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We develop the perturbative QCD formalism for inclusive semileptonicB meson decays, which includes
Sudakov suppression from the resummation of large radiative corrections near the high end of charged l
energy. Transverse degrees of freedom of partons are introduced to facilitate the factorization ofB meson
decays. Ambiguities appearing in the quark-level analysis are then avoided. A universal distribution func
arising from the nonperturbative Fermi motion of theb quark, is constructed according to the heavy quark
effective field theory based operator product expansion, through which the mean and the width of the d
bution function are related to hadronic matrix elements of local operators. Charged lepton spectra o
B→Xuln decay are presented. We find 50% suppression near the end point of the spectrum. The ov
suppression on the total decay rate is 8% for the free quark model, and is less than 7% for the use of sm
distribution functions. With our predictions, it is then possible to extract the Cabibbo-Kobayashi-Maska
matrix elementuVubu from experimental data. We also discuss possible implications of our analysis wh
confronted with the rather small observed semileptonic branching ratio inB meson decays.@S0556-
2821~96!03809-X#

PACS number~s!: 13.20.He, 12.38.Cy, 13.25.Hw
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I. INTRODUCTION

The studies of semileptonic decays in heavy meso
within the framework of perturbative quantum chromod
namics~PQCD! dated back to the 1970s@1#. The massMQ

of a heavy quarkQ provides a rationale of this approach
The advantage of the PQCD formalism is that it provides
natural normalization of decay amplitudes. This point is
great importance to obtain a model-independent extraction
the Cabibbo-Kobayashi-Maskawa~CKM! matrix elements,
which are the key phenomenological parameters in und
standing the symmetry-breaking physics of the stand
model. We have shown that PQCD is applicable to the
clusiveB→p ln andB→r ln decays@2#, and an upper limit
of uVubu around 2.731023 was extracted from experimenta
data @3# directly. Recently, there have been controvers
concerning the inclusive semileptonic branching ratio ofB
meson decays@4,5#. Even new physics was proposed@4# to
resolve the discrepancy between theoretical predictions
experimental outcomes. It has been argued that PQCD ra
tive corrections may play an important role in the semile
tonic decaysB→Xln @5#. In view of this, it is essential to
first sort out the correct PQCD contributions to these deca

In the pioneering works of Chayet al. @6# and Shifman
et al. @7# a systematic expansion of relevant hadronic mat
elements in semileptonic decays in the inverse power ofMQ
was obtained by combining heavy quark effective fie
theory~HQEFT! and the method of operator product expa
sion ~OPE!. It was shown that the differential decay ra
dG/dq2dEl can be consistently calculated, when it is su
ably averaged over the charged lepton energyEl . Here
q25(pl1pn)

2 is the lepton pair invariant mass withpl and
pn the charged lepton and neutrino momenta, respectiv
At leading order, the expansion reproduces the naive pa
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model predictions@8# of free heavy-quark decays. Next-to-
leading order corrections, starting atO~LQCD

2 /M Q
2 !, are ex-

pected to be small in heavy meson decays. This approach
also been extended to the case of nonleptonic decays@9#.

To extractVub from the B→Xuln decay, one needs to
measure the charged lepton spectrum near the high end
El , such that the hugeB→Xcln background stops contrib-
uting. The measurement must be performed within an acc
racy of several hundred MeV, because the energy differen
between the end points of theb→c andb→u transitions is
only about 330 MeV. Unfortunately, OPE, the theoretica
tool, breaks down in this region. Since the expansion para
eter 1/MQ should be replaced by 1/(MQ2q•v) when q is
not small at the end point, OPE is not reliable. The heav
quark velocity v is defined byPQ5MQv, PQ being the
heavy-quark momentum. To circumvent the difficulty, Neu
bert @10# and Bigiet al. @11# have performed a resummation
of OPE, that results in a model-independent ‘‘shape fun
tion’’ in the description of the charged lepton spectrum. Th
universal shape function can be determined in principle b
an infinite tower of nonperturbative matrix elements ex
panded in the increasing power of 1/MQ , and has been em-
ployed in the study of the inclusive rare decayB→Xsg
@12,13#. One can therefore measure this shape function, s
in the B→Xsg decay, and then apply it to theB→Xuln
decay to obtain a model-independent prediction ofVub .
However, under the present experimental situation, one h
to make an ansatz for this shape function according to so
QCD constraints. Data of the decayB→Xsg will definitely
remove this ambiguity in the choice of shape functions in th
future.

On the parton model side, Bareiss and Paschos@14# ar-
gued that the phase space for the decays is dominated
distances near the light cone, and one can use the distribut
4970 © 1996 The American Physical Society
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function of theQ quark in the heavy mesonHQ in the infi-
nite momentum frame to fill up the gap between the simp
heavy quark kinematics and the heavy meson kinemat
This distribution function can be obtained by measuring t
Q-quark fragmentation function in the heavy meson produ
tion from e1e2 annihilation. To remove the singularitie
near the end point of the charged lepton spectrum, which
due to soft gluon bremsstrahlung, these authors simply
summed soft gluon corrections in the naive leading~double!
logarithmic approximation and obtained a Sudakov suppr
sion factor. To fill up the kinematic gap, Altarelli and Pe
trarca@15# regarded the light quark insideHQ as a quasifree
particle but with a Gaussian spectrum of Fermi momentu
p:

f ~p!5
4p2

Appf
3
expS 2

p2

pf
2D , ~1!

where pf is a free parameter that can be fixed by heav
quark symmetry. To smooth out the end-point singularitie
these authors also resummed leading soft gluon contributi
into a Sudakov form factor.

Korchemsky and Sterman@16# gave the first PQCD treat-
ment of the decaysB→Xsg andB→Xuln, in which higher-
order corrections were factorized into a soft distributio
function, a jet function, and a hard-scattering amplitude a
cording to the kinematic regions of loop momenta. T
equivalence between the shape function@10,11,13# and the
distribution function was pointed out. Soft gluon correction
which correspond to the nonperturbative origin of the dist
bution function, were resummed systematically up to ne
to-leading logarithms using the Wilson-loop formalism
However, their analysis is appropriate only in the end-po
region, and the effects of resummation were not estimate

In all the above approaches, the factorization was form
lated at the quark-level kinematics, and the missing sta
inside the kinematic window betweenMQ andMH , MH be-
ing theHQ meson mass, were populated by introducing ex
heavy-quark Fermi motion, which arises from the recoil
the light partons inHQ . Our approach is formulated at th
meson-level kinematics directly, in which the heavy qua
Q, carrying a fraction of the heavy meson momentum, has
invariant mass close toMQ . Our formalism therefore re-
moves the ambiguity in the definition of the heavy qua
massMQ , and the kinematic gap is filled up naturally.

In this paper we shall derive the PQCD factorization fo
mula for the semileptonic decayB→Xuln in a rigorous way,
which is suitable for the entire range of the spectrum. T
factorization procedures demand the inclusion of the tra
verse degrees of freedom of partons. Hence, we perform
resummation of large perturbative corrections in the tra
versal configuration space using the technique develope
@2#, which is also accurate up to next-to-leading logarithm
It can be shown that our resummation result coincides w
that in @16# at the end point. The transverse momenta carr
by the b quark inside theB meson, whose distribution is
governed by the Sudakov form factor from the resummati
play an important role here. They diminish the on-shell pro
ability of the outgoingu quark at the end point, and thu
suppress the singularities.
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We define the kinematics of the inclusive semileptoni
decays of heavy mesons in Sec. II, and derive the factoriz
tion formula for the charged lepton spectrum, which incor
porates the transverse degrees of freedom of partons. T
formula is expressed as the convolution of a hard-scatterin
amplitude with a jet and a universal soft function. In Sec. III
we resum the large logarithms in these convolution facto
by solving a set of evolution equations. The initial condition
of the soft function is identified as the distribution function
which is equivalent to the shape function mentioned abov
In Sec. IV, we construct a distribution function according to
the HQEFT based OPE, and relate the mean and width of t
distribution function to the hadronic matrix elements of the
kinematic operator. Hence, both perturbative higher-orde
corrections and nonperturbative corrections from Fermi mo
tion are included in our formalism. We present numerica
results in Sec. V, and show that the Sudakov form facto
from the resummation and the distribution function indee
render the end-point spectrum smoother as stressed in@12#.
Section VI is the conclusion.

II. FACTORIZATION THEOREMS

We consider the semileptonic inclusive decays of aB
meson:

B~PB!→ l ~pl !1 n̄~pn!1hadrons. ~2!

The three independent kinematic variables are chosen asEl ,
q2, andq0 in our discussion.El and q5pl1pn have been
defined in the Introduction, andq0 is the energy of the lepton
pair. With these variables, the triple differential decay rate i
written as

d3G

dEldq
2dq0

5
1

256p4MB
uM~El ,q

2,q0!u2, ~3!

whereMB is theB meson mass, and the weak matrix ele
ment is given by

M5Vub

GF

A2
l̄Gmn l(

X
^Xu j muB&. ~4!

In Eq. ~4! Vub is the corresponding CKM matrix element,
and j m5ūGmb is the electroweak current with
Gm5gm~12g5!.

We work in the rest frame of theB meson, and choose the
following light-cone components for relevant momenta:

PB5~PB
1 ,PB

2 ,0'!, pl5~pl
1,0,0'!, pn5~pn

1 ,pn
2 ,pn'!,

~5!

with PB
15PB

25MB/& and p n
250. The independent vari-

ables are identified asp l
1, p n

2, andp n
1, and their relations to

El , q2 and q0 are El5p l
1/&, q252p l

1p n
2, and

q05(p l
11p n

11p n
2)/&, respectively. We define

Pb5PB2p as the b quark momentum, which satisfies
Pb

2'M b
2,Mb being theb quark mass.p is the kicks from the

light components inside theB meson, which has a large plus
componentp1 and small transverse componentsp' . The
purpose of introducing the transverse degrees of freedo
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4972 53HSIANG-NAN LI AND HOI-LAI YU
will become clear later. Theb quark decays into au quark
with momentumPu5PB2p2q. We have distinguished the
B meson momentumPB from the b quark momentumPb
here.

It is more convenient to employ the scaling variables

x5
2El

MB
, y5

q2

MB
2 , y05

2q0
MB

, ~6!

instead of the dimensionful onesEl , q
2, andq0 . Note that

the scaling variables are defined in terms of theB meson
massMB , since we formulate the factorization according
theB meson kinematics. This differs from the convention
treatment in the literature@16#, where the scaling variables
were defined in terms of theb quark mass. For massles
leptons, it is easy to show, using the momentum configu
tions defined in Eq.~5!, that the phase space is given by

0<x<1, 0<y<x,
y

x
1x<y0<y11. ~7!

In the end-point region withx→1 (p l
1→MB/&) and

y→0 (p n
2→0), we havey0→1 (p n

1→0) andp→0. Theu
quark then has a large minus compone
Pu

25(12y/x)MB/& but a very small plus componen
Pu

15(12y02y/x)MB/&, and thus a very small invarian
Pu

25M B
2(12y01y), which forms an on-shell jet subpro

cess. Theu quark travels a long distance ofO~1/LQCD! be-
fore hadronized. Besides, theB meson is dominated by sof
dynamics, which is the origin of the soft function stated
the Introduction. The remaining dominant subprocess is
hard one, which contains the weak decay vertices. Theref
the important contributions are factorized into the soft (S),
jet (J), and hard (H) subprocesses as shown in Fig. 1.

The factorization formula for the inclusive semilepton
decayB→Xuln is written as

1

G l
~0!

d3G

dx dy dy0
5MB

2E
zmin

zmax
dzE d2p'

3S~z,p' ,m!J~z,Pu
2 ,p' ,m!

3H~z,Pu
2 ,p' ,m!, ~8!

FIG. 1. Factorization of inclusive semileptonic decays of theB
meson into a soft (S), a jet (J), and a hard (H) subprocess.
o
al

s
ra-

nt

n
he
re,

c

with the momentum fraction z defined by
z5Pb

1/PB
1512p1/PB

1 and G l
(0)5(GF

2/16p3)uVubu
2M B

5

@16#. m in Eq. ~8! is the renormalization and factorization
scale. The triple differential decay rate is, of course,m inde-
pendent. Note that in the regiony→x;1 the outgoingu
quark becomes soft and Eq.~8! fails. We shall show that
contributions from this dangerous region are suppressed
phase space. The upper limit ofz takes the valuezmax51 in
our analysis. If performing the factorization according to th
b quark kinematics, one must assumezmax5MB/Mb , which
is greater than 1, in order to fill up the kinematic window.
has been explained@16# that zmax.1 is not allowed in per-
turbation theory, and is thus of nonperturbative origin. Fro
the kinematic constraints in Eq.~7! and the on-shell condi-
tion of theu-quark jet, the lower limit ofz should bezmin5x,
instead ofzmin50.

The tree-level expressions for the convolution factorsJ
andH are given by

J~0!5d~Pu
2!5dSMB

2F12y01y2~12z!S 12
y

xD
2
2p'•pn'

MB
2 2

p'
2

MB
2 G D ,

~9!
H ~0!}~Pb•pn!~pl•Pu!5@~PB2p!•pn#~pl•Pu!

}~x2y!S y02x2~12z!
y

x
1
2p'•pn'

MB
2 D .

Equation~8! can be regarded as an expression at the int
mediate stage in the derivation of conventional factorizati
theorems. If thep' dependence inJ andH is negligible, the
variablep' in S can be integrated over, and Eq.~8! reduces
to the conventional factorization formula. However, it is ob
vious from Eq.~9! that at least thep' dependence inJ is not
negligible, especially in the end-point region. This is the re
son we introduce the transverse degrees of freedom into
analysis.

Suppose we consider higher-order corrections to Eq.~8!
from a gluon crossing the final-state cut, and route the lo
momentuml through, say, the jet subprocess. Without losin
generality, we approximateJ(p11 l1,Pu

21 l2,p'1l')
'J(p1,Pu

2,p'1l') according to the kinimatic relations
l1,p1, l2,Pu

2, andl''p' . Hence, the loop integral can
not be performed unless the dependence ofJ on transverse
momentum is known. This difficulty can be removed b
Fourier transform:

J~p1,Pu
2 ,p'1 l'!5E d2b

~2p!2
J̃~p1,Pu

2 ,b!ei ~p'1 l'!•b,

~10!

where the impact parameterb ~Fourier conjugate variable of
p'! measures the transverse distance traveled by the jet.
ing Eq. ~10!, the l' dependence is decoupled from the j
function, and the factoreil'•b is absorbed into the loop inte-
gral, which can then be performed. Therefore, an extra fac
eil'•b is associated with each gluon crossing the final-st
cut in our formalism.
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To further simplify the factorization formula, we neglec
those terms involvingpn' in J andH. This is a good ap-
proximation forx→0 andx→1, since forx→0 contribu-
tions from transverse momenta are not important, and
x→1 the magnitudepn'5MBA(y02x2y/x)y/x vanishes.
Equation~8! then becomes

1

G l
~0!

d3G

dx dy dy0
5MB

2E
x

1

dzE d2b

~2p!2

3S̃~z,b,m!J̃~z,Pu
2 ,b,m!H~z,Pu

2 ,m!.

~11!

III. RESUMMING THE JET, SOFT,
AND HARD SUBPROCESSES

It can be shown that the dominant subprocessesJ, S, and
H contain large logarithms form radiative corrections. In pa
ticular, J gives rise to double~leading! logarithms in the
end-point region. These large corrections spoil the pertur
tion theory and must be organized. In what follows we sh
demonstrate in detail how to resume these large correcti
up to next-to-leading logarithms. The first step in resumm
tion is to map out the leading regions of radiative corre
tions. We work in axial gaugen•A50, wheren is a space-
like vector. TheO(as) diagrams that contain large doubl
logarithms in axial gauge at the end point are Figs. 2~a! and
2~b!. The self-energy diagram, Fig. 2~c!, and the diagram
with a soft gluon connecting the two heavy-quark lines,
shown in Fig. 2~d!, give only single soft logarithms.

In the collinear region with the loop momentuml parallel
to Pu and in the soft region withl→0 we can eikonalize the
heavyb-quark line. Then Figs. 2~a! and 2~b! are factorized
out of the cross section, and they are the diagrams thaJ
absorbs, as shown in Fig. 3. With the eikonal approximatio
the b-quark propagator is expressed as 1/v• l to the order
1/MB with v5~1,1,0'!. Hence, the factorization in Eq.~11!

FIG. 2. Lowest-order radiative corrections to the inclusiveB
meson decays.
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is in fact valid toO(1/MB). The physics involved in this
approximation is that a soft gluon or a gluon moving paralle
to Pu cannot explore the details of theb quark, and its dy-
namics can be factorized. This is consistent with the HQEFT
where theb quark is treated as a classical relativistic particle
carrying color source. Since the large massMB does not
appear in the eikonal propagator, the only large scale inJ is
Pu

2.
The remaining diagrams, Figs. 2~c! and 2~d!, that give

single soft logarithms are grouped intoS. It is then obvious
thatS depends only on the properties of the bound stateuB&,
but not on the particular short-distance subprocess. The
fore, S is a universal function describing the distribution of
theb quark inside theB meson. In fact, in the 1/Mb limit one
can identifyS as the model-independent ‘‘shape function’’
or ‘‘primodial function’’ obtained from the resummation in
@10,13,11#, respectively.

The basic idea of the resummation technique is as fo
lows. If the double logarithms are organized into an expo
nential form, J̃;exp@2ln Pu

2 ln~ln Pu
2/ln b!#, one can sim-

plify the analysis by studying the derivative ofJ̃,
dJ̃/d ln Pu

25CJ̃ @2#. Since the coefficient functionC con-
tains only single logarithms, it can be treated by
renormalization-group~RG! methods. In this way, one re-
duces the complicated double-logarithm problem to a singl
logarithm problem.

J̃ is scale invariant in the gauge vectorn as shown by the
gluon propagator in axial gauge,2 iNmn( l )/( l 21 i e), with

Nmn~ l !5gmn2
nml n1 lmnn

n• l
1n2

lml n

~n• l !2
. ~12!

Therefore, J̃ must depend onPu
2 through the ratio

(Pu•n)
2/n2. It is then easy to show that the differential op-

eratord/d ln Pu
2 can be replaced byd/dn using a chain rule:

FIG. 3. Factorization of the jet subprocess.
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dJ̃

d ln Pu
2 52

n2

v8•n
v8a

d

dna J̃ ~13!

with the vectorv85~0,1,0'!. This simplifies the task tremen
dously, because the momentumPu flows through both quark
and gluon lines, butn appears only in gluon propagators.

Applying d/dn to the gluon propagator, we obtain

d

dna
Nmn52

1

l •n
~Nmal n1Nnalm!. ~14!

The momentuml that appears at both ends of the differen
ated gluon line is contracted with the vertex, where the glu
attaches theu quark or the eikonal lines. Next we add up a
diagrams with different differentiated gluon propagators, a
apply the Ward identity. Finally, we arrive at a differentia
equation forJ̃ as shown in Fig. 4, where the square vert
represents

gTa
n2

~v8•n!~ l •n!
v8a, ~15!

with Ta the color matrix. The factor 2 counts the two exte
nal quark lines ofJ̃. An important feature of the square ve
tex is that the gluon momentuml does not give rise to col-
linear divergences because of the nonvanishingn2. The
leading regions ofl are then soft and ultraviolet, in which th
subdiagram containing the square vertex can be factorize
shown in Fig. 5 atO(as). Hence, the differentiation really
turns the double-logarithm problem into a single-logarith
problem as stated before.

To separate the soft and ultraviolet scales in Fig. 5,
introduce a functionK to organize the soft logarithms from
the four diagrams, Figs. 5~a!–5~d!, and a functionG for the

FIG. 4. Graphic representation of Eq.~16!.
-

ti-
on
ll
nd
l
ex

r-
r-

e
d as

m

we

ultraviolet divergences from Figs. 5~e! and 5~f!. Double
counting is avoided by the subtraction inG . GeneralizingK
andG to all orders, we derive the differential equation forJ̃,

d

d ln Pu
2 J̃~Pu

2 ,b,m!52$K @bm,as~m!#

1G @Pu
2/m,as~m!#%J̃~Pu

2 ,b,m!.

~16!

The scaleb in K arises from Fig. 5~b!, which contains an
extra factoreil'•b as explained in Sec. II.

At the one-loop level, the renormalized functionK cal-
culated in dimensional regularization for the gauge vect
n}~1,21,0'! is given by

K5Fig. 5~a!1Fig. 5~b!1Fig. 5~c!1Fig. 5~d)2dK ,

~17!

with

FIG. 5. Lowest-order diagrams for the functionsK andG .
Fig. 5~a!1Fig. 5~b)52g2CFmeE d42el

~2p!42e H pd~ l 2!eil'•b2
i

l 21 i e J n2va8vb8

~v8•n!~ l •n!~ l •v8!
Nab~ l !

52
as

2p
CFH 2e 1 ln pm2b2egJ , ~18!

Fig. 5~c!1Fig. 5~d)52g2CFmeE d42el

~2p!42e H pd~ l 2!eil'•b2
i

l 21 i e J n2va8vb

~v8•n!~ l •n!~ l •v !
Nab~ l !50. ~19!
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dK is the scheme-dependent counterterm which will
specified later.CF54/3 is the color factor, andg is the Euler
constant. Similarly,G is given by

G5Fig. 5~e!1Fig. 5~f)2dG , ~20!

with

Fig. 5~e!1Fig. 5~f)52g2CFmeE d42el

~2p!42e

P” u2 l”

~Pu2 l !21 i e

3H ga1
P” u2 l”

l •v8
va8 J

3
n2vb8

~v8•n!~ l •n!

Nab~ l !

l 21 i e

52
as

2p
CFH 2

2

e
1 ln

~Pu
2!2neg21

pm2 J ,
~21!

andn5(n•v8)2/un2u is the gauge factor.
In the modified minimal subtraction (MS) scheme with

dK52dG52
as

2p
CFS 2e 1 ln 4pe2gD , ~22!

the one-loopK andG are given by

K52
as

2p
CF lnS b2m2e2g

4 D ,
~23!

G52
as

2p
CF lnS 4~Pu

2!2n

m2e D .
We have separated the two scales inJ̃, b, andPu

2, into the
functionsK andG , respectively, such that RG methods a
applicable to the summation of the corresponding sing
logarithms. AlthoughK andG possess individual ultravio-
let pole, their sum is finite, and thus a RG invariant quanti
The RG equations for the renormalizedK andG are

m
d

dm
K „bm,as~m!…52gK„as~m!…

52m
d

dm
G „Pu

2/m,as~m!…

~24!

with

gK5m
d

dm
dK52m

d

dm
dG , ~25!

the anomalous dimension ofK . To two loops,gK is given
by @17#

gK5
as

p
CF1S as

p D 2CFFCAS 67362 p2

12D2
5

18
nf G , ~26!

wherenf54 is the number of quark flavors andCA53 is the
color factor.
be

re
le

ty.

Equation~24! has the solution

K „bm,as~m!…1G „Pu
2/m,as~m!…

5K „1,as~Pu
2!…1G „1,as~Pu

2!…2E
1/b

Pu
2 dm̄

m̄
A„as~m̄ !…

~27!

with the anomalous dimension

A~as!5gK~as!1b~g!
]

]g
K ~1,as!. ~28!

Substituting Eq.~27! into ~16!, we obtain the evolution ofJ̃
in Pu

2 andb:

J̃~Pu
2 ,b,m!5exp@22s~Pu

2 ,b!# J̃~b,m!. ~29!

The RG invariant Sudakov exponent is given by@18#

s~Pu
2 ,b!5

A~1!

2b1
q̂ lnS q̂

b̂
D 1

A~2!

4b1
2 S q̂

b̂
21D 2

A~1!

2b1
~ q̂2b̂!

2
A~1!b2

4b1
3 q̂F ln~2b̂!11

b̂
2
ln~2q̂!11

q̂ G
2FA~2!

4b1
22

A~1!

4b1
lnS e2g21

2 D G lnS q̂
b̂
D

1
A~1!b2

8b1
3 @ ln2~2q̂!2 ln2~2b̂!#, ~30!

with the variables

q̂[ lnS Pu
2

L D , b̂[ lnS 1

bL D . ~31!

The QCD scaleL[LQCD will be set to 0.2 GeV in the nu-
merical study in Sec. V. The coefficientsb i andA

( i ) are

b15
3322nf

12
,

b25
153219nf

24
,

~32!

A~1!5
4

3
,

A~2!5
67

9
2

p2

3
2
10

27
nf1

8

3
b1 lnS eg

2 D .
Having summed up the double logarithms, we concentra

on the single logarithms inS̃, H and the initial condition
J̃(b,m). Since both the differential decay rate and the Sud
kov exponents(Pu

2 ,b) are RG invariant, we have the RG
equations
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D J̃~b,m!522gqJ̃~b,m!,

DS̃~b,m!52gSS̃~b,m!, ~33!

DH~Pu
2 ,m!5~2gq1gS!H~Pu

2 ,m!,

with

D5m
]

]m
1b~g!

]

]g
. ~34!

gq52as/p is the quark anomalous dimension in axia
gauge, andgS52(as/p)CF is the anomalous dimension
of S̃. The functionS̃ in fact contains soft single logarithms
only from Fig. 2~d!, because the contribution from Fig. 2~c!
vanishes for the gauge vectorn}~1,21,0'! under eikonal
approximation. Hence,gS is derived from the evaluation of
Fig. 2~d! straightforwardly.

Integrating Eq.~33!, we obtain the evolution of all the
convolution factors:

J̃~z,Pu
2 ,b,m!5expF22s~Pu

2 ,b!

22E
1/b

m dm̄

m̄
gq„as~m̄ !…G J̃~z,b,1/b!,

S̃~z,b,m!5expF2E
1/b

m dm̄

m̄
gS„as~m̄ !…G f ~z,b,1/b!,

~35!

H~z,Pu
2 ,m!5expF2E

m

Pu
2 dm̄

m̄
@2gq„as~m̄ !…

1gS„as~m̄ !…#GH~z,Pu
2 ,Pu

2!.

We shall neglect the intrinsicb dependence of the distribu-
tion function f below. If Sudakov suppression in the large-b
region is strong, we may drop the evolution off and J̃ in b,
which is proportional toas(1/b). Hence, we assumef (z,b,1/
b)5 f (z), J̃(z,b,1/b)5 J̃(0)(z,b), the Fourier transform of
the tree-level expression in Eq. ~9!, and
H(z,Pu

2 ,Pu
2)5H (0)(z,Pu

2).
Substituting Eq.~35! into ~11!, we derive the factorization

formula for the inclusive semileptonicB meson decay:

1

G l
~0!

d3G

dx dy dy0
5MB

2E
x

1

dzE
0

` bdb

2p
f ~z!J̃~0!~z,b!

3H ~0!~z,Pu
2!exp@2S~Pu

2 ,b!#.

~36!

The complete Sudakov exponentS is given by

S~Pu
2 ,b!52s~Pu

2 ,b!2
5

3b1
ln
P̂u

2

b̂
, ~37!

with P̂ u
25ln(Pu

2/L), which combines all the exponents in
Eq. ~35! and includes both leading and next-to-leading log
rithms. It is straightforward to observe from Eq.~37! that the
Sudakov form factore2S falls off quickly at largeb;1/L,
l

a-

whereas(1/b).1 and perturbation theory fails. Hence, th
Sudakov form factor guarantees that main contributions
the factorization formula come from the smallb, or short-
distance, region, and the perturbative treatment is inde
self-consistent.

We stress that our formalism is applicable to the enti
range of the spectrum, if thepn' dependence inJ andH was
not neglected, not only to the end-point region as in@16#. We
neglected thepn' dependence for the sake of simplicity o
calculation. Since the Sudakov form factor is defined in th
region

S 12
y

xD MB

A2
5Pu

2.
1

b
.L, ~38!

there exist the suppression effects asy,(12&L/MB)x.
The phase space with suppression expands to the largest
tent for x→1 and vanishes atx→0. Hence, lowest-order
predictions receive maximal suppression at the end poi
corresponding to the presence of large logarithms, but a
modified only slightly at smallx, implying weaker logarith-
mic corrections. This is consistent with our expectation fo
the Sudakov effects in the whole range 0,x,1.

IV. CONSTRUCTING THE UNIVERSAL SOFT FUNCTION

Since all the double-logarithmic corrections have been a
sorbed into the jet subprocess, the soft functionS̃ contains
only soft single logarithms from Fig. 2~d! @Fig. 2~c! does not
contribute because of the choice of the gauge vec
n}~1,21,0'!#. These single logarithms can be summed b
solving the RG equationDS̃52gSS̃ as shown in Eq.~33!.
The solution has been given in Eq.~35!:

S̃~z,b,m!5expF2E
1/b

m dm̄

m̄
gS„as~m̄ !…G f ~z!, ~39!

where the initial conditionf (z) for the evolution ofS̃ must
be determined phenomenologically. From the definition ofS̃,
it is obvious thatf depends only on the properties of th
bound stateuB&, but not on the particular short-distance sub
process. Therefore,f is a process-independent universa
function describing the distribution of theb quark inside aB
meson.

As mentioned in the previous section, in the 1/Mb limit
one can identifyf as the model-independent shape functio
or primodial function obtained from the resummation o
OPE in @10,11,13#. It was observed by Korchemsky and
Sterman@16# that one can deduce some nonperturbative i
formation of f from the perturbative resummation of sof
gluons. Theses authors argued that the infrared renormal
appearing during the resummation procedure produce pow
correction ambiguities. Hence, there should exist corr
sponding nonperturbative power-correction ambiguities
render the physicalf well defined. To leading order, with a
‘‘minimal’’ ansatz for integrating the first infrared renorma
lon singularity, Korchemsky and Sterman@16# derived

f KS~z!5
1

A2ps2
expF2

~12z!2

2s2 G , ~40!
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which describes a Gaussian distribution with widths around
z51. Requiring that the minimal ansatz be consistent w
HQEFT and OPE, one fixes the width to be

s25
mp
2

3Mb
2 , ~41!

where mp
250.5460.12 GeV2 @19# is obtained from QCD

sum-rule estimation.
Recall thatfKS was derived by integrating only the firs

infrared renormalon. This fact is reflected in the nonvanis
ing property off KS in the unphysical regionz.1, and in its
validity in the vicinity of z51. However, comparingf KS
with the phenomenological distribution function@20#,

f P~z!5NP

z~12z!2

@~12z!21ePz#
2 , ~42!

one finds that they do share the same leading (12z)2 behav-
ior. f P was obtained from the experiments of theB meson
production ine1e2 annihilation by applying a crossing to
the light quark and then a time-reversal transformation@20#.
The constantNP50.133 068 is the normalization, and
eP50.006 is the shape parameter. Inspired by this obser
tion, we postulate the following two-parameter distributio
function for theB meson:

f B~z!5N
z~12z!2

@~z2a!21ez#2
u~12z!, ~43!

which has the correct leading (12z)2 behavior nearz51.
The purpose of introducing one more parametera in Eq. ~43!
is to allow a consistency check onf P in Eq. ~42!.

We now relate the parametersa and e to the hadronic
matrix elements of some local operators derived fro
HQEFT-based OPE, which are standard techniqu
@10,12,13#. The distribution function in axial gauge is de
fined by

f B~z!5
1

2A2
E dy2

2p
ei ~12z!PB

1y2
^Bub̄v~0!bv~y

2!uB&,

~44!

in which the large momentum of the rescaled heavy-qua
field bv(x) has been projected out as usual in HQEFT by

bv~x!5eiMbv•xb~x!. ~45!

Hence, f B(z) is independent of theb-quark mass as it is
written in terms of a matrix element in Eq.~44!. Note that
the Dirac matrix structure has been properly factorized
shown in Eq.~44!.

To connect with HQEFT, we write theb-quark momen-
tum as Pb5PB2p5Mbv1(MB2Mb)v2p, and identify
the residual momentum of theb quark as k5L̄v2p,
L̄5MB2Mb being the effective mass of the light partons i
the B meson. The probability to find ab quark with light-
cone residual momentumk1 inside theB meson,f r(k

1), has
been defined in@13#. The moments off r(k

1),

An5E k1nf r~k
1!dk1, ~46!
ith

t
h-

va-
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n

have been derived in HQEFT-based OPE as@13#

A051, A150, A25
MB

2

3
Kb ,... . ~47!

These moments are expressed in terms of hadronic mat
elements corresponding to the structure of the 1/Mb expan-
sion, with

Kb[2
1

2MB
K BUb̄v ~ iD !2

2Mb
2 bvUBL . ~48!

The vanishingO~LQCD/MB! contribution to the first moment
A1 is consistent with the conclusion from the renormalo
analysis that the first nontrivial power correction begins a
O~LQCD

2 /M B
2! and with our intuition for vanishing average

residual momentum of theb quark inside theB meson in the
heavy-quark limit.

The moments off B(z) can be expressed as local hadroni
matrix elements by performing an OPE of the bilocal opera
tor b̄v(0)bv(y

2) in Eq. ~44! in the power of 1/Mb . The
relation betweenf B and f r is then given by@13#

f B~z!dz5@ f r~k
1!1O~1/Mb!#dk

1, ~49!

which reflects the difference of orderL̄ between theB me-
son kinematics and theb-quark kinematics. Using Eq.~46!
and the definitionz5Pb

1/PB
1 or k15PB

1(z2Mb/MB), it is
straightforward to derive the moments off B . They are

E
0

1

f B~z!dz51, ~50!

E
0

1

dz~12z! f B~z!5L̄/MB1O~LQCD
2 /MB

2 !, ~51!

E
0

1

dz~12z!2f B~z!5
L̄2

MB
2 1

2

3
Kb1O~LQCD

3 /MB
3 !.

~52!

The first formula gives the correct normalization off B ,
which corresponds to the total number ofb quarks inside aB
meson. The second formula is related to the effective mass
light quarks,L̄. The third formula gives the hadronic matrix
element of the kinematic operator,Kb .

To have a better insight, we examine if the distribution
function is consistent with our physical intuition for the be
havior of the heavyb quark inside aB meson. We calculate
the meanm and the variances2 of f B(z) from Eqs.~51! and
~52!, and derive

m512
L̄

MB
1OS LQCD

2

MB
2 D , ~53!

s25
2Kb

3
1OS LQCD

3

MB
3 D . ~54!

Substituting the QCD sum rule@19# and B*2B mass-
splitting @21# results,
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MB55.279 GeV, Mb54.776 GeV,

Kb50.01260.0026, ~55!

we obtainm50.90 ands250.008060.0017, implying that
f B(z) peaks sharply aroundz'm'1 and has a width of
O~LQCD/MB!. The parametersN, a, and e in f B(z) can be
determined using Eqs.~50!–~52! with ~55! inserted, which
are

N50.026 09, a50.9752, e50.001 699. ~56!

The value ofa, derived from the QCD constraints~by taking
finite number of moments only!, is very close to unity. This
is consistent with the expectation fromf P . However, we
emphasize thatf P is not quite consistent with HQEFT, its
first and second moment differing from Eqs.~51! and~52! by
at least 45%.

The distribution functions in Eqs.~42! and~43! will serve
as the initial conditions of the soft function in~39!. We then
derive the PQCD factorization formula for the inclusive de
cay B→Xuln, with the phenomenological inputs satisfyin
the QCD constraints from HQEFT-based OPE.

V. THE CHARGED LEPTON SPECTRUM

In this section we evaluate Eq.~36! numerically for vari-
ous distribution functions. The charged lepton spectrum
the decayB→Xuln from the naive quark model is obtained
by simply choosingf (z)5d(12z) and ignoring the trans-
verse momentum dependence inJ(0) andH (0). A simple cal-
culation leads to

1

G l
~0!

dG

dx
5
x2

6
~322x!, ~57!

which corresponds to the solid curve~1! in Fig. 6. This curve

FIG. 6. Charged lepton spectra of theB→Xuln decay for~1!
f (z)5d(12z), ~2! f (z)5 f B(z), and ~3! f (z)5 f P(z). The solid
~dashed! curves are derived without~with! Sudakov suppression.
-
g

for

does not fall off at the end point of the spectrum, contradic
ing the observed behavior of the inclusive semileptonic d
cays ofB mesons. The discrepancy implies that the tree-lev
analysis is not appropriate, especially in the end-point regi
where PQCD corrections are important as discussed in S
III.

We then take into account Sudakov suppression from t
resummation of large radiative corrections. Substitutingf (z)
5d(12z), H (0)5(x2y)(y02x) and the Fourier transform
of J(0)5d(Pu

2) with Pu
25M B

2(12y01y2p'
2 /M B

2) into Eq.
~36!, we derive the modified quark model spectrum. Th
spectrum is, after integrating Eq.~36! over z and y0 , de-
scribed by

1

G l
~0!

dG

dx
5MBE

0

x

dyE
0

1/L

dbe2S~Pu
2 ,b!~x2y!h

3F ~11y2x!J1~hMBb!2
2

MBb
hJ2~hMBb!

1h2J3~hMBb!G , ~58!

wherePu
25(12y/x)MB/A2, h5A(x2y)(1/x21) andJ1 ,

J2 , J3 are the Bessel functions of order 1, 2, and 3, respe
tively. Note the presence of the Sudakov form factore2S and
the expression in the square brackets which comes fromJ̃(0).
The cutoff 1/L of the impact parameterb is set by the Suda-
kov form factor. Numerical results of Eq.~58! for L50.2
GeV are shown by the dashed curve~1! in Fig. 6. Since we
have neglected thepn' dependence inJ andH for simplicity,
Eq. ~58! is appropriate only for small and largex. Therefore,
to obtain the dashed curve~1!, we evaluate Eq.~58! in the
regions 0<x<0.7 and 0.9<x<1, and then extrapolate from
x50.7 to 0.9 smoothly. The dependence onL in our analysis

FIG. 7. Charged lepton spectra of theB→Xuln decay near the
end point for the use off B and f P . Conventions are the same as
those in Fig. 6 but with the dotted curve corresponding to th
dashed curve~3!.
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is also examined, and it is found that predictions increase
only 10–20 % ifL was set to 0.1 GeV.

One observes immediately that the Sudakov effects alo
are enough to render the uprising free quark spectrum fal
at the end point. This is consistent with our expectation th
the inclusion of transverse momenta and Sudakov supp
sion diminishes the on-shell configuration of the outgoin
u-quark jet. Another important feature in Fig. 6 is that th
solid and dashed curves coincide with each other in the
gion x→0. This indicates that the Sudakov effects almo
cease to contribute away from the end point as stated in S
III.

TABLE I. The total decay rates for the quark model and for th
use of the distribution functionsf B and f P .

G/G l
(0) d(12x) f B f P

Without suppression 0.0833 0.0586 0.0446
With suppression 0.0767 0.0548 0.0425
Sudakov effects 7.92% 6.48% 4.71%
by

ne
loff
at
res-
g
e
re-
st
ec.

The spectrum from the parton model without Sudak
suppression is obtained by adoptingH (0)5(x2y)[y02x
2(12z)y/x] and Pu

25M B
2[12y01y2(12z)(12y/x)].

With integration overy0 , we derive

1

G l
~0!

dG

dx
5E

0

x

dyE
x

1

dz f~z!~x2y!~y1z2x!, ~59!

where f (z) can be replaced by the distribution function
given in Eqs.~42! and ~43!. Predictions from the use off B
and f P are represented by the solid curves~2! and~3! in Fig.
6, respectively. Both of the spectra deviate from the qu
model one slightly at smallx, and vanish at the end point
Since Eq.~59! incorporates nonperturbative effects from pr
modial heavy-quark motion@11,13# ~or soft dynamics in our
formalism! through f , we conclude that these nonperturb
tive corrections are indeed important in the end-point regi

At last, including Sudakov suppression into Eq.~59!, we
arrive at the charged lepton spectrum of theB→Xuln decay
that takes into account both large perturbative and nonp
turbative corrections:

e

1

G l
~0!

dG

dx
5MBE

0

x

dyE
0

1/L

dbE
x

1

dz f~z!~x2y!jF ~z1y2x!J1~jMBb!2
2

MBb
jJ2~jMBb!1j2J3~jMBb!Ge2S~Pu

2 ,b!,

~60!
ur

e-
in-
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with j5A(x2y)(z/x21). Predictions fromf B and f P are
shown by the dashed curves~2! and ~3!, respectively. They
coincide with the solid curves at smallx, but descend by
about 50% atx→1 as shown in Fig. 7, implying strong
suppression in the end-point region. The slope of the sp
trum then becomes smoother as expected.

From Fig. 6 we evaluate the total decay rateG/G l
(0), and

results along with the Sudakov effects are displayed in Ta
I. We find that the overall suppression from the Sudak
effects is 8% for the quark model and less than 7% for t
use of f B and f P . The two distribution functions lead to
about 20% difference in the total decay width. Comparing
the drastic distinction betweenf B and f P with NP/N;5 and
eP/e;4, our formalism is quite insensitive to the choice o
different distribution functions. The overall Sudakov sup
pression of less than 8% indicates that PQCD corrections
actually not important for the most part of the spectrum. Th
is consistent with the fact that corrections from transver
momenta are anO(1/M Q

2 ) effect.
Note that 30% suppression on the quark model resu

from the distribution functionf B ~the suppression fromf P is
even stronger!. It has been found in HQEFT that effects from
nonperturbative corrections are only ofO(1/M B

2), which
should be less than 5%~see@22# and references therein!. The
small nonperturbative corrections to the total decay rate
closely related to the vanishing first moment of the residu
momentum structure functionf r . This apparent discrepancy
can be traced back to the fact that theB meson kinematics is
employed in our formalism, while theb-quark kinematics is
ec-
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employed in the conventional approaches. Hence, in o
quark-model analysis theb quark in fact carries the full mo-
mentumPb5PB , and thus the charged lepton energyEl can
reach the maximumMB/2 (x51). This momentum configu-
ration is allowed in factorization theorems if transverse d
grees of freedom of partons were included, because its
variantPb

25M B
22k T

2 may still be close to the mass shell in
the region without Sudakov suppression. WithoutkT , Eq.
~57! should be regarded as an expression that is generate
our formalism to bear the same form as the leading-pow
results in HQEFT. For a freeb quark with momentumMbv,
El can only reachMb/2, instead ofMB/2. Strictly speaking,
our quark-model predictions and the leading-power pred
tions in HQEFT have different meanings.

We stress that our results do not violate the conclusi
from HQEFT, if they were interpreted in a proper way. T
confirm this, we identifyPb5(M b

2/2PB
2 ,PB

2,0! as the mo-
mentum carried by a freeb quark in factorization theorems
for B meson decays, where the minus componentPb

2 has
been set toPB

2. That is, the freeb quark is not at rest inside
theB meson. We then reexpress Eq.~59! into a form similar
to that in @22#:

1

G l
~0!

dG

dx
5F~x!uS Mb

2

MB
22xD 1FS Mb

2

MB
2 DM ~x!, ~61!

with F(x)5x2(322x)/6 being the quark-model prediction
derived from the conventional approaches and
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FS Mb
2

MB
2 DM ~x!5E

0

x

dyE
x

1

dz f~z!~x2y!~y1z2x!

2F~x!uS Mb
2

MB
22xD . ~62!

The step function in Eq.~61! specifies the maximalEl in the
decay of a freeb quark with the above momentumPb . The
function M (x), representing nonperturbative corrections
the b quark decay, coincides with the shape functionS(x)
defined in@22#.

We shall show that the contribution fromM (x) to the
total decay rate is indeed ofO(1/M B

2). Integrating Eq.~62!
over x, we obtain

FS Mb
2

MB
2 D E

0

1

M ~x!dx5
1

12 E0
1

dz z4f ~z!2E
0

Mb
2/MB

2

F~x!dx.

~63!

An arbitrary structure functionf , which possesses the sam
moment as in Eq.~51!, can be expanded in terms ofd func-
tions:

f ~z!5d~12z!2
L̄

MB
d8~12z!1O~L̄2/MB

2 !. ~64!

Inserting Eq.~64! into ~63!, we justify straightforwardly that
the nonperturbative correction

FSMb

MB
D E

0

1

M ~x!dx5E
Mb
2/MB

2

1

F~x!dx2
1

12

L̄

MB

3E
0

1

dz z4d8~12z!1O~L̄2/MB
2 !

5
1

3

L̄

MB
2
1

3

L̄

MB
1O~L̄2/MB

2 ! ~65!

vanishes atO(1/MB) as concluded in@22#. In summary, the
quark-model contribution from the window betwee
x5M b

2/M B
2 andx51, with a width ofO(1/MB), cancels the

O(1/MB) correction from the structure function, such tha
the nonperturbative correction is ofO(1/M B

2).
According to Eq.~63!, the suppression from nonperturba

tive corrections is about 5% forf B and more than 10% for
f P . The percentage forf P is still large, because its first mo-
ment does not satisfy the requirement of HQEFT, and th
the cancellation at the power 1/MB is not complete.

The ambiguity from the choice of distribution function
can be removed, once the spectrum of the decayB→Xsg is
available. We can fix the universalB meson distribution
function from these data, substitute the distribution functi
into our formula, and predict the end-point spectrum of t
decay B→Xuln. A model-independent extraction of the
CKM matrix elementuVubu then becomes possible@13,16#.

VI. CONCLUSION

We have studied the inclusive semileptonicB→Xuln de-
cay using the PQCD formalism. In order to separate t
B→Xuln signals from theB→Xcln background, we must
to
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investigate the charged lepton spectrum near the end-po
region within an accuracy of about 330 MeV. It has bee
found that there exist large perturbative corrections in th
region, which are resummed into the Sudakov form fact
and included into the factorization formula. The transver
degrees of freedom of theb quark diminish the on-shell con-
figuration of the outgoingu-quark jet. The quark-model
spectrum then falls off at the end point, consistent with th
experimental observation. There is no ambiguity associa
with the kinematic gap, because we formulate the factoriz
tion for B meson, instead ofb quark, decays.

We have constructed a distribution function, whose p
rameters are determined by the HQEFT-based OPE, a
whose width and mean are related to hadronic matrix e
ments of the kinematic operator. These hadronic matrix e
ments are then fixed by QCD sum rule results@19# and
B*2B splitting data@21#. The distribution function, absorb-
ing important nonperturbative corrections from heavy-qua
Fermi motion, can also render the quark-model spectru
vanish at the end point.

We emphasize that our formalism incorporates both lar
perturbative and nonperturbative corrections in the end-po
region of inclusiveB meson decays in a systematic way, an
that it provides a natural normalization for the spectra. Th
enables the direct extraction of the CKM matrix eleme
uVubu from experimental data. When more data are availab
our formalism can also be used to test PQCD inB meson
decays.

It is an important issue that current experimental data@23#
of theB→Xln branching ratio suggest

B~B→Xln!<11%. ~66!

The naive quark-model prediction for this branching ratio
more than 15%. Although PQCD suppression at the e
point is around 50%, the overall suppression amounts to 8
at most. With modification from the massiveness of th
charm quark, our formalism can be applied equally well
the semileptonic decayB→Xcln. Hence, we conclude that
PQCD corrections suppress the overestimated theoret
value of the semileptonic branching ratio only down t
13.8% at best. On the other hand, the distribution functio
may decrease the quark-model predictions by about 30
However, the distribution function is universal as stress
before, and it is very plausible that it gives an equal amou
of suppression to nonleptonic decays. Therefore, introduc
a distribution function may not be able to remove the di
agreement.

Based on the above discussion, we propose three po
bilities to resolve the discrepancy:~1! the distribution func-
tion suppresses semileptonicB meson decays maximally, but
does nonleptonic decays minimally. This may arise from th
different phase space in these two cases.~2! Factorization
theorems break down inB meson decays.~3! New QCD
effects or new physics appears. Blok and Mannel@24# argued
that factorization theorems may still hold, and thus the co
frontation between data and theoretical predictions becom
acute. To settle down the issue, a careful PQCD analysis
B meson nonleptonic decays is required. We shall discu
these subjects in a forthcoming article.
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