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Interplay of universality classes in a three-dimensional Yukawa model
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and HLRZ c/o KFA Ju¨lich, D-52425 Ju¨lich, Germany
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We investigate numerically on the lattice the interplay of universality classes of the three-dimension
Yukawa model with U~1! chiral symmetry, using the Binder method of finite size scaling. At zero Yukawa
coupling the scaling related to the magnetic Wilson-Fisher fixed point is confirmed. At sufficiently stron
Yukawa coupling the dominance of the chiral fixed point associated with the 3D Gross-Neveu model
observed for various values of the coupling parameters, including infinite scalar self-coupling. In both cases
Binder method works consistently in a broad range of lattice sizes. However, when the Yukawa coupling
decreased the finite size behavior gets complicated and the Binder method gives inconsistent results
different lattice sizes. This signals a crossover between the universality classes of the two fixed points.

PACS number~s!: 11.10.Kk, 11.15.Ha, 64.60.Ak
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I. INTRODUCTION

Some strongly coupled lattice field theories in four dime
sions~4D! possess perturbatively unaccessible critical poin
where scaling properties are understood only poorly or not
all. Examples are noncompact QED@1#, compact QED with-
out matter fields~pure QED! @2# or with fermions @3#,
gauged Nambu–Jona-Lasinio or Yukawa models@4# and
models with fermions, gauge field, and charged scalar
strong gauge coupling@5#. A clarification of their critical
behavior and of the continuum limit taken at such points
desirable at least for two reasons: First, the fundamen
question of the existence of 4D quantum field theories d
fined on non-Gaussian fixed points has never been sett
Second, finding a 4D theory interacting strongly at short d
tances could contribute to the development of theoretic
scenarios for dynamical symmetry breaking as possible alt
natives to the Higgs mechanism in the standard model and
extensions.

Except the pure QED, a chiral phase transition, with th
chiral condensatêx̄x& as an order parameter, takes place
all the critical points mentioned above. But it always differ
in some qualitative way from the classical model for chir
symmetry breaking, the Nambu–Jona-Lasinio model. This
encouraging, as that model is even nonperturbatively no
renormalizable@6# and thus of very limited use. The differ-
ences consist mainly in an admixture of some other pheno
ena as confinement, monopoles, magnetic or Hig
transition, additional states of vanishing mass, etc., intertw
ing with the chiral transition, but occurring also in othe
situations, including those without fermions. However, th
not only increases the hope for a fundamental differen
from the Nambu–Jona-Lasinio model, but also makes t
transitions perplexingly complex and difficult to analyze. I
particular, the genuine character of the transition might
hidden behind some prescaling phenomena caused by s
component of the mixture, or by a crossover between diffe
ent universality classes.

In this paper we study the interplay of the chiral and ma
netic phase transitions in a 3D lattice Yukawa model~Y3
model! with global U~1! chiral symmetry as an exercise fo
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the investigations of analogous but more complex situations
in 4D. The Y3 model has nontrivial fixed points, a property
searched for in 4D. We would like to learn how to detect
such points, and what are the possible obstacles when th
scaling properties are investigated numerically in the situa-
tion of intertwining phenomena.

The couplings of the Y3 model are the scalar hopping
parameterk, the scalar quartic selfcouplingl, and the
Yukawa couplingy. The action is given in Sec. II A. The
phase diagram is shown schematically in Fig. 1. We concen-
trate on the transition between the paramagnetic~PM! and
ferromagnetic~FM! phases. The two-dimensional PM-FM
sheet of second order phase transitions connects the critica
line of the purely scalarf3

4 model aty50 and the critical
point of the 3D Gross-Neveu~GN3) model atk5l50. On
this sheet, the Y3 model is expected to have two nontrivial
fixed points.

~1! Wilson-Fisher fixed point~WFFP! @7# of the pure sca-
lar two-component 3Df4 (f3

4) theory whose most familiar
representative is the 3D XY~XY 3) model. The phase tran-
sition is of magnetic type.

FIG. 1. Schematic phase diagram of the Y3 model. The region
below the upper critical surface is the paramagnetic phase~PM!, the
region above it the ferromagnetic phase~FM!. They50 plane and
the k5l50 line correspond to thef3

4 and GN3 models, respec-
tively. For negative values of the parameterk, we further expect an
antiferromagnetic phase~AFM! and a ferrimagnetic phase~FI!. We
have investigated the PM-FM transition fork.0 andk.0, in par-
ticular at the points and directions indicated by the arrows.
4616 © 1996 The American Physical Society
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53 4617INTERPLAY OF UNIVERSALITY CLASSES IN A THREE- . . .
~2! Chiral fixed point (xFP!, most naturally associated
with the GN3 model with U~1! global chiral symmetry and a
chiral phase transition. The existence of this fixed point
related to the nonperturbative renormalizability of the GN3
model ~see@8# and references therein!.

The sketch of the renormalization group~RG! flow in Fig.
2 represents a plausible scenario for what happens along
critical PM-FM sheet: The magnetic WFFP describes on
thef3

4 theory. ThexFP presumably dominates~has a domain
of attractivity! everywhere as long as the Yukawa couplin
does not vanish, and in the limit of infinite cutoff the Y3
model is thus equivalent to the GN3 model. This expectation
has been recently supported at weak scalar selfcoupling
large Yukawa coupling by the 1/N expansion@9–11# and a
consequent combined analytic and numerical investigat
@12#. A discussion of the equivalence between the Yukaw
and four-fermion theories, as well as earlier references, c
be found in Ref.@13#.

In Fig. 3 we show schematic RG flows also outside th
critical sheet for three special cases of restricted parame
space:y50, k50, andk5l50. This figure indicates that
the known RG flows in thef3

4 and GN3 models can be
consistently embedded into the RG flows in the Y3 model.

FIG. 2. A suggestion for the renormalization group flow on th
PM-FM critical surface of the Y3 model. The fixed points are GFP
~Gaussian!, WFFP~Wilson-Fisher!, andxFP ~chiral, or GN3). The
indicated position of thexFP is very schematic, it could lie any-
where on the PM-FM sheet, aty.0.

FIG. 3. The schematic RG flow in thef3
4 model (y50,

k.0), in thek50 surface of the Y3 model and on thek5l50
line, which corresponds to the GN3 model. The fixed point of the
latter model is indicated by an arrow.
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When in the Y3 model the Yukawa coupling decreases and
thef3

4 theory is approached, the WFFP gets presumably in
fluential, as some crossover to the magnetic universalit
class must occur. This consideration warns us that for limite
lattice volumina and consequently limited correlation lengths
either no unique finite size scaling behavior can be found o
the wrong fixed point dominates. Thus a detection of the
genuine, presumably chiral, character of the transition get
more and more difficult in numerical simulations. This is the
situation we are most interested in, as it might occur in 4D
without a prior warning.

Apart from this particle physics motivation our work
might be of interest also for other reasons, related mainly t
statistical mechanics.

~1! We have applied the Binder method of finite size scal-
ing analysis@14,15# to the chiral phase transition and found
that it works very well also when a composite scalar field is
used in the finite size scaling theory, as long as thexFP alone
dominates the finite size scaling behavior.

~2! A transition between various universality classes in
finite volumina has been investigated recently@16,17# in
some spin models, but, to our knowledge, until now in no
model with fermions. Thus we make a new contribution to
the experience with this sort of complex finite size behavior
As in spin models, it is the failure of the Binder method
which indicates a change of the universality class.

~3! Sometimes an intermediate universality class could
exist @17#. This would be very surprising for the Y3 model;
nevertheless, we have verified that this is most probably no
the case here.

We now briefly describe the contents of the paper and th
main results. In the next section we introduce the Y3 model
and determine its phase diagram~Fig. 1!, both by means of
the effective potential in the one-loop approximation, and by
performing numerical simulations on a small lattice at many
points in the three-dimensional parameter space. The mo
useful order parameter is the scalar field expectation value
even if this field can be considered as composed of a fermio
pair. We mention some results on the fermion and boso
masses both in the symmetric phase and in the phase wi
broken chiral symmetry.

In Sec. III we briefly review the Binder method allowing
a determination of several critical exponents by an analysi
of finite size effects. The most useful exponent is the corre
lation length exponentn obtained from the Binder-Challa-
Landau~BCL! @14,18# cumulant.

The magnetic transition of thef3
4 theory is investigated in

Sec. IV. After localizing the critical line we concentrate on
the casel5` ~the XY3 model! and a case of an intermediate
scalar selfcoupling (l50.5). The obtained exponents are
consistent with each other and with the value expected from
analytic investigations of the WFFP (n50.67). Also the val-
ues of the renormalized coupling extrapolated to infinite cut
off are consistent. The Binder method is compared with two
other approaches to finite size scaling and found to be mo
suitable for our purposes.

Section V deals with the chiral transition in the GN3
model atl50, both in the auxiliary scalar field formulation
(k50), and with a dynamical scalar field (k varied andy
kept at the critical value,y51.09). In both approaches to the
critical point, the Binder method works comparably well for
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4618 53E. FOCHT, J. JERSA´ K, AND J. PAUL
all the lattice sizes we used~63–243) and gives consistent
results for critical exponents. In particular,n51.03(11),
which is a value consistent with theoretical expectatio
@13,19,20# and significantly different from the value found
for thef3

4 model aty50. Thus, the difference between th
magnetic and chiral universality classes is clearly observ
in they50 andl50 limit cases. Their common property is
that the Binder method works in an exemplary way in th
whole range of lattice sizes we used.

In Sec. VI, the Y3 model with a large Yukawa coupling,
y51.1, is investigated at the maximal value of the scal
selfcoupling l5`. Also, here the Binder method works
quite well, and we findn50.88(6), a value slightly lower
than, but within errors still consistent with, the value foun
in the GN3 model. This confirms the appurtenance of th
Y3 model with both couplingsy and l strong to the same
chiral universality class as the GN3 model, and thus the
physical equivalence of both theories.

However, difficulties arise when the Yukawa coupling de
creases. As we describe in Sec. VII, atl5` andy50.6, the
BCL cumulants cross at different points when only sma
(63–103) or large ~103–243) lattices are considered, sug
gesting different values of the criticalk. Restricting our-
selves to the larger lattices only, we find the Binder meth
to work, giving n50.99(23). This value is consistent with
the GN3 model value, but has a large error. On small lattic
the obtained value ofn is significantly lower and close to the
value in thef3

4 model. As we describe in detail in the sam
section, atl5` andy50.3, the Binder method gives incon-
sistent results in the whole range of lattice sizes 63–323 we
have investigated. This can be interpreted as a situation
which none of the two fixed points alone dominates the fin
size effects on lattices of these sizes, i.e., as an interplay
or a crossover between, universality classes. We find no s
for the existence of an intermediate universality class.

As we conclude in Sec. VIII, an interplay of magnetic an
chiral phenomena in the Y3 model thus results in uncontrol-
lable finite size effects. However, inconsistencies in the a
plication of finite size methods become apparent only when
broader range of lattice sizes is investigated. This mig
serve as a warning for investigations of critical points with
mixture of chiral and some other critical behavior in 4D la
tice field theories.

II. THE Y 3 MODEL AND ITS PHASE DIAGRAM

A. The action

In order to investigate the breakdown of a continuous ch
ral symmetry, we use staggered fermions@21#. In the lattice
parametrization the action of the Y3 model is

S5SB1SF1SY ,
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x
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j xx1m

j 2x̄x1m
j xx

j !,

SY5
y

23(x, j x̄x
j(
b

~fx1b
1 1 i«xfx1b

2 !xx
j , ~1!

where the integer three-vectorsx, x1m, andx1b denote,
respectively, lattice site, its nearest neighbors, and corners o
the associated elementary cube~both in positive direction!.
The coefficients are

hx,151, hx,m5~21!x11•••1xm21, «x5~21!x11•••1x3.

The coupling constantsk, l, and y and the fieldsf i and
x j are dimensionless quantities.NF54 is the number of con-
tinuum four-component fermions.

The scalar sectorSB of the action~1! has a global O~2!
symmetry. The actionS is invariant under the vectorial
U(N) transformations

x j→V j ix i , x̄ j→x̄ iV i j
† , VPU~NF/2!, ~2!

and the axial U(1)A transformations

x→eivA«xx, x̄→x̄eivA«x , f→e22ivAf,

f*→e2ivAf* , vAPR. ~3!

The action ~1! contains two important limit cases, the
f3
4 model and the GN3 model. At y50, it is thef3

4 theory
described by the purely scalar partSB of ~1!. In the limit
l→`, the actionSB reduces to that of the XY3 spin model.
At k5l50, the action~1! turns into the action of the chiral
GN3 model in the auxiliary scalar field formulation. The full
Yukawa model interpolates between both these models an
the PM-FM critical sheet continuously connects the magnetic
phase transition of the spin model with the chiral phase tran-
sition of the GN3 model.

B. Symmetry breaking

In order to get information about the breakdown of the
continuous chiral symmetry in the Y3 model, we have com-
puted the effective potential in one-loop order fork.0. For
this purpose, we start with the Euclidean continuum action
with m0 being the bare mass,g0 the bare scalar selfcoupling,
andy0 the bare Yukawa coupling. The calculation is straight-
forward ~see@22#! and yields

Veff~s2!5
m0
2

2
s21

g0
4!

~s2!2

1
1

2EL

d3p

~2p!3
lnS p21m0

21
g0
2

s2D
1
1

2EL

d3p

~2p!3
lnS p21m0

21
g0
6

s2D
22NFE

L

d3p

~2p!3
ln~p21y0

2s2!, ~4!
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TABLE I. Peaks of the susceptibility in the Y3 model determined on a 63 lattice.

y k l y k l

0 1/6 0 0.90~8! 0.05 0
0 0.1730~6! 0.01 1.42~7! 20.1 0
0 0.1818~5! 0.03 0.0 0.24~2! 0.5
0 0.2008~10! 0.10 0.3 0.22~1! 0.5
0 0.2265~15! 0.30 0.5 0.20~2! 0.5
0 0.238~2! 0.50 0.95~13! 0.1 0.5
0 0.249~2! 1.00 1.10~10! 0.6 0.5
0 0.240~3! 3.00 1.30~13! 0.0 0.5
0 0.218~2! ` 0.0 0.25~4! 1.0
1.10~8! 0 0.0 0.3 0.22~3! 1.0
1.25~8! 0 0.5 1.05~15! 0.06 1.0
1.25~10! 0 0.75 1.30~25! 0.0 1.0
1.28~8! 0 1.0 0.0 0.22~1! `

1.25~13! 0 1.5 0.3 0.19~1! `

1.25~~13! 0 2.0 0.6 0.14~1! `

1.10~8! 0 ` 0.80~8! 0.1 `

0.3 0.15~1! 0 1.0 0.04~1! `

0.6 0.12~1! 0 1.10~8! 0.001 `

0.80~8! 0.08 0 1.47~8! 20.1 `
.

-

M
e

t
,

where we have regularized the momentum integrals with
cutoff L. We have introduced the abbreviatio
s25s1

21s2
2 , where the constantss i ( i51,2) can be identi-

fied with the expectation valuess i5^w i&, w i being the scalar
fields in the continuum. These fields are related to the latt
scalar fieldsfx

i by

w i~ax!5A2k

a
fx
i ~5!

and the relations between the parameters are

m0
25

122l26k

a2k
, g05

6l

ak2 . ~6!

All the values ofs i which minimize Veff are possible
candidates for the vacuum of the theory. We can find th
minima by solving the equations]Veff /]s i50 simulta-
neously fori51,2. One solution iss15s250. In the sym-
metric phase, it is a minimum (] i] iVeffu(0,0).0), in the bro-
ken phase a maximum (] i] iVeffu(0,0),0) and a further
solution exists. In this sense,] i] iV effu(0,0)50 is an implicit
equation for the boundary between both phases of the the

At fixed values of the parametersm0
2 andg0 we can cal-

culate the critical Yukawa couplingyc(m0
2 ,g0). If we choose

m0
2>0, we can always find a positive solutionyc of

] i] iVeffu(0,0)50, which is

yc5S 4NFE
L

d3p

~2p!3
1

p2D 2 1/2

3Fm0
21

2

3EL

d3p

~2p!3
g0

p21m0
2G1/2, g0>0. ~7!

Equation~7! means that even form0
2>0, when the classical

potential does not predict the symmetry breaking, a solut
a
n

ice

ese

ory.

ion

yc(m0
2 ,g0) exists. For all couplingsy0 with y0.yc , the

vacuum expectation valuêw& of the scalar field is nonzero
and the chiral symmetry is broken.

This computation of the one-loop effective potential sug-
gests that in the Y3 model, at sufficiently smallk>0, two
phases of different symmetries exist, as indicated in Fig. 1
As usual, we call them paramagnetic~PM! for ^f&50 and
ferromagnetic~FM! for ^f&Þ0.

C. The phase diagram

Figure 1 displays a schematic phase diagram, including
also some expectations fork,0. The phases relevant for our
purposes are PM and FM. In the PM phase both order pa
rameterŝ f& and^x̄x& ~for y.0) are zero and fermions are
massless. The lightest boson pair is degenerate. In the F
phase the vacuum expectation value of the scalar field, th
chiral condensate, and fermion mass are nonzero.

To characterize the PM and FM phases numerically
we have used the magnetizationM5V21@((xfx

1)2

1((xfx
2)2#1/2, V being the number of lattice points. A con-

tinuous phase transition is indicated by a singularity of the
susceptibility:

x5V~^M2&2^M &2!. ~8!

For the numerical simulations we used the hybrid Monte
Carlo algorithm. The critical surface of the phase diagram
has been found by localizing peaks of the susceptibility on a
63 lattice. In Table I the values of the coupling parameters a
the maxima of the susceptibility are summarized. Of course
they give only an approximate position of the critical sur-
face. In cases in which it was needed, the critical coupling in
the thermodynamic limit has been determined by a finite size
scaling analysis.



a

L
b

a

,

l
e

.

y

e

t

e

t-
-

4620 53E. FOCHT, J. JERSA´ K, AND J. PAUL
Our data strongly supports the expectation that for
positive values ofy, the condensatêx̄x& vanishes simulta-
neously with the magnetizationM . We have extracted the
fermion mass from the fermionic momentum space propag
tor. The agreement with the tree level predictio
amF5y^f& is quite good. In the FM phase we have als
observed in thef propagator a massive particle, thes bo-
son, and a massless particle, the Goldstone boson. Th
masses, as well aŝx̄x&, are not as convenient as the BC
cumulant for the study of the finite size behavior but can
used for a qualitative comparison of the physical content
the Y3 model in different parameter regions.

D. Renormalizability properties

Both thef4 theory and the full Yukawa model in 3D are
perturbatively superrenormalizable. For the GN3 model this
is different. The continuum four-fermion coupling has neg
tive mass dimension, and the corresponding interaction
therefore, perturbatively nonrenormalizable. Nevertheless
has been proved that the GN3 model is renormalizable in the
1/NF expansion@23#.

It has also been shown in the framework of 1/NF expan-
sion that for weak scalar selfcouplingl5O(1/NF) the
Gross-Neveu model and the full Yukawa model in 2,d,4
are equivalent field theories@9–11#. Near the nontrivial fixed
point the kinetic term of the scalar field and the quartic sca
selfinteraction turn out to be irrelevant operators. Howev
in those works nothing beyond the range of validity of th
1/NF expansion could be said.

In Ref. @12# the equivalence has been confirmed by an
lytic and numerical methods for the discrete chiral Z~2! sym-
metry, still with l5O(1/NF). We have extended that work
to the U~1!-symmetric case and have investigated a wid
range of parameters including infinite scalar self-coupling

III. FINITE SIZE SCALING THEORY

A. The Binder method

In order to examine the interplay of the universalit
classes associated with two different nontrivial fixed poin
in the Y3 model, we have studied the finite size scaling b
havior and tried to determine the critical exponents of th
theory1 at several points of the critical surface. A very pow
erful method to do this is the Binder method of finite siz
scaling analysis of a cumulant@14,15#.

It is sufficient to use scalarn-point functions even in the
case of nonvanishing Yukawa coupling. We therefore follo
Refs. @15,24# and define the corresponding fourth-order cu
mulantUL on a cubic lattice of extentL:

UL52

1

V
G̃L

~4!22@G̃L
~2!#2

@G̃L
~2!#2

, V5L3, ~9!

whereG̃L
(2) andG̃L

(4) are

1The critical exponentsn, b, andg are defined as (t is the re-
duced coupling!

j;utu2n, M;tb ~ for t.0!, x;utu2g.
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e
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e
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-

G̃L
~2!5

1

V (
x1 ,x2

(
i

^fx1
i fx2

i &,

G̃L
~4!5

1

V (
x1 , . . . ,x4

(
i , j

^fx1
i fx2

i fx3
j fx4

j &. ~10!

If both L and the correlation lengthj are sufficiently large
thenUL has the form

UL522

f 4S Lj D
F f 2S Lj D G2 ~11!

with analytic functionsf 2 and f 4 . Note that~11! requires the
validity of hyperscaling.

At the critical valuekc of the hopping parameterk the
correlation length diverges and all cumulantsULukc have the
same valueU* independent of the lattice size. This makes it
possible to determine the infinite volume critical coupling as
the common intersection point ofUL for different values of
L.

In the scaling limit, Binder’s cumulant has the form

UL~ t !5US L

j~ t ! D5Ũ~ tL1/n!, utu!1 ~12!

with t512kc /k. Let us consider a pair (bL,L) of lattice
sizes withb.1. From~12! it follows

lnS ]UbL

]UL
ukcD5

1

n
lnb. ~13!

In order to obtain the derivative (]UbL /]UL)ukc, one calcu-

lates the functionUbL5g(UL) numerically and near the
critical point approximatesg by a linear function determin-
ing its slope.

Similar relations can easily be derived for the exponen
g of the susceptibilityx and the exponentb of the magne-
tizationM ,

lnS xbL~kc!

xL~kc!
D5

g

n
lnb,

lnSMbL~kc!

ML~kc!
D52

b

n
lnb. ~14!

Using ~14! one can calculate the ratiosb/n and g/n from
M andx determined on various lattice sizes (bL,L) exactly
at kc .

In thef3
4 theory the specific heat exponenta is negative.

That means that the specific heat is a regular function of th
reduced coupling and there is no relation similar to~14! for
it.

To calculate the required quantities, we used a reweigh
ing technique. By means of the original method of Ferren
berg and Swendsen@25#, one can only interpolate operators
which can be expressed as explicit functions ofS. Therefore,
like the authors of Ref.@12#, we used a variation of the
method suggested in Ref.@26#. It can be regarded as the
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multihistogram method with bins of zero width. With tha
reweighting technique one can interpolate nearly arbitra
operators over a wide range of the couplingb. For this pur-
pose it is necessary to store the operatorSwhich corresponds
to the couplingb and the value of the operator for eac
configuration which has been generated during the simu
tion.

B. Previous applications of the Binder method

In the past the Binder method has been applied to a v
ety of interesting physical systems. In Ref.@24# the method
has been generalized to O(N) f4 theories and in Ref.@27#
the critical exponentn has been determined for the O~4!-
invariant scalarf4 theory in 3D and 4D. A high precision
measurement ofn in the XY3 model has been done in Re
@28#.

The method has also been applied to models with int
acting fermions @12#. Here a slight modification of the
Binder method has been used to compute the critical ex
nents n and g/n in the three-dimensional Gross-Neve
model with Z~2! symmetry. The found value ofn'1 is in
good agreement with the prediction of the 1/NF expansion.

In Ref. @17# the critical behavior of diluted Heisenber
ferromagnets with competing interactions has been inve
gated. The authors varied the concentration of spins
found two distinct universality classes which are separa
by a crossover region. In this domain strong corrections
scaling appear, and Binder’s method does not work w
Also, evidence for a new, intermediate universality class h
been found.

C. Other methods to determine critical exponents

For thef3
4 model we have also tried to compute critica

indices by some other methods. Among these are the di
method, which makes use of the finite size scaling laws
physical quantities, and the scaling of the smallest Lee-Ya
zero with the lattice size.

On a finite lattice of extentL the susceptibility peaks a
the valuekM(L) of the hopping parameter. If we increase th
lattice size thenkM(L) approacheskc according to

kM~L !2kc } L21/n. ~15!

Thus the measurement ofkM(L) for various lattice sizesL
yields the critical exponentn by a corresponding fit. We have
tried this method in thef3

4 theory for different values of the
scalar selfcouplingl. Our results were rather unsatisfacto
because of their quite large statistical errors. For the sa
statistics we obtained more accurate values forn with the
Binder method.

Another possibility to determinen is to use the finite size
scaling of the Lee-Yang-Fisher zeros. By continuing the ho
ping parameterk to complex values, one finds that the pa
tition function has zeros in the complex plain. For finite la
tices all the zeros lie off the real axis. The zerok0 with the
smallest imaginary part scales like@29#

Im~k0! ; L21/n.
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We have computed Im(k0) on different lattices and ex-
tracted n from a double logarithmic plot. Our results ar
consistent with those obtained by the other methods but
statistical errors again turned out to be substantially larg
than those for the Binder method.

IV. MAGNETIC TRANSITION
AT VANISHING YUKAWA COUPLING

A. The f3
4 model

In the limit y50, the action~1! describes free massles
fermions and O~2!-invariantf3

4 model with quartic selfcou-
pling. Besides our interest in the features of thef3

4 model as
a limit of the Yukawa theory, here we have developed a
tested the methods we wanted to apply to the more soph
cated and expensive fermionic model. The existence o
nontrivial fixed point and a finite nonvanishing value of th
renormalized quartic self-couplinglR in the continuum limit
make this model by itself very interesting from a field the
retic point of view, too.

The phase diagram in thek-l plane, computed mainly on
63 lattices~see they50 entries in the Table I!, is displayed
in Fig. 4. The spectrum in the PM phase below the seco
order phase transition line contains two degenerate mas
scalar particles. In the FM phase (k.kc) the O~2! symmetry
is spontaneously broken and the lightest particles in the sp
trum are a massless Goldstone boson and a massives boson.

The renormalization group properties of thef3
4 model

have been investigated, e.g., in@30# and are indicated in Figs.
2 and 3 on they50 face of the phase diagram atk.0. The
model is superrenormalizable in weak coupling perturbati
theory and its physics at infinitesimal scalar selfcoupling
dominated by the Gaussian fixed point~GFP! at l50. At
nonvanishing couplingl.0, the critical linekc(l) is domi-
nated by the infrared-stable nontrivial WFFP. The investig
tions by means of« expansion or 1/N expansion of the
O(N)-symmetricf3

4 suggest that the interaction term be
comes irrelevant, and the only relevant term that remains
the kinetic one. This means that atl.0, only one parameter
has to be tunedk→kc(l) in order to reach a continuum

FIG. 4. Phase diagram of thef3
4 model. Thel axis has been

rescaled:l*550l/(115l). The circles show the maxima of the
susceptibility on a 63 lattice. The crosses show the positions ofkc

determined with higher precision by means of finite size scali
methods.
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limit governed by the WFFP. Thus, the same scaling beha
ior should be found when the critical line is approached
arbitraryl.0.

B. Results atl5` and l50.5

We have chosenl5` and l50.5 and determined the
renormalized coupling as well as some critical indices
runs in thek direction. A Monte Carlo determination of the
renormalized quartic couplinglR has been done, e.g., in@31#
for the Z~2!-symmetricf3

4 model. To our knowledge, no
analogous measurement exists for the O~2!-symmetric
model. Following, e.g.@31#, we definelR in the symmetric
phase as

lR5~LamR!3UL . ~16!

Here, amR is the mass of thes boson extracted from the
scalar propagator. To extrapolate to the continuum limit w
varied the lattice size fromL56 to 12 while keeping
LamR fixed at 4.

At l5` the renormalized scalar selfcoupling increas
very slowly with the lattice sizeL. The linear extrapolation
in 1/L to L5` suggests a value oflR52664. At l50.5,
an extrapolation toL5` is less precise, suggesting
lR520–30. The agreement supports the expectation that
model is dominated by the WFFP on the whole critical lin
l.0. These results forlR are also consistent with the ex
pected theoretical value@32#.

The most sensitive test for the appurtenance to the sa
universality class is the comparison of critical exponen
Using the Binder method described in Sec. III A we hav
determined the critical exponentsn, b/n, and g/n. The
method works very well at bothl values in the whole range
of lattice sizes used, 43–163. To illustrate this we show in
Fig. 5 the determination ofkc at l50.5. In Fig. 6 the data
for ]UbL /]UL , used for the determination ofn at the same
l value, and the linear fit are displayed.

We were able to determinen to a precision of about
3%, b/n to about 9%, andg/n to about 3%. The results are
summarized in Table II. They are consistent with the expe
tation that the two pointsl5` and l50.5 belong to the

FIG. 5. The intersection point of the Binder cumulants in th
f3
4 model on several lattices forl50.5 atkc50.241(1). Thelines

were obtained by reweighting, the symbols are the measured poi
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same universality class. The value ofb/n is consistent with
the one calculated with the hyperscaling relation
b/n5(d2g/n)/2. As hyperscaling seems to be fulfilled, we
determined the exponentsa, d, andh from the relations

a522nd, d5
d1g/n

d2g/n
, h522d12

b

n
.

V. CHIRAL TRANSITION AT VANISHING SCALAR
SELFCOUPLING

A. The GN3 model

At l5k50, the scalar fieldf plays in the action~1! the
role of an auxiliary field. It can be integrated out, thus ob-
taining a purely fermionic GN3 model with U~1! chiral sym-
metry:

S5SF2
y2

4 F S 18 (
bPh.c.

x̄x1bxx1bD 2
2S 18 (

bPh.c.
ex1bx̄x1bxx1bD 2G . ~17!

In 3D, this model is perturbatively nonrenormalizable. How-
ever, it has been shown in@33,8# that the GN3 model is
renormalizable in the 1/NF expansion. Theb function has
been calculated toO~1/NF) in @13,19# and toO(1/NF

2) in
@20#. The 1/NF expansion reveals a nontrivial UV-stable
fixed point where dynamical chiral symmetry breaking and
fermion mass generation occur. The phase transition is o
second order and the order parameter is the chiral condensa
^x̄x&.

In Ref. @20# one can find the critical exponentn to
O~1/NF

2). In our case (NF54),

n511
16

3p2NF
2
8~376127p2!

27p4NF
2 1O~1/NF

3 !

.110.13520.122.1.0~1!. ~18!

e

nts.

FIG. 6. Linear fit to ln(]UbL /]UL) used, according to Eq.~13!,
for the determination of the critical exponentn determined at
l50.5.
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TABLE II. Critical exponents in thef3
4 model atl50.5 andl5`. The exponents, enclosed in paren-

theses, were calculated by using hyperscaling relations.

l kc n b/n g/n (a) (d) (h)

` 0.2275~10! 0.673~19! 0.51~3! 2.03~6! 20.02~6! 5.2~4! 0.02~6!

0.5 0.241~1! 0.687~19! 0.56~5! 1.91~6! 20.06~6! 4.5~3! 0.12~10!
t

r
i
t

r

e

TheO~1/NF) term is identical with the results in@19,13#. The
O~1/NF

2) term is of the same order of magnitude, which su
gests a rather large error on the value ofn in ~18!.

In the symmetric phase (y,yc), fermions are massless
This region is dominated by the trivial Gaussian fixed po
at y50.

By adding the kinetic scalar term to the bare GN3 action,
the scalar fieldf turns from an auxiliary field to a dynamica
one. This restricted Yukawa model withl50, sometimes
considered as a sufficient representation of the Y3 model
~e.g., in@11#!, is a natural extension of the parameter space
the GN3 model. We know that such a Yukawa model wi
vanishing scalar selfcoupling and Z~2! symmetry is renor-
malizable in 1/NF expansion. As shown in@9,10#, this model
has a nontrivial IR-stable fixed point where the kinetic te
of the scalar field becomes irrelevant and the four-ferm
interaction term relevant. This fixed point is identical wi
the critical GN3 model. The IR-stable fixed point of this
restricted Yukawa model corresponds to the UV-stable fix
point of the GN3 model@9–11#. This can be understood from
the renormalization group flow in a larger parameter spa
in the full Y3 model~1! ~see Fig. 3!. The flow is suggested by
theb functions obtained in thee expansion@9#. The RG flow
restricted to the GN3-line k5l50 is consistent with the UV
stability of the nontrivial GN3 fixed point.

B. Numerical results

First we comment on the spectrum calculations. The fe
ion massamF has been measured by fitting the momentu
space fermion propagator, measured usually at four-lat
momenta, to a free fermion ansatz. In the broken pha
amF agrees very well with the tree level relatio
amF5y^f&5 y2/2 ^x̄x&.

For the measurement of the masses of thes-bosonams

and the Goldstone bosonamp , we had to use an ansatz fo
the momentum space propagators from the one-loop re
malized perturbation theory@34#. In this case, the previously
fitted fermion mass is used to calculate the fermionic self
ergy which contributes to the renormalized bosonic propa
tors. This method delivers the renormalized Yukawa co
pling and describes very well the form of the boson
propagators which differ very much from the free ones.
expected, in the FM phaseamp is very small andams in-
creases with the distance from the critical point. In the P

TABLE III. The critical exponentsn, b/n, g/n in the GN3
model and in the Yukawa model at vanishingl.

kc yc n b/n g/n Note

0 1.091~5! 1.02~8! 0.89~10! 1.19~13! run in y ~GN!

0.000~2! 1.09 1.05~12! 0.90~4! 1.15~4! run in k
g-
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phase both masses grow with the distance from the critical
point and become degenerate.

The scaling behavior has been investigated in two direc-
tions: In the GN3 case (k50), we variedy and determined
the critical Yukawa couplingyc51.091(5) from the intersec-
tion point of the Binder cumulants on several lattices. From
the finite size scaling behavior of the Binder cumulant at this
value we determined the exponentn. Similarly, the behavior
of magnetization and susceptibility allowed us to determine
b/n andg/n, respectively. The obtained results are collected
in Table III.

By using the measuredg/n value one obtains from the
hyperscaling relationsb/n50.905(65). This is in good
agreement with the measured value and supports the hyper-
scaling hypothesis.

As a test of our methods and of the equivalence between
the fixed points of the GN3 and the Yukawa model with
vanishingl, we measured the critical exponents in the latter
model by approaching the critical point of the GN3 model
along thek direction. Figure 7 demonstrates that the critical
point obtained by the Binder method in this direction is iden-
tical with the GN3 one. The BCL cumulants intersect at
kc50.000(2) andyc51.09. As shown in Fig. 8, the values
of b/n andg/n are perfectly consistent with those obtained
in the GN3 run ~Table III!.

We conclude that the Binder finite size scaling method is
applicable and gives consistent results in the Yukawa model
at l50 for a broad range of lattice sizes. The values of the
critical exponents in the chiral GN3 model are the same as in
the Yukawa model withl50. This confirms that the fixed
points of these two models are the same. The exponents are
consistent with the 1/NF predicted values (n'1) and are
significantly different from the exponents associated with the

FIG. 7. Determination ofkc in the Yukawa model atl50 and
y51.09. The intersection point of the BCL cumulants measured on
different lattice sizes giveskc50.000(2) which is in perfect agree-
ment with the GN3 critical point.
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WFFP. This allows us to investigate the crossover effe
between these universality classes numerically.

VI. GROSS-NEVEU-LIKE BEHAVIOR
FOR STRONG COUPLINGS

The 1/N expansion predicts@9–11# that the Y3 model and
the GN3 models are equivalent at least for weak scalar se
coupling l. In order to test this hypothesis also for stron
scalar couplings, we have investigated the Y3 model with
l5` at strong bare Yukawa couplingy51.1. This choice
leads tokc.0.

The spectrum is similar to that of the GN3 model. We
observe the generation of the fermion massamF which is
related to a nonzero chiral condensate^x̄x&. Even for
l5`, where the 1/NF expansion is not applicable, we fin
that the predictionamF'y^f& is fulfilled with good preci-
sion. Figure 9 displays the dependence of the masses of
bosons on the hopping parameterk at y51.1 andl5`. In
accordance with the Goldstone theorem, one massives bo-
son and one masslessp boson appear in the FM phase. Th
qualitativek dependence of both masses in the vicinity
the critical point is the same as in the Y3 model atl50. This

FIG. 8. Determination of the critical exponentn in the Yukawa
model atl50, y51.09, andk50.

FIG. 9. The masses of thes andp bosons as functions ofk. As
expected, in the broken phase, thes boson is massive and thep
boson massless.
cts

lf-
g

d

both

e
of

is the first numerical hint for the physical equivalence of
both cases.

In order to determine the universality class of the Y3
model atl5` and strong Yukawa coupling, we have again
determined the critical exponentsn, b/n, andg/n. We have
applied the Binder method aty51.1 approaching the critical
sheet in thek direction. The critical valuekc50.007(2) is
given by the common intersection point of the cumulants
UL on different lattice sizesL.

For this value ofkc , we have computed the derivatives
]UbL /]UL with L56 andbL ranging from 8–24. Figure 10
shows as an exampleUbL as a function ofUL for b54. Near
the critical point such functions are linear with good preci-
sion and the derivatives are thus easily determined.

Using Eq. ~13! we have obtained the critical exponent
n,

n50.89~6!. ~19!

This value is a little bit smaller than the one obtained at
l50, but both values are consistent within statistical errors.
Figure 11 shows the corresponding plot. We have also made
various fits with different subsets of data points. The results

FIG. 10. An example (L56, b54) of the linear dependence of
UbL on UL at l5`, y51.1 near the critical point.

FIG. 11. Log-log plot of the derivative]UbL /]UL atkc atl5`,
y51.1. We show the linear fits to the first three, . . . , sixpoints. The
results of these fits are consistent valuesn3, . . . ,n6 of
the exponentn.
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FIG. 12. Determination ofkc atl5` andy50.6. On small lattices~a! the apparent criticalk is 0.1463, but including also data on large
lattices and zooming into the rectangular region~b! suggests that the critical point is in the intervalk50.1435–0.1445 of the intersection
points ofUL for L>10.
i

r

n

e
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are nearly unaffected if we leave out one or more data po
in the fit. This shows that also forl5` andy51.1, correc-
tions to scaling are quite small and the Binder method wo
in a broad range of lattice sizes.

We have further determined the ratiosb/n andg/n,

b

n
50.80~8!,

g

n
51.30~7!. ~20!

Within statistical errors, these exponents are consistent w
our results in the GN3 model, too. They fulfill the corre-
sponding hyperscaling relation with good precision.

These numerical results lead us to the conclusion that
Gross-Neveu universality class extends over the whole ra
from l50 tol5`, provided the bare Yukawa couplingy is
strong enough,y.1. This confirms the conjecture that th
GN3 model and the Y3 model are equivalent field theorie
even forl5`.

VII. INTERPLAY OF MAGNETIC AND CHIRAL
UNIVERSALITY CLASSES

Both in the pure scalarf3
4 theory at y50 and in the

GN3 model atl50, the Binder method works in an exem
plary way. Also in the Y3 model atl5`, y51.1, it provides
satisfactory results. This is presumably because of the do
nance of only one of the fixed points in these cases. Th
seem to be ‘‘pure’’ cases, without any interplay of universa
ity classes. Now, we describe what happens in the Y3 model
when atl5`, the Yukawa couplingy is decreased, and the
XY3 model is approached. We made extensive simulation
y50.6 andy50.3, approaching the critical sheet in thek
direction.

A. l5`, y50.6

For small lattice sizes,L56,8,10, the cumulants consis
tently cross in the intervalk50.1460–0.1466@Fig. 12~a!#.
nts
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Making the finite size analysis atk50.1463, we obtain
n50.75(9), avalue quite close to that of the XY3 model.

However, when only large latticesL510,12,14,16,24 are
considered, the crossing point is found in the interval
k50.1430–0.1445. The situation is shown on a finek scale
in Fig. 12~b!. For these lattices atk50.144, we find
n50.99(23), a value consistent with the GN3 model, but
with a large error.

We have made an analysis atkc50.144 including data on
all lattices and choosing the basisL56. Then values have
been determined for different groups of data, for the first 3,
4, 5, and 6 points. As shown in Fig. 13, when data on larger
and larger lattices is included,n increases systematically
from 0.71~11! for b58/6, 10/6, and 12/6 only, to 0.87~8!
when all data is included. This is probably not a good way of
analysis in such a complex situation and the previous one
made only on large lattices seems to be more reliable. We
have made it in order to illustrate the systematic increase of
the apparentn with lattice size.

We interpret the above results as a hint that for suffi-
ciently large lattices,L>10, thexFP universality class fi-
nally shows up. It might be tempting to conjecture that the

FIG. 13. Similar to Fig. 11, but now atl5`, y50.6. Then
values increase systematically when data on larger and larger lat-
tices is included in the linear fit.
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low value ofn, obtained rather consistently forL<10, is a
signal for the nearby WFFP class. But, as the results
y50.3 indicate, this is questionable.

B. l5`, y50.3

As seen in Fig. 14, the cumulants obtained on lattices
to L532 show no tendency to cross at some unique po
even if smaller lattices are discarded. Also, the depende
of UbL onUL , shown in Fig. 15, is not linear, differing, e.g.
from l5`,y51.1, seen in Fig. 10. Determination ofn un-
der these circumstances makes little sense, and one can
speculate that if lattices could be made still substantia
larger, a simpler finite size behavior with thexFP exponents
might be found.

Remarkable is also the fact that the finite size behav
did not improve on small lattices. As in they50.6 case, the
cumulants onL<10 lattices cross in a narrow interva
kc50.2045–0.2055.2 But including theL512 data spoils
the consistency completely. Thus, halving the distance fr
the XY3 model with respect toy50.6 did not increase the
consistency of the finite size behavior for smaller latti
sizes. This prevents us from interpreting the low values
n obtained on smaller lattices as a signal for the WFFP u
versality class.

Attempts to incorporate some corrections to the lead
finite size behavior, as suggested in Ref.@27#, are in our case
not very helpful because simulations with dynamical ferm
ons cannot yet produce data with the precision needed
deal with additional parameters. Thus, we conclude tha
l5` andy50.3, the finite size behavior is not under con
trol. Unfortunately, it would not have been easy to notice th
without having data in a large range of lattice sizes.

VIII. SUMMARY AND CONCLUSIONS

We have studied the finite size behavior of the Y3 model
with U~1! chiral symmetry along the two-dimensional she

2The corresponding value ofn is n.0.76 with errors difficult to
estimate because of systematic uncertainties caused, e.g., by a
linearity of the dependence ofUbL on UL .

FIG. 14. An attempt to determinekc at l5`, y50.3 failed.
UL do not intersect at a single point even if only large lattices a
considered.
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of chiral phase transitions at various values of the Yukawa
couplingy and of the scalar self-couplingl. The aim was to
investigate the influence and the interplay of the two non
Gaussian fixed points of the model for various values of the
couplings.

In the y50 limit case, i.e., in thef3
4 model, the critical

exponents associated with the Wilson-Fisher fixed poin
~WFFP! are clearly observed both atl5` andl50.5. The
Binder method of finite size scaling analysis is already ap
plicable on small lattices. Also, the renormalized coupling
values agree and are consistent with the theoretical predi
tion. The WFFP thus provides a rather complete descriptio
of the model at least forl>0.5.

For y.0 we find that the chiral fixed point (xFP! deter-
mines the finite size scaling in the vicinity of the chiral phase
transition sheet as long as the Yukawa coupling is stron
enough,y.1. The independence on the value of the quartic
couplingl confirms the expectation that the Y3 model and
its special case, the GN3 model, both belong to the same
universality class of thexFP. Also, the fermion and boson
masses atl50 andl5` are very similar. Fory.1, the
Binder method of finite size scaling analysis works consis
tently in a broad range of lattice sizes, in analogy to the pur
f3
4 theory. No substantial difference in the finite size behav

ior has been found betweenl50 andl5`. This implies
that as long asy is large enough, thelf4 term does not
influence the finite size behavior of the Y3 model even on
small lattices and the model is rather completely describe
by thexFP.

When, atl5`, y is decreased toy50.6, the finite size
behavior cannot be analyzed any more by the Binder metho
in the whole range of the lattice sizes we used. The behavio
on small (L<10) and large (L>10) lattices is different. On
the larger lattices, thexFP seems still to dominate. On the
smaller lattices, the behavior looks consistent with the
WFFP. But this does not necessarily mean that the WFF
already starts to show up: when a further step towards th
f3
4 limit case is made, atl5` and y50.3, the finite size

behavior does not show increased resemblance to that fixe
point. If applied in a narrow interval of lattice sizes, the
Binder method might seem to be applicable but the result
are misleading.

non-

re

FIG. 15. Example (L56, b54) of nonlinear dependence of
UbL on UL at l5`, y50.3 near the critical point.
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A numerical verification of the expectation that the Y3
model is equivalent to the GN3 model is thus very difficult
for y<0.6. Our tentative conclusion is that the observed d
viation from the simple finite size scaling signals an interpla
of both universality classes, i.e., a crossover between the
This warns us that in the situation of intertwining phenom
ena, the finite size behavior may be very complex. As w
learned in thel5`,y50.6 case, this fact is not easily de
tectable in a small range of lattice sizes, however.

Note added in proof. We thank J. A. Gracey for informing
us that the valuesb/n50.97 andg/n51.06 for the GN3
model can be obtained from hisO~1/NF

2! results in the 1/NF
e-
y
m.
-
e
-

expansion@35#. These values are close to those we present
Table III.
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