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Unitarity corrections to current algebra versus chiral perturbation calculations
in kaon-pion scattering
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We compare chiral perturbation theof€hPT) and the unitarization program of current algebra. In this
paper, we compare the analytic structure these methods imply for low-energy, kaon-pion scattering and discuss
their similarities. We also reproduce in this article a three-parameter fit of experimental kao8-paom
P-wave phase shifts with a current algebra quasiunitarized amplitude, published long ago, and we make a
comparison with the recent results of ChPT.
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I. INTRODUCTION plitude has three parameters whereas ChPT has only two free
constants and our amplitude does not have nonanalytic quark
The low energy structure of quantum chromodynamicgmass-dependent terms.
(QCD) is a basic problem for meson physics. We will con-  In this paper we study kaon-pion scattering. We will con-
sider two methods that aim to help in its understanding. ~ clude in Sec. Il that, apart from the error of misstaghannel
The method called chiral perturbation the¢GhPT) con- 7 particle contribution, the current algebra quasiunitarized
sists in expanding the Green’s functions of QCD in powergesult, published long agf6], keeps similarities with the
of momenta and of quark masses. As chiral symmetry imkaon-pion ChPT scattering amplitude derived by Bernard

plies a set of Ward identities which link the various Green's€t &l [7]. Moreover, current algebra amplitude do not have

functions, it is possible to interrelate the expansion coeffiionanalytic terms dependent on quark masses that character-

cients. To analyze the low-energy structure of QCD, ChpT4€S ChPT calculation.
considers the unique effective Lagrangian at lowest order,
namely, the nonlineas- model coupled with external fields
[1].
. . Il. COMPARISON BETWEEN THE TWO METHODS
The other method was invented in the early 1960s. Even
ignoring the underlying theory, the chiral current algebra im- A. Current algebra quasiunitarized amplitude

plies a set of Ward identities and the method consists in e applied in Ref[6] our current algebra unitarization

SOlVing the SyStem of Ward identities under suitable assuMpmethod to kaon_pion Scattering_ The Starting point in our

tions, such as saturation of axial divergences with meso@erivation was an exact expression for the correlation func-

poles[2]. tion of four currents, with the quantum numbers of kaon and

It has been shown that tree-level ChPT calculations argion, in terms of three- and two-point functions.
equivalent to the well-known current algebra low-energy From this expression, by using vertex and propagator es-
theorems. Unitarity corrections to current algebra soft-mesotimates, we could reobtain the so-called soft meson total
amplitudes allow one to go beyond threshold for meson proisospinl Weinberg amplitudef8]: namely,
cesses and to access the resonance region for meson-meson
scattering. On the other hand, loop diagrams in ChPT give
quite large corrections to leading current algebra results even
at threshold. As both of them follow from chiral symmetric
Ward identities, it is interesting to compare the results ob-
tained by these two methods.

Consider, for instance, pion-pion scattering. One of us 1
compared 3] the analysis ma(_JIe in C_hPT contg&i with the _ TR = (s+2M2—3u), 2.1b
result of current algebra unitarization method proposed in 4F
Ref.[5]. The conclusion is that the amplitudes coming from
these methods have the same structure in ternsstofand s o ) s 2 )

u variables. The differences are that our quasiunitarized am¥here M“=mj+mZ7, m*=mg—mz, and s+t+u
=2M2. The remaining of the Kgﬁg*)qu,Wfp, ampli-
tude reflects the difference between soft- and hard-meson

* Electronic address: SABORGES@VMESA.UERJ.BR result and is the equation that follows from Eg.14) of Ref.
TElectronic address: SIMAO@CAT.CBPF.BR [6]: namely,

1
T2 5= — SEz(s— M?), (2.1a
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wheref * are theK|; form factors.f © andquT are the scalar

form factors of the kaon and piod,,, are meson propaga-

tors, S is the Schwinger ternt; is the pion decay constant,

here considered equal to the kaon one, &4, (d,z,) are where

the anti-symmetri¢gsymmmetri¢ SU(3) structure constants. 1
Let us remember the main points of the unitarization pro- p(X)==[x—(mg+m_)2]Yx— (mx—

gram of current algebra. X
The program, proposed by one of us and applied to pion- and TS

pion[5] and to kaon-pion6] scattering, consists in estimat-

ing the behavior of form factors and propagators at low en-

ergies. In this way we have assumed thht and

1 ca
D (y)=

mw)2]1/2

1/2 is the current algebra isospin 1R-wave K=
amplltude namely,

ca
electromagnetic form factors are, near threshold, of the same T %(X): 8F2X(x2—2M2x+ m*).
order of magnitude as current algebra amplitudes while other
functions are comparably smaller at low energies. Considering the known imaginary part of each function
For example, Eq(2.15 of Ref. [6] establishes this as- entering into the amplitude, the method consists in obtaining
sumption, for we write thé&,; form factors as their real parts by the dispersion relation technique. To con-
verge, dispersion integrals need subtraction that we have
f.(x)=1+fY(x) and f_(x)=FfP(x) fixed to zero. The final expression for the=3/2 amplitude,

presented in the appendix of R@6], is

for x=(mg+m,_)2.

All functions denoted by a superscript (1) are of the order
(m+m,)?%/X? , X being of the order of magnitude of the 180 }
vector meson mass in a vector dominance approximation and
so, at low energies, they can be considered as corrections to

the soft-meson limit. e 120
Let us explain how we were led to construct unitarized E

amplitudes. o 90F
Current algebra gives real amplitudes. The unitarization g ol

method must provide an imaginary part to the corrected par-
tial wave. Thus at the first order of the calculation, by the 30l
optical theorem, one must have

I ! . ! : :
700 800 900 1000 1100 1200

(S)T (5)2 Energy (MeV)

1
ImT®)(s)= Tom

FIG. 1. Isospin 1/2P-wave phase shifts. Solid line is our result,
whereT7] is the soft-meson current algebrapartial wave,  got-dash line is our result without any contributiorttchannel, and
with |sosp|nl Weinberg amplitude obtained from Ed&.1).  short-dash line corresponds to the inclusion in our amplitude of

To construct unitarized amplitudes, we work with Eq. t-channel exchange of Ref7]. The experimental points are from
(2.2) using the implications of elastic unitarity for form fac- Ref.[12]. The parameters used in order to fit #&(892 resonance
tors and propagators in a peculiar way. For instance, are:¢,=—0.0531,&,=0.0837, ands;=0.0188.
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In this expressiorg,, &, and ¢; are “seagull”-free param- (mg— m§)2_
eters, Lap(X¥) =7~ %n(X),
X
X—M2+xp(x) (M2 m?| mg (mZ—m b)—
2 = — D ——————— S U — [E— _—
1672G(x)=—p(x)In P, |12 |an Kan(X) o (X)),
+1+i ES
LHimp(x), (0= Jap(X)— 2Kqp,
and gg(t) is the equal mass limit oG(t). o Ma™ Mb
Kap=F m—m?

B. Chiral perturbation theory 1

(m3—mj)?
Meson-meson transition amplitudes to second-order in the M p(X)= 12)((X 2(my +mb)+4Tb ab( )
momenta and quark masses can be evaluated by expanding

nonlinear o-model LagrangiarlL, in powers of the fields. 1 m? mb mﬁ

The tree diagrams derived in this way give rise to the current T 282 ml —

algebra predictions up to orderO(pz,mfn), with b Ma

p denoting an external momentum amd,, the meson 1 ((m2+md) 1) K

masses. _ _( a’ b _) _Tab
This approximation coincides with the result Weinberg 967° X 3 6

obtained from current algebra, expressed in Eg4d).

To go further, as required by unitarity, ~ UsingM?=mZ+mg, m*=m’—mg, S2=mg+m’, and
O(p* p?m?,my)-corrected amplitudes are to be found. A2=mg—m?’, the result is
They came from tadpole graphs and loop diagrams with ver-
tices fromL, as well as higher-order derivative terms.

The arbitrary coupling constants coming from higher-
order derivative terms allow one to absorb all divergences of
one-loop diagrams. This is a very important point, first con-
jectured by Weinber¢9]. 60 1

The application of ChPT to kaon-pion scattering per-
formed in Ref.[7] follows exactly these lines. The correc-
tions to current algebra come from loop diagrams, and tad-
pole and higher-order coupling tree graphs. The six
renormalized coupling constants, denoted_bydepend on a
renormalization scal@g and tadpole contributes introducing

Phase—~shifts
w
)

also scale dependent parameters. -3t ‘ . . . .

The four-mesonT matrix calculated from the effective 700 800 900 1000 1100 1200
action can be written in terms of physical masses and of Energy (MeV)
physical decay constants.

The isospin 3/XK amplitude obtained in Ref7] can be FIG. 2. Isospins 1/2 and 3/%wave phase shifts with the

compared with expressiof2.3) by using the relations given same conventions as in Fig. 1 for line drawing. The experimental
in Ref.[1]: namely, data are indicated by: boxgRef.[13]), circles(Ref.[14]).
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The comparison of the last expression with Ej3) leads us  (which are, respectively, 3/32, 3/16, 1/8, 3/8, 11/144, and
to make the following observationgi) We can identify 5/48 [1] cancels with that coming fronw,, ux, and

J(x) with G(x). (ii) The coefficients o (s) andG(s),in ~ #7; bY ~using the = Gel-Mann—Okubo relation
the expression&.4) and (2.3), are the same. This gives the SM,=4Mk—mz. () In our final expression, the
expected imaginary part for the amplitude in the physicalt-channel exchanges are somewhat incorrect because we did

region. (iii) The coefficients ofl_(u) and G(u) in these not include the pion electromagnetic form factors that are

. o™ explicit in formula(2.2). In fact, it is easy to calculate that
expressions are the same. This is a consequence of the Cd?r

. : ) ; -channel contribution for the 3/2 amplitude would be
rect crossing properties of amplitudes derived from War
identities. (iv) We can relate the low-energy parameters of 1
the two amplitudes:£é,=2(4L+L%), &=4L5+L5 and H(u—s)
&;=L5. (v) Expression2.3) does not have the terms equiva-
lent to loop diagrams ofy7 and K intermediate states. 1, o aqded to the expression already included in formula
This is an error in the unitarization program to be cured.(2_3): namely,
Nevertheless, as checked in REf], these terms introduce
small corrections of order= 1%—3%.(vi) The number of
free parameters of ChPT exceeds that of quasiunitarized am- F(U—S)
plitude in (i ). In fact, this comes because, as stated before,
we have chosen some subtraction constants in the dispersion Thjs error, in the original work6] also implies violating
relations to be zero(vii) Expression(2.4) corrects a mis- unitarity relation in crossed channel. However, we claim that
printed factor 3/2 instead of 2/3 in the line before the last linethis error has minor consequence on experimental data fit-
of expression(3.16 of Ref.[7]. (viii) One can verify that the ting. For this, we present in the Figs. 1 and 2 the results
scale dependence in 1/8nu coming from the renor- including t-channel exchanges of Ref7] and the results
malized ChPT parametets, L5, L}, Lg, Lg, andLg corresponding to no-channel exchanges at all.

t
(t—u)g,(t)— 96,2

t
(2mg—t)gk () — W}
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Finally, we would like to comment about phase-shift defi- lll. CONCLUSIONS

nition. In this paper we have extended to kaon-pion scattering the
As elastic unitarity is not satisfied in either of the ampli- comparison between chiral perturbation calculations and the
tudes, the definition of partial-wave phase shifts is arbitraryunitarization program of current algebra.
Nevertheless, one can make suitable definitions. We have Exactly as in the previous analysis, of pion-pion scatter-
adopted the definition tah, = ImT,,/ReT ,,, knowing that ~nd, we would like to emphasize that, despite the error of not
ImT = (p/16m)|T%|2. The authors of Ref[7] preferred including all t-channel contributions, the basic structure of

. 0 S ) the amplitudes presented (®.3) and in(2.4), concerning the
adopting the definitiod,, = (p/16m)ReT ,, which is valid  genendence on the variablest, andu, is the same. On the

for small 6. ~other hand, only ChPT contains meson mass-dependent,
Another method to implement elastic unitarity uses Padeonanalytic terms. We remark also that the methods lead to

approximation. By this way, Dobado and Re#410] have  amplitudes with different numbers of free parameters, by a

recently used ChPT amplitud@.4) as the starting point to particular choice made in the R¢6]. _

obtain a good fit o8 andP K— 7 phase shifts. Concerning phase-shifts definition, we considered that, as

Our program, restricted to its first order, can be Consid_current algebra gives real amplitudes, any method intending

. . . to go beyond threshold for meson processes must explore the
ered an alternative for their calculation. In effect, tWO'IOODimaginary part it implies.
calculation in ChPT context is a very difficult ta.Sk; hOWeVer, A good feature of the current algebra unitarization pro-
one of ug11] gave the tools to go to the next-order approxi- gram is the possibility of constructing next-order approxima-

mation within the current algebra unitarization program.  tion in a very simple way, as explained in REf1].
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