below.

~5! The hadronic factorsS r andRr have been explicitly
inserted into the definitions of the semi-leptonic decay pa
rameters, so that qualities such asq r

25mr
2 can be smeared

over in application due to the finiter width. For ther mode
they are given by (m[mt)

S r5
122~mr

2/m2!

112~mr
2/m2!

, Rr5
A2~mr /m!

112~mr
2/m2!

. ~7!

We have introduced the important factorsS r andRr
because, guided by experiment, we are analyzing versus
referenceJlepton

chargedtheory consisting of ‘‘a mixture of onlyV
andA couplings withmn50.’’ For such a theory these had-
ronic factors have a simple physical interpretation: fo
t2→r L,T

2 n the factorS r5~ProbrL!2~ProbrT!, and the fac-
tor Rr5the ‘‘geometric mean of these probabilities’’5

A(ProbrL)(ProbrT). These factors are not independen
sinceS r

214Rr
251.

If experiments had suggested instead a different domina
Lorentz structure thanV2A, say ‘‘ f M1 f E , ’ ’ then per
Table II we would have replacedS r everywhere by
~221r2/t2!/~21r2/t2!, etc.

It is reasonable at present to perform a general analy
versus a ‘‘reference theory’’ consisting of ‘‘a mixture of only
V andA couplings withmn50’’: From experiments@1# by
the ALEPH, ARGUS, CLEO II, and OPAL Collaborations,
the leading contribution in thet’s Jlepton

chargedcurrent is consis-

tz

l
r

TABLE II. Analytic form of the semileptonic parameters for
unique Lorentz couplings: In this and following tables, the mas
ratios are denoted byr/t [mr/mt , etc.; for the other exclusivet
decay modes, such ast→a1n, simply replacer by a1 , S r by
S a1

, etc. We do not tabulatev8 andh8 becausev85h850 if either
~i! there is a unique Lorentz coupling,~ii ! there is no leptonicT
violation, and/or~iii ! there is a ‘‘V andA,mn50’’ masking mecha-
nism; see remark~5! in Sec. I.

V7A S6P fM1 f E f M2 f E

G’s

j 61 61 1 21

S rz 6S r 61 221(r2/t2)

21(r2/t2)

1
1
3

S rs S r 1 221(r2/t2)

21(r2/t2)

2
1
3

GLT’s

Rrv 6Rr 0 A2(r/t)
21(r2/t2)

2
A2r

3t

Rrh Rr 0 A2(r/t)
21(r2/t2)

A2r

3t
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53 5003GENERAL TREATMENT OFt SEMILEPTONIC DECAYS BY . . .
tent with (V2A) to better than the 5% level. For the nomina
107 event rates, we find that the S2SC functionI 4 is insen-
sitive, see Table I in Ref.@2#, tomn<23.1 GeV, the present
ALEPH bound.

In such a reference theory, each of the eight semilepto
parameters has a simple probabilistic significance
they are each directly proportional toG, j, S r , or
Rr : s̃[S rs→S r , h̃[Rrh→Rr , z→j, v→j. Note in this
reference theory,j5(ugLu

22ugRu2)/(ugLu
21ugRu2) and G

52mnqr(ugLu
21ugRu2)(21m t

2/mr
2) in units of the Appen-

dix.
Note in this reference theory, any leptonicT violation is

‘‘masked’’ sincev85h850 ~i.e.,ba5bb50! automatically.
This ‘‘V and A, mn50’’ masking mechanism could be a
least partially the cause for why leptonicT violation has not
been manifest in previous experiments even if it were n
suppressed in the fundamental Lagrangian.

~6! The ‘‘additional structure’’ due to additional Lorentz
couplings inJlepton

chargedcan show up experimentally because o
its interference with the (V2A) part which, we assume,
arises as predicted by the standard lepton model. Inclusion
the r polarimetry information that is available from the
rch→pchp0 decay distribution, generalizes the ‘‘stage-on
spin-correlation’’ ~S1SC! function @3,4# I (Er , EB̄). Since
this adds on spin-correlation information from the next sta
of decays in the decay sequence, we call such an ene
angular distribution a ‘‘stage-two spin-correlation’’~S2SC!
function@5#.

The simplest useful S2SC isI 45I (Er ,Er̄ ,ũ1 ,ũ2). The
kinematic variables inI 4 are the usual ‘‘spherical’’ ones
which naturally appear in the helicity formalism in describ
ing such a decay sequence. The first stage of the decay
quencet2,t1→~r2nt!~r

1n̄t! is described by the three vari-
ablesu1

t , u2
t , cosf, wheref is the opening/ between the

two decay planes. These are equivalent to theZ0, or g*
center-of-mass variables,Er , Er̄ , cosc. Herec5‘‘opening
/ between ther2 and r1 momenta in theZ/g* c.m.’’.
When the Lorentz ‘‘boost’’ to one of ther rest frames is
directly from theZ/g* c.m. frame, the second stage of th
decay sequence is described by the usual two spher
angles for thepch momentum direction in thatr rest frame:
u˜1, f̃1 for r1

2→p1
2p1

0, and ũ2,f̃2 for r2
1→p2

1p2
0. ~See fig-

ures in Ref.@5#.! Similarly, a1 polarimetry information can
be included from thet2→a 1

2n→~p2p2p1!n,~p0p0p2!n
decay modes.

~7! In addition to model independence, a major open iss
is whether or not there is an additional chiral coupling in th
t’s charged current. A chiral classification of additiona
structure is a natural phenomenological extension of t
symmetries of the standard SU(2)L3U~1! electroweak lep-
ton model. The requirement ofū(pn)→ū(pn)

1
2~11g5! and/or

u(kt)→ 1
2~12g5!u(kt) invariance of the vector and axial cur

rent matrix elementŝnuvm(0)ut& and ^nuam(0)ut&, allows
only gL , gS1P , gS21P2,g15 f M1 f E , and g̃15T11T 5

1

couplings. From this SU(2)L perspective, the relevant ex
perimental question is what are the best current limits
such additional couplings? Similarly,ū(pn)→ū(pn)
1
2~12g5! and/or u(kt)→ 1

2~11g5! u(kt) invariance selects
the complimentary set ofgR , gS2P , gS22P2,g25 f M2 f E ,
and g̃25T12T 5

1 couplings. The absence of SU(2)R cou-
plings is simply built into the standard model; it is not pre
l
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dicted by it. So, what are the best current limits on suc
SU(2)R couplings int physics?

~8! In a separate paper@6#, it has been reported that
Lorentz-structure effective-mass scales ofL i'few 100 GeV
for real coupling constantsgi ( i5V1A,S6P, f M6 f E ,...)
can be probed usingI 4 at MZ center-of-mass energy in un-
polarizede2e1 collisions. Lorentz-structure scales of 1–2
TeV can be probed usingI 4 at 10 or 4 GeV. Such scales
would arise because of a fundamental additional chiral co
pling or be induced as a consequence oft lepton composite-
ness.

For pure imaginary couplings, the statistical error limits
obtained in the present paper for the leptonicT violation
parametersv,h,v8,h8 show that there will be significant im-
provement by use ofI 5 , I 5

2, and/orI 7
2 versus the Ref.@6#

results which usedI 4 and gave limits of (L i)
2>~30 GeV!2

for pure imaginary couplings.
In Sec. III, as a step towards a precision answer to th

question of additional Lorentz structures, the semilepton
parameters are expressed in terms of a ‘‘(V2A) 1 addi-
tional chiral coupling’’ structure in theJlepton

charged current@6#.
Two tables display the resulting values of the paramete
when the various additional chiral couplings (gi /2L i) are
small relative to the standardV2A coupling (gL).

Section IV gives the most general Lorentz-invariant spin
correlation functions fore2e1→t2t1 followed by t→
rn, a1n, K* n including bothnL,R helicities and bothn̄R,L
helicities. Since these same parameters appear in Eq.~5!,
they could someday be measured by means of longitudina
polarized beams at at-charm factory or at aB factory with
longitudinally polarized beams. At the end of Sec. IV severa
independent tests for leptonicT violation are proposed.

In Sec. V, the two tests for leptonicCP violation in t→rn
decay@5# are generalized tot→a1n decay and to two addi-
tional tests if there arenR and n̄L couplings@7#.

Section VI treatst2→p2n, K2n decay. These modes@6#
each generally provide less information since here only tw
of the semileptonic parameters can be measured. But fro
thep mode there is good separation~.127 GeV from CLEO
II data! of V2A from a T11T 5

1 coupling, whereas these
couplings cannot be separated in ther anda1 modes. There
is also direct measurement of the chirality parameterjp , i.e.,
of the probability that the emittednt is L handed. Unfortu-
nately, the fundamentalS2 andP2 couplings which do not
contribute tot→rn,a1n,K* n are found to be suppressed in
t2→p2n,K2n decay.

Section VII contains several tables giving the associate
ideal statistical errors for measurement of these semilepton
parameters based on S2SC functions at 10 GeV, 4 GeV, a
atMZ .

In conclusion Section VIII contains some additional re
marks.

In the Appendix we list theA(lr ,ln) helicity amplitudes
for t2→r2n for the most generalJlepton

chargedcurrent.

II. PARAMETRIZATION OF t SEMILEPTONIC
DECAY MODES

The reader should be aware that it is not necessary to u
the helicity formalism@8# because the parameters are funda
mentally defined in terms oft decay partial width intensities
for polarized final states. However, the helicity formalism
does provide a lucid, neat, and flexible framework for con
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necting Lorentz-invariant couplings at the Lagrangian lev
with Lorentz-invariant spin-correlation functions. In practice
the helicity formalism also frequently provides insights an
checks on the resulting formulas and their symmetries. W
present the discussion for thern channel, but the same for-
mulas hold for thea1n andK* n channels. See Sec. VI for
thepn andKn channels.

In the t2 rest frame, the matrix element fort2→r2n is

^u1
t ,f1

t ,lr ,lnu 12 ,l1&5Dl1,m
~1/2!* ~f1

t ,u1
t ,0!A~lr ,ln!, ~8!

where m5lr2ln and l1 is the t2 helicity. For theCP-
conjugate process,t1→r1n̄→~p1p0!n̄, in thet1 rest frame,

^u2
t ,f2

t ,l r̄ ,l n̄ u 12 ,l2&5Dl2,m̄
~1/2!* ~f2

t ,u2
t ,0!B~l r̄ ,l n̄ !, ~9!

with m̄5lr̄2ln̄ .
These formulas only assume Lorentz invariance and

not assume any discrete symmetry properties. Therefore,
easy to use this framework for testing for the consequen
of such additional symmetries. In particular, fort2→r2n
andt1→r1n̄ a specific discrete symmetry implies a specifi
relation among the associated helicity amplitudes:

P A~2lr ,2ln!5A~lr ,ln!,

B~2l r̄ ,2l n̄ !5B~l r̄ ,l n̄ !,

C B~l r̄ ,l n̄ !5A~l r̄ ,l n̄ !,

CP B~l r̄ ,l n̄ !5A~2l r̄ ,2l n̄ !,

T̃FS A* ~lr ,ln!5A~lr ,ln!,

B* ~l r̄ ,l n̄ !5B~l r̄ ,l n̄ !,

CPT̃FS B* ~l r̄ ,l n̄ !5A~2l r̄ ,2l n̄ !.

Measurement of a nonreal helicity amplitude implies a vi
lation of T̃FS invariance when a first-order perturbation in a
‘‘effective’’ Hermitian Hamiltonian is reliable. SoT̃FS in-
variance is expected to be violated when there are signific
final-state interactions.T̃FS invariance is to be distinguished
from canonicalT invariance which requires interchangin
‘‘final’’ and ‘‘initial’’ states. Actual time-reversed reactions
are required for a direct test ofT invariance.

A. Remarks on definitions by partial-width intensities
for polarized final states

The t semileptonic decay parameters fort2→r2n, and
likewise for t2→a1

2n and t2→K* n, are defined above in
the Introduction. The helicity formalism is useful so as to b
clear about the terminology and sign conventions@8#. For
t2→r2n decay, in terms of the helicity amplitude
A(lr ,ln) the final-state-polarized partial widths are

GL
65uA~0,2 1

2 !u26uA~0,12 !u2,

GT
65uA~21,2 1

2 !u26uA~1,12 !u2. ~10!

Recall @5# that by rotational invariance theA~1,2 1
2!

5A~21,12!50; similarly for the r1 mode in t1 decay,
B~1,2 1

2!5B~21, 1
2!50.
el
,
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To describe the contributions from the interference be
tween the longitudinal (L) and transverse (T) vector-meson
amplitudes in the decay process, we introduce the four ad
tional parameters~v,h,v8,h8!. These depend on the measur
ableLT-interference intensities:

IR
6 5Re$A~0,2 1

2 !*A~21,2 1
2 !6A~0,12 !*A~1,12 !%

5uA~0,2 1
2 !uuA~21,2 1

2 !ucosba

6uA~0,12 !uuA~1,12 !ucosba
R , ~11!

I I
65Im$A~0,2 1

2 !*A~21,2 1
2 !6A~0,12 !*A~1,12 !%

5uA~0,2 1
2 !uuA~21,2 1

2 !usinba

6uA~0,12 !uuA~1,12 !usinba
R , ~12!

where ba[f 21
a 2f 0

a , b a
R[f 1

a2f 0
aR are the measurable

phase differences of the associated helicity amplitud
A5uAuexp~if!.

For theCP conjugate modes,t1→r1n̄ andt1→a1
1n̄, the

definitions for their semileptonic decay parameters are th
same except that all quantities are ‘‘barred,’’ and there is th
substitution of helicity amplitudesA(x,y)→B(2x,2y).
For instance, j̄5~Prob n̄t is n̄R!2~Prob n̄t is n̄L!
5(Ḡ L

21Ḡ T
2)/Ḡ, and

v̄5$uB~0,12 !uuB~1,12 !ucosbb

2uB~0,2 1
2 !uuB~21,2 1

2 !ucosbb
L%/~RrḠ!,

where Ḡ L
65uB(0,12 )u26uB(0,2 1

2 )u2, Ḡ T
65uB(1,12 )u2

6uB(21,2 1
2 )u2.

Depending on the experimental situation, and/or the ne
physics under investigation it may sometimes be advant
geous to rewrite the spin-correlation function~s! of interest
directly in terms of the above final-state-polarized partia
widths andLT-interference intensities, instead of using the
abovet semileptonic decay parameters. Likewise, in appl
cations to top quark,W6, Z0, Higgs boson, etc., decays the
polarized partial widths themselves may be the most use
and fundamental quantities.

Note that the trigonometric structure of Eqs.~11! and~12!
implies the two constraints

~ h̃6ṽ !21~ h̃86ṽ8!25
1

4
@~16j!22~ s̃6 z̃ !2# ~13!

or

2uh86v8u5A~16j!22~ s̃6 z̃ !224~ h̃6ṽ !2

among theh,h8,v,v8 parameters which test for leptonicT
violation. Consistency, i.e., unitarity, requires the argume
of the square root must be non-negative. Equivalently, the
are the two right-triangle relations

~ I
R

nL!21~ I
I

nL!25GL
nLGT

nL,

~ I
R

nR!21~ I
I

nR!25GL
nRGT

nR
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in terms of the algebraically convenient

I
R

nL ,nR[
1

2
~ IR

1 6IR
2 !5UAS 0,71

2D UUAS 71,7
1

2D Ucosba
L,R

5
G

2
~ h̃6ṽ !,

I
I

nL ,nR[
1

2
~ I I

16I I
2!5UAS 0,71

2D UUAS 71,7
1

2D Usinba
L,R

5
G

2
~ h̃86ṽ8!,

GL
nL ,nR[

1

2
~ I L

16I L
2!5UAS 0,71

2D U
2

5
G

4
~11s̃6j6 z̃ !,

GT
nL ,nR[

1

2
~ I T

16I T
2!5UAS 71,7

1

2D U
2

5
G

4
~12s̃6j7 z̃ !,

with b a
L5ba ~we normally suppress suchL superscripts!. If

there are only nL couplings, I
R

nR5I
I

nR5GL
nR5GT

nR50;
equivalentlyh5v, h85v8, j51, z5s.

Since all partial widths must be positive, there implicit
are obvious inequalities among these semileptonic par
eters which could be used empirically for analysis of syste
atic effects and in making cuts on thet2→r2n→~p2p0!n
data set. For example, there can be contamination fr
a1→p22p0 where onep0 is missed, from particle misiden
tification, or from interference between thep0’s from r2 and
r1 decays which has not been included in these S2SC fu
tions.

The hadronic factorsS r andRr do depend on the par
ticular t semileptonic decay channel. For thea1 ,K* modes,
replace respectivelymr→ma1

,mK* . The treatment in this pa-
per assumes that the momentum dependence~i.e., the depen-
dence onqr

2, etc.! of the form factorsgL andgi is negligible.
Depending on the application and on the desired experim
tal test, more sophisticated treatments of theqr

2 etc. depen-
dence could be used such as ones which incorporate re
from recent QCD calculations fort decays@9# and ones
which include possible contributions from additional res
nances such as ther8. Because of the smearing and the co
tinually improving understanding of QCD methods int
physics, we do not expect this to be a fundamental difficu
in practice, but rather a technical matter that requires su
cient care.

These factors numerically are~S ,R! r,a1 ,K*50.454,
0.445; 20.015, 0.500; 0.330, 0.472. Because of the fin
a1 width, Ga1

;400 MeV, theS a1
factor vanishes in the

interval (ma1
6G/2! at the pointqa1

2 5mt
2/25~1.257 GeV!2.

So for a1, in applying spin correlation distributions, tild
functions j̃(q2)5S a1

j and s̃(q2)5S a1
s should be con-

structed ~e.g., using Table II!, convoluted with the Breit-
Wigner resonance~s!, and then fit to determine if more than
V2A coupling is present. Fora1, j and s should not be
treated in the same manner as the other semileptonic pa
eters.
ly
am-
m-

om
-

nc-

-

en-

sults
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n-

lty
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e

a

ram-

Recall @10# that S p,K51 for J50, so S r,a1 ,K* sup-
presses the S1SC signatures whenJÞ0. On the other hand,
Rr,a1 ,K* does not appear forJ50 channels since their se-
quential decay chains end with the first stage.

III. SIGNIFICANCE OF SEMILEPTONIC PARAMETERS
VERSUS ‘‘CHIRAL COUPLINGS’’

The most general Lorentz coupling fort2→r2nL,R is

rm* ūnt
~p!Gmut~k!, ~14!

wherekt5qr1pn . It is convenient to treat the vector and
axial vector matrix elements separately. In Eq.~14!,

GV
m5gVgm1

f M
2L

ismn~k2p!n1
gS2

2L
~k2p!m1

gS
2L

~k1p!m

1
gT1

2L
ismn~k1p!n ,

GA
m5gAgmg51

f E
2L

ismn~k2p!ng51
gP2

2L
~k2p!mg5

1
gP
2L

~k1p!mg51
gT

5
1

2L
ismn~k1p!ng5 . ~15!

The parameterL 5 ‘‘the effective-mass scale of new
physics.’’ In effective field theory this is the scale at whic
new particle thresholds are expected to occur or where
theory becomes nonperturbatively strongly interacting so
to overcome perturbative inconsistencies. It can also be
terpreted as a measure of a new leptonic compositen
scale. In old-fashioned renormalization theoryL is the scale
at which the calculational methods and/or the principles
‘‘renormalization’’ breakdown; see for example@11#. While
some terms of the above form do occur as higher-order p
turbative corrections in the standard model, such stand
model ~SM! contributions are ‘‘small’’ versus the sensitivi-
ties of present tests int physics in the analogous cases of th
t’s neutral-current and electromagnetic-current couplings;
@12#. For charged-current couplings, the situation should
the same.

Without additional theoretical, cf.@6#, or experimental in-
puts, it is not possible to select what is the ‘‘best’’ minima
set of couplings for analyzing the structure of thet’s charged
current. For instance, by Lorentz invariance, there are t
equivalence theorems that for the vector current

S'V1 f M , T1'2V1S2 ~16!

and for the axial-vector current

P'2A1 f E , T5
1'A1P2. ~17!

On the other hand, dynamical considerations such as lep
compositeness would suggest searching for an additional t
sorialg15 f M1 f E coupling which would preservej51 but
otherwise give non-(V2A) values to the semileptonic pa-
rameters. For instance,s5zÞ1 andh5vÞ1.

The matrix elements of the divergences of these charg
currents are
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TABLE III. Analytic forms and numerical values of the partial width intensities for polarized final states
for unique Lorentz couplings. Numerical entries are to one digit and are forr2 ~a1 , if value differs!. For
V7A, the entry before the semicolon is forV2A, after forV1A.

V7A S6P fM1 f E f M2 f E

Analytic form

G L
2/G 6

1
2 ~11S r! 61 r2

2t21r2
1

1
3

G T
2/G 6

1
2 ~12S r! 0 2t2

2t21r2
2

2
3

G L
1/G 6

1
2 ~16S r! 1 r2

2t21r2
2

2
3

G T
1/G 6

1
2 ~17S r! 0 2t2

2t21r2
2

1
3

Numerical value

G L
2/G 60.7~60.5! 61 0.0~0.2! 10.3

G T
2/G 60.3~60.5! 0 1.0~0.8! 20.7

G L
1/G 0.7~0.5!;20.3~20.5! 1 0.0~0.8! 20.7

G T
1/G 0.3~0.5!;20.7~20.5! 0 1.0~0.8! 20.3
to

-

~k2p!mV
m5FgV~mt2mn!1

gS2

2L
q21

gS
2L

~mt
22mn

2!

1
gT1

2L
~q22@mt2mn#2!G ūnut , ~18!

~k2p!mA
m5F2gA~mn1mt!1

gP2

2L
q21

gP
2L

~mt
22mn

2!

1
gT

5
1

2L
~q22@mt1mn#2!G ūng5ut . ~19!

Both the weak magnetismf M/2L and the weak electricity
f E/2L terms are divergenceless. On the other hand, sin
q25mr

2 , even whenmn5mt there are nonvanishing terms
due to the couplingsS2,T1,A,P2,T 5

1.
Table II gives the analytic form of the semileptonic pa

rameters for unique Lorentz couplings. Table III gives th
analytic forms and numerical values of the partial-width in
tensities for polarized final states for unique Lorentz co
plings.

A. Semileptonic parameters’ form in terms of gL plus
an ‘‘additional chiral coupling’’ „mn50…

We first display the expected forms for the above sem
leptonic parameters for thet→rn,a1n,K* n decay modes for
the case of a pureV2A chiral coupling as in the standard
lepton model. We assume that the mass of thet neutrino and
antineutrino are negligible. Next we will give the form fo
the case of a single chiral coupling (gi /2L i) in addition to
the standardV2A coupling. In this case, we first list the
formula for an arbitrarily large additional contribution.

In Tables IV and V we list the formulas assuming that th
additional contribution is small versus theV2A coupling.
Throughout this paper, we usually suppress the entry in
ce

-
e
-
u-

i-

r

e

the

‘‘ i’’ subscript on the new-physics coupling scale ‘‘L i ’’ when
it is obvious from the context of interest.

In the case of ‘‘multiadditional’’ chiral contributions, the
general formulas forA(lr ,ln) which are listed in the Ap-
pendix can be substituted into the above definitions so as
derive the expression~s! for the ‘‘multiadditional’’ chiral

TABLE IV. Semileptonic decay parameters fort2→r2n, etc. in
the case of a single additional chiral coupling (gi) which is small
relative to the standardV2A coupling (gL). This table is for the
V1A and for theS6P couplings. The next table is for additional
tensorial couplings. In this paper Re~Im! denote respectively the
real ~imaginary! parts of the quantity inside the parentheses. Ex
pressions for ‘‘a,..., f ’ ’ are Eqs.~38!.

V6A Additional S6P

PuregL PlusgR PlusgS1P PlusgS2P

G’s

j 1 ugLu22ugRu2

ugLu21ugRu2
1 1

z 1 j
11a

Re(gL* gS1P)

ugLu2
12bUgS2P

gL
U2

s 1 1 z
11cUgS2P

gL
U2

GLT’s

v 1 j
12d

Re(gL* gS1P)

ugLu2
12eUgS2P

gL
U2

h 1 1 v v

v8 0 0
2 f

Im(gL* gS1P)

ugLu2
0

h8 0 0 v8 0
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contributions. Frequently we will suppress the subscript o
mt .

Pure V2A coupling:

z5s5v5h5j51,

v85h850. ~20!
n V1A also present:

z5j, v5j,

s51, h51,

j5~ ugLu22ugRu2!/~ ugLu21ugRu2! v85h850. ~21!
S1P also present:

z5s5S S 122
mr
2

m2D ugLu21
m

L F12
mr
2

m2GRe~gL* gS1P!

1H m

2L F12
mr
2

m2G J 2ugS1Pu2
D Y~S rD

1!, ~22!

j51, ~23!

v5h5A2
mr

m S ugLu21
m

2L F12
mr
2

m2GRe~gL* gS1P! D Y~RrD
1!,

v85h852A2
mr

2L F12
mr
2

m2G Im~gL* gS1P!/~RrD
1!, ~24!

where

D15S 112
mr
2

m2D ugLu21
m

L F12
mr
2

m2GRe~gL* gS1P!1H m

2L F12
mr
2

m2G J 2ugS1Pu2.

S2P also present:

z,s5XS 122
mr
2

m2D ugLu27H m

2L F12Smr
2

m2D G J 2ugS2Pu2C Y~S rD
2!, ~25!
where the upper~lower! sign on the right-hand side~RHS!
goes with the first~second! entry on the left-hand side
~LHS!:

j51, ~26!

v5h5A2
mr

m
ugLu2/~RrD

2!, v85h850, ~27!

where

D25S 112
mr
2

m2D ugLu21H m

2L F12
mr
2

m2G J 2ugS2Pu2.

fM1fE also present:for this case we write the coupling
constant of the sum of the weak magnetism and the we
electricity couplings as

g15 f M1 f E .

In this notation,
ak

z5s5S S 122
mr
2

m2D ugLu21
mr
2

mL
Re~gL* g1!

1
mr
2

4L2 F221
mr
2

m2G ug1u2
D Y~S rDT

1!,

~28!

j51,

v5h5A2
mr

m S ugLu22
m

2L F11
mr
2

m2GRe~gL* g1!

1
mr
2

4L2 ug1u2D Y~RrDT
1!,

v85h852
mr

A2L
F12

mr
2

m2G Im~gL* g1!/~RrDT
1!, ~29!

where

DT
15S 112

mr
2

m2D ugLu223
mr
2

mL
Re~gL* g1!

1
mr
2

4L2 F21
mr
2

m2G ug1u2.
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TABLE V. Same as Table IV except this table is for additional tensorial couplings. Hereg65 f M6 f E
involveskt2pn , whereasg̃65gT16T

5
1

1 involveskt1pn ; see Eqs.~14! and~15!. Expressions for ‘‘f ,...,o’ ’

are Eqs.~39!.

Additional f M6 f E Additional T16T 5
1

Plusg1 Plusg2 Plus g̃1 Plus g̃2

G’s

j 1
12kUg2

gL
U2 1 ugLu22umg̃2/2Lu2

ugLu21umg̃2/2Lu2

z
11g

Re(gL* g1)

ugLu2
12hUg2

gL
U2 1 j

s z
12jUg2

gL
U2 1 1

GLT’s

v
12 l

Re(gL* g1)

ugLu2
12nUg2

gL
U2 1 j

h v
12oUg2

gL
U2 1 1

v8
2 f

Im(gL* g1)

ugLu2
0 0 0

h8 v8 0 0 0
s
d

fM2fE also present:similarly, we write the coupling con-
stant of the difference of the weak magnetism and the we
electricity couplings as

g25 f M2 f E

and so

z,s5XS 122
mr
2

m2DUgLU26 mr
2

4L2 Ug2U2C Y~S rDT
2!, ~30!

where the upper~lower! sign on the RHS goes with the first
~second! entry on the LHS. Also,

j5XS 112
mr
2

m2DUgLU223
mr
2

4L2 Ug2U2C YDT
2 , ~31!

v,h5A2
mr

m S ugLu27
mr
2

4L2 ug2u2D /~RrDT
2!, v85h850.

~32!

Here

DT
25S 112

mr
2

m2D ugLu213
mr
2

4L2 ug2u2.

T11T5
1 also present:we let

g̃15gT11T
5
1

1
.

In this notation,

z5s5j51. ~33!
ak

-

Also

v5h51; v85h850. ~34!

A single additionalg̃15gT11T
5
1

1
coupling does not change

the values from that of the pureV2A coupling.

T12T5
1 also present:we let

g̃25gT12T
5
1

1

and so

z5j, s51, ~35!

j5
ugLu22umg̃2/2Lu2

ugLu21umg̃2/2Lu2
, ~36!

v5j, h51, v85h850. ~37!

A single additionalg̃25gT12T
5
1

1
coupling is equivalent to a

single additionalV1A coupling, except for the interpretation
of their respective chirality parameters.

B. Semileptonic parameters when ‘‘additional chiral
coupling’’ is small

In Table IV for theV1A and for theS7P couplings, we
list the ‘‘expanded forms’’ of the above expressions for the
case in which there is a single additional chiral coupling
(gi /2L i) which is small relative to the standardV2A cou-
pling (gL). Similarly, in Table V is listed the formulas for
the additional tensorial couplings. The tensorial coupling
include the sum and difference of the weak magnetism an
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electricity couplings,g65 f M6 f E , which involve the mo-
mentum differenceqr5kt2pn . The alternative tensorial
couplingsg̃65gT16T

5
1

1
instead involvekt1pn .

Notice that, except for the following coefficients, the for
mulas tabulated in these two tables are short and simple.
above we usually suppress the entry in the ‘‘i ’ ’ subscript on
‘‘ L i ’ ’ . For Table IV these coefficients are

a5
4mr

2

mL

~12mr
2/m2!

~124mr
4/m4!

,

d5
m

4L S 12
mr
2

m2D ~122mr
2/m2!

~112mr
2/m2!

,

b5
m2

2L2

~12mr
2/m2!2

~124mr
4/m4!

,

e5
m2

4L2

~12mr
2/m2!2

~112mr
2!

,

c5
mr
2

L2

~12mr
2/m2!2

~124mr
4/m4!

, f5
m

2L S 12
mr
2

m2D . ~38!

The additional coefficients for Table V are

g5
2mr

2

mL

~124mr
2/m2!

~124mr
4/m4!

,

l5
m~119mr

2/m212mr
4/m4!

2L~112mr
2/m2!

,

h5
mr
2

2L2

~124mr
2/m2!

~124mr
4/m4!

, n5
mr
2~21mr

2/m2!

2L2~112mr
2/m2!

,

j5
mr
2

L2

~12mr
2/m2!

~124mr
4/m4!

, o5
mr
2~12mr

2/m2!

2L2~112mr
2/m2!

,

k5
3mr

2

2L2~112m2/mr
2!
. ~39!

Notice thatO ~1/L! coefficients occur in the case of an
interference with thegL coupling, and that otherwise
O ~1/L2! coefficients occur. Should experimental measur
ments indicate other than a puregL value of a semileptonic
parameter, a smearing and more sophisticated treated
these coefficients may be warranted. Fora1, as discussed at
the end of Sec. II, tilde functionsj̃(q2) ands̃(q2) should be
fit. For K* , the (124mr

2/m2) factor in the numerators ofg
andh almost vanishes. Forr, these ‘‘a to o’’ coefficients are
0.1–1.8 except forh;0.08; there is at most a factor of 0.6
change over (mr6G/2!.

In comparing the entries in these two tables, notice that~i!
a single additionalg̃15gT11T

5
1

1
coupling does not change

the values from that of the pureV2A coupling, and that~ii !
a single additionalg̃25gT12T

5
1

1
is equivalent to a single

additional V1A coupling, except for the interpretation o
-
As

e-

of

f

their respective chirality parameters. This follows as a con
sequence of Eqs.~16! and ~17! and the absence of contribu-
tions from theS2 andP2 couplings to ther, a1 , andK*
modes.

We have displayed this equivalence in Table V to emph
size that while the commonly assumed total absence ofg̃6

couplings int lepton decays is supported by the generall
weaker tests of the experimental/theoretical normalization
the decay rates~such as by universality tests in lepton phys
ics!, V2A~V1A! empirical values of the semileptonic decay
parameters discussed in the tables for ther, a1 , K* modes
will not imply the absence ofg̃1(g̃2) couplings.

IV. SPIN-CORRELATION FUNCTIONS IN TERMS
OF THE SEMILEPTONIC PARAMETERS

A. The full seven-variable S2SC function

For the production decay sequencee2e1→Z0,
g*→t2t1→~r2n!~r1n̄! followed by rch→pchp0 the full
S2SC function including bothnL ,nR helicities and both
nR , n̄L helicities is given by

I75I ~E1 ,E2 ,f; ũa ,f̃a ; ũb ,f̃b!

5( uT~h1 ,h2!u2Rh1 ,h1
R̄h2 ,h2

1eifT~11 !T* ~22 !r12 r̄12

1e2ifT~22 !T* ~11 !r21 r̄21 , ~40!

whereh152l1 with l1 the t2 helicity, etc. The amplitudes
T(h1 ,h2) are the production helicity amplitudes given in
Ref. @13# which describeZ0,g*→t2t1. This formula also
holds if either, or both,t6→a 1

6n followed bya 1
6→(3p)6.

The specifict7 decay channel determines which ‘‘composite
decay density matrix’’Rh1 ,h1

, or R̄h2 ,h2
, is to be inserted.

The ua , fa angles describe thep2 momentum direction in
the r2 rest frame forr2 →p2p0 when the Lorentz boost is
from the t2 rest frame, etc. See Figs. 3 and 4 and the di
cussion in Ref.@5#.

The literature on polarimetry methods and spin
correlation functions int physics includes Refs.@3–5,7,14#.
The S2SC functions given in the present paper were deriv
in the same manner as those in Ref.@5#.

Formulas for t˜rn

Including bothnL andnR helicities and using a ‘‘compact
boldface formalism’’ to denote this inclusion of bothn he-
licities, we find @7# the composite decay density matrix for
t2→r2n→~p2p0!n is

R5S R11 eif1
t
r12

e2if1
t
r21

R22
D . ~41!

In terms of the semileptonic parameters, the diagonal el
ments are

R665na@16facosu1
t #7~1/A2!sin u1

t sin 2ũaRr@v cosf̃a

1h8sin f̃a#. ~42!
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These give the angular distribution
dN/d(cosu1

t)d(cosũa)df̃a for the polarizedt2 decay chain;
see Eq.~5! above. The off-diagonal elements depend on

r125~r21!*5nafasinu1
t

1~1/A2!sin2ũaRr$cosu1
t@v cos f̃a1h8sinf̃a#

1i@v sinf̃a2h8cosf̃a#%. ~43!

In Eqs.~40! and ~41!,

S na
nafa

D5cos2ũa

GL
6

G
6
1

2
sin2ũa

GT
6

G
~44!

or equivalently

na5
1
8 ~31cos2ũa1sS r@113 cos2ũa# !,

nafa5
1
8 ~j@113 cos2ũa#1zS r@31cos2ũa# !. ~45!

Similarly, for the conjugate processt1→r1n̄→~p1p0!n̄
including bothn̄R and n̄L helicities,

R̄5S R̄11 eif2
t
r̄12

e2if2
t
r̄21 R̄22

D . ~46!

In terms of the semileptonic parameters, the diagonal e
ments are

R̄665nb@17fb cosu2
t #

6~1/A2!sin u2
t sin 2ũbRr@v̄ cos f̃b2h̄8 sin f̃b#

~47!

and

r̄ 125~ r̄21!*52nbfbsinu2
t2~1/A2!sin2ũbRr$cosu2

t

3@v̄ cosf̃b2h̄8sinf̃b#

1i@v̄ sinf̃b1h̄8cosf̃b#%. ~48!

In Eqs.~47! and ~48!,

S nb
nbfb

D 5cos2ũb

ḠL
6

Ḡ
6
1

2
sin2ũb

ḠT
6

Ḡ
~49!

or equivalently

nb5
1
8 ~31cos2ũb1s̄S r@113 cos2ũb# !,

nbfb5
1
8 ~ j̄@113 cos2ũb#1 z̄S r@31cos2ũb# !. ~50!

Formulas for t˜a1n

For the kinematic description of t2→a 1
2n

→~p1
2p2

2p3
1!n, the normal to the~p1

2p2
2p3

1! decay triangle
is used in place of thep2 momentum direction of the
t2→r2n→~p2p0!n sequential decay@15#.

Including bothnL andnR helicities, we find the composite
decay density matrix fort2→a 1

2n→~p1
2p2

2p3
1!n is
s

le-

Rn5S1
1R11S1

2R2, ~51!

whereR6 have the same the same form as the earlier matr
Eq. ~41!, except the elements now also have ‘‘6’’ super-
scripts; see below.S1

6 depend on the strong-interaction form
factors used to describe the decaya 1

2→p 1
2p 2

2p 3
1 . How-

ever, when the three-body Dalitz plot is integrated over, on
theS1

1 term remains, so it can be absorbed into the over
normalization factor which removes any arbitrary form
factor dependence. In Eq.~49!, theR1 composite decay ma-
trix elements are

R66
1 5$Eq. ~42! with ~1/A2!→~21/A2!%,

r12
1 5~r21

1 !*5$Eq. ~43! with ~1/A2!→~21/A2!%,
~52!

with

S na
nafa

D5sin2ũa

GL
6

G
6S 12

1

2
sin2ũaDGT

6

G
~53!

or equivalently

na5
1
16 ~1022 cos2ũa2sS r@513 cos2ũa# !,

nafa5
1
16 ~2j@513 cos2ũa#1zS r@1022 cos 2ũa# !.

~54!

Similarly, theR2 composite decay matrix elements are

R66
2 52na

2@17fa
2cosu1

t #7~A2!sinu1
tsinũaRa1

@hcosf̃a

1v8sinf̃a#, ~55!

with

S na
2

na
2fa

2D 5cosũa

GT
7

G
~56!

or

na
25 1

2 cosũa@j2zS r#,

na
2fa

25 1
2 cosũa@12sS r#. ~57!

Also

r12
2 5~r21

2 !*5sinu1
tna

2fa
21A2sinũaRa1

$cosu1
t@h cosf̃a

1v8sinf̃a#1i@h sinf̃a2v8cosf̃a#%. ~58!

For the conjugate processt1→a 1
1n̄→(p 1

1p 2
1p 3

0) n̄,

R̄ n̄ 5S̄1
1R̄11S̄1

2R̄2. ~59!

The R̄1 matrix elements are

R̄66
1 5$Eq. ~47! with ~1/A2!→~21/A2!%,

r̄ 12
1 5~ r̄21

1 !*5$Eq. ~48! with ~1/ A2!→~21/A2!%,
~60!

with
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S nb
nbfb

D 5sin2ũb

ḠL
6

Ḡ
6S 12

1

2
sin2ũbD ḠT

6

Ḡ
~61!

or

nb5
1
16 ~1022 cos2ũb2s̄S r@513 cos2ũb# !,

nbfb5
1
16 ~2 j̄@513 cos2ũb#1 z̄S r@1022 cos2ũb# !.

~62!

The R̄2 matrix elements are

R̄66
2 52nb

2@16fb
2cosu2

t #7A2 sinu2
tsinũbRa1

@h̄cosf̃b

2v̄8sinf̃b#, ~63!

and

r̄ 12
2 5~ r̄21

2 !*5sinu2
tnb

2fb
21A2 sin ũbRa1

3$cosu2
t@h̄ cosf̃b2v̄8sinf̃b#

1i@h̄ sinf̃b1v̄8 cos f̃b#%, ~64!

with

S nb
2

nb
2fb

2D 5cosũb

ḠT
7

Ḡ
~65!

or

nb
25 1

2 cosũb@ j̄2 z̄S r#,

nb
2fb

25 1
2 cosũb@12s̄S r#. ~66!

B. The simpler four-variable S2SC function

The simpler four-variable S2SC function including bothn
and bothn̄ helicities is

I45I ~E1 ,E2 ,ũ1 ,ũ2!

5uT~1,2 !u2r11r̄221uT~2,1 !u2r22r̄11

1uT~1,1 !u2r11r̄111uT~2,2 !u2r22r̄22 .

~67!

This formula is in terms of theintegratedcomposite decay
density matrices for thet6→r6n and/or for thet6→a 1

6n
decay chains withr6→~2p!6 anda 1

6→(3p)6. Note that as
for theR’s in the preceding section, in Eq.~67! the r’s in-
clude both neutrino helicities. Here for convenience, unli
in Sec. IV A, we suppress a ‘‘boldface font’’ for ther’s.
ke

Formulas for t˜rn

For t2→r2n→~p2p0!n, with t2 helicity l15h/2

rhh[
1

G

dN

d~cosu1
t !d~cosũ1!

5
1

8
~31cos2ũ1!S1

1

32
~113 cos2ũ1!D, ~68!

where

S511hzS rcosu1
t , ~69!

D52S~12cos2v1!1~sS r1hj cosu1
t !~113 cos2v1!

1hvRr4A2 sin2v1sinu1
t . ~70!

It is very important to note that theS contribution only
appears in stage-one spin-correlation functions. This is t
reason for the breakup in toS andD contributions in this
section. Formulas for the Wigner rotation anglesv1,2 which
respectively are solely functions of ther7 energiesE1,2 are
given in@5#. If ũ1 is integrated out, i.e., if the polarimetry
information from ther2→~2p!2 stage is not included, then
D does not contribute. In this manner,z is measurable. Then
inclusion of the ũ1 dependence givesD and also enables
separation ofj andv because of their differing dependenc
on ũ1.

For theCP conjugate processt1→r1n̄→~p1p0!n̄, with
t1 helicity l15h/2,

r̄ hh[
1

Ḡ

dN

d~cosu2
t !d~cosũ2!

5
1

8
~31cos2ũ2!S̄1

1

32
~113 cos2ũ2!D̄, ~71!

where

S̄512hz̄S rcosu2
t , ~72!

D̄52S̄~12cos2v2!1~ s̄S r2hj̄ cosu2
t !~113 cos2v2!

2hv̄Rr4A2 sin2v2sinu2
t . ~73!

Formulas for t˜a1n

For t2→a 1
2n→(3p)2n, with t2 helicity l15h/2

where

rhh[
1

G

dN

d~cosu1
t !d~cosũ1!

5
1

4
~31cos2ũ1!Sa12

1

32
~113 cos2ũ1!Da1

, ~74!

Sa1511hzS a1
cosu1

t , ~75!
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Da1
5Sa1~31cos2v1!1~sS a1

1hj cosu1
t !

3~113cos 2v1!1hvRa1
4A2 sin2v1sinu1

t . ~76!

The remarks above, following the analogous formulas in t
r case, also apply here.

For theCP conjugate processt1→a 1
1n̄→(3p)1n̄, with

t1 helicity l25h/2,

r̄ hh[
1

Ḡ

dN

d~cosu2
t !d~cosũ2!

5
1

4
~31cos2ũ2!S̄a12

1

32
~113 cos2ũ2!D̄a1

, ~77!

where

S̄a1
512hz̄S a1

cosu2
t , ~78!

D̄a1
5S̄a1~31cos2v2!1~ s̄S r2hj̄ cosu2

t !~113 cos2v2!

2hv̄Ra1
4A2 sin2v2sinu2

t . ~79!

C. The five-variable S2SC functions

In order to measure some of the parameters which test
leptonic T violation, we use thef dependence of the spin
correlation plus the variables inI 4 . Recall thatf is the open-
ing angle between the twot decay planes. For the idea
statistical errors considered later in this paper, we assu
that thet lepton direction is known from a silicon vertex
detector and so both cos~f! and sin~f! are known. The five-
variable S2SC function is listed in Eq.~4.15! in Ref. @5#, so
here we only list the additional composite density matr
elements:

For the symmetric ‘‘plus’’ Dalitz distribution, for ther2

mode there is

r125
1

32
j sinu1

t~113 cos2v1!~113 cos2ũ1!

1
1

32
zS rsinu1

t@111cos2ũ1

1cos2v1~113 cos2ũ1!#2
1

4A2
Rr@v cosu1

t2ih8#

3sin2v1~113 cos2ũ1! ~80!

and for theCP conjugate mode there isr̄1252@r12#* with
the usual subscript changes 1→2, a→b as in Ref.@5#.

Similarly, for thea 1
2 mode there is

r1252
1

32
j sin u1

t~113 cos2v1!~113 cos2ũ1!

1
1

32
zS a1

sinu1
t@212cos2ũ1
he
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2cos2v1~113 cos2ũ1!#

1
1

4A2
Ra1

@v cosu1
t2ih8#sin2v1~113 cos2ũ1!

~81!

and again for theCP conjugatea 1
1 mode, r̄1252@r12#*

with the same subscript substitutions.
For the ‘‘minus’’ Dalitz distribution for thea 1

2 mode,
there are,with the same normalization as for the ‘‘plus’’
expressions given above,

rhh
2 5cosũ1$

1
2 cosv1@2j1zS a1

1h~12sS a1
!cosũ1#

1hA2 sinv1sinu1
thRa1

% ~82!

and for theCP conjugatea 1
1 there isr̄ hh

2 52[r 2h,2h
2 ]. For

the five-variable distribution for the ‘‘minus’’ Dalitz distri-
bution, there is

r12
2 5 1

2 ~12sS a1
!sinu1

tcosv1cosũ1

2A2Ra1
@h cosu1

t2iv#sinv1cosũ1 ~83!

and r̄12
2 5@r12

2 #* .

D. Tests for leptonicT violation

By unitarity and the assumption that only the minima
helicity amplitudes are needed, one can easily derive oth
expressions for measuring the phase differences between
helicity amplitudes.

In the case of onlynL neutrinos, it follows that

cosba5
IR

AGLGT

5
2vRr

A12~zS r!2
~84!

and that

sinba5
I I

AGLGT

5
2v8Rr

A12~zS r!2
. ~85!

In the case of bothnL andnR couplings, there are instead

cosba5
I
R

nL

AGL
nLGT

nL
5

2Rr~v1h!

A~11j!22~S r@s1z#!2
. ~86!

Though physically transparent from their indices, the pola
ized partial widths and intensities in these expression
GR,I

nL ,... andI R,I
nL ,... are explicitly defined in Sec. II. For thenR

phase difference

cosba
R5

I
R

nR

AGL
nRGT

nR
5

2Rr~h2v!

A~12j!22~S r@s2z#!2
. ~87!

Also
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sinba5
I
I

nL

AGL
nLGT

nL
5

2Rr~v81h8!

A~11j!22~S r@s1z#!2
, ~88!

with

sinba
R5

I
I

nR

AGL
nRGT

nR
5

2Rr~h82v8!

A~12j!22~S r@s2z#!2
. ~89!

The two constraint equations, Eq.~13!, in Sec. III A imme-
diately follow from these expressions.

Measurement ofbaÞ0 (bbÞ0) implies a violation ofT
invariance int2→r2n~t1→r1n̄! or the presence of an un
expected final-state interaction between then and r2. Be-
cause of the further assumption of no unusual final state
teractions, see Sec. II, one is actually testing forT̃FS
invariance. CanonicalT invariance relatest2→r2n and the
actual time-reversed processr2n→t2 which is not directly
accessible by present experiments.

V. TESTS FOR NON-CKM-TYPE LEPTONIC
CP VIOLATION

By CP invariance each of the barred semileptonic para
eters should equal, within experimental errors, its unbar
associate. However, as was shown in Ref.@5#, if only nL and
-

in-

m-
red

n̄ R exist, there are two simple tests for ‘‘non-Cabibbo
Kobayashi-Maskawa~CKM-!type’’ leptonic CP violation in
t→rn decay. Normally a CKM leptonic phase will contrib-
ute equally at tree level to both thet2 decay amplitudes~for
exceptions, see footnotes 14 and 15 in Ref.@5#!. These two
tests follow because byCP invariance B(lr̄ ,ln̄)
5gCPA(2lr̄ ,2ln̄). So the two tests for leptonicCP vio-
lation are

ba5bb first test, ~90!

whereba5f 21
a 2f 0

a , bb5f 1
b2f 0

b , and

r a5r b second test, ~91!

where

r a5
uA~21,2 1

2!u

uA~0,2 1
2 !u

, r b5
uB~1,12!u

uB~0,12!u
. ~92!

For sensitivity levels fort→rn decay, see Ref.@6#.
This analysis can be easily generalized@7# to thet→a1n

decay mode in which thea1 has the oppositeCP quantum
number to that of ther: For thet2→a 1

2n→(p2p2p1)n,
~p0p0p2!n modes, the composite-decay-density matrix i
given by
rhh5~11h cosu1
t !Fsin2v1cos

2ũ11S 12
1

2
sin2v1D sin2ũ1G1

r a
2

2
~12h cosu1

t !F ~11cos2v1!cos
2ũ1

1S 11
1

2
sin2v1D sin2ũ1G2h

r a
A2

cosbasinu1
t sin2v1Fcos2ũ12

1

2
sin2ũ1G . ~93!
ing

e

are
Table VI shows that the sensitivity of thea1 mode, versus
that of the r mode, is about two times better for ther a
measurement and is about five times worse for theb mea-
surements. The simplerI 4 function was used for the error
d(r a) and the fullI 7 was used for the otherd ’s. TheCPand
CPT̃FS predictions for the phase relation betweenba andbb
are opposite, see Table III in@2#, so this provides a method
for distinguishing between a new physics effect due to
unusualCP-violating final state interaction (ba52bb) and
one with a different mechanism ofCP violation
(ubauÞubbu).

It is also easy to generalize these simple tests so as
include nR and n̄L couplings. The necessary four-variabl
S2SC is given by

I ~Er ,E r̄ ,ũ1 ,ũ2!u nR ,n̄L

5I 41~lR!2I 4~r→rR!1~ l̄L!2I 4~ r̄→ r̄L!

1~lRl̄L!2I 4~r→rR,r̄→ r̄L!, ~94!

where lR[uA(0,1/2)u/uA(0,21/2)u, l̄L[uB(0,
an

to
e

21/2)u/uB(0,1/2)u give the moduli’s of thenR andn̄L ampli-
tudes versus the standard amplitudes. The correspond
composite density matrices fort→rn with nR and n̄L final
state particles are given by the substitution rules:

rhh
R 5r2h,2h~r a→r a

R ,ba→ba
R!, ~95!

TABLE VI. The ideal statistical errors for the two tests for
‘‘non-CKM-type’’ leptonic CP violation in t2→a 1

2nL decay, in-
cluding both a 1

2→~2p2p1! and ~2p0p2! modes. TheCPT̃FS,
CP,T̃FS labels denote the symmetries which would respectively b
violated if r aÞr b , b̃Þ0, etc. Note that b̃[ba2bb and
b8[ba1bb . At MZ we assume 107 Z bosons and assume 107

t2t1 pairs at each of the other center-of-mass energies. To comp
with the analogous values fort2→r2n; see the tables in Ref.@5#.

Ec.m.

s(r a)
CPT̃FS, CP

s(b̃).s(ba)
CP T̃FS

s~b8!
CPT̃FS, CP

MZ 0.3% ;10° ;15°
10 GeV 0.05% ;3° ;3°
4 GeV 0.05% ;4° ;5°
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r̄ hh
L 5 r̄2h,2h~r b→r b

L ,bb→bb
L!, ~96!

where thenR andn̄L moduli ratios and phase differences a
defined byr a

R[uA(1,1/2)u/uA(0,1/2)u, r b
L[uB(21,21/2)u/

uB(0,21/2)u, b a
R[f 1

a2f 0
aR, b b

L[f 21
b 2f 0

bL . The two
additional tests for ‘‘non-CKM-type’’ leptonicCP violation
if R-handedn andL-handedn̄ exist are

ba
R5bb

L first nR / n̄L test, ~97!

r a
R5r b

L secondnR / n̄L test. ~98!

VI. DESCRIPTION OF t2
˜p2n, K2n

The only observables for each of thet2→p2n, K2n
modes which can be measured by spin correlations are
chirality parameter
re

the

jp,K5@ uA~21/2!u22uA~1/2!u2#/@ uA~21/2!u21uA~1/2!u2#

and theG~t2→p2n!, or G(t2→K2n), partial width. The
relative phase of theA(ln)5A(7 1

2! amplitudes cannot be
measured unless, e.g., thenL and nR have a common final
decay channel. Fort2→p2n, orK2n, the (kt1pn) effective
couplings (kt1pn)aV nt

a and (kt1pn)aA nt
a are equivalent to

the standardqp,aV nt
a andqp,aA nt

a couplings. HereV nt
a and

A nt
a are as in Eqs.~14! and~15!. The f M and f E couplings do

not contribute. TheS2 andP2 couplings can contribute to
the p2 and K2 channels, whereas they do not for the
r,a1 ,K* modes. However, sinceq•V;(mp

2 /2L)gS2 and q
•A;(mp

2 /2L)gP2 their contribution is strongly suppressed
for L.~;1 GeV! scales.

By Lorentz invariance, there are the equivalence theorem
thatS2'S'T1'V andP2'P'T 5

1'A. The general he-
licity amplitudes fort2→p2n, or K2n, for the aboveq•V
andq•A couplings are
AS 7
1

2D 5gL~Er6qp!Amt~En6qp!1gR~Er7qp!Amt~En7qp!1S mt

2L i
D FgS1P1gS2P1~gS21P21gS22P2!

3S mp
2

mt
22mn

2D G$~Er6qp!Amt~En6qp!1~Er7qp!Amt~En7qp!%

1g̃1S mt

2L D H S 211
mp
2

mt
22mn

2D ~Er6qp!Amt~En6qp!1S 11
mp
2

mt
22mn

2D ~Er7qp!Amt~En7qp!J
1g̃2S mt

2L D H S 11
mp
2

mt
22mn

2D ~Er6qp!Amt~En6qp!1S 211
mp
2

mt
22mn

2D ~Er7qp!Amt~En7qp!J . ~99!
e

ut

d

a-
The jp parameter can be measured by the stage-one ene
correlation function I (E 1

p ,E 2
p) where r66516jpcosu1

t ,
r̄ 66517 j̄p cosu2

t .
The associated ideal statistical errors forjp are given in

Table VII in Ref. @6#. These errors forjp are about three
times worse than those fromI 4 for jr at each of the three
Ec.m.. The three variableI (E1 ,E2 ,f) is identical in structure
to Eq. ~4.15! in Ref. @5#, including the sinf term. Because
r125r2152jp sinu1

t , I 3 does not depend on additiona
semileptonic parameters beyondGp andjp .

From Eq.~99! the effectivel5ugeff/gLu2 value follows for

G~t→pnt!

G~p→mnm!
5

l

2

mt
3

mm
2mp

S 12mp
2 /mt

2

12mm
2 /mp

2 D 2. ~100!

For example,

lS1P5U11
mt

2L

gS1P

gL
U2, l g̃1

5U12
mt

2L

g̃1

gL
S 12

mp
2

mt
2 D U2.

VII. ASSOCIATED IDEAL STATISTICAL ERRORS

For the 107 ~t2,t1!’s at 10 GeV, and a like number at
GeV, we determine the ideal statistical errors in the sa
manner as in our earlier papers; see Ref.@4#. The results are
rgy-

l

4
me

tabulated in the following tables. We concentrate on th
S2SC distributions with the fewest variables.

See Table VII for the errors for~j,z,s,v! based onI 4 . In
general, the values for ther2 mode are slightly less than 1%.
The CP tests for these semileptonic parameters are abo
A2 worse. Typically thea1 values are about three times
worse than ther values. Thea1 errors are generally smaller
when obtained from the$r,a1% modes than from$a 1

2 ,a 1
1%.

For comparison, use of the full seven-variableI 7 would only
give a factor of about 2 improvement; see Tables VIII an
IX. Notice that the statistical errors forj using the simpler
I (E1 ,E2) distributions in Ref.@4# cannot be directly com-
pared with those listed here because Ref.@4# assumes a mix-
ture of onlyV andA couplings inJlepton

charged. Except forI 4 , in
this section in using S2SC functions to determine ideal st
tistical errors, we assume that thet2 direction is known from
a silicon vertex detector. Otherwise a Wigner rotation@5#
must be included in usingI 7 and the sin~f! correlation is not
available inI 5 and I 5

2 . For completeness, Tables X and XI
give the analogous ideal statistical errors atMZ for a 107

sample ofZ0 events.
To test for leptonicT violation, besides thev parameter

which can be measured fromI 4 in both ther anda1 modes,
there is theh8 parameter which can be obtained fromI 5 in
both ther and a1 modes. Also there are theh andv8 pa-
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rameters which only appear in S2SC distributions for thea1
modes. See Tables XII–XIV. To normalize the ‘‘minus’
Dalitz distributionsI 5

2 and I 7
2, we have assumed that th

form factor dependence in Eq.~51! leads to an extra factor of
1
5 in the overall ‘‘minus’’ distribution normalization versus

TABLE VII. At 10 GeV and at 4 GeV: ideal statistical errors fo
measurements of the fundamental parametersj, z, s, andv by the
stage-two spin-correlation functionI 4 for the sequential decay of an
off-mass-shell photong*→t2t1 with t2→r2n andt1→r1n̄, etc.
For each parameter, the first row assumesCP invariance, for in-
stancej5j̄; then the following row contains the corresponding st
tistical errors for measurement of the same parameter not assum
CP invariance. The column headed by ‘‘$r,a1% modes’’ is for the
$r2,a 1

1% and the$a 1
2 ,r1% sequential decay modes, etc.

r2 values a 1
2 values

$r2,r1%
$r,a1%
modes $a 1

2 ,a 1
1%

$a1 ,r%
modes

No. of events 605 160 867 925 324 000 885 600
At 10 GeV:
j 0.0060 0.021 0.046 0.020
CP for j 0.0100 0.030 0.081 0.028
z 0.0070 0.022
CP for z 0.011 0.031
s 0.013 0.033
CP for s 0.016 0.047
v 0.0057 0.020 0.037 0.017
CP for v 0.010 0.028 0.069 0.024
At 4 GeV:
j 0.013 0.033 0.080 0.044
CP for j 0.020 0.047 0.14 0.062
z 0.016 0.039
CP for z 0.024 0.056
s 0.028 0.046
CP for s 0.028 0.064
v 0.015 0.041 0.059 0.034
CP for v 0.025 0.058 0.11 0.049

TABLE VIII. At 10 GeV: for measurements based on the seve
variable S2SC functionI 7 , ideal statistical errors forj, z, s, v, and
h8. In this and following 10 GeV tables, the number of events f
each sequential decay mode is the same as in Table VII.

r2 values a 1
2 values

$r2,r1% $r,a1% modes $a 1
2 ,a 1

1% $a1 ,r% modes

At 10 GeV:
j 0.0032 0.0078 0.013 0.0076
CP for j 0.0052 0.011 0.022 0.011
z 0.0055 0.012
CP for z 0.0080 0.017
s 0.0026 0.0032
CP for s 0.0037 0.0045
v 0.0031 0.0081 0.014 0.0086
CP for v 0.0054 0.011 0.024 0.012
h8 0.0031 0.0085 0.013 0.0088
CP for h8 0.0060 0.012 0.025 0.012
’
e

the corresponding ‘‘plus’’ distribution’s normalization. For
instance, to normalizeI 5

2 , the I 5 plus distribution’s relative
normalization was needed; so theI 5 ideal statistical errors
were investigated but the errors were generally not signifi
cantly better than those forI 4 so we have not listed them. All
the ‘‘plus’’ distributions are normalized by the available
number of events. Only by actual experimental analyses ca
it be shown whether the ‘‘minus’’ distributions will have
enough sensitivity for interesting tests of this type. See Re
@16# for detailed treatments of the hadronic form factors. Fo
determination of theI 5

2 and I 7
2 statistical errors, we use the

minus distribution only for one side, e.g., thet2 in
g* , Z0→t2t1 and use the plus distribution for the other
side, e.g., thet1.

Table XV shows that thev8 parameter can be much better
measured by the fullI 7

2 distribution. This suggests that for
measurement ofv8 the best few-parameter distributions are
not I 4 or either theI 5’s. From Table VIII, one similarly
concludes that there should be a better observable forh8 at
10 GeV.

r

a-
ing

n-

or

TABLE IX. At 4 GeV: for measurements based on the seven
variable S2SC functionI 7 , ideal statistical errors forj, z, s, v, and
h8. In this and following 4 GeV tables, the number of events for
each sequential decay mode is the same as in Table VII.

r2 values a 1
2 values

$r2,r1% $r,a1% modes $a 1
2 ,a 1

1% $a1 ,r% modes

At 4 GeV:
j 0.0055 0.013 0.020 0.012
CP for j 0.0089 0.018 0.035 0.017
z 0.0091 0.019
CP for z 0.013 0.027
s 0.0027 0.0033
CP for s 0.0039 0.0046
v 0.0053 0.013 0.022 0.013
CP for v 0.0092 0.018 0.038 0.019
h8 0.0047 0.013 0.019 0.014
CP for h8 0.0094 0.019 0.038 0.019

TABLE X. At MZ : the ideal statistical errors forj, z, s, andv
for measurements based on the stage-two spin-correlation functi
I 4 for the sequential decayZ

0→t2t1 with t2→r2n andt1→r1n̄,
etc. The entries can be compared with those in Table VII for 10 an
4 GeV center of mass energies.

r2 values a 1
2 values

$r2,r1%
$r,a1%
modes $a 1

2 ,a 1
1%

$a1 ,r%
modes

No. of events 20 303 29 119 10 870 29 119
At MZ :
j 0.027 0.081 0.20 0.094
CP for j 0.045 0.11 0.32 0.13
z 0.032 0.084
CP for z 0.048 0.12
s 0.059 0.13
CP for s 0.073 0.18
v 0.026 0.076 0.16 0.082
CP for v 0.045 0.11 0.27 0.12
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Typically the errors are a factor of 2 worse at 4 GeV tha
at 10 GeV. However, there is an important exception: t
error for theh8 parameter fort2→r2n usingI 5 is about five
times better at 4 GeV than at 10 GeV.

Notice that the S2SC functions do not enable a measu
ment of any relative phase between thenL and nR helicity
amplitudes, so the helicity amplitudes can only ‘‘almost’’ b
completely determined from knowledge of the eight semile
tonic parameters@2#.

VIII. OTHER CONCLUSIONS

The major conclusions are given in the abstract, Introdu
tion, and in the ideal statistical errors given in the precedi
section, so here we will only make a few additional remark

In the context of modern Monte Carlo simulations such
KORALB and TAUOLA, it should be simple and straightfor
ward to build in the amplitudes for production ofL-polarized
and T-polarizedr’s or a1’s from distinct Lorentz-structure
sources. Thereby, the results in Tables IV and V in this pap
can be used for many systematic checks. For example, t
could be used to experimentally test theCPandT invariance

TABLE XI. At MZ : for measurements based on the seve
variable S2SC functionI 7 , ideal statistical errors forj, z, s, v, and
h8. In this and followingMZ tables, the number of events for eac
sequential decay mode is the same as in Table X.

r2 values a 1
2 values

$r2,r1% $r,a1% modes $a 1
2 ,a 1

1% $a1 ,r% modes

At MZ :
j 0.013 0.033 0.056 0.034
CP for j 0.022 0.047 0.097 0.048
z 0.023 0.051
CP for z 0.034 0.072
s 0.014 0.017
CP for s 0.019 0.025
v 0.013 0.034 0.065 0.040
CP for v 0.022 0.048 0.11 0.056
h8 0.014 0.037 0.059 0.041
CP for h8 0.027 0.053 0.11 0.058

TABLE XII. Ideal statistical errors for measurements of theh8
parameter by the sin~f! term in the S2SC functionI 5 for the se-
quential decay of an off-mass-shell photong*→t2t1 with
t2→r2n and t1→r1n, etc. AtMZ , the corresponding errors are
several orders of magnitude larger than unity.

r2 values a 1
2 values

$r2,r1% mode $a 1
2 ,a 1

1% $a1 ,r% modes

At 10 GeV:
h8 0.11 0.61 0.35
CP for h8 0.23 2.1 0.49
At 4 GeV:
h8 0.026 0.13 0.056
CP for h8 0.040 0.60 0.079
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‘‘purity’’ of detector components and of the data analysis b
distinguishing which coefficients are or are not equal be
tween various experimental data sets analyzed separately
the t7 modes@17#.

Assuming onlynL couplings, a simple way for one to use
a Monte Carlo simulation to test@18# for possibleCP viola-
tion is to add anS1P coupling ~to the standardV2A cou-
pling! in the r decay mode such that theS1P contribution
has an overall complex coupling factor ‘‘c’ ’ in the t2 mode
and a complex factor ‘‘d’ ’ in the t1 mode. By Table VIII of
Ref. @2#, c.f. Eqs.~A1! and ~A5! below, this will generate a
difference in moduli and phases between thet7 modes. Then
the two tests forCP violation @5# are whetherucu5udu and
arg(c)5arg(d) experimentally.

Second, to be model independent and of greater use
theorists, experimental analyses should not assume a mixt
of only V andA current couplings int decays. For ther, a1 ,
andK* modes, by consideration of polarized partial width
there are several fundamental quantities besides the chira
parameter and the total partial width which can be direct
measured. For example, for thea1 mode there are three logi-
cally independent tests for onlynL couplings:j51, z5s, and
v5h ; if T violation occurred then the nonzero parameter
v85h8 if there are onlynL couplings. For ther mode there
are also these tests except that onlyv andh8 can be directly
measured by S2SC functions; bothh andv8 must be deter-
mined indirectly by the two constraint equations of Sec. II A

It would be particularly interesting, as well as straightfor
ward, to search for evidence for lepton compositeness in t
most massive lepton, thet, where naively such structure
might be expected to be most easily observed. In analo
with the Pauli anomalous magnetic moment, such structu
could show up as an additional tensorialg15 f M1 f E cou-
pling which would preservej51 ~only nL couplings! but
give non(V2A) values to the other semileptonic parameters
From Table V, or Eqs.~28! and ~29!, there is the prediction
thats5zÞ1 andh5vÞ1 with the constraint forL large that

n-

h

TABLE XIII. For measurements oft2→a 1
2n from the sequen-

tial decay mode$a 1
2 ,a 1

1% by the five-variable S2SC functionI 5
2 .

Ideal statistical errors forh andv8.

$a 1
2 ,a 1

1% At 10 GeV At 4 GeV AtMZ

h 0.0062 0.017 0.044
CP for h 0.0087 0.025 0.062
v8 0.25 0.23
CP for v8 0.35 0.32

TABLE XIV. For measurements oft2→a 1
2n from the sequen-

tial decay modes$a 1
2 ,r1%1$r2,a 1

1% by the five-variable S2SC
function I 5

2 . Ideal statistical errors forh andv8.

$a1 ,r% At 10 GeV At 4 GeV AtMZ

h 0.0021 0.0036 0.014
CP for h 0.0030 0.0051 0.020
v8 0.13 0.062
CP for v8 0.19 0.088
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. ~101!

By Eqs.~39! the ratio ‘‘g/ l ’ ’ is a known function ofmr and
mt . Numerically(g/ l )r50.079@20#. At 10 or 4 GeV, by the
r2 (a 1

2) modes, compositeness in thet lepton could be re-
spectively probed@5# to 1.2 TeV~1.5 TeV!.

Third , in a completely general analysis, the values of t
semileptonic parameters should not be carelessly combi
from different modes because that could inadvertently ma
an additional Lorentz contribution. For instance, measu
ment of jp from the p mode only strongly constrains the
V1A chiral coupling; see Table VII of@6#; its measurement
in t→pn does notsignificantly constrain the presence o
scalar or tensorial couplings.

Lastly, in contrast to the purely leptonic modes@19#, thet
semileptonic modes are qualitatively distinct@21# since they
enable a second-stage spin correlation. This important diff
ence is a tool that can be used in many important reaction
contemporary interest. It can and must be exploited
searching for new physics.
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APPENDIX: THE HELICITY AMPLITUDES IN TERMS
OF THE CHIRAL COUPLINGS

In Sec. II, the simple symmetry relations among the am
plitudes are possible because of the Jacob-Wick phase c
ventions that were built into the helicity formalism@8#. In
combining these amplitudes with results from calculations
similar amplitudes by diagrammatic methods, care must
exercised to insure that the same phase conventions are b
used~c.f. appendix in first paper in@13#!.

The helicity amplitudes fort2→r2nL,R for both (V7A)

TABLE XV. For measurements oft2→a 1
2n from the sequen-

tial decay mode$a 1
2 ,a 1

1% by the seven-variable S2SC functionI 7
2 .

Ideal statistical errors forh andv8.

$a 1
2 ,a 1

1% At 10 GeV At 4 GeV AtMZ

h 0.0026 0.0050 0.0094

CP for h 0.0036 0.0071 0.013

v8 0.0021 0.0045 0.011

CP for v8 0.0030 0.0064 0.016
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couplings andmn arbitrary are fornL soln521
2,

AS 0,2 1

2D5gL
Er1qr

mr
Amt~En1qr!

2gR
Er2qr

mr
Amt~En2qr!, ~A1!

AS 21,2
1

2D5gLA2mt~En1qr!2gRA2mt~En2qr!

~A2!

and fornR soln5
1
2,

AS 0, 12D52gL
Er2qr

mr
Amt~En2qr!

1gR
Er1qr

mr
Amt~En1qr!, ~A3!

AS 1, 12D52gLA2mt~En2qr!1gRA2mt~En1qr!.

~A4!

Note thatgL ,gR denote the ‘‘chirality’’ of the coupling and
ln571

2 denote the handedness ofnL,R . For (S6P) cou-
plings, the additional contributions are

AS 0,2 1

2D5gS1PS mt

2L D 2qr

mr
Amt~En1qr!

1gS2PS mt

2L D 2qr

mr
Amt~En2qr!,

AS 21,2
1

2D50, ~A5!

AS 0, 12D5gS1PS mt

2L D 2qr

mr
Amt~En2qr!

1gS2PS mt

2L D 2qr

mr
Amt~En1qr!, AS 1, 12D50.

~A6!

The two types of tensorial couplings,g65 f M6 f E and g̃6

5gT16T
5
1

1
, give the additional contributions
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AS 0,71

2D57g1S mt

2L D FEr7qr

mr
Amt~En6qr!2

mn

mt

Er7qr

mr
Amt~En7qr!G6g2S mt

2L D F2
mn

mt

Er6qr

mr
Amt~En6qr!

1
Er6qr

mr
Amt~En7qr!G7g̃1S mt

2L D FEr6qr

mr
Amt~En6qr!1

mn

mt

Er7qr

mr
Amt~En7qr!G

6g̃2S mt

2L D Fmn

mt

Er6qr

mr
Amt~En6qr!1

Er7qr

mr
Amt~En7qr!G ,

AS 71,7
1

2D57A2g1S mt

2L D FAmt~En6qr!2
mn

mt
Amt~En7qr!G6A2g2S mt

2L D F2
mn

mt
Amt~En6qr!1Amt~En7qr!G

7A2g̃1S mt

2L D FAmt~En6qr!1
mn

mt
Amt~En7qr!G6A2g̃2S mt

2L D Fmn

mt
Amt~En6qr!1Amt~En7qr!G .
.
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