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Unitarity corrections to current algebra versus chiral perturbation calculations
in kaon-pion scattering
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We compare chiral perturbation theory~ChPT! and the unitarization program of current algebra. In this
paper, we compare the analytic structure these methods imply for low-energy, kaon-pion scattering and discuss
their similarities. We also reproduce in this article a three-parameter fit of experimental kaon-pionS- and
P-wave phase shifts with a current algebra quasiunitarized amplitude, published long ago, and we make a
comparison with the recent results of ChPT.

PACS number~s!: 12.39.Fe, 11.30.Rd, 13.75.Lb
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I. INTRODUCTION

The low energy structure of quantum chromodynami
~QCD! is a basic problem for meson physics. We will con
sider two methods that aim to help in its understanding.

The method called chiral perturbation theory~ChPT! con-
sists in expanding the Green’s functions of QCD in powe
of momenta and of quark masses. As chiral symmetry i
plies a set of Ward identities which link the various Green
functions, it is possible to interrelate the expansion coe
cients. To analyze the low-energy structure of QCD, ChP
considers the unique effective Lagrangian at lowest ord
namely, the nonlinears model coupled with external fields
@1#.

The other method was invented in the early 1960s. Ev
ignoring the underlying theory, the chiral current algebra im
plies a set of Ward identities and the method consists
solving the system of Ward identities under suitable assum
tions, such as saturation of axial divergences with mes
poles@2#.

It has been shown that tree-level ChPT calculations a
equivalent to the well-known current algebra low-energ
theorems. Unitarity corrections to current algebra soft-mes
amplitudes allow one to go beyond threshold for meson p
cesses and to access the resonance region for meson-m
scattering. On the other hand, loop diagrams in ChPT g
quite large corrections to leading current algebra results e
at threshold. As both of them follow from chiral symmetri
Ward identities, it is interesting to compare the results o
tained by these two methods.

Consider, for instance, pion-pion scattering. One of
compared@3# the analysis made in ChPT context@4# with the
result of current algebra unitarization method proposed
Ref. @5#. The conclusion is that the amplitudes coming fro
these methods have the same structure in terms ofs,t, and
u variables. The differences are that our quasiunitarized a

* Electronic address: SABORGES@VMESA.UERJ.BR
†Electronic address: SIMAO@CAT.CBPF.BR
530556-2821/96/53~9!/4806~5!/$10.00
cs
-

rs
m-
’s
ffi-
T
er,

en
-
in
p-
on

re
y
on
ro-
eson
ive
ven
c
b-

us

in
m

m-

plitude has three parameters whereas ChPT has only two fr
constants and our amplitude does not have nonanalytic qua
mass-dependent terms.

In this paper we study kaon-pion scattering. We will con-
clude in Sec. II that, apart from the error of missingt-channel
h particle contribution, the current algebra quasiunitarized
result, published long ago@6#, keeps similarities with the
kaon-pion ChPT scattering amplitude derived by Bernard
et al. @7#. Moreover, current algebra amplitude do not have
nonanalytic terms dependent on quark masses that charact
izes ChPT calculation.

II. COMPARISON BETWEEN THE TWO METHODS

A. Current algebra quasiunitarized amplitude

We applied in Ref.@6# our current algebra unitarization
method to kaon-pion scattering. The starting point in ou
derivation was an exact expression for the correlation func
tion of four currents, with the quantum numbers of kaon and
pion, in terms of three- and two-point functions.

From this expression, by using vertex and propagator e
timates, we could reobtain the so-called soft meson tota
isospinI Weinberg amplitudes@8#: namely,

TI53/2
ca 52

1

2F2 ~s2M2!, ~2.1a!

TI51/2
ca 5

1

4F2 ~s12M223u!, ~2.1b!

where M25mK
21mp

2 , m25mK
22mp

2 , and s1t1u
52M2. The remaining of the Kq

app
b→K2q8

g p2p8
d ampli-

tude reflects the difference between soft- and hard-meso
result and is the equation that follows from Eq.~2.14! of Ref.
@6#: namely,
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T̄abgd~s,t,u!52
CKA
2 CA1

2

F4 tabgd
c ~s,t,u!1dagedebd f K

s~ t !Ds
21~ t ! f p

s~ t !1 f age f ebd~s2u!F S 1

2F2S112 f K
v ~ t !D Dr

21~ t !

3S 1

2F2 112 f p
v ~ t !D 2

1

4F4SG1H 2 f abe f e8gdF ~q2p!tS 1

2F2S112 f1~s!D
1~q1p!tS f2~s!1

Dk

Dk f̃
0~s!2

1

2F2m
2D̃k~s!D G 1

DK* ee8
tt8 ~s!

F ~q82p8!t8S 1

2F2S112 f1~s!D
1~q81p8!t8S f2~s!1

Dk

Dk f̃
0~s!2

1

2F2m
2D̃k~s!D G

1
1

4F4 f abe f egd@~u2t !S1m4Dk~s!#1 f̃ abe
0 ~s!Dk ee8

21
~s! f̃ e8gd

0
~s!1~s↔u!J , ~2.2!
n
ing
on-
ave

t,

of
wheref1
2
are theKl3 form factors,f̃ 0 and f̃ K,p

s are the scalar
form factors of the kaon and pion,Dm are meson propaga
tors,S is the Schwinger term,F is the pion decay constant
here considered equal to the kaon one, andf abg (dabg) are
the anti-symmetric~symmmetric! SU~3! structure constants

Let us remember the main points of the unitarization p
gram of current algebra.

The program, proposed by one of us and applied to pi
pion @5# and to kaon-pion@6# scattering, consists in estima
ing the behavior of form factors and propagators at low e
ergies. In this way we have assumed thatf1 and
electromagnetic form factors are, near threshold, of the sa
order of magnitude as current algebra amplitudes while ot
functions are comparably smaller at low energies.

For example, Eq.~2.15! of Ref. @6# establishes this as
sumption, for we write theKl3 form factors as

f1~x!.11 f1
~1!~x! and f2~x!. f2

~1!~x!

for x.(mK1mp)
2.

All functions denoted by a superscript (1) are of the ord
(mK1mp)

2/X2 , X being of the order of magnitude of th
vector meson mass in a vector dominance approximation
so, at low energies, they can be considered as correction
the soft-meson limit.

Let us explain how we were led to construct unitariz
amplitudes.

Current algebra gives real amplitudes. The unitarizat
method must provide an imaginary part to the corrected p
tial wave. Thus at the first order of the calculation, by t
optical theorem, one must have

ImTl I
~1!~s!5

1

16p
r~s!Tl I

ca~s!2,

whereTl I
ca is the soft-meson current algebral partial wave,

with isospinI Weinberg amplitude obtained from Eqs.~2.1!.
To construct unitarized amplitudes, we work with E

~2.2! using the implications of elastic unitarity for form fac
tors and propagators in a peculiar way. For instance,
-
,
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Imf1
~1!~x!5

1

16p
r~x!T

1
1
2

ca
~x!,

where

r~x!5
1

x
@x2~mK1mp!2#1/2@x2~mK2mp!2#1/2

and T1 1/2
ca is the current algebra isospin 1/2P-wave Kp

amplitude: namely,

T
1
1
2

ca
~x!5

1

8F2x
~x222M2x1m4!.

Considering the known imaginary part of each functio
entering into the amplitude, the method consists in obtain
their real parts by the dispersion relation technique. To c
verge, dispersion integrals need subtraction that we h
fixed to zero. The final expression for theI53/2 amplitude,
presented in the appendix of Ref.@6#, is

FIG. 1. Isospin 1/2P-wave phase shifts. Solid line is our resul
dot-dash line is our result without any contribution tot-channel, and
short-dash line corresponds to the inclusion in our amplitude
t-channel exchange of Ref.@7#. The experimental points are from
Ref. @12#. The parameters used in order to fit theK* ~892! resonance
are:j1520.0531,j250.0837, andj350.0188.
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T3/2~s,t,u!5
1

2F2 ~M22s!1
1

4F4 ~s2M2!F ~s2M2!G~s!1
s

32p2

M4

m4 G1
1

F4 j1~ t22mK
2 !~ t22mp

2 !

1
1

F4 ~j22j3!~s2M2!21
1

F4 ~j21j3!~u2M2!2

1
1

4F4 ~u2s!F ~2mK
22t !gK~ t !2

t

96p2G1
1

12F4 ~u2M2!F ~u2M2!G~u!1
u

32p2

M4

m4 G
1

1

96p2 S 5u22M223
m4

u D F S 5u22M223
m4

u DG~u!1
u

32p2 S 72 M4

m4 21D1
3

32p2M
2G

1
1

32F4 S t2s1
m4

u D F S u22M21
m4

u DG~u!1
u

32p2 S 32 M4

m4 1
1

3D2
M2

32p2G . ~2.3!
tal
In this expressionj1, j2 , andj3 are ‘‘seagull’’-free param-
eters,

16p2G~x!52r~x!ln
x2M21xr~x!

2mKmp
1SM2

m2 2
m2

x D lnmK

mp

111 ipr~x!,

and gK(t) is the equal mass limit ofG(t).

B. Chiral perturbation theory

Meson-meson transition amplitudes to second-order in t
momenta and quark masses can be evaluated by expand
nonlinears-model LagrangianLs in powers of the fields.
The tree diagrams derived in this way give rise to the curre
algebra predictions up to orderO(p2,mm

2 ), with
p denoting an external momentum andmm the meson
masses.

This approximation coincides with the result Weinber
obtained from current algebra, expressed in Eqs.~2.1!.

To go further, as required by unitarity,
O(p4,p2mm

2 ,mm
4 )-corrected amplitudes are to be found

They came from tadpole graphs and loop diagrams with ve
tices fromLs as well as higher-order derivative terms.

The arbitrary coupling constants coming from higher
order derivative terms allow one to absorb all divergences
one-loop diagrams. This is a very important point, first con
jectured by Weinberg@9#.

The application of ChPT to kaon-pion scattering per
formed in Ref.@7# follows exactly these lines. The correc-
tions to current algebra come from loop diagrams, and ta
pole and higher-order coupling tree graphs. The s
renormalized coupling constants, denoted byLr , depend on a
renormalization scalem and tadpole contributes introducing
also scale dependent parameters.

The four-mesonT matrix calculated from the effective
action can be written in terms of physical masses and
physical decay constants.

The isospin 3/2Kp amplitude obtained in Ref.@7# can be
compared with expression~2.3! by using the relations given
in Ref. @1#: namely,
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La,b~x!5
~ma

22mb
2!2

4x
J̄a,b~x!,

Ka,b~x!5
~ma

22mb
2!

2x
J̄a,b~x!,

Ja,b
r ~x!5 J̄a,b~x!22ka,b ,

ka,b5F2
ma2mb

ma
22mb

2,

Ma,b
r ~x!5

1

12x S x22~ma
21mb

2!14
~ma

22mb
2!2

x D J̄a,b~x!

2
1

48p2

ma
2mb

2

~ma
22mb

2!x
ln
mb
2

ma
2

2
1

96p2 S ~ma
21mb

2!

x
2
1

3D 2
ka,b
6

.

UsingM25mp
21mK

2 , m25mp
22mK

2 , S25mK
21mh

2 , and
D25mK

22mh
2 , the result is

FIG. 2. Isospins 1/2 and 3/2S-wave phase shifts with the
same conventions as in Fig. 1 for line drawing. The experimen
data are indicated by: boxes~Ref. @13#!, circles~Ref. @14#!.
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T3/2~s,t,u!5
1

2F2 ~M22s!1
1

4F4 ~s2M2!2J̄pK~s!1
1

24F4 @~u2s!~ t24mp
2 !13t~2t2mp

2 !# J̄pp~ t !

1
1

48F4 @~u2s!~ t24mK
2 !19t2# J̄KK~ t !1

mp
2

8F4 S t2 8

9
mK
2 D J̄hh~ t !1

1

32F4 F S t2s1
m4

u D S u22M21
m4

u D
2S 10u24M223

m4

u D m4

u
111u2212M2u14M4G J̄pK~u!1

2

F4 ~4L1
r 1L3

r !~ t22mK
2 !~ t22mp

2 !

1
1

F44L2
r ~s2M2!21

2

F4 ~2L2
r 1L3

r !~u2M2!21
1

32F4 F S t2s1
m4

u D S u22S21
D4

u D
13S u22m2D2S 22

m2D2

u2 D D 24M2S u2
m2D2

u
2
1

3
M2D G J̄Kh~u!1

1

4F4

1

32p2

3F16 tu1
1

6
st2

1

3
su1

1

3
m42

7

2
t21

8

9
mp
2mK

22S t2s1
m4

u D SmK
2mh

2

D2 ln
mh
2

mK
2 1

mp
2mK

2

m2 ln
mK
2

mp
2 1

1

2
~M21S2! D G

1
1

4F2 F ~mK2mp!

4m2 ~ tu2su1m418~s2M2!2111u2212uM214M4!

1
~mh2mK!

4D2 S tu2su1m413S u2
2

3
M2D 2D G

1
1

16F2 @mp~10s210M213m2!2mK~4s24M212m2!2mh~6s26M21m2!#

1
1

4F2 F mp

mp
2 S 13 t~s2u!2t~2t2mp

2 ! D 1
mK

mK
2 S 16 t~s2u!2

3

2
t2D 1

mh

mh
2mp

2 S 89mK
22t D G

1
1

F4 @8L4
r M2t22L5

r ~s2m2!~M21m2!14~2L6
r 1L8

r 22L4
r !~M42m4!#. ~2.4!
d
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The comparison of the last expression with Eq.~2.3! leads us
to make the following observations.~i! We can identify

J̄ (x) with G(x). ~ii ! The coefficients ofJ̄pK(s) andG(s), in
the expressions~2.4! and ~2.3!, are the same. This gives the
expected imaginary part for the amplitude in the physic
region. ~iii ! The coefficients ofJ̄pK(u) andG(u) in these
expressions are the same. This is a consequence of the
rect crossing properties of amplitudes derived from Wa
identities.~iv! We can relate the low-energy parameters
the two amplitudes:j152(4L1

r 1L3
r ), j254L2

r 1L3
r and

j35L3
r . ~v! Expression~2.3! does not have the terms equiva

lent to loop diagrams ofhh and Kh intermediate states.
This is an error in the unitarization program to be cure
Nevertheless, as checked in Ref.@7#, these terms introduce
small corrections of order. 1%–3%. ~vi! The number of
free parameters of ChPT exceeds that of quasiunitarized
plitude in ~iii !. In fact, this comes because, as stated befo
we have chosen some subtraction constants in the disper
relations to be zero.~vii ! Expression~2.4! corrects a mis-
printed factor 3/2 instead of 2/3 in the line before the last lin
of expression~3.16! of Ref. @7#. ~viii ! One can verify that the
scale dependence in 1/16p2lnm coming from the renor-
malized ChPT parametersL1

r , L2
r , L4

r , L5
r , L6

r , andL8
r

al

cor-
rd
of

-

d.

am-
re,
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e

~which are, respectively, 3/32, 3/16, 1/8, 3/8, 11/144, an
5/48! @1# cancels with that coming frommp , mK , and
mh , by using the Gell-Mann–Okubo relation
3mh

254mK
22mp

2 . ~ix! In our final expression, the
t-channel exchanges are somewhat incorrect because we
not include the pion electromagnetic form factors that a
explicit in formula ~2.2!. In fact, it is easy to calculate that
t-channel contribution for the 3/2 amplitude would be

1

4F4 ~u2s!F ~ t2u!gp~ t !2
t

96p2G ,
to be added to the expression already included in formu
~2.3!: namely,

1

4F4 ~u2s!F ~2mK
22t !gK~ t !2

t

96p2G .
This error, in the original work@6# also implies violating

unitarity relation in crossed channel. However, we claim th
this error has minor consequence on experimental data
ting. For this, we present in the Figs. 1 and 2 the resu
including t-channel exchanges of Ref.@7# and the results
corresponding to not-channel exchanges at all.
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Finally, we would like to comment about phase-shift de
nition.

As elastic unitarity is not satisfied in either of the ampl
tudes, the definition of partial-wave phase shifts is arbitra

Nevertheless, one can make suitable definitions. We h
adopted the definition tand l I5 ImTl I /ReTl I , knowing that
ImTl I5 (r/16p)uTl I

cau2. The authors of Ref.@7# preferred
adopting the definitiond l I5 (r/16p)ReTl I , which is valid
for small d.

Another method to implement elastic unitarity uses Pa´
approximation. By this way, Dobado and Pela´ez @10# have
recently used ChPT amplitude~2.4! as the starting point to
obtain a good fit ofS andP K2p phase shifts.

Our program, restricted to its first order, can be cons
ered an alternative for their calculation. In effect, two-loo
calculation in ChPT context is a very difficult task; howeve
one of us@11# gave the tools to go to the next-order approx
mation within the current algebra unitarization program.
fi-

i-
ry.
ave

de

id-
p
r,
i-

III. CONCLUSIONS

In this paper we have extended to kaon-pion scattering t
comparison between chiral perturbation calculations and t
unitarization program of current algebra.

Exactly as in the previous analysis, of pion-pion scatte
ing, we would like to emphasize that, despite the error of n
including all t-channel contributions, the basic structure o
the amplitudes presented in~2.3! and in~2.4!, concerning the
dependence on the variabless, t, andu, is the same. On the
other hand, only ChPT contains meson mass-depende
nonanalytic terms. We remark also that the methods lead
amplitudes with different numbers of free parameters, by
particular choice made in the Ref.@6#.

Concerning phase-shifts definition, we considered that,
current algebra gives real amplitudes, any method intendi
to go beyond threshold for meson processes must explore
imaginary part it implies.

A good feature of the current algebra unitarization pro
gram is the possibility of constructing next-order approxima
tion in a very simple way, as explained in Ref.@11#.
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