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Radiative corrections to the muonium hyperfine structure: The @?(Za) correction
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This is the first of a series of papers on a systematic application of the NRQED bound state theory of
Caswell and Lepage to higher-order radiative corrections to the hyperfine structure of the muonium ground
state. This paper describes the calculation of 48€Z«) radiative correction. Our result for the complete
a?(Za) correction is 0.424%) kHz, which reduces the theoretical uncertainty significantly. The remaining
uncertainty is dominated by that of the numerical evaluation of the nonlogarithmic part@f#8? term and
logarithmic terms of orden®. These terms will be treated in the subsequent pap8é&56-282196)05109-4

PACS numbd(s): 36.10.Dr, 06.20.Jr, 12.20.Ds, 31.30.Jv

I. INTRODUCTION starting from quantum electrodynami¢®ED) [5—7]. This
provides a solid framework for evaluating higher order ra-
The hyperfine structure of hydrogenic atoms is one of theliative corrections systematically and unambiguously. This
best-understood problems both experimentally and theoretseries of papers deals with a treatment of radiative correc-
cally. Especially, muonium has played an important role intions of the muonium hyperfine structure within the frame-
the precision test of QED because its radiative correctiongvork of NRQED.
have been calculated to high orders and its hyperfine splitting Before describing our calculation, let us summarize the
has been measured very precisgly. previous results on the muonium hyperfine splitting. It is
customary to classify the QED correctionsAa into three
Av(expt) =4463302.8816) kHz (0.036 ppm. (1) types: radiative nonrecoil correction, pure recoil correction,
and radiative-recoil correction. We use the convention such
Furthermore, a new experiment is in progress to improve théhat electron charge s and the charge of the positive muon
precision ofA v (expt to about 0.007 pprf2]. To match this s —Ze. Of courseZ=1 for the muon, but it is kept in the
experimental accuracy, it is necessary to improve the theorformula in order to identify the origin of corrections. Note
of the *(Ze) anda(Za)? nonrecoil radiative corrections as that each radiative photon on the electron-line contributes a
well as the leading I®a) terms of ordere®"(Za)", n=1,  factor e, that on the muon line a fact@?e, and one jump-
2, 3, and some relativistic corrections. This paper presentiig from electron to muon a factafa. This factor also
details of the calculation of the’(Z«) radiative correction. arises from the effect of binding on the velocity distribution
A preliminary report of this work has been publishie]. of atomic electrons. In addition, there are small corrections
As is well known, the bulk of the hyperfine splitting can due to the hadronic vacuum polarization and weak interac-
be explained by the nonrelativistic quantum mechanics anéon effects. Thus one may write
is given by the Fermi formul@4]

3 Av( theory=Av( rad) + Av( recoil) + Av( rad-recoi)

16 m m
+5 (2 + Av( hadron +Av( weak. ®)

EF=§aZCROCM

whereR,, is the Rydberg constant for infinite nuclear mass, Purely radiative terms of orders(Za) anda(Z«)? have
andm and M are the electron and muon masses, respec?€en known for some tim8]:
tively.

Many correction terms have been calculated over several
decades since the pioneering work of Fermi. Unfortunately,

3 5
Av( rad):(1+a#)(1+ E(Za)z-i- .+ a(Za)( In2— —)
different terms were often evaluated by different methods

2

making comparison of the results nontrivial in some cases. _ 8a(za)2|n(za) In(Zar)— Ind+ @1

This causes a particularly difficult problem in identifying and 37 480
evaluating higher order correction terms. Recently, however, )

Lepage and his collaborators have developed an approach, T a(Za) (14.88+0 29))E @)
called nonrelativistic QEONRQED), to deal with the non- T ' ' Fe

relativistic and weakly coupled bound systems consistently,
Herea, anda, are the anomalous magnetic moments of the
electron and muon, respectively. The appearance of the fac-
"Electronic address: tk@hepth.cornell.edu tor (1+a,) in (4) is in accord with our definition oEg in
Present address: Department of Physics and Astronomy, Univef2). Note that the number 14.88 in thgZ«)? correction is
sity of Kentucky, Lexington, KY 40506. Electronic address: different from 15.39 reported in Reff8]. This is due to the
makiko@pa.uky.edu recent discovery of two mistakes in the literature. The first
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error is in the calculation of the(Za)2 correction due to the TABLE I. Contributions of various terms to the hyperfine split-
vacuum polarization insertion in the transverse photon irfing of the ground state muoniurtiThe new result of this paper is
Ref.[9]. Recently several people independently folih@l— not included). They are represented in units of kHz. The contribu-
12] that this contribution is (—4/5)E,:a(Za)2/7r, not tion from the muon anomalous magnetic moment is included in

(—2/3)EFa(Za)2/7T given in Ref.[9]. The second error was each nonrecoil radiative correction term in the left column.
caused by omission of a part of the contribution due to the

vacuum polarization insertion in the Coulomb photon, & (kHz) Term (kHz)
(—8/15)INZEra(Za)%, when it was combined with the ra- Er 4459032.409  Zam/M —800.304
diative photon contribution (15.300.29)Era(Za)?/  [11]. a, 5170.927  Za&)2miM 8.982
The known recoil corrections add up (i8] (Za)? 356.174  a(Za)m/M — 2636
a(Za) —429.036 Z2a(Za)m/M  —1.190
Aw( recoih=| — 3Za mM nM a(Za)?In%(Za)™* —-35.606 a*Za)m/M  —0.044
M?—m?" 'm a(Za)?In(Za) ™ ~5.796 Hadron 0.250
s a(Za)? 8.207 Weak —0.065
2 o™ 2t 2le., s
m| 2Nz, 62+ g [Be, (5)
3\/§mM
where y=Zam, and m,=mM/(m+M). The radiative- Av(weak=—Gg—5———EF=—0.065kHz.  (8)

recoil contributions, which arise from both electron and

muon lines and from vacuum polarizations, are giveh by . )
Numerical values of terms given by Edd)—(8) are summa-

ized in Table I. If o es th lue of R.,, andM/
a(Za)m(_ |2M 13 M rized in Table ne uses the value af an m

A( rad-recoi) = ——— P Pl from Refs.[18], [19], and[1],

o a~1=137.035997032) (0.024 ppm,
+64(3)+£(2) ~ 75+ 3n2In2

R,.=10973731.568 3@1) m %,

9 39
+27% = ¢(3)+ — —372n2
2 8 M
+—|—zInP—=+3In*—
7] 3 m 3 m
M the theoretical prediction for the hyperfine splitting of the
+0 In—) Er. (6) ground state muonium, the sum of the contributions listed in
m Table I, is given by
exactly[8,13]. The Ir? and Irf parts of thew?(Za) term were v Y -271.34(0-23(0.16/(1. (2)1'0)

evaluated by Eidest al.[14].

The hadronic vacuum polarization contribufds] where the first and second errors reflect the uncertainties in

the measurements oh, and a1 listed in (9). The third
Av( hadron = a(Zza) m';/l(3_75t 0.24E, error is purely tr;eoretical and dominated by the uncertainty
T m:. in the lasta(Za)* term of (4). The last one, about 1 kHz, is
an estimated contribution from the ordef(Za) correction

_ _ As is clear from(10) one must know thex’(Za) pure
wherem_, is the charged pion mass. radiative correction in order to improve the theoretical pre-

Finally there is a small contribution due to t# ex-  diction further. Figure 1 shows typical diagrams contributing
change. Our reevaluation of the standard-model estimatg this order. Recently, terms represented by the diagrams
[16,17 gives (@—(e) of Figure 1 have been evaluated by Eideisal.

[20]. Their results are as follows:

'Equation(6) of Ref.[3] is valid only forZ=1 although it does 36 a?(Za)
not affect the muonium. We thank B. N. Taylor and P. Mohr for Ay Fig. l(@)]= 35
pointing out this oversight.

2This is in agreement with the corrected value given in [RET]
and has a sign opposite to that of R&]. The same result was also ] 224 38 118\ a?(Za)
obtained by J. R. Sapirstein and by M. I. Eides. We thank B. N. Av[ Fig. A(b)]= EIHZ— 15 205 TEF

Taylor and P. Mohr for calling a possible problem of sign to our
attention. =1.0302 kHz, (12

E-=0.5673 kHz, (11)
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+g]———Er=-03689 kHz, (13

FIG. 2. Two-photon exchange diagrams with fourth-order radia-
a?(Za) tive corrections on the electron line. Diagrams which are related to
Er=—-0.1714 kHz,  these diagrams by time reversal are not shown explicitly. The muon

(14) is represented by .

A[ Fig. 1(d)]= —0.310742- -

wherez=In[(1+5)/2]. The results11), (12), and(13) are . _ @*(Za)
analytic, while(14) was evaluated numerically after reducing Av[ Fig. 1)} =~0.676479) T Er
the integral to one dimension. We confirmed these results by
an independent numerical calculation. However, our purely =—0.3731(44) kHz. (17)
numerical evaluation of Fig.(#),
As a consequence of this result, the total contribution of the

_ a?(Za) a?(Za) correction to the muonium hyperfine splitting be-
Av[ Fig. 1(e)]= —0.472489) Er=-0.2606 kHz  comes
(15
. o?(Za)
disagreed with the semianalytic result of Rgf1]. With our Av[ Fig.1]=0.767979) — —E£=0.423544) kHz.
help, Eided22] found an error in the table after E(R3) of (18
Ref. [21]. Their corrected value is in good agreement with
(15).

his removes the dominant theoretical uncertainty in
v( theory).

In Sec. Il we outline the NRQED treatment of two-body
bound system. It serves as the theoretical basis for the calcu-
lation of thea?(Za) correction as well as the calculation of
2(7 the a(Za)? and higher order corrections discussed in the
A[ Fig. 1(f)]= — 0.634) a’(Za) Ep=—0.34722) kHz, subsequent papers. In Sec. Il we illustrate the general pro-

Figure 2 shows the complete set of Feynman diagrams o
the type(f) of Fig. 1, which have not been evaluated before
our work[3]. The preliminary result of our calculation for all
diagrams of Fig. 2 was

T cedure of NRQED choosing the well-knowr(Za) nonre-
(16) coil radiative correction as an example. In Sec. IV we present
our calculation of thex?(Z«) purely radiative nonrecoil cor-
where the error is mainly due to the uncertainty in extrapo+fection to the muonium hyperfine structure. Some problems
lating the integral to zero infrared cutoff. The main purposeencountered in the numerical work are also discussed there.
of this paper is to report a further improvement of this result:Section V is devoted to the discussion of our results.



4912 T. KINOSHITA AND M. NIO 53

Il. NRQED uses it to determine the correction to the energies and wave
A. Why NRQED ? func.tllo_ns by a systematic application of the Rayleigh-
) ) ) Schralinger perturbation theory.
The Lorentz invariance has been one of the most impor- ¢ NRQED Lagrangian consists of all possible local in-

tﬂm gui(il_i|ng principlels for the developmf_er:gothuant_um gemteractions satisfying the required symmetries, such as gauge
theory. However, relativistic quantum field theory is often._ . YT . O IS
very cumbersome to apply to nonrelativistic bound systems'.nva“ance’ parity invariance, time reversal, Galileian invari

Such a calculation tends to be very complicated and require@nce' _Hermltlcny, and Vlocallty. We use the same _photon La-
an enormous effort, while the result reflects mostly the nondrangian ¢ 1/4)F,,F#” as that of QED. In addition, new
relativistic feature of the system. For such a system an athojcon |nteract|0n.terms are introduced to repre;ent_ the in-
proach that incorporates most of the bound state effects frorertion of the fermion loop, such as vacuum polarization and
the beginning would minimize the amount of computation!ight-by-light scattering.
necessary to achieve the desired precision. For the case of In order to define the NRQED Lagrangian precisely, we
electromagnetic interaction, this has been realized by #&wust regularize the interaction terms of NRQED, e.g., by
theory called nonrelativistic quantum electrodynamics, orcutting off contributions of large momenta. Since this theory
NRQED. The NRQED enables us to avoid some, if not all,is meant to apply to nonrelativistic systems, the cutdff
of the problems encountered in the usual treatment based enay be chosen as the typical mass scale of the system, e.g.,
the Bethe-Salpeter equation. the rest mass of an electron. With the cutafthus fixed, the
The NRQED, formulated by Caswell and Lepd§é isa  theory becomes well defined, even though the interaction
rigorous adaptation of QED to bound systems. This theorferms are strongly dependent on the cutoff parameter. In the
enables us to take a consistent and systematic approach flowing the cutoff is understood implicitly, and will be
loosely bound nonrelativistic systems. Compared with thesxhibited only when it is necessary. The choice of the mo-
conventional bound state theories, it allows easier powementum cutoff used for the NRQED scattering amplitudes is
counting, more transparent cancellation of ultravidleV) — grpitrary but the physical quantity computed should be inde-
and infrared(IR) divergences, and is manifestly gauge in- pendent of any particular choice. In other words, the
variant. In spite of its superiority, however, the details of theNRQED theory must have reparametrization invariancé with
theory has not yet been fully worked out. In this series of espect to the choice of cutoff. This is analogous to the ex-

papers, we present an explicit construction of the NRQEd tence of the renormalization group in the renormalizable
Hamiltonian and develop a bound state perturbation theor o lon group
elativistic field theory. It is important to note that the

based on . NRQED is fully equivalent to the QED. The only difference

As for the computation of the(Za) anda?(Za) correc- . hat it is b d diol bound
tions, NRQED or any other relativistic bound state formal-'S that it is better adapted to low energy bound systems.
The NRQED rule for determining the operators which

ism gives the same simple recipe: calculate the forward scat- i its L _ d thei Hicients is Simpl q
tering amplitude in QED and multiply it withp(0)|2, where appear in its Lagrangian and their coefficients is simple an

; e ; ‘o straightforward: Each term of ttecatteringamplitude cal-
¢(0) is the nonrelativistic wave function at the origin. In . o ; .
NRQED this recipe can be directly justified by inspection Ofculated in the NRQED must coincide with the corresponding

relevant diagrams and power counting. In other bound Statgcattermgamphtude of the original QED at some given
formalisms, the corresponding procedure may be les omentum scale, e.g., at the threshold of the external on-

straightforward. The latter approach becomes very compli-SheII particles. The center of mass ffa”?e IS u_sed for both
cated for higher-order corrections such as #{&a)? and bound state and scattering state calculations. Since the same

a(Za)? corrections. Difficulty in achieving high numerical argument about reparametrization invariance holds for the

e - - .__momentum scale chosen for comparison of QED and
precision by this method is one of the sources of theoretic i , -
uncertainty at preseiig,23. aILIRQED scattering amplitudes, the at-threshold condition is

The approach adopted by the NRQED, however, loses itEJSt for convenience. However, the on-shell condition for the

effectiveness for the high Z system. In such a case it is deSxternal fermion is more than a matter of convenience. In

sirable to avoid expanding in~Za. Recently, an attempt order to regulate the IR singularity it is convenient to intro-

; duce the photon massin the calculation of scattering am-
has been made to calculate the ordderm without expand- : S
ing in Za [24]. However, this approach may have difficulty F(iméctjﬁe(r)i/vli)t?wt?hg Er[l)-sil?l ::\Ioﬁgii([))r.l gslssu:glsn;gtht%tg rll\”r?ngsésD
in providing a good precision foZ=1. This is primarily 9

. scattering theory has a pole in the region of the complex
because, for lowZ systems, the bound electron is almost on L . )
L : . energy plane of the external fermion in which the scattering
the mass shell and exhibits a near infrared divergent beha

. A \{ﬁeory can be analytically continued to the off-shell bound
ior. As a consequence the convergence of numerical integras

) : : . State theory.
tion deteriorates aZ decreases. As is shown in the subse- T
X We use the normalization'u=1 for the external four-
guent papers, the NRQED method enables us to deal with the . ; -
X . . component spinors in the QED calculation instead of the
near infrared divergence problem order by order in a system-

atic expansion irZa, and allows us to calculate the expan- CQOEI;eg:Ilgnl\?ll?E)elliaég”fr:gtr?coergl’?g\zlgtltol’lzusza]r}];?’]CE?F?];E;;EOH
sion coefficients with high precision. This is why the

NRQED method is a powerful tool for lo systems. [25]. This ensures that physicql quantities, §uch as decay rate
and cross section, calculated in both theories are the same.
_ Note that the scattering amplitude of QED is fully renor-
B. Outline of NRQED malized, namely, it is finite and completely determined
In the NRQED approach to the bound state problem, onavithin  QED. This enables us to fix the NRQED
first derives the NRQED Lagrangian from the QED, and theri‘renormalization” constants without ambiguity. This also
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means that the coupling constamtand fermion masses in NRQED Lagrangian. It consists of terms of contact interac-
the QED are the renormalized ones determined on shell, artibn type:
thesea and fermion masses are used as the **bare” coupling . L
constant and ‘‘bare” masses of NRQED. _ 2ot + +

It is convenient to write the NRQED Lagrangian in two I‘ComacrdlmM("D o) (x UX)JFdZmM((// MX'X
parts:L ain @NAL coptace The L main Part consists of the ferm- 1 1
ion b|||n§ar operators. Fermpns |n. NRQED.are expressed by +ds M(¢T&X) . (XT5¢)+0|4 Y Wty
the Pauli two component spinor fieli(t,x) (instead of the m m
Dirac spinoj. If one takes into account the required symme- 1
tries of the theory, the main part of NRQED Lagrangian +d5m3M (Y'D%ay)- (xTox)+- -, (22)
L main Must have the general forf5,6]

) 24 -5 where y represents a fermion fielbf massM) such as a
i D D ec-B ; .
Lmain= ¢ iD+ ==+ ——=tCp—— muon or a positron. The third and fourth terms(&2) are
2m  8m 2m needed only when both electron and positron are present.

e(B-E—E-D) iec (BXE—EXD) This is because, from the viewpoint of NRQED, the electron-

+cp 5 +cg . positron annihilation is a high_energy_ process and can only
8m 8m be represented as a contact interaction term. For the muo-
- R nium, only the first and second terms are relevant. The fifth
e{D?% 0 -B} —eD'o-BD! - - ; ot i
' term is an example of contact terms including derivative in-
tewi— g w43

teractions, which are of higher order §p%/m?)~(Za)2.
The coefficientdd; are chosen such that these contact in-

5 — 2 4.}y, (19 teractions make up the difference between the QED electron-
muon scattering amplitude and the corresponding NRQED
scattering amplitude derived from the LagrangiBp,.

where D=, +ieA® and D=i—ieA. (We putc=1 and This procedure enables us to determine the coefficidnts

%=1 henceforth. The positron part can be written down in a completely. _ _

similar way. The particle-antiparticle mixed interaction is not AS 1S clear from the above discussion, these NRQED

present inL ;.. The first three terms are related to the ki- renormalization” constantsc; andd; have the parameter

netic term of the QED Lagrangian. The second and thirl€Pendence

terms are derived from the expansion c=ci(aA,m), di=di(a.Za. 2% A, mM). (23

= p?2  p* Of course, the experimentally observable result of calcula-
— 2 2_ . . . .
E=Vpitmi=mt o —o g+ (200 tion must be independent of the cutdff and gauge invari-

ant. This is realized by a systematic application of the non-

. relativistic Rayleigh-Schdinger perturbation theory to the
These three terms ¢19) have coefficients unaffected by the Eound states. Note also thet and d; are finite and well

rad|at|ve correction as a consequence of the renorma||z_ab| efined in the infrared limit and hence require no infrared
ity of QED, while the coefficients; of other terms are modi- _
fied by the QED interaction and can be expressed as a POWET ¢t a5 the actual execution of renormalization program of

series in the coupling constanis QED must rely on the covariant perturbation theory, a com-
prehensive formulation of NRQED can be realized explicitly

ci=c¥+cPa+c@a?+- -, (21)  only within the framework of the nonrelativistic Rayleigh-
Schralinger perturbation theory. This means that we have to

Some of the operators ifL9) can be generated by the Foldy- choose an appropriate part of the Hamiltor_lian as the unper-
Wouthuysen-Tani transformation of the Dirac Lagrangianturbed term and treat the rest as perturbation. _
These operators have the coefficief =1 while other op- To deal with the muonium we find it generally convenient

erators haveai(o)=0. Note thaic;’s do not have coefficients to define the unperturbed system in terms of the ground state

. ; . solution of the nonrelativistic Schdinger equation:
involving Za caused by the binding effect because they are gereq

determined solely by comparison of the NRQED and QED 52 Za
scatteringamplitudes without referring to the bound states. ( - — | ¢p=E", (24)
Equation(19) has an infinite number of terms. Not all of 2m, 1

them, of course, are needed in a practical calculation. The : P = — 2 .
operators necessary to carry out a particular calculation ar‘@,{here m, 1S thg rgduced mass arkh ==y /(2m,). Is the
determined by the power counting rule of NRQED for theground state binding energy=(Za)m; being a typical mo-
bound state. We will show this process explicitly in the nextm_entum s_cale_ of the Coulomb bound state. The solution of
subsections where the NRQED Hamiltonian is constructed.th's equation Is

The L ,,in of NRQED alone is not sufficient to produce 8775
the same physical quantities as those from QED. To make é o Y

. (P)="—=53 (25
NRQED equivalent to QED, we must add another term to the (p+7y9)
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The unperturbed electron fieli p) is thus expressed by this fective potentials. These potentials are to be treated as per-
wave functioné(p) times the Pauli spin factor. Using the turbation.

remaining interaction terms in the NRQED Lagrangian to-

The nonrelativistic Rayleigh-Schdmger perturbation

gether with the photon Lagrangian, we can construct the eftheory gives

J Vv +
o'?_E ‘pn O+¢nv
E=E

/e

AE,= V| 1+ )

n

T Jd
+ wnvﬁbn ¢n _E

Uiy
—G

>V¢n|E 0t ‘PEV(

Y
E—EO)VH ¢n|E=Eﬂ+ R

Pnihn Pnihn
@)V(Go @)V‘ME e

n

(26)

The Green funct|orGO(k q En) appea”ng here is known in Eq (19) the first two terms, next four terms, and the remain-

a closed form for the nonrelativistic Coulomb potenfi2b].
For the ground state=1, we find

~ l!/nll//xl)
lime_ go (G _ s
E—-E)_,| 20 E_Eg:1
_I22+ 2
. -2m, -Z& -2m, 64 R(E.Q)
(R ) [k—q2( ) Zar* D
(27)
where
R(Kd)= ’ S P
R+ YDAP+HYH[2 K+ gPH P
Lioas AT a4 1)12 28
+§n +(4A_1)12tan ( - ) ( )
and
|22+ 2 _’2+ 2
_ (R49yA(a+ ) 29
4y?lk—q|?

The first, second, and third terms of the expresg®f can

be understood as corresponding to zero, one, and two

more Coulomb-photon exchanges.

In order to determine which terms of the Hamiltonian are

ing terms correspond to the interactions which start at orders
v?, v* andv®, respectively. Radiative corrections, which
alter the values of the coefficientss andd;’s, will keep the
estimate(30) intact. The information(30) can be used to
terminate the series of interaction terms at the desired preci-
sion. In this sense, the NRQED Lagrangian is an expansion
in both the coupling constant and the velocity.

The NRQED *‘renormalization” coefficients play impor-
tant roles in restoring gauge invariance which might have
been broken by regularization. The explicit form of these
coefficients depends on the regularization method. Gauge in-
variant regularization is desirable but not necessary. If one
proceeds carefully, even a simple momentum cutoff method
may be used27]. (This is only true for an Abelian gauge
theory such as NRQEDIn a calculation of the would-be
divergent quantity in NRQED, we put the UV cutoff not
in the fermion momentum but in the photon momen{28&l.

Because of the way NRQED is constructed, gauge invari-
ance of the NRQED amplitude with its complete set of
““renormalization” constants is automatically guaranteed by
the gauge invariance of the corresponding QED amplitude.
Since QED and NRQED are separately gauge invariant, we
may choose different gauges for QED and NRQED. We will
use the Feynman gauge for QED calculation, and we use the
Coulomb gauge for NRQED. The Feynman gauge minimizes
the amount of work for numerical computation, and the Cou-
lomb gauge is more suitable for describing the nonrelativistic
behavior of the electron.
or The dominant contribution to the hyperfine splitting be-
tween the spill=1 andJ=0 states originates from the in-
teraction between the electron spin and the muon spin medi-

needed to obtain the desired precision it is useful to know th@ted by a transverse photon of momentkinThis leads to a
expectation values of various operators with respect to apOOtent'a| of the form

propriate wave functiong25]. For a nonrelativistic Coulom-

bic bound system, one finds

(d)~m(vlc), (a)~m(vic)?, (eA)~m(v/c)?,
R - . (30)
(eA~m(v/c)3, (eE)~m?(vic)®, (eBy~m?(vic)?,
wherem is the electron mass, is the typical velocity of a

bound electron, and(=1) is the velocity of light. Thus, in

-1
Ve= (w*kx o) - [x*(— K)X o x]—=- =

(31
in the momentum space representation, wiéris the muon
mass. Using this Fermi potentiglk in the first order pertur-

bation theory and taking the difference betweknl and
J=0 states, we obtain the hyperfine Fermi splitting
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Propagators
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FIG. 3. NRQED ‘‘Feynman” rules for vertices and propagators. They can be used for both scattering and bound state calEuilations.
the fermion propagator represents the fermion’s bound state erferg: for scattering at threshold arigi= — y?/(2m,) for the ground
state muonium. The photon masss set to zero in the bound state calculation.

d3p d3k (8my5)2 i - _ize - .,
@m? ) @ (G R 2m 0 KR

Er=(n=1|Veln=1)|;Z5=

2Za)y® ~ ., 8(Za)¥®
=3m—M<Ue'0,L>|§=<1)=3m—M- (32)

Needless to say, the Fermi potential is of orderternal photons in the QED Feynman diagrams. In the follow-

v (M/M)Ym~(Za)*(m/M)m. ing subsections we shall show step by step how the corre-
Various interaction terms and propagators are representezponding NRQED Lagrangiab,j, (or HamiltonianH ni)

by the NRQED ‘‘Feynman” diagrams shown in Fig. 3. It is is determined.

convenient and useful to express higher-order amplitudes ) ) )

representing scattering states or bound states by correspond- C. Scattering by a static external potential

ing diagrams. We have already found the general form of the main part
We classify the diagrams according to the number of exof the NRQED Lagrangian given by E¢L9) using the re-
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the scattering amplitude, we also have a diagram with self-
energy insertion on the external fermion lines. However,

@OoMmA . :
7 ) ~ these diagrams can be dropped after the mass renormaliza-
A - §T + §’ " &3 tion and wave function renormalization are carried out, if
a g a B g one chooses the on-shell renormalization scheme. Then the
5 0c0) A° X X X QED scattering amplitude is expressed by the usual form
¢ )f’( ) N factorsF; andF,.
2 = T + + V + For the external static vector potentié(ﬁ), we easily
q iTq | i , ; X
| i i find the QED scattering amplitude
- X X X
©) O() A i
M mae [ Cpy Y __).A_)_)F 2+_ iin_) JF 2 g
? o B — eu(p )[ 7 AQ)F1(0?)+ 5T AI(q)d'F2(q?) |u(p)
q = it 2 + H +
g g g e ie
X X X —F.(g? T*’[__ 3 +p)-A— —a- (GXA
& - o 19 ()] = 5 (P +P)-A= 50 (AXA)
=4 k4 2 .
3 + e 8 t 3 12 N ie TTE NN -
0 3 3 3 amE (P TP o (AXA)+- - 1(p)
(d)O(m) A
¥ °p Cs - ie. . . ie - -
N4 +Fy(aq)y’ ’[——a. XA)+ 24 p?
éq T L T AP (P)] — 50 (XA + 7o5(p'+P7)
X W ieaﬂﬁﬁ,&aa -
(@6““’“%) s o Xo-(qQXA)+ —8m3o'~p g - (QXA)o-p+--- |d(p),
+ + I 1”2 (33
X X

whereu and ¢ are Dirac and Pauli spinors, respectively.
) ) ) Similarly, for the external static Coulomb fielﬁo(ﬁ), we
FIG. 4. QED and NRQED scattering diagram comparison. Th%ave

diagrams on the left and right of the sign represent QED and
NRQED diagrams, respectively. The external fermions are on the i
mass shell and at threshold. Self-energy diagrams coming from the ej(f,r)[ yOAO(ﬁ)F ( 2y_ 59 A0q) g 2
_0 1(9%) o A%(q)g'F2(a%)
A-Ayty vertex as well as self-mass counterterms are not shown 2m
explicitly.

u(p)

=F1(q?) ' (p")| e A~ —5q?A°

quired symmetries for the theory and the power counting
rules. Therefore, the remaining task for construction of the ie . . . .
NRQED Hamiltonian is determination of the coefficients of + Wm(p'xp)AoJr = -}t,b(p)
these operators appearing in Eg9).

Let us first consider the QED diagram in which one pho- R e .
ton is exchanged between the electron and the muon. The +F2(q2)¢p*(p’)[— WQZAO
first step to obtain the *‘renormalization” coefficients of the
operators in the NRQED Hamiltonian is to carry out nonrel- e . . . 0 -
ativistic reduction of the QED scattering amplitude exchang- + oo (PTXP)ATE - - [Y(p). (34
ing one photon between the electron and the muon. Compar-
ing this QED scattering amplitude with the scattering
amplitude derived from the general form of NRQED La-
grangian given in Eqg.(19), we are able to fix the
“‘renormalization” coefficientc;’s. We want to choose the
simplest process to find them. It turns out that all
““renormalization” coefficients in(19) can be obtained by o q°
using the external static potential. The comparison between Fi(q9)=1- 37l m2 In 2 8
the corresponding QED and NRQED amplitudes is shown in
Fig. 4. We will work out nonrelativistic reduction of opera- >
tors of order up toav® and av? for spin-flip and spin-non- Fo(02)=a,— « q—+O(av4 a?v?) (35)
flip types, respectively. Since the spin-non-flip operators 2 ¢ 12m? ' '
contribute to the hyperfine splitting only through the higher
order bound state perturbation, we need only operators afherea,=F,(0) is the anomalous magnetic moment of the
order lower than the spin-flip ones. The QED scattering amelectron.
plitude to be studied here consists of a tree vertex and one Combining(33), (34), and (35 together, and comparing
dressed by a radiative photon. Because we are dealing withith the scattering amplitude derived from the NRQED La-

Taking account of the fact thaf is of orderv? and|q| is of
orderv, the nonrelativistic expansion of the form factors can
be written aq29]

+0O(av? a?v?),
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grangian given by19), we find that the ‘‘renormalization”
coefficients must be chosen as

cP=1+a,,
a8 3
QED— +—3 — =+
(o 1 In| — N 2a,,
cP=1+2a,,
ED— 1+ a4 In| 2 3+1 4
i =1+ 3|y gt 2
a4l m\, 3 1| a
QED_ M2, 2| Ce
Cw wsln(x) g a2
ED
c(p?,pzae. (36)
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are the NRQED analogues of QED counterterms such as
—émuu. To see this let us calculate the NRQED scattering
amplitude which arises from the Coulomb tergie A%y
modified by a one-loop NRQED radiative correction by a
perturbative treatment dfl ;.

The perturbation here means that the zeroth order of
NRQED Hamiltonian contains only the free part of the elec-
tron, and thus the Coulomb interaction is treated as pertur-
bation. Some of these scattering amplitudes involving radia-
tive corrections require new forms of the NRQED operators
while others may be represented by additional
““renormalization” constants of the already existing opera-
tors in Hyain-

The fermion kinetic energy term if19) gives the interac-
tion term — ¢Te(p’ +p)-A/(2m)y in the NRQED Hamil-
tonian. Note that, although the NRQED Hamiltonian is not
an expansion into multipoles, we call this term the dipole
interaction in the following for convenience’s sake. Thus we

This procedure enables us to construct the NRQEDonsider the Coulomb term dressed by the transverse photon
Hamiltonian. However, it does not provide the completewith the dipole couplings. The NRQED Feynman rule ap-
NRQED Hamiltonian. One must also include terms whichplied to this diagram gives

e
y(p’ )(

A d%k 1 ., - p-kp'-k
(2m)* (K92—Kk2—\2+ie P K2+ \2
1 ; 1 .
eAl S— W(p). (37)

X > =
E+K°—(p'+k)2/(2m)+ie

E+K°—(p+k)2/(2m)+ie

We chose the contour in the upper hiffplane to pick up only the negative energy photon pole. Then we ne@limcthe

kinetic energy term g+ k)?/(2m) in the electron propagators. This is justified because the energy transfer between electrons
is of orderv? when |p| is of orderv, while the space component of the photon momentkfris of orderv?.

After this

approximation, angular integration over the photon momerkumecomes trivial, leaving only th|&| integration:

S )( )22 . (A dk k2 (1+ 1 A2 —2m —2m (6)
Pom) 3P Plo2m o yaine | T 2 K3 +a2) ImEL 2 52— 2mE+ 2mykei e P
5% S i 22 ) - 2128 (27 ) a%u(p) + O 38

In the last step, we used the on-shell, at-threshold condifisnp?/(2m)+O(v?).
The diagram with a self-energy on the external electron line gives
| Z2m elf2. radk K[ 1 A ) -2m —2m -1 ]
— —_ —D - _— — = = — e
'/’ PO 52 m) 3P P)o 2 o i@ing |~ 2K NY) p2—2mE p2—2mE+2mykZ+ a2 VkZ+ A2
t 2A S| =€ -o 220,00 8
+(p—p") |¥(p)=¢'(p )—— N~ | " &lgmz(P " TPIAY(P)+O™). (39

Note that the term-1/Vk?+ A2 is the ‘‘mass renormaliza- we must include the negative of these contributions in

tion term” of NRQED?3

H main- [See Fig. 4d).] From (38) and(39) we see that this is

In order to maintain the equivalence of QED and NRQEDachieved by adding the new “renormalization” coefficients

3Tadpole” diagram due to the<A-Ay > completely van-
ishes after mass renormalization because this diagram does not de-

pend on the external fermion momentum.

to the Darwin term— T e FA%/(8m?)

e

Wl (") ol A%(p), (40)
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where

8 A

2A

NRQED_ &

Co In (41

The entire coefficient of the Darwin term is the sum of QED
and NRQED contributions:

8 m 3 5

—cQEDL NRQED_q X O T 2 2
Cp=Cg tCp 1+773 ln(ZA) 8+6}+2ae.
(42)

Actually, this additional contribution from NRQED serves to
eliminate the contribution of the longitudinal polarization as-
sociated with the finite photon mal30]. In other words, the
In\ term in the ‘‘renormalization” coefficients due to QED
is effectively replaced in the NRQED ‘‘renormalization”
constant by

IN\—In(2A)— 2. (43

Similarly the NRQED radiative correction to the Fermi term
—yliea- (qxA)/(2m) ¥, yields the correct
“‘renormalization” coefficient of thew,; and W, derivative
Fermi terms, ¢lie(p'2+p?a-(qxA)/(8m3)y and
lie(=2p’-p)o- (qxA)/(8m3) ¢, respectively, which are
given by

1 4I m 3 1 5| a

"73M2a) "8 ate T2
a4|(m 3+1+5+ae "

‘w=73/Mzx)"gtatslTz @

The radiative correction comes also from vacuum polar-

ization. Since vacuum polarization is a highly virtual process

within the framework of NRQED, no vacuum polarization
term exists inH,i,. INStead, its contribution is represented
by the new photon interaction terms in NRQED. Again we
begin with the nonrelativistic reduction of QED amplitude
with one vacuum polarization insertion. QED gives the
renormalized vacuum polarization tensor

1#*(q)=(g“q"—g**q*)I1(g?), (45)
with
p(tym?
I(g?) fdtq amA(1-%) T (46)

For the second order, the photon spectral funcpg(t) is
known to be

t?2(1— 3t?)
pa(t)= - 1.t (47)
Expandingll(g?) aroundg®=0, we obtain
_62
Hz(qz):CVPW+O(av4,a202), (48

T. KINOSHITA AND M. NIO

where

a

Cvp: E . (49)

Thus, in the Coulomb gauge, two new photon interaction
terms are added to the photon Hamiltonian

gt [ odd
CVPAI(q)WAJ(q)( = (50)
and
R I
cveA%(q) FZ‘AO(q)- (51)

D. Photon-fermion scattering amplitude

Let us now turn to the processes which contain two ferm-

,ion operators and two external photons. To determine the

“renormalization” coefficients we must carry out the non-
relativistic reduction of these QED scattering amplitudes. In
practice, however, we don’t have to do it at all because the
“‘renormalization” coefficients of these operators upub

for spin-flip ones and* for spin-non-flip ones are identical
with those determined by the scattering amplitude due to a
static external potential because of gauge invariance. For in-
stance, the same ‘‘renormalization” coefficiea for the
spin-orbit interaction term

t le 0
Y 420 (P XP)A% (52

must be used for both the seagull term

—ie?

¢! oo (A} A(dn) JA%(d2) ¢ (53

and the time derivative term

e . L L
Y gz o [(p'+p) X Aly. (54)
The seagull term is the only operator involving two photons
relevant to our immediate interest. This contributes to the
(Za)? and a(Za)? corrections.

In general an explicit nonrelativistic reduction of the
photon-fermion scattering amplitude is necessary only if one
wants to find the ‘‘renormalization” coefficients of opera-
tors of higher order i, such asy'E-Ey/m3~v®.

We note thaH, 4, iS not a unique expression. Using the
equation of motion for the fermion field, we can obtain an-
other form of Hamiltonian. Whem ,.,;, is quantized, we
should be more careful. Use of the equation of motion is
equivalent to the transformation of the electron field. We
have to take into account the Jacobian of this change of
variables. Once the Jacobian is taken into account, two
Hamiltonians become completely identical and produce the
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same results even for the bound state calculd®&h This is
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E. The NRQED Hamiltonian H i,

why we excluded the operators having time derivatives, such

as ¢(iDy)2y/m, from our consideration, since the equation
of motion rendersD i to [p%/(2m)+O(v*)]y.

For later reference let us write down the part of the
NRQED HamiltonianH 4, valid to ordera by putting to-

In this manner we have obtained all operators in the maifg€ther the results of Secs. IIC and IID. To do this, we intro-

part of the NRQED HamiltoniarH 5, hecessary for our
calculation to the desired order.

(P2

0
+eA Bme

Hiain= t/ﬁ(p) (p +p)-

ie?
am2 Cso- [q1X¥

Ie = = “\AO_
+ WCSU'(p Xp)A

duce theq derivative Fermi term by combining th&/; and
W, derivative Fermi term at the order. It is of the form

2

A+ e—A A— e G XA © 12A0
m ZmCFU (q )— ZCDq
A(ql)]AO(qu zcsq o-[(p'+p)XA]

2 BB (GXA) + ooy (G A
a3 CW(P " P o (X A) + o 3€e20%0 (GXA)
e >
+ 5m3CorptP (AXA)(0-p')+p" - (AXA) (- P)}+ - [(P)
A ') =gt
+CVPA'(CI)m7A’(Q)( +CvpA’(q) —A%(q), (55)

whereﬁ’ and|5 are the outgoing and incoming fermion mo-
menta, respectively, anq|=(q°,ﬁ) is the incoming photon
momentum. In the seagull verteni,)l is the incoming mo-

mentum of the vector potentiaﬁ. The superscript\ indi-
cates that the Hamiltonian is regularized with the UV cutoff
A. The “‘renormalization” coefficients are

C,:=1+ae,

o

cs=1+2a,,

a8
T3

5

m 3
8 6

oA +2a,,

cp=1+—

Cprp:ae,

(a4

Cyp= E . (56)

Thus far we have not shown explicitly the contact term
H contact Of the NRQED Hamiltonian, which is also obtained

F. Application of H ., to bound states

Let us now turn our attention to the bound state calcula-
tion usingH .in- The main part of the NRQED Hamiltonian
for the muon field is obtained by replacing the chaegby
—Ze in the H 4, for the electron field. For the nonrecoil
hyperfine correction, only the Fermi and Coulomb terms are
necessary in the muon Hamiltonian. Together with the pho-
ton Hamiltonian, we can construct various perturbative po-
tentials appearing in the nonrelativistic Rayleigh-
Schralinger perturbation theory(26). The lowest order
contributionEg to hyperfine splitting comes from the Fermi
potential(31). A survey of Eqs(55) and(56) shows that the
only ordera correction isaEg which exhibits the effect of
the “‘renormalization”: cc—1=a,. Other possible contri-
butions to the hyperfine splitting coming from 5, are
those of the first order perturbation of the derivative Fermi
term and the seagull term, and the second order perturbation
which involves the Fermi term and the relativistic kinetic
term or the Darwin term. Thep(?+ p?) derivative Fermi
term leads to the potential of ordeZ ¢)°®(m/M)m:

Za (p'%+p?)
W > S (WX o)
-(x"ax ,Lx)—( e (57)

The Darwin term generates the potential of ordge)*m

by comparison of the electron-muon scattering amplitudes in

QED and NRQED. The explicit form of the contact term will
be given in Secs. lll and IV as we calculat§Za) and
a?(Za) corrections, respectively, to the hyperfine splitting.

”2
(W)(x X) = @ (58)

2

\?)
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Expectation values of these potentials with respect to the

bound state wave function diverge due to integration over P S o
g. This is why we need the help of the contact term

H contact fOr their cancellation. When the effect &f .opactiS é é é é é é
included, these four potentials together give tAer)? Breit

correction. A detailed discussion about the treatment of these @ ® ©
UV divergent operators is found [10] where the derivation
of the Breit (Za)? correction from NRQED is described.

Similarly ana(Za)? correction is obtained when the con- ~ FIG. 5. QED diagrams contributing to the(Z«) radiative cor-
tribution of the *‘renormalization” coefficients is included in "ection to the muonium hyperfine splitting.
each potential. Third order perturbation theoryHg,,i, with
an intermediate radiative photon and dipole couplings als@hall show that NRQED provides an alternative justification
gives thea(Za)? correction. This is because these diagramsof this procedure in the sense that no other correction term is
have the structure similar to the derivative Fermi term or theneeded in this order.
Darwin term as is shown in the determination of the The correction terms whose coefficients are odd powers
“‘renormalization” coefficients in NRQED[see EQs(38)  of 74 may arise only from very limited sources in the

and (39)]. NRQED bound state theor ian.:
" . . y. The NRQED Lagrandiah,,
The additional photon interaction terr(0) and(51) due  qngists only of terms with even parity. This implies that the

to vacuum polarization produce the effective potentials  gypectation values of these terms with respect to the Cou-

(Za) 62 az lomb wave function are even id«, the typical electron
_mea i i tum of the Coulomb bound state being
TVP= cvp—z (pTaXae) - (x'aX o, x) —= momen
mM "m? ¢ AN |pl~(Za)m.
(59) The odd power oZ« in the KP term~ a(Za)’m?/M

therefore implies that there is no contribution to it from the

and Lmain part of the NRQED Lagrangian(Note that the
A7 e 54 ““renormalization” constant; in L4, does not depend on
Vo= — cun( o' tVy—— (60 Za.[See Eq(19 and Eq.(23).])
cvp mz e (X x) (g2+2?)? 59 This means that the correction we are looking for must

come entirely from the NRQED contact terms @2). To
We note that the first spin-flip potentisli» has exactly the determine the contact term, we compare the scattering am-
same structure as thg? derivative Fermi potential. Thus it plitudes evaluated in NRQED and QED in the same power
contributes not to the ordem(Za) but to the order of explicit « andZ«. This comparison is shown in Fig. 6.
a(Za)?. The spin-non-flip potentiaVcyp behaves as @  For a given power of the coupling constantthe number of
function potential in the coordinate space just like the Dar-QED diagrams is finite while the number of NRQED dia-
win potential. Thus it also contributes to thgZa)? term  grams is infinite. We terminate the series of NRQED scatter-
through the second order perturbation theory. ing diagrams using the power counting rule for their contri-

To summarize, no ordew correction exists besides bution to thebound state.

a.Er, whereEg is given by(32). In the NRQED formula-
tion, it is transparent why only the anomalous magnetic mo-

ment of afree electron contributes to the ordercorrection QED
to Ef.
£ P}
IIl. THE a(Za) CORRECTION 1q + ?q é + ?q é + gqé
In this section we show how the nonrecoil radiative cor-
rection of ordera(Za), calculated long ago by Kroll and
Pollock (KP) and by Karplus, Klein, and Schwingé¢81], ZRQED
can be obtained within the framework of NRQED. The pro- 97 7N
cedures developed here are readily applicable to the= §fq + +
a?(Za) term calculation in NRQED. g
e S cw-1 cp-1
' A D!agram se'lectlc.)n ' g R "R % + E
The QED diagrams involved in this calculation are shown 8 § 4 8§ 4 § ¢

in Fig. 5. In the original and subsequent wofk4,9,32,13,
the KP a(Za)Eg pure radiative correction was evaluated

from the QED diagrams with the external fermions put on g, 6. QED and NRQED two-photon exchange scattering dia-

the mass shell and at the threshold, and multiplied by thgram comparison in the presence of the radiative correction. The
square of the nonrelativistic Coulomb wave function at theshaded circle represents the contact term introduced in this com-
origin. This recipe was justified after complicated and rigor-parison. The NRQED diagrams in the bottom lines actually contrib-

ous consideration of the relativistic bound state theory. Waite to thea(Za)? correction.
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- , —2mi5(q%)
p=m.0) P P p *//g,uv: 7vq ‘}/,u (64)

2M '
9r 134 a, N4 . R
This is represented by the symbel in Figs. 1, 2, 5, and 6.

The hyperfine splitting (hfs) projection operator for

=MD  1q 11 1+q 1 . g X . ! .
strings of y matrices is obtained by taking the difference
between thel=1, J,=0 state and)=0 state and using the
FIG. 7. Ladder and crossed-ladder diagrams. spherical symmetry of the syster@3]:

We chose the electron massas the momentum scale of 1 : cuv_ 5.0i/.0 5 0
comparison, and evaluate the scattering amplitudes of both2 2‘1 Ty y (P DITL 2y n(y + D1, (69)
QED and NRQED on the mass shell and at the threshold. In
general, this procedure must be carried out for both spinwhere Roman letters run from one to three while Greek let-
flipping and non-flipping amplitudes. However, for the KP ters run from zero to three. This projection is true only for
term, only the spin-flipping one is needed. The spin-nonexternal fermions on the mass shell and at threshold. The
flipping type produces a Lamb-shift type contact term, whichtrace of the muon factor is easily taken, yielding
contributes to the hyperfine splitting only in the order o
a(Za)"m?*M and above. T 2maq)

As we have discussed in Sec. I, the comparison of QED € 2M '
and NRQED scattering amplitudes gives rise to a contact _
term to the NRQED Hamiltonian. We restrict ourselves toWe take thee,,,;;q' part together with the electron projection

the consideration of the contact term relevant to the hyperoperator as the hfs projection operator, and the other muon
fine splitting, i.e., factor will be included as a numerical factor.

In order that these diagrams contribute to the hyperfine
1 = e splitting, one of the exchanged photons must be transverse
oH= _dlmW oeh) - (X 0uX), (61) (attached to a vertex') while the other is Coulombicat-
tached to a vertex®). Our projection operator of hyperfine

because this is the only source of the KP term as was displitting picks up automatically this structure from the elec-

cussed above. tron line. . . . .
Let us first focus on the contribution from the vacuum , 'N€ corresponding NRQED scattering amplitude consists

polarization insertion. The two-photon exchange scatterin@f many diagrams, but most of them actually contribute to
amplitudes containing the vacuum polarization potential of€ order higher than the KP term. The only diagram neces-
(55) contributes to the ordew(Za)?, not to a(Za). Thus sary is a combination of the Fermi potential multiplied by the

the only contribution from the vacuum polarization is ob- NRQED renormalization constant, namely the second order

tained from the contact term which is determined by calcy2nomalous magnetic moment, and the Coulomb potential.

: : . - i i - o NRQED
lating the QED two-photon exchange amplitude with one!iS scattering amplitude is named™"=E, _
Other diagrams, such as the combination of the Darwin

vacuum polarization insertion in the photon line with the

on-shell at-threshold external fermions times the square dfPtentialVp including the *‘renormalization” constant and
the Coulomb wave function at the origin. the Coulomb potential, have the same power of exphcit

Let us turn next to the contribution from the radiative @dZa as the Fermi one, but diverges linearly in both UV

photon. The QED diagrams related to this correction arénd IR region. These divergences cancel out in the bound

shown in Fig. 5. All three QED scattering amplitudes haveState calculation. The detail is similar to the discussion on the
the same form: Breit term calculation given ifil0]. Eventually they contrib-

ute to the terms of orde#(Z«)?. This argument holds also
for the potentialsVryp and V¢yp representing the vacuum
1 S M (62)  polarization effect.
(2m) (q°+ie) The QED processes with three or more photon exchange
contribute to obviously higher order terms due to the explicit
Here the electron factef*” is different for each diagram but extra power of the coupling constanty.
the muon factor/#,,, is common to all these diagrams and  The contact term can be defined as the QED amplitude
represents the sum of the ladder and crossed-ladder diagramsnus the NRQED amplitude for the two photon exchange
(see Fig. T: process:

(66)

4 —guv, T
i.79FP=g?(7¢?)? o o INVINL ol VIV P70 1

~ vut=g+ M)y, y,(+4+M)y,

1 _
_ N —di s (o) - (x o0 =179 | 7RO,
(1—q)>—MZ¥ie (I+q)2—M?+ie’ m

L//Z“ v

(63
(67)

wherel=(M,0) is the external muon momentum agdis  Actually both QED and NRQED amplitudes are IR divergent
the four momentum flowing in the loop between the electronin the limit of the vanishing external photon momentam
and the muon. As is well knowf8], in the limit of infinite  These threshold singularities cancel each other in the differ-
muon mass, the muon factor reduces to ence(67).
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This contact term is to be put into the first order pertur- Even though all diagrams are free from UV divergences
bation theory. Then the wave function integral is trivially after the renormalization is completed, they still suffer from
done, resulting in the square of the Coulomb wave functiorlR divergence. In general, the Coulomb bound state has two
at the origin. Thus the KP term is given by kinds of IR divergence: one is due to the threshold singular-

ity, and the other is due to the radiative photon.
—d; . The mechanism of threshold singularity is the following.
Av(KP)=|¢(0)|2—<ae~aﬂ)Hié, (68)  In order to contribute to the hyperfine splitting, one of the
mM two exchanged photons must be Coulomb-like while the
other is transverse. This Coulomb photon may be absorbed
where| #(0)|2= y*/ 7 for the ground state. In the actual cal- in the wave function. As a result, the diagram is reduced to
culation, we take the difference between sgirl and one of lower order irZea, or multiplied by 1/Z«). This is
J=0 for the scattering amplitude first using the projectionthe physical origin of this type of IR divergence, which is
operator. ubiquitous in the relativistic treatment of bound state prob-
lem. In the calculation of thex(Z«) correction, however,
such a ‘‘divergence” can be avoided completely by subtract-
ing the contribution of the free anomalous magnetic moment.

We have shown that the(Za) nonrecoil radiative cor- This is because other threshold singularities are absent due to
rection comes entirely from the NRQED contact term evalu-the on-shell renormalization.
ated at the origin of the wave function. On the other hand, The remaining IR singularity is caused by radiative pho-
evaluation of the NRQED contact term is equivalent to thatons. Our choice to deal with this singularity is to put a small
of the on-shell at-threshold QED scattering amplitude. Thisphoton masa. in the radiative photon. For the KP term, this
is why the calculation of thex(Za) term is much simpler  singularity must cancel out when all QED diagrams of the

B. Calculation of the QED amplitude

than other terms such as th€Za)? term. gauge invariant set are included.
Our approach to carry out the computation of the QED
scattering amplitudes is by numerical integration. Let us ex- C. Summary of the a(Za) correction

plain the outline of our procedure. The detail of the calcula- i L ,
tion is given in Appendix II. The electron line structure of We have shown that nonrecoil radiative corrections to the

each diagram is directly written down using the parametridhuonium hyperfine splitting having the odd power o
Feynman-Dyson rules for QE[34,35. Feynman param- comes only from the contact term of NRQED, and that this
eters assigned to the electron Iine,a[e z,, andzz, while contact term is determined as the difference between the

one assigned to the radiative photon lingjs The momenta QED and NRQED scattering amplitudes.

flowing in the fermion lines after the radiative photon loop The resulting ex_pression fqr the KP radia_tive correction
momentum is integrated out are expressed in terms of corr&@n be evaluated either analytically or numerically. We have

lation functionsB;; , which are functions of Feynman param- chosen the latter approach. The three dimensional integration

eters and determined by the topology of the loop structure OtFas been carried out using the adaptive iterative Monte Carlo

the diagram alone. Then our integrals are expressed as two Bjtegration routine/EGAs [37]. Each diagram has the IR di-

three dimensional Feynman-parametric integrals with an ad/érgence of the form proportional tgm/\, but their sum is

the momentunﬁ of the external potential. due to the radiative photon is given by
Two of the QED diagrams have UV divergences and must Av(KP)y=—2.556806) a(Za)Ef . (69)
be renormalized. The renormalization terms are generated

using the projection operators in the algebraic progra®v e have also evaluated this integral analytically and ob-

[36]. Our projection operators for QED renormalization con-tained the same result as that of Kroll and Pollock, and Kar-
stants are quite general and applicable to any order. They agys, Klein, and Schwingdi31]:
presented in Appendix A. All of the renormalization con-

stants are determined in the on-shell scheme. These renor- 13

malization terms should be expressed by the same Feynman Av(KP) = ( In2— Z) a(Za)Eg

parameters as those assigned to the original diagrams in or-

der to realize point-by-point subtraction in numerical integra- =(—2.55682...)a(Za)Eg. (70
tion by means of the adaptive iterative Monte Carlo integra-

tion routineveGaAs [37]. An easy analytic calculation of the vacuum-polarization con-

The hfs contribution due to the second order anomalousribution gives
magnetic moment should be subtracted from the diagrams
involving the second order vertex correction. Actually it is Av(KP)yp=3 a(Za)Eg. (7D
very easily done along with the charge renormalization: let
the external photon momentugntend to zero in the original Putting these_res_ults together we obtain the well known
diagram expression of the electron factor. Then subtract thi¢(Za) correction in the framework of NRQED:
IR limit from the original diagram. We can easily prove that
this IR limit of the diagram is nothing but the sum of the Av(KP)=(In2— 2 + §)a(Za)Ek. (72
charge renormalization constant and the anomalous magnetic
moment of the second ordeSee[10] for details) This justifies the procedure adopted in R&f1].
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IV. THE a?(Za) CORRECTION the threshold singularity in the vanishing external photon

A. Diagram selection momentumq=0, in the proper diagram. The detail of this

, . . . . mechanism is described in the calculation of th& o) KP
In this section, we give an outline of the evaluation of the ., rection in Appendix B.

2 . . .
a*(Za) correction to the Fermi frequendy; which comes It is convenient to divide the nineteen diagrams into four
from the six gauge invariant sets of QED Feynman diagram roups.
represented by Fig. 1. Our treatment of the bound state ©0 Grqyp 1: Diagrams containing fourth-order vertex correc-
find the contribution to hyperfine splitting coming from these i, They are represented by the diagrams
diagrams is completely identical with that of tad€Z«a) KP Ho1,Hoz,Hos,Hoe,H1o, andHy; of Fig. 2.

correction. A new diagram appearing in this order is the "Groun 2: Diagrams containing fourth-order self-energy
light-by-light scattering insertion. The light-by-light scatter- ;,sartions. They are represented by the diagréimsH ., of

ing is a high energy process in NRQED. Thus it is repre-gi, o

sented only by a contact term in NRQED. As a result we "oy, 3: Diagrams in which radiative photons span over

have to include the four-photon interaction in the NRQEDy, 4 external photons. They are represented by the diagrams
Hamiltonian. But as an operator it contributes to ordersH05 Hos,Ho7,Hog,H1s,H14,H1s, andH g of Fig. 2.

higher than our interest here. Therefore, what to do is again Group 4: Diagrams containing two nonoverlapping
to calculate the contact term starting from the scattering amsecond-order radiative corrections. They are represented by
plitudes of these diagrams with the on-shell at-threshold parg, o diagramsH 7, Hyg, andH, of Fig. 2.

ticles and then subtract the contribution of the fourth order | !
anomalous magnetic moment from Figéd)land Xf).

The numerical evaluation of Figs(a—1(e) can be car-
ried out easily and our results are consistent with those pr
viously obtained by Eides and his collaboratf2®—22. In
contrast, the diagrams of Fig(fl require a substantial effort

The integrands corresponding to the individual diagrams
of Fig. 2 were initially generated using the algebraic program
SCHOONSCHIP[38]. Later we generated the same integrands
%y Form [36] as a check.

The parametric representation of group 1 diagrams is of

. . o the form
to compute. A complete evaluation of this contribution is the
main result of this paper. 3 a?(Za) m foodq Y (d2);_4 1 [p+qg+1
2« g t) v v g |
B. Calculation of the QED amplitude (73)

Let us now discuss some technical details of calculation
of (17) represented by the nineteen diagrams of Fig. 2. Sincehere the diagrant,,, for example, has the electron-line
the bound state structure of these diagrams is identical wit@perator
that of the a(Z«) correction, the procedure of numerical
evaluation of thex(Z«) correction given in Appendix Bcan ~ Ff=y*(D1+m)y#(D,+m) yz(D3+m) y*(D4+m)y,.
be applied readily to these diagrams. We applied numerous (74
techniques developed for the numerical calculation of the
anomalous magnetic momegt-2 of the electror{35], ex-  Other diagrams of this group are obtained by permutation of
cept that we avoided the use of “‘intermediate” renormaliza-y matrices.(See Ref[35] for the definition ofU, V, D;,
tion which was introduced in thg— 2 calculation to avoid €tc) Using the hyperfine splitting projection operator, one
the IR singularity of each diagram. Instead we use the confinds that the terms contributing to the hyperfine splitting are
ventional renormalization procedure which is IR singular inproportional to at leasti?, and kills one of theg®'s in the
the radiative photon mass This is because these IR diver- denominator in Eq(73). Thus Eq.(73) leads to the energy
gent terms are needed to cancel out the other IR singularityghift of the form

(75

a ’IT2

A _a*(Za) mfw dg [ (dz);-4 E+i+ F2
rer” Falo (—q3)  UZ [VET UV UAO)

where 1V is a symbolical representation efInV in which the UV divergence is regularized and subtracted by the corre-

sponding countertern{See Appendix B for a precise definition.
The parametric representation of group 2 diagrams is of the form

p+qg+m
_52

(d2),-4 1

2] u? v

p+qg+m
_52

3 a¥(Z m (>d
a(a)EF—zf q_,
T Jo

“3> . ?7 Y, (76)

where, for example, the diagrahh,, has the electron-line operator

Fo=y*(Dy+m)yA(D3+m)ys(Dy+m)y,. (77)
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Its contribution to the hyperfine splitting has the form

a®(Za) _ m (= dq (d2); 4|Fo  F1
et R o (@) 02 [V+UV°}' (78

For the diagram#iy, andH 45, the product of two elec- A d?k i i —j
tron propagatorSJu§t outS|d§ the fourth order self-energy dia- ﬁj (277)4 p—K+dg— m?Y p K— ka
gram behave as (4%)?, which makes the convergence of .
the numerical integrals difficult in the smadj| region, even lﬁf d’k 1 y4(—1) (83)
though the integrals are analytically free from the IR singu- (2m )“k2 —k+d4—m '
larity in |q| after the mass and wave function renormaliza- .
tions are carried out. In order to avoid this computational\(’jv.here we 'Ltjﬁe the OT'She:l Cr?ntd't'?: m. Th_e seli-energy
difficulty, we introduced an additional parametewarying lagram with one external photon diagram 1S
from zero to one to combine the original term and the renor- A g% i i i
malization term. All the numerator expressions are then pro- g y*

. > ) (2)4pk+qmp+qm?7
portional to at leasj®> and kills one of the electron propaga-

tors A d%k 1 1
The parametric representation of group 3 is of the form lﬁf 2 )4k2 p—K+d—m Y p+d—m Y
R Y TR &
16 = Fatlo g 3 u? o _
The second term, which is related to the mass renormaliza-
For instance, the diagraifys has the electron-line operator tion constant proportional to the longitudinal photon polar-
- ization, vanishes when the integration owers carried out
3 with a proper regularization. Then the gauge dependent parts
FAv= y%(Dq+m)yA(D,+m) yp(D3+m) of (83), and(84) cancel each other and the sum is indepen-
dent of particular choice of gauge.
XyH(Dytm)y"(Ds+m)y,. (80) The numerical integration is performed for the integral

combining three diagramsl,;, Hig and Hq together so

that cancellation of IR divergences occurs in the same region

2(Za) (dz)l . of the Feynman parametric space. The result obtained for the
—f J zero mass radiative photoin3=0) is

By using the hyperfine splitting projection operator, we get

V3=

Av(Hy7)+Av(Hig) +Av(Hyg)

a?(Za)
K

Fo, Fi  F2

X|=m+ 55+ 5.
Ve uUv? UV

(81)

= —0.4780315) Er. (89

The group 4 diagram#i,;,H.g, and Hqg contain two

nonoverlapping second-order radiative corrections. Theifrhis is in good agreement with the result calculated in the
sum is invariant under the covariant gauge transformatioftried-yennie gaug40], in which 8= —2 in (82):

and free from the IR singularity due to the radiative photons.

Let us consider the sum of two diagrams of Fig. 8. If the a*(Za)
photon propagator is chosen as Av(Hy7) +Av(Hig) + Av(Hg)=—0.477891) Er.
—i v kMkv) (82) (86)
e+ 9 P ) Note thatA v(H;7), Av(H1g), andAwv(H,g) individually are

. ) gauge dependent, and their values are completely different
the gauge-dependent part of the vertex diagram gives between our results and those of Rel0].

C. Problems concerning numerical integration

S

é § Let us now discuss some technical details of calculation

of Av(Hg,) to Av(H,g). After the ultraviolet divergences
are renormalized, individual diagrams still suffer from severe
infrared(IR) divergence, which is of the foria~ 2, \ being
the photon rest mass measured in units of the electron mass.
FIG. 8. Sum of the second-order self-energy diagram and vertefOf course, the sum over all diagrams of Fig. 2 is free from
diagram. the IR divergence. This does not mean, however, that the
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TABLE II. vecas integration performed for individual diagrams of Fig..2.is the sum of IR divergent parts of diagratdg,; through
Hig. N\ is the photon mass measured in units of the electron mass.

A2=10"% A?=10"3% A%2=10"% A?=10"%% A?=10° A?=10°° A2=10"° A\2=10""
Hos —4.95514) —5.55484) —6.04814) —6.44904) —6.77145) —7.03044) —7.236G4) —7.52984)
Hoo 0.095G1) 0.36012) 0.63371)  0.89762)  1.14022) 1.35652) 1.54432) 1.83942)
Hos —6.55274) —7.55365) —8.42135) —9.158%6) -—9.77585) —10.28774) -—10.70894) —11.33144)
Hoa 1.60481)  1.98112)  2.367G2)  2.75743)  3.14873) 3.53893) 3.92663) 4.69373)
Hos 4.08994)  4.61165)  5.04646) 5.39975)  5.683G6) 5.90835) 6.08335) 6.31996)
Hos —3.47815) —3.85335) —4.20746) —4.53646) —4.83466) —5.10064) —5.33264) —5.70336)
Ho7 1.25883)  1.269G43)  1.24263)  1.18983)  1.117G4) 1.03183) 0.93613) 0.72634)
Hos —0.21670) —0.298G1) -—0.36771) -—0.42551) —0.47211) -—0.50921) —0.538Q1) —0.577%1)
Hog 0.00592) —0.30472) —0.59292) -—0.84862) -—1.06822) —1.25282) —1.40612) —1.63332)
Hio 7.71843)  9.164@4) 10.47465) 11.62105) 12.598%6)  13.41594)  14.090@4) 15.084(6)
Hyy —1.84372) —2.46633) —3.03333) —3.53093) —3.95593) —4.31273) —4.60783) —5.04574)
Hi, 4.47803)  5.463G4)  6.34445)  7.10925)  7.75675) 8.29684) 8.74234) 9.40156)
His —3.23693) —3.66314) —4.0220G5) —4.31576) —4.55085) —4.73394) —4.87324) —5.04855)
Hia —3.69812) -4.35972) —4.96723) —5.50843) —5.98023) —6.38393) —6.72463) —7.24374)
His —1.96112) -2.53012) -—3.07742) —3.58432) —4.04033) —4.44142) —4.78823) —5.33254)
Hie —1.52421) -1.78521) -—2.00582) —2.18632) —2.33072) —2.44432) —2.532%1) —2.65194)
4 8.209817) 9.453821) 10.529627) 11.434131) 12.182936) 12.788%55) 13.2507104) 13.8433149
Hqy;+Hg+Hyg —0.4780(1)
Total —0.484G20) —0.543625 —0.582831) —0.612835 —0.629%40) —0.638157) —0.6526105 —0.6668150)

sum can be integrated easily on a computer. This is becaus®n routine VEGAS [37]. The result of each integration is
the IR finiteness results from cancellation of divergences fosummarized in Table Il. The degree of difficulty of numeri-
A—0 from different parts of the integration domain. cal integration for”” increases rapidly as decreases. This
One way to deal with this problem is to evaluate indi- prevents us from going to smaller values ofat present.
vidual integrals for several small values)ofand extrapolate Even\?=107 is a struggle. Although evaluation of inte-
the sum of all terms to zero photon mass. Unfortunately, thigrrals up ton?=10"2 is highly desirable, we have not at-
approach creates integrals of ordef I6r A2~10 ', while  tempted it thus far since it will require an extraordinary
their sum is of order 1, making it very difficult to control the amount of computing time.
numerical accuracy of the result. Another way is to integrate, The data in Table Il shows that the contribution of Fig.
for A#0, the sum of all terms, which enables us to avoidl(f) falls within errors on a straight line for
dealing directly with large numbers. This approach will also10 ’<\?<10 °. Thus the extrapolation ta=0 may be
result in a better error estimate. The main practical difficultytried with a linear polynomiah,+a;x, wherex=x%2[39].
is the large amount of computing time required. The upper box of column 3 of Table Il shows the best linear
This problem can be somewhat alleviated if one evaluatefit to the data in this range of.
each integral after subtracting its IR-divergent part, and then We also list in the upper box of colum# a fit to thesame
evaluates the suny” of the IR-subtraction terms of all dia- set of data in terms of a quadratic polynomial
grams. This method, which we have chosen, ensures that all,+ a;x+a,x?. Clearly the result is much less certain than
integrals stay smalless than~ 20) for any value ofA. Thus  the linear fit. This is because the increased flexibility of the
far, we have evaluated them for several valueadin the  quadratic polynomial is now responding not only to the non-
range of 103 to 10 /. The integration has been carried out linearity of data but also to the noise of numerical integra-
numerically using the adaptive iterative Monte Carlo integra-tion. For this reason the fitting with a linear polynomial will

TABLE Ill. The x? fitting for the coefficienty of Era?(Za)/w versus x=\Y2 where
y=ag+a;x>+--- and\ is the photon mass measured in units of the electron mass.
Photon mass.? y=ag+a;x y=agy+a;x+ ax? y=ay+a;x+ax’+ax>
ag —0.678:-0.015 —0.700+0.041
107 '<A\?<107° a, 0.88+0.29 2.03-2.05
a, —13.77+24.06
ag —0.6764+0.0079 —0.672:£0.017
107 '<\?<1073 a; 0.73+0.15 0.58:0.57
a, 1.99+0.63 3.45-5.62

as —4.39+16.78
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) specific manipulation because of very complicated inte-
. : : : grands involving many variables. In the Feynman gauge cal-

culation, on the other hand, each diagram is IR divergent due
-0.45 to the retarded Coulomb-like photons, which makes indi-
vidual integral cutoff dependent. The advantage of this ap-
proach is that one can apply a systematic computer algebraic
Ale method, which minimizes the chance of making mistakes —
£ E -0.55 an important consideration in such a complicated calculation.
.&b & The agreement of87) and (88) confirms gauge indepen-
5 uﬁj‘ dence of the result to the extent of numerical precision.
The total contribution of ordex?(Z«) including the re-
-0.65 sults (11)—(15) and(87) is given in(18).
) If we instead us€88) for Fig. 1(f), the total contribution
becomes
-0.75 ' ' ' . aX(Za)
0.00 0.05 0.10 0.15 0.20 Av( Fig. 1)=0.77327) - Er=0.42644) kHz.
A (89)

FIG. 9. The graph for the coefficiegtof Era?(Za)/ obtained  If we add thea(Za)? correction to the previous theoretical
by VEGAs versus x=\'2. The solid line is they? fit for ~ prediction(10), we obtain
y=ay+a;x+a,x?, whereay,a;, anda, are determined from the

data listed in Table . Av( new theory

be more appropriate for this data. _ 4463302.661.34(0.2)(0.16 kHz,  Eq.(18),
On the other hand, if one tries to fit the entire data of 4463302.701.34(0.21)(0.16 kHz, Eq.(89).
Table Il which show clear deviation from linearity, the linear (90)

fit is no longer appropriate and one must us¢ least a
quadratic polynomiafsee Fig. 9. The best fit by a quadratic Now that the completer’(Za) correction has been evalu-

polynomial to the whole set of data of Table Il is shown in ateq, the major remaining source of theoretical uncertainty in

the bottom box of column 4. The bottom box of column 5the muonium hyperfine structure is, as is seen ftdin the
shows that use of a cubic polynomial is not recommended tgymerically evaluated nonlogarithmic part of th&Za)?

this data because it responds more to the noise of numericghrrection term. In addition, although not listed (@0), the
integration than to the real signal. Based on these considefeading logarithmic corrections of order* and a3(m/M)
ations we believe that the value af, determined by the tym out to contribute to the hyperfine structure as much as
guadratic fit gives the best estimate of [Fig. 1(f)]: the a2(Za) term, as was shown in our preliminary repfst

2¥(Za) and also by Karshenboif¥2]. The parts of these higher
Av[Fig. 1(f)]=—0.676479) Er. (87)  order terms evaluated thus far add up-t®.68(6) kHz if
™ some errors irf3] and[10] are corrected(Details will be
discussed in subsequent papevge cannot simply add these
V. DISCUSSION corrections td90), however, because the previous evaluation

L o . ) of a(Za)? term[23] contains parts which are of higher order
The remaining uncertainty in the value &b [Fig. 1f)]is i, 7z, We have evaluated the(Za)? and «(Za)® terms

still considerable. Nevertheless it is a factor 5 improveme”%eparately in the NRQED formalism in order to avoid pos-
over the preliminary valueL6). Since we published the pre- gjhje double counting and reduce the uncertainties due to

liminary result, Eidet al.[40,41] have completed their cal- hese terms. The results will be reported in the subsequent
culation and reported a more accurate value

papers.
) a?(Za)
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APPENDIX A: PROJECTION OPERATORS 1 oV

FOR QED RENORMALIZATION CONSTANTS G=—3sp"—= = 2 ZA . (A7)
2 ap p2=1 electron line only

We present the projection operators for QED renormaliza-
tion constants determined by the on-shell scheme. Our pro-
jection operators for QED renormalization constants are
quite general and correct for any loop orders. We set the
electron massn=1 through Appendixes A and B. Let us begin by showing the calculation of the spanning

The projection operator of vertex renormalization termsphoton diagram of Fig. @). The Feynman parameters as-
can be written a§35] signed to the electron lines azg,z,, andz; and assigned to

the radiative photon ig,. Following the notation in Refs.
L=3TrCo(¥y°+1)], (A1)  [34,35, we use the abbreviation for the sum of Feynman

parameters
wherel, is the proper vertex diagram. Projection operators

of mass renormalization term and wave function renormal- 210 =21+ 2+ +2Z,. (B1)
ization terms can be defined similarly. A proper self-energy

diagram of the Bth order has the parametric representationFor this diagramz;,3,=1. The momentum flowing through
each electron line after integration of photon loop momen-

tum should be expressed by the external momenta, namely
the electron momenturp=(m,6) and the momentum of the

external potentiaﬂq=(0,ﬁ). For the electron ling, this may
be written as

APPENDIX B: NUMERICAL CALCULATION
OF THE a(Za) CORRECTION

_ AN 1
2<2n>:_(4_:) (n—2)!Fj (d2)ggzya1-  (A2)

(See Ref[35] for the definition ofU, V, F, etc) The pro-
jection to the mass renormalization is given by

Q/=Aip+AiQ, (B2)

where the *‘scalar” current#\; andA;, are found to be

om= 3 TS (p)(p+ 1)]|b=1

(d2)g
7T mZ mVn 1-m» (A‘?’) Al Az A3—1 2123U Alq:qu:_ZZU_l,

where 3 (p) is defined by(92). The projection operator of Aq=1+A1g, U=12z1p37~1. (B3)

the wave function renormalization constant is slightly MO Then the electron line including all of numerical factors is
complicated since it involves the derivative of the self- 9

energy with respect to the external momentum, namel)?btamed in the operator form
p“o2(p)/dp*. It can be easily realized, however, in the

1
Feynman parametric representation. Taking the derivative of § [(D1+1)y*(Dy+1)y"(Ds+ 1)]f « U); ! V2"
the numerator with respect fwleads to the quantity (B4)
E= AF;. (A4)  where theith electron line operatoD; is
electron line only
. . . ) 1= , @

where F; is obtained by replacingl{;+1) by p in the D{‘zzf L,dm o (B5)
electron-line operatdf. The corresponding part of the wave m; i

function renormalization constant is determined as N . . . L
Multiplying with the hyperfine splitting projection operator

—a\" 1 and taking the trace, we obtain the integrand asrbeM
B,(numep=— E) (n—2)!Z THE()p(p+ 1)]|,5=1 output[36]:
1 f(0)=4A2,A0%V 2+ (— 4ATAq+BA 14— 4A5) V2
Xf (dZ)GUW .
+ By 8A14+4A) (UV) 1, (B6)
(dZ)G E
) | T3 (A5)  Wwhere
B1o=By3=Ba;= 1V = 2195~ 212381 + ZJA 2+ G2 Z,A,, .
The other part corresponding to the derivative of the denomi- romee e 128 HE T 2 2q(|37)
nator is similar to the mass renormalizatiém and is given
by The contribution to the hyperfine splitting energy is obtained
as an integral of the form
dz)G (n 1-m)2GF,,
B,(denom = ) f E G d2);-4
& (86) AE;= (Za)EF—z dq —z—f(q) (B8)

where where
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(d2)1_4=dz;dz,dz3d 2, (1 — 23934, (B9)  Then the electron line is

andf(q) is given by(B6). g%[<¢+«z+1>w<m2+w<p+q+mj (dz)54 1
q

Next consider the vertex correction diagram of Fi¢h)5 SEERVA
Feynman parameters andz, are assigned to the electron (B16)
lines andz, to the photon line, with the constraia{,,= 1. h
The scalar currents are where

A1:A2:l_zlzufl, A2q: _ZZUfll Alq:1+A2qv V222_22A2+Z4)\2+a222A2q. (817)
U=2z00=1. (B10) The integrand is found to be
Then the electron line is f(@)=(~16+8A,~4A¢°)[~In(V)].  (B1§)
31 The mass and wave function renormalization terms can be
— g =L@+ DY (Dot 1)y (p+4+1)] written as
q - -
fr=G(16—8A,)q?V, 1+ (— 16+ 8A,— 4A,q?)[ —In(Vy)],
A? > [(d2)14 1 (B19)
X Z4d my | — 72 o2- (B11
A2 U A
where
The integrand is found to be G=2,A V=2 ZyAp+ 24)\2_ (B20)
f(0)= —4A1qAQ0%Y 2+ (—4—4A A +AAA The hyperfine splitting contribution is given by
+8A)V 2 +B(—4)(UV) 7, (B12) - 1 J dq (dz)24[f(a) .
3= 2| T2 Tz — IRl
where Fa?lo(—q0)2) U R
- (B21)
Bio=1, V=21 2A1 +Z N+ 0°Z,A,,.  (B13)

Although this integral is analytically free from the IR singu-
As was described in Sec. Ill, the charge renormalizatiorl@rity caused in the limit of the vanishing external photon
and subtraction of the second order anomalous magnetic meromentumg, numerical integration is very difficult in the

ment is carried out by subtractin{q=0). The hyperfine Smallq region, resulting in the poor convergence of the in-

splitting contribution from two diagrams of the vertex type is tegral. To avoid this numerical difficulty, we introduce an-
other parametey varying from zero to one and combine the

AE,= a(Za)E EJ“ dq AZZ dmzj (d2)124 term which is not proportional tq? in the original diagram
2 Frtlo (=g 2™ %) U2 and the corresponding renormalization term together. This
) leads to an integrand of the form
X[f(q)=f(0)]. (B14 o N
f(q) = G(16-8A2)q%V, '—4A,q% —In(V)], (B22)
If the m3 integral is performed, the denominatur 2 be-
comesV~ 1. The V™! term is UV divergent and, if it is where
combined with the charge renormalization term, it becomes Vy=2,—2,A+ 24)\2+E]2y22A2q. (B23)

—InV. In the self-energy diagram calculation, the regulariza-
tion is implicitly performed and the resulting denominators The corresponding renormalization term is
are expressed by ", n=0,1,2,..., where V™ ° implies
—InV.

The last diagram is the self-energy insertion diagram of ] ] o S
Fig. 5(c). Feynman parametes, is assigned to the electron The resulting hyperfine splitting contribution is
line andz, to the photon line with the constrainj,= 1. The = dq (d2)

Tr=G(16-8A,)q%V, 1~ 4A,q9 —In(Vy)]. (B24)

scalar currents are

A=1-72,U"1, Ay=A,, U=z,=1. (B1H
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