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We develop the perturbative QCD formalism for inclusive semilept@imeson decays, which includes
Sudakov suppression from the resummation of large radiative corrections near the high end of charged lepton
energy. Transverse degrees of freedom of partons are introduced to facilitate the factoriz&ionesbn
decays. Ambiguities appearing in the quark-level analysis are then avoided. A universal distribution function,
arising from the nonperturbative Fermi motion of thequark, is constructed according to the heavy quark
effective field theory based operator product expansion, through which the mean and the width of the distri-
bution function are related to hadronic matrix elements of local operators. Charged lepton spectra of the
B—X,lv decay are presented. We find 50% suppression near the end point of the spectrum. The overall
suppression on the total decay rate is 8% for the free quark model, and is less than 7% for the use of smooth
distribution functions. With our predictions, it is then possible to extract the Cabibbo-Kobayashi-Maskawa
matrix element|V,,| from experimental data. We also discuss possible implications of our analysis when
confronted with the rather small observed semileptonic branching rati® imeson decays[S0556-
2821(96)03809-X

PACS numbgs): 13.20.He, 12.38.Cy, 13.25.Hw

I. INTRODUCTION model predictiong8] of free heavy-quark decays. Next-to-
leading order corrections, starting @(AéCD/M é), are ex-

The studies of semileptonic decays in heavy mesongected to be small in heavy meson decays. This approach has
within the framework of perturbative quantum chromody- also been extended to the case of nonleptonic dd&ys
namics(PQCD) dated back to the 197Q4]. The masdM 4 To extractV,, from the B— X, v decay, one needs to
of a heavy quarkQ provides a rationale of this approach. measure the charged lepton spectrum near the high end of
The advantage of the PQCD formalism is that it provides &, , such that the hugB— X .l v background stops contrib-
natural normalization of decay amplitudes. This point is ofuting. The measurement must be performed within an accu-
great importance to obtain a model-independent extraction afcy of several hundred MeV, because the energy difference
the Cabibbo-Kobayashi-Maskaw@KM) matrix elements, between the end points of the—c andb—u transitions is
which are the key phenomenological parameters in undemnly about 330 MeV. Unfortunately, OPE, the theoretical
standing the symmetry-breaking physics of the standardool, breaks down in this region. Since the expansion param-
model. We have shown that PQCD is applicable to the exeter 1M should be replaced by M,—q-v) whengq is
clusiveB— 1l v andB— pl v decayq 2], and an upper limit not small at the end point, OPE is not reliable. The heavy-
of |V,| around 2.%10 % was extracted from experimental quark velocityv is defined byPo=Mquv, Pq being the
data[3] directly. Recently, there have been controversiesheavy-quark momentum. To circumvent the difficulty, Neu-
concerning the inclusive semileptonic branching ratioBof bert[10] and Bigiet al.[11] have performed a resummation
meson decayf4,5]. Even new physics was proposel to  of OPE, that results in a model-independent “shape func-
resolve the discrepancy between theoretical predictions antibn” in the description of the charged lepton spectrum. This
experimental outcomes. It has been argued that PQCD radianiversal shape function can be determined in principle by
tive corrections may play an important role in the semilep-an infinite tower of nonperturbative matrix elements ex-
tonic decaysB— Xlv [5]. In view of this, it is essential to panded in the increasing power oM, and has been em-
first sort out the correct PQCD contributions to these decayloyed in the study of the inclusive rare decBy— Xy

In the pioneering works of Chagt al. [6] and Shifman [12,13. One can therefore measure this shape function, say,
et al. [7] a systematic expansion of relevant hadronic matrixin the B— X,y decay, and then apply it to thB— X lv
elements in semileptonic decays in the inverse powevigf ~ decay to obtain a model-independent prediction\Qf, .
was obtained by combining heavy quark effective fieldHowever, under the present experimental situation, one has
theory (HQEFT) and the method of operator product expan-to make an ansatz for this shape function according to some
sion (OPB. It was shown that the differential decay rate QCD constraints. Data of the dec8y— X,y will definitely
dI'/dg?dE, can be consistently calculated, when it is suit-remove this ambiguity in the choice of shape functions in the
ably averaged over the charged lepton enekjy Here  future.
q%=(p,+p,)? is the lepton pair invariant mass wigh and On the parton model side, Bareiss and Pasdhd$ ar-

p, the charged lepton and neutrino momenta, respectivelygued that the phase space for the decays is dominated by
At leading order, the expansion reproduces the naive partodistances near the light cone, and one can use the distribution
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function of theQ quark in the heavy mesdf in the infi- We define the kinematics of the inclusive semileptonic
nite momentum frame to fill up the gap between the simpledecays of heavy mesons in Sec. Il, and derive the factoriza-
heavy quark kinematics and the heavy meson kinematicgion formula for the charged lepton spectrum, which incor-
This distribution function can be obtained by measuring theporates the transverse degrees of freedom of partons. The
Q-quark fragmentation function in the heavy meson producformula is expressed as the convolution of a hard-scattering
tion from e*e” annihilation. To remove the singularities amplitude with a jet and a universal soft function. In Sec. IlI,
near the end point of the charged lepton spectrum, which aree resum the large logarithms in these convolution factors
due to soft gluon bremsstrahlung, these authors simply rédy solving a set of evolution equations. The initial condition
summed soft gluon corrections in the naive leadidguble of the soft function is identified as the distribution function,
logarithmic approximation and obtained a Sudakov suppreswhich is equivalent to the shape function mentioned above.
sion factor. To fill up the kinematic gap, Altarelli and Pe- In Sec. IV, we construct a distribution function according to
trarca[15] regarded the light quark insideéq as a quasifree the HQEFT based OPE, and relate the mean and width of the
particle but with a Gaussian spectrum of Fermi momentundistribution function to the hadronic matrix elements of the
p: kinematic operator. Hence, both perturbative higher-order
corrections and nonperturbative corrections from Fermi mo-
4p2 p2 tion are included in our formalism. We present numerical
f(p)=—== exr{ - 7), (1)  results in Sec. V, and show that the Sudakov form factor
\/— 3 Pt from the resummation and the distribution function indeed
render the end-point spectrum smoother as stressgtZin

where p; is a free parameter that can be fixed by heavy-S€ction VI is the conclusion.

quark symmetry. To smooth out the end-point singularities,
these authors also resummed leading soft gluon contributions Il. FACTORIZATION THEOREMS
into a Sudakov form factor.

Korchemsky and Stermdri6] gave the first PQCD treat-
ment of the decayB— X,y andB— Xl v, in which higher-
order corre'ctions were factorized into a_soft dis'tribution B(Pg)—I(p,)+»(p,)+hadrons. 2)
function, a jet function, and a hard-scattering amplitude ac-
cording to the kinematic regions of loop momenta. TheThe three independent kinematic variables are choséh ,as
equivalence between the shape functjiaf,11,13 and the g2, andqq in our discussionE, andq=p,+p, have been
distribution function was pointed out. Soft gluon corrections,defined in the Introduction, ang, is the energy of the lepton
which correspond to the nonperturbative origin of the distri-pair. With these variables, the triple differential decay rate is
bution function, were resummed systematically up to nextwritten as
to-leading logarithms using the Wilson-loop formalism.

However, their analysis is appropriate only in the end-point d°r _
region, and the effects of resummation were not estimated. dEdg°dqy 256m*Mg

In all the above approaches, the factorization was formu-
lated at the quark-level kinematics, and the missing statewhere Mg is the B meson mass, and the weak matrix ele-
inside the kinematic window betwedn, andM, My, be- ~ ment is given by
ing theH 4 meson mass, were populated by introducing extra
heavy-quark Fermi motion, which arises from the recoil of
the light partons irtHg . Our approach is formulated at the M= Vub 2 o V'E (Xlj#B). )
meson-level kinematics directly, in which the heavy quark
Q, carrying a fraction of the heavy meson momentum, has am Eq. (4) V ub is the corresponding CKM matrix element,
invariant mass close tMQ Our formalism therefore re- and J _uF b is the electroweak current with
moves the ambiguity in the definition of the heavy quarkr =Y (1 75)

massMq, and the kinematic gap is filled up naturally. "We work in the rest frame of the meson, and choose the

In this paper we shall derive the PQCD factorization for-foliowing light-cone components for relevant momenta:
mula for the semileptonic decd— Xl v in a rigorous way,
which is suitable for the entire range of the spectrum. ThePg=(P4 ,P5,0,), p;=(p;,0,0,), pP,=(P}.p, .Pu.).
factorization procedures demand the inclusion of the trans-
verse degrees of freedom of partons. Hence, we perform the (5
resummation of large perturbative corrections in the trans-
versal configuration space using the technique developed with P =Pg=Mg/v2 and p2=0. The independent vari-
[2], which is also accurate up to next-to-leading logarithmsables are identified gs;", p,, andp 7, and their relations to
It can be shown that our resummation result coincides witE,, g° and q, are E,=p;/v2, ¢°=2p;'p,, and
that in[16] at the end point. The transverse momenta carriedjo=(p,” +p+p,)/v2, respectively. We  define
by the b quark inside theB meson, whose distribution is P,= PB p as theb quark momentum, which satisfies
governed by the Sudakov form factor from the resummationP 3~M 2, M, being theb quark massp is the kicks from the
play an important role here. They diminish the on-shell probdight components inside thB meson, which has a large plus
ability of the outgoingu quark at the end point, and thus componentp® and small transverse components. The
suppress the singularities. purpose of introducing the transverse degrees of freedom

We consider the semileptonic inclusive decays oBa
meson:

|//((E| !q2!q0)|2! (3)
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with  the momentum fraction z defined by
z=P//IPi=1-p" /P, and I'(V=(G2/167°) |V |*°M}
[16]. w in Eq. (8) is the renormalization and factorization
W scale. The triple differential decay rate is, of courgende-
pendent. Note that in the region—x~1 the outgoingu
7 qguark becomes soft and E¢B) fails. We shall show that
contributions from this dangerous region are suppressed by

b phase space. The upper limit btakes the valug,,,=1 in
p ' , our analysis. If performing the factorization according to the
B¢C s >=,: 5 b quark kinematics, one must assume,=M g/M,, which

is greater than 1, in order to fill up the kinematic window. It
has been explaine(d 6] that z,,,,>>1 is not allowed in per-
turbation theory, and is thus of nonperturbative origin. From
the kinematic constraints in E§7) and the on-shell condi-
tion of theu-quark jet, the lower limit o should bez,,;,=x,

FIG._l. Factorization_ of inclusive semileptonic decays ofhe jnstead 0fz,in=0.

meson into a softg), a jet (J), and a hard i) subprocess. The tree-level expressions for the convolution factdrs
andH are given by

will become clear later. The quark decays into a quark

with momentumP = Pg—p—q. We have distinguished the ) ) ) y
B meson momentun®Pg from the b quark momentunP,, IT=06(Py) =6 Mg| 1-yo+ty—(1-2){ 1- 7
here.
It is more convenient to employ the scaling variables 2p,-p,. P}
Tz wmg))
2E, q° 20o B B
M YT M YT Mg © ©
® B ° H®o(Py-p,)(pi- Pu)=[(Pg=P)-P,1(Pi- Pu)
instead of the dimensionful onds, g, andq,. Note that y 2p,-p,.
the scaling variables are defined in terms of Bieneson oc(x—y)(yo—x—(l—z) ;+ T)
B

massMyg, since we formulate the factorization according to
the B meson kinematics. This differs from the conventional ) ) )
treatment in the literaturgL6], where the scaling variables Eguation(8) can be regarded as an expression at the inter-
were defined in terms of the quark mass. For massless mediate stage in the derivation of conventional factorization
leptons, it is easy to show, using the momentum configurath€orems. If thep, dependence id andH is negligible, the

tions defined in Eq(5), that the phase space is given by variablep, in S can be integrated over, and E§) reduces
to the conventional factorization formula. However, it is ob-

y vious from Eq.(9) that at least th@, dependence id is not
O0=x=1, Osy=Xx, ;+x£yo$y+ 1. (7) negligible, especially in the end-point region. This is the rea-
son we introduce the transverse degrees of freedom into our
analysis.

Suppose we consider higher-order corrections to (By.
from a gluon crossing the final-state cut, and route the loop
momentum through, say, the jet subprocess. Without losing
generality, we approximateJ(p™+I1",P,+1",p, +1,)
~J(p*,P;.p, +1,) according to the kinimatic relations
I"<p™,1"<Py, andl, ~p, . Hence, the loop integral can-
not be performed unless the dependencd oh transverse
momentum is known. This difficulty can be removed by
gourier transform:

In the end-point region witk—1 (p,"—Mg/v2) and
y—0 (p, —0), we havey,—1 (p;—0) andp—0. Theu
quark then has a large minus component
P,=(1-y/xX)Mg/v2 but a very small plus component
sz(l—yo—y/x)MB/\/Q, and thus a very small invariant
P2=M3(1—y,+Yy), which forms an on-shell jet subpro-
cess. Theu quark travels a long distance Gf(1/Aqcp) be-
fore hadronized. Besides, ti&2emeson is dominated by soft
dynamics, which is the origin of the soft function stated in
the Introduction. The remaining dominant subprocess is th
hard one, which contains the weak decay vertices. Therefore, 2h
the important contributions are factorized into the s@&},( + p- — Tnt P i(p,+1,)-b
jet (J), and hard H) subprocesses as shown in Fig. 1. JPT PPl J (2m)? P, Py b)et T

The factorization formula for the inclusive semileptonic (10
decayB— X | v is written as

where the impact parametkr(Fourier conjugate variable of
1 d’r 5 [Zmax ) p,) measures the transverse distance traveled by the jet. Us-
mm:MBL _ dZJ d°p, ing Eq. (10), thel, dependence is decoupled from the jet
min function, and the factoe'+ ® is absorbed into the loop inte-
XS(z,p. ,x)I(Z,Py P a) gral, which can then be performed. Therefore, an extra factor
e'l1 P is associated with each gluon crossing the final-state
XH(z,P, ,pL.p), (8 cut in our formalism.
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FIG. 2. Lowest-order radiative corrections to the inclus®e
meson decays.

FIG. 3. Factorization of the jet subprocess.

To further simplify the factorization formula, we neglect is in fact valid to O(1/Mg). The physics involved in this
those terms involving,, in J andH. This is a good ap- approximation is that a soft gluon or a gluon moving parallel
proximation forx—0 andx—1, since forx—0 contribu- to P, cannot explore the details of theequark, and its dy-
tions from transverse momenta are not important, and fonamics can be factorized. This is consistent with the HQEFT,
x—1 the magnitudep,, =MgV(yo—Xx—Yy/X)y/x vanishes. Where theb quark is treated as a classical relativistic particle

Equation(8) then becomes carrying color source. Since the large madg does not
appear in the eikonal propagator, the only large scalkim
P.,.
3 u
1 dr M J' dzf — The remaining diagrams, Figs(c2 and 2d), that give
r{% dx dy dy (277) single soft logarithms are grouped info It is then obvious

- ~ B B thatS depends only on the properties of the bound g&je
X8(z,b,u)I(z,Py b, u)H(Z,Py ). but not on the particular short-distance subprocess. There-
(12) fore, S is a universal function describing the distribution of
theb quark inside th& meson. In fact, in the M, limit one
can identify S as the model-independent “shape function”

Ill. RESUMMING THE JET, SOFT, or “primodial function” obtained from the resummation in
AND HARD SUBPROCESSES [10,13,11, respectively.
It can be shown that the dominant subprocesse& and The basic idea of the resummation technique is as fol-

lows. If the double logarithms are organized into an expo-
nential form,J~exd—In P In(In P, /In b)], one can sim-
epllfy the analysis by studylng the derivative of,

H contain large logarithms form radiative corrections. In par-

ticular, J gives rise to doublgleading logarithms in the

end-point region. These large corrections spoil the perturb _

tion theory and must be organized. In what follows we shaIId‘J/OI In P, =CJ[2]. Since the coefficient functio@ con-

demonstrate in detail how to resume these large correctiorf@!"S onIy single logarithms, it can be treated by

up to next-to-leading logarithms. The first step in resummal€normalization-grougRG) methods. In this way, one re-

tion is to map out the leading regions of radiative correc- duces the complicated double-logarithm problem to a single-

tions. We work in axial gauga-A=0, wheren is a space- Iog’gr}thm prolblem' .

like vector. TheO(ay) diagrams that contain large double  J IS scale invariant in the gauge vectoas shown by the

logarithms in axial gauge at the end point are Figs) and ~ 9uon propagator in axial gauge;iN“*(1)/(I+ie), with

2(b). The self-energy diagram, Fig.(@, and the diagram

with a soft gluon connecting the two heavy-quark lines, as

shown in Fig. 2d), give only single soft logarithms. N4 Y+ | “n? | 4]¥
In the collinear region with the loop momentunparallel NA¥(l)=g*"— — +n N2’

to P, and in the soft region with— 0 we can eikonalize the

heavyb-quark line. Then Figs. (@ and Zb) are factorized

out of the cross section, and they are the diagrams that

absorbs, as shown in Fig. 3. With the eikonal approximationTherefore, J must depend onP, through the ratio

the b-quark propagator is expressed as-1/to the order (P,-n)?/n2. It is then easy to show that the differential op-

1/Mg with v=(1,10,). Hence, the factorization in Eq1l1)  eratord/d In P, can be replaced bg/dn using a chain rule:

(12
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d/'ﬂn=2 g

FIG. 4. Graphic representation of E{.6).

dJ n? d ~ ; )
L ey (13) e * )

dinP, v'-n dn e
© @

with the vectorv’ =(0,10, ). This simplifies the task tremen-
dously, because the momentuiy flows through both quark
and gluon lines, buh appears only in gluon propagators.

Applying d/dn to the gluon propagator, we obtain o =_ @ Y
©

4 e b (N#e P+ NP #), (14) ©
dn l-n

a

FIG. 5. Lowest-order diagrams for the functiois and .

The momentunt that appears at both ends of the differenti-

ated gluon line is contracted with the vertex, where the gluonytraviolet divergences from Figs.(& and 5f). Double
attaches thel qual’k or the eikonal lines. Next we add up all Counting is avoided by the subtractiondn Genera”zingzu/‘

diagrams with different differentiated gluon propagators, anchnd < to all orders, we derive the differential equation for
apply the Ward identity. Finally, we arrive at a differential

equation forJ as shown in Fig. 4, where the square vertex

represents Th J(P; b)) =2{H[bu,au)]
n® - -
9T U (19 + TP, w) 3P, b,w).

(16)

with T2 the color_matrix. The factor 2 counts the two exter-
nal quark lines ofl. An important feature of the square ver- The scaleb in 7" arises from Fig. &), which contains an
tex is that the gluon momentuidoes not give rise to col- extra factore't ' as explained in Sec. II.
linear divergences because of the nonvanishifg The At the one-loop level, the renormalized functio#i’ cal-
leading regions of are then soft and ultraviolet, in which the culated in dimensional regularization for the gauge vector
subdiagram containing the square vertex can be factorized as<(1,—1,0,) is given by
shown in Fig. 5 atO(as). Hence, the differentiation really
turns the double-logarithm problem into a single-logarithm ., : - ; _soy
problem as stated before. Z2=Fig. Y@ +Fig. 5b)+Fig. 5c)+Fig. 5d)— 6.7,

To separate the soft and ultraviolet scales in Fig. 5, we (17)
introduce a function’Z to organize the soft logarithms from
the four diagrams, Figs.(&8—-5(d), and a functions for the  with

d* e . i n%v v
; ; ) € 2yl b a” B a
Flg' 5(3.)+F|g. ab)_ g CFIU’ J' (277)45[77-5“ )e |2+i6] (v’~n)(|-n)(|-v') N B(l)
e E+|n 2p2e¥ (18)
2w Fl e e '

nzv LEUB

(v"-n)(I-n)(l-v)

Ne(1)=0. (19

; ; __ A2 € d*™ e 2\ail | -b :
Fig. 5(c)+Fig. 5d)=—g°Cru f W wo(l1%)e 7 e
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8% is the scheme-dependent counterterm which will be Equation(24) has the solution
specified laterC-=4/3 is the color factor, ang is the Euler

constant. Similarly, < is given by
&=Fig. 5e)+Fig. 5f)— 487, (20
with

d4-e -
(2m)P < (P,—Z+ie

LBt
701 I'v/ va

Fig. 5e)+Fig. 5f) = —g°Cru®

X
" nvg  N*A(l)
(v -n)(I-n) 1°+ie
s 2 (F’u_)21/e7’_1
(21

andv=(n-v")%|n?| is the gauge factor.
In the modified minimal subtractiorMS) scheme with

o= 87=—2c|2 4 ame 22
O = b= E E z+ name ) ( )
the one-loop7" and ¥ are given by
s bzluzezy
4(P,)? 23
o __ ﬁ u v
o= 5 Cr In(—ﬂ2e )

We have separated the two scales)jrb, and P, into the

functions.7Z" and ¢, respectively, such that RG methods are
applicable to the summation of the corresponding single
logarithms. Although7 and ¢ possess individual ultravio-

let pole, their sum is finite, and thus a RG invariant quantity.

The RG equations for the renormalized and & are

d
e T bu,ag(m))=—v(agun))

d
=l GPy T, ag(p))
(24
with

d d
Vo= ﬁ OT=—pu @ 0.7, (25

the anomalous dimension o To two loops,y is given
by [17]

2

'}/7/:_ CF+ CF CA y (26)

67 @\ 5
3 12/ 18"

18

T, as w)+ Z(Py 1w, ag 1))

- du _
=% (LadP,))+ y(l,as(Pu‘))—f;f %A(as(u))
(27)

with the anomalous dimension

1%
Alas) =y las)+ B(9) 79 Z(Las). (28)

Substituting Eq(27) into (16), we obtain the evolution ol
in P, andb:

J(P; ,b,u)=exd —2s(P; ,b)]I(b,w). (29)

The RG invariant Sudakov exponent is given[B]

A(l) a A(Z) (‘] A(l)
P-.b | — | =—1 b
s(P, ,b)= Bqnb 2825 )2ﬁ1(q )
CAYB, |n(26)+1_|n(2a)+1
43 b q
A2 A [g2y-1 g
—|=——=1In ) In| =
4p? 4B, 2 b
AYB, I
+ 85 [In2(24) —In?(2b)], (30)
with the variables
4=I Py b=l !
q=In{ =~ N oA (3D

The QCD scaleA=Aqcp Will be set to 0.2 GeV in the nu-
merical study in sec.V. The coefficients and A() are

_33-2n,
Bl_ 12 1

 153-10n,
,32——24 ,
(32

4
(H—_
A 3

()= ___ _ _ _
27nf+3,81ln >

67 w2 10 8 e’
9 3

Having summed up the double logarithms, we concentrate

on the single logarithms i, H and the initial condition

3(b,,u). Since both the differential decay rate and the Suda-
kov exponents(P, ,b) are RG invariant, we have the RG
equations

wheren;=4 is the number of quark flavors a@} =3 is the
color factor.
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A(b,m)=~2yI(b,u),

ZS(b,m) =~ ysS(b, ), (33
TH(P; w)=(2yg+ YOH(Py 1),
with
G+ B 5o (34)

Yq= —ag/m is the quark anomalous dimension in axial

gauge, andys=— (a4 7)Cr is the anomalous dimension
of S. The functionS in fact contains soft single logarithms
only from Fig. 2d), because the contribution from Fig(c
vanishes for the gauge vector<(1,—1,0,) under eikonal
approximation. Henceyg is derived from the evaluation of
Fig. 2(d) straightforwardly.

Integrating Eq.(33), we obtain the evolution of all the
convolution factors:

J(z,P; ,b,,u)=ex;{ —2s(P, ,b)

J(z,b,1/b),

v du _
- 2J'11b 7_ 'Yq(as( )

du-

ASJ(Z,b,M)=eXr{ - Ll;b e ys(as(w)) [f(z,b,1/b),

(39

du —
H(z.P;,w:exp[—fP“ — [27(as()
"

+yslas(u)]|{H(z,P, ,Py).
We shall neglect the intrinsib dependence of the distribu-
tion functionf below. If Sudakov suppression in the large-
region is strong, we may drop the evolutionfondJ in b,
which is proportional tax(1/b). Hence, we assumigz,b,1/
b)=1(2), J(z,b,l/b)=J(8)(z,b), the Fourier transform of
the tree-level expression in Eq. (9, and
H(z,P, ,P;)=HO(z,P,).

Substituting Eq(35) into (11), we derive the factorization
formula for the inclusive semileptoni8 meson decay:

1 dir —szld F bdbf 0z
T dxdy dy 8J, %%y 27 (2)3"(z,b)

XHO(z,P;)exd —S(P, ,b)].

(36)
The complete Sudakov exponedis given by
. b)=2s(P, ,b I IsJ

S(Py ,b)=2s(P,, )_3_Bl n_’t‘)_y (37

with I5;=In(PJ/A), which combines all the exponents in

Eq. (35 and includes both leading and next-to-leading loga-

rithms. It is straightforward to observe from E&7) that the
Sudakov form factoe™S falls off quickly at largeb~ 1/A,
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where a4(1/b)>1 and perturbation theory fails. Hence, the
Sudakov form factor guarantees that main contributions to
the factorization formula come from the smal| or short-
distance, region, and the perturbative treatment is indeed
self-consistent.

We stress that our formalism is applicable to the entire
range of the spectrum, if the,, dependence id andH was
not neglected, not only to the end-point region aklig]. We
neglected thep,, dependence for the sake of simplicity of
calculation. Since the Sudakov form factor is defined in the

region
d
1-—=
Sk

there exist the suppression effects yas (1—v2A/Mg)x.

The phase space with suppression expands to the largest ex-
tent for x—1 and vanishes at—0. Hence, lowest-order
predictions receive maximal suppression at the end point,
corresponding to the presence of large logarithms, but are
modified only slightly at smalk, implying weaker logarith-

mic corrections. This is consistent with our expectation for
the Sudakov effects in the whole ranget@<1.

Mg 1
P, >—>A,

b (38

IV. CONSTRUCTING THE UNIVERSAL SOFT FUNCTION

Since all the double-logarithmic corrections have been ab-
sorbed into the jet subprocess, the soft funct®nontains
only soft single logarithms from Fig.(&) [Fig. 2(c) does not
contribute because of the choice of the gauge vector
n«(1,—1,0,)]. These single logarithms can be summed by
solving the RG equatio®”S= — y<S as shown in Eq(33).

The solution has been given in E®@5):

- uodu —
S(Z,b,M)=eXI{—L/b 7—75(&5(#)) f(z), (39

where the initial conditiorf(z) for the evolution ofS must
be determined phenomenologically. From the definitio,of
it is obvious thatf depends only on the properties of the
bound stateéB), but not on the particular short-distance sub-
process. Thereforef is a process-independent universal
function describing the distribution of thequark inside 88
meson.

As mentioned in the previous section, in thévl/limit
one can identifyf as the model-independent shape function
or primodial function obtained from the resummation of
OPE in[10,11,13. It was observed by Korchemsky and
Sterman[16] that one can deduce some nonperturbative in-
formation of f from the perturbative resummation of soft
gluons. Theses authors argued that the infrared renormalons
appearing during the resummation procedure produce power-
correction ambiguities. Hence, there should exist corre-
sponding nonperturbative power-correction ambiguities to
render the physical well defined. To leading order, with a
“minimal” ansatz for integrating the first infrared renorma-
lon singularity, Korchemsky and Stermfi6] derived

(1-2)?

ex 552

: (40

frs(2)= —
Z =
KS 2ma?
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which describes a Gaussian distribution with widtlaround  have been derived in HQEFT-based OPH

z=1. Requiring that the minimal ansatz be consistent with ,

HQEFT and OPE, one fixes the width to be Mg
Aozl, A]_:O, AZI? Kb,... . (47)
2
Mo
ol=——%>, (41) _ _ .
3Mg These moments are expressed in terms of hadronic matrix

) ] ] elements corresponding to the structure of thd Lexpan-
where u2=0.54+0.12 GeV [19] is obtained from QCD gjon. with

sum-rule estimation.
Recall thatf,s was derived by integrating only the first 1

infrared renormalon. This fact is reflected in the nonvanish- Kp=-— B

) ) . . L 2Mg

ing property off xs in the unphysical regioz>1, and in its

validity in the vicinity of z=1. However, comparing ks

with the phenomenological distribution functi¢f0],

—(iD)?
b, Sz B

B> . (48

The vanishingO(Aqcp/Mg) contribution to the first moment
A, is consistent with the conclusion from the renormalon
2(1-2)2 analysis that the first nontrivial power correction begins at
(42 O(A{cp/M ) and with our intuition for vanishing average
residual momentum of thie quark inside thé8 meson in the
heavy-quark limit.

The moments of z(z) can be expressed as local hadronic
matrix elements by performing an OPE of the bilocal opera-
tor b,(0)b,(y™) in Eq. (44) in the power of IM,. The
relation betweerfg andf, is then given by13]

=N =7 ez

one finds that they do share the same leading £)¥ behav-
ior. fp was obtained from the experiments of tBemeson
production ine*e™ annihilation by applying a crossing to
the light quark and then a time-reversal transformafi2@i.
The constantN,=0.133 068 is the normalization, and
ep=0.006 is the shape parameter. Inspired by this observa-

tion, we postulate the following two-parameter distribution
function for theB meson:

fa(2)dz=[f,(k*)+O(1/M,)]dk", (49)

which reflects the difference of order between theB me-
2(1-2)2 son kinematics and thie-quark kinematics. Using Eq46)
> 0(1—2), (43)  and the definitiore=P;/P§ ork*=P§(z—M,/My), itis

fe(2)=N————
[(z—a)"+ez] straightforward to derive the moments iof. They are

which has the correct leading ¢1z)? behavior neaz=1. 1
The purpose of introducing one more paramater Eq. (43 f fa(z)dz=1, (50)
is to allow a consistency check dp in Eq. (42). 0

We now relate the parametessand € to the hadronic

matrix elements of some local operators derived from 1 — 2 2
HQEFT-based OPE, which are standard techniques fo dz(1-2)fg(2)=A/Mg+O(Agc/Mp), (5D
[10,12,13. The distribution function in axial gauge is de-
fined by 1 A2
fo dz(1-2)%fg(2)= Zt3 Kp+O(AZc/MB).
B

I i(1-2Pgy " (B[b.. -
fB(Z)_Z\/Ef 20 € Y <B|bv(0)bu(y )|B>1 (52)

(44 The first formula gives the correct normalization ©f,
lyvhich corresponds to the total numberofjuarks inside 8
meson. The second formula is related to the effective mass of
light quarks,A. The third formula gives the hadronic matrix
b,(x)=eMb" *Xb(x). (45  element of the kinematic operatdg,, .

To have a better insight, we examine if the distribution
Hence, fg(2) is independent of thd-quark mass as it is function is consistent with our physical intuition for the be-
written in terms of a matrix element in E¢44). Note that  havior of the heavyp quark inside & meson. We calculate
the Dirac matrix structure has been properly factorized ashe mearw and the variance? of f5(z) from Egs.(51) and

in which the large momentum of the rescaled heavy-quar
field b,(x) has been projected out as usual in HQEFT by

shown in Eq.(44). (52), and derive
To connect with HQEFT, we write thb-quark momen- o
tum as P,=Pg—p=Myv+(Mg—M)v—p, and _identify A Adcp
the residual momentum of thé quark ask=Av—p, pu=1- M_B+O ™2 | (53
A =Mg— M, being the effective mass of the light partons in B
the B meson. The probability to find b quark with light- 5 A3
cone residual momentuki inside theB mesonf,(k*), has Uzzﬁ ( QCD) (54)
been defined in13]. The moments of .(k*), 3 M3 )

Substituting the QCD sum rul¢l9] and B* —B mass-

— + + +
A”_f K (kD d kT (46) splitting [21] results,
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FIG. 6. Charged lepton spectra of tBe— X | v decay for(1)
f(2)=6(1-2), (2) f(z2)=fg(2), and (3) f(z)=fp(z). The solid
(dashed curves are derived withoutvith) Sudakov suppression.

Mg=5.279 GeV, M,=4.776 GeV,

K,=0.012+0.0026, (55
we obtain ©=0.90 and¢?=0.0080:0.0017, implying that
fg(z) peaks sharply around~u~1 and has a width of
O(Agcp/Mg). The parameterdl, a, ande in fg(z) can be
determined using Eqg50)—(52) with (55) inserted, which
are

N=0.026 09, a=0.9752, €=0.001699. (56)

The value ofa, derived from the QCD constraingby taking
finite number of moments onlyis very close to unity. This
is consistent with the expectation frof,. However, we
emphasize thaf, is not quite consistent with HQEFT, its
first and second moment differing from E¢51) and(52) by
at least 45%.

The distribution functions in Eq$42) and(43) will serve
as the initial conditions of the soft function {89). We then
derive the PQCD factorization formula for the inclusive de-
cay B— Xl v, with the phenomenological inputs satisfying
the QCD constraints from HQEFT-based OPE.

V. THE CHARGED LEPTON SPECTRUM

In this section we evaluate E36) numerically for vari-
ous distribution functions. The charged lepton spectrum fo
the decayB— Xl v from the naive quark model is obtained
by simply choosingf(z) = 6(1—2z) and ignoring the trans-
verse momentum dependencel andH®. A simple cal-
culation leads to

(57)

which corresponds to the solid cur¢® in Fig. 6. This curve
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does not fall off at the end point of the spectrum, contradict-
ing the observed behavior of the inclusive semileptonic de-
cays ofB mesons. The discrepancy implies that the tree-level
analysis is not appropriate, especially in the end-point region
where PQCD corrections are important as discussed in Sec.
1.

We then take into account Sudakov suppression from the
resummation of large radiative corrections. Substitufifg)
=68(1-2), HO=(x—y)(y,—x) and the Fourier transform
of JO=5(P2) with P2=M 3(1—y,+y—p?2/M 3) into Eq.
(36), we derive the modified quark model spectrum. This
spectrum is, after integrating E¢§36) over z and y,, de-
scribed by

Ldr_
7 g =M

X 1/A 7S(P7 b)
£ ax [Yay[ " abesmu ix-y)

X

2
(1+y—x)J;(yMgh) — ——— 1nJ,(nMgb)
Mgb

+7233(nM Bb)}: (59)

whereP | =(1—y/x)Mg/\2, 7= (x—y)(1x—1) andJ;,
J,, J5 are the Bessel functions of order 1, 2, and 3, respec-
tively. Note the presence of the Sudakov form faetor and
the expression in the square brackets which comes #8in
The cutoff 1A of the impact parametdr is set by the Suda-
kov form factor. Numerical results of Eq58) for A=0.2
GeV are shown by the dashed curd¢ in Fig. 6. Since we
have neglected the,, dependence id andH for simplicity,
Eq. (58) is appropriate only for small and large Therefore,
to obtain the dashed curvd), we evaluate Eq(58) in the
regions 6=x=<0.7 and 0.=x=<1, and then extrapolate from
x=0.7 to 0.9 smoothly. The dependence/om our analysis

0.05 [T

0.04 |

<
]
D 0.03
o
o
¥ 0.02
S
—
r 0.01 |

FIG. 7. Charged lepton spectra of tBe~ Xl v decay near the
end point for the use ofg and fp. Conventions are the same as
those in Fig. 6 but with the dotted curve corresponding to the
dashed curve3).
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TABLE I. The total decay rates for the quark model and for the
use of the distribution function; andfp.

The spectrum from the parton model without Sudakov
suppression is obtained by adopting{¥=(x—y)[y,— X
—(1-2)y/x] and P3=M3[1-yo+y—(1-2)(1-y/x)].

rr o(1-x) fg fp With integration ovely,, we derive
Without suppression 0.0833 0.0586 0.0446 dr
With suppression 0.0767 0.0548 0.0425 1 _ f " f . q
—5y o= = z f(z)(x— +z—-x), (59
Sudakov effects 7.92% 6.48% 4.71% o dx Jo%), (2x=y)ly ) 39

where f(z) can be replaced by the distribution functions

is also examined, and it is found that predictions increase bgiven in Eqs.(42) and (43). Predictions from the use df;
only 10—-20 % ifA was set to 0.1 GeV. andfp are represented by the solid cur@sand(3) in Fig.

One observes immediately that the Sudakov effects alone, respectively. Both of the spectra deviate from the quark
are enough to render the uprising free quark spectrum falloffnodel one slightly at smak, and vanish at the end point.
at the end point. This is consistent with our expectation thaSince Eq.(59) incorporates nonperturbative effects from pri-
the inclusion of transverse momenta and Sudakov suppresiodial heavy-quark motiofil1,13 (or soft dynamics in our
sion diminishes the on-shell configuration of the outgoingformalism) throughf, we conclude that these nonperturba-
u-quark jet. Another important feature in Fig. 6 is that thetive corrections are indeed important in the end-point region.
solid and dashed curves coincide with each other in the re- At last, including Sudakov suppression into E§9), we
gion x—0. This indicates that the Sudakov effects almostarrive at the charged lepton spectrum of Bie> X | v decay
cease to contribute away from the end point as stated in Sethat takes into account both large perturbative and nonper-
[l turbative corrections:

ar_
X_ B

2 _
(z+y—x)J.(éMgh) - Mgb £3,(EMpb) + £235(EMgb) |€3Pu ),
(60)

1
W

with ¢é=(x—Yy)(z/x—1). Predictions fromfg and f, are

shown by the dashed curvé®) and(3), respectively. They
coincide with the solid curves at smat| but descend by
about 50% atx—1 as shown in Fig. 7, implying strong

employed in the conventional approaches. Hence, in our
quark-model analysis thie quark in fact carries the full mo-
mentumP,= Pg, and thus the charged lepton enefgjycan
reach the maximunMg/2 (x=1). This momentum configu-

suppression in the end-point region. The slope of the sped@tion is allowed in factorization theorems if transverse de-
trum then becomes smoother as expected. grees of freedom of partons were included, because its in-

From Fig. 6 we evaluate the total decay i@ (), and ~ VariantP =M g—k% may still be close to the mass shell in
results along with the Sudakov effects are displayed in Tabl e region without Sudakov suppression. W'thwt’ Eq. :
I. We find that the overall suppression from the Sudakov 57) shoulo_l be regarded as an expression that is g_enerated n
effects is 8% for the quark model and less than 7% our formalism to bear the same form as the leading-power

for the . .
S . results in HQEFT. For a frele quark with momentunM v,
use OffBO anq fe. Th? two distribution fgnctlons Ieaq to E, can only reachM /2, instead ofM /2. Strictly speaking,
about 20./0 d'|ff.erer.10e in the total decay \.N'dth' Comparing to,, quark-model predictions and the leading-power predic-
the drastic distinction betweefy andfp with Np/N~5 and  iohs'in HQEFT have different meanings.
ep/e~4, our formalism is quite insensitive to the choice of  \ye stress that our results do not violate the conclusion
different distribution functions. The overall Sudakov sup-fom HQEFT, if they were interpreted in a proper way. To
pression of less than 8% indicates that PQCD corrections aigynfirm this, we identifyP,=(M /2P 5 ,P 5,0) as the mo-
actually not important for the most part of the spectrum. Thismentum carried by a freb quark in factorization theorems
is consistent with the fact that corrections from transversdor B meson decays, where the minus comporeft has
momenta are a®(1/M 3) effect. been set td® 5. That is, the fredo quark is not at rest inside
Note that 30% suppression on the quark model resultshe B meson. We then reexpress E§9) into a form similar
from the distribution functiorfg (the suppression frorfi, is  to that in[22]:
even stronger It has been found in HQEFT that effects from
nonperturbative corrections are only &f(1/M 3), which
should be less than 5%ee€[22] and references therginrhe
small nonperturbative corrections to the total decay rate are
closely related to the vanishing first moment of the residual
momentum structure functiofy . This apparent discrepancy
can be traced back to the fact that Beneson kinematics is with F(x)=x%(3—2x)/6 being the quark-model prediction
employed in our formalism, while thie-quark kinematics is derived from the conventional approaches and

2
b

1 dI LE

N TN

)M(X), (61)

§|§

=F(x)0(
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Mﬁ X 1 investigate the charged lepton spectrum near the end-point
F(W)M(X)zf dyf dz f(z)(x—y)(y+z—Xx) region within an accuracy of about 330 MeV. It has been
B 0 X found that there exist large perturbative corrections in this
2 region, which are resummed into the Sudakov form factor
—F(x)@(—g—x) (62)  and included into the factorization formula. The transverse
Mg degrees of freedom of thequark diminish the on-shell con-

figuration of the outgoingu-quark jet. The quark-model
spectrum then falls off at the end point, consistent with the

function M (x), representing nonperturbative corrections t0experlmental observation. There is no ambiguity associated

the b quark decay, coincides with the shape functi(x) }[/iv(;t: ft:reBker\]ir:g:cir?;atpe)égegjauir\&vedfg?uSIate the factoriza-
defined in[22]. ' quark, decays.

We have constructed a distribution function, whose pa-
rameters are determined by the HQEFT-based OPE, and
whose width and mean are related to hadronic matrix ele-
ments of the kinematic operator. These hadronic matrix ele-

Mﬁ 1 1 (1 W22 ments are then fixed by QCD sum rule resylt®] and
F(—;) J M(x)dx= — j dz Z‘f(z)—f PTBE(x)dx. B* — B splitting data[21]. The distribution function, absorb-
Mg/ Jo 12 Jo 0 ing important nonperturbative corrections from heavy-quark

(63) Fermi motion, can also render the quark-model spectrum
vanish at the end point.

We emphasize that our formalism incorporates both large
perturbative and nonperturbative corrections in the end-point
region of inclusiveB meson decays in a systematic way, and
A o that it provides a natural normalization for the spectra. This
f(z)=5(1—z)—M— 8'(1—2)+O(A’/M3). (64)  enables the direct extraction of the CKM matrix element

B |V, from experimental data. When more data are available,
our formalism can also be used to test PQCDBirmeson
decays.

It is an important issue that current experimental ag
of the B— Xlv branching ratio suggest

The step function in Eq61) specifies the maximd, in the
decay of a fred quark with the above momentuRy,. The

We shall show that the contribution frod (x) to the
total decay rate is indeed @(1/M 3). Integrating Eq/(62)
over x, we obtain

An arbitrary structure functiori, which possesses the same
moment as in Eq(51), can be expanded in terms éffunc-
tions:

Inserting Eq.(64) into (63), we justify straightforwardly that
the nonperturbative correction

F(Mb”lM( )d fl F (0 dx— — A
— x)dx= X)dX— 7 ——
Mg/ Jo MZm2 ( 12 Mg

) B(B—Xlv)<11%. (66)
xf dz 26" (1—2)+ O(A?M3)
0 The naive quark-model prediction for this branching ratio is
1A 1A - more than 15%. Although PQCD suppression at the end
=3M; 3 Mg +O(A“/Mg) (65  point is around 50%, the overall suppression amounts to 8%
at most. With modification from the massiveness of the
vanishes aD(1/Mg) as concluded ifi22]. In summary, the ~Ccharm quark, our formalism can be applied equally well to
x=M &M 2 andx= 1, with a width ofO(1/Mg), cancels the PQCD corrections suppress the overestimated theoretical
O(1/Myg) correction from the structure function, such that valué of the semileptonic branching ratio only down to
the nonperturbative correction is 6f(1/M 3). 13.8% at best. On the other hand, the distribution functions
According to Eq(63), the suppression from nonperturba- May decrease the quark-model predictions by about 30%.
f». The percentage fofrs is still large, because its first mo- before, and it is very plausible that it gives an equal amount
ment does not satisfy the requirement of HQEFT, and thu®f suppression to nonleptonic decays. Therefore, introducing

the cancellation at the powerMj; is not complete. a distribution function may not be able to remove the dis-
The ambiguity from the choice of distribution functions agreement. _ _ _
can be removed, once the spectrum of the d&ayX,y is Based on the above discussion, we propose three possi-

available. We can fix the univers@ meson distribution Dbilities to resolve the discrepancyt) the distribution func-
function from these data, substitute the distribution functiontion suppresses semileptorBameson decays maximally, but
into our formula, and predict the end-point spectrum of thedo€s nonleptonic decays minimally. This may arise from the
decay B—X,l». A model-independent extraction of the different phase space in these two cad@y.Factorization

CKM matrix elementV,,| then becomes possibjé3,16.  theorems break down iB meson decays(3) New QCD
effects or new physics appears. Blok and Mari@d] argued
V1. CONCLUSION that factorization theorems may still hold, and thus the con-

frontation between data and theoretical predictions becomes

We have studied the inclusive semileptoBie- X, | v de-  acute. To settle down the issue, a careful PQCD analysis of

cay using the PQCD formalism. In order to separate thé8 meson nonleptonic decays is required. We shall discuss
B— Xl v signals from theB— X.l» background, we must these subjects in a forthcoming article.
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