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Expectation values of the axial-vector currents are calculated within the semibosonized SU(3)-
NJL model in the next to leading order of a 1/, expansion. These 1/N. corrections are shown to
come from two distinctive sources: (1) the anomalous part of the Euclidean effective action related
to the Wess-Zumino term of the SU(3) Skyrme model and (2) the real, nonanomalous part which
in this order of 1/N, has no counterpart within any local effective meson theory. The appearance
of the type (2) terms is due to the time ordering of the collective operators entering the formulas
for the axial-vector constants. They substantially improve the phenomenclogy of the model. The
question of regularization of these quantities is discussed. The analytic symmetry-breaking terms
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in the strange quark mass play a minor role for gf:) and gff).

They are, however, important for

gff). Finally, the numerical values for the ga's, gff) = 0.37, gf) = 1.38, and gff) = (.31, reproduce

reasonably well the recent data from lepton scattering (gf:) = 0.31, gff) =1.26, and g_(:) = 0.35).

PACS number(s): 12.39.Fe, 12.39.Ki, 14.20.Jn

I INTRODUCTION

It is a long lasting problem to determine the static
properties of hadrons directly from the general the-
ory of the strong interaction, quantum chromodynam-
ics (QCD). Therefore one attempts to formulate an ef-
fective theory for the strong interactions which would
be tractable in the low energy regime [1-5]. The quark
Nambu~Jona-Lasinio {NJL) model [6,7] seems to be an
excellent candidate for such a theory. Although it does
not confine quarks, it shares maybe the most important
features of QCD relevant for the quark bound states.
These are chiral symmetry and its spontaneous break-
ing. In the presently investigated NJL model the nucleon
consists of N, quarks bound in a self-consistent potential.
The latter is based on a nontrivial chiral field configura-
tion constrained to the chiral circle in the Hartree ap-
proximation [8-10], which is leading in 1/N, expansion.

The semibosonized NJL model is defined by a local La-
grangian density of the quark and meson fields. However
if one integrates the quarks out, the resulting mesonic
effective action is no longer a local one. One can, how-
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ever, make a gradient expansion, which will eventually
lead to a local action, although the number of terms
will be infinite. Therefore it was always believed that
the effective quark theories are equivalent to the effec-
tive meson theories in the sense that they correspond to
some calculable local Lagrangian density, such as that
of the Skyrme model, for example [11]. However, it has
been shown that the hadronic matrix elements of axial-
vector currents calculated within the NJL soliton model
exhibit new terms, which cannot be obtained from the
local mesonic theory [12-14]. This is due to two facts:
(1) upon the semiclassical quantization the cranking ve-
locities are promoted to the collective operators which do
not commute with the rotation matrix itself and (2) the
collectivé operators have to be time ordered. The latter
can be seen within the path-integral formalism, which
dictates unambiguously in which order the cranking ve-
locity and the rotation matrix appear in the expressions
for the matrix elements of the axial-vector currents. If
these nonlocal properties of the path integral are prop-
erly taken into account, then one gets new corrections
which are of order O(N?), whereas the leading term is
O(N,). These corrections are not small and improve the
phenomenological predictions of the NJL model. We will
show that one can even obtain a local limit of these terms
using the gradient expansion for the matrix element in
question. On the contrary, taking the local limit of the
present effective quark theory first (e.g., by making the
gradient expansion) and then calculating the same ma-

485 ©1996 The American Physical Socicty



486 ' ANDREE BLOTZ, MICHAE PRASZAELOWICZ, AND KLAUS GOEKE 53

trix elements yields no corresponding O(N?) terms at
all.

The example of the axial-vector constants is perhaps
the most persuasive. It is well known that in the non-
relativistic quark model g4 = (N + 2)/3. This means
that there are important O(N?) corrections to g4, which
for N, = 3 amount to 60% of the leading result. In the
effective meson theories the leading term for g4 scales
also as N; however the next-to-leading corrections comes
only at the O(1/N,.) level in the SU(2) version of the
model. This is due to the fact that effective meson La-
grangians are even in field derivatives. In the cranking

approximation for the rotating soliton each time deriva- -

tive counts as 1/N,. The only possible source for the
contributions linear in the time derivative is the anoma-
lous Wess-Zumino term which vanishes identically in the
SU(2) case. Hence the SU(2) Skyrmion does not show
any rotational O(N?) corrections! in a contradiction to
the nonrelativistic quark model. In the NJL model, how-
ever, the O(N?) terms appear in a natural way due to
the time-ordering discussed above. Such terms are also
present in the SU(3) version of the model. However,
apart from them in the SU(3) case, both in the NJL
and in the Skyrme model, the anomalous O(N?) terms
appear. In the NJL model ir the leading order of the gra-
dient expansion these terms correspond to the Witten’s
anomalous current [15] of a local mesonic theory.

In the previous paper {13] we have calculated the three
SU(3) axial decay constants gﬁf’), gff), and gff) in the
chiral limit within the semibosonized NJL model. This
model reproduces the hyperon spectra [16] and also the
isospin splittings within baryon multiplets® {17]. So far
the properties of the axial currents have been investi-
gated in the NJL model only for the case of SU(2) [18,10].
Recently the rotational corrections for SU(2) have been
roughly estimated in [12], neglecting the sea contribu-
tion, and to full extent in [14]. Beyond this there are
only calculations of the axial coupling constants within
the pseudoscalar SU(3) Skyrme model [19] and the pseu-
doscalar vector meson SU(3) Skyrme model [20].

In contrast with our previous paper [13], where we ig-
nored the regularization of the new terms, now we im-
plement the time-ordering within the framework of the
regularized effective Euclidean action (EEA). This treat-
ment allows us to make a clear distinction between the
terms which emerge from the real or from the imagi-
nary (anomalous) part of the EEA. Actually it turns out
that the new time-ordered terms emerge from the real
part of the EEA and therefore have to be regularized.
In the present approach the regularization prescription
is unique and the regularization function is derived in a
well-defined manner.

In the present paper we furthermore extend our previ-

10One should, however, remember a possible contribution
from the anomalous baryon current.

2The free parameters are M, the constituent quark mass and
cutoff parameters, and to some extent m,, the strange quark
mass.

ous calculations and calculate the m, corrections to the
axial-vector coupling constants, In addition to the theo-
retical interest due to the new time-ordered corrections,
the axial constants are of utmost phenomenological im-
portance as far as the comparison with the recent mea-
surements of the polarized proton and neutron structure
functions is concerned. So the main phenomenological
concern of this paper will be a comparison of the model
predictions with the experimental data for these quan-
tities. We will especially concentrate on the role of the
time-ordered corrections and furthermore on the so-called
anomalous quantities, which are dominated by the va-
lence contributions [21,16,22].

The organization of the paper is as follows. In Sec. II
we review the basic features of the NJL model with spe-
cial emphasis on the solitonic description. In Sec. ITT we
describe the quantization procedure and summarize the
results on the hyperon splittings. We use the mass split-
tings to fix the constituent mass M. In Sec. IV we derive
expressions for the expectation values of currents in the
NJL model. Special emphasis is put on the new contri-
butions from the time ordering and their regularization.
In Sec. V general formulas of Sec. IV are applied to cal-
culate the axial currents expectation values in the chiral
limit. Then in Sec. VI we discuss mass corrections to
the axial currents. Qur numerical results are presented
in Sec. VIL Section VIII contains a brief comparison
with the results of the Skyrme model. We present our
conclusions in Sec. IX.

In the Appendices we present a derivation of the regu-
larization functions (Appendix A) and a gradient expan-
sion for normal and time-ordered quantities (Appendix
B).

II. THE SU(3) NAMBU-JONA-LASINIO MODEL:
SOLITONS

The quark Nambu-Jona-Lasinio model [6,7] can be
written in the four-fermion formulation as -

LxiL = @(x)(id — m)q(z) — 2G[(GA%g) + (FivsA*q)?] .
' ‘ (1)

Here the summation over the A® matrices is implicit
(with hg = 4/2/3) and m is the current gquark mass
matrix. In the chiral limit the Lagrangian has the de-
sired SU(3)r ® SU(3); symmetry in addition to the
U(l)v @ U(1) a4, where the U(1) 4 is the symmetry which
is not shared by QCD. In principle, one could introduce
the ’t Hooft term into the Lagrangian, which breaks the
U(1) 4 explicitly. It could then serve as a source for the
7' mass, which otherwise would be a Goldstone boson.
This was recently done by Kato et al. [23] and the result-
ing profile for the SU(2) soliton was very similar to the
solutions that are restricted to the chiral circle (i.e., non-
linear case) and which are used here. So we believe that
the effects of the 't Hooft determinant on the solitonic
observables of the present calculations are small.
Performing the bosonization procedure of Eguchi [24]
one arrives at a new classical Lagrangian £§% (whose
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explicit form is not needed here), which contains in ad-
dition to the quark fields scalar and pseudoscalar meson
fields. Because the quark fields appear only quadrati-
cally, one can integrate over the fermionic functional in-
tegral to obtain the following effective Euclidean action
(EEA), corresponding to the leading contribution in an
1/N. expansion: :

Seat[U()] = —Spln[—1d + PrM(z) + PLM'(z) + m]

L t

+ogttMMT) o ()
Here Sp is the functional trace in color, flavor, and mo-
mentum space and M = g(g*A*+inr*\?) is the chiral ma-
trix in terms of o~ and w-meson fields. Pg(ry = 3(1+75)
are the right (left) helicity projection operators. Alterna-
tively one can write M = {LM £R in terms of the unitary
matrices {1, g and a Hermitian matrix M. Further-
more the unitary gauge £ = }‘ = £ can be chosen to
eliminate the redundant degrees of freedom. In order to
obtain stable solitonic solutions [25-27] it is important
that the scalar degrees of freedom in M are frozen, such
that M is just the constituent quark mass matrix and £
is related to the chiral field by U = £2. The latter can
be parametrized as exp(in®A%/f). This parametriza-
tion corresponds in SU(2) to the chiral circle condition
alyy + #° = const, where o(z) is the SU(2) isoscalar o
field.

From Eq. (2} the parameters of the model can be
fixed by requiring experimental values for the pion decay
constant f, = 93 MeV, the pion and the kaon mass,
My = 139 MeV and myx = 496 MeV (see Ref. [16] for
details). As a result the constituent quark mass is the
only free parameter of the model, which can, e.g., be
used to fix baryonic properties [16,17].

Solitonic solutions of Eq. (2) can be found by making
a time-independent hedgehog ansatz for the chiral field
Uo{F) = exp[i7-76(r)] and writing the SU(2) action in the
chiral limit in terms of a single particle intrinsic Hamil-
tonian: '

H = —z"y4[—i'y,-3,; + MU(2,t)] . (3)

The gamma matrices in Eq. (93) are taken as anti-
Hermitian in Euclidean space. We will specify the SU(3)
extension of the SU(2) ansatz in the next section. In
the proper time regularization [28], the effective action
becomes, in this case,

Sex = Sp [ “Télu, A AaJespl-u(DDo)] . (4

where Dy = 8, + H and where ¢ = cf(u — 1/AZ) + (1 -
e)}8(u — 1/A2) is the regularization function of Ref. [16],
which reproduces common values for the current quark
masses and quark condensates in the vacuum. It is im-
plicitly assumed that the vacuum contribution is sub-
tracted from Eq. (4). The classical equations of motion
can be solved self-consistently for the chiral field I/ = U,
resulting in a localized soliton with unit winding number.
The energy spectrum of the Hamiltonian operator H [Eq.

(3)] for the baryon number one sector contains a discrete
valence level inside a mass gap of the size 2M [9,8,29].
Then the classical energy of the soliton can be written as
[29] '

Mcl = NcEval + NcEsea ’ (5)

where E.,| is the eﬁergy of the valence level and E,.,
resembles the polarization the Dirac sea as a sum dver
the whole spectrum of the Hamiltonian operator H.

III. QUANTIZATION OF ZERO MODES AND
MASS SPLITTINGS

The purpose of this section is to apply the semiclas-
sical quantization method to the solitons [9,8,30] of Sec.
I, which result from the classical and time-independent
equations of motion. The idea hereby is the following.
In order to quantize the system one can perform a time-
dependent transformation [31] either in the direction of
the symmetry or orthogonal to it. If the symmetry is
at least an approximate one, then the excitations in the
symmetry direction should be the dominant contribution
to the. low lying resonances of the model. In order to
check this numerically in the present model, in addition
to the usval expansion of the EEA up to the second or-
der in the rotational velocity, we also consistently con-
sider the quadratic corrections from the strange symme-
try breaking terms.

Therefore, following the treatment of Ref. [31] we
quantize the soliton by introducing time-dependent
SU(3) rotations and impose canonical quantization con-
ditions for the collective coordinates of the rotation ma-
trix. This will allow for the definition of the SU(3) gen-
erators and of the corresponding baryon states.

First we make use of the trivial embedding of Witten
[32] of the SU(2) chiral field Uy(&) = (o(2) + tvs77)/ fr
into the isospin subgroup of SU(3) according to

v@-(77)- ©)

The soliton solutions of SU(2) are also solutions for
SU(3). In the quantization procedure the embedding (6)
generates the correct quantum numbers for baryons [32].

Next one introduces a time-dependent rotation
U(Z,t) = AQt)U(z)A(t)t. This rotation can be undone
by rotating the quarks fields: § = A(t}'q and § = gA(£).
Then one has to replace Dy in the effective action Eq.
(4) by D = Do+ AtA — iy, ATmA, where

AtA = iQg = %Aang ()

and the relation between Euclidean and Minkowski ve-
locities holds: iQg > Q37 and Qf; = Q.

Expanding ST = —SplogD of Ref. [16] up to the
quadratic order in Qg and assuming the time indepen-
dence of Qg (t) one gets (in Minkowski metric and in the

chiral limit)
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Lo=—-My+= ﬂIbe

S ®

where tensor of inertia I, = diag{ly,I;, 1,1,
L, I, I,,0) can be found in Ref. [16].

The original path integral [DU(z,t) will be in the
following approximated by the integral over the rotation
matrices A(t) only, neglecting translations and other fluc-
tuations [29]. This is known as the quantization of the
rotational zero modes [31]. Functional integration over
all A(t), is equivalent in the Hamiltonian operator for-

mulation to [33]
T/2

j DA(t)exp (— f dtLy
12

= (A(T/2)lexp(~THO)A(-T/2)) , (9)

where H© is a collective rotational Hamiltonian corre-
sponding to the Lagrangian of Eq. (8). In this way the
path-integral can be evaluated in terms of the eigenstates
of the collective Hamiltonian. This is discussed at length
in Sec. IV.

Before we calculate the axial properties we shall con-
centrate on the mass splittings. This allows to study the
perturbation expansion in m, and to fix the remaining
parameter of the model—the constituent quark mass M.

To calculate the mass splittings one has to expand the
effective action in powers of the current quark mass ma-
trix m = poAo — psAs — paAs with

1 .
Ho = "ﬁ(mu +mg -+ ma)s
1
Hg = E(zms - mumd)s
K3 = SMd — My (10)

We expand the effective action up to terms of the order
of m,, m¥, m,Q}, and Q? (expansion in © corresponds to
the expansion in 1/N;) [34]:

Ly = —om, + om,Dsgs , (11)
Img = ——2=m, D Ko (12)
mi = \/§ s/ 8alabs b
2
Lpa = —é-mE(No(l - Dss)z + 3NabD8aDBb) H (13)

where the constant o is related to the sigma term T =
3/2(my +ma)o and Doy = 3Tr{ATA;AN;). We define in
this order L** = Lo+ Ly + Lng + Lynz. The mass spec-
trum obtained with the help of Ly + Ly + Lmg was dis-
cussed in Refs. [16,17]; there one can also find explicit for-
mulas for K, = diag(K,, Ky, Ky, Ka, Ko, K5,0). Let us
here only mention that the anomalous moments of inertia
K; are nearly entirely given by the valence part, whereas
the contribution of the valence level to I; amounts to

approximately 60%. The new feature of the present
calculation is the presence of the moments of inertia
Nab = diag(Nl,N]_,N1,N2,N2,N2,N2,No/3) in Lmz de-
fined as

N,
Nap = =2 > (mlAavo|n){n|Xsvo|m)Ro(En, Em) , (14)

nm
where Rg(E,, En) is given by

Rg(En, E,.)

1 u - —uE: _ me—uEi.
=) At [ oAy (9)

and differs from the regularization function for the usual
moment of inertia Ri(En, Ey) [16] because of the dif-
ferent Hermiticity behavior of the mass term and the
Coriolis term (2) in SZgf.

The value of Ng 1,z together with the values of I, 5,
K3, and  for M = 423 MeV are given by (in fm)
No = 0.668, N1 = 0.438,' Nz = 0.370 fm, I;_ = 1.178,
I, = 0.569 fm, K = 0.369, K, = 0.255, and ¥ = 56.14
MeV. The numerical values for other constituent masses
can be found, e.g., in Ref. [34].

The Lagranglan of Eq. (8) and Eqgs. (11) and (12) re-
sembles the Skyrmion Lagrangian with vector mesons (cf.
Ref. [20]). The quantization proceeds as in the Skyrme
model; one defines the quantities (see, e.g., [35-38] for
details)

N,
#iDip Ko — 88 2 ‘/-3-
(¢ =3 and 8, a,b = 1,...,8) which are promoted to the
spin operators J, R The flavor operators read:
T, —D.,E,J;, Note that despite the fact that J fulfill
the SU(3) algebra, only J1 2,3 have the meaning of the
symmetry generators. That is due to the structure of
the SU(3) hedgehog ansatz and is reflected in the fact
that J3 = —~N_./+/12 generates a constraint. Therefore
the wave function of the baryon state B =Y, T,75,J,J3
belonging to the SU(3) representation R reads

VAImR(Y, I, I | D™ (4)| - Y, J, - Js)*

where the right hypercharge ¥ is in fact constrained to
be —1. The lowest SU(3) representations which contain
states with ¥ = 1 are R = 8 and R = 10. The quantized
collective Hamiltonian H*°t from

Ja = —ily =V abﬂb (16)

|R,B} = (17)

' SLtet
Htot =‘Z Q. 0 — [ tot (18)

a a

reads in the chiral limit (g; = 0)
HO = M4+ Hgy(2) + Hsya) » (19)
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1
Hgyz) = —CZ(SU(2)),

[OZ(SU(S)) C2(SU(2)) — Nz].

Hsy(s) = B
Here C2 denote the Casimir operators of the spin SU(2)
and flavor SU(3). M, is the classical soliton mass. In
this paper we will concentrate on the mass splittings.
These are determined in the present model by analytic
strange mass contributions of the order O,,,, and O(m2).
Whereas linear terms are given by Egs. (11} and (12),
the various contributions from quadratic m, corrections

where 7; = K;/I;. According to the classification given
above we have split the O(mn2) Hamiltonian into the kine-

matical part Hl(mz, and the dynamical part H g,)n

The Hamiltonian H!) mixes states of different SU(3)
representations; therefore the wave functions is no longer
a pure octet but rather a mixture:

B, o

|B) = |8,B) + CE}IO,B) + c37|27, B}, (21)
where B = N,A,E,E. The coefficients ¢2 depend lin-
early on m,, therefore with this accuracy there is no need
to change the normalization of the wave function. In the

following we will need their explicit form only for the
octetlike states:

1
B 5 0
CE = E(O’ —7'1) 1 Izm_,,
0
V6
23 = (30 + 7y — 4rg) g Tom, (22)

V8

in the basis [N, A, X, E]. The corresponding O(m?) con-
tribution to the energy are explicitly given in Ref. [34].
In order to fix the value of the constituent mass M we
adopt the following procedure: first for given M we find
the optimal m, which reproduces 10-8 splitting Ajp-g.
This dependence can be read out from Fig. 1 of Ref.
[34]). Next we plot the m, dependence of the deviations
theory-ezperiment for each hyperon (Fig. 2). One should
remember that for each m, the optimal constituent quark

can be classified as follows.

Quadratic terms from the expansion of the EEA, cor-
responding to the Lagrangian in Eq. (13). This will be
referred to as the dynamical corrections.

Quadratic terms from replacing the rotational veloci-
ties in Eq. (16) by the generators J, by using Eq. (18).
This will be referred to as the kinematical corrections,

Quadratic corrections the collective wave-function, as
will be discussed in the following. This will be referred
to as the wave-function corrections.

Then the Hamiltonian from Eq. (18) up to terms linear
and quadratic in m, reads

3
{’f’sz(l DBB) -+ (1"1K1 - Tng E g }
_2
9

3
{(NQ + 3N2) — 2N Dgg + (No - 3N2)D88 + 3(N1 ) Z DgA} mi s (20)

A=1

mass M was used, so that Ajg.g was automatically re-
produced for each m,. The smallest deviations =7 MeV
for all splittings correspond to m, = 180 MeV and to
M =2 423 MeV respectively.

It is important to note that all three quadratic m, con-
tributions, i.e., kinematical, dynamical, and wave func-
tion corrections are equally important [34]. It is therefore
inconsistent to calculate only the wave function correc-
tions, as it is sometimes done {the Yabu-Ando diagonal-
ization) and neglect the other ones.

SL3)  Nambu—Jona—Lasinio model
regularization functions
reg Tnoreg

Q.50

.30
,E_ 0.10
()
W
o) L
§ -oso
£ .

-0.50 . : . .

-5 -3 -1 1 3 5

Em {scaled]

FIG. 1. The regularization function Rg(Fs, Em) for the
time-ordered expressions (reg) for fixed E, and M = 400
MeV in dependence of Er,. This is compared to the function
(noreg), which is obtained in the infinite cutoff limit.
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100 optimal M

50

[MaV]
=]

-50

-100 . et
50 100 150 200 250

ms [MeV]

FIG. 2. The model deviations (i.e., theory ezperiment) for
octet and decuplet baryons as functions of m, for the optimal
constituent quark mass M.

IV, CURRENTS EXPECTATION VALUES
IN THE NJL MODEL

In order to calculate observables like the axial vector
currents, one has to consider the path integral expecta-
tion value of these operators., This should be done by
considering the quark and baryon correlation functions
which were investigated for solitomic configurations in
Refs. [29,10]. In this section we will show in a pedagogical
way how the time ordering within a quark loop together

T/2
(Af‘(a':', t))sea = NTHfr e gl /"DAexp (_/ dtrLtot(Q(tr))) 530(5_‘
t

¢
Xexp —f dt' Lt
-T/2

where
Ds]
{a

In order to obtain the axial vector coupling constants g,

gff):fb—l QA) 1 Iy = Ag, 9,(4)

with the collective quantization brings up corrections lin-
ear in the rotational velocity © [12-14]. It will become
clear that the fundamental features of the nonlocality of
the NJL effective action and the path integral relation
(9) to the time-ordered product of the operators are of
the utmost importance. In particular, it will be clearly
shown that there is no arbitrariness in deriving these coi-
rections. The approach presented here will be different
from the one of Ref. [13], where these new corrections
were calculated from the unregularized expressions. -

The correlator under consideration in the presence of
L% discussed in Sec. II is defined by [29]

(A%(2)) = (Jp(Fo, T/2)(2)vuys () T (7o, =T/2))
= [ L3DgD AT (0, T/2) T2 )15 7°4(x)

T/2
x JL (2, ~T/2)exp (— f dt / d%c}:ﬁi) ,

-T2

(23)
where the integration over the meson fields is restricted
to the rotational zero modes. The Ioffe currents Jg(&,t)
can be defined in terms of the quark field operators [39)

1

JB (-'_é: t) = Wecr--cg\:c Fflmch qf1,e1 (37) Qe en, (m)i
!
(24)
where T'z,..¢y_ is a symmetric matrix in flavor and spin

space and the €cy-cy, accounts for the antisymmetry in
color indices. Integratmg out the quark fields the sea
part of the correlator can be written as®

=8 + H+ A'A — iqaAtmA + isPyayivs AT LA .

0 SplogD[s]
> HA T/2) yotn)f‘(nlzu)g.ﬁ( T/2) , (25)
n=vali=1
) for Eq. (25) the following definitions for I hold:
Iy =g . (26)

One should note that the correlator (25) contains the nonlocal object 1/D[s], which is expanded in D[s = 0] —Dy,
i.e., in terms of the rotational velocity and the current quark mass:

5 o 1 4D[s]
5 (3,0 " InDfs] = Sp -7 ()

SpD (D[s =0] — Do)~ e

1 6Dfs]
) Dy 550 (2,5 @

The first term gives the O{N_} contribution to the axial current [29] and has a counterpart in local mesonic theories.
The second term, which is of the order O(N?), needs careful analysis. One should note that the propagator

3The valence part will be considered at the end of the section.
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" o N 1 . .,
G(&y,t1, @2, t2) = (1, t1| | &2, t2)
Dy

=0t~ t2) > TN E by n)(nlB, ta) — O{ta — 11) D e Bt (E b |n)(n|Ey, ta)  (28)

n»0

which appears in Eq. (27) after inserting the com-
plete set of eigenstates is nonlocal in time and space.
Using the definition O1(A(t)) = D[s = 0] — Dy and
O2(A(t)) = 6D|s]/és*(z) the second term on the right-
hand side (RHS) of Eq. (27) becomes?

“Tro / P, dt, G, 8, 51, 1)

x01(t1)G(F1, 1, ,1)0a(t) , (29)

where Tr.,» denotes the trace over color, Dirac, and fla-
vor indices. The product O;(¢1)02(t) in Eq. (29) has to
be time-ordered due to the presence of the # functions
in Eq. (28). Simultaneously the ¢ numbers O; have to
be replaced by the operators O; according to the pre-
scription of the semiclassical quantization. Making use
of Eq. (9) one can express the path integral over A(t) by
a time-ordered product: 7

. j |

(A2 (Z,1))sen = [ de(tMB(’iA)'s (5 3,1)
- [aa0BE Ty

where |B(£4)) is the baryon wave function of Eq. (21)
and D = D[s]. It is important to consider s® = s%(&,t) as
explicitly time dependent (see Appendix A). Preserving
vector gauge invariance [40] by using the proper time reg-
ularization {28] we regularize the real part of the effective
action similarly to Eq. (4):

. du
SP(1o)lnD'D = (—)Sp(ie f :9”(’“,1\1,1\2)

xexp(—uDID) (33)

where ¢(u) is given in Sec. II. Note that for the symmet-

ric contributions [13), i.e., when the operators O; and O,
commute,® the time ordering has no influence.

*Tn our case Oy corresponds either to the mass correction
proportional to Dgp or to the rotational correction propor-
tional to Qa, i.e., to the generator J,, and Oa corresponds to
the current insertion proportional to the D function.

*In our case this happens if the index of a generator J, is
such that it commutes with the D;. function.

Sp(to)lnD D -+ Sp(tot)ln

n<0

l
(A(=T/2)|T(01(A(21))O2(A(=2))) | A(T/2))

A=A(T/2)
= / DAO,(A(z:))0z(A(=2))
A:A(—T/Z)

T/2
wexp | — f dar'ctt ) .
T/2

This leads to the useful definition of a time-ordered trace

(30)

Sp(to)éléz = Trc-yA d4m(m|T(0102)|m) N (31)
where
T((O1(t1)0x(t2))) = 8(t1 — t2)01(£1)O2(t2)

+9(t2 — tl)éz(tz)él(tl) .

The advantage of retaining the trace in this form is the
straightforward applicability of the regularization proce-
dure. Let us split the effective action into real and imag-
inary parts. Then the expectation value of the axial cur-
rent from Eq. (25) reduces to an ordinary integral over
the collective coordinates £4 of SU(3):

[Re Sp(oylnD + ¢ ImSp sy InD]|s=0| B(£4))

(32)

L
=0

a=|

The valence part can be obtained from the sea part
(32) by calculating the full correlation function [29]. Al-
ternatively by introducing I’ = D —pu, where p is a chem-
ical potential with 0 < #< Eya (9], St = S8 + Soge
with the definitions S¥8! = Sg[D'] — Seg[D] and S5 =

Seq[D)]. The subtraction of the vacuum contributions is
implicitly understood.

Although in this section we have concentrated on the
axial currents, it is clear that the above results hold for

any kind of current in the NJL model.

V. AXJAL CURRENTS IN THE CHIRAL LIMIT
A, The lowest order contribution ~ £°

The axial vector coupling constants gff), defined as
the corresponding form factor in the limit ¢2 = 0, can be
calculated from Eq. (32). By comparison with Eq. (32)

one can define a collective operator gﬁ;" such that
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(a) _ / Br(AL4(3, 1)

j dEa(B(EA)IG | B(EA)) - (34)

5% is obtained by expanding (A¢(%,t)} in Eq. (32) in
terms of the rotational frequency and the strange quark
mass but without performing the final d§,4 integration.
The rotational velocity is then replaced by the generators
(16) yielding after the integration over d®z the collective
operator §ff) expressed in terms of J, and Wigner func-
tions Dgp.

The lowest-order result in € (i.e., 2°) comes from the
proper-time regularized real part of the EEA (33). One
obtains for a = 3 and 8 (see Appendix A for details)

i@,

where ATI,A = Dy and ATILA = 1 for a = 0. At

this level § “( ) = 0 [41]. The quantity My = My + Mg*®
comes from the real part of the action and is glven by

m%) = M3 Dyg fora=3 and 8, (35)

Mg"‘! = NC<V81|03/\3|V31) (36)
and
Mgea = < Z n|a3A3|n)sgn( n)RE( ) ’ (37)
all n

where the regularization function reads [21]

1 [ du - %
mal) = = [ (F)
The values of M5 for the constituent mass M = 423 MeV
read My* = —2.209, M§*® = —0.316, M3 = —2.525,

(38)

B. Anomalous 1/N, corrections from the imaginary
part of the EEA

As explained in the beginning of Sec. IV 1/N. cor-
rections (i.e., terms linear in the rotational velocity (2}
to Eq. (35) can be unambiguously separated into local
quantities which emerge from the imaginary part of the
effective Euclidean action, and nonlocal quantities emerg-
ing from the real part due to the explicit time ordering
of the collective operators. The former quantities are re-
lated to Witten’s anomalous axial current [32], whereas
the latter ones have no counterpart in mesonic effective
theories. It will turn out that in a certain sense they
renormalize the leading contribution of the axial current
given by Eq. (35) (compare with Refs. [42,43]).

In the chiral limit the anomalous corrections linear in
£} can be written as

‘af;‘) — ""Mbci{Dab'r Qi‘.’.} = —szcDabQi:( (39)
with

Mie = 52 3 mlostelm)miAdde) R (B, Brr) - (40)

n,m

and the cutoff independent regularization function R a4

1sgn(En — 1) —sgn(Bm — )

Raa(Er, Bm) = 5 E, - BE,,

(41)

As already noted the chemical potential g is chosen in
such & way that it always lies between the valence level
and the positive continuum of states. In this way the
quantities My, correspond to the full baryon number
one contribution and therefore contain the sum of the
valence and the sea part. Additionally we define for
later use Mg, = 3Ms, and Mg = v3M.s. The only
nonvanishing contributions in Eq. (39) are Mgy and
My = Mgs = —Mgg = —My7. Using the symmetries
of the hedgehog states one can write for ¢ = 3 and 8:

o) 2Mes
U /3

where the sum over b = 4,...,7 is understood. The
values of My, and Mg; entering Eq. (42) read (in fm)
ME' = —0.288, M3 = —0.012, M!St = —0.301 and
M"al = —0.422, IMsca = -0.016, M}$* = —0.438 for
M 423 MeV. It is clea.r from the form of Eq. (42) that
the anomalous corrections linear in © vanish in the SU(2)
case.

Dasfds — 4Maadaps DapSlp (42)

C. Nonlocal 1/N, corrections from the real part of
the EEA

Let us now turn to the main objective of the present
paper, namely to the nonlocal 1/N, corrections which
are due to the explicit time ordering of the collective
operators [12,14,13]. Straightforward application of Eq.
(28) into Eq. (29) leads to a double sum over the opposite
sign energy levels of the intrinsic Dirac Hamiltonian (3},
where the operators Oy and O, are time ordered. Making
use of the symmetry properties of the matrix elements of
the intrinsic operators:

(mAlm) = ~(ma|¥ng),

(nloaX®lm) = (miglos)®lng) , (43)

where ng denotes a G-parity conjugated state, one even-
tually arrives at

Das) 3(n]X°Im) (mloaX?{n)

mn

o = Zeips,
xRo(Fn, En) , (44)

where the rather complicated regularization function Rg
is given by

'do aE, — (1 — a)Bm

RQ(EH:EM)= o Py \/m
><c‘_exp{ [aB% + (1 - a)E2 ]/A?}

aEZ + (1 —a)E2,
(45)

Here the proper-time u integration for our steplike func-
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tions ¢(u) has been already performed (see Appendix A
for a general expression). In the limit A; — oo Eq. (45)

immediately reduces to Eq. (A13) of Appendix A and"

coincides therefore with our former prescription in Ref.
[13]. However, as we will see later, with the regulariza-
tion properly taken into account, the physical values will
come out much better,

Using the quantization condition for (2 and making use
of the commutator [Jc, Das] = ifeaDaq [35], Eq. (44) can

be written as
—if.aDad 2% %
g = ifeds 0, = _( @iz Q4s) Das , (46)

Icc I Iz

where the quantities Q3. coming from the real part of
the EEA are given by Q5. = Q32! + Q5*. Explicitly the
valence part reads

Q Z {(n]osAs|val) (val| A ln) enkE, (47)

E -Eval

and the sea part:
cea Ve
Qs = TZ(n[a’3)\b|m)(ml)\cln)'RQ(EmEm) . (48)

The numerical values for the Q. in the real represen-
tation Gy = —2iQ_4 and Q45 = Q45 read (in fm)
Qv = 0.279, Q¥ = 0.019, Q* = 0.298 and Q' =
—-0.279, Q5 = —0.018, Q' = —0.297 for M =~ 423
MeV. ‘

The valence contribution Q}2! differs from the formula
given in Ref. [12], where the existence of such corrections
was claimed for the first time. The correct path-integral
formula is given by Eqs. (47) and {48). Numerically how-
ever the difference between our expression for Q7' and
the expression of Ref. [12] is quite small. Note also that
in Ref. [12] the sea contribution to Qp, was erroneously
claimed to be identically zero. Again numerically Q%® is
rather small.

Putting all these corrections together one obtains:

(a 4Q_ 20
@0+ 0 m) = My - 2t W] gy
- I I,
2Mas s AMy, . .
- DogJs — dsspDop
\/gI]_ 8J3 I2 ;bb abb

for a = 3,8 (49)

(b runs over 4,...,7). Note that all the quantities
M3, Qpe, My and also Iy, I are of the order O(N,), such
that the Qp. terms in the brackets indeed correspond
to 1/N, corrections to the lowest order result. In other
words if one neglects the anomalous, purely SU(3) con-

tribution in Eq. (49), the ratio of different §§’s has no
1/N, correction [43].

D. The anomalous singlet axial-vector current

The singlet axial-vector current was already given in
[44] and it gets only anomalous contribution linear in

2Ms3 -
mg) = - I1 J3 .

i@ (50)
Note that Eq. (50), given here in the context of SU(3),
coincides exactly with the SU(2) result of Ref. [10]. This
is because only spin eigenvalues {J3) enter here, whereas
the other _t'jg’) ’s always contain D functions, whose ma-
trix elements depend crucially on the SU(Ngayo: ) algebra
used.

‘E. The axial currents in the leading order
of gradient expansion

_All g4’s consist of the valence quark and the sea quark
contribution. In the limit of the large soliton size the va-

lence contribution dies out and only the sea quarks con-

tribute. In this limit the gradient approximation [45,46,9)
holds. It corresponds to a local effective meson theory.
We have used the gradient expansion to check the nu-
merical results. Even or the realistic soliton sizes {of
about 1 fm) the gradient expanded expressions can be
used as a good approximation to the sea quark contribu-
tion and the total g4 is obtained by adding the valence
quark terms. The lowest order result for SU(Z) is given
in Ref. [18] and it coincides with the expressions from the
Skyrme model.

Terms linear in §2 can be also gradient expanded
In SU(3) one gets the anomalous contribution coincid-
ing with the Wess-Zumino-Witten term in the Skyrme
model. Using the results of Appendix B one can also cal-
culate the gradient expansion of the #ime-ordered terms.®
Neglecting the anomalous terms one obtains altogether
(for a = 3,8) .

i = f dr 2 (e’+ 5"123)
Sm., N.M  N.M
X [—E'f,r _5'41. + — 3 8I ] Daa + (51)

It is once again clear from Eq. (51) that the time-ordered
contributions (i.e., from Qs.) led to the renormalization
of g4 in the sense that they are also proportional to D3
and to the same integral over the hedgehog profile func-
tion 6. In SU(2), where the anomalous terms for the axial

current [dots in Eq. (51)] vanish, the ratios of gf:) ’s for
different baryons have no 1/N, corrections. This was
also found by Dashen and Manohar from large N. QCD
[42,43]. Furthermore the SU(2) result resembles very
much the odd nonrelativistic quark model prediction for
the 1/N,. correction, which is given by g4 = (N, + 2)/3.
Using the value I} = 1.178 fm for M = 423 MeV, in
the SU(2) case without I the zeroth order result of Eq.
(51) gets an approximately 25% correction from the 1/N,

5The moments Q». are evaluated here in the infinite cutoff
limit in order to get a simple and not explicitly cutoff depen-
dent result.
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TABLE 1. The axial-vector coupling constant g(s) for the SU(3) Nambu—Jona-Lasinio model
in dependence on the constituent quark mass M. The stra.n%e current quark mass is chosen as

ms; = 180 MeV. The final model predictions are given by g
(3),expt _

(@') in SU{2) and g(a) (@', m,) in

S5U(3). The experimental value is given by g, = 1.26.
SU(2) SU(3)
MMeV) g5 @) gP@,md) dD@mg) g, m})
363 0.920 1.302 0.644 1.482 1.603
395 0.873 1.224 0.611 1.381 1.473
419 0.841 1.179 0.589 1.328 1.407
423 0.837 1.173 0.585 1.314 1.380
465 0.792 1.109 0.554 1.250 1.308
term; substantially less than the full solitonic 1/N, con- sea
tribution, which amounts to =~ 40% (see Table I}. In the Ry’ = Z(n]cr3/\;,|m) (ml)\"%ln)kﬁ (E"’Em] (54)
SU(3) case however, there are additional corrections from e
the third term in the square brackets of Eq. (51) (~ 1/l2)  with
and from the anomalous terms [dots in Eq. (51)], such
that the simple rescaling factor does not exist any more.  Rg(E,, E,,)
VL. STRANGE MASS CORRECTIONS FOR g4 1 [ du Ene*Fo ~ E,,e*Fm
“wwh V|7 E-E.
In this section we will evaluate the symmetry break-
ing corrections to the axial currents due to the non-
vanishing strange quark mass. These arise from the term (55)

A'mA = po — psX®Dg,. In the linear order in m, and
in the zeroth order in € neither the contributions from
the imaginary part nor from the explicit time ordering
(because D functions always commute with each other)
exist. Therefore the entire symmetry breaking contribu-
tion comes from the real part of the EEA. Performing the
expansion of the real part of the EEA in m, one gets, for
a=3,8,

. 4m,
§8(Q°% ml) = — 2 RygDis(1 — D)
\/_
4m
‘/—B Rg3D,sDg3
8m,
Yy 52
+ ﬁ sL/8p ( )

with b = 4,...,7. The proper time regularised quantities
Ry = B! + Ri® are given by

For future use we also define Rgs = v/3Rgs and Rag =
v/3R35. Note that R(En, Ey,) is different from the regu-
larization functions Rz{Ey, Em) and Ro(En, Ey,). The
origin of this difference, which however survives only in
the finite cutoff case, is the different Hermiticity behavior
of the current and the mass term on the one hand and
the Coriolis term i{lg in the Dirac operator D[s] (25)
on the other hand. The latter one turns out to be anti-
Hermitian in Euclidean space, whereas the former ones
are Hermitian. Because the proper time regularization
rests on building DLDg from the very beginning, differ-
ent signs emerge and lead to the different regularization
functions. Their substantial different behavior can be
seen in Fig. 1 of Ref. [44] and in Fig. 1 of the present pa-
per. The numerical values of R, for M = 423 MeV read
(in fm) Ryl = —0.095, R = ~0.091, Rl = —0.186
R = —{,148, Be“ = --0 030, Rt"t = —-0.179 and
Rgg = 0.086, R53* = —0 073, Rt"t = 0 012.

Apart from these dynamical terms originating from the
action we have in addition the kinematical O(m,) terms

Rl N, Z {n|osAs|val) (val| Aeyo|n) (53) arising from the quantization condition (16). Together
be 2 E,—E, with the chiral limit result of Eq. (49) we obtain, up
to the linear order in the symmetry breaking and in the
and rotational frequency (for @ = 3 and 8),
3@ = [ag — 49t 2Q45] Dgs — 4M44d Daydy — 23 (1 4 Ama K1y )D J
94 [ 3 I, A a3 3bb Ll abdh — \/-11 \/_ 1, 83 a8J3
4m, 8&m Ky 4m,
| \/— —=Rg3DasDe3 + ‘/—8 (R44 My —= ) d3ppD o Dgp — “J-_RssDns( — Dgg) , (56)
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where, as usually, the index b in dap, runs over 4,...,7.
The quantities Hgs and Mpgs are already known from
the expression of the flavor singlet axial constant [44].
We found there;” in the same order,
2M33 2 4m5 (K]_ — = )
Js— —=Dgg | =—Mss — R . (57
I e /3 53 | 7 Mas 83 (57)
The main difference between Eqs. (56) and (57) is
that the lowest order term for gﬂj) is purely anoma-

# =~

lous, whereas the corresponding term for the gff’s) is
]

2

2Lm,
gff)(WF)-f— 2m (a+b+-\-g——§)(a—r1) (1)
0

45
N N :
(8) 2 3Lm, _E _ 0
g4 (WF) = T (a+b+ 5 ¢ (o —11) 1
0
93 (WF) =0,

where constants a,b, ¢ are defined through the form of
the axial current operator in the chiral limit [see Egs.
(49), (50)]:

9 = aDas + bdsesDap Sy + cDas s .

T3 and J; in Egs. (58) stand for the eigenvalues of the
respective isospin and spin operators.

VII. NUMERICAL RESULTS
FOR AXIAL CURRENTS

The three different measurements of the spin asymme-
fry in the polarized lepton-nucleon deep inelastic scat-
tering [47-50] have been recently reexamined by Ellis
and Karliner [51,52]. The message of their work is that,
whereas the Bjorken sum rule [53] is in agreement with
the data, the Ellis-Jaffe sum rule [54,55] is violated and
the results read finally

g = 0.31£0.07, ¢$P = 0.35 £ 0.04,

gt = 1.26 (59)
In this section we discuss our numerical results for the
three axial decay constants gff ' g As ), and g ,f including

"Comparison with Ref. [44] can be done by identifying
Mszs = 51 and Rss = 2. Note also that the sign in Eq.
(5) in Ref. [44] is misprinted.

+ —

nonanomalous. We come back to this point, when we
make the comparison with the Skyrme model in Sec.
VIIL

Up to now we have considered only the linear m, cor-
rections resulting from the expansion of the effective ac-
tion. However, there is also another kind of m, correc-
tion, resulting from the exact wave function of the collec-
tive Hamiltonian given in Eq. (21). When the O(m%)ga
operator (49), (50) is sandwiched between the O(ml)
wave functions (WF’s) we get the additional contribu-
tion linear in m, which reads, in the basis [N, A, X, E],

1
2 3v3 0

75 (a, + 2b— —2——6) (30’ +ry— 47'2) 0 T3J3 ,
-1
\/_ 6
1 3v3 9

_-'f-s.(a,+2b—"-§—c) (30’+1"1-4?‘2) 4 J3,
6
(58)

the strange mass corrections (see Fig. 3). They are sum-
marized in Tables I, II, and III. The collective matrix
elements used in the calculation are given in Table IV.
QOur final values for a constituent quark mass M =~ 423
MeV are given by

o =037, ¢ =031, and g =138. (60

SUIZ) Narmbu—Jona—lasiio rmode/!
axial vector current

gAO agA3 gA8

2,00
© .
S ssoT RTINS
@ TTTreeel S
é_ --------
a 1ooFf
O
o
X o080F

Q00 ! L .
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constituent gquark mass [MeV]

FIG. 3. The gfgo), gff), and gff) are shown for self-consistent
chiral fields in dependence of the constituent quark mass. The
strange current quark mass is chosen as m, = 180 MeV, ac-

. cording to a best fit to the hyperon spectra.
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TABLE II. The axial vector coupling constant g )

) and gff) for the SU(3) Nambu-Jona-Lasinio

model in dependence of the constituent quark mass Af. The stra.nge current quark mass is chosen
as ms = 180 MeV. The final model predictions are given by g A (Ql m,) and g A)(Ql m,). The

experimental values dre given by g{a)’expt 0.3530.04 and gv(o)'expt 0.3140.07 (Ellis and Karliner

[52]).

MMeV)  gP(ml)  gP@m)  qP@ml) P@md) P mi)
363 0.159 0.443 0.328 0.462 0.475
395 0.151 0.408 0,316 0.401 0.409
419 0.145 0.389 0.309 0.371 0.377
423 0.144 0.385 0.308 0.364 0.370
465 0.137 0.363 0,301 0.328 0.331

A. Axial vector coupling constants

In Table I the difference between SU(2) and SU(3) re-

sults for g can be seen in each order of the 1/N, ex-
pansion. Obviously the lowest order contribution (2°) in
SU(3) is significantly smaller than in SU(2} due to the
fact that the SU(3) expectation value of the correspond-
ing I function D33 is only 70% of the SU(2) value. The
anomalous contribution of Eq. (42) linear in Q which
is nonzero only in the SU(3) case acts as a substitute
for this group-theoretical reduction. Indeed, it leads to
ap almost exact readjustment of the SU(3) value to the
SU(2) one. For our preferred value of M =~ 423 MeV
from the hyperon spectra and m, = 180 MeV,® it pushes
the leading order SU(3) result up to gff) =~ 0.84. These
two values of the model parameters M and m, will be
used in the following discussion of the numerical results.
Due to the presence of the quantities @, from the ex-
plicit time-ordering, the SU(2), as well as the SU(3) re-
sults, have corrections linear in the rotational velocity.
These conceptually new terms have no counterparts in
the ordinary Skyrme model. Similarly to the old nonrel-

ativistic quark model estimates of the 1/N, correction, -

ie., gg) N./3 + 2/3, these new terms turn out to
be of the order of 50% of the leading term. For SU(2)

they push gff) from 0.84 to 1.15 and in SU(3) they give
the final value of 1.31. Note that the latter value is ob-
tained with regularized time-ordered quantities Q.. In
Ref. [13], where the regularization was neglected as the
first approximation, the sea part of the quantities Q.
made a =~ 30% contribution to the total value of the Q..
Here, with the regularized sea, its contribution amounts
to less than 3%.

Various contributions from the strange quark mass
(kinematical, dynamical, and wave function} increase the

value of gff) of about =~ 5% up to g(a) = 1.38, such that

(3)e%0 _ 1 96 is overestimated

the experimental value g,
only by =~ 10%.
It has to be stressed that this is in contrast to all

calculations within the purely pseudoscalar [19] or pseu-

8Note that m, = 150 MeV would correspond to physical
value of myx = 496 MeV, whereas m, = 180 MeV corresponds
to the slightly bigger myg ~ 540 MeV.

doscalar and vector Skyrme model [20,56], in which g(a)
is underestimated by =~ 30%. That this significant dlf
ference is due to the presence of the new terms from the
time ordering of the functional trace is most clearly ev-
ident from Table III. There the flavor contributions to
the axial current are given for the Skyrme model and the
NJL model without and with the time-ordered (T') cor-
rections. Without the new corrections the NJL model
resembles very much the numerical results of the SU(3)
Skyrme model with vector mesons. This was already
noted at the level of the collective Hamiltonian for the
mass splittings in Ref. [16] and here again can be seen
numerically for the axial currents with high accuracy.

B. Spin properties

Apart from g( ) in Table I we list also the values for

e ), partially given already in Ref. [44], and for g(s) Ne-
glectmg the U4 (1) anomaly for the present calculations,
the spin of the proton, which is carried by the quarks
and which is equal to the matrix element of the flavor
singlet axial vector current, has no contribution in the
order 2%, but gets the first nonvanishing contribution in
the linear order of Q. This, as can be seen from Table II,
is also a dominating contribution, which gets only a very
small strange mass correction. For M = 423 MeV, the
theoretical value of gﬁn ~ (.37 is a little bit above the
experimental error bars. Nevertheless one has to keep in
mind that the analysis of the experimental data is still
under debate [51,52] and the inclusion of higher twist ef-

fects might even push gg’) *P toward our present value

TABLE III. Various contributions to the axial vector cur-
rent of the proton in terms of u, d, and s quarks for A = 423
MeV and m, = 180 MeV. A comparison is made between the
Skyrme model with vector mesons [20] (Skyrme, vector), the
NJL model without (NJL, scalar) and with the time-ordered
corrections of this paper (NJL, scalar, T). In the last column
experimental values from Ellis and Karliner [52] are given.

Skyrme NJL NJL “Experiment”
(vector) (scalar) (scalar,T")
Ay 0.63 0.64 0.902 0.8310.03
Ad —-0.31 —0.24 —0.478 —0.43::0.03
As ~-0.03 —-0.02 —0.054 -0.1040.03
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TABLE IV. Matrix elements of the operators for gff)

in the proton state with spin up, where

the index 4 is always running from 1 to 3 and & from 4 to 7.

D3a Dag Dgs d3ss DsvJs dsse Day Jb dabs Dsp Dss dspp a6 Dss
~7/30 v/3/30 " 3/10 7/60 1/(204/3) —11/(90/3) 1/30
DagDss DaaDgs Dg3 DesDga Dy Ry DaiDsi DasDsy
-1/45 —4/45 —+/3/30 0 7/20 v/3/45 —+/3/45

[52]. Onme should note that our result for gﬁf) is clearly
dominated by the valence contribution, which could be
denoted as the connected part of the full correlation func-
tion. The sea contribution, i.e., the so-called disconnected
part, has the same sign but is negligibly small. This
is different from a very recemt lattice calculation {57],
where the disconnected part screens the connected part
and contributes half of the value but with a different
sign. However the self-consistent pion profile contains
connected and disconnected contributions from the po-
larization of the Dirac sea, so that in the present model a
clear separation of both contributions in the strict sense
is not possibie.

Experimental extraction of g( ) from the hyperon semi-
leptonic decays depends on how the strange quark mass
corrections to the SU(3) symmetric result are taken into
account, Therefore the experimental error bars on this
quantity may be at present too small. In the present
calculation we obtain g(s) = 0.31 to be compared with

the “experimental” number of [52] g(S),exp 0.35 4 0.04.

So from our calculations one can conclude that for the
“fixed” mass of M = 423 MeV and m, = 180 MeV all
three axial vector coupling constants are quite close to
the experimental values of [52]. From Fig. 3 it can be
seen that for larger mass of M =~ 550 MeV, g(s) and g(o)
almost coincide with the experimental values, whereas
g A , having relative large negative strange quark mass
correction, deviates from the central value of 0.35. One
should however keep in mind that the large m, correc-
tions are usually ignored in the analysis of the hyperon

semileptonic decays, which influences the value of g(s)

well as g( )

VIII. COMPARISON WITH THE SKYRME
MODEL

Now we want to compare our results with the Skyrme
model, which can be regarded as a large constituent
quark mass limit of the NJL model [9,46]. We will fo-
cus here on the Skyrme model, in which vector mesons
and in addition kaon fluctuations and the gauged Wess-
Zumino term are added. Then the collective operator has
the structure [20]

gfq) = 01D33 + azdaaaD.'iaRa + G3D38 + G4d3auD3aD8a
+asDs3(1 — Dgg) + agDssDys (61)

which corresponds effectively to the expression for the

NIL model. Although the origin of the various coeffi-
cients is quite different in the NJL and Skyrme model,
both approaches give effectively the same operator struc-
ture for ga.

However one should stress here two important differ-
ences: first of all the new corrections linear in £ which
arise due to the time ordering within the fermion loop
vanish in the Skyrme model identically. The Skyrme
model is based upon local Lagrangian density which,
apart from the Wess-Zumino term, is even in time deriva-
tives and therefore the spatial components of the axial
currents are also even not allowing for terms linear in
2. Second, even if one restricts oneself to the terms
not including the corrections due to the time-ordering
(local limit) the contribution of the valence quarks in
the present model makes our results qualitatively dif-
ferent from the ones of the Skyrme model. The coeffi-
cient ag, €.g., is in the Skyrme model with purely pseu-
doscalar mesons dominated by the induced kaon fluctua-
tions [19], which are neglected in the present NJL mode).
If the vector mesons are included in the Skyrme approach
the situation does not change qualitatively [20]. In the
Skyrme model as gives only a 10% contribution to ga
[19], whereas the dominating valence contribution to My,

SU(B) Nambu—Jona—Lasinio model
axial vector coupling

Ma4-WZ

Md dval

0.00 T
-0.10 [
-020 |

~030

moment  [fm]

~0.40

~050 1

-0.60

radius [scaled]

FIG. 4. The anomalous quantity Mis compared with the
leading term of a gradient expansion, which comes exactly
from the Wess-Zumino action for SU(3} pseudoscalar fields.
This is done for a fixed linear profile in dependence of the
radius R for M = 372 MeV.
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(see Fig. 4) in the NJL model gives almost a 30% con-
tribution to g, if the terms due to the time ordering are
neglected. The fact that the total values for g4 in the lo-
cal limit of the present approach and in the vector meson
pseudoscalar Skyrme model in Ref. [19] roughly coincide
hinges on the rescaling procedure for the parameter e in
Ref. [19], which tend to increase g4. The Wess-Zumino
contributions to g4 in the Skyrme approach play a minor
role; in the NJL model the anomalous part of the action,
containing the WZ term in lowest order of the gradient
expansion, gives ~ 1/4 of the total amount.

IX. SUMMARY AND DISCUSSION

In this paper we have extended our recent analysis of
the corrections to the axial currents which appear due
to the time ordering of the quark loop and semiclassical
quantization [13] to the case of the regularized effective
action. Moreover, we have investigated the strange cur-
rent mass corrections to the axial currents of the semi-
bosonized SU(3) Nambu-Jona-Laninio model.

In the semibosonized NJL model baryons are under-
stood as solitonic solutions of the classical equations of
motion. However the solitons do not carry proper quan-
tum numbers and the semiclassical quantization proce-

dure has to be applied in order to describe the mass

splittings within the strange baryon multiplets. This
treatment is based on introducing time-dependent rota-
tions in the direction of the zero modes, followed by the
canonical quantization of the collective coordinates of the
rotation matrix. Since these zero modes contribute sig-
nificantly to the mass splittings [16], it was a challenging
task to look at the axial currents, which can be related to
the recent measurements of the spin structure functions
[51,52,48,49,47].

First the constituent mass M was fixed by looking at
the hyperon mass splittings up to the terms quadratic
in m,. These are reproduced with unexpectedly high
accuracy and point towards a constituent quark mass
of M = 423 MeV. We have also explicitly shown that
the wave function corrections and the corrections due
to the expansion of the effective action are comparable
and therefore it is inconsistent to perform only the Yabu-
Ando diagonalization of the first order Hamiltonian H{%),

Second, we considered the axial vector currents with
the inclusion of the corrections linear in the rotational
velocity. The new contributions which appear due to the
time ordering of the quark loop and semiclassical quanti-
zation have been shown explicitly to come from ‘the real
part of the effective action. If a regularization is imple-
mented, they are dominated by the contribution of the
valence quarks. In the SU(3) model there are also other
contributions linear in §2 which come from the imaginary
part of the effective action and as such do not require
regularization. They are also dominated by the valence
contribution. This concerns the leading term. of gﬁf),
which vanishes in the pure pseudoscalar Skyrme model
[41], whereas it is nonvanishing (however small) in the
present model, in rough agreement with experiment.

The expression for g ) has a o 25% rotational contri-
bution from the imaginary part of the effective Euclidean
action, which vanishes in the SU(2) case and which can
be related to Witten’s formula for the axial vector cur-
rent from the Wess-Zumino effective action. Moreover it
has a ~ 30% contribution due to the explicit time or-
dering (Qpc) of the collective operators. These terms are
not present in the local theories like the Skyrme model.
In the present model they are entirely due to the nonlo-
cality of the fermion determinant. Performing the gradi-
ent expansion of these quantities, it can be shown that
these terms have the same mesonic structure as the low-
est order term [see Eq. (51)]. This is similar to recent
findings of Dashen and Manohar [43] within large-N,
QCD and to the nonrelativistic quark model result of

9% = (N, +2)/3. Quantitatively, despite the fact that
the lowest order SU(3) result is reduced by a group the-
oretical factor of 0.7 with respect to the SU(2) case, the
new time-ordering and anomalous contributions push the
total value of g( ) upwards.

In addition, we have considered the corrections linear
in the strange quark mass. They are consistently derived
from the expansion of the effective action, the quantiza-
tion condition as well as from the higher representations
of the wave function in the spirit of the Yabu-Ando diag-

onalization. However the effect on gff) is not large and

finally one ends up with gﬁf) = 1.38 for M = 423 MeV,
which is only ~ 10% above the experimental value of

(3) “*P = 1.26. Here it should be stressed that such nice
agreement was pever obtained within the pseudoscalar
or pseudoscalar and vector Skyrme model [19,20). This
qualitative and quantitative difference comes from the
new nonlocal 1/, corrections present in the NJL model.

The gff) exists already in SU(2) and the only effect in
SU(3) is a small shift due to the finite symmetry break-
ing m,. This is in contrast to gﬁf), which vanishes in
the SU(2) case, and which in SU(3) gets the entire con-
tribution from the rotation and from the strange quark
mass. In the chiral limit the values for g( ) and g(o)
are quite close to each other, as suggested in [58], how-

ever the strange mass corrections reduce the value of g(s)
by =~ 25%, whereas the explicit symmetry breaking has
almost no influence on gff). This holds at least if we
take all linear m, corrections into account and even the
m? corrections, which can be calculated in this frame-
work from the nonsymmetric wave functions [17]. The
final values _qff) ~ (.37 and gf) ~ 0.31 for M = 423
MeV and m, = 180 MeV are to be compared with the
experimental data extracted from the recent analysis of
Ellis and Karliner (52]; i.e., ¢5"® =~ 0.31 £ 0.07 and
gff)’ex” =~ .35 £ 0.04. Apparently the theoretical values
are only slightly outside the experimental values
Qualitatively the following can be said: g } which rep-
resents the part of the proton spin carried by the quarks,
gets a nonvanishing expectation value entirely due to the

anomalous part of the EEA. In a nonrelativistic con-
stituent quark model, when the total spin of the proton

is entirely carried by three quarks, gff)' equals one. The
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present model gives values close to experiment probably
since the proton is treated entirely as a many-body sys-
tem rotating in the spin-isospin space. Thus one cannot
attribute the spin of the proton to single elementary par-
ticles but only to the whole system. Moreover the angular
momentum of the quarks is explicitly taken into account
by solving the Dirac equation in the grand-spin basis [10)].
Therefore the fact that, in agreement with experiments,
only a fraction of about 20-30% of the nucleon spin is
carried by the quark spins is not surprising at all in the
present model.

Altogether the picture which emerges is quite satis-
factory. Mass splittings are accurately reproduced and
axial currents are in good agreement with the experi-
mental data if rotational 1/N. corrections are taken into
account. In particular the spin of the proton originates
in this model to about 35% from the spin of the quarks, a
number being in reasonable agreement to the world data
reported by the Spin Muon Collaboration (SMC) [49).
Together with the numerical results for the Gottfried sum
[59,60] the model provides a good reproduction of the ex-
perimental data.

There is still one important point which should be dis-
cussed, namely the PCAC (partial conservation of axial-
vector current) relation in the present approach, One
can show that for a time independent hedgehog ansatz
the PCAC relation is fulfilled. However, for the rotating
soliton, i.e., for the time dependent hedgehog ansatz it
is no longer true and PCAC is violated. The reason for
this apparent puzzle is that the rotating hedgehog is not
a solution of the time dependent equations of motion. It
should be viewed as a variational Ansatz and as such it
violates PCAC.

On the purely theoretical side the presence of the new
terms linear in Q2 calculated in this paper poses a seri-
ous problem to effective meson theories like the Skyrme
model, where such terms vanish identically. Another the-
oretical question which deserves a comment is the con-
vergence of the expansion in (). The large size of the
corrections calculated in this paper raises the question
whether the first order corrections in 2 are sufficient,
One way to tackle this problem would be to calculate the
Q? corrections to the axial currents. This is the high-
est power of ) one should consider, since the collective
Hamiltonian itself is truncated in that order. Despite the
technical difficulties in calculating these terms, the pre-
liminary estimates indicate that they are not negligible.?
Therefore one has to conclude that the expansion in 2 is
slowly convergent. Moreover the formalism of the coliec-
tive quantization has to be revised if one wants to include
terms higher than 2. These questions are certainly be-

yond the scope of this paper, where we had to content
ourselves with the linear corrections alone. In addition,
despite the fact that mass splittings are well reproduced,
the absolute energies provide still some problems which
are associated with the zero-point corrections [61,16] and
boson fluctuations.
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APPENDIX A: DERIVATION
OF THE REGULARIZATION FUNCTIONS
FOR THE AXIAL CURRENT

Here we want to give an explicit derivation of the £2°
and 2! contributions to the axial current. We emphasize
the method of regularization of nonanomalous gquantities
from the explicit time ordering of the collective operators
within the proper-time regularization scheme [28]. Then
the real part can be written as

DD = —-8%+ H? + Q% — i[Qg, H] — i{QF, 8} — is? {vavivs AT X A, H}

+579amivs[AT Aad, Qg — ivavivs[sPATAA, 8] .

®M. Wakamatsu (private communication).

Red(s) = —3 foary P [ Sréwlesp(—uD'D)

(AL)

where
D =8, +H +iQg — istyayys ATA%A (A2)

and
Dt = -8, + H —iQp — is?yaviys AT A4, (A3)
such that '
]

(Ad)
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Then one has to expand DD around D};Do with Do = 8; + H, i.e., one expands in terms of s and Q. This is done
by using the Schwinger-Dyson formula

1
exp(—uDD) = exp(—uD}Do) — uf da exp(—uaD} Do)[D'D — D} Dylexp|—u(1 — o) D} Do)
)]
1 -8
a2 f ds / doe="PDo[ DD — DI Dole~*#PEPo[pt D — DYDgle=*(1-2-A1P4De | ... | (as5)
) 0

In the lowest order 2%, one obtains
- 1 & d . @
ReAl(z) = —~§M5p(to) f ;uqﬁ(u) f do exp(—,-uaD:gDo)(msz-/{'m'ywsA“/\aA, H})exp[—u(1 — a)DgDo} , (A8)

which after some simple mampula.tlons gives Eq. (35) (see Ref. [18]).

Now we want to consider the Q% corrections to the current. Let us define V3 = —i[Qp, H| — i{Qg,8:}, V2 =
—isHyarers At A4, HY, Vi = & 7'4'7',75[A XA, Qg|, and Vi = —iyavivs[s¢ AT a4, 8;). Consistently in the order 2}
one has to consider combmatlons of V] and V2 as well as the single sum V3 + V.. Note that it is important to
tetain s¢ as time dependent in Eq. (A4), because otherwise the two terms V3 + V; cancel. This can be seen using

[ATXA, A4, 8] = i[QE, At A, A]. After some lengthy algebra the operator §'? defined in Bq. (34) can be written as

g = 2= fdt’dw ! —(2wE, + 2w By )exp[i{w — w'){t' —t))]

X A da j:o duud(u)exp{—u[alw® + E2) + (1 - o) (w? + EZ)]}

x (nAlmp{(mlos A [n) T(QE () Das(t)) - (A7)

where £ is the fixed and arbitrary time of A,(&,t). Performing now the d¢ integration with special care to the
time-ordered product T (0% (£)Das(to)) one gets the relation

[ texlito - o ~ OTIOE)Dae)]

1 1. L1 1 .
== [Pw i+ twd(w — w’)] Do (8)02g — 3 [Pw—:;v_’ —imd(w — w') | QFDop(f)

= %Pw—-——[Dab(t) Q%] + 78(w — ') {Das(to), 05} - (A8)

Note that after the time-ordering the angular velocities are again assumed to be time independent in order to perform
the [dt’ integration. The last term in Eq. (A8) vanishes because the § function makes the integral in Eq. (A7) odd
i w. Therefore if the indices of 5, and Dy, are such that {Dgp, Q%] = 0 then Eq. (A8) is identically zero. Evaluating
the w,w’ integration finally gives

~{a) _ Nc '-':fedbDad
Ga =~=—F—F

2 L. > X% m) (m|os A |n)Ro(En, Bm) , (A9)

m,n
where the regularization function is given by

R(Eny Em) = — f dud(u) / \/_"‘)E exp{—u[aEZ + (1 — @)E2]} , (A10)

which in contrast to the regularization function for the usual maoment of inertia Rz(En, Em) or Rg(Ey,, En) is
antisymmetric with respect to E,, and E,. The du integration can be performed analytically in the case of steplike
regularization functions ${u) = ¢;0(u — 1/A%) and gives

1 E(.I_ a'En — (1 _ a)Em exp{—[aEz ( ) ]/Az} (A].l)
o 2m A /a(l - a) C\!Ez (1 - Ot)E2

RQ(En,Em) =
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Using the formula

0<p<yq,

1 1 T
/:, afl —a)q—ap B Vap—g)’

(A12)

the infinite cutoff limit of Eq. (45} is given by (p. 219 of
Ref. [62]):

1 sgnk, —
IIE - Em‘ 2

sgnk,,

RQ(En, Bm) = (A13)
and was used in Ref. [13] to calculate the 1/N, correc-
tions. Defining

Qs = 22 S et s V)R (B Br)  (AL8)

m,n

the operator é‘,(f) for these contributions can be rewritten
as

2Qu .

R 2Q
gz.,(to) =- Il 45 Dﬂ-

7, D (A15)

Equation (A15) follows directly from the real part of
the Euclidean effective action given by Eq. (Al). There-
fore these 1 /N, corrections described above have no coun-
terpart in the Wess-Zumino term which follows from the
imaginary part of the Buclidean action. As such they
vanish identically in any local mesonic theory like the
Skyrme model for instance.

APPENDIX B: COMPARISON
WITH THE GRADIENT EXPANSION

In order to check the results of the numerical diago-
nalization one should always consult the long wavelength
expansion of the coefficients appearing in the expressions
for the observables. This technique is described at length
in Ref. [45). It also clarifies the question of whether the
exact numerical value can be approximated by the gradi-
ent expanded quantities, or, in other words, whether the
local mesonic theory, like the Skyrme model, for instance,
is a good approximation to the NJL model.

1. The lowest order result from the real part
of the EEA

For the lowest order (Q°) only the quantlty M3, which
already exists in SU(2), contributes to g, ®), Its gradient
expansion can be found by expanding DfDo = —8% 4
M? + iM~;8;U(z) in Eq. (A6) in terms of the gradients
9;U(x). The result is

Mgrd = g f d%(a@im —m0;0) . (B1}

Equation (B1) can be rewritten in terms of the chiral
angle § and for 7 and ¢ on the chiral circle o(r) = cosf(r)
and w(r) = sinf(r):

Magrd - %?[f:/drrz (9; + 231112C059) . (B2)

For the simplest case of a linear profile 8(r) = (1 —
r/2R), it reduces to

M = f,rR ~55) (B3)

This quadratic behavior of M2 is explicitly checked by
using a large R profile function € as an input for the
quark wave functions of the exact formula for Mj.

2. The anomalous terms from the imaginary part
of the EEA

The axial vector current also gets a contribution from
the imaginary part of the EEA, which is nonvanishing
only in the SU(3) case. In a local mesonic theory it can be
derived from the Wess-Zumino term [32]. Here we want
to show shortly how to derive this contribution from the
nonlocal EEA of the present NJL model. Consider the
operator quantity

1 11
A (@) = 3 5e(@) P [5 - b—r]
Xi74775 A Dabs® (%) .

with D = &, + H + iQg.
DD one can write

1 6 S 1
28s%(z) T DID

(B4)

Writing the denominators as

ImA2(z) =
¥ [DYivavivs X Dap — i¥avivs A’ Das D]s ()
(BS)

Expanding DD again in terms of the gradjents and after
some laborious algebra leads to

w N1
ME = (ot gacomsesas [ d'adun®(@),r(@)o ).

(B6)

In the case of the hedgehog ansatz, i.e., o{r) = cosf(r)
and #(r) = sinf(r), Eq. (B6) reduces to

g2z [ arractrynt?
= Ec— f dr r8' (r)sin®0(r) .

For the linear profile #{(r) = #{l —r /2R) we obtain a
compact expression:

(B7)

2
grd _ 2
ME® = 3WR. {B8)

This linear behavior for large size chiral fields is numeri-
cally checked in Fig. 4.
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8. The 2! terms for the real part of the EEA

In this section we derive the gradient expansion for the nonlocal terms (Qg3). For this part of the axial vector

current one obta.ins
t’ Yo iy A
3a H 076D

where the regularization is neglected here for simplicity. Insertmg eigenstates of 8; and H and using Eq. (A8) we can
define

(B9)

Reﬁg(z)=—-;-'1‘r,,,,c dt< 5T H

5;,t> T2t Das(t)] ,

T3 3
le) _ Xip | Xis D B10
o = |32 + 2] pis, (B10)
where the X quantities can be calculated from
i d(l) dw’ 1 — 1 1 -
Xie = Tryire jd 332—%13“] — w,( |-—'iw T ch i + H'YO'Y;'YSA6‘3> . (B11)

Then the recipe is to multiply denominators and numerators by the Hermitian conjugate of the denominators and
recover H? = —8? + M? + {M~;8;U(z) in denominators, which can be expanded in terms of the gradients. Then
these expressions can be straightforwardly simplified to the pure SU(2) guantity

X3, = —2:Q% = 1441‘_ (80 + aam") + ]Z;—TM damfl?,(aami — #'8;0)
N M f drr (a’ 3‘“29) (9'coszo + Sm%) (B12)
and the pure SU(3) quanfity
X3 = -2Q% = lggf 3:1:%%(0'8,-«5 — 7'd;0)
= -%{fdrrz (6" + sﬂ:'ze-) ; (B13)

where the first line for X3, is a total divergence and
vanishes for chiral fields, which vanish at least as 1/r?
for r — ©o. Assuming physical profiles, which vanish
exponentially with the pion mass, the axial vector cur-
rent operator can be written as in Eq. (51). Note that
Ii,I, ~ N, M ~ N? and fZ ~ N, such that the

last two terms in Eq. (51) represent a 1/N, correction.
Therefore Eq. (51) resembles very much the result of
Dashen and Manohar [43,42], which states that the 1/,
corrections to the axial current lead only to a renormal-
ization of g4. Or in other words, the ratio of different
coupling constants has no 1/N, correction.
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