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String tension and Chern-Simons fluctuations in the vortex vacuum ofd53 gauge theory

John M. Cornwall* and Bryce Yan†

Physics Department, University of California at Los Angeles, 405 S. Hilgard Avenue, Los Angeles, California 90095-15
~Received 3 November 1995!

Based on a model of thed53 SU~2! pure gauge theory vacuum as a monopole-vortex condensate, we give
a quantitative~if model-dependent! estimate of the relation between the string tension and a gauge-invariant
measure of the Chern-Simons susceptibility, due to vortex linkages, in the absence of a Chern-Simons term in
the action. We also give relations among these quantities and the vacuum energy and gauge-boson mass. Both
the susceptibility and the string tension come from the same physics: the topology of linking, twisting, and
writhing of closed vortex strings. The closed vortex string is described via a complex scalar field theory whose
action has a precisely specified functional form, inferred from previous work giving the exact form of a
gauge-theory effective potential at low momentum. Applications to high-T phenomena, includingB1L
anomalous violation, are mentioned.

PACS number~s!: 11.15.Tk, 11.10.Kk, 12.15.Ji
I. INTRODUCTION

In this paper we consider ad53 parity-conserving@no
Chern-Simons~CS! term# pure-gauge~no fermions or sca-
lars! non-Abelian gauge theory, or justd53 gauge theory for
short. Our specific considerations will be for the gauge gro
SU~2!, but the generalization to other gauge groups
straightforward.

We supply here quantitative details of a scenario propo
earlier @1# for d53 gauge theory, which is strongly couple
in the infrared~IR! because the gauge bosons are pertur
tively massless. In this scenario, the gauge-theory vacuum
dominated by an entropy-driven condensate of clos
strings1 of thicknessM21, whereM;g3

2 is the perturbative
gauge-boson mass, proportional to thed53 coupling con-
stantg3

2 ~for high5T, d54 gauge theory,g3
25g2T, where

g2 is thed54 coupling at temperatureT). Each string has a
magnetic flux such that a large Wilson loop in the fundame
tal representation

W~G!5Pexp~rGdxW•AW ! ~1!

takes on values in the center of the gauge group if
Wilson-loopG is topologically linked with the closed string
and is unity otherwise.~A large Wilson loop is one whose
length scales and distance to the string are@M21.) For
SU~2!, the only nontrivial value ofW is 21. The functional
averagêW(G)& over allAW then gives an area law~described
in terms of a string tension!, just as ford54 gauge theory
@2#, where the condensate is formed from clos

*Electronic address: cornwall@physics.ucla.edu
†Electronic address: yan@physics.ucla.edu
1The strings we discuss are not the same as electroweak, oZ,

strings@3#. Z strings occur forT,Tc and owe their existence to a
Higgs vacuum expectation valve~VEV!; they are entropy disfa-
vored because they occur in the weak-coupling regime of el
troweak theory.
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two-surfaces.2 Note that in~1! we have absorbed a factor of
i @see Eq.~4! below# as well as the coupling constantg3 into
the definition of the gauge potential. SoAW has dimensions of
mass, while the canonically defined vector potential, which
is found by dividingAW by g3 , has units of the square root of
mass.

There is another quantity of interest which also depends
on linking and related topological quantities: the vortex part
of the Chern-Simons susceptibility, which we labelxCS. We
will see that this can be defined gauge invariantly and with-
out uninteresting perturbative contributions. Begin by defin-
ing @5# the Chern-Simons~CS! number as usual

WCS5E d3xV~xW !, ~2!

V5
1

4p2 e i jkTrS 12Ai] jAk2
1

3
AiAjAkD , ~3!

where the SU~2! matricesAi are defined as

Ai5
1

2i
Ai
asa . ~4!

Now,WCS is not gauge invariant; under a gauge transforma-
tion with winding numberN,

WCS→WCS1N. ~5!

But it is possible to define a gauge-invariant susceptibility as
that part of the zero-momentum correlator,

r

ec-

2This is the mechanism of confinement in non-Abelian lattice
gauge theory; see, e.g., Ref.@4# and references therein. In SU~2!
lattice gauge theory, one introduces monopoles as the site of a junc-
tion between a spread-out~continuum! vortex tube and an infini-
tesimally thinZ2 string; the latter is suppressed in the continuum
limit, leaving closed vortices without monopoles as the means of
confinement.
4638 © 1996 The American Physical Society
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E d3x^V~xW !V~0!&, ~6!

which is independent of the space volumeV[*d3x as
V→` and thus can have no contributions from disconnec
parts with^WCS&50, which is a kind of topological neutral
ity condition for the string condensate. The last step in
fining xCS is simply to restrict the gauge potentialsAi of ~3!
to those describing closed strings. In view of the essenti
Abelian nature of these strings@their holonomy group~1! is
Abelian#, only the Abelian~first! term of ~3! contributes, and
when a string configuration is used to evaluate~6!, one finds
@1,6# that it is a sum of Gauss linking numbers for mutua
linked different strings and twist plus writhe, or self-linkin
number @7#, for a single string. This is strictly true if the
string centers are large in the sense previously described
the Wilson loop; at short distances, there are correcti
coming from the gauge-boson massM which automatically
regulate the usual divergences associated with s
intersections. Finally, we can define

xCS5E d3x^V~xW !V~0!&conn, ~7!

where only vortex configurations are to be included. No
thatxCS scales likeM

3, or (g2T)3 in a high-T gauge theory.
Similarly, the string tensionKF scales likeM2, so one can
write x CS5const3(KF)

3/2. Our purpose here is to calculat
quantitatively this constant and the ratiosxCS/M

3 and
KF /M

2, within the string condensate model, as well as sim
lar dimensionless relations involving the vacuum energy a
the gauge-boson mass. If we could calculate any one of th
dimensionful quantities in appropriate units ofg2T, all the
others would be determined.

The relation ~7! can be written in an interesting way
which has its counterpart ind54 gauge theory. We define th
operatorQ(xW ) as the square of the usual~without the cou-
pling constant factor! field strength:

Q~xW !5
1

4g3
2S~Gi j

a !2~xW !; ~8!

note thatQ is proportional to the trace of the stress-ener
tensor. We can write~7! as

xCS5E d3x^V~xW !V~0!&conn5
j

~4p!4
^Q&, ~9!

where the problem is to calculate the dimensionless quan
j. One may check that some such factor as (4p)4 is natural,
so thatj is nominally of order 1. Equation~8! is the d53
version of a sum rule conjectured, on various grounds@8#,
for d54 gauge theory, whereV is replaced by the topologi-
cal charge density andQ is the ~anomalous! trace of the
d54 stress-energy tensor. We can, in fact, estimatej because
our work yields an estimate for̂Q& in terms ofM3. We
have already said that the Wilson-loop area law stems fr
linking of condensate strings to a fixed test string, the Wils
loop itself. There is, then, a natural relation between
string tension and the CS susceptibility, which is also e
pressed in terms of linkages.
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Before turning to the string-condensate model, which in-
volves construction of a complex scalar field theory, let us
mention the natural field of application of these results. Per
haps the most interesting use ofd53 gauge theory is in
electroweak~or other gauge-theory! processes in the high-T
early Universe withT.Tc , whereTc is the phase-transition
temperature and there is no Higgs boson mass-generatio
mechanism. A finite-T gauge theory splits into sectors la-
beled by the Matsubara frequenciesvN52pNT; all of the
sectors withNÞ0 are well behaved in the IR and can be
treated more or less perturbatively@9#, if the coupling is
small enough. Even theN50 electric sector~gauge-potential
A0) generates a perturbative Debye mass and causes no sp
cial difficulties of principle. But theN50 magnetic sector,
equivalent tod53 gauge theory, has IR divergences which
must be cured nonperturbatively.

Perturbation theory fails here because no IR-regulating
mass can be generated in perturbation theory; gauge invar
ance prevents it. With no magnetic mass, the would-be ex
pansion parameter of high-T theory isg2T/k, wherek is the
spatial momentum of the process considered. This has tw
consequences:~1! At scalesk set by nonzero Matsubara fre-
quencies, or by the Debye mass;gT, a genuine perturba-
tion expansion is possible for smallg; ~2! No such expansion
is possible atk<g2T, and the theory is strongly coupled. Of
course, these IR effects go away below the phase transitio
where the gauge bosons get a mass from the Higgs mech
nism.

The essence of all nonperturbative effects is the genera
tion of a magnetic massM of orderg2T @10–13#. This mass
is, in principle, to be found by solving some sort of nonlinear
gauge-invariant Schwinger-Dyson equation, but analytic
progress in this direction has been slow@13–15#. There is a
recent lattice determination of this mass@16#, but the tech-
nique used is not quite gauge invariant. We will not attempt
to determineM , but given its existence, we will analyze
further nonperturbative effects which can be expressed i
terms of it @see the discussion below Eq.~6!#.

These effects include high-T sphalerons@17,18# and vor-
tex strings which can either close or terminate on magneti
monopoles; we need only consider closed strings. These a
like Nielsen-Olesen strings except that there is no Higgs ef
fect and no symmetry breaking. Becaused53 gauge theory
is strongly coupled, these strings form an entropy-driven
condensate. The existence of a condensate follows direct
from certain exact results@19# for d53 gauge theory, which
include among otherŝ Q&.0,evac52(1/3)^Q&,0 @20#
where Q is the squared field strength@see ~8!# and
*d3xevac is the vacuum energy~or equivalently theN50
contribution tobF in the thermal case, withF the Helmholtz
free energy!.3 Of course, the negative sign ofF reflects en-
tropy domination.

The fluctuations in CS number measured by the suscept
bility ~7! play an important role in determining the rate of
anomalousB1L violation @21–23# from high-T electroweak
processes in the early universe. However, it is not possible t

3Shaposhnikov, in Ref.@20#, also attempts to estimate the free
energy by semiclassical means; we will compare his value to ours i
the conclusions.
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4640 53JOHN M. CORNWALL AND BRYCE YAN
determine thisB1L rate/unit volumeGBL solely from the
essentially static fluctuations ofWCS in the d53 gauge-
theory sector; one really needs to understand fluctuations
the rate of changeẆCS of CS number, which are directly
related to fluctuations of topological charge~andB1L, by
the anomaly equations!. To calculateGBL requires much
more thand53 gauge theory, and we will not attempt such
calculation here. The general wisdom@21,22# is that for
T.Tc , GBL scales like (aWT)

4, that is, likeM4, where
M is the magnetic mass. This is just dimensional analysis,
M is the only relevant scale; the hard part is to calculate th
overall coefficient. Usually, one argues@21,22# that there is
no sphaleron barrier forT.Tc so the coefficient is of order
1, but this is not really clear. Given a magnetic massM ,
there should~Cornwall, Ref. @17#; Philipsen @18#! be a
sphaleron of massMSp;M /aW;T, and the thermal activa-
tion factor exp(2MSp/T) is the exponent of a negative pure
number, which is not necessarily small in absolute value. W
will not consider sphalerons further here, but it will certainly
be important to estimate their contributions toxCS, etc.

4

In our vortex model,GBL depends on the rate of topologi-
cal reconnection@24# of strings in the condensate. This dy-
namical process involves electric gauge fields, which lie ou
side thed53 gauge-theory sector we study here, and we w
not discuss it in detail. However, we will make a few re
marks on how thed53 strings are promoted to closed two-
surfaces ind54 and on how an intersection-number@25#
topological invariant of these surfaces is related to the usu
topological charge.

Now, let us return to pured53 gauge theory and our
method of approach to its nonperturbative effects. It has be
known for decades@26# that a condensate of strings can b
described by a~possibly complex! scalar field theory, with a
wrong-sign mass term representing entropy effects and
interaction term likelf4 representing the repulsion, or in-
crease in free energy, of two strings trying to occupy th
same region of space. The underlying connection betwee
string condensate and a scalar field theory is that a fie
theoretic propagator can be represented as a sum over pa
or strings, and, in particular, the field-theory vacuum func
tional becomes a partition function of closed strings.

Such a connection between ad53 string condensate and a
field theory would not have been useful in the past, becau
there would have been more parameters for the scalar-fi
theory than for the underlying gauge theory. However, w
will exploit here the exactly known@19# form of the zero-
momentum effective action for the operatorQ of Eq. ~8!.
Given this effective action, we show that the correspondin
classical action for the scalar-field theory is uniquely5of the
form

4Actually, sphalerons are closely related to the vortices we use@J.
M. Cornwall and G. Tiktopoulos, Phys. Lett. B181, 353~1986!; M.
Hindmarsh and T. W. B. Kibble, Phys. Rev. Lett.55, 2398~1985!#.
A sphaleron interpolates between regions of oppositely direct
magnetic flux on a vortex, and can be pulled apart into two mon
poles of the type that can terminate a thick vortex string@4#.
5We will see later why a complex rather than a real field is chose
in
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S5E d3xS u¹W cu21
lucu4

4 D , ~10!

where the coupling constantl depends onM . From this
classical action we will derive loop terms, automatically con-
sistent with the gauge-theory effective action, which are es-
sential to describe the condensate entropy. These loop terms
simply modify the classical action of~10! to an effective
action

G5E d3xS u¹W cu21
luc4u
4

2
lvucu3

3 D , ~11!

wherev is the expectation value ofucu, also expressible in
terms ofM . Like all effective actions,~11! should be treated
classically. Although we can and do derive the form~11!
from loop corrections to the classical action~10!, the func-
tional form of ~11! is completely dictated by the gauge-
theory effective action. Note that~11! has a phase with
^ucu&5v and short-range fluctuations, as required to describe
the gauge-string condensate.

Given this complex scalar field theory, how does one de-
scribe the topological effects involved in the string tension
and the CS susceptibility? In both cases, one uses auxiliary
Abelian gauge potentials, but in different ways. For the
string tension, the auxiliary gauge potential is itself a fixed
vortex, described in terms of the Wilson-loop contour; this
fixed potential is coupled to the scalar-field theory in the
usual way~which requires a complex field!. At large dis-
tances, all that is relevant for the string tension, this Wilson-
loop potential becomes a pure gauge of the type¹W L, but
L is singular and exp(iL) is not single valued.@This is be-
cause we seek the fundamental-representation string tension;
for the adjoint representation, exp(iL) is single valued and
the string tension vanishes.# The multivaluedness is in con-
flict with the necessary single valuedness of the complex
scalar field, or equivalently, the underlyingd53 gauge po-
tentials, and when one minimizes the scalar-field effective
action in the presence of the auxiliary gauge potential one
finds that this conflict is resolved by a surface of zeros of the
scalar field, coinciding with the minimal spanning surface of
the Wilson loop. As a result, a string tension;M2 is gener-
ated; the numerical coefficient is an elliptic integral.

To calculate the CS susceptibility, we use a technique
given long ago by Edwards@27# to study topological en-
tanglement of polymers. A new Abelian gauge potential
VW (xW ) is introduced, with a standard coupling to the scalar
field and a self-action which is a pure CS term~except for
very important short-distance modifications, coming from
the gauge massM , which make everything finite!. Func-
tional integration overVW yields a power series in the
V-field coupling constant, whose coefficients are related to
expectation values of Gauss linking integrals. In particular,
we can read off the CS susceptibility from this series. To
construct the series to the requisite~fourth! order, we need to
calculate a large number of three-loop vacuum graphs, all of
which are finite and scale likeM3. We have calculated the
sum of graphs mostly numerically, after reducing the graphs
to Feynman-parameter form.

d
-

.
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II. SCALAR-FIELD THEORY DESCRIPTION
OF THE VORTEX CONDENSATE

The usual discussion@26# of mapping a string condensate
onto a field theory begins with the observation that the nu
ber of configurations of a closed string on a lattice, of leng
l and step lengthL, is roughly~ignoring unimportant effects!
given by the path integral

R ~dxW !expF2E
0

l S ẋ22 2 ln2dD dl8/LG ~12!

up to an irrelevant normalization. Here,d is the number of
dimensions in which the string lives, and the entropy fact
(2d) l /L is roughly the number of ways the string can turn
its L/ l vertices, without consideration of self-avoidance e
fects. If the strings are oriented, as they are for us, one m
tiplies this result by*dl/ lexp(2Ul) and exponentiates to get
the string partition function. Here,U is the internal energy/
unit length of the string.~The l in the denominator of the
integral adjusts for overcounting the point on the string arb
trarily chosen as a starting point.! The final result is recog-
nized as the functional integral of a free two-component re
~or one complex! scalar field, where the logarithm of the
propagator of the field has been expressed as a proper-t
integral. The field has a mass term which may be normal
tachyonic, depending on whether the internal energy dom
nates the entropy or otherwise. A string condensate will for
only if the entropy dominates, as it does ford53 gauge
theory.

Next, one must add self-avoidance effects, which amou
to adding interaction terms for the scalar field inside th
functional integral. It is, of course, natural to have a fou
field interaction to represent the simplest kind of intersecti
of two strings, but the most general renormalizable fie
theory ind53 has other types of interactions, ranging up
sixth-order terms. The question is what terms and what co
pling constants are needed.

We will address this problem in the reverse order of th
remarks above, where the possible tachyonic mass term~sig-
naling a string condensate! is conceptually introduced before
self-avoidance effects. Based on earlier exact results for
gauge-theory effective action@19#, we will construct a clas-
sical scalar action containing a fourth-order interaction b
no mass terms at all. We will then show that one-loop effec
contain a negative contribution to the effective actio
equivalent to a tachyonic mass term. The resulting effecti
action has a minimum corresponding to a string condensa

The idea behind the gauge-theory results is very simp
There is only one coupling constant,g3

2 , and it has dimen-
sions of mass. The action of the gauge theory can be writ
as

Sg5E d3xQ5
1

4g3
2E d3xS~Gi j

a !2 ~13!

@whereQ is the squared field strength of Eq.~8!#. The par-
tition function Z, which is the functional integral of
exp(2Sg), gives exp(2*d3xevac). By naive dimensionality,

evac;g3
6 , and repeated differentiation ofZ and ofevac with

respect tog3
2 , yields an infinite set of sum rules for the
m-
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zero-momentum vacuum matrix elements ofQ. The func-
tional differentiation ofZ acts only on the explicitg3

22 in the
action~13!, and the specific form of the sum rules, or effec-
tive action which generates them, depends only on the spe-
cific powers ofg3 in Z andevac. The effective action can be
found by introducing a constant sourceJ into the functional
integral, defining a vacuum functionalW as

Z5exp@2W~J!#5E ~dA!exp@2Sg~12J!#. ~14!

Because the only dependence ong3
2 is an overall inverse

factor in the action, adding the source is the same as chang-
ing g3

2 to g3
2(12J)21. Then

W~J!5evac~12J!23. ~15!

By the usual Legendre transform, one finds the effective ac-
tion for the zero-momentum matrix elements ofQ:

G~Q!5E d3xS Q2
4

3
Q3/4^Q&1/4D . ~16!

One sees thatG has a minimum atQ5^Q& of value
2*d3x(1/3)^Q&5*d3xevac.

What are the consequences for the scalar theory? A little
thought shows that this theory must have only one coupling
constantl, and this coupling can be chosen to have dimen-
sions of mass. Then, in order to reproduce the form of the
effective action as in~16!, evac must scale likel3, corre-
sponding to the scaling of the gauge action asg3

6 , and it must
be possible to rescalec so that the only appearance ofl in
the action is an overall factor ofl21. So the scalar action
~10!,

S5E d3xF u¹W cu21
lucu4

4 G , ~17!

is acceptable. Of course, other interaction terms could be
included, such asl3/2uc3u, but they will not do. The reason is
that with these other interaction terms, one cannot rescale
c in such a way that the action has an overall factor of
l21. But such a rescaling is essential to the derivation of the
gauge-theory effective action.

The upshot is that only the classical action~17! can yield
loop corrections consistent with the gauge-theory effective
action ~16!. There is one subtlety of the action~17!: it gen-
erates quadratic and sextic terms from loops, which appear to
be divergent and require bare terms in the action to accom-
modate the needed renormalizations. However, demanding
consistency with the gauge-theory effective action, fixes
these renormalizations. A simple way to do this is to intro-
duce a free energyWs(J) for the scalar theory, analogous to
W(J) for the gauge theory introduced above. Here,J is a
constant source for the scalar actionS. Then, we will require

Ws~J!5~12J!23Ws~0!, Ws~0!5evac, ~18!

just as for the gauge theory as shown in Eq.~15!.
Next, we turn to the calculation of one-loop corrections to

the classical action~17!, which express the entropy of
strings. Rather than calculateW(J) as outlined above, we
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will directly calculate the effective action~essentially the
free energy! using the Cornwall-Jackiw-Tomboulis~CJT!
@28# formalism. Following the one-loop calculation, we wi
estimate two-loop contributions, which are appreciable, a
presumably suggest the accuracy of the calculations~perhaps
630%). Please note that the CJT approach does not
with bare loops, that is, perturbative effects, but instead w
dressed loops constructed from the full propagator. To st
write

Z5exp~2bF !5E ~DcDc̄ !exp~2S! ~19!

5expH tr lnGG0
2tr~GGc

2121!

2E l

4
uc4u12PI graphsJ . ~20!

Here,G is the full propagator of the theory,Gc is the clas-
sical propagator in the fieldc, and 2PI graphs are connecte
graphs with more than one loop that are two-particle irredu
ible. The notation tr indicates an integral over all space, o
sum over all momenta. The physical free energy is found
searching for the extrema ofbF in the functional variable
G as well as in the fieldc. To this end, we introduce a
variational parameterm in G, writing in momentum space

G215k21m2. ~21!

We are only interested in small-momentum phenomena,
c can be treated as a constant, and one readily finds
classical propagator

Gc
215k21lucu2. ~22!

All one-loop graphs, withG as the propagator, are foun
by dropping the 2PI graphs in~19!. The next step is to inser
G andGc into the first two terms of~19! and do the inte-
grals. Divergences appear, which can be removed in eithe
two equivalent ways: dimensional regularization, or by t
substitution

E d3kF~k2!→22E d3kS 11k2
]

]k2DF. ~23!

It is easily checked that this substitution leaves converg
integrals unchanged, and eliminates divergences.

Before removing the divergences, we should comment
their physical meaning in the case of interest, finite-T gauge
theory. The underlyingd53 gauge theory has no diver
gences, except those which can be interpreted as com
from the other sectors which go to make up the full finit
T theory. For example, any divergence in the coupling co
stant would have to come from an underlyingd54 diver-
gence. In general, ultraviolet divergences are associated
scales such asT, rather thang2T which is appropriate to the
d53 gauge theory only. We are justified in regulating th
scalar theory in a way which reproduces known results of
d53 gauge theory, such as the effective action form~16!.

It is a remarkable property of three dimensions that in
grals whose integrands depend onm2, yield odd powers of
ll
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m. In fact, these odd powers must be understood as absolu
values, in view of the symmetrym→2m of the integrand.
Ultimately, these powers ofm will yield odd powers of
ucu, as in ~11!. Moreover, the one-loop integrals after regu-
larization yield negative contributions to the effective poten-
tial. For further discussion and more references, see Re
@29#.

Now, do the integrals in~19!, following the above pre-
scriptions, to find

bF5E d3xFlucu4

4
2

umu3

6p
2

umu
4p

~lucu22umu2!G . ~24!

Upon varyingm, one finds6 m25lucu2, and substituting
yields

bF5E d3xFlucu4

4
2

l3/2ucu3

6p G . ~25!

Except for the gradient terms, which will be considered later
this is of the form~11! and consonant with the gauge-theory
effective action~16!, provided that one identifies

Q5
lucu4

4
, ^Q&5

l3

4~2p!4
. ~26!

Further, minimization onc yields

^ucu&[v5F m2pG1/2, m5
l

2p
, e vac5V21bFmin52

m3

24p
.

~27!

Here,V is the volume of all space. It is important to note that
the variational parameterm is not the physical scalar-mass
value, which is found from the second derivative of the ef-
fective action at the minimum. We require that the scalar
mass, or correlation length, must be the same as for th
d53 gauge theory, and we will use the same notationM for
both of these quantities. It is easy to find from~25! that

M25
1

2
lv25

1

2
m2. ~28!

Next, we ask what the effect of two-loop terms is. There
is only one 2PI two-loop graph, the double bubble, and its
value, to be added to the integrand of the one-loop valu
~24!, is 1lm2/32p2. As before, vary to findm, with the
result

m52
l

8p
1Flc21S l

8p D 2G1/2. ~29!

When this result is inserted in the two-loop effective ac-
tion, new terms involvingc appear which are not of the
desired form~11!. This is no problem of principle; once one
goes beyond one-loop graphs, one really cannot recover th
desired form~11! without considering loops of all orders.

6This value ofm means thatG5Gc , as required by the varia-
tional equation forG which comes from Eq.~20! when the 2PI
graphs are omitted.
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The reason is that a generic multiloop graph corresponds
an expansion in powers ofl/c2, as one readily checks, and
such terms are already found in the expansion ofm in ~29!. A
simple way to include the needed parts of other graphs
correct the explicit two-loop result has already been given
~18!: one calculates the true vacuum energyWs(0) with zero
sourceJ at two loops, and then writes the vacuum function
in the presence of the source as in~18! by multiplying by
(12J)23. After some uninteresting algebra, one finds th
two-loop parameters

evac52
m3

24p
, v5S m2p D 1/2, m5M . ~30!

Note that, in spite of a very different algebraic structure, th
expression ofbFmin andv in terms ofm are the same for the
one- and two-loop effective actions; the only difference is th
relation between the physical massM and the variational
parameterm, which differ in the two cases by a factor o
A2. This can be taken as a rough measure of the~not very
high! accuracy of the first few terms of the CJT loop expa
sions, although the error encountered in any specific quan
may be more or less than this. Perhaps this is an accepta
discrepancy in analytic calculations of a strongly couple
gauge theory, where there is no obvious small paramete
the kind of dressed-loop expansion we are using.

The point here is not to show that the effective scal
action must have the form~11!, which is guaranteed by the
underlying gauge theory, but to estimate the paramet
l,v which occur in it in terms of the physical massM . This
we have done in Eqs.~27!, ~28!, and~30!. The next step is to
calculate the string tensionKF in terms of the same param-
eters.

III. THE STRING TENSION

To calculate the string tension via the expectation value
the Wilson loop

^W~G!&5^TrP exp~rGdxW•AW !&, ~31!

we write forAW a representative vortex configuration and su
over the collective coordinates of the vortices. This will b
recognized as the coupling of a string condensate to a fix
Abelian vortex gauge potential generated by the Wilson-lo
contour itself. The usual rules@26# for converting the string
expectation value to the scalar-field theory generate a st
dard minimal gauge coupling of the Wilson-loop vortex t
the scalar field. Classical minimization of the resulting effe
tive action leads to differential equations whose solutio
gives rise to the string tension.
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As has been discussed elsewhere@2,1#, the gauge-field
vortex is a classical solution to an effective gauge action7

which includes a gauge-invariant mass term@30,12#. This
action is

Sv5Sg2E d3x
M2

g3
2 Tr~V

21DW V!2, ~32!

whereSg is the usual massless gauge action@see~13!#, V is
an auxiliary SU~2! matrix, andDW is the covariant derivative
¹W 1AW . The gauge transformation laws,

AW→UAWU211U¹W U21, ~33!

V→VU, ~34!

show that the mass term in~32! is locally gauge invariant~it
is just a gauged nonlinear sigma model!. TheV field can be
functionally integrated out at the classical level, just by solv-
ing theV-field equations of motion. These turn out to be the
same as the vanishing of the covariant derivative of theAW
equations of motion.

Up to a local gauge transformation, the vortex solution
can be written

AW ~xW !52pQ¹W 3 R dzW@DM~xW2zW !2D0~xW2zW !#, ~35!

whereQ is an SU~2! generator such ass3/2i with the prop-
erty that exp(2pQ) is in the center of SU~2!. Here,DM is the
scalar propagator for massM

DM~xW !5
1

~2p!3
E d3k

eik
W
•xW

k21M2 ~36!

andD0 is the corresponding massless propagator. The loop
integral is over a closed string which describes the center of
the vortex, whose field strength extends a distance;M21

from this center. However, the potential itself has a long-
range pure-gauge part associated withD0; this part comes
from theV field in the effective action~32!. The long-range
pure-gauge part is, as we will see@2#, responsible for con-
finement and the string tension. The pure-gauge term has its
role at short distances too, where the leading singularities at
xW;zW cancel between the two propagators in~35!. This will
be crucial in deriving finite results for the CS susceptibility,
but is not important for the string tension; the only singulari-
ties cured by a mass term are in perimeter-law pieces of the
Wilson loop.

The Wilson-loop expectation now becomes

7This effective action summarizes some of the quantum effects
which generate the mass, but to the extent that it generates new
short-distance~scales!M21) singularities, it is not suitable for use
at such scales. To the extent that the mass is important in shielding
short-distance singularities, as we find in the present work, there is
no reason to doubt the correctness of the effective action. Consis-
tency requires not only that the massM vanish at short distances,
but also that there are other group-singlet scalar excitations, or glue-
balls, which do not need discussion in this paper.
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^W&5^^exp~6 iprGdxW•¹W 3rsdzW@DM2D0# !&& ~37!

where the double brackets indicate an expectation value o
the string partition function. The contourG is, as before, the
Wilson-loop contour, ands labels a set of string contours.

At this point, we can appreciate the connection betwe
confinement and linking of the Wilson loop with a close
string. The concept of string tension is appropriate for a lar
Wilson loop, with scales@M21; this means that we can
drop theDM term in ~37!. The remaining term in the expo-
nent immediately becomes6 ipL, where L is the Gauss
linking integral:

L5 R G R sdxW3dzW•
~xW2zW !

4puxW2zWu3
. ~38!

The quantityL measures~with sign! the number of times the
contourss andG are linked. Clearly, an even~odd! number
of linkages contribute a term exp(ipL)511(21) to the Wil-
son loop. The Wilson loop is large, soL is a sum of a large
numberN of random positive or negative integers, andL has
a Poisson distribution. Moreover,N is proportional to the
~minimal! areaA of the Wilson loop, since all unlinked
strings give no contribution to the string tension:N5rA,
where r is a two-dimensional density of strings in the
vacuum. It is then an elementary exercise to calculate
expectation of exp(ipL) in the Poisson distribution~which
we approximate by a Gaussian!, with an area law as the
result:

^^exp~ ipL !&&5exp~2p2N/2!5exp~2p2rA/2!

[exp~2KFA!,
~39!

whereKF is the string tension. We see that the string tensi
measures in some sense the fluctuations of linkages of
string condensate with the fixed string of the Wilson loop, s
it is natural to expect a close connection between the str
tension and another measure of linkage fluctuation given
the CS susceptibility.

Note, by the way, that had we desired^W& in the adjoint
representation,p in ~39! would be replaced by 2p and there
would be no string tension.

It is difficult to estimate the string densityr in a straight-
forward elementary way, so instead we turn to the descr
tion of the string condensate by the scalar field theory. O
serve that the Wilson-loop expectation value~37! has a
standard gauge actionSW coupling the strings to the fixed
Abelian gauge potentialWW :

SW5 i R dzW•WW , ~40!

WW ~zW !5p¹W 3 R G dyW @DM~zW2yW !2D0~zW2yW !#.

~41!
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This is of the form of the original gauge vortex in~35!,
with the Wilson-loop contourG as the center of the vortex.
Such a coupling, expressed in scalar-field language through
the proper-time formalism, amounts to writing the scalar-
effective action given in~11! with a gauge-covariant deriva-
tive:

SW5E d3xF uDW cu21
luc4u
4

2
lvucu3

3 G , ~42!

where the covariant derivative is

DW 5¹W 2 iWW . ~43!

So, the Wilson-loop value is

^W&5Z21E ~DcDc̄ !exp~2SW!, ~44!

whereZ is the scalar-field partition function in the absence
of the Wilson-loop gauge potential. At the classical level,Z
is just

Z5E ~DcDc̄ !expS 1E d3x
lv4

12 D , ~45!

that is, a functional integral over the action evaluated at the
WW 50 saddle pointS52*d3xlv4/12 . Then, we can write
the logarithm of the Wilson loop, orKFA, as

KFA52 ln^W&5E d3xF uDW cu21
luc4u
4

2
lvucu3

3
1

lv4

12 G .
~46!

The idea is to find a classical solution~i.e., minimum of the
action! and to read off the string tension from the above
integral.

As mentioned above, the Wilson loop is large and effects
associated with theDM term inWW of ~41! do not contribute
to the area-law part of the action, only to curing short-range
divergences in perimeter-law contributions. Let us see what
happens when we drop this term. The remainingD0 term of
WW is pure gauge, as can be shown directly with Stokes’ theo-
rem; it corresponds to theV term in ~32!. A pure-gauge term
can normally be compensated by choosing the phase of the
field to which the gauge potential is coupled, so it is tempt-
ing to say that, if

WW 5¹W L, ~47!

then a solution to the classical equations is just

c5veiL, ~48!

for which the action integral~46! vanishes. This argument is
globally quite correct for the string tension in the adjoint
representation, for whichL is twice as big as in the funda-
mental representation, but not for the fundamental represen-
tation. The reason is that in the fundamental representation
L of ~47!, which is multivalued, is such that exp(iL) is two
valued when either~but not both! of the pointsx56a are
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encircled in thexy plane. Multivaluedness ofc is not al-
lowed; like the gauge potentials themselves, this field m
be single valued.

We now show that there is another solution for the fund
mental representation, which has a finite string tension. T
first step is to specify the Wilson loop, which is taken to b
two infinite straight lines parallel to thez axis and passing
through the pointsx56a,y50. We requireMa@1, so that
the Wilson loop is large, justifying the dropping ofDM in
WW . One readily calculates from~41!, the gauge functionL of
~47!:

L~xW !5
1

2
@fa2f2a#, ~49!

where

f6a5arctan
y

x7a
. ~50!

It is, of course, the 1/2 in~49! that makeseiL multivalued,
and which would be missing in the adjoint representatio
We can makeeiL single valued in a cut plane, by giving
f6a each a cut along the positivex axis, starting at
x56a. Then, the gauge functioneiL has no cut~is single
valued! for uxu.a, but its phase has a jump ofp across the
portion of thex axis joining the two sides of the Wilson loop
We can explicitly exhibit the structure ofeiL on this cut, and
it is convenient to do so atx50:

eiL5e~y!
y1 ia

Ay21a2
~51!

which changes sign fromi to 2 i upon crossing thex axis,
and approaches unity aty56`. This change of sign holds
not only atx50 but all along thex axis.

Now, separatec into a real part and a phase:

c5ReiQ. ~52!

Here, R is real, but can be positive or negative. We ca
chooseQ5L outside a circle in thexy plane of radius
r@a, where there is no cut, but we cannot do so f
uxu,a because of the jump discontinuity. However, it is po
sible to find another solution foruxu,a to the equation

¹W Q5¹W L, ~53!

which is valid for uxu,a except on the cut aty50. This
solution, unlikeeiL of ~51!, has no jump. It is sufficient for
the gradients to agree in order to compensate forWW in the
covariant derivative. Atx50, we can again exhibit this so
lution explicitly:

eiQ5
y1 ia

Ay21a2
. ~54!

There is no cut, andeiQ approaches unity aty51`. But for
y52`, this phase factor approaches21.

Consider the behavior ofc as r→`. In this domain, we
can take
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c5veiL ~55!

as the classical solution, up to terms exponentially small in
Mr . This is just what we have already done foruxu.a, but
not for uxu,a. In the latter case, the phase factoreiQ has
opposite signs in the upper and lower half planes, which is
inconsistent with choosing the real factorR5v. Clearly,c
cannot change sign for sufficiently larger without leading to
infinite action ~46!. The simple solution is to allowR to
change sign too, canceling the sign change ineiQ. This sign
change is brought about by requiringc to vanish along the
cut uxu,a, y50, which we do by requiringR to be odd in
y for uxu,a. This is consistent with the field equations.
Given that~53! holds, the gauge potential drops out of the
equations of motion. In these equations, thex derivatives are
only important in a region ofO(M21) around the Wilson
loop, so we keep only they derivatives. Then, the equation
of motion is

2R91
l

2
R2@R2e~R!v#50. ~56!

Here, the primes indicatey derivatives and thee factor
comes from differentiatingucu3. We chooseR to have the
same sign asy, and find the solution fory.0, x50 which
vanishes aty50:

y5E
0

R

dxF2S l

4
x42

lv
3
x31

l

12
v4D G1/2. ~57!

Expansion of R in ~56! around y50, plus R(2y)
52R(y), shows thatR has continuous derivatives through
third order at the origin.

So far we have constructed some useful pieces of a full
solution to the classical equations of motion. To find an exact
solution would require some smoothing and matching along
the linesx56a, but we will not do that here because it
contributes nothing to the string tension. Foruxu.a, the ap-
proximate solution isc5veiL, while for uxu,a, the solution
is ReiQ as shown in~54! and ~56!. These must be patched
together in a neighborhood of size;M21 around
uxu5a,y50, where the two solutions differ, and this would
require keeping theDM term inWW .

The string tension-area product is given in the action in-
tegral ~46!. The area factor arises as a product of*dz times
the integral overx from 2a to a, and the string tension
KF is the remaining factor, an integral overy. Some standard
manipulations which convert the integral overy to an inte-
gral overR, plus some rescaling, put the string tension in the
form

KF54Mv2E
0

1

duF16 ~3u424u311!G1/2. ~58!

This elliptic integral yields

KF51.17Mv2. ~59!

Using the one- and two-loop results of Eqs.~27!, ~28!, and
~30!, we can convert this intoKF5const3M2; numerical
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results will be discussed in the concluding section, after
find the CS susceptibility in the next section.

IV. THE CHERN-SIMONS SUSCEPTIBILITY

First, we observe that the CS numberWCS @see~2!,~3!#,
associated with strings or vortices, can also be expressed
modified Gauss linking number, just as the string tens
can. The modifications are due to the finite massM and
come from theDM term of the vortex~35!; they vanish for
linkages of large well-separated strings, but are vital to re
late string intersections, including self-intersections. We
sert the vortex form~35! into the CS number@~2!,~3!#, to find
for the CS number coming from two distinct vortices~la-
beled 1 and 2!:

WCS~1,2!52
1

8p2E d3x Tr@AW ~1!•„¹W 3AW ~2!…1~1↔2!#.

~60!

Insert the vortex expression~35! to come to

WCS~1,2!5
61

2 R 1dz1W3 R 2dz2W •

RW

4pR3F~MR!.

~61!

In this equation,

RW 5z1W2z2W ~62!

and the functionF comes from the massive and massle
propagators in the vortex expression~35!:

F~R!5
1

2E0
MR

duu2e2u. ~63!

For large well-separated strings,MR@1 andF→1, so

WCS56
1

2
L~1,2!, ~64!

whereL(1,2) is the Gauss linking number of the two string
But asMR→0,F;(MR)3 which completely removes the
singularity in the Gauss integral whenRW 50.

The CS number of~64! is fractional, but one should ex
pect for the gauge group SU(N) to encounter CS numbers
which are multiples of 1/N; this is equivalent to periodicity
2pN in the dependence on the vacuum angle. Such dep
dence is not in contradiction to the requirement that the
number be an integer, which is a global requirement;
linking of any two particular strings is local.

Self-linking of a single string also contributes to the C
number an amount (1/2)WCS(1,1) @see ~61!#. For a large
string with no self-intersections and minimum chord leng
@M21, one again recovers a Gauss linking integral whic
as is well known@7#, expresses the self-linkage as the sum
two integers, twist and writhe~which separately have no in
variant topological meaning!. For a string with self-
intersections or near misses, the functionF(MR) regulates
possible divergences, somewhat in the spirit of the usual
bon framing procedure. However, the strings are fat, and
we
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self-linking CS number can take any value. Again, this does
not interfere with the global requirement that the total CS
number be an integer.

We wish to calculate the fluctuation in linkages of the
string condensate. The first step, following Edwards@27#, is
to write the sum over strings of~61! in propagator form:

WCS5
1

4E d3xE d3yJi~xW !D i j ~xW2yW !Jj~yW !, ~65!

where

D i j ~xW !52 i E d3keik
W
•xWe i j l kl

M4

k2~k21M2!2
~66!

and the current is the usual one

JW~xW !5 (
strings

R dzWd~xW2zW !. ~67!

Now, introduce an Abelian gauge fieldVW (xW ) for which D is
the propagator, and a functional integral overVW which gen-
erates expectation values of powers ofWCS:

ZV~z!5E ~DV!expH i E @ 1
2ViD i j

21Vj1zJW•VW #J
[exp@2v~z!#. ~68!

@Strictly speaking,D has no inverse, and a gauge-fixing term
should be added to~68! in order that the inverse exist. This
term contributes nothing and will be omitted from the ex-
plicit discussion.# The action forVW is of CS type, but with a
propagator modified at short distances according to~66!; at
long distances, this propagator is just the usual CS one. The
coupling constantz is introduced to allow construction of
matrix elements ofWCS by differentiation, after doing the
functional integral overVW . This integral is, up to an irrel-
evant normalization,

Zz5 K K expS 2 i z2

2 E E J•D•JD L L , ~69!

where, as in~37!, the double brackets indicate a string ex-
pectation value. Then, from~65! and ~69! the connected CS
susceptibilityj CS @see~7!# is

1

4V S ]

]z2D
2

v~z!uz50 , ~70!

where V is the volume of all space.
As before, we calculatev(z) in the scalar-field form,

which amounts to changing the scalar action~17! to

Sz5E d3xF uDW zcu21
lucu4

4 G , ~71!

where the new covariant derivative is

DW z5¹W 1 i zVW . ~72!
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Then,Zz is found from a functional integral overc andVW .
While the effect of theVW field can be calculated perturba
tively, we already know that nonperturbative effects of t
c field are crucial. Once again, we use the CJT formalism
express these effects, including graphs with twoVW lines@thus
of O(z4)# in the 2PI sum@see~20!#. The calculation will be
done on shell~that is,c→v, the physical expectation value!.
As before, we express the free energy as the sum of o
particle terms and 2PI graphs:

2v~z!5trH lnGG0
2

G

G0
111

1

2
ln

D

D0
2
1

2
~DD0

2121!J 1S

~73!

and use a simple massive form for the dressed propag
G, as in Eq.~21!, with variational parameterm:

G~k!5~k21m2!21. ~74!

The termS represents the graphs shown in Fig. 1, where
solid lines represent the propagatorG. This propagator dif-
fers from our previous solution by powers ofz, and is to be
determined from its variational equation. The solution is
nonperturbative one as far asc goes~which we have worked
out at one- and two-loop levels earlier, see Sec. II!, modified
by VW corrections. The result is the set of graphs shown
Fig. 2, where the solid lines now represent a massive pro
gator with thephysicalmassM . A couple of comments are
in order: ~1! The weights given in the figures include th
factor of 1/2 required for closed loops consisting of one
twoVW lines;~2!All the baregraphs ofO(z2) vanish, because
they contain a singlee symbol. This means that the expe
tation value of the CS number is zero, as one expects fo
parity-conserving theory. However, the correspondi
O(z4) dressedgraphs do not vanish, since they have twoe
symbols.

FIG. 1. Dressed-propagator graphs for the 2PI graphsS ~defined

in the text!. The wavy lines areVW propagators, and the solid line

are dressedc propagators, including dressing withVW lines as shown
in Fig. 2.

FIG. 2. Graphs of Fig. 1 expanded to showVW lines occurring in
the propagatorG of that figure. The solid line now means the phys

cal c propagator in the absence ofVW .
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It remains to evaluate these graphs, which have conven-
tional Feynman rules except for theVW propagator, which is
given by~66!. Note that this falls off, likek26 in momentum
space, so rapidly that all the graphs we need to calculate have
no divergences fromVW lines.@We regulate anyc divergences
as before, using~23!.# The evaluation is straightforward but
lengthy, and cannot be done completely analytically. Our ap-
proach is to introduce Feynman parameters and to do the
momentum-space integrals analytically, then to do the re-
maining Feyman-parameter integrals numerically. There are
integrable singularities in the Feynman-parameter integrals,
but these cause no difficulties. In certain cases, some of the
Feynman-parameter integrals can be done analytically, but
the generic case is a seven-fold integral@there are usually
eight parameters, constrained by a delta function, because of
the nonstandard form of theVW propagator in~66!#. Another
approach to this propagator is to write it as

1

k2 S M2

k21M2D 25E
0

M2

ds
1

~s1M2!2
2

M2

~k21M2!2
. ~75!

This is not necessarily an easier way to do things, but it
affords a check on our results since it provides an alternative
Feynman-parameter form for numerical integration. Both
ways give the same answer.

The final result for the CS susceptibility, expressed in
terms ofM , is @using ~70!#

xCS50.010
M3

~4p!4
. ~76!

In the concluding section below, we will evaluate this and
other results in terms of the string tension and the vacuum
energy.

V. NUMERICAL RESULTS AND CONCLUSIONS

First, we discuss the numerical results of our calculations,
and then briefly point out how reconnection of strings leads
to topological charge change.

For purposes of comparison with lattice and other calcu-
lations, it is useful to express all quantities in terms of the
string tensionKF , whose value is fairly accurately known
from lattice work@31,32#. This value is

KF50.1120.13~g2T!2 ~77!

~here and in what follows, we always writeg2T for g3
2 , in

view of applications to high-T gauge theory!. Below, we
show values ofevac, M , and xCS in appropriate units of
KF and g2T, at one and two loops, using a nominal value
KF
1/250.36g2T. These results are based on Eqs.~27!, ~28!,

~30!, ~59!, and~76!. We use superscripts(1),(2) to indicate
one- and two-loop values:

evac
~1!520.28KF

3/2520.013~g2T!3, ~78!

evac
~2!520.17KF

3/252831023~g2T!3, ~79!

M ~1!51.95KF
1/250.70g2T, ~80!

s

i-
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M ~2!52.32KF
1/250.83g2T, ~81!

xCS
~1!50.074

KF
3/2

~4p!4
5
3.531023

4p
~aWT!3, ~82!

xCS
~2!50.12

KF
3/2

~4p!4
5
5.631023

4p
~aWT!3. ~83!

One can get a rough idea of the errors involved in tru
cating the loop expansion from these numbers; they dep
on the dimensionality of the quantity involved. ForM , with
dimensions of mass, the error is about 30%, with errors
other quantities growing as the dimension grows.

There are only a few other calculations one might co
pare to these numbers. Concerning the nonperturba
vacuum energy, Refs.@32,33# give values for2evac in the
range 0.01620.027(g2T)3, while Shaposhnikov@20# gives
0.033(g2T)3. The first two references cited@32,33# above
are lattice works for the full electroweak theory at finiteT
~near the transition temperature! and include Higgs andN
Þ0 modes. However, these should not contribute subst
tially to a nonperturbative quantity likee vac. Reference@20#
is based on a dilute-monopole gas approximation, and c
tains some factors arbitrarily taken to be unity. One sees h
a wide spread in these other calculated values, which are
too far from the results we calculate.

For the gluon massM , a recent lattice determination@16#
givesM50.46g2T, somewhat smaller than we give. This
not a pole mass determination, which would be gauge inv
ant, but we do not expect there to be a serious gauge de
dence in this number. References@14,15# give a small value
M5g2T/3p50.11g2T from a continuum one-loop gap
equation, but again this value is not gauge invariant and
has no reason to believe that a one-loop gap equation with
vertex corrections is at all reliable. Reference@13# gives a
lower limit onM of about 0.58g2T, which is consistent with
our values. Reference@13# uses a nonlineargauge-invariant
@12# one-dressed-loop gap equation with vertex correctio
and the sea gull graph included. The reason@12# that only a
lower limit can be given is that at two-loop order, there is
logarithmic divergence in the sea gull graph even in pert
bation theory, and this must~because there is no mass cou
terterm! be canceled by other two-loop contributions whic
nobody has studied yet. In other words, without imposi
gauge invariance on a two-loop or higher gap equation, o
has no control over perturbative effects which lead to~ulti-
mately canceling! ultraviolet divergences. So the authors
Ref. @13# showed that their nonlinear equation had no so
tion at all unlessM were a certain minimum value, no matte
what happened to the sea gull graph.

There are no other computations known to us ofxCSwith
which our result can be compared. Various authors have
timated a related quantity, which isGBL , the rate at which
B1L is violated, or equivalently~up to a factor ofNF , the
number of flavors!, the rate at which the CS number diffuse
Given the static mean-square fluctuationXCS, one can esti-
mateGBL by multiplying it by a rate. If we take this rate to
beM and ignore factors which we hope are of order 1, th
leads to

GBL /NF'MxCS572831023~aWT!4. ~84!
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Philipsen@18# has done a calculation ofGBL in high-T elec-
troweak theory, based on the proposed existence~Cornwall,
Ref. @17#! of sphalerons above the phase transition tempera-
ture, where the Higgs VEV vanishes. His result maximizes at
about 0.01(aWT)

4 at M50.1g2T, and falls off rapidly on
either side. The dependence of Philipsen’s result on
x[MSp/T is complicated, but somewhat similar to the usual
semiclassical sphaleron rate below the transition temperature
@22#:

GBL;~aWT!4x7e2x. ~85!

If, as given in Refs.@34,1#, MSp'5.3M /aW , one finds a
maximum rate atM'0.1g2T (x57), a mass value proposed
before@14,15#. But, if the values ofM in Eqs.~80!, and~81!
are used, the quantityx is very large, about 45–50, and Phil-
ipsen’s rate would be very small. Given such sensitivity of
sphaleron rates toMSp, it is simply not clear yet whether
high-T sphalerons are or are not important, but our numbers
taken at face value would not leave much room for sphale-
rons to dominateB1L decay above the phase transition tem-
perature.

We close by showing how the conventionald54 topo-
logical charge is related to a change in vortex linkage. For
d54, the form of the vortex corresponding to thed53 form
~35! has long been known~see, e.g., Ref.@2#!: it is

Am~x!52pQemnab]n R dsdt
1

2
@ żazb82~a↔b!#

3@DM~z2x!2D0~z2x!#, ~86!

where theD ’s ared54 propagators,Q is a group generator
as in ~35!, andz(s,t) describes a closed two-surface. This
potential is a solution to thed54 action analogous to the
d53 action in ~32!, and in the static limit (z5(zW(s),t))
reduces to~35!. When two strings cross each other in such a
way as to change their linkage~Gauss integral!, the topologi-
cal chargeq expresses this change as ad54 integral giving
the intersections of the two closed surfaces. We give the
result only for two large surfaces, where theDM term can be
neglected:

q[2
1

16p2E d4x trGmnG̃mn

5
1

2E ds1ds2dt1dt2emnabż1mz1n8 ż2az2b8 d~z12z2!.

~87!

Here, z1(s1 ,t1), z2(s2 ,t2) are the equations of the two
surfaces. This integral clearly measures the~generically
pointlike! intersections of the two surfaces. A similar integral
can be written for self-intersections~see also Ref.@25#!, and
the finite-M corrections worked out. The topological charge
for SU~2! is half-integral, like the CS number, but it is a local
contribution to the global charge, which must be integral,
and is no obstruction to an integral global charge.8 The

8For a construction of localized instantons of half-integral charge,
tied together by a sphaleron world line, see Cornwall and Tiktopou-
los as cited in footnote 4.
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reader can easily construct kinematic configurations for t
surfaces which correspond to the time evolution of a chan
of linkage, and see how the topological charge is genera
thereby. Of course, such time evolution necessarily involv
electric fields and goes beyond thed53 gauge theory we
have considered here.

There still remains much to be done ond53 gauge theory
before we can have any confidence in attacking such diffic
dynamical problems asB1L washout at highT. The next
significant step will be to construct a Schwinger-Dyson equ
tion for the gauge-boson massM which, like the work re-
ported in Cornwallet al. @13#, is gauge invariant and in-
cludes vertex parts consistent with the Ward identities, b
which goes to at least two dressed loops in order to deal w
incipient perturbative two-loop divergences in the mas
he
ge
ted
es

ult

a-

ut
ith
s.

Then, one must face up to the problem inherent in all ana-
lytic treatments of strongly interacting gauge theories, with
no obvious expansion parameter: How accurate are the re-
sults? The only self-contained approach is to keep more 2PI
graphs in the CJT effective potential. Aside from that, we can
only compare with lattice computations. It would be valuable
to have a lattice calculation of the CS susceptibility for this
purpose.
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