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Expectation values of the axial-vector currents are calculated within the semibosonized SU(3)- 
NJL model in the next to leading order of a l/N, expansion. These l/N, corrections are shown to 
come from two distinctive sources: (1) the anomalous part of the Euclidean effective action related 
to the Wess-Zumino term of the SU(3) Skyrme model and (2) the real, nonanomalous part which 
in this order of l/N, has no counterpart within any local effective meson theory. The appearance 
of the type (2) terms is due to the time ordering of the collective operators entering the formulas 
for the axial-vector constants. They substantially improve the phenomenology of the model. The 
question of regularisation of these quantities is discussed. The analytic symmetry-breaking terms 
in the strange quark mass play a minor role for gy’ and gy’. They are, however, important for 

gy’. Finally, the numerical values for the ga’s, gy’ = 0.37, gy’ = 1.38, and gy’ = 0.31, reproduce 

reasonably well the recent data from lepton scattering (92’ = 0.31, 92’ = 1.26, and gy’ = 0.35). 

PACS number(s): 12.39.Fe, 12.39.Ki, 14.20.Jn 
I. INTRODUCTION 

It is a long lasting problem to determine the static 
properties of hadrons directly from the general the- 
ory of the strong interaction, quantum chromodynam- 
ics (QCD). Therefore one attempts to formulate an ef- 
fective theory for the strong interactions which would 
be tractable in the low energy regime [l-5]. The quark 
Nambu-Jona-Lasinio (NJL) model [6,7] seems to be an 
excellent candidate for such a theory. Although it does 
not confine quarks, it shares maybe the most important 
features of QCD relevant for the quark bound states. 
These xe chiral symmetry and its spontaneous break- 
ing. In the presently investigated NJL model the nucleon 
consists of N, quarks bound in a self-consistent potential. 
The latter is based on a nontrivial chiral field configua- 
tion constrained to the chiral circle in the Hartree ap 
proximation [S-lo], which is leading in l/N, expansion. 

The semibosoniaed NJL model is defined by a local La- 
grangian density of the quark and meson fields. However 
if one integrates the quarks out, the resulting mesonic 
effective action is no longer a local one. One can, how- 
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ever, make a gradient expansion, which will eventually 
lead to a local action, although the number of terms 
will be infinite. Therefore it was always believed that 
the effective quark theories are equivalent to the effec- 
tive meson theories in the sense that they correspond to 
some calculable local Lagrangian density, such as that 
of the Skyrme model, for example [ll]. However, it has 
been shown that the hadronic matrix elements of axial- 
vector currents calculated within the NJL s&ton model 
exhibit new terms, which cannot be obtained from the 
local mesonic theory [12-141. This is due to two facts: 
(1) upon the semiclassical quantization the cranking ve- 
locities are promoted to the collective operators which do 
not commute with the rotation matrix itself and (2) the 
collectiv& operators have to be time ordered. The latter 
can be seen within the path-integral formalism, which 
dictates unambiguously in which order the cranking ve- 
locity and the rotation matrix appear in the expressions 
for the matrix elements of the axial-vector currents. If 
these nonlocal properties of the path integral are prop- 
erly taken into account, then one gets new corrections 
which are of order O(Ni), whereas the leading term is 
O(N,). These corrections are not small and improve the 
phenomenological predictions of the NJL model. We will 
show that one can even obtain a local limit of these terms 
using the gradient expansion for the matrix element in 
question. On the contrary, taking the local limit of the 
present effective quark theory first (e.g., by making the 
gradient expansion) and then calculating the same ma- 
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trix elements yields no corresponding O(N,O) terms ai 
all. 

The example of the axial-vector constants is perhaps 
the most persuasive. It is well known that in then non- 
relativistic quark model ga = (N, + 2)/3. This means 
that there are important O(N,O) corrections to ga, which 
for N, = 3 amount to 60% of the leading result. In the 
effective meson theories the leading term for ga scales 
also as N,; however the next-to-leading corrections comes 
only at the 0(1/N,) level in the SU(2) version of the 
model. This is due to the fact that effective meson La- 
grangians are ezlen in field derivatives. In the cranking 
approximation for the rotating s&ton each time deriva- 
tive counts as l/N,. The only possible source for the 
contributions linear in the time derivative is the aroma- 
lous Wess-Zumino term which vanishes identically in the 
SU(2) case. Hence the SU(2) Skyrmion does not show 
any rotational O(Nz) corrections’ in a contradiction to 
the nonrelativistic quark model. In the NJL model, how- 
ever, the O(N,O) terms appear in a natural way due to 
the time-ordering discussed above. Such terms are also 
present in the SU(3) version of the model. However, 
apart from them in the SU(3) case, both in the NJL 
and in the Skyrme model, the anomalous O(Nz) terms 
appear. In the NJL model in the leading order of the gra- 
dient expansion these terms correspond to the Witten’s 
anomalous current [15] of a local mesonic theory. 

In the previous paper (131 we have calculated the three 

SU(3) axial decay constants gy’, g!‘, and g$’ in the 
chiral limit within the semibosonized NJL model. This 
model reproduces the hyperon spectra [16] and also the 
isospin splittings within baryon multiplets2 [17]. So far 
the properties of the axial currents have been investi- 
gated in the NJL model only for the case of SU(2) [18,10]. 
Recently the rotational corrections for SU(2) have been 
roughly estimated in [12], neglecting the sea contribu- 
tion, and to full extent in [14]. Beyond this there are 
only calculations of the axial coupling constants within 
the pseudoscalar SU(3) Skyrme model [19] and the pseu- 
doscalar vector meson SU(3) Skyrme model [20]. 

In contrast with our previous paper [13], where we ig- 
nored the regularization of the new terms, now we im- 
plement the time-ordering within the framework of the 
regularized effective Euclidean action (EEA). This treat- 
ment allows us to make a clear distinction between the 
terms which emerge from the real or from the imagi- 
nary (anomalous) part of the EEA. Actually it turns out 
that the new time-ordered terms emerge &XII the real 
p@ of the EEA and therefore have to be regularized. 
In the present approach the regulariaation prescription 
is unique and the regularization function is derived in a 
well-defined manner. 

In the present paper we furthermore extend our previ- 

‘One should, however, remember a possible contribution 
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ous calculations and calculate the md corrections to the 
axial-vector coupling constants. In addition to the theo- 
retical interest due to the new time-ordered corrections, 
the axial constants are of utmost phenomenological im- 
portance as far as the comparison with the recent mea- 
surements of the polarized proton and neutron structure 
functions is concerned. So the main phenomenological 
concern of this paper will be a comparison of the model 
predictions with the experimental data for these quan- 
tities. We will especially concentrate on the role of the 
time-ordered corrections and furthermore on the so-called 
anomalous quantities, which are dominated by the va- 
lence contributions [21,16,22]. 

The organization of the paper is as follows. In Sec. II 
we review the basic features of the NJL model with spe- 
cial emphasis on the s&tonic description. In Sec. III we 
describe the quantization procedure and summarize the 
results on the hyperon splittings. We use the mass split- 
tings to lix the constituent mass M. In Sec. IV we derive 
expressions for the expectation values of currents in the 
NJL model. Special emphasis is put on the new contri- 
butions from the time ordering and their regularization. 
In Sec. V general formulas of Sec. IV are applied to cal- 
culate the axial currents expectation values in the chiral 
limit. Then in Sec. VI we discuss mass corrections to 
the axial currents. Our numerical results are presented 
in Sec. VII. Section VIII contains a brief comparison 
with the results of the Skyrme model. We present our 
conclusions in Sec. IX. 

In the Appendices we present a derivation of the regu- 
larization functions (Appendix A) and a gradient expan- 
sion for normal and time-ordered quantities (Appendix 

BI. 

II. THE SU(3) NAMBU-JONA-LASINIO MODEL: 
SOLITONS 

The quark Nambu-Jona-Lasinio model [6,7] can be 
written in the four-fermion formulation as 

(0 

Here the summation over the X0 matrices is implicit 
(with X0 = 0) and rn is the current quark mass 
matrix. In the chiral limit the Lagrangian has the de- 
sired Sum @ SU(3)r. symmetry in addition to the 
U(l)” @U(l)a, where the U(l)a is the symmetry which 
&not shared by QCD. In principle, one could introduce 
the ‘t Hooft term into the Lagrangian, which breaks the 
U(l)a explicitly. It could then serve as a source for the 
7’ mass, which otherwise would be a Goldstone boson. 
This was recently done by Kato et al. [23] and the result- 
ing profile for the SU(2) soliton was very similar to the 
solutions that are restricted to the chiral circle (i.e., non- 
linear case) and which are used here. So we believe that 
the effects of the ‘t Hooft determinant on the solitonic 
observables of the present calculations are small. 

Performing the bosonization procedure of Eguchi [24] 
one arrives at a new classical Lagrangian r& (whose 
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explicit form is not needed here), which contains in ad- 
dition to the quark fields scalar and pseudoscalar meson 
fields. Because the quark fields appear only quadrati- 
cally, one can integrate over the fermionic functional in: 
tegral to obtain the following effective Euclidean action 

(EEA), corresponding to the leading contribution in an 
1 /NC expansion: 

S&(z)] = -Spln[-iq+ P&4(+) + PlM+(r) + rn] 

+&tr*(MM+) (2) 

Here Sp is the functional trace in color, flavor, and mo- 
mentum space and M = g(unX’+is”Xo) is the chiral ma- 
trix in terms of n- and n-meson fields. PR(L) = $(l zlc~~) 
are the right (left) h&city projection operators. Alterna- 

tively one can write M = [inCr& in terms of the unitary 
matrices EL, ER and a Hermitian matrix M. Further- 

more the unitary gauge & = & = f can be chosen to 
eliminate the redundant degrees of freedom. In order to 
obtain stable solitonic solutions [25-271 it is important 
that the scalar degrees of freedom in M are frozen, such 
that M is just the constituent quark mass matrix and f 
is related to the chiral field by U = f2. The latter can 
be parametrized as exp(i?raX2/fn). This parametriza- 
tion corresponds in SU(2) to the chiral circle condition 
o&, + li* = const, where c(z) is the SU(2) isoscalar o 

field. 
From Eq. (2) the parameters of the model can be 

fixed by requiring experimental values for the pion decay 
constant fz = 93 MeV, the pion and the kaon mass, 
rn, = 139 MeV and mu = 496 MeV (see Ref. [16] for 
details). As a result the constituent quark mass is the 
only free parameter of the model, which can, e.g., be 
used to Sx baryonic properties [16,17]. 

Solitonic solutions of Eq. (2) can be found by making 
a time-independent hedgehog ansatz for the chiral field 
Vo(Z) = exp[i?&‘(r)] and writing the SU(2) actionin the 
chiral limit in terms of a single particle intrinsic Hamil- 
toni*n: 

H = -i+i7& + MU(z3, t)] (3) 

The gamma matrices in Eq. (93) are taken as anti- 
Hermitian in Euclidean space. We will specify the SU(3) 
extension of the SU(2) ansatz in the next section. In 
the proper time regulariaation [28], the effective action 
becomes, in this case, 

seff = SP 
J 

~~(qnl,na)exP[-u(o~oo)l , (4) 

where DO = 0, + H and where C$ = c6’(u - l/At) + (l- 
c)8(u - l/AZ) is the regularization function of Ref. [16], 
which reproduces common values for the current quark 
masses and quark condensates in the vacuum. It is im- 
plicitly assumed that the vacuum contribution is sub 
tracted from Eq. (4). The classical equations of motion 
can be solved self-consistently for the chiral field U = U,, 
resulting in a localized soliton with unit winding number. 
The energy spectrum of the Hamilt&ian operator H [Eq. 
(3)] for the baryon number one sector contains a discrete 
valence level inside a mass gap of the size 2M [9,8,29]. 
Then the classical energy of the soliton can be written as 

PQI 

WI = NJ-h + NJL , (5) 

where E-1 is the energy of the valence level and E.., 
resembles the polarization the D&c sea as a sum dver 
the whole spectrum of the Hamiltonian operator H. 

III. QUANTIZATION OF ZERO MODES AND 
MASS SPLITTINGS 

The purpose of tbis section is to apply the semiclas- 
sical quantization method to the solitons [9,8,30] of Sec. 
II, which result from the classical and time-independent 
equations of motion. The idea hereby is the following. 
In order to quantize the system one can perform a time- 
dependent transformation [31] either in the direction of 
the symmetry or orthogonal to it. If the symmetry is 
at least an approximate one, then the excitations in the 
symmetry direction should be the dominant contribution 
to the,low lying resonances of the model. In order, to 
check this numerically in the present model, in addition 
to the usual expansion of the EEA up to the second or- 
der in the rotational velocity, we also consistently con- 
sider the quadratic corrections from the strange symme- 
try breaking terms. 

Therefore, following the treatment of Ref. [31] we 
quantize the s&ton by introducing time-dependent 
SU(3) rotations and impose canonical quantization con- 
ditions for the collective coordinates of the rotation ma- 
trix. This will allow for the definition of the SU(3) gen- 
erators and of the corresponding baryon states. 

First we make use of the trivial embedding of Witten 
(321 of the SU(2) chiral field U@) = (ot2) + i@i)/fn 
into the isospin subgroup of SU(3) according to 

The s&on solutions of SU(2) are also solutions for 
SU(3). In the quantization procedure the embedding (6) 
generates the correct quantum numbers for barycm [32]. 

Next one introduces a time-dependent rotation 
U(Z, t) = A(t)U(z)A(t)+. This rotation can be undone 
by rotating the quarks fields: rj = A(t)+q and a = qA(t). 
Then one has to replace Do in the effective action Eq. 
(4) by D = Do + A+A - iyaA+mA, where 

A+A = iC& = $2; (7) 

and the relation between Euclidean and Minkowski ve- 
locities holds: ifl~ w 0~ and fiL = CUE. 

Expanding a!?$ = -SplogD of Ref. [16] up to the 
quadratic order in 02~ and assuming the time indepen- 
dence of OE(t) one gets (in Minkowski metric and in the 
chiral limit) 
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where tensor of inertia IO6 = diag(LLh,Iz, 
Iz, Iz, Iz,O) can be found in Ref. [16]. 

The original path integral J’DU(z,t) will be in the 
following approximated by the integral over the rotation 
matrices A(t) only, neglecting translations and other fluc- 
tuations [29]. This is known as the quantisation of the 
rotational zero modes [31]. Functional integration over 
all A(t), is equivalent in the Hamiltonian operator for- 
mulation to [33] 

= (A(T/2)jexp(-Z’H@))IA(-T/2)) , (9) 

where II@‘) is a collective rotational Hamiltonian come- 
spending to the Lagrangian of Eq. (8). In tbis way the 
path-integral can be evaluated in terms of the eigenstates 
of the collective Hamiltonian. This is discussed at length 
in Sec. N. 

Before we calculate the axial properties we shall con- 
centrate on the mass splittings. This allows to study the 
perturbation expansion in rn. and to lix the remaining 
parameter of the model-the constituent quark mass M. 

To calculate the mass splittings one has to expand the 
effective action in powers of the current quark mass ma- 
trix rn = po& - ps& - ~3x3 with 

p*=;TILd-Wl”. (10) 

We expand the effective action up to terms of the order 
of rn,, rn:, rn& and fiz (expansion in 0 corresponds to 
the expansion in l/N,) [34]: 

L, = -mn. + am.Dsa , (11) 

(12) 

Lm~ = ;mf(&(l - kJ2 + 3Na~DsoDs~) , (13) 

where the constant o is related to the sigma term C = 
3/2(m,, + nd)u and D.a = aTk(AfX,AXb). We define in 
this order Pt = Lo + L, + L,n + L,. . The mass spec- 
trum obtained with the help of Lo + L,,, + L,Q was dis- 
cussed in Re& [16,17]; there one can also find explicit for- 
mulas for K,b = diag(K1,Kr,K1,Kz,Kz,Kz,O). Let us 
here only mention that the anomalous moments of inertia 
Ki are nearly entirely given by the valence part, whereas 
the contribution of the valence level to I: amounts to 
approximately 60%. The new feature of the present 
calculation is the presence of the moments of inertia 

Nab=diag(N~,N~,N,,Nz,Nz,Nz,Nz,No/3)inL,1 de- 
fined as 

and differs from the regularization function for the usual 
moment of inertia ‘Rr(E,,, Em) [16] because of the dif- 
ferent Hermiticity behavior of the mass term and the 
Coriolis term (a) in S$. 

The value of No,,,, together with the values of Il,z, 
Kl,z, and C for M = 423 MeV are given by (in fm) 
N,, = 0.668, NI = 0.438, Nz = 0.370 fm, II = 1.178, 
Iz = 0.569 fm, Kl = 0.369, Kz = 0.255, and ZZ = 56.14 
MeV. The numerical values for other constituent rnames 
can be found,, e.g., in Ref. [34]. 

The Lagrangian of @q. (8) and Eqs. (11) and (12) re- 
sembles the Skyrmion Lagrangian with vector mesons (cf. 
Ref. (201). The quantization proceeds as in the Skyrme 
model; one defines the quantities (see, e.g., [35381 for 
details) 

(i = 3 and 8, a, b = 1,. . ,8) which are promoted to the 
spin operators j, = -&. The flavor operators read: 

?a = -Do&,. Note that despite the fact that j, fulfill 
the SU(3) algebra, only .&,,, have the meaning of the 
symmetry generators. That is due to the structure of 
the SU(3) hedgehog ansatz and is reflected in the fact 

that & = -NC/a generates a constraint. Therefore 
the wave function of the baryon state B = Y, ‘I’, 2’3, J, 53 
belonging to the SU(3) representation 1z reads 

IR,B) = &Z(Y, I, GODS - Y’,J, -+)* , (17) 

where the right hypercharge Y’ is in fact constrained to 
be -1. The lowest SU(3) representations which contain 
states with Y = 1 me 7?. = 8 and ‘7Z = 10. The quantized 
collective Hamiltonian Pot from 

reads in the chiral limit (w = 0) 
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&J(Z) = 5+su(2)), 

&J(S) = & 
[ 
G(SU(3)) - G(SU(3)) - g 1 

Here Cz denote the Casimir operators of the spin SU(2) 
and flavor SU(3). MC, is the classical soliton mass. In 
this paper we will concentrate on the mass splittings. 
These are determined in the present model by analytic 
strange mass contributions of the order O,* and O(mz). 
Whereas linear terms are given by Eqs. (11) and (12), 
the various contributions from quadratic rn, corrections 
can be classified as follows. 
Quadratic terms from the expansion of the EEA, cm- 

responding to the Lagrangian in Eq. (13). This will be 
referred to as the dynamical corrections. 

Quadratic terms from replacing the rotational veloci- 
ties in Eq. (16) by the generators .7, by using Eq. (18). 
Tbis will be referred to as the kinematical corrections. 

Quadratic corrections the collective wave-function, as 
will be discussed in the following. This will be referred 
to as the wave-function corrections. 

Then the Hamiltonian limm Eq. (18) up to terms linear 
and quadratic in rn, reads 
where r; = Ki/Ii. According to the classification given 
above we have split the O(mz) Hamiltonian into the &ne- 

matical part Hi;;, and the dynamical part Hf$,. 

The Hamiltonian H(l) mixes states of different SU(3) 
representations; therefore the wave functions is no longer 
a pure octet but rather a mixture: 

IB) = I&B) +c~ll~,B) +c;,l27,B) , (21) 

where B = N,h,C,E. The coefficients CE depend lin- 
early on rn., therefore with this accuracy there is no need 
to change the normalization of the wave function. In the 
following we will need their explicit form only for the 
octetlike states: 

in the basis [N,A, X,2]. The corresponding O(mf) con- 
tribution to the energy are explicitly given in Ref. [34]. 

In order to fix the value of the constituent mass M we 
adopt the following procedure: first for given M we find 
the optimal rn, which reproduces 10-8 splitting Al,,+,. 
This dependence can be read out from Fig. 1 of Ref. 
[34]. Next we plot the rn. dependence of the deviations 
theory-experiment for each hyperon (Fig. 2). One should 
remember that for each rn, the optimal constituent quark 
mass M was used, so that Alo- was automatically re- 
produced for each rn.. The smallest deviations ?c7 MeV 
for all splittings correspond to rn, zz 180 MeV and to 
M x 423 MeV respectively. 

It is important to note that all three quadratic rn, con- 
tributions, i.e., kinematical, dynamical, and wave func- 
tion corrections are equally important [34]. It is therefore 
inconsistent to calculate only the wave function correc- 
tions, as it is sometimes done (the Yabu-Ando diagonal- 
ization) and neglect the other ones. 

W(3) Nambu-Jona-Lasinio model 
regularization funcrions 

-0.30 En= 1.2 

“._” 
-5 -3 -1 1 3 5 

Em [scaled] 

FIG. 1. The regularisation function R&E,, E,) for the 
time-ordered expressions (rep) for fixed E, and M = 400 
MeV in dependence of E.,,. This is compared to the function 
(noreg), which is obtained in the infinite cutoff limit. 
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FIG. 2. The model deviations (i.e., theory experiment) for 
octet and decuplet baryons as functions of rn, for the optimal 
constituent quark mass M. 

IV. CURRENTS EXPECTATION VALUES 
IN THE NJL MODEL 

In order to calculate observables like the axial vector 
currents, one has to consider the path integral expecta- 
tion value of these operators. This should be done by 
considering the quark and baryon correlation functions 
which were investigated for solitonic configurations in 
RA. [29,10]. In this section we will show in a pedagogical 
way how the time ordeting within a quark loop together 
with the collective quantization brings up corrections lin- 
ear in the rotational velocity $2 [12-141. It will become 
clear that the fundamental features of the nonlocality of 
the NJL effective action and the path integral relation 
(9) to the time-ordered product of the operators are of 
the utmost importance. In particular, it will be clearly 
shown that there is no arbitrariness in deriving these co& 
rections. The approach presented here will be different 
from the one of Ref. [13], where these new corrections 
were calculated from the unregularized expressions. 

The correlator under consideration in the presence of 
/Z& discussed in Sec. II is defined by [29] 

#x4 = (JB(~~,T/2)~(Z)y~ygXaq(l)~~(~~, -T/2)) 

(23) 
where the integration over the meson fields is restricted 
to the rotational zero modes. The I& currents J=(Z,tt) 
can be defined in terms of the quark field operators 1391 

JB(z,t) = ~E,,...,,.rfl...f”=Pf~,c,(2)“‘qf~~,cN.(2), 

(24) 
where rfi...fP, is a symmetric matrix in flavor and spin 
space and the ecl...eNC accounts for the antisymmetry in 
color indices. Integrating out the quark fields the sea 
part of the correlator can be written as3 
where 

D[s] = c?t + H + AtA - iydA+nzA + i&~Y4^ii^lsA+I~A 

In order to obtain the axial vector coupling constants gk’ for Eq. (25) the following definitions for I* hold: 

gy : I* = 1, (3) I - x ga b- (8) I - x 3, s* 6- 8. (26) 

One should note that the correlator (25) contains the nonlocal object l/D[s], which is expanded in D[s = 0] -Do, 
i.e., in terms of the rotational velocity and the current quark mass: 

6 

k-q,-, t) 
SplnD[s] = spl sD[s] 

D,, 6s“(Z, t) 
-Sp&(D[r=O]-,D,,)-=&... 

D,, cW(~, t) 

The first term gives the O(N,) contribution to the axial current [29] and h as a counterpart in local mesonic theories. 
The second term, which is of the order O(iVz), needs careful analysis. One should note that the propagator 

3The valence part will be considered at the end of the section. 
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1 
which appears in Eq. (27) after inserting the com- 
plete set of eigenstates is nonlocal in time and space. 
Using the definition O1(A(t)) = D[s = 0] - D,, and 
O,(A(t)) = 6D[s]/bP(z) the second term on the right- 
hand side (BIIS) of Eq. (27) becomes4 

-T&x 
J 

d3&dtlG(Z,tt,&, tl) 

XOl(tl)G(~c’l,t1,~,t)02(t) , (29) 

where Tr,.,x denotes the trace over color, Dirac, and fla- 
vor indices. The product Ol(QOz(t) in Eq. (29) has to 
be time-ordered due to the presence of the 0 functions 
in Eq. (28). Simultaneously the c numbers 0; have to 
be replaced by the operators 6; according to the pre- 
scription of the semiclassical quantization. Making use 
of Eq. (9) one can express the path integral over A(t) by 
a time-ordered product: 
(A(-T/2)17(81(A(21))~)2(A(22)))IA(T/2)) 

A=A(T,2) 
= 

I 
A=A(-T,2) ~AO~(+I))WA~)) 

(30) 

This leads to the useful definition of a time-ordered trace 

The advantage of retaining the trace in this form is the 
straightforward applicability of the regularization proce- 
dure. Let us split the effective action into real and imag- 
inary parts. Then the expectation value of the axial CUT- 
rent from Eq. (25) reduces to an ordinary integral over 
the collective coordinates [a of SU(3): 
L%‘Et)L = jdh(t)(B(Lt)l& IRe S~(,o)lnD + iImSp~,,~lnD]I,=oIB(~a)) , 

s 6 1 
= dF&W(E~)ISSa~~,t~ 2, 

D -- SP~,&D+D + S~(to,)lngt 
II 

P(h)) > 
a=cJ 
where IB(&)) is the baryon wave functioti of Eq. (21) 
and D = D[s]. It is important to consider 3” = .P(z?J, t) as 
explicitly time dependent (see Appendix A). Preserving 
vector gauge invariance [40] by using the proper time reg- 
ularization 1281 we regularize the real part of the effective 
action similarly to Eq. (4): 

SP~&D+D + (-)SP(,,) 
J 

~~(u,awb) 

xexp(-uD+D) , (33) 

where 4(u) is given in Sec. II. Note that for the symmet- 

ric contributions [13], i.e., when the operators 8> and 8, 
commute,5 the time ordering has no influence. 

% our case 01 corresponds either to the mass correction 
proportional to D-L, or to the rotational correction propor- 
tional to n., i.e., to the generator .ia, and O2 corresponds to 
the current insertion proportional to the D function. 

‘In our case this happens if the index of a generator ja is 
such that it commutes with the Dsc function. 
The valence part can be obtained from the sea part 
(32) by calculating the full correlation function 1291. Al- 
ternatively by introducing D’ = D-p, where p is a chem- 
ical potential with 0 < p < Ey,l [9], 5’2 = Se%’ + Sg 
with the definitions Sg’ = &[D’] - &[D] and Ss = 
Ses[D]. The subtraction of the vacuum contributions is 
implicitly understood. 

Although in this section we have concentrated on the 
axial currents, it is clear that the above results hold for 
any kind of current in the NJL model. 

V. AXIAL CURRENTS IN THE CHIRAL LIMIT 

A. The lowest order contribution N no 

The axial vector coupling constants gt), defined as 
the corresponding form factor in the limit 4’ = 0, can be 
calculated &XII Eq. (32). By comparison with Eq. (32) 

one can define a collective operator 62,“’ such that 
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&’ = J d%(A;&, t)) 

= 4aW~~a)l&=lBJ (34) 

$1 is obtained by expanding (AF(Z,t)) in Eq. (32) in 
terms of the rotational frequency and the strange quark 
mass but without performing the final d&. integration. 
Therotational velocity is then replaced by the generators 
(16) yielding after the integration over d% the collective 

operator G$‘,“’ expressed in terms of j, and Wigner func- 
tions D,a. 

The lowest-order result in Q (i.e., 0’) comes from the 
proper-time regularized real part of the EEA (33). One 
obtains for a = 3 and 8 (see Appendix A for details) 

$$(SP, rn”) = MsDas for a = 3 and 8 , B (35) 

where AtI,A = D,& and AtI,A = 1 for a = 0. At 

this level ga - *(‘) = 0 [41]. The quantity A43 = A’@ + MF 
comes from the real part of the action and is given by 

Ms-1 = N,(val1u&Ival) (36) 

and 

My=-- : C(nlu3x,ln)ssn(E*)~~(E,) I (37) 
all n 

where the regularisation function reads [21] 

The values of M3 for the constituent mass M w 423 MeV 
read A@ = -2.209, A’f$= = -0.316, Mjot = -2.525. 

B. Anomalous 1 JN. corrections from the imaginary 
part of the EEA 

As explained in the beginning of Sec. IV l/N, cor- 
rections (i.e., terms linear in the rotational velocity 0) 
to Eq. (35) can be unambiguously separated into local 
quantities which emerge f?om the imaginary part of the 
effective Euclidean action, and nonlocal quantities emerg- 
ing from the real part due to the explicit time ordering 
of the collective operators. The former quantities are re- 
lated to Witten’s anomalous axial current [32], whereas 
the latter ones have no counterpart in mesonic effective 
theories. It will turn out that in a certain sense they 
renormalize the leading contribution of the axial current 
given by Eq. (35) (compare with Re&. [42,43]). 

In the chiral limit the anomalous corrections linear in 
0 can be written as 
Ka)) 
and the cutoff independent regularization function 72~ 

As already noted the chemical potential p is chosen in 
such a way that it always lies between the valence Eevel 
and the positive continuum of states. In this way the 
quantities Mb correspond to the full baryon number 
one contribution and therefore contain the sum of the 
valence and the sea part. Additionally we define for 
later use ias, = ,&Maa and F&s = &iM,s. The only 
nonvanishing contributions in Eq. (39) are Ms3 and 
Md4 = Ms5 = -MB6 = -MT,. Using the symmetries 
of the hedgehog states one can write for a = 3 and 8: 

where the sum over b = 4,. . . ,7 is understood. The 
values of Ma4 and A& entering Eq. (42) read (in fm) 
M$ = -0.288, Maea - 44 - -0.012, M;it = -0.301 and 
ii@ = -0.422, Ifi’;? = -0.016, I@$ = -0.438 for 
M c 423 MeV. It is clear from the form of Eq. (42) that 
the anomalous corrections linear in Cl vanish in the SU(2) 
case. 

C. Nonlocal l/N. corrections from the real part of 
the EEA 

Let us now turn to the main objective of the present 
paper, namely to the nonlocal l/N, corrections which 
are due to the explicit time ordering of the collective 

operators [12,14,13]. Straightforward application of Eq. 
(28) into Eq. (29) leads to a double sum over the opposite 
sign energy levels of the intrinsic Dirac Hamiltonian (3), 
where the operators O1 and 02 are time ordered. Making 
use of the symmetry properties of the matrix elements of 
the intrinsic operators: 

(+q4 = -(~ol~cl%), 

(nld+4 = (rnGldl~g) , (43) 

where 12~ denotes a G-parity conjugated state, one even- 
tually arrives at 

&yp’ = +i[a;,D.s] ~(nlY~m)(m~m&) 

man 

x~e(-%,Em), (44) 

where the rather complicated regularization function ‘Re 
is given by 

’ da aE, - (1 - a)&,, 
~Q(%Em) = o G J VW-J 

xciw-[aE: + (1 - 4E,$l/~f} 
aE: + (1 - a)E,$, ’ 

(45) 

Here the proper-time u integration for ax steplike func- 
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tions 4(w) has been already performed (see Appendix A 
for a general expression). In the limit Ai + co Eq. (45) 
immediately reduces to Eq. (A13) of Appendix A and 
coincides therefore with our former prescription in Ref. 
[13]. However, as we will see later, with the regnlxiza- 
tion properly taken into account, the physical values will 
come out much better. 

Using the quantiz$ion condition for fi and making use 
of the commutator [J,, Dar,] = ifc~Dna (351, Eq. (44) can 
be written as 

itp’ = -ifedbDad 
- - 

I 
&sc = - 

2iQn + 2iQ46 
Do3 > (46) 

cc I1 I2 > 

where the quantities &be coming f&n the real part of 
the EEA are given by Qk = Qg’ + &“z*. Explicitly the 
valence part reads 

QE, = 5 C (nlu33Xblval)(vallXcin)sgnE, 

2 En - &al 
(47) 

n 

and the sea part: 

The numerical values for the Qk in the real represen- 
tation Q12 = -2iQ-+ and Q45 = i& read (in fm): 
QY; = 0.279, Q?; = 0.019, Q?; = 0.298 and &$ = 
-0.279, @Ga = -0.018, a$$ = -0.297 for M FZ: 423 
MeV. 

The valence contribution QE’ differs ~?om the formula 
given in Ref. [12], where the existence of such corrections 
was claimed for the first time. The correct path-integral 
formula is given by Eqs. (47) and (48). Numerically how- 
ever the difference between mx expression for &EL and 
the expression of Ref. [12] is quite small. Note also that 
in Ref. [12] the sea contribution to Qbc was erroneously 
claimed to be identically zero. Again numerically &ga is 
rather small. 

Putting all these corrections together one obtains: 

for a = 3,8 (49) 

(b runs over 4,. ,7). Note that all the quantities 
MS, Qk, A& and also Xl, Iz are of the order O(N.), such 
that the Q6e terms in the brackets indeed correspond 
to l/N, corrections to the lowest order result. In other 
words if one neglects the anomalous, purely SU(3) con- 

tribution in Eq. (49), the ratio of different 62)‘s has no 
l/N, correction [43]. 

D. The anomalous singlet axial-vector current 

The singlet axial-vector current was already given in 
[44] and it gets only anomalous contribution linear in fi: 
(50) 

Note that Eq. (50), given here in the context of SU(3), 
coincides exactly with the SU(2) result of Ref. [lo]. Tbis 
is because only spin eigenvalues (53) enter here, whereas 

the other $2)’ s always contain D functions, whose ma- 
trix elements depend crucially on the SU(Ntl,,) algebra 
used. 

ME. The axial currents in the leading order 
of gradient expansion 

All ga’s consist of the valence quark and the sea quark 
contribu&ion. In the limit of the large s&ton size the va- 
lence contribution dies out and only the sea quarks con- 
tribute. In this &nit the gradient approximation [45,46,9] 
holds. It corresponds to a local effective meson theory. 
We have used the gradient expansion to check the nu- 
merical results. Even or the realistic s&ton sizes (of 
about 1 fm) the gradient expanded expressions can be 
used as a good approximation to the sea quark contribu- 
tion and the total ga is obtained by adding the valence 
quark terms. The lowest order result for SU(2) is given 
in Ref. [18] and it coincides with the expressions f&n the 
Skyrme model. 

Terms linear in n can be also gradient expanded. 
In SU(3) one gets the anomalous contribution coincid- 
ing with the Wess-Zuminc-Witten term in the Skyrme 
model. Using the results of Appendix B one can +lso cal- 
culate the gradient expansion of the time-ordered terms.@ 
Neglecting the anomalous terms one obtains altogether 
(for a = 3,8) 

It is once again clear i?oom Eq. (51) that the time-ordered 
contributions (i.e., from &se) led to the renormalization 
of ga in the sense that they are also proportional to Das 
and to the same integral over the hedgehog profile func- 
tion 6’. In SU(2), where the anomalous terms for the axial 

current [dots in Eq. (51)] vanish, the ratios of g$)‘s for 
different baryons have no l/N, corrections. This was 
also found by Dashen and Manohar from large N, QCD 
[42,43]. Furthermore the SU(2) result resembles very 
much the odd nonrelativistic quark model prediction for 
the l/N, correction, which is given by ga = (N, + 2)/3. 
Using the value II = 1.178 fm for M x 423 MeV, in 
the SU(2) case without I2 the zeroth order result of Eq. 
(51) gets an approximately 25% correction from the l/N, 

‘The moments Qbc are evaluated here in the infinite cutoff 
limit in order to get a simple and not explicitly cutoff depen- 
dent result. 
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TABLE I. The axial-vector coupling constant &’ for the SU(3) Nambu-Jona-Lasinio model 
in dependence on the constituent quark mass M. The stran 
rn. = 180 MeV. The final model predictions are given by 92 (a’) in SU(2) and gf)(l?‘,m,) in 5 

e current quark mass is chosen as 

SU(3). The experimental value is given by g~)‘expt = 1.26. 

SUf2) SUf3) 

M (MeV) sj49’W) I ’ gy(n’) gp(n” rn”) , D g@)(ni LO) , a sks’W,d) 
363 0.920 1.302 0.644 1.482 1.603 
395 0.873 1.224 0.611 1.381 1.473 
419 0.841 1.179 0.589 1.328 1.407 
423 0.83’7 1.173 0.585 1.314 1.380 
465 0.792 1.109 0.554 1.250 1.308 
term; substantially less than the full s&tonic l/N, con- 
tribution, which amounts to N 40% (see Table I). In the 
SU(3) case however, there are additional corrections from 
the third term in the square brackets of Eq. (51) (- l/12) 
and from the anomalous terms [dots in Eq. (51)], such 
that the simple rescaling factor does not exist any more. 

VI. STRANGE MASS CORRECTIONS FOR ~a 

In this section we will evaluate the symmetry break- 
ing corrections to the axial currents due to the non- 
vanishing strange quark mass. These arise from the term 
AtmA = pug - psX”Dsa. In the linear order in rn, and 
in the zeroth order in Q neither the contributions from 
the imaginary part nor from the explicit time ordering 
(because D functions always commute with each other) 
exist. Therefore the entire symmetry breaking contribu- 
tion comes &cm the real part of the EEA. Performing the 
expansion of the real part of the EEA in rn. one gets, for 
a=3,8, 

with b = 4,. ,7. The proper time regularized quantities 
Rk = RE’ + REa are given by 

and 
(55) 

For future use we also define i&v = J;iR88 and i&s = 
&Rs8. Note that ‘Ro(E,, E,) is different from the regu- 
lark&ion functions ‘Rz(E,,E,,,) and ‘RQ(&,&,,). The 
origin of this diierence, which however survives only in 
the finite cutoff case, is the different Hermiticity behavior 
of the current and the mass term on the one hand and 
the Coriolis term ORE in the Dirac operator D[s] (25) 
on the other hand. The latter one turns out to be anti- 
Hermitian in Euclidean space, whereas the former ones 
are Hermitian. Because the proper time regularization 
rests on building D@E from the very beginning, differ- 
ent signs emerge and lead to the different regularization 

functions. Their substantial~different behavior can be 
seen in Fig. 1 of Ref. [44] and in Fig. 1 of the present pa- 
per. The numerical values of R.6 for M rz 423 MeV read 
(in fm) &$’ = -0.095, &?; = -0.091, i?g’ = -0.186 
I@ = -0.148, REa = -0.030, i?$ = -0.179 and 
RE’ = 0.086, iir** = -0.073, i?g = 0.012. 

Apart from these dynamical terms originating from the 
action we have in addition the kinematical 0(m.) terms 
arising from the quantiaation condition (16). Together 
with the chiral limit result of Eq. (49) we obtain, up 
to the linear order in the symmetry breaking and in the 
rotational frequency (for a = 3 and 8), 
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where, as usually, the index b in dab6 runs over 4,. . ,7. 
The quantities R83 and Ms3 are already known from 

the expression of the flavor singlet axial constant [44]. 
We found there,’ in the same order, 

The main difference between Eqs. (56) and (57) is 

that the lowest order term for g2’ is purely anoma- 

lous, whereas the corresponding term for the &‘“’ is 
nonanomalous. We come back to this point, when we 
make the comparison with the Skyrme model in Sec. 
VIII. 

Up to now we h&e considered only the linear rn. cor- 
rections resulting from the expansion of the effective ac- 
tion. However, there is also another kind of rn, correc- 
tion, resulting from the exact wave function of the collec- 
tive Hamiltonian given in Eq. (21). When the O(mz)& 
operator (49), (50) is sandwiched between the O(m:) 
wave functions (WF’s) we get the additional contribu- 
tion linear in rn, which reads, in the basis [N, A, C, S], 
(58) 

I 
where constants a, b, c are defined through the form of 
the axial current operator in the chiral limit [see Eqs. 
(4% (50)]: 

‘I?% and 53 in Eqs. (58) stand for the eigenvalues of the 
respective isospin and spin operators. 

VII. NUMERICAL RESULTS 
FOR AXIAL CURRENTS 

The three different measurements of the spin asymme- 
try in the polarized lepton-nucleon deep inelastic scat- 
tering 147-501 have been recently reexamined by Ellis 
and Karl&r (51,521. The message of their work is that, 
whereas the Bjorken sum rule 1531 is in agreement with 
the data, the Ellis-J&e sum rule [54,55] is violated and 
the results read finally 

ga (%=pt = 0.31 f 0.07, ga @)+-pt = 0.35 f 0.04, 

(‘)‘=@ = 1.26 g.4. (59) 

In this section we discuss 0~) nun#cal re&&s for the 
three axial decay constants ga , ga , and ga including 

‘Comparison with Ref. 1441 can be done by identifying 
A&a = @I and i&s = pz. Note also that the sign in Eq. 
(5) in Ref. [44] is misprinted, 
the strange mass corrections (see Fig. 3). They are sum- 
marized in Tables I, II, and III. The collective matrix 
elements used in the calculation are given in Table IV. 
Our final values for a constituent quark mass M x 423 
MeV are gwen by 

&’ = 0.37, gz’ = 0.31, and g;’ = 1.38 (‘50) 

0.00 
350 550 

FIG. 3. The gy’, gy’, and g% are shown for self-consistent 
chiral fields in dependence of the constituent quark mass. The 
strange current quark mass is chosen as rn. = 180 MeV, ac- 
cording to a best fit to the hyperon spectra. 
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TABLE II. The axial vector coupling constant sf’ and 96”’ for the SU(3) Nambu-Jona-Lasinio 
model in dependence of the constituent quark mass M. The strange current quark mass is chosen 
as rn, = 180 MeV. The final model predictions are given by &)(nl,m.) and gT)(nl,ms). The 
experimental values are given by 9~)‘ex:Pt = 0.35f0.04 and s,, (‘)F+ = 0.31ztO.07 (Ellis and Karliner 

1521). 
. II 

A4 (MeV) gk”‘(V CP) , s sksW,d) s%‘,d) gp(n’,m:) d%',d) 
363 0.159 0.443 0.328 0.462 0.475 
395 0.151 0.408 0.316 0.401 0.409 
419 0.145 0.389 0.309 0.371 0.377 
423 0.144 0.385 0.308 0.364 0.370 
465 0.137 0.363 0.301 0.328 0.331 
A. Axial vector coupling constants 

In Table I the difference between SU(2) and W(3) re- 

sults for &l can be seen in each order of the l/N, ex- 
pansion. Obviously the lowest order contribution (no) in 
SU(3) is significantly smaller than in SU(2) due to the 
fact that the SU(3) expectation value of the correspond- 
ing D function 033 is only 70% of the SU(2) value. The 
anomalous contribution of Eq. (42) linear in fi which 
is nonzero only in the SU(3) case acts as a substitute 
for this group-theoretical reduction. Indeed, it leads to 
an almost exact readjustment of the SU(3) value to the 
SU(2) one. For our preferred value of M cs 423 MeV 
from the hyperon spectra and rn, = 180 MeV,” it pushes 

the leading order SU(3) result up to &) N 0.84. These 
two values of the model parameters M and rn. will be 
used in the following discussion of the numerical results. 
Due to the presence of the quantities Qk from the ex- 
plicit time-ordering, the SU(2), as well as the SU(3) re- 
sults, have corrections linear in the rotational velocity. 
These conceptually new terms have no counterparts in 
the ordinary Skyrme model. Similarly to the old nomel- 
ativistic quark model estimates of the l/N, correction, 

i.e., ga (') = NJ3 + 2/3, these new terms turn out to 
be of the order of 50% of the leading t&m. For SlJ(2) 

they push ~$1 from 0.84 to 1.15 and in SU(3) they give 
the final value of 1.31. Note that the latter value is ob- 
tained with regularized time-ordered quantities Qbe. In 
Ref. [13], where the regularization was neglected as the 
tist approximation, the sea part of the quantities Qk 
made a N 30% contribution to the total value of the Qk. 
Here, with the regularized sea, its contribution amounts 
to less than 3%. 

Various contributions from the strange quark mass 
(kinematical, dynamical, and wave function) increase the 

value of 92’ of about N 5% up to gC3) - 138 such that 
(3),exp _ R - . ’ the experimental value ga - 1.26 is overestimated 

only by N 10%. 
It has to be stressed that tbis is in contrast to all 

calculations within the purely pseudoscalar [19] or psen- 

*Note that rn. = 150 MeV would correspond to physical 
value ofmK = 496 MeV, whereas rn. = 180 MeV corresponds 
to the slightly bigger rn~ Y 540 MeV. 
doscalar and vector Skyrme model [20,56], in which &’ 
is underestimated by N 30%. That this significant dif- 
ference is due to the presence of the new terms from the 
time ordering of the functional trace is most clearly ev- 
ident from Table III. There the flavor contributions to 
the axial current are given for the Skyrme model and the 
NJL model without and with the time-ordered (2’) COT- 
rections. Without the new corrections the NJL model 
resembles very much the numerical results of the SU(3) 
Skyrme model with vector mesons. This was already 
noted at the level of the collective Hamiltonian for the 
mass splittings in Ref. [16] and here again can be seen 
numerically for the axial currents with high accuracy. 

B. Spin properties 

Apart from gy) m Table II we list also the values for 

sy’, partially given already in Ref. 1441, and for 92’. Ne- 
glecting the UA(~) anomaly for the present calculations, 
the spin of the proton, which is carried by the quarks 
and which is equal to the matrix element of the flavor 
singlet axial vector current, has no contribution in the 
order no, but gets the first nonvanishing contribution in 
the linear order of 0. This, as can be seen from Table II, 
is also a dominating contribution, which gets only a very 
small strange mass correction. For M = 423 MeV, the 

theoretical value of g(O) A N 0.37 is a little bit above the 
experimental error bars. Nevertheless one has to keep in 
mind that the analysis of the experimental data is still 
under debate [51,52] and the inclusion of higher twist ef- 

fects might even push gf)‘exp toward our present value 

TABLE III. Various contributions to the axial vector cur- 
rent of the proton in terms of u, d, and s quarks for M = 423 
MeV and rn, = 180 MeV. A comparison is made between the 
Skyrme model with vector mesons [ZO] (Skyrme, vector), the 
NJL model without (NJL, scalar) and with the time-ordered 
corrections of this paper (NJL, scalar, T). In the last column 
experimental values from Ellis and I&liner 1521 are given. 

Skyrme NJL NJL “Exwriment” 
(&or) (scalar) (scalar,T) - 

AU 0.63 0.64 0.902 0.83f0.03 
Ad -0.31 -0.24 -0.478 -0.43f0.03 
AS -0.03 -0.02 -0.054 -".10*"."3 
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TABLE IV. Matrix elements of the operators for ga (O) in the proton state with spin up, where 
the index i is always running from 1 to 3 and b from 4 to 7. 

033 Dss 
-7130 43130 

DSS 
3/m 

dmD3b.h 
7/m 

&b&&b 
-11/(90&) 

dsd&sDsb 
l/30 

Da&s Ddh 083 DeaDes D&i DsiDsi DaDas 
-l/45 -4145 -J3/30 0 7/2Q 6145 -Jijf45 
1521. One should note that our result for 92’ is clearly 
dominated by the valence contribution, which could be 
denoted as the connected part of the full correlation funo 
tion. The sea contribution, i.e., the so-called disconnected 

part, has the same sign but is negligibly small. This 
is different from a very recent lattice calculation [57], 
where the disconnected part screens the connected part 
and contributes half of the value but with a different 
sign. However the self-consistent pion pro& contains 
connected and disconnected contributions from the po- 
larization of the Dirac sea, so that in the present model a 
clear separation of both contributions in the strict sense 
is not possible. 

Experimental extraction of &’ from the hyperon semi- 
leptonic decays depends on how the strange quark mass 
corrections to the SU(3) symmetric result are taken into 
account. Therefore the experimental error bars on this 
quantity may be at present ‘too small. In the present 

calculation we obtain 9 f’ = 0.31 to be compared with 

the %xperimental” number of [52] gT)‘eXP = 0.35 ZIG 0.04. 
So from our calculations one can conclude that for the 

“fixed” mass of M = 423 MeV and rn, = 180 MeV all 
three axial vector coupling constants are quite close to 
the experimental values of [52]. From Fig. 3 it can be 

seen that for larger mass of M = 550 MeV, sz) and ~2’ 
almost coincide with the experimental values, whereas 

g!‘, having relative large negative strange quark mass 
correction, deviates from the central value of 0.35. One 
should however keep in mind that the large rn, correc- 
tions are usually ignored in the analysis of the hyperon 

semileptonic decays, which influences the value of g$) as 

well as ST’. 

VIII. COMPARISON WITH THE SKYRME 
MODEL 

Now we want to compare ow results with the Skyrme 
model, which can be regarded as a large constituent 
quark mass limit of the NJL model [9,46]. We will fo- 
cus here on the Skyrme model, in which vector mesons 
and in addition kaon fluctuations and the gauged Wess- 
Zumino term are added. Then the collective operator has 
the structur6 [ZO] 

$2’ = =I& + e&d&Ra + =rdh + d~aa~dha 

+=dh(I -Dss) +=&&s (61) 

which corresponds effectively to the expression for the 
NJL model. Although the origin of the various co&i- 
ci&s is quite different in the NJL and Skyrme model, 
both approaches give effectively the same operator struc- 
ture for g.4. 

However one should stress here two important diier- 
ences: first of all the new corrections linear in 0 which 
arise due to the time ordering witbin the fermion loop 
vanish in the Skyrme model identically. The Skyrme 
model is based upon local Lagrangian density which, 
apart Corn the Wess-Zumino term, is even in time deriva- 
tives and therefore the spatial components of the axial 
currents are also even not allowing for terms linear in 
0. Second, even if one restricts oneself to the terms 
not including the corrections due to the time-ordering 
(local limit) the contribution of the valence quarks in 
the present model makes our results qualitatively dif- 
ferent from the ones of the Skyrme model. The coeffi- 
cient a~, e.g., is in the Skyrme model with purely pseu- 
doscalar mesons dominated by the induced kaon fluctua- 
tions 1191, which we neglected in the present NJL model. 
If the vector mesons are included in the Skyrme approach 
the situation does not change qualitatively [20]. In the 
Skyrme model a2 gives only a 10% contribution to 9~ 
[19], whereas the dominating valence contribution to Ma4 

SUC3) Nambu-Jona-Lasinio model 
axial YeCrOr coupling 

M44 M44val M44-WZ 
0.00 \_ 

-0.50 t 

FIG. 4. The anomalous quantity Men compared with the 
leading term of a gradient expansion, which comes exactly 
from the Wess-Zumino action for SU(3) pseudoscalar fields. 
This is done for a Iixed linear profile in dependence of the 
radius R for M = 372 MeV. 
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(see Fig. 4) in the NJL model gives almost a 30% con- 
tribution to ga if the terms due to the time ordering are 
neglected. The fact that the total values for ga in the lo- 
cal limit of the present approach and in the vector meson 
pseudoscalar Skyrme model in Ref. [19] roughly coincide 
hinges on the rescaling procedure for the parameter e in 
Ref. 1191, which tend to increase ga. The Wess-Zumino 
contributions to ga in the Skyrme approach play a minor 
role; in the NJL model the anomalous part of the action, 
containing the WZ term in lowest order of the gradient 
expansion, gives N l/4 of the total amoknt. 

IX. SUMMARY AND DISCUSSION 

In this paper we have extended our recent analysis of 
the corrections to the axial currents which appear due 
to the time ordering of the quark loop and semiclassical 
qua&z&ion [13] to the case of the regularized effective 
action. Moreover, we have investigated the strange cw- 
rent mass corrections to the axial currents of the semi- 
bosonized SU(3) Nambu-JonaLaninio model. 

In the semibosonized NJL model baryons are under- 
stood as solitonic solutions of the classical equations of 
motion. However the solitons do not carry proper quan- 
tum numbers and the semiclassical quantiaation proce- 
dure has to be applied in order to describe the mass 
splittings within the strange baryon multiplets. This 
treatment is based on introducing time-dependent rota- 
tions in the direction of the zero modes, followed by the 
canonical quantization of the collective coordinates of the 
rotation matrix. Since these zero modes contribute sig- 
nificantly to the mass splittings [16], it was a challenging 
task to look at the axial currents, which can be related to 
the recent measurements of the spin structure functions 
[51,52,48,49,47]. 

First the constituent mass M was tied by looking at 
the hyperon rnas splittings up to the terms quadratic 
in rn,. These are reproduced with unexpectedly high 
accuracy and point towards a constituent quark mass 
of M M 423 MeV. We have also explicitly shown that 
the wave function corrections and the corrections due 
to the expansion of the effective action are comparable 
and therefore it is inconsistent to perform only the Yabu- 
Ando diagonalization of the first order Hamiltonian H(l). 

Second, tye considered the axial vector currents with 
the inclusion of the corrections linear in the rotational 
velocity. The new contributions which appear due to the 
time ordering of the quark loop and semiclassical quanti- 
z&ion have been shown explicitly to come fromthe real 
part of the effective action. If a regularization is imple- 
mented, they are dominated by the contribution of the 
valence quarks. In the SU(3) model there are also other 
contributions linear in 0 which come from the imaginary 
part of the effective action and as such do not require 
regularization. They are also dominated by the valence 

contribution. This concerns the leading term of gy’, 
which vanishes in the pure pseudoscalar Skyrme model 
[41], whereas it is nonvanishing (however small) in the 
present model, in rough agreement with experiment. 
The expression for gp has a N 25% rotational contri- 
bution from the imaginary part of the effective Euclidean 
action, which vanishes in the SU(2) case and which can 
be related to Witten’s formula for the axial vector cur- 
rent from the Was-Zumino effective action. Moreover it 
has a N 30% contribution due to the explicit time or- 
dering (Qbc) of the collective operators. These terms are 
not present in the local theories like the Skyrme model. 
In the present model they are entirely due to the nonlo- 
c&y of the fermion determinant. Performing the gradi- 
ent expansion of these quantities, it can be shown that 
these terms have the same mesonic structure as the low- 
est order term [see Eq. (51)]. This is similar to recent 
findings of Dashen and Manohar [43] within large-N, 
QCD and to the nonrelativistic quark model result of 

92’ = (N, + 2)/3. Quantitatively, despite the fact that 
the lowest order SU(3) result is reduced by a group the- 
oretical factor of 0.7 with respect to the SU(2) case, the 
new time-ordering and anomalous contributions push the 

total value of &’ upwards. 
In addition, we have considered the corrections linear 

in the strange quark mass. They are consistently derived 
from the expansion of the effective action, the quantiza- 
tion condition as well as from the higher representations 
of the wave function in the spirit of the Yabu-Ando diag- 

onalization. However the effect on 92’ is not large and 

finally one ends up with 92’ = 1.38 for M = 423 MeV, 
which is only N 10% above the experimental value of 

(3)‘exp = 1.26. Here it should be stressed that such nice 9.4 
agreement was never obtained within the pseudoscalar 
or pseudoscalar and vector Skyrme model [19,20]. This 
qualitative and quantitative difference comes from the 
new nonlocal l/NC corrections present in the NJL model. 

The g!’ exists already in SU(2) and the only effect in 
SU(3) is a small shift due to the finite symmetry break- 

ing rn,. This is in contrast to gy), which vanishes in 
the SU(2) case, and which in SU(3) gets the entire con- 
tribution &om the rotation and from the strange quark 
mass. In the chiral limit the values for g$) and.92) 
are quite close to each other, as suggested in [58], how- 

ever the strange mass corrections reduce the value of gf’ 
by N 25%, whereas the explicit symmetry breaking has 

almost no influence on 92). This holds at least if we 
take all linear rra. corrections into account and even the 
rn: corrections, which can be calculated in this &ne- 
work from the nonsymmetric wave functions [17]. The 

final values gt) N 0.37 and gp N 0.31 for M = 423 
MeV and rn, = 180 MeV are to be compared with the 
experimental data extracted from the recent analysis of 

Ez;lizd Karliner [52]; i.e., gTjrexp N 0.31 f 0.07 and 

ga N 0.35 i 0.04. Apparently the theoretical values 
are only slightly outside the experimental values. 

Qualitatively the following can be said: g!’ which rep 
resents the part of the proton spin carried by the quarks, 
gets a nonvanishing expectation value entirely due to the 
anomalous part of the EEA. In a nonrelativistic con- 
stituent quark model, when the total spin of the proton 

is entirely carried by three quarks, gf’ equals one. The 
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present model gives values close to experiment probably 
since the proton is treated entirely as a many-body sys- 
tem rotating in the spin-isospin space. Thus one cannot 
attribute the spin of the proton to single elementary par- 
ticles but only to the whole system. Moreover the angular 
momentum of the quarks is explicitly taken into account 
by solving the Dirac equation in the grand-spin basis [lo]. 
Therefore the fact that, in agreement with experiments, 
only a fraction of about 20-30% of the nucleon spin is 
carried by the quark spins is not surprising at all in the 
present model. 

Altogether the picture which emerges is quite satis- 
factory. Mass splittings are accurately reproduced and 
axial currents are in good agreement with the experi- 
mental data if rotational l/N, corrections are taken into 
account. In particular the spin of the proton originates 
in this model to about 35% from the spin of the quarks, a 
number being in reasonable agreement to the world data 
reported by the Spin Muon Collaboration (SMC) 149). 
Together with the numerical results for the Gottfried sum 
[59,60] the model provides a good reproduction of the ex- 
perimental data. 

There is still one important point which should be dis- 
cussed, namely the PCAC (partial conservation of axial- 
vector current) relation in the present approach. One 
can show that for a time independent hedgehog ansatz 
the PCAC relation is fulfilled. However, for the rotating 
soliton, i.e., for the time dependent hedgehog ansatz it 
is no longer true and PCAC is violated. The reason for 
this apparent puzzle is that the rotating hedgehog is not 
a solution of the time dependent equations of motion. It 
should be viewed as a variational Ansatz and as such it 
violates PCAC. 

On the purely theoretical side the presence of the new 
terms linear in fl calculated in this paper poses a seri- 
ous problem to effective meson theories like the Skyrme 
model, where such terms vanish identically. Another the- 
oretical question which deserv& a comment is the con- 
vergence of the expansion in 0. The large size of the 
corrections calculated in this paper raises the question 
whether the first order corrections in a are sufficient. 
One way to tackle this problem would be to calculate the 
0’ corrections to the axial currents. This is the high- 
est power of Q one should consider, since the collective 
Hamiltonian itself is truncated in that order. Despite the 
technical difficulties in calculating these terms, the pre- 
liminary estimates indicate that they are not negligible..’ 
Therefore one has to conclude that the expansion in 0 is 
slowly convergent. Moreover the formalism of the collec- 
tive quantization has to be revised if one wants to include 
terms higher than 0’. These questions are certainly be- 
yond the scope of this paper, where we had to content 
ourselves with the linear corrections alone. In addition, 
despite the fact that mass splittings are well reproduced, 
the absolute energies provide still some problems which 
are associated with the zero-point corrections [61,16] and 
boson fluctuations. 
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APPENDIX A: DERIVATION 
OF THE REGULARIZATION FUNCTIONS 

FOR THE AXIAL CURRENT 

Here we want to give an explicit derivation of the a” 
and fil contributions to the axial current. We emphasize 
the method of regularization of nonanomalous quantities 
tiam the explicit time ordering of the collective operators 
within the proper-time regularization scheme [ZS]. Then 
the real part can be written as 

where 

such that 

(Al) 

(A21 

P3) 
644) 

‘M. W&am&u (private communication). 
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Then one has to expand D+D around DAD0 with Do = & + H, i.e., one expands in terms of sr and a~. This is done 
by using the Schwinger-Dyson formula 

s 

1 
exp(--uD’D) = exp(-uD!Do) -u daexp(-ucrD;Dr,)[D+D - D;D,,]exp[-~(1 - a)D:Do] 

0 
1 

J I 

1-P 
+u2 dP dae-“UDb[DtD - D@o],-U~Db[[DtD - D$,o]e-“(‘-a-@)Dh + . . (As) 

0 0 

In the lowest order Q”, one obtains 

R&;(z) = -1 ASP@,) J $ u / 2 &b;(z) 
@( ) daexp(-uarD~Do)(Zlis~{Y4Y;^lgAtXaA, H})exp[-~(1 - a)D,$Do] , (A6) 

which after some simple manipulations gives Eq. (35) (see Ref. [IS]). 
Now we want to consider the 0; corrections to the current. Let us define VI = -i[C22~,H] - i{S2~,&}, Vz = 

-is~{~.rmAtXaA, H}, v, = s,‘rcw&@~w% %I, and V, = -&y;y&;A+X,A, &I. Consistently in the order a& 
one has to consider combinations of V, and I$ as well as the single sum Vs + V,., Note that it is important to 
retain sr as time dependent in Eq. (A4), b ecause otherwise the two terms V, + 5’4 cancel. This can be seen using 

[At&A,&] = i[C&,A+X,A]. After some lengthy algebra the operator et,“’ defined in Eq. (34) can be written as 

&‘,“’ = -$ / dt’$$2wE,, + Zw’&)exp[i(w - ~‘)(t’ - t)] 

1 x S J da m duu$&)exp{-u[a(w2 + E;) + (1 - a)@” + EL)]} 
0 0 

where t is the fixed and arbitrary time of A,(S,t). Performing now the dt integration with special care to the 
time-ordered product 7(QL(t)D,1,(to)) one gets the relation 

J dt’exp[i(w - w’)(t’ - t)]7-[W&(t’)D,t,(t)] 

+ id@ - w’) 1 D.,(t)Q& - ; PL 
w - lo’ 

- id(w - w’) QED,*(t) 1 
IP = i &D&C& +nJ(w - LJ){D~&o),W 648) 

Note that after the time-ordering the angular velocities are again assumed to be time independent in order to perform 
the J dt’ integration. The last term in Eq. (AS) vanishes because the 6 function makes the integral in Eq. (A7) odd 
in w. Therefore if the indices of 0% and D,b are such that [Dar,, a%] = 0 then Eq. (A8) is identically zero. Evaluating 
the w, w’ integration finally gives 

where the regularisation function is given by 

RQ(E,,,E,) = & /duq%(u) ~ldaaE;~mexp{-u[aE: + (1 - a)E:]} : 

(Ag) 

which in contrast to the regularization function for the usual moment of inertia Rx(E,,E,) or Rp(E,, Em) is 
antisymmetric with respect to Em and E,,. The du integration can be performed analytically in the case of steplike 
regularization functions 4(u) = c$(u - l/At) and gives 

RQ(%,&) = ci 
I 

1 eaE,, - (1 - a)Em exp{--[c&i + (1 - ,.+;]/A;} 

o 2~ +pSj aEZ + (1 - a)E& (All) 
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Using the formula 

J a1 &k&G = AT 
o<p<q, 

@W 

the infinite cutoff limit of Eq. (45) is given by (p. 219 of 
Ref. [62]): 

'RQ(-%E~) = ,E, : E,, 
sgnE, - sgnE, 

2 (Al3) 

and was used in Ref. (131 to calculate the l/N, comet- 
tions. Defining 

&ac = : ~(nlXClm)(ml~~~“ln)~~(E,,E,) (A14) 

the operator,(‘) A for these contributions can be rewritten 
as 

Equation (A15) follows directly tiam the real part of 
the Euclidean effective a&m given by Eq. (Al). There- 
fore these l/N, corrections described above have no coun- 
terpart in the Was-Zumino term which follows from the 
imaginary part of the Eudlidean action. As such they 
vanish identically in any local mesonic theory like the 
Skyrme model for instance. 

APPENDIX B: COMPARISON 
WITH THE GRADIENT EXPANSION 

In order to check the results of the numerical diago- 
nalization one should always consult the long wavelength 
expansion of,the coefficients appearing in the expressions 
for the observables. This technique is described at length 
in Ref. [45]. It also clarifies the question of whether the 
exact numerical value can be approximated by the gradi- 
ent expanded quantities, or, in other words, whether the 
local mesonic theory, like the Skynm model, for instance, 
is a good approximation to the NJL model. 

1. The lowest order result from the real part 
of the EEA 

For the lowest order (0”) only the quantity Ms, which 

already exists in SU(2), contributes to ga @). Its gradient 

expansion can be found by expanding DiDo = -0’ + 
M2 + iM~i&U(z) in Eq. (As) in terms of the gradients 
&U(z). The result is 

Equation (Bl) can be rewritten in terms of the chiral 
angle 0 and for n and r on the chiral circle O(T) = co&(r) 
and T(T) = si&(r): 
MFd = !.?f; J ( drr2 B’f 2sin~cose) . (B2) 

For the simplest case of a linear profile 6’(+) = r(1 - 
r/2R), it reduces to 

j,,.f$-d = (B3) 

This quadratic behavior of MFd is explicitly checked by 
using a large R profile function I3 as an input for the 
quark wave functions of the exact formula for M3. 

2. The anomalous terms from the imaginary part 
of the EEA 

The axial vector current also gets a contribution from 
the imaginary part of the EEA, which is nonvanishing 
only in the SU(3) case. In a local mesonic theory it can be 
derived from the Wess-Zumino term [32]. Here we want 
to show shortly how to derive tbis contribution from the 
nonlocal EEA of the present NJL model. Consider the 
operator quantity 

II&(z) = =-SP@,) ; - & 
2 ssqr) [ 1 

(B4) 

with D = 8, + H + ifi,. Writing the denominators as 
DtD one can’write 

Expanding DtD again in terms of the gradients and after 
some laborious algebra leads ‘to 

M8.d _ “Nc 1 --E,,~~~E.Q,, 
44 - 16x2 f, I 

d3~a~n”(~)ay~‘(~)u(2) . 

WI 

In the ase of the hedgehog ansatz, i.e., U(T) = co&(r) 
and K(T) = sine(r), Eq. (B6) reduces to 

MB’d - Nc 1 44 _ -6?rF drr&a(r)?r(r)‘. 
* J 

= 2 J d~f-e’(~)5in3e(~) . (BV 

FOX the linear profile O(T) = ~(1 - T/ZR) we obtain a 
compact expression: 

W 

This linear behavior for large size chiral fields is numeri- 
cally checked in Fig. 4. 
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3. The a1 terms for the real part of the EEA 

In this section we derive the gradient expansion for the nonlocal terms (&.a). For this part of the axial vector 

current one obtains 

where the regularization is neglected here for simplicity. Inserting eigenstates of 8, and H and using Eq. (AS) we can 

define 

where the X quantities can be calculated from 

W) 

Wl) 

Then the recipe is to multiply denominators and numerators by the Hermitian conjugate of the denominators and 
recover HZ = --a: + M2 + iM+&;U(z) in denominators, which can be expanded in terms of the gradients. Then 

these expressions can be straightforwardly simplified to the pure SU(2) quantity 

and the pure SU(3) quantity 
where the first line for Xe is a total divergence and 
vanishes for chiral fields, which vanish at least as l/r’ 
for T --t rn. Assuming physical profiles, which vanish 
exponentially with the pion mass, the axial vector cur- 
rent operator can be written as in Eq. (51). Note that 

II,Iz - Nc, M - N,“, and f: .-a N,, such that the 
last two terms in Eq. (51) represent a l/N, correction. 
Therefore Eq. (51) resembles very much the result of 
Dashen and Manohar (43,423, which states that the l/N, 
corrections to the axial current lead only to a renormal- 
i&ion of ga. ,Or in other words, the ratio of different 

coupling constants has no I/N, correction. 
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