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String tension and Chern-Simons fluctuations in the vortex vacuum ofi=3 gauge theory
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Based on a model of the=3 SU2) pure gauge theory vacuum as a monopole-vortex condensate, we give
a quantitative(if model-dependentestimate of the relation between the string tension and a gauge-invariant
measure of the Chern-Simons susceptibility, due to vortex linkages, in the absence of a Chern-Simons term in
the action. We also give relations among these quantities and the vacuum energy and gauge-boson mass. Both
the susceptibility and the string tension come from the same physics: the topology of linking, twisting, and
writhing of closed vortex strings. The closed vortex string is described via a complex scalar field theory whose
action has a precisely specified functional form, inferred from previous work giving the exact form of a
gauge-theory effective potential at low momentum. Applications to Righhenomena, includindd+L
anomalous violation, are mentioned.

PACS numbgs): 11.15.Tk, 11.10.Kk, 12.15.Ji

I. INTRODUCTION two-surface$. Note that in(1) we have absorbed a factor of
i [see Eq(4) below] as well as the coupling constagy into
In this paper we consider d=3 parity-conservindno  the definition of the gauge potential. $ohas dimensions of

Chern-SimongCS) term] pure-gauge(no fermions or sca-  mass, while the canonically defined vector potential, which
lars) non-Abelian gauge theory, or just=3 gauge theory for g tond py dividingA by g, has units of the square root of
short. Our specific considerations will be for the gauge groug 55
SU(2), but the generalization to other gauge groups iS There is another quantity of interest which also depends
straightforward. on linking and related topological quantities: the vortex part

We supply here quantitative detail_s ofla scenario proposeds the Chern-Simons susceptibility, which we lahels. We
earlier[1] for d=3 gauge theory, which is strongly coupled i see that this can be defined gauge invariantly and with-

in the infrared(IR) because the gauge bosons are perturbds ;i ninteresting perturbative contributions. Begin by defin-
tively massless. In this scenario, the gauge-theory vacuum g [5] the Chern-SimonéCS) number as usual
dominated by an entropy-driven condensate of closed

strings of thicknessM %, whereM ~ g3 is the perturbative

gauge-boson mass, proportional to #he3 coupling con- Wcs:f d*xQ(x), (2
stantg3 (for high=T, d=4 gauge theoryg3=g®T, where

g® is thed=4 coupling at temperatur€). Each string has a 1 1 1

magnetic flux such that a large Wilson loop in the fundamen- Q= 4—7725ijkTr(§Ai djA— §AiAjAk , (3

tal representation

where the SI) matricesA; are defined as

W(T)=Pexp($rdx-A) (1) .
A= Alos. @
takes on values in the center of the gauge group if the
Wilson-loop!I" is topologically linked with the closed string, Now, Ws is not gauge invariant; under a gauge transforma-
and is unity otherwise(A large Wilson loop is one whose o with winding numbem,
length scales and distance to the string &#& 1) For

SU(2), the only nontrivial value oWV is — 1. The functional Wes— Wes+N. (5)

average W(I")) over allA then gives an area la@escribed
in terms of a string tensionjust as ford=4 gauge theory Butitis possible to define a gauge-invariant susceptibility as
[2], where the condensate is formed from closedthat part of the zero-momentum correlator,

*Electronic address: cornwall@physics.ucla.edu 2This is the mechanism of confinement in non-Abelian lattice

TElectronic address: yan@physics.ucla.edu gauge theory; see, e.g., Ré&l] and references therein. In )

The strings we discuss are not the same as electroweak, or lattice gauge theory, one introduces monopoles as the site of a junc-
strings[3]. Z strings occur fofT<T. and owe their existence to a tion between a spread-o@tontinuum vortex tube and an infini-
Higgs vacuum expectation valM@/EV); they are entropy disfa- tesimally thinZ, string; the latter is suppressed in the continuum
vored because they occur in the weak-coupling regime of eleclimit, leaving closed vortices without monopoles as the means of
troweak theory. confinement.
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s . Before turning to the string-condensate model, which in-
f d*x(Q(x)Q(0)), (6)  volves construction of a complex scalar field theory, let us
mention the natural field of application of these results. Per-
which is independent of the space volunve= fd3x as haps the most interesting use 03 gauge theory is in
V—o and thus can have no contributions from disconnecteglectroweak(or other gauge-theojyprocesses in the high-
parts with(Wcs)=0, which is a kind of topological neutral- early Universe witiT>T., whereT, is the phase-transition
ity condition for the string condensate. The last step in detemperature and there is no Higgs boson mass-generation
fining xcs is simply to restrict the gauge potentigds of (3)  mechanism. A finiteF gauge theory splits into sectors la-
to those describing closed strings. In view of the essentiallyoeled by the Matsubara frequencieg=2=NT,; all of the
Abelian nature of these stringtheir holonomy grougl) is  sectors withN+0 are well behaved in the IR and can be
Abelian], only the Abelian(first) term of (3) contributes, and treated more or less perturbativel9], if the coupling is
when a string configuration is used to evalu@g one finds  small enough. Even thid=0 electric sectofgauge-potential
[1,6] that it is a sum of Gauss linking numbers for mutually Ag) generates a perturbative Debye mass and causes no spe-
linked different strings and twist plus writhe, or self-linking cial difficulties of principle. But theN=0 magnetic sector,
number[7], for a single string. This is strictly true if the equivalent tod=3 gauge theory, has IR divergences which
string centers are large in the sense previously described fonust be cured nonperturbatively.
the Wilson loop; at short distances, there are corrections Perturbation theory fails here because no IR-regulating
coming from the gauge-boson maglswhich automatically mass can be generated in perturbation theory; gauge invari-
regulate the usual divergences associated with selfance prevents it. With no magnetic mass, the would-be ex-
intersections. Finally, we can define pansion parameter of hightheory isg?T/k, wherek is the
spatial momentum of the process considered. This has two
consequencegl) At scalesk set by nonzero Matsubara fre-
quencies, or by the Debye masgyT, a genuine perturba-
tion expansion is possible for small (2) No such expansion
where only vortex configurations are to be included. Noteg possible ak<g?T, and the theory is strongly coupled. Of
that xcs scales likeM?®, or (g°T)® in a highT gauge theory. course, these IR effects go away below the phase transition
Similarly, the string tensiofK ¢ scales likeM?, so one can where the gauge bosons get a mass from the Higgs mecha-
write y cs= constX (Kg)%2 Our purpose here is to calculate pism.
quantitatively this constant and the ratiges/M® and The essence of all nonperturbative effects is the genera-
K /M?2, within the string condensate model, as well as simi-tion of a magnetic mass! of orderg®T [10—13. This mass
lar dimensionless relations invoIving the vacuum energy anqis, in princip|e, to be found by So|ving some sort of nonlinear
the gauge-boson mass. If we could calculate any one of thesgiuge-invariant Schwinger-Dyson equation, but analytic
dimensionful quantities in appropriate units @fT, all the  progress in this direction has been sIpi8—15. There is a
others would be determined. recent lattice determination of this mags], but the tech-
The relation(7) can be written in an interesting way, nique used is not quite gauge invariant. We will not attempt
which has its counterpart h=4 gauge theory. We define the to determineM, but given its existence, we will analyze
operator®(x) as the square of the usu@lithout the cou-  further nonperturbative effects which can be expressed in
pling constant factgrfield strength: terms of it[see the discussion below E@®)].
These effects include high-sphaleron$17,18 and vor-
- 1 a2 o tex strings which can either close or terminate on magnetic
0(x)= ngz(Gii)Z(x)' (8) monopoles; we need only consider closed strings. These are
like Nielsen-Olesen strings except that there is no Higgs ef-
note that® is proportional to the trace of the stress-energyfect and no symmetry breaking. Becauke3 gauge theory
tensor. We can writ€7) as is strongly coupled, these strings form an entropy-driven
condensate. The existence of a condensate follows directly
- 13 from certain exact resul{d 9] for d=3 gauge theory, which
XCSZJ d3X<Q(X)Q(O)>Conn:(47)4<®>’ ©  include among others®)>0,e,,=—(1/3(0)<0 [20]
where ® is the squared field strengthsee (8)] and
where the problem is to calculate the dimensionless quantitfd®xe,,. is the vacuum energyor equivalently theN=0
£. One may check that some such factor ag)%is natural, contribution togF in the thermal case, with the Helmholtz
so that¢ is nominally of order 1. Equatiof8) is thed=3  free energy® Of course, the negative sign &f reflects en-
version of a sum rule conjectured, on various groufls  tropy domination.
for d=4 gauge theory, wher is replaced by the topologi- The fluctuations in CS number measured by the suscepti-
cal charge density an@ is the (anomalous trace of the bility (7) play an important role in determining the rate of
d=4 stress-energy tensor. We can, in fact, estingdiecause anomalousB+L violation[21-23 from high-T electroweak
our work yields an estimate fof®) in terms of M3, We  processes in the early universe. However, it is not possible to
have already said that the Wilson-loop area law stems from
linking of condensate strings to a fixed test string, the Wilson
loop itself. There is, then, a natural relation between the 3Shaposhnikov, in Ref[20], also attempts to estimate the free
string tension and the CS susceptibility, which is also ex-energy by semiclassical means; we will compare his value to ours in
pressed in terms of linkages. the conclusions.
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determine thisB+L rate/unit volumel'g, solely from the I N yl*
essentially static fluctuations dN.g in the d=3 gauge- _f d>x| [Vl +T ,
theory sector; one really needs to understand fluctuations in

the rate of chang&V.g of CS number, which are directly
related to fluctuations of topological chargendB+L, by classical action we will derive loop terms, automatically con-

the anomaly equationsTo calculatel's, requires much  gjgient with the gauge-theory effective action, which are es-
more thand=3 gauge theory, and we will not attempt such asengia to describe the condensate entropy. These loop terms

T>T., I'g. scales like @yT)% that is, like M4, where  action

M is the magnetic mass. This is just dimensional analysis, if

M is the only relevant scale; the hard part is to calculate the

overall coefficient. Usually, one argug®l,22 that there is F:f d3x<|ﬁ¢|2+
no sphaleron barrier fofF >T_ so the coefficient is of order

1, but this is not really clear. Given a magnetic maés

there should(Cormwall, Ref.[17]; Philipsen[18]) be a Wherev is the expectation value 4|, also expressible in
sphaleron of masé s,;~M/ay~T, and the thermal activa- terms ofM. Like all effective actions(11) should be treated
tion factor exp(-Ms,/T) is the exponent of a negative pure classically. Although we can and do derive the fofii)
number, which is not necessarily small in absolute value. Wérom loop corrections to the classical actigt0), the func-

will not consider sphalerons further here, but it will certainly tir?nal forﬁm O_f (1D i_s cor’::pletelﬁ/ gift"?]ted by thhe gau_gr(:,-
be important to estimate their contributionsgs, etc? theory effective action. Note thall) has a phase wit

In our vortex modell', depends on the rate of topologi- (]¢|y=v and short-range fluctuations, as required to describe

. . X ) the gauge-string condensate.
cal rgconnect|orﬁg4] of strings n the con(.jensate..Thls.; dy- Given this complex scalar field theory, how does one de-
namical process involves electric gauge fields, which lie out-

ide thed— h dv h i _”scribe the topological effects involved in the string tension
side thed =3 gauge-theory sector we study here, and we willy§ the cS susceptibility? In both cases, one uses auxiliary

not discuss it in detail. I-_|owever, we will make a few re- ppglian gauge potentials, but in different ways. For the
marks on how thel=3 strings are promoted to closed two- siring tension, the auxiliary gauge potential is itself a fixed
surfaces ind=4 and on how an intersection-numb5]  yortex, described in terms of the Wilson-loop contour; this
topological invariant of these surfaces is related to the usuglxed potential is coupled to the scalar-field theory in the
topological charge. usual way(which requires a complex fieldAt large dis-
Now, let us return to purel=3 gauge theory and our tances, all that is relevant for the string tension, this Wilson-
method of approach to its nonperturbative effects. It has beep@op potential becomes a pure gauge of the tﬁpb, but
known for decade§26] that a condensate of strings can be A s singular and expd) is not single valued[This is be-
described by dpossibly complexscalar field theory, with a  cause we seek the fundamental-representation string tension;
wrong-sign mass term representing entropy effects and afor the adjoint representation, expj is single valued and
interaction term likek ¢* representing the repulsion, or in- the string tension vanishdsThe multivaluedness is in con-
crease in free energy, of two strings trying to occupy theflict with the necessary single valuedness of the complex
same region of space. The underlying connection between scalar field, or equivalently, the underlying=3 gauge po-
string condensate and a scalar field theory is that a fieldtentials, and when one minimizes the scalar-field effective
theoretic propagator can be represented as a sum over pat@Astion in the presence of the auxiliary gauge potential one
or strings, and, in particular, the field-theory vacuum func-finds that this conflict is resolved by a surface of zeros of the
tional becomes a partition function of closed strings. scalar field, coinciding with the minimal spanning surface of
Such a connection betweenia3 string condensate and a the Wilson loop. As a result, a string tensierM? is gener-
field theory would not have been useful in the past, becausted; the numerical coefficient is an elliptic integral.
there would have been more parameters for the scalar-field 10 calculate the CS susceptibility, we use a technique

theory than for the underlying gauge theory. However, wediVen long ago by Edwardg27] to study topological en-
will exploit here the exactly knowiil9] form of the zero- tanglement of polymers. A new Abelian gauge potential

>

momentum effective action for the Opera@r of Eq. (8). V(X) is introduced, with a standard COUpling to the scalar
Given this effective action, we show that the correspondindi€ld and a self-action which is a pure CS tetaxcept for
classical action for the scalar-field theory is uniqdefythe ~ Very important short-distance modifications, coming from
form the gauge mas$1, which make everything finije Func-
tional integration overV yields a power series in the
V-field coupling constant, whose coefficients are related to
4Actually, sphalerons are closely related to the vortices weldise expectation values of Gauss linking integrals. In particular,
M. Cornwall and G. Tiktopoulos, Phys. Lett. 81, 353(1986; M.  we can read off the CS susceptibility from this series. To
Hindmarsh and T. W. B. Kibble, Phys. Rev. Leif, 2398(1985]. construct the series to the requiditeurth) order, we need to
A sphaleron interpolates between regions of oppositely directe@¢alculate a large number of three-loop vacuum graphs, all of
magnetic flux on a vortex, and can be pulled apart into two monowhich are finite and scale lik#13. We have calculated the
poles of the type that can terminate a thick vortex stfiig sum of graphs mostly numerically, after reducing the graphs
SWe will see later why a complex rather than a real field is chosento Feynman-parameter form.

(10

where the coupling constamt depends orM. From this

My Ny

4 3 )

(11)
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Il. SCALAR-FIELD THEORY DESCRIPTION zero-momentum vacuum matrix elements®f The func-
OF THE VORTEX CONDENSATE tional differentiation ofZ acts only on the explicig; 2 in the

The usual discussiof26] of mapping a string condensate action(13), and the specific form of the sum rules, or effec-
tive action which generates them, depends only on the spe-

onto a field theory begins with the observation that the num i fa.in Z and The effecti " b
ber of configurations of a closed string on a lattice, of IengthCI IC POWETS 0Igs IN £ andey,c. The elfeclive action can be

| and step length, is roughly(ignoring unimportant effecjs found tl)yoiln:cro_ducing a cons:cant §ou$énto the functional
given by the path integral integral, defining a vacuum function®¥ as

- I x2
é(dx)ex —f (——InZd)dI’/L
o\ 2
Because the only dependence gi'l is an overall inverse

up to an irrglevaqt normaliz_atiorj. Here,is the number of  factor in the action, adding the source is the same as chang-
dimensions in which the string lives, and the entropy factoring 9% to g4(1—J)~L. Then

(2d)"" is roughly the number of ways the string can turn at

its L/l vertices, without consideration of self-avoidance ef- W(J)=€,ad1—3) 3. (15
fects. If the strings are oriented, as they are for us, one mul-

tiplies this result by/ dl/Iexp(—Ul) and exponentiates to get By the usual Legendre transform, one finds the effective ac-
the string partition function. Here) is the internal energy/ tion for the zero-momentum matrix elements@f

unit length of the string(The | in the denominator of the

inte_gral adjusts for overqounting the ppint on the_string arbi- r(e)= f d3x< 0— f3/4<>1/4). (16)
trarily chosen as a starting poinfThe final result is recog- 3

nized as the functional integral of a free two-component real o

(or one complex scalar field, where the logarithm of the One sees thaf® has a minimum at®=(®) of value
propagator of the field has been expressed as a proper-time) d°X(1/3)(®) = [ d*xe qc.

integral. The field has a mass term which may be normal or What are the consequences for the scalar theory? A little
tachyonic, depending on whether the internal energy domithought shows that this theory must have only one coupling
nates the entropy or otherwise. A string condensate will fornfonstanty, and this coupling can be chosen to have dimen-
only if the entropy dominates, as it does fd=3 gauge sions of mass. Then, in order to reproduce the form of the
theory. effective action as in16), e, must scale likex®, corre-

Next, one must add self-avoidance effects, which amountgponding to the scaling of the gauge actio§sand it must
to adding interaction terms for the scalar field inside thebe possible to rescalg so that the only appearance »fin
functional integral. It is, of course, natural to have a four-the action is an overall factor of *. So the scalar action
field interaction to represent the simplest kind of intersectior(10),
of two strings, but the most general renormalizable field
theory ind=3 has other types of interactions, ranging up to S:f d3x
sixth-order terms. The question is what terms and what cou-
pling constants are needed.

We will address this problem in the reverse order of thelS acceptable. Of course, other interaction terms could be
remarks above, where the possible tachyonic mass@ign ~ included, such as*% %, but they will not do. The reason is
naling a string condensatis conceptually introduced before that with these other interaction terms, one cannot rescale
self-avoidance effects. Based on earlier exact results for thé in such a way that the action has an overall factor of
gauge-theory effective actidri9], we will construct a clas- A~ 1. But such a rescaling is essential to the derivation of the
sical scalar action containing a fourth-order interaction bugauge-theory effective action.
no mass terms at all. We will then show that one-loop effects The upshot is that only the classical actidm) can yield
contain a negative contribution to the effective action,l0op corrections consistent with the gauge-theory effective
equivalent to a tachyonic mass term. The resulting effectivéction (16). There is one subtlety of the acti¢h?): it gen-
action has a minimum corresponding to a string condensaté€rates quadratic and sextic terms from loops, which appear to

The idea behind the gauge-theory results is very simplee divergent and require bare.terms in the action to accom-
There is only one coupling constamfZ, and it has dimen- modqte the ngeded renormalizations. However, (_jemaljdlng
sions of mass. The action of the gauge theory can be writtefonsistency with the gauge-theory effective action, fixes
as these renormalizations. A simple way to do this is to intro-

duce a free energW(J) for the scalar theory, analogous to
1 W(J) for the gauge theory introduced above. Helds a
Sy= j dx0 = 4_g§f d*x2(G})? (13)  constant source for the scalar acti@riThen, we will require

(12) Z=exp:—W(J)]=f (dA)exd —S4(1—-J)]. (14

R NN
|V¢IZ+% : (7

=(1-3)73 =

[where® is the squared field strength of E@®)]. The par- Ws(D)=(1=)"W(0), W(0)= v, (18
tition functi'on Z, whicg is the funptionql integral ' of just as for the gauge theory as shown in EX).

exp(—Sy), gives exp(-fdxe,d. By naive dimensionality, Next, we turn to the calculation of one-loop corrections to
evac~gg, and repeated differentiation & and of ., with  the classical action(17), which express the entropy of
respect tog3, yields an infinite set of sum rules for the strings. Rather than calcula¥/(J) as outlined above, we
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will directly calculate the effective actiofessentially the m. In fact, these odd powers must be understood as absolute
free energy using the Cornwall-Jackiw-Tombouli€CJT)  values, in view of the symmetrgn— —m of the integrand.

[28] formalism. Following the one-loop calculation, we will Ultimately, these powers om will yield odd powers of
estimate two-loop contributions, which are appreciable, andly|, as in(11). Moreover, the one-loop integrals after regu-
presumably suggest the accuracy of the calculatipashaps larization yield negative contributions to the effective poten-
+30%). Please note that the CJT approach does not de@hl. For further discussion and more references, see Ref.
with bare loops, that is, perturbative effects, but instead wit29].

dressed loops constructed from the full propagator. To start, Now, do the integrals i19), following the above pre-

write scriptions, to find
Z=e><p(—BF)=f (DyDy)exp(—S) (19 ﬁF=f d%{%w—g—%(xwﬁﬂmﬁ . (29
=exp{tr InGEO—tr(GG;,l—l) ;Jlglczjns varyingm, one find§ m?=\||?, and substituting
—f%|4/;4|+2PI graph}. (20 ,8F=f d3x M;W— )\32;’/43}. (25

Here, G is the full propagator of the theor, is the clas-  Except for the gradient terms, which will be considered later,
sical propagator in the fielgs, and 2PI graphs are connected this is of the form(11) and consonant with the gauge-theory
graphs with more than one loop that are two-particle irreduceffective action(16), provided that one identifies

ible. The notation tr indicates an integral over all space, or a 4 3

sum over all momenta. The physical free energy is found by 0= N ] (@)= A (26)
searching for the extrema @F in the functional variable 4 42m)*

G as well as in the fieldy. To this end, we introduce a o .

variational parametem in G, writing in momentum space  Further, minimization onj yields

-1_12 2 172 \ m3
G SRRLE @D <|'/’|>Ev: o7 m:Zv Evaczvil,BFmin:_E-
We are only interested in small-momentum phenomena, so (27)
¢ can be treated as a constant, and one readily finds the
classical propagator Here,V is the volume of all space. It is important to note that
the variational parametan is not the physical scalar-mass
G, =K+ \|y|2 (22)  value, which is found from the second derivative of the ef-

. fective action at the minimum. We require that the scalar
All one-loop graphs, withG as the propagator, are found mass, or correlation length, must be the same as for the
by dropping the 2PI graphs if19). The next step is to insert 4=3 gauge theory, and we will use the same notahibfior

G andG,, into the first two terms of19) and do the inte-  poth of these quantities. It is easy to find frg@6) that
grals. Divergences appear, which can be removed in either of

two equivalent ways: dimensional regularization, or by the , 1,1,
substitution M 25’\” =M (28)
J Next, we ask what the effect of two-loop terms is. There
3 2y_, _ 3 2 v ,
f d*kF (k%) ZJ dk| 11k k? F 23 is only one 2P| two-loop graph, the double bubble, and its

Ny

value, to be added to the integrand of the one-loop value
It is easily checked that this substitution leaves convergent24), is + A\m?/32w2. As before, vary to findm, with the
integrals unchanged, and eliminates divergences. result

Before removing the divergences, we should comment on
their physical meaning in the case of interest, fiditgauge A A |22
theory. The underlyingd=3 gauge theory has no diver- m=-g " 8 : (29)
gences, except those which can be interpreted as coming
from the other sectors which go to make up the full finite- When this result is inserted in the two-loop effective ac-
T theory. For example, any divergence in the coupling contion, new terms involvingy appear which are not of the
stant would have to come from an underlyidg-4 diver-  desired form(11). This is no problem of principle; once one
gence. In general, ultraviolet divergences are associated witloes beyond one-loop graphs, one really cannot recover the
scales such &8, rather tharg®T which is appropriate to the desired form(11) without considering loops of all orders.
d=3 gauge theory only. We are justified in regulating the
scalar theory in a way which reproduces known results of the
d=3 gauge theory, such as the effective action f¢ir§). ®This value ofm means thaG=G,, as required by the varia-
It is a remarkable property of three dimensions that intetional equation forG which comes from Eq(20) when the 2PI
grals whose integrands depend R, yield odd powers of graphs are omitted.
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The reason is that a generic multiloop graph corresponds to As has been discussed elsewhg?el], the gauge-field
an expansion in powers of/ 42, as one readily checks, and vortex is a classical solution to an effective gauge aétion
such terms are already found in the expansiomarfi (29). A which includes a gauge-invariant mass tef@9,12. This
simple way to include the needed parts of other graphs téction is

correct the explicit two-loop result has already been given in M2

(18): one calculates the true vacuum enewjy(0) with zero S,=Sy— f d3x—Tr(V-IDV)2, (32)
sourcel at two loops, and then writes the vacuum functional 93

in the presence of the source as(i8) by multiplying b . .

(1—J)P3. After some uninteresting alg)ébra OFi])é f?ndg theWhereSg is the usual massles§ gauge acfisee(13)], V is

two-loop parameters ' an auxiliary SUW2) matrix, andD is the covariant derivative
V+A. The gauge transformation laws,

3 ( m)l/z A—UAU 1+UVU 1, (33
= , m=M

€vac— 55—, U=|5— (30
vac 24 2 V—>VU, (34)

show that the mass term {82) is locally gauge invarian(it
Note that, in spite of a very different algebraic structure, theis just a gauged nonlinear sigma moddlheV field can be
expression of3F i, andv in terms ofm are the same for the functionally integrated out at the classical level, just by solv-
one- and two-loop effective actions; the only difference is theng the V-field equations of motion. These turn out to be the
relation between the physical mabs and the variational same as the vanishing of the covariant derivative of Ahe
parametemm, which differ in the two cases by a factor of equations of motion.
\/5 . This can be taken as a rough measure of(ite very Up to a local gauge transformation, the vortex solution
high) accuracy of the first few terms of the CJT loop expan-can be written
sions, although the error encountered in any specific quantity
may be more or less than this. Perhaps this is an acceptable  5(x)=27QV x é dAAy(X—2)—Ag(X—2)], (35
discrepancy in analytic calculations of a strongly coupled

auge theory, where there is no obvious small parameter in . L
fqhe Eind of dXessed—Ioop expansion we are using. whereQ is an SU2) generator such ass/2i with the prop-

. . . erty that e is in the center of S(2). Here,A, is the
The point here is not to show that the effective scalar, y Xp@Q) IS | ®) m!

action must have the forrtll), which is guaranteed by the scalar propagator for mas4
underlying gauge theory, but to estimate the parameters R 1

\,v which occur in it in terms of the physical maksk. This Ap(x)= (277)3f d3k
we have done in Eq$27), (28), and(30). The next step is to

calculate the string tensidkg in terms of the same param- 5nq A, is the corresponding massless propagator. The loop
eters. integral is over a closed string which describes the center of
the vortex, whose field strength extends a distarndd ~*
from this center. However, the potential itself has a long-
range pure-gauge part associated witfy this part comes
from theV field in the effective actiori32). The long-range
lll. THE STRING TENSION pure-gauge part is, as we will s¢2|, responsible for con-
finement and the string tension. The pure-gauge term has its
To calculate the string tension via the expectation value of_)0|e_)at short distances too, where the leading singularities at
the Wilson loop X~z cancel between the two propagators(ad). This will
be crucial in deriving finite results for the CS susceptibility,
but is not important for the string tension; the only singulari-
(W(T))=(TrP exp(gSFdi-,&)), (31) tie_s cured by a mass term are in perimeter-law pieces of the
Wilson loop.
The Wilson-loop expectation now becomes

eilz»;

k?+M?

(36)

we write forA a representative vortex configuration and sum—
over the collective coordinates of the vortices. This will be "This effective action summarizes some of the quantum effects

reCOQ”'Zed as the coupling Pf a string condensate. toa fIXe\g/hich generate the mass, but to the extent that it generates new
Abelian vortex gauge potential generated by the Wilson-looport.gistancéscales<M ) singularities, it is not suitable for use
contour itself. The usual rulg26] for converting the string 4t such scales. To the extent that the mass is important in shielding
expectation value to the scalar-field theory generate a staRport-distance singularities, as we find in the present work, there is
dard minimal gauge coupling of the Wilson-loop vortex to no reason to doubt the correctness of the effective action. Consis-
the scalar field. Classical minimization of the resulting effec-tency requires not only that the malgk vanish at short distances,
tive action leads to differential equations whose solutionbut also that there are other group-singlet scalar excitations, or glue-
gives rise to the string tension. balls, which do not need discussion in this paper.
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(W) =((exp( £im$rdx- VX $dZAAy—Ag))) (37

where the double brackets indicate an expectation value ov

the string partition function. The contolris, as before, the
Wilson-loop contour, and labels a set of string contours.
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This is of the form of the original gauge vortex {85),
with the Wilson-loop contouf™ as the center of the vortex.
Such a coupling, expressed in scalar-field language through
e proper-time formalism, amounts to writing the scalar-
effective action given if(11) with a gauge-covariant deriva-

At this point, we can appreciate the connection between

confinement and linking of the Wilson loop with a closed
string. The concept of string tension is appropriate for a large
Wilson loop, with scales>M ~1; this means that we can
drop theAy, term in (37). The remaining term in the expo-

nent immediately becomesinwL, wherelL is the Gauss
linking integral:

L 3@ 3@ dixaz. 22 (39)
Py R
The quantityL measureswith sign) the number of times the
contourss andI" are linked. Clearly, an evefodd) nhumber
of linkages contribute a term expf.)=+1(—1) to the Wil-
son loop. The Wilson loop is large, $0is a sum of a large
numberN of random positive or negative integers, dntlas
a Poisson distribution. MoreovelN is proportional to the
(minimal) area A of the Wilson loop, since all unlinked
strings give no contribution to the string tensidd= pA,

sN=J d3x| |Dy|?+ Mfl —%‘Ms , (42
where the covariant derivative is
D=V—iW. (43
So, the Wilson-loop value is
<W>=Z‘1f (DYD $)expl —Sy), (44)

whereZ is the scalar-field partition function in the absence
of the Wilson-loop gauge potential. At the classical lewvgl,

is just
_ Aot
z:f (D(//D(//)exp<+f d3x1—”2), (45)

where p is a two-dimensional density of strings in the that is, a functional integral over the action evaluated at the
vacuum. It is then an elementary exercise to calculate thgy=0 saddle poinS=— fd3x\v*/12. Then, we can write

expectation of expgl) in the Poisson distributiortwhich
we approximate by a Gaussjarwith an area law as the
result:

({exp(imL)))=exp — m°N/2) = exp— m2pAl2)

=exp(—KgA),
(39

the logarithm of the Wilson loop, dkcA, as

< Nyl NolylP ot

- — | g3 2 _ ==
KeA=—In(W) fd X[ |D | °+ ) 3 7|
(46)

The idea is to find a classical solutigine., minimum of the
action and to read off the string tension from the above
integral.

As mentioned above, the Wilson loop is large and effects

whereKg is the string tension. We see that the string tensiorysgociated with the,, term in W of (41) do not contribute
measures in some sense the fluctuations of linkages of thg the area-law part of the action, only to curing short-range
string condensate with the fixed string of the Wilson loop, sogivergences in perimeter-law contributions. Let us see what
it is natural to expect a close connection between the stringannens when we drop this term. The remainigterm of

tension and another measure of linkage fluctuation given bw

the CS susceptibility.

Note, by the way, that had we desiréd/) in the adjoint
representationsr in (39) would be replaced by 2 and there
would be no string tension.

It is difficult to estimate the string densigyin a straight-

forward elementary way, so instead we turn to the descrip-
tion of the string condensate by the scalar field theory. Ob-

serve that the Wilson-loop expectation val(@7) has a
standard gauge actioB, coupling the strings to the fixed

Abelian gauge potentiaﬁ/:

SW=i §£dzw, (40)

Wi(3) = ¥ x 35 F AV Aw(Z—9)— Ao(Z-9)].
(41

iS pure gauge, as can be shown directly with Stokes’ theo-
rem; it corresponds to thé term in(32). A pure-gauge term
can normally be compensated by choosing the phase of the
field to which the gauge potential is coupled, so it is tempt-
ing to say that, if

W=VA, (47
then a solution to the classical equations is just
p=ve'd, (48)

for which the action integral46) vanishes. This argument is
globally quite correct for the string tension in the adjoint
representation, for whiciA is twice as big as in the funda-
mental representation, but not for the fundamental represen-
tation. The reason is that in the fundamental representation
A of (47), which is multivalued, is such that exp( is two
valued when eithefbut not both of the pointsx=*a are
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encircled in thexy plane. Multivaluedness of is not al- y=ver (55)
lowed; like the gauge potentials themselves, this field must
be single valued. as the classical solution, up to terms exponentially small in

We now show that there is another solution for the funda+Mr. This is just what we have already done faf>a, but
mental representation, which has a finite string tension. Theot for |x|<a. In the latter case, the phase fac#¥ has
first step is to specify the Wilson loop, which is taken to beopposite signs in the upper and lower half planes, which is
two infinite straight lines parallel to the axis and passing inconsistent with choosing the real fact@=uv. Clearly,
through the pointsx=*a,y=0. We requireMa>1, so that cannot change sign for sufficiently largavithout leading to
the Wilson loop is large, justifying the dropping dfy in infinite action (46). The simple solution is to allowR to
W. One readily calculates frofd1), the gauge functiod of  change sign too, canceling the sign change'th This sign
(47): change is brought about by requiririgto vanish along the

cut|x|<a, y=0, which we do by requiringR to be odd in
y for |x|<a. This is consistent with the field equations.

ACO=F1da= ¢l 49 Given that(53) holds, the gauge potential drops out of the

equations of motion. In these equations, xhderivatives are

where only important in a region o©(M 1) around the Wilson
y loop, so we keep only thg derivatives. Then, the equation

_ of motion is
b+a arctanm. (50
. A
It is, of course, the 1/2 irf49) that makes'* multivalued, -R"+ ERZ[R— e(R)v]=0. (56)

and which would be missing in the adjoint representation.
We can makee'" single valued in a cut plane, by giving
¢+, each a cut along the positive axis, starting at
x=*a. Then, the gauge functioe” has no cuftis single
valued for |x|>a, but its phase has a jump af across the
portion of thex axis joining the two sides of the Wilson loop.

Here, the primes indicaty derivatives and thes factor
comes from differentiatingy/|3. We chooseR to have the
same sign ay, and find the solution foy>0, x=0 which
vanishes ay=0:

We can explicitly exhibit the structure ef* on this cut, and R N \o N 112
it is convenient to do so at=0: y:f dx 2| =x*— —x3+ —=v*|| . (57)
o 4 3 12
n y+ia . .
e'h= &Y) == (51 Expansion of R in (56) around y=0, plus R(—Y)
+ta =—R(y), shows thaR has continuous derivatives through

third order at the origin.

So far we have constructed some useful pieces of a full
solution to the classical equations of motion. To find an exact
solution would require some smoothing and matching along
the linesx=*a, but we will not do that here because it

y=R&°. (52) contributes nothing to the string tension. Frf>a, the ap-
proximate solution igh/=ve', while for |x|<a, the solution
Here, R is real, but can be positive or negative. We canis R€? as shown in(54) and (56). These must be patched
chooseQ=A outside a circle in thexy plane of radius together in a neighborhood of size-M~* around
r>a, where there is no cut, but we cannot do so for/X/|=ay=0, where the two solutions differ, and this would
|x|<a because of the jump discontinuity. However, it is pos-require keeping thé,, term in W.

which changes sign fromto —i upon crossing th& axis,
and approaches unity gt= *+o. This change of sign holds
not only atx=0 but all along thex axis.

Now, separate/ into a real part and a phase:

sible to find another solution fdx|<a to the equation The string tension-area product is given in the action in-
R R tegral (46). The area factor arises as a productf di times
VQ=VA, (53)  the integral overx from —a to a, and the string tension

o ] ) Kg is the remaining factor, an integral ower Some standard
which is valid for [x|<a except on the cut ay=0. This  manipulations which convert the integral owetto an inte-
solution, unlikee' of (51), has no jump. It is sufficient for  gral overR, plus some rescaling, put the string tension in the
the gradients to agree in order to compensateWo'm the  form
covariant derivative. Ak=0, we can again exhibit this so-

lution explicitly: 1 1 12
pHCEY KF:4M02f du g(3u4—4u3+ 1) (58)
. 0
. +ia
go= Y12 (54) o .
Vy?+a? This elliptic integral yields
There is no cut, and'? approaches unity at= + . But for Ke=1.1Mv?. (59

y= —oo, this phase factor approachesl.
Consider the behavior af asr—o. In this domain, we Using the one- and two-loop results of E427), (28), and
can take (30), we can convert this intd<z=constx M?; numerical
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results will be discussed in the concluding section, after weself-linking CS number can take any value. Again, this does

find the CS susceptibility in the next section. not interfere with the global requirement that the total CS
number be an integer.
IV. THE CHERN-SIMONS SUSCEPTIBILITY We wish to calculate the fluctuation in linkages of the

string condensate. The first step, following Edwa@g], is

First, we observe that the CS numb&ks [see(2),(3)],  to write the sum over strings @61) in propagator form:
associated with strings or vortices, can also be expressed as a

modified Gauss linking number, just as the string tension 1( 4 3 R e e s

can. The modifications are due to the finite massand Wcs=zf d Xf dyJ(x)Ajj(x—y)Ji(y), (69
come from theA,, term of the vortex(35); they vanish for

linkages of large well-separated strings, but are vital to reguyhere

late string intersections, including self-intersections. We in-
sert the vortex forng35) into the CS numbe(2),(3)], to find . . . 4
for the CS number coming from two distinct vorticéa- Aij(x):_|J’ dgke'k'xfij|k|w (66)
beled 1 and 2

1 and the current is the usual one
We1,2) =~ Wf d3x Tr[,&(l)~(€xA(2))+(1H2)].

(60) Ix)= > f}g dzs(x—2). (67)

strings

Insert the vortex expressid85) to come to ) ) . ) )
Now, introduce an Abelian gauge fie\x) for which A is

+1 - ~ R the propagator, and a functional integral ovewhich gen-
Wes(1,2)= —- fﬁ 1dz X fﬁ 202 723 F(MR). erates expectation values of powers\Ws:
(61)

In this equation,

zv(g)=f (DV)exp[if [3ViA; 2V +£3-V]
R=2,-7, (62) =ex —w({)]. (68)

; . Strictly speakingA has no inverse, and a gauge-fixing term
and the functionF comes from the massive and massless[ . . ) .
propagators in the vortex expressicss): should be added t(68) in order that the inverse exist. This

term contributes nothing and will be omitted from the ex-

1 (MR plicit discussion] The action forV is of CS type, but with a
F(R)= Ef duv’e™". (63)  propagator modified at short distances according6®); at

0 long distances, this propagator is just the usual CS one. The
coupling constant is introduced to allow construction of

For large well- r ringglR>1 andF—1 . . o )
or large well-separated string'4 andF—1, so matrix elements ofWg by differentiation, after doing the

1 functional integral oveN. This integral is, up to an irrel-
Wes= iz'—(l,2), (64)  evant normalization,
_ig2
whereL (1,2) is the Gauss linking number of the two strings. 7 =<<exp< Il f f J.A-J) >> (69)
3 whi ¢ '
But as MR—0,F~(MR)® which completely removes the 2

singularity in the Gauss integral whét= 0. . - :
The CS number of64) is fractional, but one should ex- where, as in(37), the double brackets indicate a string ex-

pect for the gauge group SNJ to encounter CS numbers pectation value. Then, fror65) and (69) the connected CS

which are multiples of IV; this is equivalent to periodicity susceptibility¢ cs [see(7)] is
27N in the dependence on the vacuum angle. Such depen-
dence is not in contradiction to the requirement that the CS _<_2
number be an integer, which is a global requirement; the 4V\adg
linking of any two particular strings is local. .

Self-linking of a single string also contributes to the csWwhere V is the volume of all space. _
number an amount (1/%)cg(1,1) [see (61)]. For a large As before, we calculgteu(g) in the scalar-field form,
string with no self-intersections and minimum chord lengthWhich amounts to changing the scalar actiai) to
>M !, one again recovers a Gauss linking integral which, 4
as is well known 7], expresses the self-linkage as the sum of S :f d3x[|5 o2+ Myl
two integers, twist and writhéwhich separately have no in- 4
variant topological meaning For a string with self-
intersections or near misses, the functl¢(MR) regulates Where the new covariant derivative is
possible divergences, somewhat in the spirit of the usual rib- . .
bon framing procedure. However, the strings are fat, and the D,=V+igVv. (72

2
() =0, (70)

: (71)
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It remains to evaluate these graphs, which have conven-
+ 12 % tional Feynman rules except for the propagator, which is

Y=

+

given by(66). Note that this falls off, likek © in momentum
space, so rapidly that all the graphs we need to calculate have

@ + 172 @ no divergences fror¥ lines.[We regulate anys divergences
as before, using23).] The evaluation is straightforward but
FIG. 1. Dressed-propagator graphs for the 2P1 grapkdefined  lengthy, and cannot be done completely analytically. Our ap-
in the tex). The wavy lines ar&/ propagators, and the solid lines proach is to introduce Feynman parameters and to do the
are dresseds propagators, including dressing wihlines as shown ~Momentum-space integrals analytically, then to do the re-
in Fig. 2. maining Feyman-parameter integrals numerically. There are
integrable singularities in the Feynman-parameter integrals,
but these cause no difficulties. In certain cases, some of the
. - Feynman-parameter integrals can be done analytically, but
While the effect of theV field can be calculated perturba- 4 - generic case is a seven-fold integjtiere are usually

tlvgly, we aIrea_dy know that_ honperturbative effects O_f theeight parameters, constrained by a delta function, because of
¢ field are crucial. Once again, we use the CJT formalism to

. . R the nonstandard form of thé propagator in(66)]. Another
express these effects, including graphs with ¥iines[thus approach to this propagator ig topw%ite it ar:(s )]
of O(Z%] in the 2PI sunisee(20)]. The calculation will be
done on shelithat is,y)—v, the physical expectation value 1 2 M2 1 M 2
As before, we express the free energy as the sum of on =f do 55— T3 avE (75
particle terms and 2PI graphs: 3 0 (e+M5™ (k+ M%)

+ 1/4

Then,Z, is found from a functional integral ovef and V.

M2
k>+M?

This is not necessarily an easier way to do things, but it
+3 affords a check on our results since it provides an alternative
Feynman-parameter form for numerical integration. Both
(73 ways give the same answer.
The final result for the CS susceptibility, expressed in
ms ofM, is[using (70)]

=tr{ | G G+1+1| A 1AA‘1 1
o=t Ing ~ & 2"y, " 2(A% D)

and use a simple massive form for the dressed propagatg[)err
G, as in Eq.(21), with variational parameten:
M3
G(k)=(k*+m?) L (74) Xcs=0016-5. (76)

The term, represents the graphs shown in Fig. 1, where th‘?n the concluding section below, we will evaluate this and

solid lines represe_nt the prqpaga@r This propaggtor dif- other results in terms of the string tension and the vacuum
fers from our previous solution by powers gf and is to be energy

determined from its variational equation. The solution is a
nonperturbative one as far gsgoes(which we have worked
out at one- and two-loop levels earlier, see Sec.ntodified V. NUMERICAL RESULTS AND CONCLUSIONS

by V corrections. The result is the set of graphs shown in  First, we discuss the numerical results of our calculations,
Fig. 2, where the solid lines now represent a massive propaind then briefly point out how reconnection of strings leads
gator with thephysicalmassM. A couple of comments are to topological charge change.

in order: (1) The weights given in the figures include the  For purposes of comparison with lattice and other calcu-
factor of 1/2 required for closed loops consisting of one orlations, it is useful to express all quantities in terms of the
two V lines; (2) All the baregraphs of0(¢?) vanish, because string tensionK, whose value is fairly accurately known
they contain a single symbol. This means that the expec- from lattice work[31,32. This value is

tation value of the CS number is zero, as one expects for a

parity-conserving theory. However, the corresponding Kg=0.11-0.13¢°T)? (77)
O(¢* dressedgraphs do not vanish, since they have tevo ) ) 5
symbols. (here and in what follows, we always writgT for g3, in

view of applications to highF gauge theory Below, we
show values ofe .., M, and xcs in appropriate units of

14 . . 14 Ke and g?T, at one and two loops, using a nominal value
KE?=0.369°T. These results are based on E(&7), (28),
(30), (59), and(76). We use superscrip{d ), (2) toindicate
one- and two-loop values:

+ 1/4 + 1/4 + 172
el =—0.2&3¥?=-0.013¢°T)3, (78)

. 2 _ _ 32 _ —3( 273
FIG. 2. Graphs of Fig. 1 expanded to shdines occurring in €vac— — 0.1KE"=—8X10"°(g"T)", (79

the propagatoG of that figure. The solid line now means the physi- w 1 )
cal ¢ propagator in the absence 6f MY =1.9Keg"=0.7@°T, (80)
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M(2)=2.32K,1:’2= 0.832T, (82) Philipsen[18] has done a calculation d@fg, in high-T elec-
troweak theory, based on the proposed existd@mnwall,
(1) K,?;’2 3.5x10°3 3 Ref.[17]) of sphalerons above the phase transition tempera-
Xcs:0-07"z477)4 - 4 (awT)®, (82 ture, where the Higgs VEV vanishes. His result maximizes at
about 0.01¢,T)* at M=0.1g°T, and falls off rapidly on
2 K¥  56x10°3 . either side. The dependence of Philipsen’s result on
Xcs:0-12(47_r)4 =, (awD™ (83 x=Mg,/T is complicated, but somewhat similar to the usual
semiclassical sphaleron rate below the transition temperature
[22]:

One can get a rough idea of the errors involved in trun- P
cating the loop expansion from these numbers; they depend gL~ (awT)™x'e™" (85
on the dimensionality of the quantity involved. Rgr, with

dimensions of mass, the error is about 30%, with errors i _ M~ 0 102T (x—7 | d
other quantities growing as the dimension grows. maximum rate aM~0.1g°T (x=7), a mass value propose

There are only a few other calculations one might comP€fore[14,13. But, if the values oM in Egs.(80), and(81)

pare to these numbers. Concerning the nonperturbativa™® used, the quantityis very large, about 45-50, and Phil-
vacuum energy, Ref§32,33 give values for— e, in the ipsen’s rate would be very small. Given such sensitivity of
) 1 vac

range 0.016-0.027@2T)3, while Shaposhnikoy20] gives sphaleron rates tMg,, it is simply not clear yet whether

0.033@2T)3. The first two references cite82,33 above high-T sphalerons are or are not important, but our numbers
are lattice works for the full electroweak theory at finife ~t@ken at face value would not leave much room for sphale-
(near the transition temperatyirand include Higgs and\ rons to dominat® + L decay above the phase transition tem-

#0 modes. However, these should not contribute substarpe@turﬁ' by showina h h iortk-4

tially to a nonperturbative quantity like,,.. Referencg20] We close by showing how the conventior@=4 topo-

is based on a dilute-monopole gas approximation, and corfPgical charge is related to a change In vortex linkage. For
tains some factors arbitrarily taken to be unity. One sees he =4,hthe|formbof thekvortex corresp%ndlr;g 'tc_) t.ﬂecS form

a wide spread in these other calculated values, which are n&t> 1as long been know(see, e.g., Ref2)): it is

Af. as given in Refs[34,1], Mg~5.3M/ay, one finds a

too far from the results we calculate. 1.,

For the gluon masM, a recent lattice determinati¢f6] Au(X)=2TQ€,1ap9, % dodr5[2,25— (@ B)]
givesM =0.469°T, somewhat smaller than we give. This is
not a pole mass determination, which would be gauge invari- X[Am(z=x)=Ao(z=X)], (86)

ant, but we do not expect there to be a serious gauge depen- , )
dence in this number. Referenddst, 15 give a small value Where theA’s ared=4 propagatorsQ is a group generator

M =g2T/37=0.11g?T from a continuum one-loop gap 25 in(_35),_ andz(cr,_a-) describes a clqsed two-surface. This
equation, but again this value is not gauge invariant and onBotential is a solution to thei=4 action analogous to the
has no reason to believe that a one-loop gap equation with né=3 action in(32), and in the static limit £=(z(o),7))
vertex corrections is at all reliable. Refererd8] gives a  reduces td35). When two strings cross each other in such a
lower limit on M of about 0.58°T, which is consistent with way as to change their linkag&auss integraJ the topologi-

our values. Referendd 3] uses a nonlineagauge-invariant ~ cal chargeg expresses this change asl&4 integral giving
[12] one-dressed-loop gap equation with vertex correctionghe intersections of the two closed surfaces. We give the
and the sea gull graph included. The reagt?] that only a  result only for two large surfaces, where thg term can be
lower limit can be given is that at two-loop order, there is aneglected:
logarithmic divergence in the sea gull graph even in pertur- 1
bation theory, and this mugbecause there is no mass coun- Qq=-— 1672
terterm) be canceled by other two-loop contributions which

nobody has studied yet. In other words, without imposing 1 _ )
gauge invariance on a two-loop or higher gap equation, one :Ef do1do2071072€, 0521,21,2202550(21~ 25) -
has no control over perturbative effects which lead -

mately cancelingultraviolet divergences. So the authors of (87)
Ref.[13] showed that their nonlinear equation had no solu-

tion at all unlessvl were a certain minimum value, no matter
what happened to the sea gull graph.

f d*x trG,,G,,

Here, z,(01,71), Z5(05,7,) are the equations of the two
surfaces. This integral clearly measures ttgenerically
There are no other computations known to us¢gé with pointlike) intersections _of the tw_o surfaces. A similar integral
which our result can be compared. Various authors have e$2n be written for self-intersectiorisee also Ref.25]), and
timated a related quantity, which Bg, , the rate at which the f|n|te4_\/l corrgcﬂons vv_orked out. The topolog!cal charge
B+L is violated, or equivalentlyup to a factor ofNg, the for SU(2) is half-integral, like the CS number, but it is a local

number of flavors the rate at which the CS number diffuses. contribution to the global charge, which must be integral,
Given the static mean-square fluctuatdgs, one can esti- 2nd 1S no obstruction to an integral global chatgehe
matel'g, by multiplying it by a rate. If we take this rate to
be M and ignore factors which we hope are of order 1, this

leads to 8For a construction of localized instantons of half-integral charge,

tied together by a sphaleron world line, see Cornwall and Tiktopou-
gl /NE~Mycs=7—8X10 3(ayT)%. (84) los as cited in footnote 4.
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reader can easily construct kinematic configurations for th&hen, one must face up to the problem inherent in all ana-
surfaces which correspond to the time evolution of a chang#tic treatments of strongly interacting gauge theories, with
of linkage, and see how the topological charge is generatedo obvious expansion parameter: How accurate are the re-
thereby. Of course, such time evolution necessarily involvesults? The only self-contained approach is to keep more 2P|
electric fields and goes beyond the=3 gauge theory we graphs in the CJT effective potential. Aside from that, we can
have considered here. only compare with lattice computations. It would be valuable

There still remains much to be done dr-3 gauge theory g have a lattice calculation of the CS susceptibility for this
before we can have any confidence in attacking such difficulpyrpose.

dynamical problems aB+L washout at highT. The next

significant step will be to construct a Schwinger-Dyson equa-

tion for the gauge-boson mads which, like the work re- ACKNOWLEDGMENTS
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