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We investigate how Li&her’s relation between the finite-volume energy of two pious at rest and 
pion scattering lengths has to be modified in quenched QCD. We find that this relation changes 
drastically, and in particular, that “enhanced finite-volume corrections” of order Lo = 1 and Z-’ 
occur at one low CL is the linear size of the box), due to the special properties of the q’ in the ,. 
quenched appro&ation. We define quenched pion scattering lengths, and show that they are 
linearly divergent in the chiral limit. We estimate the size of these various effects in some numerical 
examples, and find that they can be substantial 
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I. INTRODUCTION 

Almost all lattice QCD efforts so far have been devoted 
to the computation of the h&on spectrum and hadronic 
weak matrix elements. However, much more is known 
about hadrons than just their spectrum and weak decays, 
and one would like to derive this rich phenomenology 
quantitatively from QCD. The example which concerns 
us here is the computation of pion scattering lengths. 

It is difficult to obtain scattering amplitudes directly 
in lattice QCD, since this would involve an analytic 
continuatiqn to the physical regime of numerically ob- 
tained Euclidean four-point correlation functions. How- 
ever, L&her has shown [1,2] that the energy eigenval- 
ues of states with the quantum numbers of two-particle 
states in finite volume admit a systematic expansion in 
l/L, where L is the linear dimension of a spatial vol- 
ume with periodic boundary conditions. In addition, he 
showed that the coefficients of the powers of l/L in this 
expansion are related to the infmite-volume elastic scat- 
tering phase shifts at values of spatial momenta that oc- 
CUI in the finite volume, for energies below the inelastic 
threshold. In particular, for the shift AE in the lowest 
two-particle energy eigenvalue E for spinless bosom with 
mass rn which are at rest, one has 

+o(L-B) , (1) 

where ao is the I = 0 scattering length, cl = -2.837297, 
and c2 = 6.375183. It is important to note that equa- 
tions such as these are only expected to be applicable in 
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where n*(t) = J d%?r*(z, t) are zero spatial momentum 
charged pion fields at time t. The subscript “con” means 
that we should exclude graphs where the fields at time 
t are disconnected from the fields at time 0. The extra 
factor one-half in the last equation comes from the fact 
that the initial and final ?rtxc states both need a factor 
l/A to be properly normalized because they are states 
with two identical particles. This method has actually 
been used in attempts to compute the I = 2 scattering 
length [4,5], and, more recently, the I = 0 scattering 
length (as well as the I = 2, the pion-nucleon, and the 
nucleon-nucleon scattering lengths) [SI. 

However, all these computations were done in the 
quenched approximation, and it is not clear a p&ti that 
Liischer’s analysis carries over to the quenched approxi- 
mation without modification. New infrared divergences 
occur in quenched QCD in the chiral limit [7-g], and 
modification of the L dependence of equations like Eq. 
(1) might occur, at least for those particles sensitive to 
the chiral limit. For instance, it was shown that the 
imaginary part of the quenched ?T+?T- + n+?~- scatter- 

the domain where the finite-volume corrections to single 
particle energies, which are exponentially suppressed 131, 
are indeed small compared to the right-hand side of Eq. 

(0 
R&&ns such as these simplify the numerical effort 

needed to obtain information on phase shifts enormously. 
For instance, one can obtain the 1 = 0, I = 0, and I = 2 
pion scattering lengths from Eq. (1) by extracting the 
low&t energy levels in the I = 0,2 channels from the 
large time behavimof the Euclidean correlation functions 

Cr=&) = g+-(t) - g++(t) > 

G=z(t) = c++(t), 

c+-(t) = (Ol?r+(t)?r-(t)?r-(O)n+(0)l0),,” ,’ 

C++(t) = ~(ol~+(t)*+(t)n-(o)~-(O)l0).,” , (2) 
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ing amplitude diverges at threshold (i.e., at zero relative 
momentum) when calculated using quenched chiral per- 
turbation theory (ChPT) [lo]. (For quenched ChPT, see 
Re&. (11,7,9,12]. In this paper, we investigate in more 
detail the case of pion-pion scattering at threshold in 
quenched chiral perturbation theory. We will consider 
only the case of degenerate quark masses. 
II. CALCULATION IN QUENCHED CHPT 

The correlation functions C++(t) and C++(t) can be 
calculated in the ChPT expansion. Formally, with x(t) 
the operator that creates a two-particle state with def- 
inite quantum numbers, the Euclidean correlation func- 
tions C = Cr=,,, can be expressed as 
(3) 
where X is an expansion parameter, proportional to 
m~/(ll%?f~) in unquenched ChPT (we will come to 
quenched ChPT later). We have used the expansions 

E, = EC) + XEi) + X’EC) + 0(X3) , 

I(“l~$y = zp + A.@) + x2zp fO(X3) (4) 

The sum over a is a sum over all intermediate states ex- 
cept for the vacuum IO); these states are eigenstates of 
the complete theory (i.e., to all orders in A). From Eq. 
(3) we see that the perturbative corrections to the en- 
ergy eigenvalues can be extracted from the terms linear 

in t, after taking out the factors Z~“‘exp(-E~o’t). We 
can calculate the energy eigenvalues in a finite box L3 
with periodic boundary conditions by restricting all spa- 
tial momenta p to p = 2nn/L with n E z3. Calculating 
to one loop order (i.e., to order AZ) and expanding the 
result in l/L, we should recover the first two terms of 

Eq. (0 
The calculation of the I = 0 ahd I = 2 correlation 

function at tree level in ChPT is straightforward, giving 

.+0(t) = ,-Z@$ 1+ %L 
I/ 1 24f: (mm 

+w (md) -- 

1 4f%? (mm ’ 

cr=,(t) = e-2m-t$ 
S 

I+ 2C 1 
lu, (%L)3 

4 (md) --___ 1 2f, (mrL)3 ’ n 
&om which we obtain the well known result 

(fr = 132 MeV in our conventions), using Eqs. (1,3). 
This tree-level result is also valid in the quenched approx- 
imation. If we extended the calculation to one loop, we 
would find the first two terms of Eq. (I), with the infinite- 
volume one-loop expression for a0 in the Le3 term, and 
the tree-level expression for ao in the Lm4 term. For the 
Lm5 term one would need to go to higher order in the 
chiral expansion. 

We now wish to determine the quenched approxima- 
tion version, of Eq. (1) for I = 0 and I = 2 pion scatter- 
ing. We will show that Eq. (1) changes drastically. In 
particular, “enhanced finite-volume corrections” to the 
infinite-volume result E = 2m, occur at order Lo = 1 
and Lm’. We will first present the calculation, and then 
discuss this remarkable result. 

In order to calculate the quenched one-loop correc- 
tions to Eq. (5), we employ (Euclidean) quenched ChPT, 
which was systematically developed in Re&. [7,13]. It 
was shown there that the q’ meson in the quenched ap- 
proximation has both single and double pole terms in its 
propagator: 

b?‘(P)d(d) = J(P + 44 
( p2 -in%; - (p2 zn$)~ 

- 
> 

T (7) 

where ~1 is the parameter equivalent to the singlet part 
of the q’ mass in unquenched QCD. From experiment, 
$/3 = (500 MeV)’ in full QCD; quenched numerical 
computations get roughly this value [14-171. The vertex 
/S can actually have momentum dependence [7], which 
we will ignore for the purpose of this paper. It is the 
double pole in Eq. (7) that will lead to the enhanced 
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finite-volume corrections when an 1)’ appears as an in- 
ternal line in a one-loop diagram contributing to pion 
scattering. 

There are two types of contributions containing double 
pole terms. Figures l(a) and l(b) are the s-channel me- 
son diagrams for the n+n- + ?T+?T- amplitude (C+-) 
in quenched CbPT, and Figs. l(c) and l(d) are the 
t-channel diagrams for the same amplitude. C++ gets t- 
channel contributions from diagrams like Figs. l(c) and 
l(d) as well as crossed (u-channel) versions. The crosses 
denote the pa vertex corresponding to the second term in 
Eq. (7); see Ref. [7]. Note that any unusual behavior of 
quenched correlation functions due to the double pole in 
Eq. (7) is always accompanied by $ dependence. This 
implies that in order to uncover tbis behavior, we need 
to calculate the $ dependence of correlation functions. 
We will do this for C+-(t) and C++(t) to one loop. 

These diagrams have been calculated before in 
Minkowski momentum space (in Smite volume) [lo], 
and it was found that they diverge on shell for p --t 0 as 
l/p3 (with p the relative momentum in the center of mass 
frame); whereas they are perfectly well defined in the 
Euclidean regime. This seems to indicate that no Hamil- 
tonian formalism can be developed for the quenched ap- 
proximation and hence that equations like Eq. (3) cannot 
be applied. However, we can still parametrize C(t) in Eu- 
clidean space as in Eq. (3) up to terms linear in t, and 

extract the quantity AE, = XEi’) +X’E?’ +. from the 
term linear in t inside the square brackets. [The terms 
quadratic in t, however, will not be of the form indicated 

in Eq. (3) (51.1 We will take EL’) + AE, as a definition of 
the two-particle energy in the quenched approximation. 
(4 tb) 

(d) 

FIG. 1. ,?-dependent s-channel [(a) and (b)] and t-channel 
[(c) and (d)] contributions to pion-pion scattering. Incoming 
(outgoing) particles are on the left (right). An internal line 
with (without) a cross refers to the double (single) pole term 
in Eq. (7). 

Note that tbis prescription coincides with the definition 
used in numerical work [4-61. 

The calculation of the diagrams in Fig. 1 is straightfor- 
ward. Only the mass term in the chiral Lagrangian con- 
tributes to the 4-meson vertices, since in the degenerate 
mass case the kinetic energy term gives no couplings to 
“+“lrijl’fhe s-channel contribution to C++(t) [Figs. l(a) 

1s 
where w(k) = Jw and k = 27rn/L with n E iz3. tl and tz are the Euclidean time coordinates of the two 
vertices in Fig. 1, and k is the spatial loop momentum. The integrals over tl and tz can be carried out, and collecting 
only the terms proportional to texp(-2m,t) we obtain 

(9) 

I 
There are aLso terms proportional to exp[-2w(k)t] 
(multiple by powers of t) arising from Eq. (8), corre- 
sponding (for k # 0) to states with nonzero relative 3- 
momentum and hence higher energy in Eq. (3). For 
k = 0 such terms combine with explicit exp(-2n,t) 
terms to yield contributions finite at k = 0, which have 
been explicitly separated out in Eq. (9). From Eq. (9) 
and from Figs. l(c) and l(d) and the corresponding di- 
agrams for C++(t), using Eq. (2,3), correcting for the 

renormalization factors Z, (‘) = L6/(4m:) [cf. Eq. (5)], 
and noting that all momentum sums are ultraviolet finite, 

we finally obtain [with AEzne loop = X2&); cf. Eq. (4)] 
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+Ao(m,L)ba+ 0 & ( )I , 

+ A&n,L)& + 0 & ( >I , 

where 

and 

481~~ 
Az(m*L) = - 

Tl&LB CL k 4k) ’ 

00) 

(11) 

(12) 
where the I/w6 and I/w7 terms come &n the t- (and 
u-) channel diagrams. Note that 6 and E have to be taken 
as independent expansion parameters in quenched ChPT 
[7,12], and that only S-’ (i.e., $-) dependent corrections 
have been included. If the momentum dependence of pL2
had been included (11’ + $ + ap”) then there would 
be additional terms of order a& in Eq. (IO). There 
are b-independent contributions as well, but those are 
proportional to E’. We will not calculate such terms in 
tbis paper. [The O(e?) terms include contributions from 
the &-dependent potentials--see Ref. [?‘I.] There are no 
S-dependent contributions from the one-loop diagrams 
with a single six-point vertex, because such contributions 
are absorbed into the renormalization of the pion mass in 
the tree-level result. This is an example of a phenomenon 
which occurs quite generally for degenerate quark massw 

PI. 
The complete results to one loop for the energy shifts 

are then 
 

Er,z-2m, q AEr=, = AEF!; + AE,=, one Loop 
? (13) 

with AEon’ loop given by Eq. (10) and 

-7 
AEF:; = - 

4f2L3 ’ s 

We note that rn, in Eq. (13) and all subsequent equa- 
tions is the renormalized, finite-volume pion mass, in- 
cluding all one-loop corrections [7]. 

Some momentum sums that appear in Eq. (10) are 
more singular near k = 0 than in the unquenched case. 
These momentum sums can be expanded in L-l using a 
result established by L&her in Ref. [l]: 
(15) 

with integer Q > 0 and f(j)(O) = (&)jf@)l p = ,,, valid up to corrections vanishing faster than any power of L-’ if 
all derivatives off are square integrable. Ak is the Laplacian with respect to k and z(q) = Z&q,O) is a zeta function, 
with 

z(3) = 8.40192397, t(2) = 16.532 315 96, z(1) = -8.913632 92, e(O) = -1 . (16) 

The t- and u-channel contributions do not contain any singular momentum sums, and instead of Eq. (15) we have 
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for the nonsingular case, again up to corrections vanishing faster than any power of L-‘. Using Eqs. (15,17), we 
obtain large m,L approximations for the coefficients Bo,z and Ao,z: 

C-1 

3 
1 

&(mrL) e ; 
2T 

m L 
* 

(18) 
The LM3 terms in Eq. (18) come from the integrals in 
Eqs. (15,17), and the Lo = 1 and Le2 terms in the I = 0 
channel are the enhanced finite-voume corrections that 
we announced earlier. We also see that the Lm4 term 
does not follow the pattern of Eq. (l), as can be seen 
from the fact that it is 6 dependent, whereas the tree- 
level scattering length is not. There are no enhanced 
terms in the I = 2 channel. Note that the corrections to 
Eq. (18) vanish faster than any power of L-‘. 

The enhanced finite-volume corrections to AE in the 
quenched approximation make it impossible to define a 
scattering length via Eq. (1). The only alternative is to 
drop the enhanced terms and define the scattering length 
to be simply -m,/(4?r) times the coefficient of the Lw3 

term in Eq. (1). Using the tree-level result for a~=“’ and 
Eq. (ll), we then obtain from Eq. (10) 

Note that even after removing the enhanced finite-volume 
corrections, these results still diverge in the chiral limit. 
We have uncovered yet another example of the bad chiral 
behavior of the quenched theory [7-9,121. 

For some values of m,L we have computed the 
values obtained from the definition of the coefficients 
A,,,&n,L), B,,,z(m,L) [Eq. (12)], and also from the ap- 
proximate expressions given in Eq. (18); see Tables I 
and II. EYom these tables, it is clear that, for the smaller 
values of m,L currently used in numerical computations, 
the exact expressions will have to be used. 
III. NUMERICAL EXAMPLES 

As a “real world” numerical example, we take rn, = 
140 MeV, fr = 132 MeV, 6 = 0.1, and m,L = 6. We get 

A,?$=‘; = -1 3 MeV. AE”“’ loop = -0.3 MeV . j IL-0 

A@!!; = 0.36 MeV; AE”” loop - IL-2 - -0.07 MeV’. (20) 

TABLE I. Bo and Ao as a function of rn&. The third 
(fifth) column (Bo .,,/Bo rap. A0 exp/Ao) gives the ratio of 
B,, (A,,) calculated from Eqs. (18) and (12). 

7&L BO Bo .x./L% Ao Ao .x:,/.40 
1.0 -3592.1 1.0202 9363.3 0.50044 
1.5 -315.47 0.96660 828.75 0.50779 
2.0 -56.287 0.89612 151.71 0.53075 
2.3 -24.443 0.84633 67.895 0.55550 
2.5 -14.902 0.81036 42.560 0.57707 
2.7 -9.4693 0.77256 27.993 0.60252 
3.0 -5.1370 0.71373 16.180 0.64664 
3.3 -3.0011 0.65514 10.180 0.69511 
3.5 -2.1797 0.61837 7.7905 0.72799 
3.7 -1.6310 0.58529 6.1387 0.76007 
4.0 -1.1149 0.54625 4.5037 0.80478 
4.5 -6.7984 0.51968 2.9774 0.86622 
5.0 -0.48446 0.54330 2.1613 0.91025 
5.5 -0.39019 0.60041 1.6717 0.93986 
6.0 -0.34224 0.66856 1.3502 0.95923 
6.5 -0.31697 0.73276 1.1238 0.97182 
7.0 -0.30343 0.78697 0.95588 0.98007 
7.5 -0.29622 0.83043 0.82635 0.98556 
8.0’ -0.29257 0.86450 0.72343 0.98929 
9.0 -0.29054 0.91166 0.57054 0.99732 
10.0 -0.29151 0:94055 0.46300 0.99604 
11.0 -0.29347 0.95875 0.38388 0.99736 
12.0 -0.29566 0.97058 0.32374 0.99817 



53 FINITE-VOLUME TWO-PION ENERGIES AND SCATTERING 481 
TABLE II. Bz and AZ as a function of m,L. The third 
(fifth) column (Bz ..,/Bz resp. Aa . ../Az) gives the ratio of 
Ba (a,) calcul&ed f&n E&(18) and (li)- 

WJ Ba Ba .x./Ba Az AZ exp/Aa 
1.0 -1948.2 0.0067546 4680.4 0.016870 
1.5 -171.08 0.022791 413.47 0.056581 
2.0 -30.496 0.053939 75.145 0.13134 
2.3 -13.219 0.081819 33.310 0.19482 
2.5 -8.0397 0.10476 20.682 0.24433 
2.7 -5.0891 0.13137 13.432 0.29864 
3.0 -2.7327 0.17835 7.5685 0.38638 
3.3 -1.5677 0.23358 4.6049 0.47712 
3.5 -1.1178 0.27459 3.4316 0.53665 
3.7 -0.81582 0.31845 2.6253 0.59376 
4.0 -0.52955 0.38828 1.8345 0.67251 
4.5 -0.28357 0.50926 1.1104 0.78032 
5.0 -0.16838 0.62524 0.73624 0.85795 
5.5 -0.10892 0.72620 0.52135 0.91027 
6.0 -0.075482 0.80712 0.38719 0.94408 
6.5 -0.055213 0.86787 0.29781 0.96541 
7.0 -0.042100 0.91130 0.23521 0.97868 
7.5 -0.033138 0.94130 0.18964 0.98688 

8.0 -0.026731 0.96153 0.15547 0.99193 
9.0 -0.018349 0.98377 0.10864 0.99694 
10.0 -0.013249 0.99325 0.079048 0.99884 
11.0 -0.0099145 0.99722 0.059348 0.99956 
12.0 -0.0076241 0.99886 0.045700 0.99983 

Note that quenched ChPT appears to be working rea- 
sonably well, with -25% one-loop corrections to tree- 
level values. However, because of the enhanced finite- 
volume corrections, qtienched ChPT breaks down for 
larger L. For example, for m,L = 8 we find a 63% one- 
loop corrections in the I = 0 channel; for n&L = 12, 
a 240% correction. In addition, as L gets smaller the 
sums in Eq. (12) get large contributions from small k 
and are much larger than their (already large) asymp- 
totic expansions. This means that, as one might expect, 
quenched ChPT also breaks down for small volumes. For 
example, while m,L = 4 still gives acceptable one-loop 
corrections, for m,L = 2.5 we find a 94% correction in 
the I = 0 channel. 

We note also that 6 as large as -0.18 is not excluded; 
S = 0.18 is what one would get by putting in the full QCD 
value for $: $/3 = (500 MeV)‘. Indeed it is possible 
that the difference between S = 0.18 and the 6 - 0.1 
found in simulations [14-171 is simply due to the larger 
values of fr which accompany the larger quark masses 
used on the lattice. With 6 = 0.18 (and m,L = 6), we 

have AI.?“” loop = -1.3 MeV and AE”“’ loop = -0.3 I-0 I-2 
MeV, again indicating a breakdown of quenched ChPT. 

For the results given in Eq. (10) to be useful in nu- 
me&al simulations, the terms linear in t in Eq. (3) must 
not be obscured by terms with higher powers in t. Fur- 
thermore, one must be able to separate numerically the 
contribution of the lowest two-pion state (with relative 
momentum k = 0) from that of the closest excited states 
(with relative momentum Ikl = 2?r/L). We therefore de- 
mand 

IAEtreetl cc 1 , 

and 

It is not hard to satisfy these conditions in our “real 
world” example with m,L = 6. Putting IAEtreetl = 0.1 
we find a~=,, = 10 and nr=s = 35. Note that, because 
Apee - L-s, fi actually decreases for smaller m,L 
if fAEtreetl is held fixed. For example, at m,L = 4, 
nr=o = 3. 

We can also calculate the size of the one-loop quenched 
ChPT effects in a recent numerical computation of scat- 
tering lengths by Kwamasbi et al. (61. They used a 
123 x 20 lattice at p = 5.7, and considered pion masses of 
0.29 (using staggered fermions) and 0.508 (using Wilson 
fermions), in lattice units. The values of fn were 0.187 
and 0.143, respectively [18] (our f,, is ti times that of 
Ref. [18]); we take d = 0.1. 

In their numerical computation Kwamasbi et al. did 
not include the “double-annihilation” diagram (in the 
terminology of Ref. [5]), which means that in cornpar- 
ing with Eq. (10) we should drop those O(6’) terms that 
come from s-channel amplitudes. This leads to a modifi- 
cation of the expression for &(m,L) [cf. Eqs. (10,12)], 
which now becomes 

B 0,modified(mrL) = -+ c -L 
k w’(k) 

= &(m,L) . 

(23) 

For the various one-loop contributions to AE we obtain 
using the lattice values for fr (in lattice units): 
aAEy:: aAE”“” lOOX= 
fzm, = 0.29 

I-0 
-0.029 0.0002 

am, = 0.508 -0.050 0.005 

QAEE; aAE”F 1-P 
1-2 

0.0083 -0.0017 
0.014 0.001 
We see that in this case the one-loop corrections are 
quite small-anomalously so in some cases because of 
cancellation between the bz and 6~ terms. (For b = 0.18, 
the one-loop terms are less than 20% of the tree-level 
terms, except for AE,O~z’oOp which is of the same size 
as AEt’,“; for am, = 0.29.) On the other hand, the 
conditions Eq. (21) and Eq. (22) are just barely satisfied, 
if at all, in the range oft (4 to 9) in which they fit. For 
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example, for am, = 0.29, lAEpz;tl = 0.26 at t = 9, and 
fi = 2.4 at t = 4. For am, = 0.508, lA.E~Y;tI = 0.45 at 
t = 9 and n = 1.8 at t = 4. Since there are six excited 
states with Ikl = 27rL, considerably larger values of 0 
would be needed to be confident that the excited states 
are not contaminating the results. 

Removing the 6’ terms in Eq. (19) that come tiam 
s-channel contributions, we would obtain for the I = 0 
scattering length (ai=” remains unchanged) 

For am, = 0.29 the J2 term leads to a 3% correction, 
and for am, = 0.508 it is 1%. These numbers are 11% 
and 2%, respectively, in the I = 2 case. 

IV. ORIGIN OF THE ENHANCED 
FINITE-VOLUME CORRECTIONS 

It is not difficult to understand the origin of the 
enhanced finite-volume corrections to Eq. (1) in the 
quenched theory. First, however, we need to have an intu- 
itive picture in a normal theory of how the L dependence 
of the right-hand side of Eq. (1) arises within Euclidean 
relativistic perturbation theory. (See also Ref. [5].) 

We begin by examining the factors of L and t in the 
zeroth order contribution to the correlation functions in 
Eq. (2). At this order, we just have a disconnected prod- 
uct of tvwseparate pion propagators from time 0 to time 
t. Since each of the four external fields is being inte- 
grated over space, there would be a factor of LI2 were it 
not for the fact that the propagator falls exponentially 
for III > l/m,, which fbrces the start and end of each 
line to be close to each other in space, and reduces the 
LI2 to LB. Furthermore, each pion line contributes a fac- 
tor of e-m-t; together they produce the factor e-zm-tLB 
which appears in Eq. (5). 

At next order, “tree level,” we have one interaction 
vertex. This vertex is integrated over all space-time, but 
now all five points (four external plus the vertex) must be 
spatially close to each other and only a L3 survives. The 
time, t’, of the vertex can however be anything as long 
as t > t’ > 0, so this gives a factor of te-2m-t-in other 
words, this is a contribution to the two-particle energy. 
Relative to the zeroth order term, this contribution is 
suppressed by L-3 and therefore contributes to the first 
term on the right-hand side of Eq. (1). 

On the other hand, if, for example, t’ > t, the total 
time for propagation is now t + 2(t’ - t), and the contri- 

bution is suppressed by an additional factor e-4m-(t’-t). 
So only times t’ > t with t’ - t - l/m, contribute, and 
this region of integration over t’ produces just a factor 
N (1/7&),+-t, in other words this is a “Z factor” 
correction in the sense of Eq. (3), not an energy contri- 
bution. 

Now let us go to the one-loop s-channel diagram (in 
the full theory, or any normal theory, like @). Call the 
times of the two vertices tl and tz, with tl the vertex 
closest to the outgoing (t) lines. In space, alI six points 
(four external plus two vertices) must be close (- l/war) 
to each other, so we start with a factor of L3. Consider 
the integration over tl and tz. If t > tl = tz > 0, the 
integrand goes like e- 2m-t. However, as tl moves away 
from tz, (but still in the order t > tl > tz) the integrand 
is suppressed by an additional factor e-z[Y(k)-~~l(t~-t~), 
where k is the momentum mode in the loop. This forces 
tl - tz - n E l&(k) - rn,]. In infinite volume, the 
lowest scale in the loop would be k N ms. For such 

k, Q - lImm, tl m tz, and the integration over tl and 
tz produces single factor of t. This is the normal one- 
loop contribution to the energy of order Le3 relative to 
the disconnected diagram. In other words this is just a 
correction to ao in the Lm3 part of Eq. (1). 

However, in finite volume one must sum over a dis- 
crete set of k’s, and a lower scale for k, l/L, is available. 
Indeed, to estimate the difference between the sum over 
k and the integral over k, one can simply look at the 
contribution of the lowest nontrivial momentum modes, 
k - l/L. (For the contribution of k = 0, see below). 

First note that the factor L3 J &, which one would 

have in “infinite volume,” is replaced by Ck in finite vol- 
ume, so the contribution of any single finite-volume mode 
is down by L-’ from the zeroth order term. The modes 
k - l/L have w(k) - rn, N L-‘, so Q N L’. Now the 
integration over tl,tz from the region t > tl > tz > 0 
gives - q$e-2m-t. Since 7k - L2 this gets boosted back 
to Lm4 relative to the zeroth order diagram. In other 
words, the difference between the sum and integral over 
k produces the agLe4 term in the two-particle energy. 
Contributions where, for example, tz > tl, or tl > t, 
etc., are suppressed with no gain in L factors, so these 
give higher order corrections in l/L. 

When k = 0, there is no suppression at all for t > tl > 
tz > 0: tl and tz move freely in this range. But then the 
integration over tl,& gives a factor t2, so this is not a 
contribution to the one-loop energy (it is an iteration of 
the tree-level energy shift). “Out of order” contributions 
are suppressed by e;4m-r’z where 7’ is the amount of 
time out of order. These can give te-2m-t, but there is 
no L enhancement, so these are terms of order Lm6 in 
the energy. 

Note that the t and u channels do not contribute Lm4 
terms in the energy: the internal lines always contribute 
e--ZY(Ll(tl-t~l [no w(k) - rn, in the exponent]. So Q - 
l/m,, always, and there is no boost in the power of L 
from the integrations over tl, tz. 

The quenched L’anomalous” terms are now easy to un- 
derstand. An “x” (r2 vertex) on an internal line can 
be at any time with no additional suppression as long as 
tl > tx > ts. So the integration over tx produces an 
extra factor of Q. Therefore each “xl’ gives two more 
powers of L, starting from the term LM4 in the energy. 
The single-x diagram’s contribution to the energy~is thus 
of order L-2, and the double-x’s, order 1. Again, there 
are no such enhanced contributions in the t and u chan- 
nels. 

We conclude this section with the remark that, in the 
quenched theory, the enhanced terms in l/L are gener- 
ated exclusively by the lowest modes in momentum space, 
i.e., modes with n - 1, where k = 2?m/L. The sum over 
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n for the enhanced terms converges well before n - m,L. 
On the,other hand, the Lm4 terms in the energy in a “nor- 
mal” theory (e.g., full ChPT), which are analogous to the 
enhanced quenched terms, are generated by all modes up 
to n N mnL, not just by the n N 1 modes. This is be- 
cause the enhancement by Lz from phase space for modes 
with n - m,L competes with the L2 enhancement from 
n for modes with n - 1. Indeed, in a normal theory, 
the sum over all modes with n 5 m,L contributes at 
order Le3 to the energy, and the Le4 terms arise from 
the di@ence between the sum and the integral over such 
modes. 

V. CONCLUSION 

We have shown how to adapt Liischer’s analysis of the 
relation between the finite-volume energy shifts of two- 
particles states and scattering lengths to the quenched 
approximation of QCD. These energy shifts are defined 
directly from the quenched Euclidean correlation func- 
tions, in a way consistent with the way it was done in 
recent numerical computations of two-pion correlation 
functions. We have calculated the finite-volume energy 
shifts to one loop for the case of two picas at rest in 
quenched chiral perturbation theory; our main result is 
contained in Eqs. (lo)-(14). 

The one-loop corrections are very different from those 
of the full theory. In particular, “enhanced finite-volume 
corrections” of order 1 and Lw2 appear, to be compared 
with the tree-level contributions which are of order L?. 
This indicates yet another breakdown of quenched chiral 
perturbation theory (and presumably quenched QCD) in 
the infrared, and, as in other quantities, this behavior 
originates from the special role of the 7’ in the quenched 
approximation. We have examined the size of these ef- 
fects in some examples, including bne in which we take 
the pion mass, the pion decay constant, and the volume 
from the most recent numerical computation of the en- 
ergy shifts [18]. The range of applicability of the whole 
analysis as a function of the volume, the pion mass, and 
the 0’ mass is also discussed. 

Because of the completely different nature of the 
quenched one-loop corrections (as compared to the un- 
quenched case), and in particular because of their in- 
frared divergent behavior, the quenched tw+pion energy 
shifts will only be close to the full QCD results if the 
one-loop corrections are small compared to the tre&vel 
terms. A consequence of this is that one can expect agree 
ment of quenched computations with full QCD at best 
to 25%, which is the size of one-loop corrections to tree- 
level chiral perturbation theory in the unquenched case. 
(See for instance a recent compilation of tree-level and 
one-loop chiral perturbation theory results for pion scat- 
tering lengths by Gasser [19].) 

Presumably no satisfactory Hamiltonian formulation 
exists for quenched QCD. Indications in this direction 
are the enhanced finite-volume corrections uncovered in 
this paper, as well as the (related) fact that the pion scat- 
tering amplitude, continued to Minkowski space, diverges 
at threshold [lo]. This implies that the energy shifts and 
scattering lengths as defined in this paper from Euclidean 
correlation functions do not have a direct physical mean- 
ing. One may nevertheless hope that the quenched values 
for these quantities are close to similarly defined quanti- 
ties in full QCD (at least for some range of parameters), 
which do have a physiCa interpretation. As discussed 
above, a necessary condition for this is that the values of 
these quantities are given essentially by tree-level chiral 
perturbation theory. Finally, we would like to remark 
4hat a nonperturbative analysis along the lines of Ref. [2] 
does not seem to be possible, since for that approach a 
Hamiltonian framework is indispensable. The only an- 
alytic handle we have on pion physics in the quenched 
approximation is Euclidean quenched chiral perturbation 
theory. 

ACKNOWLEDGMENTS 

We would like to thank Akin Ukawa for a careful read- 
ing of the manuscript, and Steve Sharpe and Pierre van 
Baal as well as Akia Ukawa for useful discussions. This 
work is supported in part by the Department of Energy 
under Contract No. DOE-2FG02-91ER40628. We are 
grateful to the National Centre for Theoretical Physics, 
Canberra, Australia, for hospitality while this work was 
completed. 
[I] M. Liischer, Comm. Math. Phys. 105, 153 (1986). 
[Z] M. Liischer, Nucl. Phys. B354, 531 (1991). 
[3] M. Li&her, Comm. Math. Phys. 104, 177 (1986). 
[4] M. Guagnelli, E. Marinari, and G. Parisi, Phys. Lett. B 

240, 188 (1990). 
(51 S. R. Shape, R. Gupta, and G. W. Kilcup, Nucl. Phys. 

B383,309 (1992); Ft. Gupta, A. Patel, and S. R. Sharpe, 
Phys. Rev. D 48, 388 (1993). 

[6] Y. Kuramashi et al., Phys. Rev. Lett. 71, 2387 (1993); 
Nucl. Phys. B (Proc. Suppl.) 34, 117 (1994). 

[7] C. W. Bernard and M. F. L. Golterman, Phys. Rev. D 
48, 853 (1992); Nucl. Phys. B (Proc. Suppl.) 26, 360 
(1992)., 
[8] C. W. Bernard and M. F. L. Golterman, Nucl. Phys. B 
(Proc. Suppl.) 30, 217 (1993). 

191 S. R. Shape, Phys. Rev. D 46, 3146 (1992); Nucl. Phys. 
B (Proc. Suppl.) 30, 213 (1993). 

[lo] C. W. Bernard et al., Nucl. Phys. B (Proc. Suppl.) 34, 
334 (1994). 

[ll] S. R. Sharp+ Phys. Rev. D 41, 3233 (1990); Nucl. Phys. 
B (Proc. Suppl.) 17, 146 (1990); G. Kilcup et al., Phys. 
Rev. Lett. 64, 25 (1990); S. R. Shape, in Standmd 
Model, Hadmn Phenomenology and Weak Decays on the 
Lattice, edited by G. Martin& (World Scientific, Singa- 
pore, in press). 

(121 M. F. L. Golterman, Acta Phys. Pol. B 12, 1731 (1994). 



484 CLAUDE W. BERNARD AND MAARTEN F. L. GOLTERMAN 53 
[13] C. W. Bernard and M. F. L. Golterman, Phys. Rev. ‘D, 
49, 486 (1994); Nucl. Phys. B (Proc. Suppl.) 34, 331 
(1994). 

[14] Y. Kuramashi et al., Phys. Rev. Lett. ‘72, 3448 (1994); 
Nucl. Phys. B (Proc. Suppl.) 34, 117 (1994). 

[15] J. -F. Lagae and K. -F. Liu, Nucl. Phys. B (Proc. Suppl.) 
42, 355 (1995); Kentucky Report No. UK-94-04, hep- 
lat/9501007 (unpublished). 
[16] R. Gupta, Nucl. Phys. B (Proc. Suppl.) 42, 85 (1995). 
[17] S. Kim and D. Sinclair, Phys. Rev. D 52, 2614 (1995). 
[18] Y. Kuramashi et al., Phys. Rev. D 52, 3003 (1995). 
[19] J. Gasser, in DA@NE Physics Handbook, 2nd ed., edited 

by L. M&ni, G. Pancheri, and N. Paver [Report No. 
hep-ph/9412392] (to be published). 


	I. INTRODUCTION
	II. CALCULATION IN QUENCHED CHPT
	III. NUMERICAL EXAMPLES
	IV. ORIGIN OF THE ENHANCED
	V. CONCLUSION
	ACKNOWLEDGMENTS

