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Interplay of universality classes in a three-dimensional Yukawa model
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We investigate numerically on the lattice the interplay of universality classes of the three-dimensional
Yukawa model with W1) chiral symmetry, using the Binder method of finite size scaling. At zero Yukawa
coupling the scaling related to the magnetic Wilson-Fisher fixed point is confirmed. At sufficiently strong
Yukawa coupling the dominance of the chiral fixed point associated with the 3D Gross-Neveu model is
observed for various values of the coupling parameters, including infinite scalar self-coupling. In both cases the
Binder method works consistently in a broad range of lattice sizes. However, when the Yukawa coupling is
decreased the finite size behavior gets complicated and the Binder method gives inconsistent results for
different lattice sizes. This signals a crossover between the universality classes of the two fixed points.

PACS numbds): 11.10.Kk, 11.15.Ha, 64.60.Ak

[. INTRODUCTION the investigations of analogous but more complex situations
in 4D. The Y; model has nontrivial fixed points, a property
Some strongly coupled lattice field theories in four dimen-searched for in 4D. We would like to learn how to detect
sions(4D) possess perturbatively unaccessible critical point$uch points, and what are the possible obstacles when the
where scaling properties are understood only poorly or not aff;callng. prope_rugs are investigated numerically in the situa-
all. Examples are noncompact QED, compact QED with-  tion of intertwining phenomena. .
out matter fields(pure QED [2] or with fermions [3], The couplings of the ¥ model are the scalar hopping
gauged Nambu-Jona-Lasinio or Yukawa modgy and Parameterx, the scalar quartic selfcoupling, and the
models with fermions, gauge field, and charged scalar afukawa couplingy. The action is given in Sec. Il A. The
strong gauge coupling5]. A clarification of their critical ~Phase diagram is shown schematically in Fig. 1. We concen-
behavior and of the continuum limit taken at such points istrate on the transition between the paramagne?id) and
desirable at least for two reasons: First, the fundamentdfrromagnetic(FM) phases. The two-dimensional PM-FM
question of the existence of 4D quantum field theories desheet of second order phase transitions connects the critical
fined on non-Gaussian fixed points has never been settleine of the purely scalagz model aty=0 and the critical
Second, finding a 4D theory interacting strongly at short disoint of the 3D Gross-Neve(GN3) model atk=\=0. On
tances could contribute to the development of theoreticathis sheet, the Y model is expected to have two nontrivial
scenarios for dynamical symmetry breaking as possible alteffixed points.
natives to the Higgs mechanism in the standard model and its (1) Wilson-Fisher fixed pointWFFP [7] of the pure sca-
extensions. lar two-component 30p* (¢§) theory whose most familiar
Except the pure QED, a chiral phase transition, with therepresentative is the 3D X¥XY 3) model. The phase tran-
chiral condensatéyx) as an order parameter, takes place asition is of magnetic type.
all the critical points mentioned above. But it always differs
in some qualitative way from the classical model for chiral
symmetry breaking, the Nambu—Jona-Lasinio model. This is qyu\ M
encouraging, as that model is even nonperturbatively non- © H !
renormalizablg 6] and thus of very limited use. The differ- @ N
ences consist mainly in an admixture of some other phenom- A /
ena as confinement, monopoles, magnetic or Higgs 0
transition, additional states of vanishing mass, etc., intertwin- PM i
ing with the chiral transition, but occurring also in other "R
situations, including those without fermions. However, this AEM
not only increases the hope for a fundamental difference 5 y &
from the Nambu-Jona-Lasinio model, but also makes the
tran_sitions perplexin_gly complex and difficult tp_analy;e. N FG. 1. Schematic phase diagram of thg rodel. The region
particular, the genuine character of the transition might bee|o the upper critical surface is the paramagnetic ptris®, the
hidden behind some prescaling phenomena caused by SOmgjion above it the ferromagnetic pha&a). They=0 plane and
component of the mixture, or by a crossover between differthe ,=\=0 line correspond to thet? and GN, models, respec-
ent universality classes. tively. For negative values of the parameigrwe further expect an
In this paper we study the interplay of the chiral and mag-antiferromagnetic phaséFM) and a ferrimagnetic phas€l). We
netic phase transitions in a 3D lattice Yukawa mog¢é} have investigated the PM-FM transition fer=0 and«>0, in par-
mode) with global U(1) chiral symmetry as an exercise for ticular at the points and directions indicated by the arrows.
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When in the 5 model the Yukawa coupling decreases and
the ¢‘3‘ theory is approached, the WFFP gets presumably in-
WEEP fluential, as some crossover to the magnetic universality
class must occur. This consideration warns us that for limited
lattice volumina and consequently limited correlation lengths
either no unique finite size scaling behavior can be found or
X FP the wrong fixed point dominates. Thus a detection of the
genuine, presumably chiral, character of the transition gets
more and more difficult in numerical simulations. This is the
situation we are most interested in, as it might occur in 4D
without a prior warning.

Apart from this particle physics motivation our work
might be of interest also for other reasons, related mainly to
statistical mechanics.

(1) We have applied the Binder method of finite size scal-
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FIG. 2. A suggestion for the renormalization group flow on the

PM-FM critical surface of the Ymodel. The fixed points are GFP . . . i
(Gaussiajy WFFP(Wilson-Fishey, and yFP (chiral, or GN;). The "r]]g a.malysll(s[lél’la tollth? Chlrﬁl phase trangltlon alnd :Olljgd
indicated position of thetFP is very schematic, it could lie any- that it works very well also when a composite scalar field Is

where on the PM-FM sheet, gt>0. used in the finite size scaling theory, as long asxtRP alone
dominates the finite size scaling behavior.

(2) Chiral fixed point §¢FP), most naturally associated '(2) A transition between' vario'us universality classes in
with the GN; model with U1) global chiral symmetry and a finite volumina has been investigated recenih6,17 in
chiral phase transition. The existence of this fixed point isS0OmMe spin models, but, to our knowledge, until now in no
related to the nonperturbative renormalizability of the SN model with fermions. Thus we make a new contribution to
model (see[8] and references therain the experience with this sort of complex finite size behavior.

The sketch of the renormalization gro(‘m) flow in F|g As in Spin models, it is the failure of the Binder method
2 represents a plausible scenario for what happens along tHéhich indicates a change of the universality class.
critical PM-FM sheet: The magnetic WFFP describes only (3) Sometimes an intermediate universality class could
the % theory. TheyFP presumably dominatésas a domain €Xist[17]. This would be very surprising for thez¥model
of attractivity) everywhere as long as the Yukawa coupling nevertheless, we have verified that this is most probably not
does not vanish, and in the limit of infinite cutoff the,Y (e case here. _
model is thus equivalent to the GNnodel. This expectation Ve now briefly describe the contents of the paper and the
has been recently supported at weak scalar selfcoupling af§@in results. In the next section we introduce thenodel
large Yukawa coupling by the i/ expansion[9-11 and a and determine its phase diagrdffig. 1), both by means of
consequent combined analytic and numerical investigatiof® €ffective potential in the one-loop approximation, and by

[12]. A discussion of the equivalence between the Yukawaoerforming numerical. simul_ations on a small lattice at many
and four-fermion theories, as well as earlier references, caRCiNts in the three-dimensional parameter space. The most
be found in Ref[13]. useful order parameter is the scalar field expectation value,

In Fig. 3 we show schematic RG flows also outside the®Ven if this field can be considered as composed of a fermion
critical sheet for three special cases of restricted paramet&@- We mention some results on the fermion and boson
spacely=0, k=0, andk=\=0. This figure indicates that M3SS€S bpth in the symmetric phase and in the phase with
the known RG flows in thep3 and GN; models can be broken chiral symmetry.

consistently embedded into the RG flows in thgrivodel. In Sec'. i we briefly rewevylthe Binder method allowing .
a determination of several critical exponents by an analysis

of finite size effects. The most useful exponent is the corre-

lation length exponent obtained from the Binder-Challa-
WFFP Landau(BCL) [14,18 cumulant.

The magnetic transition of th¢‘31 theory is investigated in
\ Sec. IV. After localizing the critical line we concentrate on
) oo N\ the case. = (the XY; mode) and a case of an intermediate
GFP ——r scalar selfcoupling X=0.5). The obtained exponents are

D'{ consistent with each other and with the value expected from
0 Za= analytic investigations of the WFFR € 0.67). Also the val-

ues of the renormalized coupling extrapolated to infinite cut-

A : X ) .
¥ = off are consistent. The Binder method is compared with two
other approaches to finite size scaling and found to be most
Ty suitable for our purposes.

Section V deals with the chiral transition in the GN
FIG. 3. The schematic RG flow in thes? model (=0, model at\ =0, both in the auxiliary scalar field formulation
x>0), in the k=0 surface of the ¥ model and on thec=A=0 (k=0), and with a dynamical scalar fieldc (varied andy
line, which corresponds to the GNnodel. The fixed point of the Kkept at the critical valuegy=1.09). In both approaches to the
latter model is indicated by an arrow. critical point, the Binder method works comparably well for
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all the lattice sizes we use@3-24%) and gives consistent Nel2 o
results for critical exponents. In particular,=1.03(11), Se=3 ”X'MZl ()(i()(JXW—XJXWXJX),
which is a value consistent with theoretical expectations X =
[13,19,2Q and significantly different from the value found y
4 _ . . i .
for the ¢3 model aty=0. Thus, the difference between the Sy=532 Xe> (briptiexd? p)xk, (1)
magnetic and chiral universality classes is clearly observed X,] b

in they=0 and\ =0 limit cases. Their common property is

that the Binder method works in an exemplary way in thewhere the integer three-vectoxs x+u, andx+b denote,

whole range of lattice sizes we used. respectively, lattice site, its nearest neighbors, and corners of
In Sec. VI, the % model with a large Yukawa coupling, the associated elementary cutith in positive direction

y=1.1, is investigated at the maximal value of the scalarThe coefficients are

selfcoupling A =«. Also, here the Binder method works ot ot ix

quite well, and we findv=0.846), avalue slightly lower ~ 7x1=1, 7x,=(=1)™ wL ee=(=1) 3.

than, but within errors still consistent with, the value found ) . i

in the GN; model. This confirms the appurtenance of the 1he coupling constants, A, andy and the fields¢' and

Y4 model with both couplingy and A strong to the same Xj &€ dimensionless quantltl_é\.é,:=4 is the number of con-

chiral universality class as the GNmodel, and thus the tnuum four-component fermions.

physical equivalence of both theories. The scalar sectoSB of_thg actl_on(l) has a global (DZ)_
However, difficulties arise when the Yukawa coupling de-SYmmetry. The actiorS is invariant under the vectorial

creases. As we describe in Sec. Vllpat» andy=0.6, the ~U(N) transformations

BCL cumulants cross at different points when only small — — .t

(63-10% or large (103-24°%) lattices are considered, sug- Xi—=Qjixi,  xj—xilij, QeU(Ng2), @

gesting different values of the criticat. Restricting our- i ]

selves to the larger lattices only, we find the Binder method®d the axial U(1, transformations

to work, giving »=0.99(23). This value is consistent with

i = e -2
the GN; model value, but has a large error. On small lattices X hexx,  X—XEhey, p—e T,

the obtained value of is significantly lower and close to the t Do ix

value in theg3 model. As we describe in detail in the same ¢*—e"nP*,  wpck. )

section, ah = andy=0.3, the Binder method gives incon- i ) ) o

sistent results in the whole range of lattice sizés-82° we The action(1) contains two important limit cases, the
i i i i ko bd model and the GN model. Aty=0, it is the ¢4 theor

have investigated. This can be interpreted as a situation iffs M - Aly=0, 3 (heory

which none of the two fixed points alone dominates the finitedescribed by the purely scalar pa§ of (1). In the limit

size effects on lattices of these sizes, i.e., as an interplay ok — >, the actionSg reduces to that of the X¥spin model.

or a crossover between, universality classes. We find no sight «=X =0, the action(1) turns into the action of the chiral

for the existence of an intermediate universality class. ~ GN3 model in the auxiliary scalar field formulation. The full
As we conclude in Sec. VIII, an interplay of magnetic and Yukawa model interpolates between both these models and

chiral phenomena in the ;ymodel thus results in uncontrol- the PM-FM critical sheet continuously connects the magnetic

lable finite size effects. However, inconsistencies in the apPhase transition of the spin model with the chiral phase tran-
plication of finite size methods become apparent only when &ition of the GN; model.

broader range of lattice sizes is investigated. This might

serve as a warning for investigations of critical points with a B. Symmetry breaking

mixture of chiral and some other critical behavior in 4D lat-

L ; In order to get information about the breakdown of the
tice field theories.

continuous chiral symmetry in thes¥nodel, we have com-
puted the effective potential in one-loop order for0. For
this purpose, we start with the Euclidean continuum action
Il. THE Y s MODEL AND ITS PHASE DIAGRAM with my being the bare masgg the bare scalar selfcoupling,
A. The action andy, the bare Yukawa coupling. The calculation is straight-

In order to investigate the breakdown of a continuous Chi_forward (see[22)) and yields

ral symmetry, we use staggered fermig@4]. In the lattice m2 %
parametrization the action of the;Ynodel is Vei(02) = 7024— E(UZ)Z
S: SB+ SF + SY y

10 dp 9o

_ 2 2 2
+2waln(p +m0+—20' )
X

2 2
i i i 1 d*p g
SB:E [_ZKE ;1 X+”¢x+i21 (d)* +§f/\(2ﬂ')§ln( p2+mg+€002)

¢
2 i 2 d3p ,
+A 241 (¢x)2_1) ] —2NFJAWIn(p2+y002), (4)
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TABLE I. Peaks of the susceptibility in the;¥nodel determined on a®dattice.

y K A y K A
0 1/6 0 0.908) 0.05 0
0 0.173@6) 0.01 1.427) -0.1 0
0 0.18185) 0.03 0.0 0.202) 0.5
0 0.200810) 0.10 0.3 0.271) 0.5
0 0.226515) 0.30 0.5 0.2@) 0.5
0 0.2382) 0.50 0.9%13) 0.1 0.5
0 0.2492) 1.00 1.1010) 0.6 0.5
0 0.24@3) 3.00 1.3013) 0.0 0.5
0 0.2182) ® 0.0 0.254) 1.0
1.108) 0 0.0 0.3 0.2®) 1.0
1.258) 0 0.5 1.0%15 0.06 1.0
1.2510) 0 0.75 1.3(25 0.0 1.0
1.288) 0 1.0 0.0 0.29) 0
1.2513) 0 1.5 0.3 0.101) o
1.25(13 0 2.0 0.6 0.14) o0
1.108) 0 0 0.808) 0.1 o0
0.3 0.1%1) 0 1.0 0.041) o0
0.6 0.121) 0 1.108) 0.001 ®
0.808) 0.08 0 1.478) -0.1 o

where we have regularized the momentum integrals with §.(m3,g,) exists. For all couplings/, with yo>y., the
cutoff A.  We have introduced the abbreviation vacuum expectation valugp) of the scalar field is nonzero
o?=02+ g3, where the constanis; (i=1,2) can be identi- and the chiral symmetry is broken.

fied with the expectation valueg={¢;), ¢; being the scalar This computation of the one-loop effective potential sug-

fields in the continuum. These fields are related to the latticgests that in the Y model, at sufficiently smalk=0, two

scalar fieIdSqﬁiX by phases of different symmetries exist, as indicated in Fig. 1.
As usual, we call them paramagneteM) for (¢)=0 and
2k . ferromagnetid FM) for {¢)+0.

piax)= \| =9, ©) ’ @)
and the relations between the parameters are C. The phase diagram

oy Figure 1 displays a schematic phase diagram, including

, 1—2\—6« 6\ ;
ms= ~ , go=ﬁ- (6) also some expectations far< 0. The phases relevant for our

purposes are PM and FM. In the PM phase both order pa-
rameters ¢) and(xx) (for y>0) are zero and fermions are
gwassless. The lightest boson pair is degenerate. In the FM
phase the vacuum expectation value of the scalar field, the
chiral condensate, and fermion mass are nonzero.

To characterize the PM and FM phases numerically
we have used the magnetizatioM =V*1[(EX¢§)2

All the values of o; which minimize V. are possible
candidates for the vacuum of the theory. We can find thes
minima by solving the equationgVq4/do;=0 simulta-
neously fori=1,2. One solution isr;=05,=0. In the sym-
metric phase, it is a minimum?(&iveﬁ|(0,0)>0), in the bro-
ken phase a maximumodd;Veg(00<0) and a further 2\ 241/2 i i -
solution exists. In this sensé;d;V egl(0.0=0 is an implicit +(Sx4)°17, V being the number of lattice points. A con-
equation for the boundary between both phases of the theorg!"uous phase transition is indicated by a singularity of the

At fixed values of the parametens% andgy we can cal- usceptibility:

" ; 2
cuzlate the critical Yukawa cpupllngc(mo_,_go). If we choose x=V((M2)—(M)2). (8)
mg=0, we can always find a positive solutiop, of
ﬂiaiveff|(0,0): 0, Wh|Ch iS
For the numerical simulations we used the hybrid Monte

3 - 1/2
ye=| 4N f d°p 1 Carlo algorithm. The critical surface of the phase diagram
¢ F ,\(217)§ p7 has been found by localizing peaks of the susceptibility on a
6° lattice. In Table | the values of the coupling parameters at
2 d3p g 1/2 h L f th ibili : f
| m2+ 0 9o=0 @) the maxima of the susceptibility are summarized. Of course,
0" 3)a2m)3 p2+ms| 1 T they give only an approximate position of the critical sur-

face. In cases in which it was needed, the critical coupling in
Equation(7) means that even fcn§> 0, when the classical the thermodynamic limit has been determined by a finite size
potential does not predict the symmetry breaking, a solutiorscaling analysis.
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Our data strongly supports the expectation that for all - 1 o
positive values of/, the condensatéyy) vanishes simulta- G(Lz):v > 2 (B )
neously with the magnetizatioM. We have extracted the e
fermion mass from the fermionic momentum space propaga- B 1
tor. _The agreement with the tree level prediction (3<L4):v > > (D5, P, Pk, P5,)- (10
am==Yy(¢) is quite good. In the FM phase we have also XpoooXg 1)

observed in thep propagator a massive particle, thebo- . -
son, and a massless particle, the Goldstone boson. The ebOth L. and the correlation lengt}j are sufficiently large

masses, as well dy ), are not as convenient as the BCL enU, has the form

cumulant for the study of the finite size behavior but can be L
used for a qualitative comparison of the physical content of f4(—)
the Y3 model in different parameter regions. U =2- ¢ 5 (12)
L
f —
D. Renormalizability properties [ 2( f”

Both the¢4 theory and the full Yukawa model in 3D are yith analytic functionsf, andf,. Note that(11) requires the
perturbatively superrenormalizable. For the &iModel this validity of hyperscaling.

i_s different. The cqntinuum four-fermion cogpling has nega- At the critical valuex, of the hopping parametet the
tive mass dimension, and the corresponding interaction iSorrelation length diverges and all cumulabtg . have the

therefore, perturbatively nonrenormalizable. Nevertheless, it

. . . . :

has been proved that the GMhodel is renormalizable in the same valud) mdependem O.f _the lattice Size. This makes I

1N expansior23] possible to determine the infinite volume critical coupling as
F .

It has also been shown in the framework oK/expan- 'I[_he common intersection point &f, for different values of
sion that for weak scalar selfcoupling=0(1/Ng) the ' R ,
Gross-Neveu model and the full Yukawa model i @<4 In the scaling limit, Binder's cumulant has the form
are equivalent field theori¢9—11]. Near the nontrivial fixed L .
point the kinetic term of the scalar field and the quartic scalar U (t)= U(%) =U(tLY™), |t<1 (12
selfinteraction turn out to be irrelevant operators. However,

in those works nothing beyond the range of validity of the,iin t=1—«k./x. Let us consider a pairbl,L) of lattice

1/Ng expansion could be said. . sizes withb>1. From(12) it follows
In Ref.[12] the equivalence has been confirmed by ana-
lytic and numerical methods for the discrete chiré)zsym- AUpL 1
metry, still with \=0O(1/Ng). We have extended that work In T0, || =5 Inb. (13

to the Ul)-symmetric case and have investigated a wide
range of parameters including infinite scalar self-coupling. In order to obtain the derivative?(JbL/aUL)|Kc, one calcu-

lates the functionU,, =g(U,) numerically and near the
lll. FINITE SIZE SCALING THEORY critical point approximatesg by a linear function determin-
A. The Binder method Ing ',ts ;Iope. . i .
Similar relations can easily be derived for the exponent

In order to examine the interplay of the universality ., of the susceptibilityy and the exponeng of the magne-
classes associated with two different nontrivial fixed pointstjzation M,

in the Y; model, we have studied the finite size scaling be-
havior and tried to determine the critical exponents of the XoL(ke)\ ¥
theory at several points of the critical surface. A very pow- | ( YL(xo) ) = —Inb,
erful method to do this is the Binder method of finite size ¢
scaling analysis of a cumulafit4,15. ML (k) B
It is sufficient to use scalar-point functions even in the In(M—) =——Inb. (14
case of nonvanishing Yukawa coupling. We therefore follow L(Ke) v
Refs.[15,24] and define the corresponding fourth-order C”'Using (14) one can calculate the ratig&/ v and /v from

mulantU, on a cubic lattice of exterit: M and y determined on various lattice sizeslL(L) exactly
at k¢.

1. -
VG(L‘”—Z[G(LZ)]2 In the ¢3 theory the specific heat exponentis negative.
U=-——>—— Vv=L3 (99  That means that the specific heat is a regular function of the
[G¥7? reduced coupling and there is no relation similaf1d) for
- - it.
whereG® andG* are To calculate the required quantities, we used a reweight-

ing technique. By means of the original method of Ferren-
berg and Swendsd25], one can only interpolate operators
The critical exponents, 8, andy are defined ast(is the re-  which can be expressed as explicit functionSof herefore,
duced coupliny like the authors of Ref[12], we used a variation of the
77 M~tB (fort>0), x~|t| . method suggested in Reff26]. It can be regarded as the
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multihistogram method with bins of zero width. With that

reweighting technique one can interpolate nearly arbitrary 26 I K I ‘ .
operators over a wide range of the couplifgFor this pur- :
pose it is necessary to store the oper&arhich corresponds 24
to the couplingB and the value of the operator for each I PH-Fhase
configuration which has been generated during the simula- 22
tion. - I
.20
B. Previous applications of the Binder method 18
In the past the Binder method has been applied to a vari- 16 -
ety of interesting physical systems. In RE24] the method P '2 ' ; ‘ ; : ; .
has been generalized to @) ¢* theories and in Ref27] N

the critical exponentr has been determined for the(4)-

invariant scalarg* theory in 3D and 4D. A high precision FIG. 4. Phase diagram of thés model. The\ axis has been

measurement of in the XY; model has been done in Ref. rescaledA* =50\/(1+5\). The circles show the maxima of the

[28]. susceptibility on a & lattice. The crosses show the positions«gf
The method has also been applied to models with intereletermined with higher precision by means of finite size scaling

acting fermions[12]. Here a slight modification of the methods.

Binder method has been used to compute the critical expo-

nents v and y/v in the three-dimensional Gross-Neveu We have computed Im() on different lattices and ex-

model with Z42) symmetry. The found value of~1 is in  tracted » from a double logarithmic plot. Our results are

good agreement with the prediction of théNt/expansion.  consistent with those obtained by the other methods but the
In Ref. [17] the critical behavior of diluted Heisenberg statistical errors again turned out to be substantially larger

ferromagnets with competing interactions has been investithan those for the Binder method.

gated. The authors varied the concentration of spins and

found two distinct universality classes which are separated

by a crossover region. In this domain strong corrections to IV. MAGNETIC TRANSITION

scaling appear, and Binder’'s method does not work well. AT VANISHING YUKAWA COUPLING

Also, evidence for a new, intermediate universality class has A. The ¢4 model

been found. . . .
In the limit y=0, the action(1) describes free massless

fermions and @)-invariant ¢§ model with quartic selfcou-
pling. Besides our interest in the features of ikmodel as
For the ¢3 model we have also tried to compute critical a limit of the Yukawa theory, here we have developed and
indices by some other methods. Among these are the diregésted the methods we wanted to apply to the more sophisti-
method, which makes use of the finite size scaling laws otated and expensive fermionic model. The existence of a
physical quantities, and the scaling of the smallest Lee-Yan@ontrivial fixed point and a finite nonvanishing value of the
zero with the lattice size. renormalized quartic self-couplings in the continuum limit
On a finite lattice of extent the susceptibility peaks at make this model by itself very interesting from a field theo-
the valuexy (L) of the hopping parameter. If we increase theretic point of view, too.
lattice size thency (L) approaches. according to The phase diagram in the\ plane, computed mainly on
1 6° lattices(see they=0 entries in the Table)| is displayed
rm(L) = ke o L7 19 Fig. 4. The spectrum in the PM phase below the second
order phase transition line contains two degenerate massive
scalar particles. In the FM phasef «.) the O2) symmetry
is spontaneously broken and the lightest particles in the spec-
trum are a massless Goldstone boson and a masddoson.
The renormalization group properties of tfd&ﬁ model
have been investigated, e.g.[80] and are indicated in Figs.
2 and 3 on thgy=0 face of the phase diagram at-0. The
model is superrenormalizable in weak coupling perturbation
theory and its physics at infinitesimal scalar selfcoupling is

scaling of the Lee-Yang-Fisher zeros. By continuing the hopdominated by the Gaussian fixed poi@FP at A =0. At

ping parametek to complex values, one finds that the par- "onvanishing coupling >0, the critical linexc(A) is domi-
tition function has zeros in the complex plain. For finite lat- "2t€d by the infrared-stable nontrivial WFFP. The investiga-

tices all the zeros lie off the real axis. The zergwith the ~ 1ONS by means of: expansion or M expansion of the

smallest imaginary part scales lik29] O(N)-sy_/mmetrlc ¢5 suggest that the interaction term _be-_
comes irrelevant, and the only relevant term that remains is

the kinetic one. This means that)at-0, only one parameter
Im(xo) ~ L™, has to be tunedc— «.(\) in order to reach a continuum

C. Other methods to determine critical exponents

Thus the measurement &f,(L) for various lattice size&
yields the critical exponent by a corresponding fit. We have
tried this method in thep3 theory for different values of the
scalar selfcoupling.. Our results were rather unsatisfactory
because of their quite large statistical errors. For the sam
statistics we obtained more accurate valuesifowith the
Binder method.

Another possibility to determine is to use the finite size



4622 E. FOCHT, J. JERSK, AND J. PAUL 53

Ulk) Ar=05 y=0.0 oU,/aU,=f(b) A=0.5 y=0.0
T T T T T T T - T L=a
10 F = o4° 1ot L linear fit: | Nmew=120000
i o v= 0687(19)
1 g 8t o= 0.024(14)
L i |
0.8 128 i
4 0o 163
sl
r T =
o 06 © 4t
® e
=]
— L]
04 [
o
02 [ f
00 . I . I . ! . L] ‘
22 23 24 25 26 . 5 6
® b

FIG. 5. The intersection point of the Binder cumulants in the FIG. 6. Linear fit to InGUbL/(?UL) used, according to E({13),
#3 model on several lattices far=0.5 atx,=0.2411). Thelines  for the determination of the critical exponemt determined at
were obtained by reweighting, the symbols are the measured pointg.=Q.5.

limit governed by the WFFP. Thus, the same scaling behavsame universality class. The value @fv is consistent with
ior should be found when the critical line is approached athe one calculated with the hyperscaling relation
arbitrary A >0. Blv=(d—v/v)/2. As hyperscaling seems to be fulfilled, we
determined the exponents &, and » from the relations
B. Results athA=% and A=0.5

We have chosem =« and A\=0.5 and determined the d+vylv B
renormalized coupling as well as some critical indices in a=2-vd, &= d—viv’ 77:2_d+2;-
runs in thex direction. A Monte Carlo determination of the
renormalized quartic couplingg has been done, e.g.,[i81]
for the Z2)-symmetric ¢>‘3‘ model. To our knowledge, no V. CHIRAL TRANSITION AT VANISHING SCALAR

analogous measurement exists for thg2)&ymmetric SELFCOUPLING
model. Following, e.g[31], we define\g in the symmetric A The GN, model
phase as

At A= k=0, the scalar field) plays in the actio{1) the
Ag=(Lamg)®U, . (16)  role of an auxiliary field. It can be integrated out, thus ob-
taining a purely fermionic GH model with U1) chiral sym-
Here,amg is the mass of ther boson extracted from the metry:
scalar propagator. To extrapolate to the continuum limit we

varied the lattice size fronL=6 to 12 while keeping e Y_2 } — 2
Lamg fixed at 4. =577 [<8b§c. X”bx”b)
At A= the renormalized scalar selfcoupling increases )
very slowly with the lattice siz&. The linear extrapolation B } S ek 17)
in 1/L to L= suggests a value ofg=26+4. At A\=0.5, Bp R, FTOXxrbXxb |

an extrapolation toL=« is less precise, suggesting
Ar=20-30. The agreement supports the expectation that tr]
model is dominated by the WFFP on the whole critical line
A>0. These results fokg are also consistent with the ex-
pected theoretical values2].

& 3D, this model is perturbatively nonrenormalizable. How-
ever, it has been shown if83,8] that the GN; model is
renormalizable in the Ny expansion. The3 function has
heen calculated t@®(1/Ng) in [13,19 and to O(1/N2) in

The most sensitive test for the appurtenance to the sanﬁo] The 1N expansion reveals a nontrivial UV-stable
s[20].

universality class is the comparison of critical exponent fixed point wh q ical chiral trv breaki q
Using the Binder method described in Sec. Ill A we have Ixed point where dynamical chiral Symmetry breaxing an
fermion mass generation occur. The phase transition is of

determined the critical exponents B/v, and y/v. The . .
method works very well at botk values in the whole range second order and the order parameter is the chiral condensate

of lattice sizes used,-16%. To illustrate this we show in XX)- . .

Fig. 5 the determination ok, at \=0.5. In Fig. 6 the data In g&ef. [20] one can find the critical exponent to
for U, /19U, used for the determination of at the same O(1/Ng). In our case Kp=4),

\ value, and the linear fit are displayed.

We were able to determine to a precision of about 16 8(376+ 2712)
3%, Blv to about 9%, and/v to about 3%. The results are v=lt N 277*NE
summarized in Table Il. They are consistent with the expec-
tation that the two pointa. =« and A =0.5 belong to the =1+0.135-0.122=1.0(1). (18

+O(1N3)
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TABLE II. Critical exponents in thexﬁ‘s1 model atA =0.5 and\ =o. The exponents, enclosed in paren-
theses, were calculated by using hyperscaling relations.

A Ke v Blv viv (@) (%) (7)
% 0.2275100  0.67319  0513)  2.036) -0.026)  5.2(4) 0.026)
0.5 0.2411) 0.68719  0.565) 1.91(6) -0.066) 453  0.1210

The O(1/Ng) term is identical with the results {19,13. The  phase both masses grow with the distance from the critical
O(1/N2) term is of the same order of magnitude, which sug-point and become degenerate.
gests a rather large error on the valuevah (18). The scaling behavior has been investigated in two direc-
In the symmetric phaseyKy,), fermions are massless. tions: In the GN; case (=0), we variedy and determined
This region is dominated by the trivial Gaussian fixed pointthe critical Yukawa coupling.=1.091(5) from the intersec-
aty=0. tion point of the Binder cumulants on several lattices. From
By adding the kinetic scalar term to the bare Gattion,  the finite size scaling behavior of the Binder cumulant at this
the scalar fieldp turns from an auxiliary field to a dynamical value we determined the exponentSimilarly, the behavior
one. This restricted Yukawa model with=0, sometimes Of magnetization and susceptibility allowed us to determine
considered as a sufficient representation of themodel Blv andy/ v, respectively. The obtained results are collected
(e.g., in[11]), is a natural extension of the parameter space ofn Table IIl.
the GN; model. We know that such a Yukawa model with By using the measureg/v value one obtains from the
vanishing scalar selfcoupling and2 symmetry is renor- hyperscaling relationg3/»=0.905(65). This is in good
malizable in INg expansion. As shown if9,10], this model ~ agreement with the measured value and supports the hyper-
has a nontrivial IR-stable fixed point where the kinetic termscaling hypothesis.
of the scalar field becomes irrelevant and the four-fermion As a test of our methods and of the equivalence between
interaction term relevant. This fixed point is identical with the fixed points of the Gh and the Yukawa model with
the critical GN; model. The IR-stable fixed point of this vanishingk, we measured the critical exponents in the latter
restricted Yukawa model corresponds to the UV-stable fixednodel by approaching the critical point of the GMhodel
point of the GNy model[9—11]. This can be understood from along thex direction. Figure 7 demonstrates that the critical
the renormalization group flow in a larger parameter spaceRoint obtained by the Binder method in this direction is iden-
in the full Y5 model(1) (see Fig. 3. The flow is suggested by tical with the GN; one. The BCL cumulants intersect at
the 8 functions obtained in the expansiof9]. The RG flow  x.=0.000(2) andy.=1.09. As shown in Fig. 8, the values
restricted to the Gi-line k=X =0 is consistent with the UV  of B/v and y/v are perfectly consistent with those obtained

stability of the nontrivial GN fixed point. in the GN; run (Table 11I).
We conclude that the Binder finite size scaling method is
B. Numerical results applicable and gives consistent results in the Yukawa model

at A=0 for a broad range of lattice sizes. The values of the

First we comment on the spectrum calculations. The fermg,itical exponents in the chiral GNmodel are the same as in

ion massame: has been measured by fitting the momentumyye yiykawa model withh =0. This confirms that the fixed
space fermion propagator, measured usually at four-latticgints of these two models are the same. The exponents are
momenta, to a free ferm|on_ ansatz. In the broken phas%onsistent with the N predicted values ¥~1) and are
amg agrees very well with the tree level relation gignificantly different from the exponents associated with the
ame=y($)=y*2(xx)-

For the measurement of the masses of dhleosonam,
and the Goldstone bosam_., we had to use an ansatz for
the momentum space propagators from the one-loop renor- oETTT I R
malized perturbation theofy34]. In this case, the previously : JE IO
fitted fermion mass is used to calculate the fermionic selfen- E I
ergy which contributes to the renormalized bosonic propaga-
tors. This method delivers the renormalized Yukawa cou-
pling and describes very well the form of the bosonic 2
propagators which differ very much from the free ones. As
expected, in the FM phasem,, is very small andam, in-
creases with the distance from the critical point. In the PM

U(x) U(1)A=0.0 y=1.09

TABLE Ill. The critical exponentsy, B/v, y/v in the GN;

model and in the Yukawa model at vanishirg ' -mo' ~ I—.oos; T 0 T I.005{ - I,o10
K Ve v Blv vlv Note o .
FIG. 7. Determination ok, in the Yukawa model ak=0 and
0 1.0915 1.028) 0.8910) 1.1913) runiny (GN) y=1.09. The intersection point of the BCL cumulants measured on
0.00G2) 1.09 1.0%12) 0.904) 1.154) run in « different lattice sizes giveg.=0.000(2) which is in perfect agree-

ment with the GN critical point.
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Up=g(Uy) A=co y=1.1
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T

v =1.05(12)
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FIG. 10. An examplel(=6, b=4) of the linear dependence of
Up. on U atA=o, y=1.1 near the critical point.

FIG. 8. Determination of the critical exponentin the Yukawa
model atA =0, y=1.09, andk=0.

is the first numerical hint for the physical equivalence of
oth cases.

In order to determine the universality class of thg Y
model at\ =0 and strong Yukawa coupling, we have again
determined the critical exponents B/v, andy/v. We have
applied the Binder method gt=1.1 approaching the critical

The 1N expansion predict9—11] that the ¥; model and ~ sheet in thex direction. The critical value«,=0.007(2) is
the GN; models are equivalent at least for weak scalar selfgiven by the common intersection point of the cumulants
coupling \. In order to test this hypothesis also for strongU_ on different lattice size&.
scalar couplings, we have investigated thg rodel with For this value ofx., we have computed the derivatives
A=c at strong bare Yukawa coupling=1.1. This choice JdUyp /dU_ with L=6 andbL ranging from 8-24. Figure 10
leads tox.=0. shows as an examplé,,, as a function ofJ, for b=4. Near

The spectrum is similar to that of the GNmodel. We  the critical point such functions are linear with good preci-
observe the generation of the fermion mass: which is  sion and the derivatives are thus easily determined.
related to a nonzero chiral condensdtgy). Even for Using Eq.(13) we have obtained the critical exponent
A=, where the I expansion is not applicable, we find v,
that the predictiormme~y(¢) is fulfilled with good preci-
sion. Figure 9 displays the dependence of the masses of both
bosons on the hopping parameteaty=1.1 andA==. N rpis 3146 is a little bit smaller than the one obtained at
accordance with the Goldstone theorem, one massite- A =0, but both values are consistent within statistical errors.
son and one masslessboson appear in the FM phase. The Figure 11 shows the corresponding plot. We have also made

q“a"t"?‘F“’eK erendence of bo.th masses in the vicin!ty Ofvarious fits with different subsets of data points. The results
the critical point is the same as in thg Model at\ =0. This

WFFP. This allows us to investigate the crossover effect
between these universality classes numerically.

VI. GROSS-NEVEU-LIKE BEHAVIOR
FOR STRONG COUPLINGS

v=0.896). (19

aUy/aU,=f(b) U(1) A=co y=1.1

amp A=co y=1.1on 12° J L=s
12 — s A" vy = 0.89(23)
o’ v, = 0.89(13)
s
Al S |vs.=0.94(9)
1.0 [ ; B o7 Ve = 0.89(6)
22
¥
08 [ . =3 r 4
13 2 A
: 3
- — S
5 0.6 § ¢ ¢ Boson 2|
G ¢
o §
04 [ ; ¢ 7
T
2 7 Boson P
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K

FIG. 11. Log-log plot of the derivativeU,, /U, at k. atA=cx,
y=1.1. We show the linear fits to the first three., sixpoints. The
results of these fits are consistent values,...,vs oOf
the exponent.

FIG. 9. The masses of theand s bosons as functions &f. As
expected, in the broken phase, teboson is massive and the
boson massless.
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FIG. 12. Determination ok, atA = andy=0.6. On small lattice$a) the apparent criticat is 0.1463, but including also data on larger
lattices and zooming into the rectangular regibhsuggests that the critical point is in the intervat 0.1435-0.1445 of the intersection
points ofU, for L=10.

are nearly unaffected if we leave out one or more data pointMaking the finite size analysis at=0.1463, we obtain
in the fit. This shows that also for=%« andy=1.1, correc- »=0.759), avalue quite close to that of the X¥model.
tions to scaling are quite small and the Binder method works However, when only large latticds=10,12,14,16,24 are

in a broad range of lattice sizes. considered, the crossing point is found in the interval
We have further determined the ratigéy and y/v, x=0.1430-0.1445. The situation is shown on a finscale
in Fig. 12b). For these lattices ak=0.144, we find
:[_3:0 80(8) v=0.99(23), a value consistent with the GMNnodel, but
v ' with a large error.

We have made an analysisat= 0.144 including data on
all lattices and choosing the badis=6. The v values have
been determined for different groups of data, for the first 3,
4, 5, and 6 points. As shown in Fig. 13, when data on larger
Within statistical errors, these exponents are consistent witand larger lattices is included; increases systematically
our results in the G model, too. They fulfill the corre- from 0.71(11) for b=8/6, 10/6, and 12/6 only, to 0.89)
sponding hyperscaling relation with good precision. when all data is included. This is probably not a good way of

These numerical results lead us to the conclusion that thenalysis in such a complex situation and the previous one
Gross-Neveu universality class extends over the whole rang@aade only on large lattices seems to be more reliable. We
fromX=0 to\ =, provided the bare Yukawa couplizgis  have made it in order to illustrate the systematic increase of
strong enoughy=1. This confirms the conjecture that the the apparent with lattice size.
GN3; model and the ¥ model are equivalent field theories  We interpret the above results as a hint that for suffi-
even forh =, ciently large lattices]|. =10, the yFP universality class fi-

nally shows up. It might be tempting to conjecture that the

%z 1.307). (20

VII. INTERPLAY OF MAGNETIC AND CHIRAL
UNIVERSALITY CLASSES

v T T ¥ ~ 7 L=8

Both in the pure scalat;sg‘ theory aty=0 and in the °r , ‘j»:g:;j‘(‘“)
GNj3 model atA =0, the Binder method works in an exem- o y,/ 1vs = 0.84(10)
plary way. Also in the ¥ model at\ =, y=1.1, it provides 4+F A 1 Z::ﬁ:iiiii
satisfactory results. This is presumably because of the domi- oA

nance of only one of the fixed points in these cases. Theyi
seem to be “pure” cases, without any interplay of universal- 2
ity classes. Now, we describe what happens in thenédel T
when atA =, the Yukawa couplingy is decreased, and the

XY 3 model is approached. We made extensive simulations at
y=0.6 andy=0.3, approaching the critical sheet in tke ‘ ‘
direction. E 2 ] s

b

A . NA=x, y=0.6 L .
FIG. 13. Similar to Fig. 11, but now at=c, y=0.6. Thev

For small lattice sized, =6,8,10, the cumulants consis- values increase systematically when data on larger and larger lat-
tently cross in the intervak=0.1460-0.1466Fig. 12a)]. tices is included in the linear fit.
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FIG. 14. An attempt to determine, at A=, y=0.3 failed. FIG. 15. Example =6, b=4) of nonlinear dependence of

U, do not intersect at a single point even if only large lattices areYoL 0N UL atA=c, y=0.3 near the critical point.

considered.

low value of », obtained rather consistently far<10, is a of chiral phase transitions at various values of the Yukawa
signal for the nearby WFFP class. But, as the results gfOUPlingy and of the scalar self-coupling The aim was to

y=0.3 indicate, this is questionable. investigate the influence and the interplay of the two non-
Gaussian fixed points of the model for various values of the
B. A=, y=0.3 couplings.

- _ ) In the y=0 limit case, i.e., in thep model, the critical
As seen in Fig. 14, the cumulants obtained on lattices Up,honents associated with the Wilson-Fisher fixed point
to L =32 show no tendency to cross at some unique pointyyrrp are clearly observed both at=c and\=0.5. The
g}/an |fosnrrL1JaIIerS kllzz\)t\';llcneii irie Ol'gc‘;g?q%?'”ﬁg’r’ é?fefe(rjif]pezden inder method of finite size scaling analysis is already ap-
fromb)L\—oo LLl 1 seen ir?'Fi '10 Determi’nation o%im-.g', plicable on small lattices. Also, the renormalized coupling
o y=2L.4, 9. 1V values agree and are consistent with the theoretical predic-

der these circumstances makes little sense, gnd one can O'E#Xn. The WFFP thus provides a rather complete description
speculate that if lattices could be made still substantially

larger, a simpler finite size behavior with tiy&P exponents of the model at least fox=0.5.
rger, P P For y>0 we find that the chiral fixed pointy(FP) deter-
might be found.

. L ._mines the finite size scaling in the vicinity of the chiral phase

di aneoT?%karglveeIinalssnc’)lz;lrlulaatft?g;sth:; tirrlnet fmng 6S'§:S:e?hiv'05ransition sheet as long as the Yukawa coupling is strong

P . T he=0. L enough)y=1. The independence on the value of the quartic
cumulants onL=<10 lattices cross in a narrow interval

x,=0.2045—0.2058. But including theL =12 data spoils coupling\ confirms the expectation that the; Ynodel and

the consistency completely. Thus, halving the distance frorrl{tS special case, the GNmodel, both belong to the same

the XY, model with respect ty=0.6 did not increase the universality class of theg/FP. Also, the fermion and boson

consistency of the finite size behavior for smaller lattice T 2>5€S an=0 andr=c are very similar. Foy=1, the

sizes. This prevents us from interoreting the low values 0Einder method of finite size scaling analysis works consis-
: P P 9 .tently in a broad range of lattice sizes, in analogy to the pure

\I;ecr)sgljiltr;/ec(:jlac;g smaller lattices as a signal for the WFFP “”'Qﬁg theory. No substantial difference in the finite size behav-
Attempts to incorporate some corrections to the leadin ﬁr thas :)een four_1d Ibetweenzohantﬂgzjci Thlsdlmpllest
finite size behavior, as suggested in R&f7], are in our case . f‘? as onhg :?':y_ IS grgebeﬂou_g ' ¢ h¢ Yher(;nl 0€s no
not very helpful because simulations with dynamical fermi-'" uence't e finite size be avior o the; Yhodel even on
ons cannot yet produce data with the precision needed gmall lattices and the model is rather completely described

deal with additional parameters. Thus, we conclude that a?y the yFP. _ , _ .
A= andy=0.3, the finite size behavior is not under con- Wh_en, at\=c, y is decreased ty=0.6, the f_|n|te size
pehawor cannot be analyzed any more by the Binder method

trol. Unfortunately, it would not have been easy to notice tha . ) )
without having data in a large range of lattice sizes. in the whole range of the lattice sizes we u.sed.. The behavior
on small L<10) and large I(=10) lattices is different. On
the larger lattices, the FP seems still to dominate. On the
smaller lattices, the behavior looks consistent with the
We have studied the finite size behavior of thgnvodel =~ WFFP. But this does not necessarily mean that the WFFP
with U(1) chiral symmetry along the two-dimensional sheetalready starts to show up: when a further step towards the
¢‘3" limit case is made, ak =~ andy=0.3, the finite size
behavior does not show increased resemblance to that fixed
°The corresponding value of is »=0.76 with errors difficult to ~ point. If applied in a narrow interval of lattice sizes, the
estimate because of systematic uncertainties caused, e.g., by a n@inder method might seem to be applicable but the results
linearity of the dependence &f,, onU, . are misleading.

VIIl. SUMMARY AND CONCLUSIONS
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A numerical verification of the expectation that thg Y expansiori35]. These values are close to those we present in
model is equivalent to the GNmodel is thus very difficult Table IIl.
for y=0.6. Our tentative conclusion is that the observed de-
viation from the simple finite size scaling signals an interplay ACKNOWLEDGMENTS

of both universality classes, i.e., a crossover between them. \we thank W. Franzki, M. Gckeler, S. Hands, P. Hasen-
This warns us that in the situation of intertwining phenom-fratz, and M.M. Tsypin for discussions, K. Binder for com-
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