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Radiative corrections to the muonium hyperfine structure: Thea2
„Za… correction
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This is the first of a series of papers on a systematic application of the NRQED bound state theory of
Caswell and Lepage to higher-order radiative corrections to the hyperfine structure of the muonium ground
state. This paper describes the calculation of thea2(Za) radiative correction. Our result for the complete
a2(Za) correction is 0.424~4! kHz, which reduces the theoretical uncertainty significantly. The remaining
uncertainty is dominated by that of the numerical evaluation of the nonlogarithmic part of thea(Za)2 term and
logarithmic terms of ordera4. These terms will be treated in the subsequent papers.@S0556-2821~96!05109-0#

PACS number~s!: 36.10.Dr, 06.20.Jr, 12.20.Ds, 31.30.Jv
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I. INTRODUCTION

The hyperfine structure of hydrogenic atoms is one of t
best-understood problems both experimentally and theor
cally. Especially, muonium has played an important role
the precision test of QED because its radiative correctio
have been calculated to high orders and its hyperfine splitt
has been measured very precisely@1#:

Dn~expt!54463302.88~16! kHz ~0.036 ppm!. ~1!

Furthermore, a new experiment is in progress to improve
precision ofDn ~expt! to about 0.007 ppm@2#. To match this
experimental accuracy, it is necessary to improve the the
of thea2(Za) anda(Za)2 nonrecoil radiative corrections a
well as the leading ln(Za) terms of ordera42n(Za)n, n51,
2, 3, and some relativistic corrections. This paper prese
details of the calculation of thea2(Za) radiative correction.
A preliminary report of this work has been published@3#.

As is well known, the bulk of the hyperfine splitting ca
be explained by the nonrelativistic quantum mechanics a
is given by the Fermi formula@4#

EF5
16

3
a2cR`

m

M F11
m

M G23

, ~2!

whereR` is the Rydberg constant for infinite nuclear mas
andm andM are the electron and muon masses, resp
tively.

Many correction terms have been calculated over seve
decades since the pioneering work of Fermi. Unfortunate
different terms were often evaluated by different metho
making comparison of the results nontrivial in some cas
This causes a particularly difficult problem in identifying an
evaluating higher order correction terms. Recently, howev
Lepage and his collaborators have developed an appro
called nonrelativistic QED~NRQED!, to deal with the non-
relativistic and weakly coupled bound systems consisten
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starting from quantum electrodynamics~QED! @5–7#. This
provides a solid framework for evaluating higher order ra
diative corrections systematically and unambiguously. Th
series of papers deals with a treatment of radiative corre
tions of the muonium hyperfine structure within the frame
work of NRQED.

Before describing our calculation, let us summarize th
previous results on the muonium hyperfine splittingDn. It is
customary to classify the QED corrections toDn into three
types: radiative nonrecoil correction, pure recoil correction
and radiative-recoil correction. We use the convention suc
that electron charge ise and the charge of the positive muon
is 2Ze. Of courseZ51 for the muon, but it is kept in the
formula in order to identify the origin of corrections. Note
that each radiative photon on the electron-line contributes
factora, that on the muon line a factorZ2a, and one jump-
ing from electron to muon a factorZa. This factor also
arises from the effect of binding on the velocity distribution
of atomic electrons. In addition, there are small correction
due to the hadronic vacuum polarization and weak intera
tion effects. Thus one may write

Dn~ theory!5Dn~ rad!1Dn~ recoil!1Dn~ rad-recoil!

1Dn~ hadron!1Dn~ weak!. ~3!

Purely radiative terms of ordersa(Za) anda(Za)2 have
been known for some time@8#:

Dn~ rad!5~11am!X11
3

2
~Za!21ae1a~Za!S ln22

5

2D
2
8a~Za!2

3p
ln~Za!F ln~Za!2 ln41

281

480G
1

a~Za!2

p
~14.8860.29!CEF . ~4!

Hereae andam are the anomalous magnetic moments of th
electron and muon, respectively. The appearance of the fa
tor (11am) in ~4! is in accord with our definition ofEF in
~2!. Note that the number 14.88 in thea(Za)2 correction is
different from 15.39 reported in Ref.@8#. This is due to the
recent discovery of two mistakes in the literature. The firs

ver-
s:
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4910 53T. KINOSHITA AND M. NIO
error is in the calculation of thea(Za)2 correction due to the
vacuum polarization insertion in the transverse photon
Ref. @9#. Recently several people independently found@10–
12# that this contribution is (24/5)EFa(Za)2/p, not
(22/3)EFa(Za)2/p given in Ref.@9#. The second error was
caused by omission of a part of the contribution due to t
vacuum polarization insertion in the Coulomb photo
(28/15)ln2EFa(Za)2/p, when it was combined with the ra-
diative photon contribution (15.1060.29)EFa(Za)2/p @11#.

The known recoil corrections add up to@8#

Dn~ recoil!5S 2
3Za

p

mM

M22m2 ln
M

m

1
g2

mM F2lnmr

2g
26ln21

65

18G DEF , ~5!

where g[Zamr and mr5mM/(m1M ). The radiative-
recoil contributions, which arise from both electron an
muon lines and from vacuum polarizations, are given by1

Dn~ rad-recoil!5
a~Za!

p2

m

M
X22ln2

M

m
1
13

12
ln
M

m

16z~3!1z~2!2
71

72
13p2ln2

1Z2F92 z~3!1
39

8
23p2ln2G

1
a

p F2
4

3
ln3

M

m
1
4

3
ln2

M

m

1OS lnMmD GCEF . ~6!

The a(Za)(m/M ) and Z2a(Za)(m/M ) terms are known
exactly@8,13#. The ln3 and ln2 parts of thea2(Za) term were
evaluated by Eideset al. @14#.

The hadronic vacuum polarization contributes@15#

Dn~ hadron!5
a~Za!

p2

mM

mp
2 ~3.7560.24!EF

50.250~16! kHz, ~7!

wheremp is the charged pion mass.
Finally there is a small contribution due to theZ0 ex-

change. Our reevaluation of the standard-model estim
@16,17# gives2

1Equation~6! of Ref. @3# is valid only forZ51 although it does
not affect the muonium. We thank B. N. Taylor and P. Mohr fo
pointing out this oversight.
2This is in agreement with the corrected value given in Ref.@17#

and has a sign opposite to that of Ref.@3#. The same result was also
obtained by J. R. Sapirstein and by M. I. Eides. We thank B.
Taylor and P. Mohr for calling a possible problem of sign to ou
attention.
in
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Dn~ weak!52GF

3A2mM

8ap
EF.20.065 kHz. ~8!

Numerical values of terms given by Eqs.~4!–~8! are summa-
rized in Table I. If one uses the value ofa, R` , andM /m
from Refs.@18#, @19#, and@1#,

a215137.0359979~32! ~0.024 ppm!,

R`510973731.568 30~31! m21,

M

m
5206.768259~62!, ~9!

the theoretical prediction for the hyperfine splitting of the
ground state muonium, the sum of the contributions listed
Table I, is given by

Dn~ old theory!54 463302.27~1.34!~0.21!~0.16!~1.00!,
~10!

where the first and second errors reflect the uncertainties
the measurements ofmm and a21 listed in ~9!. The third
error is purely theoretical and dominated by the uncertain
in the lasta(Za)2 term of ~4!. The last one, about 1 kHz, is
an estimated contribution from the ordera2(Za) correction
in D(rad).

As is clear from~10! one must know thea2(Za) pure
radiative correction in order to improve the theoretical pre
diction further. Figure 1 shows typical diagrams contributin
to this order. Recently, terms represented by the diagram
~a!–~e! of Figure 1 have been evaluated by Eideset al.
@20#. Their results are as follows:

Dn@ Fig. 1~a!#5
36

35

a2~Za!

p
EF50.5673 kHz, ~11!

Dn@ Fig. 1~b!#5S 22415 ln22
38

15
p2

118

225D a2~Za!

p
EF

51.0302 kHz, ~12!

r

N.
r

TABLE I. Contributions of various terms to the hyperfine split-
ting of the ground state muonium.~The new result of this paper is
not included.! They are represented in units of kHz. The contribu
tion from the muon anomalous magnetic moment is included
each nonrecoil radiative correction term in the left column.

Term ~kHz! Term ~kHz!

EF 4459032.409 Zam/M 2800.304
ae 5170.927 (Za)2m/M 8.982
(Za)2 356.174 a(Za)m/M 22.636
a(Za) 2429.036 Z2a(Za)m/M 21.190
a(Za)2ln2(Za)21 235.606 a2(Za)m/M 20.044
a(Za)2ln(Za)21 25.796 Hadron 0.250
a(Za)2 8.207 Weak 20.065
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Dn@ Fig. 1~c!#5S 2
4

3
z22

20A5
9

z2
64

45
ln21

p2

9
1
1043

675

1
3

8D a2~Za!

p
EF520.3689 kHz, ~13!

Dn@ Fig. 1~d!#520.310742•••
a2~Za!

p
EF520.1714 kHz,

~14!

wherez5 ln@(11A5)/2#. The results~11!, ~12!, and~13! are
analytic, while~14! was evaluated numerically after reducin
the integral to one dimension. We confirmed these results
an independent numerical calculation. However, our pure
numerical evaluation of Fig. 1~e!,

Dn@ Fig. 1~e!#520.47248~9!
a2~Za!

p
EF520.2606 kHz

~15!

disagreed with the semianalytic result of Ref.@21#. With our
help, Eides@22# found an error in the table after Eq.~23! of
Ref. @21#. Their corrected value is in good agreement wi
~15!.

Figure 2 shows the complete set of Feynman diagrams
the type~f! of Fig. 1, which have not been evaluated befo
our work@3#. The preliminary result of our calculation for al
diagrams of Fig. 2 was

Dn@ Fig. 1~f!#520.63~4!
a2~Za!

p
EF520.347~22! kHz,

~16!

where the error is mainly due to the uncertainty in extrap
lating the integral to zero infrared cutoff. The main purpo
of this paper is to report a further improvement of this resu

FIG. 1. Representative diagrams contributing to thea2(Za) ra-
diative corrections to the muonium hyperfine structure in which tw
virtual photons are exchanged betweene2 andm1. The muon is
represented by3.
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Dn@ Fig. 1~f!#520.6764~79!
a2~Za!

p
EF

520.3731~44! kHz. ~17!

As a consequence of this result, the total contribution of t
a2(Za) correction to the muonium hyperfine splitting be
comes

Dn@ Fig.1#50.7679~79!
a2~Za!

p
EF50.4235~44! kHz.

~18!

This removes the dominant theoretical uncertainty
Dn( theory).

In Sec. II we outline the NRQED treatment of two-bod
bound system. It serves as the theoretical basis for the ca
lation of thea2(Za) correction as well as the calculation o
the a(Za)2 and higher order corrections discussed in th
subsequent papers. In Sec. III we illustrate the general p
cedure of NRQED choosing the well-knowna(Za) nonre-
coil radiative correction as an example. In Sec. IV we prese
our calculation of thea2(Za) purely radiative nonrecoil cor-
rection to the muonium hyperfine structure. Some problem
encountered in the numerical work are also discussed the
Section V is devoted to the discussion of our results.

o

FIG. 2. Two-photon exchange diagrams with fourth-order radi
tive corrections on the electron line. Diagrams which are related
these diagrams by time reversal are not shown explicitly. The mu
is represented by3.
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4912 53T. KINOSHITA AND M. NIO
II. NRQED

A. Why NRQED ?

The Lorentz invariance has been one of the most imp
tant guiding principles for the development of quantum fie
theory. However, relativistic quantum field theory is ofte
very cumbersome to apply to nonrelativistic bound system
Such a calculation tends to be very complicated and requ
an enormous effort, while the result reflects mostly the no
relativistic feature of the system. For such a system an
proach that incorporates most of the bound state effects fr
the beginning would minimize the amount of computatio
necessary to achieve the desired precision. For the cas
electromagnetic interaction, this has been realized by
theory called nonrelativistic quantum electrodynamics,
NRQED. The NRQED enables us to avoid some, if not a
of the problems encountered in the usual treatment based
the Bethe-Salpeter equation.

The NRQED, formulated by Caswell and Lepage@5#, is a
rigorous adaptation of QED to bound systems. This theo
enables us to take a consistent and systematic approac
loosely bound nonrelativistic systems. Compared with t
conventional bound state theories, it allows easier pow
counting, more transparent cancellation of ultraviolet~UV!
and infrared~IR! divergences, and is manifestly gauge in
variant. In spite of its superiority, however, the details of th
theory has not yet been fully worked out. In this series
papers, we present an explicit construction of the NRQE
Hamiltonian and develop a bound state perturbation the
based on it.

As for the computation of thea(Za) anda2(Za) correc-
tions, NRQED or any other relativistic bound state forma
ism gives the same simple recipe: calculate the forward sc
tering amplitude in QED and multiply it withuf(0)u2, where
f(0) is the nonrelativistic wave function at the origin. I
NRQED this recipe can be directly justified by inspection
relevant diagrams and power counting. In other bound st
formalisms, the corresponding procedure may be le
straightforward. The latter approach becomes very comp
cated for higher-order corrections such as thea(Za)2 and
a(Za)3 corrections. Difficulty in achieving high numerica
precision by this method is one of the sources of theoreti
uncertainty at present@8,23#.

The approach adopted by the NRQED, however, loses
effectiveness for the high Z system. In such a case it is
sirable to avoid expanding inv;Za. Recently, an attempt
has been made to calculate the ordera term without expand-
ing in Za @24#. However, this approach may have difficult
in providing a good precision forZ51. This is primarily
because, for lowZ systems, the bound electron is almost o
the mass shell and exhibits a near infrared divergent beh
ior. As a consequence the convergence of numerical integ
tion deteriorates asZ decreases. As is shown in the subs
quent papers, the NRQED method enables us to deal with
near infrared divergence problem order by order in a syste
atic expansion inZa, and allows us to calculate the expan
sion coefficients with high precision. This is why th
NRQED method is a powerful tool for lowZ systems.

B. Outline of NRQED

In the NRQED approach to the bound state problem, o
first derives the NRQED Lagrangian from the QED, and th
or-
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uses it to determine the correction to the energies and wa
functions by a systematic application of the Rayleigh
Schrödinger perturbation theory.

The NRQED Lagrangian consists of all possible local in
teractions satisfying the required symmetries, such as ga
invariance, parity invariance, time reversal, Galileian invar
ance, Hermiticity, and locality. We use the same photon L
grangian (21/4)FmnF

mn as that of QED. In addition, new
photon interaction terms are introduced to represent the
sertion of the fermion loop, such as vacuum polarization a
light-by-light scattering.

In order to define the NRQED Lagrangian precisely, w
must regularize the interaction terms of NRQED, e.g., b
cutting off contributions of large momenta. Since this theo
is meant to apply to nonrelativistic systems, the cutoffL
may be chosen as the typical mass scale of the system, e
the rest mass of an electron. With the cutoffL thus fixed, the
theory becomes well defined, even though the interacti
terms are strongly dependent on the cutoff parameter. In
following the cutoff is understood implicitly, and will be
exhibited only when it is necessary. The choice of the m
mentum cutoff used for the NRQED scattering amplitudes
arbitrary but the physical quantity computed should be ind
pendent of any particular choice. In other words, th
NRQED theory must have reparametrization invariance w
respect to the choice of cutoff. This is analogous to the e
istence of the renormalization group in the renormalizab
relativistic field theory. It is important to note that the
NRQED is fully equivalent to the QED. The only difference
is that it is better adapted to low energy bound systems.

The NRQED rule for determining the operators whic
appear in its Lagrangian and their coefficients is simple a
straightforward: Each term of thescatteringamplitude cal-
culated in the NRQED must coincide with the correspondin
scattering amplitude of the original QED at some given
momentum scale, e.g., at the threshold of the external o
shell particles. The center of mass frame is used for bo
bound state and scattering state calculations. Since the s
argument about reparametrization invariance holds for t
momentum scale chosen for comparison of QED an
NRQED scattering amplitudes, the at-threshold condition
just for convenience. However, the on-shell condition for th
external fermion is more than a matter of convenience.
order to regulate the IR singularity it is convenient to intro
duce the photon massl in the calculation of scattering am-
plitude of both QED and NRQED. This finite photon mas
together with the on-shell condition ensures that the NRQE
scattering theory has a pole in the region of the compl
energy plane of the external fermion in which the scatterin
theory can be analytically continued to the off-shell boun
state theory.

We use the normalizationu†u51 for the external four-
component spinors in the QED calculation instead of th
conventional relativistic normalizationūu51 so that both
QED and NRQEDS matrices have the same normalizatio
@25#. This ensures that physical quantities, such as decay r
and cross section, calculated in both theories are the sam

Note that the scattering amplitude of QED is fully renor
malized, namely, it is finite and completely determine
within QED. This enables us to fix the NRQED
‘‘renormalization’’ constants without ambiguity. This also
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53 4913RADIATIVE CORRECTIONS TO THE MUONIUM HYPERFINE . . .
means that the coupling constanta and fermion masses in
the QED are the renormalized ones determined on shell,
thesea and fermion masses are used as the ‘‘bare’’ coupli
constant and ‘‘bare’’ masses of NRQED.

It is convenient to write the NRQED Lagrangian in tw
parts:Lmain andLcontact. TheLmain part consists of the ferm-
ion bilinear operators. Fermions in NRQED are expressed
the Pauli two component spinor fieldc(t,xW ) ~instead of the
Dirac spinor!. If one takes into account the required symm
tries of the theory, the main part of NRQED Lagrangia
Lmain must have the general form@5,6#

Lmain5c†H iD t1
DW 2

2m
1

DW 4

8m3 1cF
esW •BW

2m

1cD
e~DW •EW 2EW •DW !

8m2 1cS
iesW •~DW 3EW 2EW 3DW !

8m2

1cW1

e$DW 2,sW •BW %

8m3 1cW2

2eDW isW •BWDW i

4m3

1cp8p
e~sW •DW BW •DW 1DW •BW sW •DW !

8m3 1•••J c, ~19!

where Dt5] t1 ieA0 and DW 5]W2 ieAW . ~We put c51 and
\51 henceforth.! The positron part can be written down in
similar way. The particle-antiparticle mixed interaction is n
present inLmain. The first three terms are related to the k
netic term of the QED Lagrangian. The second and th
terms are derived from the expansion

E5ApW 21m25m1
pW 2

2m
2

pW 4

8m3 1•••. ~20!

These three terms of~19! have coefficients unaffected by the
radiative correction as a consequence of the renormaliza
ity of QED, while the coefficientsci of other terms are modi-
fied by the QED interaction and can be expressed as a po
series in the coupling constantsa:

ci5ci
~0!1ci

~1!a1ci
~2!a21•••. ~21!

Some of the operators in~19! can be generated by the Foldy
Wouthuysen-Tani transformation of the Dirac Lagrangia
These operators have the coefficientci

(0)51 while other op-
erators haveci

(0)50. Note thatci ’s do not have coefficients
involving Za caused by the binding effect because they a
determined solely by comparison of the NRQED and QE
scatteringamplitudes without referring to the bound states

Equation~19! has an infinite number of terms. Not all o
them, of course, are needed in a practical calculation. T
operators necessary to carry out a particular calculation
determined by the power counting rule of NRQED for th
bound state. We will show this process explicitly in the ne
subsections where the NRQED Hamiltonian is constructe

The Lmain of NRQED alone is not sufficient to produce
the same physical quantities as those from QED. To ma
NRQED equivalent to QED, we must add another term to t
and
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NRQED Lagrangian. It consists of terms of contact interac
tion type:

Lcontact5d1
1

mM
~c†sW c!•~x†sW x!1d2

1

mM
~c†c!~x†x!

1d3
1

mM
~c†sW x!•~x†sW c!1d4

1

mM
~c†x!~x†c!

1d5
1

m3M
~c†DW 2sW c!•~x†sW x!1•••, ~22!

wherex represents a fermion field~of massM ) such as a
muon or a positron. The third and fourth terms in~22! are
needed only when both electron and positron are prese
This is because, from the viewpoint of NRQED, the electron
positron annihilation is a high energy process and can on
be represented as a contact interaction term. For the mu
nium, only the first and second terms are relevant. The fif
term is an example of contact terms including derivative in
teractions, which are of higher order in^pW 2/m2&;(Za)2.

The coefficientsdi are chosen such that these contact in
teractions make up the difference between the QED electro
muon scattering amplitude and the corresponding NRQE
scattering amplitude derived from the LagrangianLmain.
This procedure enables us to determine the coefficientsdi
completely.

As is clear from the above discussion, these NRQE
‘‘renormalization’’ constantsci and di have the parameter
dependence

ci5ci~a,L,m!, di5di~a,Za,Z2a,L,m,M !. ~23!

Of course, the experimentally observable result of calcul
tion must be independent of the cutoffL, and gauge invari-
ant. This is realized by a systematic application of the non
relativistic Rayleigh-Schro¨dinger perturbation theory to the
bound states. Note also thatci and di are finite and well
defined in the infrared limit and hence require no infrare
cutoff.

Just as the actual execution of renormalization program
QED must rely on the covariant perturbation theory, a com
prehensive formulation of NRQED can be realized explicitl
only within the framework of the nonrelativistic Rayleigh-
Schrödinger perturbation theory. This means that we have
choose an appropriate part of the Hamiltonian as the unp
turbed term and treat the rest as perturbation.

To deal with the muonium we find it generally convenien
to define the unperturbed system in terms of the ground sta
solution of the nonrelativistic Schro¨dinger equation:

S pW 2

2mr
2
Za

r
Df5E0f, ~24!

wheremr is the reduced mass andE052g2/(2mr) is the
ground state binding energy,g[(Za)mr being a typical mo-
mentum scale of the Coulomb bound state. The solution
this equation is

f~pW !5
8Apg5

~pW 21g2!2
. ~25!
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The unperturbed electron fieldc(pW ) is thus expressed by this
wave functionf(pW ) times the Pauli spin factor. Using the
remaining interaction terms in the NRQED Lagrangian t
gether with the photon Lagrangian, we can construct the
o-
ef-

fective potentials. These potentials are to be treated as p
turbation.

The nonrelativistic Rayleigh-Schro¨dinger perturbation
theory gives
DEn5cn
†VcnF11cn

†S ]

]E
VDcnG

E5E
n
0

1cn
†VS G̃02

cncn
†

E2En
0DVcnuE5E

n
01cn

†VS G̃02
cncn

†

E2En
0DVS G̃02

cncn
†

E2En
0DVcnuE5E

n
0

1cn
†Vcncn

†H ]

]E FVS G̃02
cncn

†

E2En
0DVG J cnuE5E

n
01•••. ~26!
-
ers

ci-
ion

ve
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in-
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f
y
e.
we
ill
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es
u-
tic

-

di-
The Green functionG̃0(kW ,qW :En
0) appearing here is known in

a closed form for the nonrelativistic Coulomb potential@26#.
For the ground staten51, we find

limE→E
n51
0 S G̃02

cn51cn51
†

E2En51
0 D

5
22mr

kW21g2
~2p!3d3~kW2qW !

1
22mr

~kW21g2!

2Ze2

ukW2qW u2
22mr

~qW 21g2!
2

64p

Zag4 R̃~kW ,qW !,

~27!

where

R̃~kW ,qW !5
g8

~kW21g2!2~qW 21g2!2
F5224

g2

kW21g2
24

g2

qW 21g2

1
1

2
lnA1

2A21

~4A21!1/2
tan21~4A21!1/2G ~28!

and

A5
~kW21g2!~qW 21g2!

4g2ukW2qW u2
. ~29!

The first, second, and third terms of the expression~27! can
be understood as corresponding to zero, one, and two
more Coulomb-photon exchanges.

In order to determine which terms of the Hamiltonian a
needed to obtain the desired precision it is useful to know
expectation values of various operators with respect to
propriate wave functions@25#. For a nonrelativistic Coulom-
bic bound system, one finds

^]W &;m~v/c!, ^] t&;m~v/c!2, ^eA0&;m~v/c!2,
~30!

^eAW &;m~v/c!3, ^eEW &;m2~v/c!3, ^eBW &;m2~v/c!4,

wherem is the electron mass,v is the typical velocity of a
bound electron, andc(51) is the velocity of light. Thus, in
or

re
the
ap-

Eq. ~19!, the first two terms, next four terms, and the remain
ing terms correspond to the interactions which start at ord
v2, v4, and v6, respectively. Radiative corrections, which
alter the values of the coefficientsci ’s anddi ’s, will keep the
estimate~30! intact. The information~30! can be used to
terminate the series of interaction terms at the desired pre
sion. In this sense, the NRQED Lagrangian is an expans
in both the coupling constanta and the velocityv.

The NRQED ‘‘renormalization’’ coefficients play impor-
tant roles in restoring gauge invariance which might ha
been broken by regularization. The explicit form of thes
coefficients depends on the regularization method. Gauge
variant regularization is desirable but not necessary. If o
proceeds carefully, even a simple momentum cutoff meth
may be used@27#. ~This is only true for an Abelian gauge
theory such as NRQED.! In a calculation of the would-be
divergent quantity in NRQED, we put the UV cutoffL not
in the fermion momentum but in the photon momentum@28#.

Because of the way NRQED is constructed, gauge inva
ance of the NRQED amplitude with its complete set o
‘‘renormalization’’ constants is automatically guaranteed b
the gauge invariance of the corresponding QED amplitud
Since QED and NRQED are separately gauge invariant,
may choose different gauges for QED and NRQED. We w
use the Feynman gauge for QED calculation, and we use
Coulomb gauge for NRQED. The Feynman gauge minimiz
the amount of work for numerical computation, and the Co
lomb gauge is more suitable for describing the nonrelativis
behavior of the electron.

The dominant contribution to the hyperfine splitting be
tween the spinJ51 andJ50 states originates from the in-
teraction between the electron spin and the muon spin me
ated by a transverse photon of momentumkW . This leads to a
potential of the form

VF5
ie

2m
~c†kW3se

Wc) •
2 iZe

2M
@x†~2kW !3sm

W x]
21

kW2

~31!

in the momentum space representation, whereM is the muon
mass. Using this Fermi potentialVF in the first order pertur-
bation theory and taking the difference betweenJ51 and
J50 states, we obtain the hyperfine Fermi splitting
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EF5^n51uVFun51&uJ50
J515E d3p

~2p!3
E d3k

~2p!3
~8Apg5!2

~pW 21g2!2~ upW 1kW u21g2!2
ie

2m
^~kW3se

W )•
2 iZe

2M
@~2kW !3sm

W ] &
21

kW2

5
2~Za!g3

3mM
^se
W
•sm
W &uJ50

J515
8~Za!g3

3mM
. ~32!

FIG. 3. NRQED ‘‘Feynman’’ rules for vertices and propagators. They can be used for both scattering and bound state calculatioE in
the fermion propagator represents the fermion’s bound state energy:E50 for scattering at threshold andE52g2/(2mr) for the ground
state muonium. The photon massl is set to zero in the bound state calculation.
-
re-

rt
Needless to say, the Fermi potential is of ord
v4(m/M )m;(Za)4(m/M )m.

Various interaction terms and propagators are represen
by the NRQED ‘‘Feynman’’ diagrams shown in Fig. 3. It is
convenient and useful to express higher-order amplitud
representing scattering states or bound states by corresp
ing diagrams.

We classify the diagrams according to the number of e
er

ted

es
ond-

x-

ternal photons in the QED Feynman diagrams. In the follow
ing subsections we shall show step by step how the cor
sponding NRQED LagrangianLmain ~or HamiltonianHmain)
is determined.

C. Scattering by a static external potential

We have already found the general form of the main pa
of the NRQED Lagrangian given by Eq.~19! using the re-
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quired symmetries for the theory and the power counti
rules. Therefore, the remaining task for construction of t
NRQED Hamiltonian is determination of the coefficients o
these operators appearing in Eq.~19!.

Let us first consider the QED diagram in which one ph
ton is exchanged between the electron and the muon.
first step to obtain the ‘‘renormalization’’ coefficients of th
operators in the NRQED Hamiltonian is to carry out nonre
ativistic reduction of the QED scattering amplitude exchan
ing one photon between the electron and the muon. Comp
ing this QED scattering amplitude with the scatterin
amplitude derived from the general form of NRQED La
grangian given in Eq.~19!, we are able to fix the
‘‘renormalization’’ coefficientci ’s. We want to choose the
simplest process to find them. It turns out that a
‘‘renormalization’’ coefficients in~19! can be obtained by
using the external static potential. The comparison betwe
the corresponding QED and NRQED amplitudes is shown
Fig. 4. We will work out nonrelativistic reduction of opera
tors of order up toav6 andav4 for spin-flip and spin-non-
flip types, respectively. Since the spin-non-flip operato
contribute to the hyperfine splitting only through the high
order bound state perturbation, we need only operators
order lower than the spin-flip ones. The QED scattering a
plitude to be studied here consists of a tree vertex and o
dressed by a radiative photon. Because we are dealing w

FIG. 4. QED and NRQED scattering diagram comparison. T
diagrams on the left and right of the5 sign represent QED and
NRQED diagrams, respectively. The external fermions are on
mass shell and at threshold. Self-energy diagrams coming from

AW •AW c†c vertex as well as self-mass counterterms are not sho
explicitly.
ng
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the scattering amplitude, we also have a diagram with se
energy insertion on the external fermion lines. Howeve
these diagrams can be dropped after the mass renormal
tion and wave function renormalization are carried out,
one chooses the on-shell renormalization scheme. Then
QED scattering amplitude is expressed by the usual for
factorsF1 andF2 .

For the external static vector potentialAW (qW ), we easily
find the QED scattering amplitude

eū~pW 8!F2gW •AW ~qW !F1~q
2!1

i

2m
s i j Ai~qW !qjF2~q

2!Gu~pW !

5F1~q
2!c†~pW 8!F2

e

2m
~pW 81pW !•AW 2

ie

2m
sW •~qW 3AW !

1
ie

8m3 ~pW 821pW 2!sW •~qW 3AW !1••• Gc~pW !

1F2~q
2!c†~pW 8!F2

ie

2m
sW •~qW 3AW !1

ie

16m3 ~pW 821pW 2!

3sW •~qW 3AW !1
ie

8m3sW •pW 8sW •~qW 3AW !sW •pW 1••• Gc~pW !,

~33!

where u and c are Dirac and Pauli spinors, respectively
Similarly, for the external static Coulomb fieldA0(qW ), we
have

eū~pW 8!Fg0A0~qW !F1~q
2!2

i

2m
s0 jA0~qW !qjF2~q

2!Gu~pW !

5F1~q
2!c†~pW 8!FeA02 e

8m2qW
2A0

1
ie

4m2sW •~pW 83pW !A01••• Gc~pW !

1F2~q
2!c†~pW 8!F2

e

4m2qW
2A0

1
ie

2m2sW •~pW 83pW !A01••• Gc~pW !. ~34!

Taking account of the fact thatq0 is of orderv2 anduqW u is of
orderv, the nonrelativistic expansion of the form factors ca
be written as@29#

F1~q
2!512

a

3p
F qW 2
m2 XlnSml D 2

3

8
CG1O~av4,a2v2!,

F2~q
2!5ae2

a

p

qW 2

12m2 1O~av4,a2v2!, ~35!

whereae5F2(0) is the anomalous magnetic moment of th
electron.

Combining ~33!, ~34!, and ~35! together, and comparing
with the scattering amplitude derived from the NRQED La

he

the
the
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grangian given by~19!, we find that the ‘‘renormalization’’
coefficients must be chosen as

cF
QED511ae ,

cD
QED511

a

p

8

3 F lnSml D2
3

8G12ae ,

cS
QED5112ae ,

cW1
QED511

a

p

4

3 F lnSml D2
3

8
1
1

4G1
ae
2
,

cW2
QED5

a

p

4

3 F lnSml D2
3

8
1
1

4G1
ae
2
,

cp8p
QED

5ae . ~36!

This procedure enables us to construct the NRQE
Hamiltonian. However, it does not provide the comple
NRQED Hamiltonian. One must also include terms whic
D
te
h

are the NRQED analogues of QED counterterms such
2dmūu. To see this let us calculate the NRQED scatterin
amplitude which arises from the Coulomb termc†eA0c
modified by a one-loop NRQED radiative correction by
perturbative treatment ofHmain.

The perturbation here means that the zeroth order
NRQED Hamiltonian contains only the free part of the ele
tron, and thus the Coulomb interaction is treated as pert
bation. Some of these scattering amplitudes involving rad
tive corrections require new forms of the NRQED operato
while others may be represented by addition
‘‘renormalization’’ constants of the already existing opera
tors inHmain.

The fermion kinetic energy term in~19! gives the interac-
tion term 2c†e(pW 81pW )•AW /(2m)c in the NRQED Hamil-
tonian. Note that, although the NRQED Hamiltonian is no
an expansion into multipoles, we call this term the dipo
interaction in the following for convenience’s sake. Thus w
consider the Coulomb term dressed by the transverse pho
with the dipole couplings. The NRQED Feynman rule ap
plied to this diagram gives
trons
c†~pW 8!S emD 2i EL d4k

~2p!4
1

~k0!22kW22l21 i e
S pW 8•pW 2

pW •kWpW 8•kW

kW21l2 D
3

1

E1k02~pW 81kW !2/~2m!1 i e
eA0

1

E1k02~pW 1kW !2/~2m!1 i e
c~pW !. ~37!

We chose the contour in the upper halfk0 plane to pick up only the negative energy photon pole. Then we neglectkW in the
kinetic energy term (pW 1kW )2/(2m) in the electron propagators. This is justified because the energy transfer between elec
is of orderv2 when upW u is of orderv, while the space component of the photon momentumukW u is of orderv2. After this
approximation, angular integration over the photon momentumkW becomes trivial, leaving only theukW u integration:

c†~pW 8!S emD 2 23pW 8•pW E
0

L dk

2p2

k2

2Ak21l2 S 11
1

2

l2

k21l2D 22m

pW 8222mE12mAk21l2
eA0

22m

pW 222mE12mAk21l2
c~pW !

5c†~pW 8!
a

p

8

3 F lnS 2L

l D2
5

6G 2e

8m2 ~22p8W •pW !A0c~pW !1O~v8!. ~38!

In the last step, we used the on-shell, at-threshold condition,E5pW 2/(2m)1O(v4).
The diagram with a self-energy on the external electron line gives

1

2
c†~pW 8!F22m

pW 2
S emD 2 23pW •pW E0L dk

2p2

k2

2Ak21l2 S 11
1

2

l2

k21l2D 22m

pW 222mE
H 22m

pW 222mE12mAk21l2
2

21

Ak21l2 J eA0
1~pW→pW 8!Gc~pW !5c†~pW 8!

a

p

8

3 F lnS 2L

l D 2
5

6G 2e

8m2 ~pW 821pW 2!A0c~pW !1O~v8!. ~39!
n
Note that the term21/Ak21l2 is the ‘‘mass renormaliza-
tion term’’ of NRQED.3

In order to maintain the equivalence of QED and NRQE

3‘‘Tadpole’’ diagram due to the,AW •AW c†c. completely van-
ishes after mass renormalization because this diagram does no
pend on the external fermion momentum.
D

we must include the negative of these contributions i
Hmain. @See Fig. 4~d!.# From ~38! and~39! we see that this is
achieved by adding the new ‘‘renormalization’’ coefficients
to the Darwin term2c†eqW 2A0/(8m2)c:

c†~pW 8!cD
NRQED2eqW 2

8m2 A0c~pW !, ~40!t de-
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where

cD
NRQED5

a

p

8

3 F lnS l

2L D1
5

6G . ~41!

The entire coefficient of the Darwin term is the sum of QE
and NRQED contributions:

cD5cD
QED1cD

NRQED511
a

p

8

3 F lnS m

2L D2
3

8
1
5

6G12ae .

~42!

Actually, this additional contribution from NRQED serves t
eliminate the contribution of the longitudinal polarization a
sociated with the finite photon mass@30#. In other words, the
lnl term in the ‘‘renormalization’’ coefficients due to QED
is effectively replaced in the NRQED ‘‘renormalization’
constant by

lnl→ ln~2L!2 5
6 . ~43!

Similarly the NRQED radiative correction to the Fermi term
2c†iesW •(qW 3AW )/(2m)c, yields the correct
‘ ‘renormalization’’ coefficient of theW1 andW2 derivative
Fermi terms, c†ie(pW 821pW 2)sW •(qW 3AW )/(8m3)c and
c†ie(22pW 8•pW )sW •(qW 3AW )/(8m3)c, respectively, which are
given by

cW1
511

a

p

4

3 F lnS m

2L D2
3

8
1
1

4
1
5

6G1
ae
2
,

cW2
5

a

p

4

3 F lnS m

2L D2
3

8
1
1

4
1
5

6G1
ae
2
. ~44!

The radiative correction comes also from vacuum pola
ization. Since vacuum polarization is a highly virtual proce
within the framework of NRQED, no vacuum polarizatio
term exists inHmain. Instead, its contribution is represente
by the new photon interaction terms in NRQED. Again w
begin with the nonrelativistic reduction of QED amplitud
with one vacuum polarization insertion. QED gives th
renormalized vacuum polarization tensor

Pmn~q!5~qmqn2gmnq2!P~q2!, ~45!

with

P~q2!52
q2

m2E
0

1

dt
r~ t !m2

q224m2~12t2!21 . ~46!

For the second order, the photon spectral functionr2(t) is
known to be

r2~ t !5
a

p

t2~12 1
3 t

2!

12t2
. ~47!

ExpandingP(q2) aroundq250, we obtain

P2~q
2!5cVP

2qW 2

m2 1O~av4,a2v2!, ~48!
D

o
s-

’

,

r-
ss
n
d
e
e
e

where

cVP5
a

15p
. ~49!

Thus, in the Coulomb gauge, two new photon interaction
terms are added to the photon Hamiltonian

cVPA
i~q!

qW 4

m2A
j~q!S d i j2

qiqj

qW 2
D ~50!

and

cVPA
0~qW !

2qW 4

m2 A0~qW !. ~51!

D. Photon-fermion scattering amplitude

Let us now turn to the processes which contain two ferm
ion operators and two external photons. To determine th
‘‘renormalization’’ coefficients we must carry out the non-
relativistic reduction of these QED scattering amplitudes. In
practice, however, we don’t have to do it at all because th
‘‘renormalization’’ coefficients of these operators up tov6

for spin-flip ones andv4 for spin-non-flip ones are identical
with those determined by the scattering amplitude due to
static external potential because of gauge invariance. For i
stance, the same ‘‘renormalization’’ coefficientcS for the
spin-orbit interaction term

c†
ie

4m2sW •~pW 83pW !A0c ~52!

must be used for both the seagull term

c†
2 ie2

4m2 sW •@q1W3AW ~q1!#A
0~q2!c ~53!

and the time derivative term

c†
ie

8m2q
0sW •@~pW 81pW !3AW #c. ~54!

The seagull term is the only operator involving two photons
relevant to our immediate interest. This contributes to th
(Za)2 anda(Za)2 corrections.

In general an explicit nonrelativistic reduction of the
photon-fermion scattering amplitude is necessary only if on
wants to find the ‘‘renormalization’’ coefficients of opera-
tors of higher order inv, such asc†EW •EW c/m3;v6.

We note thatHmain is not a unique expression. Using the
equation of motion for the fermion field, we can obtain an-
other form of Hamiltonian. WhenHmain is quantized, we
should be more careful. Use of the equation of motion is
equivalent to the transformation of the electron field. We
have to take into account the Jacobian of this change o
variables. Once the Jacobian is taken into account, tw
Hamiltonians become completely identical and produce th
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same results even for the bound state calculation@25#. This is
why we excluded the operators having time derivatives, s
as c̄( iD t)

2c/m, from our consideration, since the equatio
of motion rendersiD tc to @pW 2/(2m)1O(v4)#c.

In this manner we have obtained all operators in the m
part of the NRQED HamiltonianHmain necessary for our
calculation to the desired order.
uch
n

ain

E. The NRQED Hamiltonian Hmain

For later reference let us write down the part of the
NRQED HamiltonianHmain valid to ordera by putting to-
gether the results of Secs. IIC and IID. To do this, we intro

duce theqW 2 derivative Fermi term by combining theW1 and
W2 derivative Fermi term at the ordera. It is of the form
Hmain
L 5c†~pW 8!F pW 2

2m
1eA02

~pW 2!2

8m3 2
e

2m
~pW 81pW !•AW 1

e2

2m
AW •AW 2

ie

2m
cFsW •~qW 3AW !2

e

8m2 cDqW
2A0

1
ie

4m2 cSsW •~pW 83pW !A02
ie2

4m2 cSsW •@q1W3AW ~q1!#A
0~q2!1

ie

8m2 cSq
0sW •@~pW 81pW !3AW #

1
ie

8m3 cW~pW 821pW 2!sW •~qW 3AW !1
ie

8m3 cq2qW
2sW •~qW 3AW !

1
ie

8m3 cp8p$p
W
•~qW 3AW !~sW •pW 8!1pW 8•~qW 3AW !~sW •pW !%1•••Gc~pW !

1cVPA
i~q!

qW 4

m2A
j~q!S d i j2

qiqj

qW 2
D 1cVPA

0~qW !
2qW 4

m2 A0~qW !, ~55!
-

e
-
-

i
on
wherepW 8 andpW are the outgoing and incoming fermion mo
menta, respectively, andq5(q0,qW ) is the incoming photon
momentum. In the seagull vertex,q1W is the incoming mo-
mentum of the vector potentialAW . The superscriptL indi-
cates that the Hamiltonian is regularized with the UV cuto
L. The ‘‘renormalization’’ coefficients are

cF511ae ,

cD511
a

p

8

3 F lnS m

2L D2
3

8
1
5

6G12ae ,

cS5112ae ,

cW51,

cq25
a

p

4

3 F lnS m

2L D2
3

8
1
5

6
1
1

4G1
ae
2
,

cp8p5ae ,

cVP5
a

15p
. ~56!

Thus far we have not shown explicitly the contact ter
Hcontactof the NRQED Hamiltonian, which is also obtaine
by comparison of the electron-muon scattering amplitudes
QED and NRQED. The explicit form of the contact term wi
be given in Secs. III and IV as we calculatea(Za) and
a2(Za) corrections, respectively, to the hyperfine splitting
-

ff

m
d
in
ll

.

F. Application of Hmain to bound states

Let us now turn our attention to the bound state calcula
tion usingHmain. The main part of the NRQED Hamiltonian
for the muon field is obtained by replacing the chargee by
2Ze in the Hmain for the electron field. For the nonrecoil
hyperfine correction, only the Fermi and Coulomb terms ar
necessary in the muon Hamiltonian. Together with the pho
ton Hamiltonian, we can construct various perturbative po
tentials appearing in the nonrelativistic Rayleigh-
Schrödinger perturbation theory~26!. The lowest order
contributionEF to hyperfine splitting comes from the Fermi
potential~31!. A survey of Eqs.~55! and~56! shows that the
only ordera correction isaeEF which exhibits the effect of
the ‘‘renormalization’’: cF215ae . Other possible contri-
butions to the hyperfine splitting coming fromHmain are
those of the first order perturbation of the derivative Ferm
term and the seagull term, and the second order perturbati
which involves the Fermi term and thep4 relativistic kinetic
term or the Darwin term. The (p821p2) derivative Fermi
term leads to the potential of order (Za)6(m/M )m:

VW52
pZa

mM

~pW 821pW 2!

4m2 ~c†qW 3sW ec!

•~x†qW 3sW mx!
1

~qW 21l2!
. ~57!

The Darwin term generates the potential of order (Za)4m:

VD5
4pZa

8m2 ~c†c!~x†x!
qW 2

~qW 21l2!
. ~58!
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Expectation values of these potentials with respect to
bound state wave function diverge due to integration ov
qW . This is why we need the help of the contact ter
Hcontact for their cancellation. When the effect ofHcontact is
included, these four potentials together give the (Za)2 Breit
correction. A detailed discussion about the treatment of th
UV divergent operators is found in@10# where the derivation
of the Breit (Za)2 correction from NRQED is described.

Similarly ana(Za)2 correction is obtained when the con
tribution of the ‘‘renormalization’’ coefficients is included in
each potential. Third order perturbation theory inHmain with
an intermediate radiative photon and dipole couplings a
gives thea(Za)2 correction. This is because these diagram
have the structure similar to the derivative Fermi term or t
Darwin term as is shown in the determination of th
‘‘renormalization’’ coefficients in NRQED@see Eqs.~38!
and ~39!#.

The additional photon interaction terms~50! and~51! due
to vacuum polarization produce the effective potentials

VTVP5
p~Za!

mM
cVP

qW 2

m2 ~c†qW 3sW ec!•~x†qW 3sW mx!
qW 2

~qW 21l2!2

~59!

and

VCVP52
4pZa

m2 cVP~c†c!~x†x!
qW 4

~qW 21l2!2
. ~60!

We note that the first spin-flip potentialVTVP has exactly the
same structure as theq2 derivative Fermi potential. Thus it
contributes not to the ordera(Za) but to the order
a(Za)2. The spin-non-flip potentialVCVP behaves as ad
function potential in the coordinate space just like the Da
win potential. Thus it also contributes to thea(Za)2 term
through the second order perturbation theory.

To summarize, no ordera correction exists besides
aeEF , whereEF is given by~32!. In the NRQED formula-
tion, it is transparent why only the anomalous magnetic m
ment of afreeelectron contributes to the ordera correction
to EF .

III. THE a„Za… CORRECTION

In this section we show how the nonrecoil radiative co
rection of ordera(Za), calculated long ago by Kroll and
Pollock ~KP! and by Karplus, Klein, and Schwinger@31#,
can be obtained within the framework of NRQED. The pr
cedures developed here are readily applicable to
a2(Za) term calculation in NRQED.

A. Diagram selection

The QED diagrams involved in this calculation are show
in Fig. 5. In the original and subsequent works@31,9,32,13#,
the KP a(Za)EF pure radiative correction was evaluate
from the QED diagrams with the external fermions put o
the mass shell and at the threshold, and multiplied by
square of the nonrelativistic Coulomb wave function at th
origin. This recipe was justified after complicated and rigo
ous consideration of the relativistic bound state theory. W
the
er
m

ese
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shall show that NRQED provides an alternative justificati
of this procedure in the sense that no other correction term
needed in this order.

The correction terms whose coefficients are odd pow
of Za may arise only from very limited sources in th
NRQED bound state theory. The NRQED LagrangianLmain
consists only of terms with even parity. This implies that t
expectation values of these terms with respect to the C
lomb wave function are even inZa, the typical electron
momentum of the Coulomb bound state bein
upW u;(Za)m.

The odd power ofZa in the KP term;a(Za)5m2/M
therefore implies that there is no contribution to it from th
Lmain part of the NRQED Lagrangian.„Note that the
‘‘renormalization’’ constantci in Lmain does not depend on
Za. @See Eq.~19! and Eq.~23!.#…

This means that the correction we are looking for mu
come entirely from the NRQED contact terms of~22!. To
determine the contact term, we compare the scattering
plitudes evaluated in NRQED and QED in the same pow
of explicit a andZa. This comparison is shown in Fig. 6
For a given power of the coupling constanta, the number of
QED diagrams is finite while the number of NRQED dia
grams is infinite. We terminate the series of NRQED scatt
ing diagrams using the power counting rule for their cont
bution to theboundstate.

FIG. 5. QED diagrams contributing to thea(Za) radiative cor-
rection to the muonium hyperfine splitting.

FIG. 6. QED and NRQED two-photon exchange scattering d
gram comparison in the presence of the radiative correction.
shaded circle represents the contact term introduced in this c
parison. The NRQED diagrams in the bottom lines actually contr
ute to thea(Za)2 correction.
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53 4921RADIATIVE CORRECTIONS TO THE MUONIUM HYPERFINE . . .
We chose the electron massm as the momentum scale o
comparison, and evaluate the scattering amplitudes of b
QED and NRQED on the mass shell and at the threshold
general, this procedure must be carried out for both sp
flipping and non-flipping amplitudes. However, for the K
term, only the spin-flipping one is needed. The spin-no
flipping type produces a Lamb-shift type contact term, whi
contributes to the hyperfine splitting only in the orde
a(Za)7m2/M and above.

As we have discussed in Sec. II, the comparison of QE
and NRQED scattering amplitudes gives rise to a cont
term to the NRQED Hamiltonian. We restrict ourselves
the consideration of the contact term relevant to the hyp
fine splitting, i.e.,

dH52d1
1

mM
~c†se

Wc!•~x†sW mx!, ~61!

because this is the only source of the KP term as was d
cussed above.

Let us first focus on the contribution from the vacuum
polarization insertion. The two-photon exchange scatter
amplitudes containing the vacuum polarization potential
~55! contributes to the ordera(Za)2, not to a(Za). Thus
the only contribution from the vacuum polarization is ob
tained from the contact term which is determined by calc
lating the QED two-photon exchange amplitude with on
vacuum polarization insertion in the photon line with th
on-shell at-threshold external fermions times the square
the Coulomb wave function at the origin.

Let us turn next to the contribution from the radiativ
photon. The QED diagrams related to this correction a
shown in Fig. 5. All three QED scattering amplitudes hav
the same form:

iT QED5e2~Ze2!2E d4q

~2p!4
ūeE

mnueūmMmnum
~q21 i e!2

. ~62!

Here the electron factorEmn is different for each diagram but
the muon factorMmn is common to all these diagrams an
represents the sum of the ladder and crossed-ladder diagr
~see Fig. 7!:

Mmn5
gm~ ł2q”1M !gn

~ l2q!22M21 i e
1

gn~ ł1q”1M !gm

~ l1q!22M21 i e
, ~63!

where l5(M ,0W ) is the external muon momentum andq is
the four momentum flowing in the loop between the electr
and the muon. As is well known@8#, in the limit of infinite
muon mass, the muon factor reduces to

FIG. 7. Ladder and crossed-ladder diagrams.
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Mmn5gnq”gm

22p id~q0!

2M
. ~64!

This is represented by the symbol3 in Figs. 1, 2, 5, and 6.
The hyperfine splitting ~hfs! projection operator for

strings of g matrices is obtained by taking the differenc
between theJ51, Jz50 state andJ50 state and using the
spherical symmetry of the system@33#:

1

12 (
i51

3

Tr@Emng5g i~g011!#Tr@Mmng5g i~g011!#, ~65!

where Roman letters run from one to three while Greek le
ters run from zero to three. This projection is true only fo
external fermions on the mass shell and at threshold. T
trace of the muon factor is easily taken, yielding

emn j i q
j
22p id~q0!

2M
. ~66!

We take theemn j i q
j part together with the electron projection

operator as the hfs projection operator, and the other mu
factor will be included as a numerical factor.

In order that these diagrams contribute to the hyperfi
splitting, one of the exchanged photons must be transve
~attached to a vertexg i) while the other is Coulombic~at-
tached to a vertexg0). Our projection operator of hyperfine
splitting picks up automatically this structure from the elec
tron line.

The corresponding NRQED scattering amplitude consis
of many diagrams, but most of them actually contribute
the order higher than the KP term. The only diagram nece
sary is a combination of the Fermi potential multiplied by th
NRQED renormalization constant, namely the second ord
anomalous magnetic moment, and the Coulomb potent
This scattering amplitude is namediT NRQED.

Other diagrams, such as the combination of the Darw
potentialVD including the ‘‘renormalization’’ constant and
the Coulomb potential, have the same power of explicita
andZa as the Fermi one, but diverges linearly in both UV
and IR region. These divergences cancel out in the bou
state calculation. The detail is similar to the discussion on t
Breit term calculation given in@10#. Eventually they contrib-
ute to the terms of ordera(Za)2. This argument holds also
for the potentialsVTVP and VCVP representing the vacuum
polarization effect.

The QED processes with three or more photon exchan
contribute to obviously higher order terms due to the explic
extra power of the coupling constantZa.

The contact term can be defined as the QED amplitu
minus the NRQED amplitude for the two photon exchang
process:

2d1
1

mM
~c†se

Wc!•~x†sm
W x![ iT QED2 iT NRQED.

~67!

Actually both QED and NRQED amplitudes are IR divergen
in the limit of the vanishing external photon momentumqW .
These threshold singularities cancel each other in the diff
ence~67!.
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4922 53T. KINOSHITA AND M. NIO
This contact term is to be put into the first order pertu
bation theory. Then the wave function integral is triviall
done, resulting in the square of the Coulomb wave functi
at the origin. Thus the KP term is given by

Dn~KP!5uf~0!u2
2d1
mM

^se
W
•sm
W &uJ50

J51 , ~68!

whereuf(0)u25g3/p for the ground state. In the actual ca
culation, we take the difference between spinJ51 and
J50 for the scattering amplitude first using the projectio
operator.

B. Calculation of the QED amplitude

We have shown that thea(Za) nonrecoil radiative cor-
rection comes entirely from the NRQED contact term eval
ated at the origin of the wave function. On the other han
evaluation of the NRQED contact term is equivalent to th
of the on-shell at-threshold QED scattering amplitude. Th
is why the calculation of thea(Za) term is much simpler
than other terms such as thea(Za)2 term.

Our approach to carry out the computation of the QE
scattering amplitudes is by numerical integration. Let us e
plain the outline of our procedure. The detail of the calcul
tion is given in Appendix II. The electron line structure o
each diagram is directly written down using the paramet
Feynman-Dyson rules for QED@34,35#. Feynman param-
eters assigned to the electron line arez1 , z2 , andz3 , while
one assigned to the radiative photon line isz4 . The momenta
flowing in the fermion lines after the radiative photon loo
momentum is integrated out are expressed in terms of co
lation functionsBi j , which are functions of Feynman param
eters and determined by the topology of the loop structure
the diagram alone. Then our integrals are expressed as tw
three dimensional Feynman-parametric integrals with an
ditional one dimension corresponding to the magnitude
the momentumqW of the external potential.

Two of the QED diagrams have UV divergences and mu
be renormalized. The renormalization terms are genera
using the projection operators in the algebraic programFORM

@36#. Our projection operators for QED renormalization co
stants are quite general and applicable to any order. They
presented in Appendix A. All of the renormalization con
stants are determined in the on-shell scheme. These re
malization terms should be expressed by the same Feynm
parameters as those assigned to the original diagrams in
der to realize point-by-point subtraction in numerical integr
tion by means of the adaptive iterative Monte Carlo integr
tion routineVEGAS @37#.

The hfs contribution due to the second order anomalo
magnetic moment should be subtracted from the diagra
involving the second order vertex correction. Actually it
very easily done along with the charge renormalization:
the external photon momentumqW tend to zero in the original
diagram expression of the electron factor. Then subtract t
IR limit from the original diagram. We can easily prove tha
this IR limit of the diagram is nothing but the sum of th
charge renormalization constant and the anomalous magn
moment of the second order.~See@10# for details.!
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Even though all diagrams are free from UV divergence
after the renormalization is completed, they still suffer from
IR divergence. In general, the Coulomb bound state has tw
kinds of IR divergence: one is due to the threshold singular
ity, and the other is due to the radiative photon.

The mechanism of threshold singularity is the following.
In order to contribute to the hyperfine splitting, one of the
two exchanged photons must be Coulomb-like while the
other is transverse. This Coulomb photon may be absorbe
in the wave function. As a result, the diagram is reduced t
one of lower order inZa, or multiplied by 1/(Za). This is
the physical origin of this type of IR divergence, which is
ubiquitous in the relativistic treatment of bound state prob
lem. In the calculation of thea(Za) correction, however,
such a ‘‘divergence’’ can be avoided completely by subtract
ing the contribution of the free anomalous magnetic momen
This is because other threshold singularities are absent due
the on-shell renormalization.

The remaining IR singularity is caused by radiative pho-
tons. Our choice to deal with this singularity is to put a smal
photon massl in the radiative photon. For the KP term, this
singularity must cancel out when all QED diagrams of the
gauge invariant set are included.

C. Summary of thea„Za… correction

We have shown that nonrecoil radiative corrections to th
muonium hyperfine splitting having the odd power ofZa
comes only from the contact term of NRQED, and that this
contact term is determined as the difference between th
QED and NRQED scattering amplitudes.

The resulting expression for the KP radiative correction
can be evaluated either analytically or numerically. We hav
chosen the latter approach. The three dimensional integratio
has been carried out using the adaptive iterative Monte Car
integration routineVEGAS @37#. Each diagram has the IR di-
vergence of the form proportional toAm/l, but their sum is
finite. Our numerical evaluation shows that the contribution
due to the radiative photon is given by

Dn~KP!ph522.55680~6!a~Za!EF . ~69!

We have also evaluated this integral analytically and ob
tained the same result as that of Kroll and Pollock, and Kar
plus, Klein, and Schwinger@31#:

Dn~KP!ph5S ln22
13

4 Da~Za!EF

5~22.556852 . . . !a~Za!EF . ~70!

An easy analytic calculation of the vacuum-polarization con
tribution gives

Dn~KP!VP5 3
4 a~Za!EF . ~71!

Putting these results together we obtain the well know
a(Za) correction in the framework of NRQED:

Dn~KP!5~ ln22 13
4 1 3

4 !a~Za!EF . ~72!

This justifies the procedure adopted in Ref.@31#.
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53 4923RADIATIVE CORRECTIONS TO THE MUONIUM HYPERFINE . . .
IV. THE a2
„Za… CORRECTION

A. Diagram selection

In this section, we give an outline of the evaluation of t
a2(Za) correction to the Fermi frequencyEF which comes
from the six gauge invariant sets of QED Feynman diagra
represented by Fig. 1. Our treatment of the bound state
find the contribution to hyperfine splitting coming from the
diagrams is completely identical with that of thea(Za) KP
correction. A new diagram appearing in this order is t
light-by-light scattering insertion. The light-by-light scatte
ing is a high energy process in NRQED. Thus it is rep
sented only by a contact term in NRQED. As a result w
have to include the four-photon interaction in the NRQE
Hamiltonian. But as an operator it contributes to orde
higher than our interest here. Therefore, what to do is ag
to calculate the contact term starting from the scattering a
plitudes of these diagrams with the on-shell at-threshold p
ticles and then subtract the contribution of the fourth ord
anomalous magnetic moment from Figs. 1~d! and 1~f!.

The numerical evaluation of Figs. 1~a!–1~e! can be car-
ried out easily and our results are consistent with those p
viously obtained by Eides and his collaborators@20–22#. In
contrast, the diagrams of Fig. 1~f! require a substantial effor
to compute. A complete evaluation of this contribution is t
main result of this paper.

B. Calculation of the QED amplitude

Let us now discuss some technical details of calculat
of ~17! represented by the nineteen diagrams of Fig. 2. Si
the bound state structure of these diagrams is identical w
that of thea(Za) correction, the procedure of numerica
evaluation of thea(Za) correction given in Appendix B can
be applied readily to these diagrams. We applied numer
techniques developed for the numerical calculation of
anomalous magnetic momentg22 of the electron@35#, ex-
cept that we avoided the use of ‘‘ intermediate’’ renormaliz
tion which was introduced in theg22 calculation to avoid
the IR singularity of each diagram. Instead we use the c
ventional renormalization procedure which is IR singular
the radiative photon massl. This is because these IR dive
gent terms are needed to cancel out the other IR singula
he
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the threshold singularity in the vanishing external photo
momentumqW 50, in the proper diagram. The detail of this
mechanism is described in the calculation of thea(Za) KP
correction in Appendix B.

It is convenient to divide the nineteen diagrams into fou
groups.

Group 1: Diagrams containing fourth-order vertex corre
tions. They are represented by the diagram
H01,H02,H03,H09,H10, andH11 of Fig. 2.

Group 2: Diagrams containing fourth-order self-energ
insertions. They are represented by the diagramsH04,H12 of
Fig. 2.

Group 3: Diagrams in which radiative photons span ov
two external photons. They are represented by the diagra
H05,H06,H07,H08,H13,H14,H15, andH16 of Fig. 2.

Group 4: Diagrams containing two nonoverlappin
second-order radiative corrections. They are represented
the diagramsH17,H18, andH19 of Fig. 2.

The integrands corresponding to the individual diagram
of Fig. 2 were initially generated using the algebraic progra
SCHOONSCHIP@38#. Later we generated the same integrand
by FORM @36# as a check.

The parametric representation of group 1 diagrams is
the form

3

32

a2~Za!

p
EF

m

p2E
0

`dq

qW 2
F1

mE ~dz!124

U2

1

V2 Fp”1q”11

2qW 2
Ggn,

~73!

where the diagramH01, for example, has the electron-line
operator

F1
m5ga~D” 11m!gb~D” 21m!gb~D” 31m!gm~D” 41m!ga .

~74!

Other diagrams of this group are obtained by permutation
g matrices.~See Ref.@35# for the definition ofU, V, Di ,
etc.! Using the hyperfine splitting projection operator, on
finds that the terms contributing to the hyperfine splitting a
proportional to at leastqW 2, and kills one of theqW 2’s in the
denominator in Eq.~73!. Thus Eq.~73! leads to the energy
shift of the form
re-
DnG15
a2~Za!

p
EF

m

p2E
0

` dq

~2qW 2!
E ~dz!124

U2 FF0

V2 1
F1

UV
1

F2

U2V0G , ~75!

where 1/V0 is a symbolical representation of2 lnV in which the UV divergence is regularized and subtracted by the cor
sponding counterterm.~See Appendix B for a precise definition.!

The parametric representation of group 2 diagrams is of the form

2
3

32

a2~Za!

p
EF

m

p2E
0

`dq

qW 2
gmFp”1q”1m

2qW 2
GF2E ~dz!224

U2

1

V Fp”1q”1m

2qW 2
Ggn, ~76!

where, for example, the diagramH04 has the electron-line operator

F25ga~D” 21m!gb~D” 31m!gb~D” 41m!ga . ~77!
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Its contribution to the hyperfine splitting has the form

DnG25
a2~Za!

p
EF

m

p2E
0

` dq

~2qW 2!2
E ~dz!224

U2 FF0

V
1

F1

UV0G . ~78!
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For the diagramsH04 andH12, the product of two elec-
tron propagators just outside the fourth order self-energy d
gram behave as (1/qW 2)2, which makes the convergence o
the numerical integrals difficult in the smalluqW u region, even
though the integrals are analytically free from the IR sing
larity in uqW u after the mass and wave function renormaliz
tions are carried out. In order to avoid this computation
difficulty, we introduced an additional parametery varying
from zero to one to combine the original term and the ren
malization term. All the numerator expressions are then p
portional to at leastqW 2 and kills one of the electron propaga
tors.

The parametric representation of group 3 is of the form

2
3

16

a2~Za!

p
EF

m

p2E
0

`dq

qW 2
F3

m,nE ~dz!125

U2

1

V3 . ~79!

For instance, the diagramH05 has the electron-line operato
F3

m,n:

F3
m,n5ga~D” 11m!gb~D” 21m!gb~D” 31m!

3gm~D” 41m!gn~D” 51m!ga . ~80!

By using the hyperfine splitting projection operator, we g

DnG35
a2~Za!

p
EF

m

p2E
0

`

dqE ~dz!125

U2

3FF0

V3 1
F1

UV2 1
F2

U2VG . ~81!

The group 4 diagramsH17,H18, and H19 contain two
nonoverlapping second-order radiative corrections. Th
sum is invariant under the covariant gauge transformat
and free from the IR singularity due to the radiative photo

Let us consider the sum of two diagrams of Fig. 8. If t
photon propagator is chosen as

2 i

k21 i e S gmn2b
kmkn

k2 D , ~82!

the gauge-dependent part of the vertex diagram gives

FIG. 8. Sum of the second-order self-energy diagram and ve
diagram.
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bEL d4k

~2p!4
k”

i

p”2k”1q”2m
gm

i

p”2k”2m
k”

2 i

k2

5 ibEL d4k

~2p!4k2
k”

1

p”2k”1q”2m
gm~21!, ~83!

where we use the on-shell conditionp”5m. The self-energy
diagram with one external photon diagram is

bEL d4k

~2p!4
k”

i

p”2k”1q”2m
k”

i

p”1q”2m
gm

2 i

k2

5 ibEL d4k

~2p!4k2
k” F 1

p”2k”1q”2m
gm2

1

p”1q”2m
gmG .

~84!

The second term, which is related to the mass renormaliz
tion constant proportional to the longitudinal photon polar-
ization, vanishes when the integration overk is carried out
with a proper regularization. Then the gauge dependent par
of ~83!, and~84! cancel each other and the sum is indepen
dent of particular choice of gauge.

The numerical integration is performed for the integra
combining three diagramsH17, H18, and H19 together so
that cancellation of IR divergences occurs in the same regio
of the Feynman parametric space. The result obtained for th
zero mass radiative photon (l250) is

Dn~H17!1Dn~H18!1Dn~H19!

520.47803~15!
a2~Za!

p
EF . ~85!

This is in good agreement with the result calculated in th
Fried-Yennie gauge@40#, in which b522 in ~82!:

Dn~H17!1Dn~H18!1Dn~H19!520.47789~1!
a2~Za!

p
EF .

~86!

Note thatDn(H17), Dn(H18), andDn(H19) individually are
gauge dependent, and their values are completely differe
between our results and those of Ref.@40#.

C. Problems concerning numerical integration

Let us now discuss some technical details of calculatio
of Dn(H01) to Dn(H16). After the ultraviolet divergences
are renormalized, individual diagrams still suffer from severe
infrared~IR! divergence, which is of the forml21/2, l being
the photon rest mass measured in units of the electron ma
Of course, the sum over all diagrams of Fig. 2 is free from
the IR divergence. This does not mean, however, that th

rtex
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TABLE II. VEGAS integration performed for individual diagrams of Fig. 2.S is the sum of IR divergent parts of diagramsH01 through
H16. l is the photon mass measured in units of the electron mass.

l251023 l251023.5 l251024 l251024.5 l251025 l251025.5 l251026 l251027

H01 24.9551~4! 25.5548~4! 26.0481~4! 26.4490~4! 26.7714~5! 27.0304~4! 27.2360~4! 27.5298~4!

H02 0.0950~1! 0.3601~2! 0.6337~1! 0.8976~2! 1.1402~2! 1.3565~2! 1.5443~2! 1.8398~2!

H03 26.5527~4! 27.5536~5! 28.4213~5! 29.1585~6! 29.7758~5! 210.2877~4! 210.7089~4! 211.3314~4!

H04 1.6048~1! 1.9811~2! 2.3670~2! 2.7574~3! 3.1487~3! 3.5389~3! 3.9266~3! 4.6937~3!

H05 4.0899~4! 4.6116~5! 5.0464~6! 5.3997~5! 5.6836~6! 5.9083~5! 6.0833~5! 6.3199~6!

H06 23.4781~5! 23.8533~5! 24.2074~6! 24.5364~6! 24.8346~6! 25.1006~4! 25.3326~4! 25.7030~6!

H07 1.2588~3! 1.2690~3! 1.2426~3! 1.1898~3! 1.1176~4! 1.0318~3! 0.9361~3! 0.7263~4!

H08 20.2167~0! 20.2980~1! 20.3677~1! 20.4255~1! 20.4721~1! 20.5092~1! 20.5380~1! 20.5775~1!

H09 0.0059~2! 20.3047~2! 20.5929~2! 20.8486~2! 21.0682~2! 21.2528~2! 21.4061~2! 21.6333~2!

H10 7.7184~3! 9.1640~4! 10.4746~5! 11.6210~5! 12.5985~6! 13.4159~4! 14.0900~4! 15.0840~6!

H11 21.8437~2! 22.4663~3! 23.0333~3! 23.5309~3! 23.9559~3! 24.3127~3! 24.6078~3! 25.0457~4!

H12 4.4780~3! 5.4636~4! 6.3444~5! 7.1092~5! 7.7567~5! 8.2968~4! 8.7423~4! 9.4015~6!

H13 23.2369~3! 23.6631~4! 24.0220~5! 24.3157~6! 24.5505~5! 24.7339~4! 24.8732~4! 25.0485~5!

H14 23.6981~2! 24.3597~2! 24.9672~3! 25.5084~3! 25.9802~3! 26.3839~3! 26.7246~3! 27.2437~4!

H15 21.9611~2! 22.5301~2! 23.0774~2! 23.5843~2! 24.0403~3! 24.4414~2! 24.7882~3! 25.3325~4!

H16 21.5242~1! 21.7852~1! 22.0058~2! 22.1863~2! 22.3307~2! 22.4442~2! 22.5325~1! 22.6519~4!

S 8.2098~17! 9.4538~21! 10.5296~27! 11.4341~31! 12.1829~36! 12.7885~55! 13.2507~104! 13.8433~149!
H171H181H19 20.4780(1)
Total 20.4840~20! 20.5436~25! 20.5828~31! 20.6128~35! 20.6295~40! 20.6381~57! 20.6526~105! 20.6668~150!
sum can be integrated easily on a computer. This is beca
the IR finiteness results from cancellation of divergences
l→0 from different parts of the integration domain.

One way to deal with this problem is to evaluate ind
vidual integrals for several small values ofl and extrapolate
the sum of all terms to zero photon mass. Unfortunately, t
approach creates integrals of order 103 for l2;1027, while
their sum is of order 1, making it very difficult to control the
numerical accuracy of the result. Another way is to integra
for lÞ0, the sum of all terms, which enables us to avo
dealing directly with large numbers. This approach will als
result in a better error estimate. The main practical difficu
is the large amount of computing time required.

This problem can be somewhat alleviated if one evalua
each integral after subtracting its IR-divergent part, and th
evaluates the sumS of the IR-subtraction terms of all dia-
grams. This method, which we have chosen, ensures tha
integrals stay small~less than; 20! for any value ofl. Thus
far, we have evaluated them for several values ofl2 in the
range of 1023 to 1027. The integration has been carried ou
numerically using the adaptive iterative Monte Carlo integr
use
for
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tion routine VEGAS @37#. The result of each integration is
summarized in Table II. The degree of difficulty of numeri-
cal integration forS increases rapidly asl decreases. This
prevents us from going to smaller values ofl at present.
Even l251027 is a struggle. Although evaluation of inte-
grals up tol251028 is highly desirable, we have not at-
tempted it thus far since it will require an extraordinary
amount of computing time.

The data in Table II shows that the contribution of Fig.
1~f! falls within errors on a straight line for
1027<l2<1025. Thus the extrapolation tol50 may be
tried with a linear polynomiala01a1x, wherex5l1/2 @39#.
The upper box of column 3 of Table III shows the best linear
fit to the data in this range ofl.

We also list in the upper box of column 4 a fit to thesame
set of data in terms of a quadratic polynomial
a01a1x1a2x

2. Clearly the result is much less certain than
the linear fit. This is because the increased flexibility of the
quadratic polynomial is now responding not only to the non-
linearity of data but also to the noise of numerical integra-
tion. For this reason the fitting with a linear polynomial will
TABLE III. The x2 fitting for the coefficient y of EFa2(Za)/p versus x[l1/2 where
y5a01a1x

21••• andl is the photon mass measured in units of the electron mass.

Photon massl2 y5a01a1x y5a01a1x1a2x
2 y5a01a1x1a2x

21a3x
3

a0 20.67860.015 20.70060.041
1027<l2<1025 a1 0.8860.29 2.0362.05

a2 213.77624.06

a0 20.676460.0079 20.67260.017
1027<l2<1023 a1 0.7360.15 0.5860.57

a2 1.9960.63 3.4565.62
a3 24.39616.78
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be more appropriate for this data.
On the other hand, if one tries to fit the entire data

Table II which show clear deviation from linearity, the linea
fit is no longer appropriate and one must use~at least! a
quadratic polynomial~see Fig. 9!. The best fit by a quadratic
polynomial to the whole set of data of Table II is shown
the bottom box of column 4. The bottom box of column
shows that use of a cubic polynomial is not recommended
this data because it responds more to the noise of numer
integration than to the real signal. Based on these consid
ations we believe that the value ofa0 determined by the
quadratic fit gives the best estimate ofDn @Fig. 1~f!#:

Dn@Fig. 1~ f!#520.6764~79!
a2~Za!

p
EF . ~87!

V. DISCUSSION

The remaining uncertainty in the value ofDn @Fig. 1~f!# is
still considerable. Nevertheless it is a factor 5 improveme
over the preliminary value~16!. Since we published the pre
liminary result, Eideset al. @40,41# have completed their cal-
culation and reported a more accurate value

Dn@Fig. 1~ f!#520.6711~7!
a2~Za!

p
EF

520.3701~4!kHz. ~88!

Our new result~87! is in close agreement with the result o
Ref. @41#. Note that the calculation of Ref.@41# is carried out
in the Fried-Yennie gauge while our work is carried out
the Feynman gauge. Considerably higher precision of~88!
over ~87! reflects the advantage of calculation in the Frie
Yennie gauge which renders each diagram IR divergen
free when it is transformed by application of integration b
part. This approach requires nontrivial amount of diagra

FIG. 9. The graph for the coefficienty of EFa2(Za)/p obtained
by VEGAS versus x[l1/2. The solid line is thex2 fit for
y5a01a1x1a2x

2, wherea0 ,a1 , anda2 are determined from the
data listed in Table II.
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specific manipulation because of very complicated int
grands involving many variables. In the Feynman gauge c
culation, on the other hand, each diagram is IR divergent d
to the retarded Coulomb-like photons, which makes ind
vidual integral cutoff dependent. The advantage of this a
proach is that one can apply a systematic computer algeb
method, which minimizes the chance of making mistakes
an important consideration in such a complicated calculatio
The agreement of~87! and ~88! confirms gauge indepen-
dence of the result to the extent of numerical precision.

The total contribution of ordera2(Za) including the re-
sults ~11!–~15! and ~87! is given in ~18!.

If we instead use~88! for Fig. 1~f!, the total contribution
becomes

Dn~ Fig. 1!50.7732~7!
a2~Za!

p
EF50.4264~4! kHz.

~89!

If we add thea(Za)2 correction to the previous theoretica
prediction~10!, we obtain

Dn~ new theory!

5H 4463302.69~1.34!~0.21!~0.16! kHz, Eq.~18!,

4463302.70~1.34!~0.21!~0.16! kHz, Eq.~89!.
~90!

Now that the completea2(Za) correction has been evalu-
ated, the major remaining source of theoretical uncertainty
the muonium hyperfine structure is, as is seen from~4!, the
numerically evaluated nonlogarithmic part of thea(Za)2

correction term. In addition, although not listed in~90!, the
leading logarithmic corrections of ordera4 and a3(m/M )
turn out to contribute to the hyperfine structure as much
thea2(Za) term, as was shown in our preliminary report@3#
and also by Karshenboim@42#. The parts of these higher
order terms evaluated thus far add up to20.68(6) kHz if
some errors in@3# and @10# are corrected.~Details will be
discussed in subsequent papers.! We cannot simply add these
corrections to~90!, however, because the previous evaluatio
of a(Za)2 term@23# contains parts which are of higher orde
in Za. We have evaluated thea(Za)2 anda(Za)3 terms
separately in the NRQED formalism in order to avoid po
sible double counting and reduce the uncertainties due
these terms. The results will be reported in the subsequ
papers.
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APPENDIX A: PROJECTION OPERATORS
FOR QED RENORMALIZATION CONSTANTS

We present the projection operators for QED renormaliz
tion constants determined by the on-shell scheme. Our p
jection operators for QED renormalization constants a
quite general and correct for any loop orders. We set
electron massm51 through Appendixes A and B.

The projection operator of vertex renormalization term
can be written as@35#

L5 1
4 Tr@G0~g011!#, ~A1!

whereGm is the proper vertex diagram. Projection operato
of mass renormalization term and wave function renorm
ization terms can be defined similarly. A proper self-ener
diagram of the 2nth order has the parametric representatio

S~2n!52S 2a

4p D n~n22!!FE ~dz!G
1

U2Vn21 . ~A2!

~See Ref.@35# for the definition ofU, V, F, etc.! The pro-
jection to the mass renormalization is given by

dm5 1
4 Tr@S~p!~p”11!#up”51

5S a

p D nE ~dz!G
U2 (

m50

n21
Fm

UmVn212m , ~A3!

whereS(p) is defined by~92!. The projection operator of
the wave function renormalization constant is slightly mo
complicated since it involves the derivative of the sel
energy with respect to the external momentum, nam
pm]S(p)/]pm. It can be easily realized, however, in th
Feynman parametric representation. Taking the derivative
the numerator with respect top leads to the quantity

E5 (
electron line only

AiFi . ~A4!

where Fi is obtained by replacing (D” i11) by p” in the
electron-line operatorF. The corresponding part of the wav
function renormalization constant is determined as

B2~numer!52S 2a

4p D n~n22!!
1

4
Tr@E„p…p” ~p”11!#up”51

3E ~dz!G
1

U2Vn21

5S a

p D nE ~dz!G
U2 (

m50

n21
Em

UmVn212m . ~A5!

The other part corresponding to the derivative of the denom
nator is similar to the mass renormalizationdm and is given
by

B2~denom!5S a

p D nE ~dz!G
U2 (

m50

n21
~n212m!2GFm

UmVn2m ,

~A6!

where
a-
ro-
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the
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al-
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G52
1

2
pn

]V

]pnU
p251

5 (
electron line only

ziAi . ~A7!

APPENDIX B: NUMERICAL CALCULATION
OF THE a„Za… CORRECTION

Let us begin by showing the calculation of the spanni
photon diagram of Fig. 5~a!. The Feynman parameters a
signed to the electron lines arez1 ,z2 , andz3 and assigned to
the radiative photon isz4 . Following the notation in Refs.
@34,35#, we use the abbreviation for the sum of Feynm
parameters

z12•••n[z11z21•••1zn . ~B1!

For this diagram,z123451. The momentum flowing through
each electron line after integration of photon loop mome
tum should be expressed by the external momenta, nam
the electron momentump5(m,0W ) and the momentum of the
external potentialq5(0,qW ). For the electron linei , this may
be written as

Qi85Aip1Aiqq, ~B2!

where the ‘‘scalar’’ currentsAi andAiq are found to be

A15A25A3512z123U
21, A1q5A3q52z2U

21,

A2q511A1q , U5z123451. ~B3!

Then the electron line including all of numerical factors
obtained in the operator form

3

8

1

qW 2
@~D” 111!gm~D” 211!gn~D” 311!#E ~dz!124

U2

1

V2 ,

~B4!

where thei th electron line operatorDi is

Di
m5

1

2Emi
2

`

dmi
2 ]

]qim
. ~B5!

Multiplying with the hyperfine splitting projection operato
and taking the trace, we obtain the integrand as theFORM

output @36#:

f ~qW !54A1q
2 A2qqW

2V221~24A1
2A2q18A1q24A2q!V

22

1B12~8A1q14A2q!~UV!21, ~B6!

where

B125B235B3151,V5z1232z123A11z4l
21qW 2z2A2q .

~B7!

The contribution to the hyperfine splitting energy is obtain
as an integral of the form

DE15a~Za!EF

1

p2E
0

`

dqE ~dz!124

U2 f ~qW !, ~B8!

where
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~dz!1245dz1dz2dz3dz4d~12z1234!, ~B9!

and f (qW ) is given by~B6!.
Next consider the vertex correction diagram of Fig. 5~b!.

Feynman parametersz1 and z2 are assigned to the electron
lines andz4 to the photon line, with the constraintz12451.
The scalar currents are

A15A2512z12U
21, A2q52z2U

21, A1q511A2q ,

U5z12451. ~B10!

Then the electron line is

2
3

8

1

qW 2
@~D” 111!gm~D” 211!gn~p”1q”11!#

3E
l2

L2

z4dm4
2E ~dz!124

U2

1

V2 . ~B11!

The integrand is found to be

f ~qW !524A1qA2qqW
2V221~2424A1A2q14A1A1q

18A1!V
221B12~24!~UV!21, ~B12!

where

B1251, V5z122z12A11z4l
21qW 2z2A2q . ~B13!

As was described in Sec. III, the charge renormalizati
and subtraction of the second order anomalous magnetic
ment is carried out by subtractingf (qW 50). The hyperfine
splitting contribution from two diagrams of the vertex type

DE25a~Za!EF

2

p2E
0

` dq

~2qW 2!
E

l2

L2

z4dm4
2E ~dz!124

U2

3@ f ~qW !2 f ~0!#. ~B14!

If the m4
2 integral is performed, the denominatorV22 be-

comesV21. The V21 term is UV divergent and, if it is
combined with the charge renormalization term, it becom
2 lnV. In the self-energy diagram calculation, the regulariz
tion is implicitly performed and the resulting denominato
are expressed byV2n, n50,1,2,. . . , where V20 implies
2 lnV.

The last diagram is the self-energy insertion diagram
Fig. 5~c!. Feynman parameterz2 is assigned to the electron
line andz4 to the photon line with the constraintz2451. The
scalar currents are

A2512z2U
21, A2q5A2 , U5z2451. ~B15!
on
mo-

is

es
a-
rs

of

Then the electron line is

3

8

1

qW 2
@~p”1q”11!gm~D” 211!gn~p”1q”11!#E ~dz!24

U2

1

V
,

~B16!

where

V5z22z2A21z4l
21qW 2z2A2q . ~B17!

The integrand is found to be

f ~qW !5~21618A224A2qW
2!@2 ln~V!#. ~B18!

The mass and wave function renormalization terms can
written as

f R5G~1628A2!qW
2V0

211~21618A224A2qW
2!@2 ln~V0!#,

~B19!

where

G5z2A2 ,V05z22z2A21z4l
2. ~B20!

The hyperfine splitting contribution is given by

DE35a~Za!EF

1

p2E
0

` dq

~2qW 2!2
E ~dz!24

U2 @ f ~qW !2 f R#.

~B21!

Although this integral is analytically free from the IR singu
larity caused in the limit of the vanishing external photo
momentumqW , numerical integration is very difficult in the
small q region, resulting in the poor convergence of the in
tegral. To avoid this numerical difficulty, we introduce an
other parametery varying from zero to one and combine the
term which is not proportional toqW 2 in the original diagram
and the corresponding renormalization term together. Th
leads to an integrand of the form

f̃ ~qW !5G~1628A2!qW
2Vy

2124A2qW
2@2 ln~V!#, ~B22!

where

Vy5z22z2A21z4l
21qW 2yz2A2q . ~B23!

The corresponding renormalization term is

f̃ R5G~1628A2!qW
2V0

2124A2qW
2@2 ln~V0!#. ~B24!

The resulting hyperfine splitting contribution is

DE35a~Za!EF

1

p2E
0

` dq

~2qW 2!2
E
0

1

dyE ~dz!24
U2 @ f̃ ~qW !2 f̃ R#.

~B25!
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