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Three-dixnensional BTZ black hole as a cylindrical systexn in four-dimensional
general relativity
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It is shown how to transform the three-dimensional BTZ black hole into a four-dimensional cylin-
drical black hole (i.e. , black string) in general relativity. This process is identical to the transforma-
tion of a point particle in three dimensions into a straight cosmic string in four dimensions.
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I. INTR, OI3U CTIC)N

Black holes were predicted within four-dimensional
general relativity as objects emerging from complete
gravitational collapse of massive objects, such as stars
[1]. They have also appeared as exact solutions of se-
veral gravity theories in two, three, four, and higher di-
mensions. String theory has provided a great variety of
black hole solutions as well as extended black objects
such as black strings and black membranes [2]. The study
of black holes in dimensions lower than four has proved
fruitful for a better understanding of some physical fea-
tures in a black hole geometry.

Recently, it has been shown [3] that three-dimensional
(3D) general relativity with a negative cosmological con-
stant admits a black hole solution with constant curva-
ture, the Banados-Teitelboim-Zanelli (BTZ) black hole.
This black hole has mass and angular moinentum. It has
many features similar to the Kerr black holes in four-
dimensional (4D) general relativity. It is interesting, as
well as important, to formulate other theories for the
same solution. For instance, the BTZ black hole is also
a solution to string theory in three dimensions [4]. Our
aim in this Brief Report is to show that the BTZ black
hole is also a black hole solution of cylindrical general
relativity.

II. FR.C)M 3D TQ 4D CENEB.AI B.ELATIVITY

In order to set the nomenclature we write the action
in D dimensions as

S(D) S(D) + S( )

where D = 3, 4. Sg is the gravitational Einstein-
Hilbert action (G = c = 1),

S(D)
&6~

where g( ) is the determinant of the metIic, B( ) is the

Ricci scalar, and A is the cosmological constant. The
matter action can be written as

(D) D j (D) (D)
Smatter & g ~matter &

where 8 tt, is the Lagrangian for the matter. Varia-
tion of (1) with respect to g( )

b yields the equations of
motion

In addition, in 3D the Riemann tensor can be written as

ab abc g(3) f
cd —6 6cdf e ~ (6)

Thus, from Eq. (4), for a source free region (T ab = 0),
one has a space of constant curvature. If one further sets
A =- 0, one has Hat spacetime.

Now, we want to relate general relativity in 3D with
general relativity in 4D, in such a way that a solution
in 3D is also a solution in 4D. This can be achieved by
setting the 4D metric as

d8 = g bdx dx + dz

where z is a Killing direction in the 4D spacetime. Then,
the determinants of the metric are the same g( ) = g( ),
the Ricci scalars are also the same, B( ) = B( ), and
through dimensional reduction one obtains 3D from 4D
general relativity. Thus, having found a 3D solution one
can now find the corresponding 4D solution by choosing
an appropriate energy-momentum tensor in 4D. In the
next section we will do this for the well-known example

where G( ) b is the Einstein tensor and T( )
b is

D ab
the energy-momentum tensor, de6ned by T(

S(g (o)g(o)
)

sg~ ~.b

Now, in 3D we write the metric in the form

d, (3)' g(3) d d b
ab
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of 3D point particles and 4D cosmic strings. Afterwards,
we will find the 4D counterpart of the 3D BTZ black hole.

Therefore, metric (13) is a solution of 4D general relativ-
ity if the energy-momentum tensor is given by

III. THE EXAMPLE OF 3D POINT PARTICLES
AND 4D COSMIC STRINGS (20)

T e ——mh(x)b(y), (8)

T~ i o ——se"8; h(x)h(y),

g(3)'. 0 (10)

For a point particle with mass m and spin s in 3D [with
Cartesian coordinates (t, x, y)], the energy-momentum
tensor can be written as

T~'i, = mh(x)h(y),

with i, j = x, y and the other components are zero.
This is the energy-momentum tensor of a straight cos-
mic string [7]. But now m and s are the mass per unit
length and the angular momentum per unit length of the
string, respectively. There are three Killing vectors ,

and and the full symmetry group of this spacetime
is R2 x SO(2).

where i, j = x, y. Then, by integrating Einstein s equa-
tions (with A = 0), one finds the metric [5]

IV. THE 3D BTZ BLACK HOLE AND THE
BLACK STRING IN 4D

ds~ i = dt —8s—dtdp+ dr + r (1 —4m) dp,
—oo&t&oo, 0&v &oo, 0&p&27r, (11)

The 3D BTZ black hole appears as a solution of Ein-
stein's gravity with a negative cosmological term, o.
—A ) 0, and T~si b = 0. The metric is given by [3, 8],

where (r, y) are the polar coordinates associated to (x, y).
There are two Killing vectors, and , and the full

symmetry group of this spacetime is R x SO(2) [6]. By the
coordinate transformation t = t —4sp and P = (1 —4m) p
one obtains a Hat spacetime,

ds~sj = —(a r —8M) dt —8Jdtdy
dr2

+ +p dp
o.2r2 —SM + 72

(22)

d (3)'= —d~2+d 2+ 2d—2 (12)

but now with the obligatory identifications (t, r, p) = (t+
8vrs, r, p+ 2vr(l —4m)), which mean space is conical and
time is helical.

Now, from Eqs. (5) and (7), we can put metric (ll) in
the 4D form

ds~ = dt —8sdt—dan+dr +r (1—4m) dp +dz,

with —oo & z ( oo. In 4D, Einstein's equations for
metric (13) can be split into ab = (P + P)aa'ab + Pgab~ (23)

where M and J are the mass and angular momentum of
the black hole. (Note that the normalizations for M and
J are diff'erent from those in [3]. We are using G = 1,
instead of G = —.) This solution has constant curvature
and appears through identification of points in the anti-
de Sitter spacetime. The asymptotic symmetry group
is the conformal group in two dimensions which has the
anti —de Sitter group SO(2,2) as a subgroup [6, 8].

We note that the cosmological term in Einstein's equa-
tions [i.e. , Ag~ i

b in Eq. (4)] can be regarded, if one
wishes, as an energy-momentum tensor for a perfect Quid

[9]. Indeed, if we write

(14) where p is the energy density and p is the pressure, and
set

G(') = —a(') = —a(') = 8~r(') (16)

where G( ) is the trace of the Einstein tensor in 4D, etc.
From (4) and (8)—(10), we also deduce

~( ) y6~g( ) y6~~( ) (17)

and the cross equation G( ), is identically satisfied.
Here, a, b = 0, 1, 2. Then, from Eq. (4), we can deduce

we obtain the cosmological term. In this description,
the cosmological term does not appear explicitly in Ein-
stein's equations (4), which are then given by, G
8vrT~ i b, with T~ i b given by Eqs. (23) and (24). This
Quid obeys the strong but not the weak energy condition
since its energy density is negative [10].

Now we want to translate the above black hole solution
(22) into a solution of 4D general relativity. Then, using
(7), we have

~( ) + ~«) ~( )', + ~( ) . Th,„ f,
(16) and (17) and the fact that T o

——T~ i o, we obtain

(18)

ds~4i = —(o. r —8M)dt —8Jdtd(p
2

+ 2 +p dp +dzdr 2 2 2

O.2r2 —8M +
(25)
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a(') = a('& = 6W = —6~'.

Then from (26) and (27), we obtain

8~T('~ = —2A = 2~'.

Since here T( ~ g
——0, we are left with

(27)

(2S)

8~T('~ .= 2n',

and the other components are equal to zero. One can see
this Quid as one having pressure in the z direction alone,
and no energy density. Such a Quid also obeys the strong
but not the weak energy condition.

However, in view of the fact that the cosmological term
can be regarded as a perfect Quid, we can also switch the
4D description into a Quid with the components

8~T( )

8~T(')"„=8~I = ~',
(»)
(31)

Using the formalism of Brown and York [11], we find
that M and J are now the mass per unit length and the
angular momentum per unit length, respectively, of the
black string solution, given in (25) (for an analysis of a
more general case see [12]).

To know what is the stress-energy tensor for this solu-
tion, we take the trace of (4) to find

—a('~ + 4W = 8~T('i.

8~T(') = 8~I = ~', (32)

8-T( )

V. CONCLUSIONS

It is remarkable that one can connect solutions in the-
ories with diferent dimensions. Here, we have connected
3D and 4D general relativities by an appropriate choice
of metric and energy-momentum tensor in 4D. Such a
type of connection can also be found from other 3D the-
ories to 4D general relativities [15, 12], as well as from
2D theories to 4D general relativity [16, 17].

As in the 3D case, in this description, the cosmological
term in Einstein s equations (4) does not appear explic-
itly. Metric (25) is thus a solution of Einstein s field equa;
tions, G( ) g ——8vrT( ) g, with T( ~

g given in equations
(30)—(33). Again, this fluid obeys the strong but not
the weak energy condition. It is a Quid with anisotropic
pressures.

Thus, the HTZ black hole can be translated into a
black string (or cylindrical black hole) in 4D general rel-
ativity. All the features appearing in 3D, such as 3D
collapse [13] and 3D stars [14] can be translated into 4D
cylindrical general relativity. The asymptotic symmetry
group is B times the conformal group in two dimensions
of which B x SO(2, 2) is a subgroup.
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