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Bern-Kosower rule for scalar QED

K. Daikouji, M. Shino, and Y. Sumino
Department of Physics, Tohoku University, Sendai, 980 Japan

~Received 28 August 1995!

We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field theory: we derive a
of rules for calculatingS-matrix elements for any processes at any order of the coupling constant. A gau
invariant set of diagrams in general is first written in the world line path-integral expression. Then we integ
over x(t), and the resulting expression is given in terms of a correlation function on the world l
^x(t)x(t8)&. Simple rules to decompose the correlation function into basic elements are obtained. A g
transformation known as the integration by parts technique can be used to reduce the number of indep
terms before integration over proper-time variables. The surface terms can be omitted provided the ex
scalars are on shell. Also, we clarify correspondence to the conventional Feynman rule, which enabled
avoid any ambiguity coming from the infinite dimensionality of the path-integral approach.

PACS number~s!: 12.20.Ds, 11.55.Bq
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I. INTRODUCTION

Recently, Bern and Kosower derived from superstr
theory a powerful method for calculating one-loopS-matrix
elements for QCD processes@1#. Although the new rule had
reduced the amount of work required in the calculat
greatly, it had little resemblance to the conventional Fe
man rule. The equivalence of the Bern-Kosower rule and
conventional Feynman rule has been studied by Bern
Dunbar@2#, but to date, the complete Bern-Kosower rule h
not been derived from quantum field theory~QCD!. More-
over, practical problems are that, since the Bern-Koso
rule has been derived from string theory, it is difficult
include massive particles and also multiloop generalizat
do not readily lead to simple calculational tools@3#.

As for the approach from quantum field theory, there
been some progress. Bern-Kosower-type rules for calcula
one-loop effective actions for both Abelian and non-Abel
gauge theories have been derived from quantum field t
ries and studied extensively by Strassler@4,5#. Also, Schmidt
and Schubert have extended the rules to multiloop diagra
Namely, diagrams with one-fermion-~scalar-!loop and mul-
tiple photon propagator insertions, and similar diagrams
scalarf3 theory, have been cast into a Bern-Kosower-ty
rule, and the rule has been applied to the calculation of
two-loop QEDb function @6#. On the other hand, a quit
different approach was developed by Lam, where he sho
that expressions similar to the Bern-Kosower rule can
obtained by starting from the conventional Feynman par
eter formula in Abelian gauge theories even beyond one-
order @7#.

In this paper we refine the ideas in the above approa
from field theory, and derive a full Bern-Kosower-type ru
for scalar QED: We derive a set of rules for calculati
S-matrix elements for any processes at any order of the
pling constant. Also we clarify the correspondence to
conventional Feynman rule.

The main idea is to~1! express a set of diagrams co
nected by a gauge transformation~see Fig. 3 below! by a
single world line path integral and~2! use the gauge trans
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formation~known as the integration by parts technique@1,5#!
to simplify the calculation.

For those unfamiliar with the world line path-integral for-
malism, the relation to the conventional Feynman rule may
be seen as follows. Let us express the Feynman propagator
coordinate space using Feynman parameter1:

iDF~x2y!

5E dDp

~2p!D
ieip•~x2y!

p22m21 i e
~1.1!

5E
0

`

daE dDp

~2p!D
eip•~x2y!1 ia~p22m21 i e! ~1.2!

5E
0

`

da i S 1

4p ia D D/2expF2
i

4a
~x2y!22 ia~m22 i e!G .

~1.3!

Note that~part of! the integrand in Eqs.~1.2! and~1.3! has a
similar form to the propagator of a nonrelativistic free par-
ticle if a(.0) is identified with the time interval of propa-
gation:

K~x2y;a![E dDp

~2p!D
eip•~x2y!1 iap2 ~1.4!

5 i S 1

4p ia D D/2expF2
i

4a
~x2y!2G . ~1.5!

Namely, it satisfies

S i ]

]a
2

]

]xm

]

]xm
DK~x2y;a!50, ~1.6!

K~x2y;10!5d~x2y!. ~1.7!

1Throughout the paper we work inD-dimensional space-time with
the metric tensorgmn5 diag(11,21, . . . ,21

D21
).
4598 © 1996 The American Physical Society



53 4599BERN-KOSOWER RULE FOR SCALAR QED
Hence, the associativity relation

E dDzK~x2z;a1!K~z2y;a2!5K~x2y;a11a2!

~1.8!

holds as an important property ofK ~see Fig. 1!, which can
be shown easily from Eq.~1.4!. This property allows one to
insert an arbitrary number of vertices along the propaga
lines of a given diagram, and if infinitely many are inserte
the integral expression reduces to the path integral.

In Sec. II, we derive the path-integral expression for
general set of diagrams starting from quantum field theo
and derive the general expression after integration ov
x(t). Section III clarifies the correspondence of the prop
time integral formula obtained in the previous section an
the Feynman parameter integral formula obtained from t
conventional Feynman rule. This enables one to express
two-point function~correlation function! ^x(t)x(t8)& on the
general diagram in terms of basic elements. Section IV e
plains a general prescription for integration by parts and d
cusses the relation to the gauge transformation on a wo
line. The gauge-fixing parameter dependence of a set of d
grams is discussed in Sec. V. The Bern-Kosower-type ru
for a general set of diagrams is summarized in Sec. VI. T
rule for calculating a set of diagrams including interaction
other than gauge interactions is demonstrated in Sec. V
Concluding remarks are given in Sec. VIII.

FIG. 1. A diagrammatical representation of the associativity r
lation satisfied byK(x2y;a).
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In Appendix A, details of calculation required in Sec. III
are shown. Some properties of~counterpart of! the two-point
function are listed in Appendix B with proofs. A sample cal-
culation using the Bern-Kosower-type rule is shown in Ap-
pendix C.

II. GENERAL EXPRESSION

We consider scalar QED theory, whose Lagrangian is
given by

L~f,Am!5~Dmf!* ~Dmf!2m2ufu22
l

4
ufu42

1

4
FmnF

mn,

~2.1!

with

Dm~A!5]m2 ieAm~x!. ~2.2!

We setl50 in most of the paper since simplification of the
calculation occurs regarding the gauge interactions. The
method for including theufu4 interaction will be demon-
strated in Sec. VII. As for the gauge-fixing term, we take the
Feynman gauge

LGF~Am!52
1

2
~]mAm!2 ~2.3!

in the following, and discuss other gauge-fixing conditions in
Sec. V.

We start by defining a generating functional of connected
Green functions, which isamputatedwith respect to external
photons andunamputatedwith respect to external scalars:

e-
eW~J,J* ,Am![E DfDQmexpS i E dx@L~f,Qm!1LGF~Qm!1J*f1Jf*1 j mQm# U
jm→2hAm

D , ~2.4!

whereQm denotes a quantum gauge field. Integrating out the scalar field, and then rewriting the integral overQm by functional
derivatives, we obtain

eW~J,J* ,Am!5E DQmexpS i E dxF12 ~Am2Qm!h~Am2Qm!2
1

2
AmhAmG D

3expF2 Tr ln@D~Q!21m2#1 i E E dxdyJ* ~x!S 1

D~Q!21m2D
xy

J~y!G ~2.5!

5expS 2
i

2E dxAmhAmDexpF i2E E dxdy
d

dAm~x!
~h21!xy

d

dAm~y!G
3expF2 Tr ln~D~A!21m2!1 i E E dxdyJ* ~x!S 1

D~A!21m2D
xy

J~y!G , ~2.6!
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where we used functional analogue of an identity2

E
2`

` dh

A2p ia
expS i ~j2h!2

2a D f ~h!5expS 12 ia
d2

dj2D f ~j!.

~2.7!

Interaction terms in Eq.~2.6!, on which functional deriva-
tives operate, can be represented by path integrals of a
ticle interacting with the background gauge fieldAm , respec-
tively, as

2Tr ln@D~A!21m2#5E
0

`dT

T
e2 im2TE

x~0!5x~T!
Dx~t!

3expF2 i E
0

T

dtS ẋ24 2eA~x!• ẋD G ,
~2.8!

2 i S 1

D~A!21m2D
wz

5E
0

`

dTe2 im2TE
x~0!5z

x~T!5w
Dx~t!

3expF2 i E
0

T

dtS ẋ24 2eA~x!• ẋD G .
~2.9!

Derivation of the first equation is given in Ref.@4#, and the
second expression can be shown similarly. The above int
action terms, respectively, correspond to a closed sca
chain~making a loop! and an open scalar chain~whose both
ends are connected to external scalars! in the background
gauge field. Each term corresponds to the sum of Feynm
diagrams with different location of photons along the scal
chain, including an arbitrary number of three-point vertice
and seagull vertices; see Fig. 2. Equation~2.6! has a simple
form of connecting the two kinds of scalar chains by photo
propagatorsigmn(h

21)xy , which serves for deriving path-
integral expression for~a set of! diagrams.

Consider first a specific example. We will find a conve
nient expression for the contribution of the set of diagram
shown in Fig. 3~hereafter referred to as set I diagrams! to the

2To derive the integral form~left-hand side! from the differential
form ~right-hand side!, substitute

f~j!5Edhd~j2h!f~h!5Edpdh2p
eip~j2h!f~h!

and integrate overp after replacingd/dj by ip.

FIG. 2. The path-integral representation of a scalar particle
teracting with the background gauge field~a! where the scalar line
is making a loop, corresponding to Eq.~2.8!, and ~b! where the
scalar line is connected to external lines, corresponding to Eq.~2.9!.
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momentum space Green function defined by

G~k1 ,k4 ;k3 ,e3 ,k6 ,e6!

[E dxdx8dwdzei ~k1•z1k4•w1k3•x1k6•x8!

3
d

dJ~z!

d

dJ* ~w!
e3m

d

dAm~x!

3e6n

d

dAn~x8!
W~J,J* ,A! U

J5J*5A50
. ~2.10!

All external momenta are taken to be outgoing.
Let us choose the first diagram in set I as the represent

tive, and extract step by step the relevant terms in Eq.~2.10!;
the following procedure is sufficient for including all contri-
butions from the set I diagrams. After substituting~2.8! and
~2.9! into ~2.6!, we keep the term including one open scalar
chain, one closed scalar chain, and one internal photo
propagator:

W;
i

2E E dxdy
d

dAm~x!
~h21!xy

d

dAm~y!
E
0

`

dTe2 im2T

3E dwdzJ* ~w!J~z!E
z

w

DxexpF2 i E
0

T

dtS 14 ẋ2
2eA~x!• ẋD G E

0

`dT8

T8
e2 im2T8 R Dx8

3expF2 i E
0

T8
dt8S 14 ẋ822eA~x8!• ẋ8D G . ~2.11!

We expand the integrand in powers of the couplinge, and
extract the term corresponding to two photon insertions in
each scalar chain:

~ ie!2

2 E
0

T

dt2A~x2!• ẋ2E
0

T

dt3A~x3!• ẋ3

3
~ ie!2

2 E
0

T8
dt5A~x58!• ẋ58E

0

T8
dt2A~x68!• ẋ68 , ~2.12!

where xi[x(t i) and xj8[x8(t j ). Then connect the internal
photon propagator by taking derivative as

in-

FIG. 3. The set I diagrams, which includes diagrams interrelate
to one another by the gauge transformation of internal and extern
photons.
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d

dAm~x!

d

dAm~y!
@A~x2!• ẋ2#@A~x58!• ẋ58#

5 ẋ2• ẋ58@d~x22x!d~x582y!1~x↔y!#. ~2.13!

There are also terms in whichA(x3) andA(x68) are differen-
tiated instead ofA(x2) andA(x58), respectively, and so the
factor 1/4 in~2.12! gets canceled. According to the definition
~2.10!, the Green function is obtained by substituting3

J* ~w!5eik4•w, J~z!5eik1•z,

Am~x3!5e3
meik3•x3, Am~x68!5e6

meik6•x68 ~2.14!

in Eq. ~2.11!. Thus,
he set I
GI~k,e!5 ie4E dxdy~h21!xyE
0

`

dTe2 im2TE
0

`dT8

T8
e2 im2T8E

0

T

dt2dt3E
0

T8
dt5dt6E dwdzE

z

w

Dxe2 i*0
Tdt 1/4ẋ2

3 R Dx8e2 i*0
T8dt8 1/4 ẋ82d~x22x!d~x582y!ei ~k1•z1k4•w!~ ẋ2• ẋ58!~e3• ẋ3e

ik3•x3!~e6• ẋ68e
ik6•x68! ~2.15!

5e4E
0

`

daE
0

`

dTe2 im2TE
0

`dT8

T8
e2 im2T8E

0

T

dt2dt3E
0

T8
dt5dt6E

I
Dx~t!

3e2 i*dt 1/4ẋ~t!2ei ~k1•z1k4•w!~2 ẋ2• ẋ58!~e3• ẋ3e
ik3•x3!~e6• ẋ68e

ik6•x68!, ~2.16!

where we have expressed the photon propagator using the Feynman parameter, and defined a ‘‘path integral over t
diagrams’’4 as

E
I
Dx~t!expS 2 i E dt

1

4
ẋ~t!2D[E dxdyiS 1

4p ia D D/2e2
i
4a ~x2y!2E dwdzE

z

w

Dxe2 i*0
Tdt1/4ẋ2

3 R Dx8e2 i*0
T8dt8

1
4ẋ8

2
d~x22x!d~x582y!. ~2.17!
h-
Since the path integral overx(t) is Gaussian, it is
straightforward~at least formally! to perform the integration.
For convenience, we assign an outgoing momentumki and a
polarization vectore i to every vertex (x1[z, x4[w), and
replace the vertex factors by an exponential factor:

ei ~k1•z1k4•w!~2 ẋ2• ẋ58!~e3• ẋ3e
ik3•x3!~e6• ẋ68e

ik6•x68!

→expF(
i51

6

~ ik i•xi1e i• ẋi !G . ~2.18!

At the end of the calculation, to recover the correct result,~1!
we setk25k550 ande15e450, ~2! only the terms in which
each polarization vectore2 ,e3 ,e5 ,e6 appears precisely onc
~multilinear in each polarization vector! are retained, and~3!
we replace the internal photon wave function as

e2
me5

n→2gmn. ~2.19!

The replacement~2.18! simplifies the integration over
x(t). Hence, we obtain

3Note that in the case wheren external photon vertices are o
some chain, one should multiply byn! after substituting
Am
„x(t i)…5e i

meiki•x(t i ).
4To be precise, we have expressed scalar chains in path inte

and photon propagators in Feynman parameter integrals.
e

GI~k,e!5e4E
0

`

daE
0

`

dTe2 im2TE
0

`dT8

T8
e2 im2T8

3E
0

T

dt2dt3E
0

T8
dt5dt6

3N expF12 (
i , j51

6

$2 ik i•kjGB
i j22ki•e j] jGB

i j

1 i e i•e j] i] jGB
i j %G , ~2.20!

where the normalization factor is defined by

N [E
I
Dx~t!expS 2 i E dt

1

4
ẋ~t!2D , ~2.21!

and the two-point functions are given by

gmnGB
i j52 i ^xm~ t i !x

n~ t j !&,

gmn] jGB
i j52 i ^xm~ t i !ẋ

n~ t j !&, ~2.22!

gmn] i] jGB
i j52 i ^ẋm~ t i !ẋ

n~ t j !&,

with the expectation value taken with respect to the pat
integral average over the set I diagrams:

n

grals
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^O ~x!&[N 21E
I
Dx~t!O ~x!expS 2 i E dt

1

4
ẋ~t!2D . ~2.23!

We remind the reader that] jGB
i j differs from the differentia-

tion of GB
i j with respect tot j . A precise definition will be

made clear in the next section.
So far we considered a specific example. The steps

led to Eq. ~2.20! can be generalized to an arbitrary set
diagrams: A set of diagrams consists of those which can
transformed to one another by sliding photon legs along
scalar chains, where any two three-point vertices on a sa
chain may combine to become a seagull vertex. Any sin
set contains all diagrams that are interrelated to one ano
by the gauge transformation of external and internal photo
In other words, each set constitutes a gauge-invariant sub
plitude if the external scalar propagators are amputated
taken to be on shell,5 ks

2→m2. Thus, the Green function

G~k,e!5E )
i
dxiexpS i( ki•xi D

3F) d

idJ~wi !
)

d

idJ* ~zi !
) e i

m d

idAm~yi !

3W~J,J* ,A!G
J5J*5A50

~2.24!

at each order of the couplinge can be decomposed to th
sub-Green functions corresponding to the setsS of diagrams
as

G~k,e!5(
S

GS~k,e!, ~2.25!

where the decomposition is accomplished naturally by e
panding Eq.~2.6! in powers ofe, taking functional deriva-
tives, and then substituting the external wave functions;
Eqs.~2.11!–~2.16!.

Following similar steps as in the former example, it
easy to see that the sub-Green function for a setS with
2ns external scalars atO (e

n) is given generally by

GS~k,e!5~ ie!nCE
0

`

)
r
da r )

chain l

3S E
0

`

@dTl #e
2 im2TlE

0

Tl

)
i l

dti l D
3N expF12 (

i , j51

n12ns

$2 ik i•kjGB
i j22ki•e j] jGB

i j

1 i e i•e j] i] jGB
i j %G , ~2.26!

5This is true only for the renormalized Green function.
hat
f
be
he
me
le
her
ns.
am-
nd

x-

ee

s

whereC is the combinatorial factor6, and a r denotes the
Feynman parameter of ther th photon propagator. The chain
l represents an open or closed scalar chain, and the integr
measure for its lengthTl is

@dTl #5H dTl for l5open,

dTl /Tl for l5closed.
~2.27!

i l represents the photon vertex on the chainl . For conve-
nience, we assigned an outgoing external momentumki and
a polarization vectore i to every vertexi . The normalization
factorN and two-point functionsGB

i j , ] jGB
i j , and ] i] jGB

i j

are defined similarly as Eqs.~2.21!–~2.23!, but for the path
integral over the setS diagrams. The exponential factor is
common to allS once the numbers of external scalars and
photons as well as the order ofe are fixed.~Explicit forms of
GB
i j ’s depend onS, though.!
Furthermore, one should manipulate the following pro-

cesses~dependent on the setS) to the aboveGS(k,e): ~1! If
the vertexi is internal, we set correspondingki50; ~2! if the
vertex i is an end point of an open scalar chain, we set
correspondinge i50; ~3! only the terms multilinear in each
remaining polarization vector are kept;~4! we replace the
polarization vectors at both ends (i r and j r) of every photon
propagatorr as

e i r
me j r

n→2gmn. ~2.28!

At this stage, one could directly evaluate the integrals in
Eq. ~2.26! once the explicit forms ofN andGB

i j , ] jGB
i j , and

] i] jGB
i j are known. It already has the advantages that a set o

diagrams is cast into one single expression, and that the ex
pressions for different sets of diagrams can be obtained in
similar simple manners. Also, the spinor helicity technique
@8,9# can be used, and so the number of independent do
products in the exponent can be reduced. Moreover, the
Bern-Kosower-type rule allows use of a partial integration
technique, which simplifies the calculation further. After that,
one will integrate overa r , t i , andTl .

In order to understand the remaining part of the rule, one
needs a close study of the two-point function

gmnGB~t,t8![2 i ^xm~t!xn~t8!&. ~2.29!

In principle,GB(t,t8) is obtained by solving

]2

]t2
GB~t,t8!52d~t2t8! ~2.30!

after removing the zero mode, where appropriate boundary
conditions should be imposed at each internal vertex of the
diagram@6#. We take, however, an alternative approach. It is
possible to find simple rules to expressGB(t,t8) for a gen-
eral diagram in terms of basic elements.

6The combinatorial factorC in general differs from~symmetry
factor!3~statistical factor! of the corresponding Feynman diagrams,
since certain diagrams do not distinguish the interchange of photon
legs, e.g.,C51/2 for the scalar self-energy at one loop.
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III. RELATION TO THE FEYNMAN PARAMETER
FORMULA AND DECOMPOSITION OF GB

In this section, we derive the Feynman parameter formu
for a scalar QED diagram~rather than for a set of diagrams
considered in the previous section!. In this formula a matrix
Zi j appears, which is identified to be the counterpart o
GB
i j . Zi j is defined through an integral over a finite numbe

of variables instead of the path-integral formulation, whic
enables us to investigate its properties in an unambiguo
way. We deal with a generalf3 diagram in Sec. III A, fol-
lowed by an extension to scalar QED diagrams in Sec. III B
Then Sec. III C will clarify the relation between the Feyn
man parameter integral formula and the general express
for GS(k,e) obtained in the last section. Finally, we show
how to decomposeN andGB

i j to simpler elements in Sec.
III D.

A. Scalar f3 diagram

For the calculation of a generalf3 diagram, it has long
been known how to write down the Feynman parameter fo
mula @10#. We rederive the formula in a manner convenien
for application to the case of a scalar QED diagram.

A general connectedf3 diagram withn vertices andN
internal lines can be written using the Feynman rule in coo
dinate space as

iT5~ ie!nE )
i51

n

dDxiexpS i(
i
ki•xi D F )

r51

N

iDF~xi r2xj r !G ,
~3.1!

wheree is thef3 coupling constant.i r and j r represent the
vertices at both ends of ther th internal line. For convenience
an outgoing external momentumki is assigned to every ver-
tex. If the vertex is internal, we set the correspondin
ki50 at the end of the calculation. The combinatorial facto
if any, is suppressed for simplicity.

Substituting the propagator given in Eq.~1.3!, we have

iT5~ ie!nE
0

`

)
r51

N

da rexpS 2 i ~m22 i e!(
r

a r D I ~a!, ~3.2!

where

I ~a![E @dxi #expF2
i

4 (
i , j51

n

xi•xjAi j ~a!1 i(
i51

n

ki•xi G ~3.3!

and

(
i , j51

n

xi•xjAi j ~a![(
r51

N ~xi r2xj r !
2

a r
. ~3.4!

The matrixAi j (a) represents the topoplogy of the diagram
~how the vertices are connected!. We have absorbed the fac-
tor before the exponential in Eq.~1.5! into the integral mea-
sure:

@dxi #[F )
r51

N

i S 1

4p ia r
D D/2G)

i51

n

dDxi . ~3.5!
la

f
r
h
us

.
-
ion

r-
t

r-

g
r,

Note that it depends on Feynman parameters.
Then, after Gaussian integration overxi ’s in I (a), we will

be left with the desired Feynman parameter integral formula
Reflecting the invariance of the quadratic form~3.4! under
the translation

xi
m→xi

m1cm, ~3.6!

the matrixAi j (a) has a zero eigenvalue. Namely,I (a) will
be proportional to thed function representing momentum
conservation. Indeed, after integration overxi ’s, we obtain

I ~a!5~2p!DdS (
i51

n

ki D i lS 1

4p i D Dl /2D~a!2D/2

3expF i (
i , j51

n

ki•kjZi j ~a!G , ~3.7!

with

D~a!5
1

n S )
r51

N

a r D det8A~a!. ~3.8!

Here, l5N2n11 is the number of loop of the diagram.
det8 denotes the product of eigenvalues but zero.Zi j (a) is
the inverse ofAi j (a) after the zero mode is removed or
fixing the center of gravity of vertices. The derivation of Eqs.
~3.7! and ~3.8! is given in Appendix A.

In Eq. ~3.7!, Zi j (a) is not uniquely determined. This is
because one can readily confirm the invariance ofI (a) under
the transformation ofZ:

Zi j ~a!→Zi j ~a!1 f i~a!1 f j~a! for ; f i~a!, ~3.9!

due to momentum conservation. Among the class ofZ(a)’s
connected by the transformation, there is a specific choice o
Z(a) most convenient to the following argument. We choose

gmnZi j ~a![2
i

4
^^~xi2xj !

m~xi2xj !
n&&, ~3.10!

with ^^•••&& defined by

^^O &&[
E @dxi #O expF2

i

4( xi•xjAi j G
E @dxi #expF2

i

4( xi•xjAi j G . ~3.11!

The numerator and the denominator of Eq.~3.11!, respec-
tively, are ill defined due to the zero eigenvalue ofA(a), and
so one has to first remove the zero mode in the integrals
Becausexi2xj in Eq. ~3.10! is invariant under the translation
~3.6!, Z(a) thus defined is independent of how one removes
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the zero mode.7 Lam has pointed out@7# that this choice of
Z(a) is characterized by the condition

Zii ~a!50 for 1< i<n, ~3.12!

and is called the zero-diagonal level scheme.
We list some important properties ofZi j together with

their proofs in Appendix B.

B. Scalar QED diagram

Now we derive the Feynman parameter integral formu
for a scalar QED diagram. We consider diagrams contrib
ing to the Green function~2.24! which is amputated with
respect to external photons and unamputated with respec
external scalars.

First, let us consider a diagram without a seagull vert
~see Fig. 4!:

GD~k,e!5~ ie!nE )
i
dDxi expS i( ki•xi D

3F )
chain l

H )
i l51

nl

iDF~xi l112xi l !V
J

i lJ G
3 )

photon r
iDF~xi r2xj r ! U

e
i r

me
j r

n→2gmn

, ~3.13!

with the vertex operator

VJ j[e j
mS i ]W

]xj
m 2 i

]Q

]xj
mD . ~3.14!

7Naively,Z(a) being the inverse ofA(a), one may consider that
a natural definition would begmnZi j8 (a)[( i /2)^^xi

mxj
n&&. Z8 andZ

given by Eq.~3.10! are equivalent under the transformation~3.9!
with f i52Zii8 /2. The disadvantage ofZ8 is that it depends on how
one removes the zero mode in calculating^^xi

mxj
n&& sincexi

mxj
n is

not translationally invariant.

FIG. 4. A scalar QED diagram including only three-point gau
vertices, which contributes to the Green function amputated w
respect to external photons and unamputated with respect to e
nal scalars.
la
ut-

t to

ex

Here, i l ’s (1< i l<nl) denote vertices on the scalar propaga-
tor chainl , labeled in increasing order along the charge flow
on that chain. For an open chain we suppressed one addi-
tional scalar propagatoriDF(x12x0) on the right of the ver-
tex operatorVJ1 in Eq. ~3.13!. i r and j r represent the vertices
at both ends of the photon propagatorr . Again, we assign an
outgoing external momentumki and a polarization vector
e i to every vertexi . At the end of the calculation, we set
ki50 for internal vertices,e i50 at the end points of open
scalar chains, and also replace the polarization vectors at
both ends of every internal photon line ase i r

me j r
n→2gmn

~corresponding to taking the Feynman gauge for a photon
propagator!.

Introducing a Feynman parameter for every propagator,
we have

GD~k,e!5~ ie!n)
l

S E
0

`

)
i l

da i l D E0`)r da r

3expS 2 i(
l
Tl~m

22 i e! D I ~a!, ~3.15!

where

I ~a![E )
i
dDxiexpS i( ki•xi D

3F)
l

H)
i l

K~xi l112xi l;a i l
!VJ i lJ G)

r
K~xi r2xj r;a r !.

(3.16)

K is the propagator defined in Eq.~1.5!, a i l
is the Feynman

parameter between the verticesi l and i l21, andTl5( i l
a i l
.

Before integrating over thexi ’s in I (a), we would like to
replace the vertex operatorVJ i by some simple factorassoci-
ated with the vertex i. To this end, we insert, on both sides of
every vertexi , dummy verticesi 8 andi 9 on the scalar line in
the orderi 9, i, i 8 using the associativity relation~1.8!; see
Fig. 5. Then we can replace the vertex operators acting on
scalar propagators as

VJ i→
1

2
e i•S xi82xi

ui8
1
xi2xi9

ui9
D . ~3.17!

Hence, we have

ge
ith
xter-

FIG. 5. The dummy verticesi 8 and i 9 inserted on both sides of
every vertexi in the orderi 9, i, i 8 along the charge flow on the
scalar line. The Feynman parameter between verticesi 8 andi ( i and
i 9) is denoted asui8 (ui9).
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I ~a!5E @dxa#)
i

1

2
e i•S xi82xi

ui8
1
xi2xi9

ui9
D

3expF2
i

4(a,b xa•xbAab~a,u8,u9!1 i(
i
ki•xi G .

~3.18!

Here, a,b denote vertices including dummy vertices (i ,i 8,
andi 9). The matrixAab and the measure@dxa#, respectively,
are defined similarly as in Eqs.~3.4! and ~3.5!, but depend
also onu8 andu9. Note thatI (a) is independent ofui8 and
ui9 , since it is completely arbitrary where to insert dumm
vertices as long as the orderi 9, i, i 8 is preserved.

To perform a Gaussian integration overxa’s, we exponen-
tiate the polarization vectors as in Eq.~2.18!. Defining a
source

Ja
m5(

i
Fkimd ia2

i

2
e i

mS d i 8a2d ia
ui8

1
d ia2d i 9a

ui9
D G ,

~3.19!

we have

I ~a!5E @dxa#expF2
i

4(a,b xa•xbAab~a,u8,u9!

1 i(
a

Ja•xaG
linear in eache

~3.20!

5~2p!DdS (
i51

n

ki D i lS 1

4p i D Dl /2D~a!2D/2

3expF (
i , j51

n

$ ik i•kjZi j12ki•e j~n jZi j !

2 i e i•e j~n in jZi j !%G
linear in eache

~3.21!

for an l -loop diagram with

n jZi j5
Zi j 82Zi j
2uj8

1
Zi j2Zi j 9
2uj9

, ~3.22!

n in jZi j5
1

4(a,b S d i 8a2d ia
ui8

1
d ia2d i 9a

ui9
D S d j 8b2d jb

uj8

1
d jb2d j 9b

uj9
DZab ~3.23!

5
1

4ui8uj8
~Zi 8 j 82Zi j 82Zi 8 j1Zi j !1•••.

~3.24!

In the above expressions,D(a) andZi j are the same as thos
appearing in Eq.~3.7! for thef3 diagram of the same topol-
ogy, since we recover exactly Eq.~3.3! if we set all e i50
and integrate out the dummy vertices in Eq.~3.20!. Zi j 8, etc.,
are defined similarly as in~3.10!,
y

e

gmnZab~a![2
i

4
^^~xa2xb!

m~xa2xb!
n&&, ~3.25!

but now ^^•••&& includes integrals over dummy vertices.
Remembering thatI (a) is independent ofui8 andui8, we

can take the limitui8,ui9→10. Because of the fact that

lim
ui8→0

Zi 8a5 lim
ui9→0

Zi 9a5Zia , ~3.26!

we can replacen jZi j andn in jZi j as

n jZi j5
1

2
lim

uj8,uj9→0

S ]

]uj8
Zi j 82

]

]uj9
Zi j 9D , ~3.27!

n in jZi j5
1

4
lim

ui8,ui9→0

uj8,uj9→0

S ]

]ui8

]

]uj8
Zi 8 j 82

]

]ui8

]

]uj9
Zi 8 j 9

2
]

]ui9

]

]uj8
Zi 9 j 81

]

]ui9

]

]uj9
Zi 9 j 9D . ~3.28!

At the same time, we can drop all diagonal terms (i5 j ) in
~3.21! using

lim
ui8→10

]
]ui8

Zi 8 i5 lim
ui9→10

]
]ui9

Zi 9 i52 1
2

~3.29!

and noting that only the terms multilinear in eache i should
be kept. See Appendix B for proofs of Eqs.~3.26!–~3.29!.

So far we considered a diagram without a seagull vertex
The contribution of a seagull vertex can be incorporated
through the process known as ‘‘pinching’’ from the corre-
sponding diagram without a seagull vertex. Any diagram
containing a seagull vertex has the factor~see Fig. 6!

GD~k,e!} iDF~y2x!emeik•xem8e
ik8•xiDF~x2z! ~3.30!

5E dx8iDF~y2x!emeik•xd~x2x8!

3em8e
ik8•x8iDF~x82z!. ~3.31!

The last line corresponds diagramatically to pinching the
propagator between the two adjacent three-point verticesx
andx8; see Fig. 6. Noting thatd(x2x8) is obtained by tak-
ing thea→10 limit of the propagator in question@see Eq.
~1.7!#, one can incorporate the contribution of a seagull ver-
tex by replacing

e i•e jn in jZi j→2e i•e jd~a i j20! ~3.32!

FIG. 6. The seagull vertex can be incorporated by pinching the
propagator between two adjacent three-point vertices with verte

factorsemeik•x andem8e
ik8•x.
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in Eq. ~3.21! of the diagram without a seagull vertex, whe
a i j is the Feynman parameter between the two adjac
three-point verticesi and j . If there are two or more seagul
vertices in a diagram, one should pinch as many propaga
of the corresponding diagram without a seagull vertex.

C. Relation between the general expression and Feynman
parameter formula

A path-integral expression forGS(k,e) such as Eq.~2.16!
can be obtained from the finite dimensional integral~3.18!
by inserting infinitely many dummy vertices along scal
chains using the associativity relation~1.8!. The advantage of
the path-integral expression lies in that it combines in
single expression sum of different diagrams that are rela
to one another by sliding photon legs along the scalar cha
Different orderings of photon legs correspond to differe
orderings of the proper timet i ’s of the vertices.

Once the ordering oft i l ’s is fixed along the scalar chain

l , relations betweent i l ’s and Feynman parametersa i l
are

given by the following.
For l5open, and 0,t1,t2,•••,tnl,Tl ,

t15a1 ,

t22t15a2 ,

A ~3.33!

tnl2tnl215anl
,

Tl2tnl5anl11 .

For l5closed, and 0,t1,t2,•••,tnl,Tl ,

t12tnl1Tl5a1 ,

t22t15a2 , ~3.34!

A

tnl2tnl215anl
.

With these relations, constituents of the general express
~2.26! and of the Feynman parameter formula~3.21! are
identified as

N 5~2p!DdS (
i51

n

ki D i lS 1

4p i D Dl /2D2D/2 ~3.35!

and

GB
i j522Zi j ,

] jGB
i j522n jZi j , ~3.36!

] i] jGB
i j522n in jZi j .

We take the conventionGB
ii50 in accordance with the zero

diagonal level scheme ofZab . As N andGB
i j ’s are defined
e
ent

ors

r

a
ted
ns.
nt

ion

for a set of diagrams, for a different ordering oft i l ’s, D and

Zi j of a different diagram should be taken on the right-han
side.

It is more subtle how the contributions of seagull vertices
are contained in the general expression~2.26!. They are con-
tained in the] i] jGB

i j term when the two verticest i and t j
come to the same point. To see this, we consider the tw
point functionGB(t,t8) defined in Eq.~2.29! when t and
t8 are arbitrary points along a same scalar chain. One may,
necessary, identify it withZab , where xa and xb are the
dummy vertices inserted at the position oft andt8, respec-
tively. Because of Eqs.~3.27!, ~3.28!, and ~3.36!, one may
express theGB

i j ’s as

GB
i j5GB~ t i ,t j !, ~3.37!

] jGB
i j51

2 F lim
t8→t j10

1 lim
t8→t j20G ]

]t8
GB~ t i ,t8!, ~3.38!

] i] jGB
i j51

4 F lim
t→t i10

1 lim
t→t i20GF lim

t8→t j10
1 lim

t8→t j20G
3 ]

]t
]

]t8
GB~t,t8!, ~3.39!

for iÞ j , and we may omit all terms wherei5 j ; see discus-
sion after Eq.~3.28!. Then using the identity8

lim
t→t860

]

]t8
GB~t,t8!571, ~3.40!

which holds for any diagram, it can be shown that

E
t j2u9

t j1u8
dti] i] jGB

i j5221S E
t j10

t j1u8
dti1E

t j2u9

t j20

dti D
3] i] jGB

i j ~u8,u9.0!. ~3.41!

Thus, we see thed-function contribution as

] i] jGB
i j;22d~ t i2t j ! for t j20,t i,t j10, ~3.42!

so that the contributions of seagull vertices are included as
Eq. ~3.32!. ~The factor of 2 is accounted for by the inter-
change ofi and j .) It is interesting how gauge symmetry
takes advantage of the property ofGB(t,t8) which is an
intrinsic quantity to any diagram.

Finally we comment on the integral variables of the two
formulas ~2.26! and ~3.15!. Note that along a closed scalar
chain we have one more time variable to integrate ove
(t1 , . . . ,tnl,Tl) than the corresponding Feynman parameter
In fact, one proper time variable can be integrated trivially
after the firstnl21 integrals overt i l ’s, there remains no de-

pendence on9 tnl, and so the last integral just gives a factor of

Tl , which compensatesTl
21 in the integral measure~2.27!.

8The corresponding identity ofZab is shown in Appendix B, Eq.
~B12!.
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D. Decomposition ofGB and N

Up to now we dealt withGB(t,t8) andN for a general
set of diagrams. We show that these quantities can be dec
posed and written in terms of those for the basic sets
diagrams, namely,GB(t,t8) andN for an open scalar chain
and for a closed scalar chain; see Fig. 7.

Let us first find the explicit forms of these bas
GB(t,t8) andN . They are obtained fromZi j andD(a) for
the corresponding diagrams~Fig. 8!. According to the calcu-
lation method described in Appendix B, one obtains,
these diagrams,

Z12
~open!52

1

2
a2 , D~open!51, ~3.44!

Z12
~closed!52

1

2

a1a2

a11a2
, D~closed!5a11a2 . ~3.45!

FIG. 7. The basic diagrams:~a! an open scalar chain and~b! a
closed scalar chain. Two-point function for an arbitrary set of d
grams can be decomposed and written in terms ofGB

(open) and
GB
(closed) .
om-
of

ic

for

It follows that

GB
~open!~t,t8!5ut2t8u, D~open!51, ~3.46!

GB
~closed!~t,t8!5ut2t8u2

~t2t8!2

T
, D~closed!5T, ~3.47!

where the normalization factorN is given by Eq.~3.35!.
We deal with a finite dimensional integral, and start from

the defining equation ofZab andD for a diagramD:

I5E @dxa#expF2
i

4(a,b xa•xbAab1 i(
a

Ja•xaG ~3.48!

5~2p!DdS (
a

JaD i l S 1

4p i D Dl /2D2D/2expF i(
a,b

Ja•JbZabG .
~3.49!

We would like to know how the above expression changes
when the verticesi and j in D are connected by a propagator
whose Feynman parameter isa. ~The diagram thus obtained
is denoted asD8.) This is achieved if we multiply the inte-
grand in~3.48! by

K~xi2xj ;a!5 i S 1

4p ia D D/2expF2
i

4a
~xi2xj !

2G ~3.50!

before integration over@dxa#. But it is an equivalent ma-
nipulation if we shift

Ja→Ja1p~dai2da j!, ~3.51!

multiply by exp(iap2), and then integrate overp; see Eq.
~1.4!. Applying this manipulation to~3.49!, one obtains

ia-
I→I 85~2p!DdS (
a

JaD i l11S 1

4p i D D~ l11!/2

@D~a22Zi j !#
2D/2 ~3.52!

3expF i(
a,b

Ja•JbH Zab1 ~Zia2Zja2Zib1Zjb!2

2~a22Zi j !
J G . ~3.53!

This expression definesD andZab for D8, and correspondingly we find the following rule10 for obtainingN andGB for the
diagramD8:

D85D@a1GB~ t i ,t j !#, ~3.54!

GB8 ~t,t8!5GB~t,t8!2
@GB~t,t i !2GB~t,t j !2GB~t8,t i !1GB~t8,t j !#

2

4@a1GB~ t i ,t j !#
. ~3.55!

9Any function of the form

f~tnl!5E
0

Tl
dtnl21•••E

0

Tl
dt1F~GB

ij ,N ! ~ l : closed chain! ~3.43!

is invariant under translationtnl→tnl1c sinceGB
i j andN are periodic functions oft i l ’s and depend only ont i l2t j l; see Eqs.~3.35! and

~3.36!. This meansf 8(t)50 so thatf (t) is independent oft.
10This expression was obtained by Schmidt and Schubert@6# for the two-loop case.
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Next we consider the case where two diagramsD1({ i )
andD2({ j ) are sewn together by a propagator (i j ). In this
case, we shift

Ja
~1!→Ja

~1!1pd ia , Ja
~2!→Ja

~2!2pd ja ~3.56!

in I (1) andI (2), respectively, multiply by exp(iap2), and then
integrate overp. It is straightforward to find the rule

D85D~1!D~2!, ~3.57!

GB8t,t8)

5H a1GB
~1!~t,t i !1GB

~2!~t8,t j ! tPD1 ,t8PD2,

GB
~1!~t,t8! t,t8PD1,

GB
~2!~t,t8! t,t8PD2.

~3.58!

Any setS of diagrams can be constructed by connecti
scalar chains with photon propagators. Then one may
pressGB (N ) for S in terms of GB

(open) (N (open)) and
GB
(closed) (N (closed)) either by using the above rules recu

sively or by applying a similar manipulation for multiple
photon propagator insertions at once.

Now we find an important property of the two-point func
tions ] jGB

i j and ] i] jGB
i j . Writing GB(t,t8) for an arbitrary

set of diagrams in terms of the basic elements, we notice
] i (] j ) can be replaced by]/]t i (]/]t j ) if the vertexi ( j ) is
external@7# or if the diagram is one-particle reducible wit
respect to the photon propagator connected to the vertei
( j ). @Cf. Eqs.~3.38! and ~3.39!.#

IV. INTEGRATION BY PARTS

Now we are ready to explain the integration by parts tec
nique, first introduced in a field theoretical calculation b
Bern and Kosower, which enables nontrivial reshuffling
various terms in Eq.~2.26! before integrating overa r , t i l,

andTl . This technique can be used to reduce the numbe
independent terms, and consequently reduces labor in
evaluation of integrals.

A. Example

Consider a simplest example@4#. According to Eq.~2.26!
and the manipulation~1!–~4!, the photon vacuum polariza
tion at one loop~Fig. 9! is given by

FIG. 8. The basic diagrams corresponding to Fig. 7 but para
etrized by Feynman parameters.
ng
ex-
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h-
y
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-

GS5~2p!Dd~k11k2!

3~ ie!2i S 1

4p i D
D/2E

0

`dT

T E
0

T

dt1dt2T
2D/2e2 ik1•k2GB

12

3~k1•e2k2•e1]1GB
12]2GB

121 i e1•e2]1]2GB
12!, ~4.1!

where we usedD5T. Note that]1 (]2) can be identified
with ]/]t1 (]/]t2) since vertices 1 and 2 are external verti-
ces. We integrate by parts the second term with respect to
t1 . The surface term vanishes due to the periodicity of
GB
i j . Thus,

GS52~2p!Dd~k11k2!ie
2S 1

4p i D
D/2

3~k1•e2k2•e12e1•e2k1•k2!E
0

`

dTT212D/2

3E
0

T

dt1dt2e
2 ik1•k2GB

12
]1GB

12]2GB
12, ~4.2!

and we find thatGS is gauge invariantbefore integration
over t1 , t2 , and T. Note that the number of independent
terms reduced from 2 to 1.

To see the relation between gauge transformation and the
integration by parts technique, we remember that

GS}K E
0

T

dt1e1• ẋ~ t1!e
ik1•x~ t1!E

0

T

dt2e2• ẋ~ t2!e
ik2•x~ t2!L ,

~4.3!

where^•••& denotes the path-integral average. Gauge trans-
formation of photon 1 is achieved by replacinge1 by k1 .
Then the vertex operator changes as

e1• ẋ~ t1!e
ik1•x~ t1!→k1• ẋ~ t1!e

ik1•x~ t1!52 i
d

dt1
eik1•x~ t1! ~4.4!

and

dGS}K E
0

T

dt1
d

dt1
eik1•x~ t1!E

0

T

dt2e2• ẋ~ t2!e
ik2•x~ t2!L

5E
0

T

dt1dt2
]

]t1
^eik1•x~ t1!e2• ẋ~ t2!e

ik2•x~ t2!&

5E
0

T

dt1dt2
]

]t1
~2k1•e2]2GB

12e2 ik1•k2GB
12

!. ~4.5!

The gauge transform of the integrand is given by a total
derivative, and soGS is obviously gauge invariant whereas
the integrand itself is not. We may add, however, to the in-

m-

FIG. 9. The one-loop diagrams contributing to the photon
vacuum polarization.
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tegrand ofGS in Eq. ~4.3! a term which transforms equally
but in opposite sign under the replacemente1→k1:

]

]t1
~e1•e2]2GB

12e2 ik1•k2GB
12

!. ~4.6!

Being a total derivative, the addition of this term does n
alterGS . Now the integrand itself is gauge invariant, and th
above term is exactly the surface term of the partial integ
tion in Eq. ~4.2!.

B. External photon

We now show a general prescription for integration b
parts with respect to the external gauge vertices.

First, if the external photons are on shell and for fixe
helicity states, one can use the spinor helicity technique@8,9#
to reduce the number of dot products in the exponent of
general expression~2.26!. On the other hand, if the externa
photons are off shell, one can replace each polarization v
tor as

e i
m→e i8

m5e i
m2

e i•ka
ki•ka

ki
m5~e i

mki
n2ki

me i
n!kan

1

ki•ka
. ~4.7!

The amplitude is invariant under this replacement, and a
the resulting expression is manifestly gauge invariant bef
integration over proper time variables. One may choose
ka for each polarization vectore i . Sinceka•e i850, appropri-
ate choices ofka’s for all i ’s will reduce the number of terms
in the exponent.

After reducing the terms in the exponent, and after t
manipulation ~1!–~4! above Eq.~2.28!, one integrates by
parts with respect to the proper time of external vertices
reduce the number of independent terms in the integrand
this procedure, one may omit surface terms for a closed s
lar chain since the surface terms cancel each other due to
periodicity of GB . Also for an open scalar chain, surfac
terms can be neglected if one is interested in theS-matrix
element, since each surface term cancels the propagator
of the external scalars in the unamputated Green functi
see Fig. 10.

C. Internal photon

One may also apply the integration by parts technique
the internal gauge vertices@6#. Using the decomposition rule
derived in the previous section, one can writeD, ] jGB , and
] i] jGB usingGB

(open), GB
(closed), and their derivatives. One

can always integrate by parts to eliminate all second deri
tives. This corresponds to simplifying the expression us
the gauge transformation of the internal vertices.

FIG. 10. The surface terms originating from the gauge transf
mation of an external photon along an open chain. Some of
propagator poles of external scalars get canceled, and so these
face terms do not contribute to theS-matrix element.
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There is one exception for this procedure. The integration
by parts with respect to any of the internal vertices whose th
other end of the photon propagator is on a sameopenscalar
chain does not lead to simplification. The surface terms o
such a partial integration still comprise the poles of externa
scalars as seen in Fig. 11. Thus, one cannot omit the surfa
terms in this case.

V. COVARIANT GAUGE FOR INTERNAL PHOTONS

From a field theoretical point of view it is interesting to
know how the general expression changes if one used cov
riant gauge for internal photon propagators instead of th
Feynman gauge. Leti and j be the vertices at the both ends
of the photon propagator whose Feynman parameter isa. In
momentum space it can be written as

2 i

p21 i e Fgmn2~12j!
pmpn

p2 G . ~5.1!

Thegmn part is the Feynman gauge propagator, and appea
in the path-integral formalism as

ẋi
mẋ j

ngmnexpF2
i

4a
~xi2xj !

2G , ~5.2!

with xi[x(t i) andxj[x(t j ). Meanwhile, thepmpn part can
be written as

ẋi
mẋ j

nia
]

]xi
m

]

]xj
n expF2

i

4a
~xi2xj !

2G
5 ia

]

]t i

]

]t j
expF2

i

4a
~xi2xj !

2G , ~5.3!

where we used

i E
0

`

daaE dDp

~2p!D
]

]xm

]

]yn e
ip•~x2y!1 iap2

52 i E dDp

~2p!D
pmpn

p4
eip•~x2y!. ~5.4!

Cf. Eq. ~1.2!. Therefore, we obtain thepmpn part of the pho-
ton (i j ) by operating

~12j!ia
]

]t i

]

]t j
~5.5!

r-
the
sur-

FIG. 11. The surface terms originating from the gauge transfor
mation of an internal photon whose both ends are attached to
same open scalar chain. Some of the surface terms cannot be om
ted since they still contain the propagator poles of external scalar
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to the integrand of Eq.~2.26! after settinge i5e j50. Again
this is given by the total derivative, and so changing t
gauge parameterj can be regarded as a kind of gauge tran
formation.

From this we see that if one calculates a set of diagram
different values ofj, the difference of results is proportiona
to the surface term on each scalar chain. In particular, a se
diagrams without external scalars is independent ofj ~if ex-
pressed in terms of a bare coupling and bare gauge par
eter! sinceGB(t,t8) is a periodic function on each close
scalar chain.

VI. RULE

Let us summarize the Bern-Kosower-type rule for calc
lating a set of diagrams in scalar QED~amputatedwith re-
spect to external photons andunamputatedwith respect to
external scalars!. The gauge-invariant sub-Green function fo
a setS with 2ns external scalars atO (e

n) and for l loop is
given by

GS~k,e!5~2p!DdS ( ki D i l S 1

4p i D Dl /2~ ie!nC

3E
0

`

)
r
da r )

chain l
S E

0

`

@dTl #e
2 i ~m22 i0!Tl

3E
0

Tl

)
i l

dti l DK red, ~6.1!

whereC is the combinatorial factor anda r denotes the Feyn-
man parameter of ther th photon propagator. The chainl
represents an open or closed scalar chain, and the inte
measure for its lengthTl is

@dTl #5H dTl for l5open,

dTl /Tl for l5closed.
~6.2!

i l represents the photon vertex on the chainl .
The so-called reduced generating kinematical fac

K red is obtained from the generating kinematical factor

K5D2D/2expF12 (
iÞ j

n12ns

$2 ik i•kjGB
i j22ki•e j] jGB

i j

1 i e i•e j] i] jGB
i j %G ~6.3!

after the following manipulation.
~1! If the vertex i is internal, we set correspondin

ki50.
~2! If the vertexi is an end point of an open scalar chai

we set correspondinge i50.
~3! If the external photons are on shell and for fixed h

licity states, use the spinor helicity technique to reduce
number of dot products in the exponent; if the external ph
tons are off shell, use the replacement~4.7! to reduce the
number of dot products~written in terms ofe i8’s!.

~4! Only terms multilinear in each remaining polarizatio
vector are kept.
he
s-

s in
l
t of

am-
d

u-

r

gral

tor

g

n,

e-
the
o-

n

~5! We replace the polarization vectors at both ends
every photon propagatorr as

e i r
me j r

n→2gmn. ~6.4!

Again some of the Lorentz contractions vanish.
Then integrate by parts with respect to the proper times

external vertices. Also, integrate by parts with respect to
proper times of internal vertices after writingD, ] jGB , and
] i] jGB in terms ofGB

(open), GB
(closed), and their derivatives.

@Use the decomposition rules~3.54!, ~3.55!, ~3.57!, and
~3.58! and also Eqs.~3.37!–~3.39! for this purpose.# Surface
terms can be omitted except for the special case describe
Sec. IV C. The partial integrations generally reduce the nu
ber of independent terms.

In order to integrate overa r , t i , andTl , it is sometimes
convenient to transform the variables to the conventio
Feynman parameter at this stage using relations~3.33! and
~3.34!.

VII. OPERATOR INSERTION

So far we have considered sets of diagrams contain
only gauge interactions. In practical calculations, howev
one will need to calculate diagrams containing both gau
interactions and other interactions or, more generally, ope
tor insertions to the sets of diagrams considered above.
show in two examples how to calculate such diagrams. T
idea is to replace any operatorO (f) by the functional de-
rivativesd/dJ(x) andd/dJ* (x).

Let us see how to calculate the set of diagrams in Fig.
contributing to the Green function with aufu4 operator in-
sertion:

E DfDQmE dz
il

4
uf~z!u4

3expi E dx@L1Lg f1J*f1Jf*1 j mQm# U
jm→2hAm

~7.1!

5
il

4 E dzS d

dJ~z! D
2S d

dJ* ~z! D
2

eW~J,J* ,Am!. ~7.2!

Following similar steps as in Eqs.~2.10!–~2.20!, we find

FIG. 12. A set of one-loop diagrams containing af4-operator
insertion.



14.

n
hing

by
path
t of
hoton
nate
l ex-
eld
ting
ral
ion

.
the

rnal
re-
ating
ne-

rams

53 4611BERN-KOSOWER RULE FOR SCALAR QED
G~k,e!5~2p!DdS ( ki D i S 1

4p i D D/2~ il!~ ie!2

3E
0

`

dTe2 im2TE
0

T

dt1dt2D

3expF12(iÞ j
$2 ik i•kjGB

i j22ki•e j] jGB
i j

1 i e i•e j] i] jGB
i j %G , ~7.3!

where k05p1p8 and e050. The two-point function
GB(t,t8) is obtained using the decomposition rule describe
in Sec. III D with a little modification. Namely, we can com-
puteGB by connecting both ends of an open scalar cha
with a dummy photon propagator, and then pinching the ph
ton propagator by setting its Feynman parameter asa→0;
see Fig. 13 and Eq.~1.7!. Therefore, we find, using~3.55!,

GB~t,t8!5ut2t8u2
@t2~T2t!2t81~T2t8!#2

4T

5ut2t8u2
~t2t8!2

T
~7.4!

and

D5T. ~7.5!

The above two-point function coincides withGB
(closed), which

is a reasonable result. Note, however, that the integral me
suredT differs from that of a closed scalar chain since th
zeroth vertex is not that of a gauge interaction. Compare t
discussion in the last paragraph in Sec. III C.

FIG. 13. Any set of diagrams with af4-operator insertion can
be obtained by pinching a dummy photon propagator by setting t
Feynman parametera→0.

FIG. 14. A set of two-loop diagrams with af4-operator inser-
tion.
d

in
o-

a-
e
he

The second example is the set of diagrams in Fig.
Also starting from Eq.~7.2!, we obtain

G~k,e!5~2p!DdS ( ki D i 2S 1

4p i D D~ il!~ ie!4

3E
0

`

dT1E
0

`

dT2e
2 im2~T11T2!E

0

T1
dt1dt2

3E
0

T2
dt3dt4DexpF12(iÞ j

$2 ik i•kjGB
i j

22ki•e j] jGB
i j1 i e i•e j] i] jGB

i j %G , ~7.6!

with k05p1p8 ande050. This time the two-point functio
is obtained by sewing together two scalar loops and pinc
the photon propagator as in Fig. 15. Thus,

GB~t,t8!

55
ut2t8u2

~t2t8!2

T1
, t,t8P loop 1,

t2
t2

T1
1t82

t82

T2
, tP loop 1, t8P loop 2,

ut2t8u2
~t2t8!2

T2
, t,t8P loop 2,

~7.7!

and

D5T1T2 . ~7.8!

VIII. CONCLUSION AND DISCUSSION

First of all, we conceived a set of diagrams connected
gauge transformation as an entity expressed by a single
integral. The point is to assign proper time to the se
diagrams along the charge flow and also express each p
propagator by a Feynman parameter integral in coordi
space. This enables one to find a general path-integra
pression for any set of diagrams starting from quantum fi
theory. At this stage, the resulting expression after integra
out x(t) is equivalent to the Feynman parameter integ
formula. Simple rules for constructing the two-point funct
~correlation function on the world line! GB(t,t8)
;^x(t)x(t8)& for a general set of diagrams are obtained

Second, the path-integral expression allows us to use
integration by parts technique both for external and inte
gauge vertices. A manifestly gauge-invariant form with
spect to external photons can be obtained before integr
over the proper-time variables. Surface terms can be

he

FIG. 15. The two-point functionGB(t,t8) of the diagrams in
Fig. 16 can be obtained by sewing together two one-loop diag
by a dummy photon propagator and takinga→0.
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glected if the external scalars are on shell. The integration
parts technique can be used to reduce the number of in
pendent integrals, which can be interpreted as a nontriv
reshuffling of the original Feynman diagrams.

We have extended former trials to derive the Ber
Kosower-type rule from quantum field theory to the gener
diagrams for scalar QED, in particular to the diagrams i
cluding external scalar particles. We have shown a clear c
respondence to the conventional Feynman rule, which e
abled us to avoid any ambiguity coming from the infinit
dimensionality of the path-integral approach.

The method for deriving the general path-integral expre
sion in Sec. II relied on the fact that the Lagrangian~with
l50) is quadratic inf(x), and thatf(x) can be integrated
out straightforwardly. Therefore, it would be possible to a
ply the same method to the case of spinor QED. In fa
world line path-integral formulations for a spinor loop@11#
and for a spinor line@12#, both in the presence of a back
ground gauge field@corresponding to Eqs.~2.8! and ~2.9!#,
have been developed.
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APPENDIX A: DERIVATION OF EQS. „3.7… AND „3.8…

We show how to integrate over thexi ’s in Eq. ~3.3!:

I ~a![E @dxi #expF2
i

4 (
i , j51

n

xi•xjAi j ~a!1 i(
i51

n

ki•xi G .
~A1!

First, insert the identity

15E dDcdS (
i51

n

xi2cD , ~A2!

and shift all vertices asxi
m→xi

m1cm/n. We have
by
de-
ial

n-
al
n-
or-
n-
e

s-

p-
ct,

-

I ~a!5E @dxi #E dDcdS ( xi DexpF2
i

4( xi•xjAi j

1 i( ki•xi1
i

n( ki•cG ~A3!

5~2p!DdS ( ki DnDE @dxi #dS ( xi D
3expF2

i

4( xi•xjAi j1 i( ki•xi G ~A4!

We may further shiftxi
m→xi

m2ym/n:

I ~a!5~2p!DdS ( ki DnDE @dxi #dS ( xi2yD
3expF2

i

4( xi•xjAi j1 i( ki•xi G . ~A5!

It is independent ofy. Again insert

15 i S b

4p i D
D/2E dDye2 iby2/4, ~A6!

and integrate overy. Thus,

I ~a!5~2p!DdS ( ki D i S b

4p i D
D/2

nD

3E @dxi #expF2
i

4( xi•xjAi j8 1 i( ki•xi G , ~A7!

whereAi j8 5Ai j1b. Now the zero mode is removed. We may
integrate over xi ’s, and noting the fact that detA8
5nb•det8A, we obtain Eqs.~3.7! and ~3.8! with Z5A821.
~It is necessary to transformZi j appropriately for obtaining
Z in a zero-diagonal level scheme; see Appendix B.!
APPENDIX B: PROPERTIES OF Zab

1. Definition

For a given scalar QED diagram without seagull vertex,Zab is defined by

gmnZab[S 2
i

4D
E @dDxc#~xa2xb!

m~xa2xb!
nexpF2

i

4(c,d xc•xdAcdG
E @dDxc#expF2

i

4(c,d xc•xdAcdG . ~B1!

On both sides of each vertexi dummy verticesi 8 and i 9 are
inserted as shown in Fig. 5. Here,a,b,c,d denote vertices
including dummy vertices (i , i 8, andi 9). The matrixA rep-
resents the topology of the diagram, and is defined by

(
c,d

xc•xdAcd[(
~cd!

~xc2xd!
2

a~cd!
, ~B2!

wherea (cd) denotes the Feynman parameter of the propaga-
tor connecting the verticesc andd.

2. Methods for calculating Zab

In order to obtain11 Zab from the matrixA, first one may
as well reduce the size ofA by eliminating all external ver-
tices in the diagram~buta and/orb if it is external! using the
associativity property~1.8! of propagatorK. Then, there are
several ways to calculateZab from the reducedA. We exem-
plify two such methods here.

11Zab can also be computed using a graph-theoretical formula@7#.
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Method 1. LetT be a matrix defined by

Tab51 for ;a,b, ~B3!

and defineZ8[(A1bT)21. Z8 is well defined as long as
bÞ0. ThenZab can be obtained using~3.9! as

Zab5Zab8 2
1

2
~Zaa8 1Zbb8 !. ~B4!

Obviously the diagonal elements vanish.Z is independent of
b, and so one may simplify the calculation by takin
b→` after gettingZ8.

Method 2. LetÃ be a submatrix ofA obtained by deletion
of the cth row andcth column. One may choose any verte
c for this purpose.@This corresponds to fixing the coordinat
of c to be xc50 in Eq. ~B1!.# Ã can be inverted, and so
define

Zab8 5H ~Ã21!ab for a,bÞc,

0 otherwise.
~B5!

ThenZab can be obtained as

Zab5Zab8 2
1

2
~Zaa8 1Zbb8 !. ~B6!

3. Properties

Zab5Zba, ~B7!

Zaa50, ~B8!

lim
ui8→10

Zi 8a5 lim
ui9→10

Zi 9a5Zia , ~B9!

lim
ui8→10

Zi 8a2Zia
ui8

5 lim
ui8→10

]

]ui8
Zi 8a , ~B10!

FIG. 16. The set of diagrams calculated in Appendix C.
g

x
e

lim
ui9→10

Zia2Zi 9a
ui9

52 lim
ui9→10

]

]ui9
Zi 9a , ~B11!

lim
ui8→10

]

]ui8
Zi 8 i5 lim

ui9→10

]

]ui9
Zi 9 i52

1
2 , ~B12!

lim
ui8→10

uj8→10

Zi 8 j 82Zi j 82Zi 8 j1Zi j
ui8uj8

55 lim
ui8→10

uj8→10

]2

]ui8]uj8
Zi 8 j 8 for iÞ j ,

` for i5 j .

~B13!

Proof. For Eq.~B9!, use Eq.~1.7!. For Eqs.~B10! and
~B11!, use Eq.~B9!. For Eq.~B12!,

lim
ui8→10

]

]ui8
Zi 8 i5 lim

ui8→10

Zi 8 i2Zii
ui8

5 lim
ui8→10

Zi 8 i
ui8

. ~B14!

Then substituting the definition~B1!, the integrand will be

~xi82xi !
m~xi82xi !

n

ui8
expF2

i

4

~xi82xi !
2

ui8
G

5~xi82xi !
m2i

]

]xin8
expF2

i

4

~xi82xi !
2

ui8
G

522igmn expF2
i

4

~xi82xi !
2

ui8
G , ~B15!

where in the last line we integrated by parts with respect to
xi8

n . Thus, the numerator will be proportional to the donomi-
nator in ~B1!.

APPENDIX C: SAMPLE CALCULATION

In this appendix we apply the Bern-Kosower-type rule to
calculation of the set of diagrams shown in Fig. 16. Accord-
ing to Eq.~6.1!, the Green function is given by

GS~k0 ,k2 ,k4 ,e2!5~2p!DdS (
i50

4

ki D i S 1

4p i D D/212 ~ ie!3

3E
0

`

dae2 i ~l22 i0!aE
0

`

dTe2 i ~m22 i0!T

3E
0

T

dt1dt2dt3K red, ~C1!

wherel is the photon mass.K red is obtained fromK in Eq.
~6.3! after the manipulation~1!–~5!:
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K red5D2D/2F2(
i50

4

ki
m]1GB

i1(
j50

4

kjm]3GB
j3(
l50

4

e28•kl]2GB
l21 i ]1]2GB

12(
j50

4

e28•kj]3GB
j31 i ]2]3GB

23(
j50

4

e28•ki]1GB
i1

1 iD ]1]3GB
13(
l50

4

e28•kl]2GB
l2GexpF2

i

2(iÞ j
ki•kjGB

i j G . ~C2!

Here, we choose

e28
m5e2

m2
e2•k2
k2
2 k2

m , ~C3!

so thate28•k250.
Now we integrate by parts with respect tot2:

K red→D2D/2@~k0]1GB
011k2]1GB

211k4]1GB
41!•~k0]3GB

031k2]3GB
231k4]3GB

43!e28•~k0]2GB
021k4]2GB

42!

2]1GB
12e28•~k0]3GB

031k4]3GB
43!k2•~k0]2GB

021k4]2GB
42!2]3GB

23e28•~k0]1GB
011k4]1GB

41!k2•~k0]2GB
021k4]2GB

42!

1 iD ]1]3GB
13e28•~k0]2GB

021k4]2GB
42!#exp@2 i ~k0•k2GB

021k0•k4GB
041k2•k4GB

24!#. ~C4!

We do not integrate by parts with respect tot1 or t3; compare the discussion in Sec. IV C. Thed-function part in]1]3GB
corresponds to the tadpole diagrams@Figs. 16~f!, 16~g!#.

Then we substitute the explicit forms ofD, GB
i j , and their derivatives:

D5a1ut32t1u, ~C5!

GB
i j5ut i2t j u2

@ ut i2t1u2ut i2t3u2ut j2t1u1ut j2t3u#2

4D
, ~C6!

] jGB
i j52 sgn~ t i2t j !1

1

2D
@ ut i2t1u2ut i2t3u2ut j2t1u1ut j2t3u#@ sgn~ t j2t1!2 sgn~ t j2t3!#, ~C7!

]1]3GB
13522d~ t12t3!1

1

2D
, ~C8!

wheret050 andt45T. It is understood that sgn(0)50 in Eq.~C7!. Once the time ordering oft1 , t2 , andt3 is fixed, we can
transform the integral variables using Eq.~3.33!. The rest is same as the usual Feynman parameter integral. We obtain,
example,

GS~ t1,t2,t3!5~2p!DdS ( ki D i S 1

4p i D D/2~ ie!3F i

k0
22m2

i

k4
22m2G

3 i e28•~k42k0!F ~12v!I 11vI 21~2 i !2D/2GS 22
D

2 D I 3G , ~C9!

wherev52k0•k4 /m
2.1, and

I 15E
0

1

dxE
0

12x

dy2~122x!~y222y!@x21y212vxy#215
7

6

1

v21
2

1

Av221
S 321

7

6

1

v21D arccoshv, ~C10!

I 25E
0

1

dxE
0

12x

dy~12x2y!~x1y22!2Fx21y212vxy1
l2

m2 ~12x2y!G21

52
1

Av221
F356 12ln

l2

m2G arccoshv1
8

Av221
E
0

1/2 arccoshv

dwwtanhw, ~C11!
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I 35E
0

1

dxE
0

12x

dy
1

2
~12x2y!@m2~x21y212vxy!#D/222

5
1

12
1
D24

4 S 2
11

18
1
1

6
ln
m2

m2 2
1

6
Av11

v21
arccoshv D . ~C12!

We set the external scalars on shell,k0
25k4

25m2, except for the propagator factors in the above expressions.GS for other time
orderings can be calculated similarly.~See below.!

Finally, if we are interested in the vertex function, we should amputate the external scalars in the above example.
purpose, one should add the counterterm for the wave function correction first, which needs to be calculated separat
adding the counterterm and amputating the external propagators, we find the vertex function at one loop~for on-shell external
scalars! to be

e2
mGm

1 loop~k0 ,k4!52
e2

16p2 e2•~k42k0!F 9

2~42D !
2
9

4 S ln m2

4pm2 1gED 1
19

4
1

1

Av221
S 19122

17

4
v22v ln

l2

m2D
3 arccoshv1

8v

Av221
E
0

1/2 arccoshv

dww tanhwG . ~C13!
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