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Bern-Kosower rule for scalar QED
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(Received 28 August 1995

We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field theory: we derive a set
of rules for calculatingS-matrix elements for any processes at any order of the coupling constant. A gauge-
invariant set of diagrams in general is first written in the world line path-integral expression. Then we integrate
over x(7), and the resulting expression is given in terms of a correlation function on the world line
(x(7)x(7")). Simple rules to decompose the correlation function into basic elements are obtained. A gauge
transformation known as the integration by parts technique can be used to reduce the number of independent
terms before integration over proper-time variables. The surface terms can be omitted provided the external
scalars are on shell. Also, we clarify correspondence to the conventional Feynman rule, which enabled us to
avoid any ambiguity coming from the infinite dimensionality of the path-integral approach.

PACS numbes): 12.20.Ds, 11.55.Bq

[. INTRODUCTION formation(known as the integration by parts techniqes])
to simplify the calculation.

Recently, Bern and Kosower derived from superstring For those unfamiliar with the world line path-integral for-
theory a powerful method for calculating one-loSgmatrix ~ malism, the relation to the conventional Feynman rule may
elements for QCD processgs. Although the new rule had be seen as follows. Let us express the Feynman propagator in
reduced the amount of work required in the calculationcoordinate space using Feynman paranieter
greatly, it had little resemblance to the conventional Feyn-

man rule. The equivalence of the Bern-Kosower rule and th'eAF(X_y)

conventional Feynman rule has been studied by Bern and dPp ielP XY

Dunbar{2], but to date, the complete Bern-Kosower rule has = | (5D pZ_miie (1.9
not been derived from quantum field thed@CD). More-

over, practical problems are that, since the Bern-Kosower o d°p L

rule has been derived from string theory, it is difficult to =JO daf L P (x=y)+ia(pt=m*+ie) (1.2

include massive particles and also multiloop generalizations
do not readily lead to simple calculational tod8. " 1 \Dbr i
As for the approach from quantum field theory, there has :f dai(—_) exp{ — —(x—y)?—ia(m?—ie)|.
: 0 4dmia 4o
been some progress. Bern-Kosower-type rules for calculating
one-loop effective actions for both Abelian and non-Abelian 13

gauge theori(_as have bgen derived from quantum fielt_j theqqote that(part off the integrand in Eqg1.2) and(1.3) has a
ries and studied extensively by Strasgieb]. Also, Schmidt  gimijar form to the propagator of a nonrelativistic free par-
and Schubert have extended the rules to multiloop diagramsicie if «(>0) is identified with the time interval of propa-

Namely, diagrams with one-fermiottscalanjloop and mul-  gation:
tiple photon propagator insertions, and similar diagrams for
scalar ¢°® theory, have been cast into a Bern-Kosower-type d°p 02
Vi) = ((x—y)tia
rule, and the rule has been applied to the calculation of the K(X y,a)—J' (zw)Delp e 1.4
two-loop QED g function [6]. On the other hand, a quite

different approach was developed by Lam, where he showed [ 1 \b~ i )
that expressions similar to the Bern-Kosower rule can be :|(47Tia) XF{_E(X_W } 1.5
obtained by starting from the conventional Feynman param-
eter formula in Abelian gauge theories even beyond one-loop
order[7]. Namely, it satisfies
In this paper we refine the ideas in the above approaches
from field theory, and derive a full Bern-Kosower-type rule 99 O M kixmvia)=0 (1.6
for scalar QED: We derive a set of rules for calculating da IX* X, (x~y;a)=0, '

S-matrix elements for any processes at any order of the cou-
pling constant. Also we clarify the correspondence to the K(x—=y;+0)=8(x—vy). 1.7
conventional Feynman rule.
The main idea is td1) express a set of diagrams con-
nected by a gauge transformati¢eee Fig. 3 beloywby a Throughout the paper we work D-dimensional space-time with
single world line path integral an@®) use the gauge trans- the metric tensog,,,= diag(+1,-1, ... —1).
D-1
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o oy o+ In Appendix A, details of calculation required in Sec. lll
dz m - X._.y are shown. Some properties @bunterpart gfthe two-point
function are listed in Appendix B with proofs. A sample cal-

. , ) o culation using the Bern-Kosower-type rule is shown in Ap-
FIG. 1. A diagrammatical representation of the associativity re'pendix C

lation satisfied byK(x—vV;a).

Hence, the associativity relation Il. GENERAL EXPRESSION

We consider scalar QED theory, whose Lagrangian is
given by

f dPzK(x—z;a1)K(z—Y;a) =K(X—y;a;+ ay)

(1.8

A 1
($,A)=(D,$)* (D) —m?| |~ Z|¢|4— 2Fu k"

holds as an important property &f (see Fig. 1, which can 2.0

be shown easily from Ed1.4). This property allows one to
insert an arbitrary number of vertices along the propagato ity
lines of a given diagram, and if infinitely many are inserted,
the integral expression reduces to the path integral.

In Sec. Il, we derive the path-integral expression for a D, (A)=d,—ieA,(X). (2.2)
general set of diagrams starting from quantum field theory, . . #
and derive the general expression after integration oveWe set\ =0 in most of the paper since simplification of the
x(7). Section Il clarifies the correspondence of the propercalculation occurs regarding the gauge interactions. The
time integral formula obtained in the previous section andmethod for including the¢|* interaction will be demon-
the Feynman parameter integral formula obtained from tha&trated in Sec. VII. As for the gauge-fixing term, we take the
conventional Feynman rule. This enables one to express tHeeynman gauge
two-point function(correlation functioh (x(7)x(7")) on the
general diagram in terms of basic elements. Section IV ex-
plains a general prescription for integration by parts and dis-
cusses the relation to the gauge transformation on a world
line. The gauge-fixing parameter dependence of a set of dia-
grams is discussed in Sec. V. The Bern-Kosower-type rulén the following, and discuss other gauge-fixing conditions in
for a general set of diagrams is summarized in Sec. VI. Thé&ec. V.
rule for calculating a set of diagrams including interactions We start by defining a generating functional of connected
other than gauge interactions is demonstrated in Sec. VIGreen functions, which iamputatedvith respect to external
Concluding remarks are given in Sec. VIII. photons andinamputatedvith respect to external scalars:

1
LeHA)=— E(aﬂAM)2 2.3

eWII* AL = f @(ﬁ,@Q#eX;{i f dX[ £($,Q,) + Z6HQ,) +I* p+Id* +j#Q,] (2.4

jﬂﬂflelu

whereQ,, denotes a quantum gauge field. Integrating out the scalar field, and then rewriting the integ@@), doyefunctional
derivatives, we obtain

1 1
E(AM—QM)D(A”—Q”)— EAMDA“

P PR |
1

xexp{— Tr|n[D(Q)2+m2]+if fdxdvf(”(m

J(Y)} (2.9
Xy

i i ) B )
=ex;<—§f dxA#DA“)exp{Effdxdym(D 1)xy5AT(y)

- 1
Xexp{— Tr |n(D(A)2+m2)+IJ fdxdyJ‘(X)(m J(y)} (2.6
xy
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FIG. 2. The path-integral representation of a scalar particle in- § § é
teracting with the background gauge fig¢l] where the scalar line
is making a loop, corresponding to E.8), and (b) where the

scalar line is connected to external lines, corresponding t¢ZE9).

g

b) 3 g 3 + Hu‘:g etc.

s

where we used functional analogue of an ideAtity

p(l d?
f(7n)=ex a2

Interaction terms in Eq2.6), on which functional deriva- G(K1.K4;K3, €3.,Kg, €6)
tives operate, can be represented by path integrals of a par-

FIG. 3. The set | diagrams, which includes diagrams interrelated
to one another by the gauge transformation of internal and external
——|T(§). photons.

> p( (£—n)?
—oyf |a

2.7 momentum space Green function defined by

ticle interacting with the background gauge fiélg, respec- Ef dxdx dwdzekiz+ke w+kg-x+kgx')
tively, as
) S S
2 2 Och _im2 . X €3
—TrIn[D(A)?>+m ]=J —e™'m TJ IX(T) 83(z) 83*(w) > SA ()
o T X(0)=x(T)
o
T (X2 , X €5, = —~ W(J,J*,A . 2.1
Xex;{—ij dr(z—eA(x)-x) , o 5A,(X') ( ) J=J%—A=0 (210
0
2.9 All external momenta are taken to be outgoing.
' Let us choose the first diagram in set | as the representa-
—w tive, and extract step by step the relevant terms in(2q.0);
( f dT *'szf DX(T) the following procedure is sufficient for including all contri-
D(A)? (0)=2 butions from the set | diagrams. After substituti(y8) and

(2.9 into (2.6), we keep the term including one open scalar
chain, one closed scalar chain, and one internal photon
propagator:

T /X2
Xexr{—ifo dr(z—eA(x)-k) .

(2.9

(2.11

We expand the integrand in powers of the couplégand
extract the term corresponding to two photon insertions in

Derivation of the first equation is given in Ré#], and the - Ef J dXdyW(D_l)xyWJO aTer
ends are connected to external scalansthe background
and seagull vertices; see Fig. 2. Equati@b) has a simple xex;{—if dr’ (1 "2_eA(X')-X )

Consider first a specific example. We will find a conve- each scalar chain.

second expression can be shown similarly. The above inter- w T 1
action terms, respectively, correspond to a closed scalar xf dwdzI(W)J(z)f gﬁxexi{ _if dT(_)-(z
chain(making a loop and an open scalar chajwhose both z 0 4
gauge field. Each term corresponds to the sum of Feynman —eA(x).k) fmdl,eimZT' jg 1%

diagrams with different location of photons along the scalar o T

chain, including an arbitrary number of three-point vertices

form of connecting the two kinds of scalar chains by photon

propagatorsigW(D‘l)xy, which serves for deriving path-

integral expression fofa set of diagrams.

nient expression for the contribution of the set of diagrams

shown in Fig. Ihereafter referred to as set | diagrartwsthe  (jg)2 T _

5 J dt,A(Xy) - XZJ dtzA(X3) - X3

To derive the integral forntleft-hand sid¢ from the differential ( )2
form (right-hand sidg substitute

ip(&—7)
= fdna(g )= J' Ye fm) where x;=x(t;) and xj’Ex’(tj). Then connect the internal
and integrate ovep after replacingd/d¢ by ip. photon propagator by taking derivative as

f dtsA(Xs) - X5j dt,A(Xg) - Xg (2.12
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S S factor 1/4 in(2.12 gets canceled. According to the definition
SAL(X) SAR(Y) [A(X2) - X2 ][A(Xg) - X5] (2.10), the Green function is obtained by substitufing

o, , J*(w)y=ekaW  J(z)=e1?
=Xp-Xg[ (X = X) 8(Xs—y) +(x=y)]. (213

There are also terms in whidh(x3) andA(xg) are differen-
tiated instead ofA(x,) and A(xs), respectively, and so the in Eq.(2.11). Thus,

Al (xz) = ebelkaXs  Ar(xp)=ebtelkeXs (2,14

o . °°dT'
G|(k,€):ie4f dXdy(Dil)XyJA dTeﬁImZTJ‘ T, —im? f dtzdt3f dt5dt6f dwdz /Xe IdeTl/4X
0 0 z

_ ST o . . . . : . : ’
X 35 Ix'e o dr il 25(X2_X)5(Xé_y)e'(kl'z+k4'w)(xz'Xé)(fs'Xse'ks'xs)(fe'xée'ke'xﬁ) (2.19
im2T odT" T -
= da dT im _e im? dtzdt:; dt5dt6 iAX(T)
0 |
><e_ide1/45((T)zei(k1'z+k4'w)(_Xz'Xé)(Es'Xseik3'x3)(€e'XéeikB'Xé), (2.16

where we have expressed the photon propagator using the Feynman parameter, and defined a “path integral over the set |
diagrams* as

1. 1 D/2
f@x(r)ex;{—i] dr—x(r)z)zf dxdyi(—.) e 4a(x 2| dwdz Jxe i gdrL/ax
I 4 dmia

z

T L
X éh(//vxleflfg dr ZX25(X2_X)5(Xé_y) (217)
|
Since the path integral ovex(r) is Gaussian, it is 3 # o e (AT o
straightforward at least formally to perform the integration. (k,e) ef daf dTe ™ f —e '

For convenience, we assign an outgoing momerkuand a
polarization vectore; to every vertex X;=z, X,=w), and T ,
replace the vertex factors by an exponential factor: j dtdts f dtsdte

ek Zrka W (— 5, X{) (€3 %ge™*373) (€6- ek X6) 12 ) N
XA exp 5 2 {—iki kG~ 2k 3,G}
ij=1

6
—>exp[_21 (iki-xi+€-%)|. (2.18

+|E|EJ(9|aJGg}:|, (22@
At the end of the calculation, to recover the correct resiijt,

we setk,=ks=0 ande, = ¢€,=0, (2) only the terms in which  \yhere the normalization factor is defined by
each polarization vectat,, €3, €5, €5 appears precisely once

(multilinear in each polarization vectoare retained, anB) i 1.
we replace the internal photon wave function as a fJX T)EXF( —if dr2x(7) ) (2.21

eber— — gt 2.1 . . .
265779 219 ndthe two-point functions are given by
The replacement(2.18 simplifies the integration over il i ,
x(7). Hence, we obtain g*"Gg = —i(X*(t)x"(t))),
9“79,Gl = —i{X*(t)X"(1))), (2.22
3Note that in the case whem external photon vertices are on N _ )
some chain, one should multiply by! after substituting g’”r?iajG'§= —I(XM(t)X"(t))),
AR(X(t)))= eleki-xt),
“To be precise, we have expressed scalar chains in path integraiith the expectation value taken with respect to the path-
and photon propagators in Feynman parameter integrals. integral average over the set | diagrams:
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1. where C is the combinatorial fact8r and a, denotes the
W‘(X))E-«/’/’/glffﬁx(T)(?"(X)GXF{ —if dTZX(T)Z)- (223 Feynman parameter of thi¢h photon propagator. The chain
! | represents an open or closed scalar chain, and the integral
measure for its length, is
We remind the reader tha;G{ differs from the differentia-
tion of Gy with respect tot;. A precise definition will be (4T 1= dT,  forl=open,
made clear in the next section. ! dT,/T, forl=closed.
So far we considered a specific example. The steps that
led to Eq.(2.20 can be generalized to an arbitrary set ofi, represents the photon vertex on the chhirFor conve-
diagrams: A set of diagrams consists of those which can baience, we assigned an outgoing external momerkusnd
transformed to one another by sliding photon legs along the polarization vectok; to every vertex. The normalization
scalar chains, where any two three-point vertices on a sam@ctor. /" and two-point functionsGy, 9;Gg, andd;d;Gg
chain may combine to become a seagull vertex. Any singlgyre defined similarly as Eqé2.21)—(2.23), but for the path
set contains all diagrams that are interrelated to one anOthﬁ{tegraj over the sef diagrams_ The exponentia| factor is
by the gauge transformation of external and internal photongs,ommon to allS once the numbers of external scalars and
In other words, each set constitutes a gauge-invariant subarghotons as well as the order efre fixed.(Explicit forms of
plitude if the externalzscaleér propagators are ampu_tated ar@g 's depend orS, though)
taken to be on shellk;—m?. Thus, the Green function Furthermore, one should manipulate the following pro-
cessegdependent on the s§) to the aboveGg(k,e€): (1) If
the vertex is internal, we set correspondikg=0; (2) if the
G(k,e)zf H dxiexp(iz ki-xi) vertex i is an end point of an open scalar chain, we set
i correspondings;=0; (3) only the terms multilinear in each
5 5 5 remaining polarization vector are kef#) we replace the
X[H - H — H €'z polarization vectors at both ends @ndj,) of every photon
i6J(w;)~~ 163*(z) i SA*(y;) propagatorr as

(2.27

XW(J,J*,A)} (2.29 ei’fej”r—>—g’”. (2.28
J=J*=A=0
At this stage, one could directly evaluate the integrals in
at each order of the coupling can be decomposed to the Eg.(2.26 once the explicit forms of/"andGy , ang, and
sub-Green functions corresponding to the Setf diagrams  9,9,G¢ are known. It already has the advantages that a set of
as diagrams is cast into one single expression, and that the ex-
pressions for different sets of diagrams can be obtained in
similar simple manners. Also, the spinor helicity technique
G(k,e‘)zz Ggk,e), (2.25 [8,9] can be used, and so the number of independent dot
S products in the exponent can be reduced. Moreover, the
Bern-Kosower-type rule allows use of a partial integration

where the decomposition is accomplished naturally by eX:[echnique, which simplifies the calculation further. After that,

panding Eq.(2.6) in powers ofe, taking functional deriva- °N€ will integrate oveey,, t;, andT, .
tives, and then substituting the external wave functions; see In order to understand the remaining part of the rule, one
Egs.(2.10—(2.16). needs a close study of the two-point function

Following similar steps as in the former example, it is
easy to see that the sub-Green function for a Sewith
2n, external scalars af(e") is given generally by

g*'Gg(7, 7" )=—i{X*(7)X"(1")). (2.29

In principle, Gg(7,7') is obtained by solving

2

. * d
Gotk.9=Gier'c | TI da II Gl ) =28(7— 1) (2:30
0 r chain | ar
* —im?T, T after removing the zero mode, where appropriate boundary
X 0 [dTile 0 ll_[ dth conditions should be imposed at each internal vertex of the
! diagram[6]. We take, however, an alternative approach. It is
' 1"E2ns _ N N possible to find simple rules to expreGg(7,7') for a gen-
X ex 5_21 {—ik;-k;Gg—2k;- €9;G} eral diagram in terms of basic elements.
ij=
+ig- ej&iﬁjGiBj } (2.26 5The combinatorial facto€ in general differs from(symmetry

facton X (statistical factor of the corresponding Feynman diagrams,
since certain diagrams do not distinguish the interchange of photon
5This is true only for the renormalized Green function. legs, e.g.C=1/2 for the scalar self-energy at one loop.
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IIl. RELATION TO THE FEYNMAN PARAMETER Note that it depends on Feynman parameters.
FORMULA AND DECOMPOSITION OF Gg Then, after Gaussian integration ovg’s in | (a), we will
. . . be left with the desired Feynman parameter integral formula.
In this section, we derive the Feynman parameter formul

for a scalar QED diagrarfrather than for a set of diagrams Eheflectmg t'he invariance of the quadratic fo(®14) under
. . : ; .~ the translation

considered in the previous sectjoin this formula a matrix

Z;; appears, which is identified to be the counterpart of

Gy. Z;; is defined through an integral over a finite number xf'—x{+c*, (3.6)

of variables instead of the path-integral formulation, which

enables us to investigate its properties in an unambiguo

way. We deal with a generap® diagram in Sec. Il A, fol-

lowed by an extension to scalar QED diagrams in Sec. 1l B

Then Sec. Il C will clarify the relation between the Feyn-

man parameter integral formula and the general expression

Yhe matrixAjj(«) has a zero eigenvalue. Namelyq) will
be proportional to theS function representing momentum
conservation. Indeed, after integration oxgs, we obtain

for Gg(k,€e) obtained in the last section. Finally, we show b ! y ovz _bi2
how to decompose/” and G} to simpler elements in Sec. I(a)=(2m)"6 21 ki|i'l 7] Ala)
I D.
n
A. Scalar ¢° diagram Xexr{i”}::l ki kaij(a)}, 3.7

For the calculation of a general® diagram, it has long
been known how to write down the Feynman parameter foryiip
mula[10]. We rederive the formula in a manner convenient
for application to the case of a scalar QED diagram. N
A general connected?® diagram withn vertices andN 1
internal lines can be written using the Feynman rule in coor- Ala)= ﬁ(rﬂl ar) det Aa).
dinate space as

iT={(ie)" Hl deiex;{ i ki'Xi)

(3.8

N
r1;[1 IAR(X; —X;)
(3.2)

Here,I=N—n+1 is the number of loop of the diagram.

, det denotes the product of eigenvalues but zéfg(a) is
the inverse ofA;;(a) after the zero mode is removed or
fixing the center of gravity of vertices. The derivation of Egs.
(3.7) and(3.8) is given in Appendix A.

In Eq. (3.7), Zjj(«) is not uniquely determined. This is
because one can readily confirm the invariancH af under
the transformation oE:

wheree is the ¢ coupling constanti, andj, represent the

vertices at both ends of thieh internal line. For convenience

an outgoing external momentuky is assigned to every ver-

tex. If the vertex is internal, we set the corresponding

k;=0 at the end of the calculation. The combinatorial factor,

if any, is suppressed for simplicity. Zij(a)—=Zj(a)+fi(a)+fj(a) for Vfi(a), (3.9
Substituting the propagator given in E4..3), we have

N due to momentum conservation. Among the clasZ(at)’s
iT=(ie)”f 11 da,GXp( —i(m?—ie)>, ar) I(a), (3.2  connected by the transformation, there is a specific choice of
r

0r=1 Z(«) most convenient to the following argument. We choose
where i
i n n 9“"Zjj(a)=— Z(((Xi_xj)”(xi—xj)y»a (3.10
I(a)Ef [dxi]exp[—z_z Xi- XA (@) +i 2 kx| (3.3
ihj=1 i=1
with ({- - -)) defined by
and
. 506, [dx-]ﬁexp{—i—z Xi - XiAjj
XA (@)= _r r i1t AN
2 M@= 3 <<m>>zf : (3.10

| [dxi]exp[ 1S Ay

The matrixA;; («) represents the topoplogy of the diagram
(how the vertices are connecletlVe have absorbed the fac-
tor before the exponential in E¢L.5) into the integral mea-

sure: The numerator and the denominator of E8.11), respec-

tively, are ill defined due to the zero eigenvalueAgtyr), and
so one has to first remove the zero mode in the integrals.
(3.5 Because; —X; in Eq.(3.10 is invariant under the translation

D/2] n
[dXi]E T dDXi . . g L
dmia, i=1 (3.6), Z(«) thus defined is independent of how one removes

i

=1
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FIG. 5. The dummy vertices andi” inserted on both sides of
every vertexi in the orderi”<i<i’ along the charge flow on the
) scalar line. The Feynman parameter between verticasdi (i and
i”) is denoted asi] (uj).

Here,i;’s (1<i;=n;) denote vertices on the scalar propaga-
_ . . _ tor chainl, labeled in increasing order along the charge flow
FIG. 4. A scalar QED diagram including only three-point gaugeon that chain. For an open chain we suppressed one addi-

vertices, which contributes to the Green function amputated withjonal scalar propagatdn (x; — X) on the right of the ver-

respect to external photons and unamputated with respect to extglsy operator\71 in Eq.(3.13. i, andj, represent the vertices
nal scalars.

at both ends of the photon propagatoAgain, we assign an
outgoing external momenturk, and a polarization vector
€; to every vertexi. At the end of the calculation, we set
ki=0 for internal verticesg;=0 at the end points of open

the zero modé.Lam has pointed ouf7] that this choice of
Z(«a) is characterized by the condition

. scalar chains, and also replace the polarization vectors at
" = << i R .
Zi(@)=0 for 1<i=n, (312 both ends of every internal photon line agej ——g*”
and is called the zero-diagonal level scheme. (corresponding to taking the Feynman gauge for a photon
We list some important properties @; together with propagato)r._
their proofs in Appendix B. Introducmg a Feynman parameter for every propagator,
we have

B. Scalar QED diagram

Now we derive the Feynman parameter integral formula Go(k,e)=(ie)"[ 1 (f H dai|>f I1 de,
for a scalar QED diagram. We consider diagrams contribut- ! o0 o
ing to the Green functiori2.24) which is amputated with
respect to external photons and unamputated with respect to ><exp< —iz T.(mz—ie)) (), (3.195
external scalars. !

First, let us consider a diagram without a seagull vertex
(see Fig. % where

GD(k,e)z(ie)“f H dPx; exp(iE ki-xi) ()

} x

: (3.13

eltel — —gmv
If lr

l_i[ deiexr(iE ki'Xi)

n
TT a0 =%V,
E

X

|

chain |

I1 [H K(xi|+1—xi,;ai,)\7'i|H1:[ K(xi, =X ; ).

| [
(3.16)

x 1 iAp(,=x;)

photon r

K is the propagator defined in E(L.5), @, is the Feynman
parameter between the vertidgsandi,— 1, andT,=Ei|ai|.
with the vertex operator Before integrating over the’s in I («), we would like to
replace the vertex operatdf by some simple factoassoci-
. 9 9 ated with the vertex.iTo this end, we insert, on both sides of
ijef‘ i ——i—]. (3.149 every vertex, dummy vertices’ andi” on the scalar line in
ox¥ o oxt Sy T : )
I ] the orderi”<i<i’ using the associativity relatiofi.8); see
Fig. 5. Then we can replace the vertex operators acting on

scalar propagators as
"Naively, Z(@) being the inverse of\(a), one may consider that

a natural definition would bg*"Z{; (@)= (i/2)((x{'x})). Z' andZ 1 ' =% xi—x"
given by Eq.(3.10 are equivalent under the transformatit$19) Vi— =€ ( LA ) (3.17)
with f;=—Z/;/2. The disadvantage & is that it depends on how 2 uj Ui

one removes the zero mode in calculatifg/’x;’)) sincex{x;" is
not translationally invariant. Hence, we have
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_tE -5

y X pinchx Z

n

X[ =X X=X
+—

u/ uy’

1
um=fwaﬂ]§q(

i
xex;{ - ZZ Xa+ XpAap( @, U’ U") +i >, ki~xi}
a,b i

(3.18

Here, a,b denote vertices including dummy verticeisi (, _

andi”). The matrixA,, and the measufgx,], respectively, B _ ! Y

are d()afined similarI;bas in Eq$3.4) arrl[d (3a]5) bu? depenyd 9" Zap(@)=— Z«(Xa_xb)ﬂ(xa_xb) ). (329

also onu’ andu”. Note thatl («) is independent o and

ul’, since it is completely arbitrary where to insert dummy but now((- - -)) includes integrals over dummy vertices.

vertices as long as the order<i<i’ is preserved. Remembering thalt(«) is independent of andu;, we
To perform a Gaussian integration ovegfs, we exponen- can take the limiu/,uf— +0. Because of the fact that

tiate the polarization vectors as in E®.18. Defining a

FIG. 6. The seagull vertex can be incorporated by pinching the
propagator between two adjacent three-point vertices with vertex

factorse*e’* * and e/ e’ .

source lim Zjq= lim Zjng=2Zj,, (3.26
ui’—>0 Ui”~>0
[ 5i'a_ 5ia 5ia_ 5i”a
M T )
Ja—Z [ki Si 2 €i ( u’ + u’ ' we can replace\;Z;; and AjAZ;; as
3.1
(3.19 _l . 0 Jd
uj’,uj'—»O J J
i ’ 4
(@)= | [dxalexp = 725 Xa XpAap(er,U’,U") 1 (a a 0 9
ab AlAJZ”:— I|m _,_,Zirj/_—,—,,zi/ju
4 roon &u| &u] aul o7uJ
u;,ui —0
i JaXa (3.20 0l W0
a linear in eache
0 9 Zinir+ i VA 3.2
&u{, &u, iy’ au” au” injr |- ( . &

D : 1 1\ -DI2 [ j i ]
=(2m)°6 i§:1 K; |i ype Ala)
At the same time, we can drop all diagonal terms {) in

n (3.21) using

=1 im0 im0 1
||m — Liri— —— Lini— — = .
UiIH‘FO&UiI Zir u{’lmo&UE’ 2 2 (3.29

_Iei'ej(A‘AjZ”)}} o B2D  and noting that only the terms multilinear in eaghshould
finear in eache be kept. See Appendix B for proofs of Eq8.26—(3.29.
for anl-loop diagram with So far we considered a diagram without a seagull vertex.
The contribution of a seagull vertex can be incorporated
Zij —Ziy  Zij— Zjj through the process known as “pinching” from the corre-
AZ= T A (322 sponding diagram without a seagull vertex. Any diagram
y ! containing a seagull vertex has the facteee Fig. 6

1 5'! _5 5 _5'77 5'/ _5 . )
AiAJ—Z”:ZEb( 'au, L 'au,,'a)( 'bu, J Go(k,e)xiAp(y—x) e Xe, e i Ap(x—2) (3.30
a, [ i j
5jb_5j”b — dx'iA _ ) ,u,eik-x5 _ /)
+———|Zav (3.23 X'TAp(y—x)e (x—x
u.
]

L X el e XiAp(x' ~2). (3.3
_4ui’uj’(zi/j' Zijy = L T &)t The last line corresponds diagramatically to pinching the
(3.29 propagator between the two adjacent three-point vertices

andx’; see Fig. 6. Noting thaf(x—x") is obtained by tak-
In the above expression&(a) andZ;; are the same as those ing the «— +0 limit of the propagator in questidisee Eq.
appearing in Eq(3.7) for the ¢* diagram of the same topol- (1.7)], one can incorporate the contribution of a seagull ver-
ogy, since we recover exactly E(B.3) if we set all¢,=0 tex by replacing
and integrate out the dummy vertices in E8.20. Z;;, etc.,
are defined similarly as i38.10), € €A N Zij—2€;- €0(aj;—0) (3.32
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in Eq. (3.22) of the diagram without a seagull vertex, where for a set of diagrams, for a different orderingtofs, A and
a;j is the Feynman parameter between the two adjacerzij of a different diagram should be taken on the right-hand
three-point vertices andj. If there are two or more seagull sjge.
vertices in a diagram, one should pinch as many propagators |t js more subtle how the contributions of seagull vertices
of the corresponding diagram without a seagull vertex.  are contained in the general expressidr26. They are con-
tained in theaiajG‘Bj term when the two vertice andt;
C. Relation between the general expression and Feynman come to the same point. To see this, we consider the two-
parameter formula point functionGg(7,7') defined in Eq.(2.29 when 7 and
A path-integral expression faB«(k, €) such as Eq(2.16 7' are arbitrary points along a same scalar chain. One may, if

can be obtained from the finite dimensional integally  Necessary, identify it withz,,, wherex, and Xp are the
by inserting infinitely many dummy vertices along scalardummy vertices inserted at the positionoénd 7', respec-

chains using the associativity relati¢hg). The advantage of tVely. Becauisj;’e of Eq93.27), (3.28, and(3.36), one may
the path-integral expression lies in that it combines in g€XPress th&g's as
single expression sum of different diagrams that are related

to one another by sliding photon legs along the scalar chains. Gg=Ggl(t; 1)), (3.37

Different orderings of photon legs correspond to different

orderings of the proper timg’s of the vertices. a-GiEl:l im + lim LGB(ti ), (3.39
Once the ordering ofil’s is fixed along the scalar chain ! 7 o+0 7 oty-0]d7

[, relations betweemil’s and Feynman parameters, are

given by the following. aiajeg:l{ im + lim } im + lim
For | =open, and @:tl<t2<"'<tn|<TIa 4| 7—t+0  7t— ' —t+0 7' —t;-0

= y xi _J_ ’ .
1= aq pye Gg(7,7"), (3.39
-t =ay, for i#j, and we may omit all terms where=j; see discus-
sion after Eq(3.28. Then using the identify
(3.33
li i G N=%1 3.4
tn|_tn|*1:an|1 IrT]+O(77_/ B(T!T)_+ ’ ( . @
Ti—ty=an+1. which holds for any diagram, it can be shown that
Forl=closed, and &t;<t,<---<t,<T,, tj+u’ . v’ tj—0
! dti&iajG§=—2+ dti+ dt,
tj—UH tj+0 tj—U"
tl—tn|+T|=al, .
Xﬂl(gng (U,,U”>0). (34])
tz_tl:az, (334)

Thus, we see thé-function contribution as

(9|(9]GIBJ"’—25(t|—t]) for tJ—0<t|<t]+O, (342
1:n|_tn|71= Q-
so that the contributions of seagull vertices are included as in
With these relations, constituents of the general expressiokd. (3.32. (The factor of 2 is accounted for by the inter-
(2.26 and of the Feynman parameter formuf&21) are change ofi andj.) It is interesting how gauge symmetry
identified as takes advantage of the property Gfz(7,7’) which is an
intrinsic quantity to any diagram.
n bir2 Finally we comment on the integral variables of the two
l/’f”/":(ZW)D5(Z ki)“(ﬁ) AP (339  formulas(2.26 and(3.15. Note that along a closed scalar
=1 chain we have one more time variable to integrate over

and (tq, ... ,tnl,T|) than the corresponding Feynman parameters.
i In fact, one proper time variable can be integrated trivially;
Gg=—2Z;, after the firstn,— 1 integrals ovet; s, there remains no de-
ang =272, (3.36 pendence ogntnl, and so the last integral just gives a factor of

T,, which compensate“sé,‘l in the integral measurg.27).

We take the conventioGl=0 in accordance with the zero-  #The corresponding identity o, is shown in Appendix B, Eq.
diagonal level scheme &,,. As./ andGy's are defined (B12).
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It follows that

T

a) —A—— Ggpen)(,t,,t/) , N (open) GEODGO( T, T/):|T_ Tr|, A(Oper?:]_, (3.46

——

T T' (T_ 7_/)2
chlosed(T, Tr): | — 7 | _ = , A(closed:T' (3_47)
T
(closed ’ closed . . .. .

b) Gy Vet , N where the normalization factor " is given by Eq.(3.35.

T We deal with a finite dimensional integral, and start from
the defining equation af,, andA for a diagramD:

FIG. 7. The basic diagram$a) an open scalar chain aritl) a i
closed scalar chain. Two-point function for an arbitrary set of dia-l = J [dxa]ex;{ - ZE Xa- XpAap+1 Dy Ja-Xa (3.48
grams can be decomposed and written in termsG§®” and ab a
G(closec}

B ‘ DI/2
— D 1l -D/2 : .
D. Decomposition ofGg and ./ (2m) 5(; Ja)l (47-ri) A ex;{laz’b Ja Jbzab}
Up to now we dealt withtGg(7,7') and. /" for a general (3.49

set of diagrams. We show that these quantities can be decofze would like to know how the above expression changes
posed and written in te,rms of/'ahose for the basic sets Ofyhen the vertices andj in D are connected by a propagator
diagrams, namelyGg(7,7') and./"for an open scalar chain \yhose Feynman parameterds (The diagram thus obtained

and for a closed scalar chain; see Fig. 7. _ is denoted a®’.) This is achieved if we multiply the inte-
Let us first find the explicit forms of these basic grand in(3.48 by

Gg(7,7') and./". They are obtained frord;; andA(«a) for
the corresponding diagranBig. 8). According to the calcu- 1 \P? [ )
A7ia ex _E(Xi_xj)
before integration ovefdx,]. But it is an equivalent ma-

(3.50

lation method described in Appendix B, one obtains, forK(Xi—Xj;a)=i
these diagrams,

Z(ﬁpen: -~ Alopen— 1 (3.44) nipulation if we shift
Ja—Jat (8, — 5aj)y (3.51
Z{dosed_ _ 1 aja ACOSd_ o 4o, (3.45  Multiply by exp{ap?), and then integrate ovep; see Eq.

2 artay’ (1.4). Applying this manipulation td¢3.49, one obtains

P [A(a—2Z;;)]P"? (352

|H|'=(2w)D5(E Ja)i'+1<i

)D(I+l)/2

Zopt

Xex;{iZb Ja-Jy (3.53

(Zia=Zja= Zin+ Zjp)?
2(CY_ 22”)

This expression defines andZ,, for D', and correspondingly we find the following réfdor obtaining./" andGg for the
diagramD":

A'=A[a+Gg(t; 1)1, (3.54)

[Gg(7.t) —Gg(7,t)) —Gg(7',t)) +Gg(7',t;)]?

Gg(7,7)=Gg(7,7')— a[a+Gg(t, )] . (3.595

°Any function of the form

f(ty)= f dty - f d4,F(GL, /) (I: closed chain (3.43
0 0

is invariant under translation,l—>tn|+c sinceGiE{ and./" are periodic functions ofil’s and depend only of —t;; see Eqgs(3.395 and
(3.36. This meand’(t)=0 so thatf(t) is independent of.
This expression was obtained by Schmidt and Schuylérfor the two-loop case.
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oy (85) O3 €1,k; £k,

y ST «‘V\OIVC
o
2 FIG. 9. The one-loop diagrams contributing to the photon
vacuum polarization.

Gs=(2m)P8(ks+ky)
Olq

1 D2 odT (T . 12
- —DI24—iky-kyG
4wi> fo T fo dt,dt,T"""“e B

o . . X(ie)?i

FIG. 8. The basic diagrams corresponding to Fig. 7 but param-

etrized by Feynman parameters. )

X (kl 62k2' 6151G]B-20"2GJB'2+ | €1 62&]_(92615'2), (41)

Next we consider the case where two diagrding=i)

andD,(=]) are sewn together by a propagatgyr)( In this
case, we shift

where we used\=T. Note thatd; (d,) can be identified
with d/aty (d/dt,) since vertices 1 and 2 are external verti-
ces. We integrate by parts the second term with respect to
IP=IV+psa, IP—IP-ps, (3.56 t1. The surface term vanishes due to the periodicity of
Gy . Thus,
in 1M and1®), respectively, multiply by expép®), and then

. . . . 1 D/2
integrate ovemp. It is straightforward to find the rule Gem —(27T)D5(k1+k2)i92(4—ﬂ_i)

A'=ADABP), (3.57
Gg7,7) X(kl'€2k2'51_61'62k1'k2)f dTT P2
’ 0
0[+G§31)(Trti)+G(Bz)(7-',tj) TEDl,T’eDz, T a2 " "
LS ALY
_ G(Bl)(T, ) 77 €Dy, X fo dt,dt,e B39,Gg0,Gx", (4.2
G(Bz)(T,T') 7,7 €Ds.

and we find thatGg is gauge invarianbefore integration

(3.58 overt;, t,, andT. Note that the number of independent
_ . terms reduced from 2 to 1.

Any setS of diagrams can be constructed by connecting 1o see the relation between gauge transformation and the
scalar chains with photon propagators. Then one may eXntegration by parts technique, we remember that
pressGg (/) for S in terms of GPPeV (s (°Pen) and
Glosed) (y-(closed) gither by using the above rules recur- T - iy xty [ - iky-x(t
sively or by applying a similar manipulation for multiple Gs fo dtze-x(ty)e™ wfo dtpey-X(t)e"2 (2 ),
photon propagator insertions at once. 4.3

Now we find an important property of the two-point func- .
tions 3,Gy and 4,9;Gy . Writing Gg(7,7') for an arbitrary ~Where(. - -) denotes the path-integral average. Gauge trans-
set of diagrams in terms of the basic elements, we notice thd@rmation of photon 1 is achieved by replacieg by k;.
d; (9;) can be replaced by/dt; (9/at;) if the vertexi (j) is ~ Then the vertex operator changes as
external[7] or if the diagram is one-particle reducible with q
respect to the photon propagator connected to the vertex ¢ .x(t,)elkix(t) g, . x(t,)ek1 Xt = —j —gkixt) (4.4
(j). [Cf. Egs.(3.38 and(3.39.] dt;

IV. INTEGRATION BY PARTS and

Now we are ready to explain the integration by parts tech- IT i ikl-X<t1>fT .- ik, X(tp)
nique, first introduced in a field theoretical calculation by 0Gs™ 0 dtldtle 0 dizezX(tp)e

Bern and Kosower, which enables nontrivial reshuffling of
various terms in Eq(2.26 beforeintegrating overa,, ti,
andT,. This technique can be used to reduce the number of

independent terms, and consequently reduces labor in the
evaluation of integrals.

T (9 1 - .
=f dtydty (kX1 g, . (1) e x(12))
0 ity

T J 12— ikq koG
= dtldtzﬁ(_kl'GzazGBe 1X1-K2 B). (45)
A. Example 0 !
Consider a simplest examplé]. According to Eq(2.26)  The gauge transform of the integrand is given by a total

and the manipulatiofl)—(4), the photon vacuum polariza- derivative, and sd@s is obviously gauge invariant whereas
tion at one loop(Fig. 9) is given by the integrand itself is not. We may add, however, to the in-
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tegrand ofGg in Eq. (4.3) a term which transforms equally
but in opposite sign under the replacemept-k;: 12 § § - 2 1

% (e1- €0,Gie k1208, (4.6
1 FIG. 11. The surface terms originating from the gauge transfor-
mation of an internal photon whose both ends are attached to a
same open scalar chain. Some of the surface terms cannot be omit-
ted since they still contain the propagator poles of external scalars.

Being a total derivative, the addition of this term does not
alterGs. Now the integrand itself is gauge invariant, and the
above term is exactly the surface term of the partial integra-

tion in Eq. (4.2). There is one exception for this procedure. The integration

by parts with respect to any of the internal vertices whose the

B. External photon other end of the photon propagator is on a sapenscalar
We now show a general prescription for integration bychain does not lead to simplification. The surface terms of
parts with respect to the external gauge vertices. such a partial integration still comprise the poles of external

First, if the external photons are on shell and for fixedscalars as seen in Fig. 11. Thus, one cannot omit the surface
helicity states, one can use the spinor helicity techn[§@  terms in this case.
to reduce the number of dot products in the exponent of the
general expressiof2.26). On the other hand, if the external V. COVARIANT GAUGE FOR INTERNAL PHOTONS
photons are off shell, one can replace each polarization vec-

tor as From a field theoretical point of view it is interesting to

know how the general expression changes if one used cova-
1 riant gauge for internal photon propagators instead of the
k K k“ (efki —kl'e))kavp - (47 Feynman gauge. Létand] be the vertices at the both ends
b of the photon propagator whose Feynman parameter ia

The amplitude is invariant under this replacement, and als§'°mentum space it can be written as
the resulting expression is manifestly gauge invariant before

é,u_,efu e'“—

integration over proper time variables. One may choose any - 5.1)

k, for each polarization vectas; . Sincek,- €/ =0, appropri- p? pZtie Gur™ '

ate choices ok,'s for all i’'s will reduce the number of terms

in the exponent. Theg,, part is the Feynman gauge propagator, and appears
After reducing the terms in the exponent, and after then the path-integral formalism as

manipulation (1)—(4) above Eq.(2.28, one integrates by

parts with respect to the proper time of external vertices to o i

reduce the number of independent terms in the integrand. In X#ngﬁyexl{ - @(Xi—xj)2 , (5.2

this procedure, one may omit surface terms for a closed sca-

lar chain since the surface terms cancel each other due to the

periodicity of Gg. Also for an open scalar chain, surface

terms can be neglected if one is interested in $matrix

element, since each surface term cancels the propagator pole .

of the external scalars in the unamputated Green function, J 9 :
Exlia— —expg — — (Xj—X;)?

j z i
see Fig. 10. IX 07 4

with x;=x(t;) andx;=x(t;). Meanwhile, thep,p, part can
be written as

=la— —ex
One may also apply the integration by parts technique to dt; dat;

the internal gauge verticg¢8]. Using the decomposition rule

derived in the previous section, one can wilted;Gg, and where we used

d;9,Gg using G5, G, and their derivatives. One

can always integrate by parts to eliminate all second deriva- d
tives. This corresponds to simplifying the expression usmdf f (27T)D axXH™ ay”
the gauge transformation of the internal vertices.

C. Internal photon J 9 i
~ 2 XiTX))

(5.3

elp-(x=y)+iap?

D
AP PuPy p ey

$88% - 338%¢ =T G & B4

4 4

Cf. Eq.(1.2). Therefore, we obtain the,p, part of the pho-
ton (ij) by operating

FIG. 10. The surface terms originating from the gauge transfor-
mation of an external photon along an open chain. Some of the 9
propagator poles of external scalars get canceled, and so these sur- (1—&)i a— — (5.5
face terms do not contribute to tifmatrix element. atj dt;
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to the integrand of Eq2.26 after settinge;=€;=0. Again

this is given by the total derivative, and so changing the k1€
gauge parametef can be regarded as a kind of gauge trans- \p o
formation. @

From this we see that if one calculates a set of diagramsin ¢/, >O;1H1
different values o€, the difference of results is proportional P Ko,E,
to the surface term on each scalar chain. In particular, a set of
diagrams without external scalars is independerg 6f ex- FIG. 12. A set of one-loop diagrams containingp&operator

pressed in terms of a bare coupling and bare gauge parafsertion.
etep sinceGg(7,7') is a periodic function on each closed

scalar chain. (5) We replace the polarization vectors at both ends of

every photon propagataeras
VI. RULE yPp propag

Let us summarize the Bern-Kosower-type rule for calcu- ele’ ——gh (6.4)
lating a set of diagrams in scalar QEBmputatedwith re- ol ' '
spect to external photons amthamputatedvith respect to
external scalajs The gauge-invariant sub-Green function for Again some of the Lorentz contractions vanish.

a setS with 2n, external scalars at(e") and forl loop is Then integrate by parts with respect to the proper times of
given by external vertices. Also, integrate by parts with respect to the
1 \DI2 proper times of internal vertices after writing, ¢;Gg, and
Gs(k,e)=(27T)D5( > ki)il(_.) (ie)"C 3,0;Gg in terms of GEP*, G{°**Y, and their derivatives.
Al [Use the decomposition rule€3.54), (3.55, (3.57, and

Y . (3.58 and also Eqs(3.37—(3.39 for this purposd.Surface
Xf II de, T1 (f [dT,]e*i(mZ*iO)T' terms can be omitted except for the special case described in
0 r chainl \ Jo Sec. IV C. The partial integrations generally reduce the num-
ber of independent terms.
T ved (6.1) In order to integrate ovet, , t;, andT,, it is sometimes
convenient to transform the variables to the conventional

Feynman parameter at this stage using relati@?33 and
whereC is the combinatorial factor angl, denotes the Feyn- (3.34).

man parameter of theth photon propagator. The chaln
represents an open or closed scalar chain, and the integral

xfOTT[ dt;

measure for its lengtft, is VII. OPERATOR INSERTION
dT, for | =open, So far we have 'considered s_ets of diagrgms containing
[dT,]:[ (6.2 only gauge interactions. In practical calculations, however,
dT,/T, forl=closed. one will need to calculate diagrams containing both gauge
. ) interactions and other interactions or, more generally, opera-
i| represents the photon vertex on the chlain tor insertions to the sets of diagrams considered above. We

~The so-called reduced generating kinematical factohqy in two examples how to calculate such diagrams. The
T eq 1S Obtained from the generating kinematical factor idea is to replace any operatoi(¢) by the functional de-
rivatives 8/ 5J(x) and &/ 53* (x).

n+2ng . . .
oy A —DI2 < . i ij Let us see how to calculate the set of diagrams in Fig. 12
A=A exp{z .;, {=ki-KkjGg =2k €0,Cg contributing to the Green function with |a|* operator in-
sertion:
ix
| 7o00.] a2 161
after the following manipulation.
(1) If the vertex i is internal, we set corresponding
k;=0. ><exp'f dXx[ L+ Lgi+ I* dp+I* +[#Q,]
(2) If the vertexi is an end point of an open scalar chain, = —BA,
we set corresponding =0. (7.2)
(3) If the external photons are on shell and for fixed he-
licity states, use the spinor helicity technique to reduce the
number of dot products in the exponent; if the external pho- ix 5\ & \? WOLTF A
tons are off shell, use the replacemé#t?) to reduce the :ZJ dZ( 5J(z)) <5J*(z)> R (7.2

number of dot productéwritten in terms ofe/'s).
(4) Only terms multilinear in each remaining polarization
vector are kept. Following similar steps as in Eq§2.10—(2.20, we find
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Vs o
m
. J

Y

loop 1 loop 2

FIG. 15. The two-point functiolGg(7,7') of the diagrams in
T Fig. 16 can be obtained by sewing together two one-loop diagrams
by a dummy photon propagator and taking- 0.

FIG. 13. Any set of diagrams with &*-operator insertion can The second example is the set of diagrams in Fig. 14.
be obtained by pinching a dummy photon propagator by setting thélso starting from Eq(7.2), we obtain
Feynman parameter— 0.

1 D
L \on G(k,e>=(2w>05(2 ki)ﬂ(m) (in)(ie)
G(k,e)=(2w)D5(E ki)i<m) (iN)(ie)?
0 0 . T

; . xf dTlf dee*'mz”l”ﬂf 1cltldt2
><J' dTe-"“sz dtydt,A o °

0 0 T 1 -

2 .
L xf dtsdt4Aexp[§E {—iki-k;G}
. , . 0 7]
Xex;{igj {—iki-k;Gg—2k;- €9;G}

+|E|€J(?|(7]Gg }, (73)
with ko=p+p’ andey=0. This time the two-point function
is obtained by sewing together two scalar loops and pinching

where ko=p+p’ and €,=0. The two-point function (}he photon propagator as in Fig. 15. Thus,

Gg(7,7") is obtained using the decomposition rule describe
in Sec. Il D with a little modification. Namely, we can com- Gg(r,7')
pute Gg by connecting both ends of an open scalar chain

with a dummy photon propagator, and then pinching the pho- ( oo (7= )2 /
o i |7— 7| — —=—, 7,7 eloop 1,
ton propagator by setting its Feynman parametetras0; T,
see Fig. 13 and Ed1.7). Therefore, we find, usin(B.55), 2 2
= e p— reloop 1, 7' eloop 2,
, L (T= =7 +(T— )2 V7T, P P
GB(TvT)=|T_T|_ AT (’T_T,)z ,
|7—7'|— , 7,7 eloop 2,
(7__ Tr)2 \ T2
=|r—1|-—=— (7.9
T (7.7
and and
A=T. (7.5 A=T,T,. (7.9
The above two-point function coincides wiBt~*®®, which VIIl. CONCLUSION AND DISCUSSION

is a reasonable result. Note, however, that the integral mea-
suredT differs from that of a closed scalar chain since the
zeroth vertex is not that of a gauge interaction. Compare th
discussion in the last paragraph in Sec. Il C.

First of all, we conceived a set of diagrams connected by
gauge transformation as an entity expressed by a single path
Ihtegral. The point is to assign proper time to the set of
diagrams along the charge flow and also express each photon
propagator by a Feynman parameter integral in coordinate

space. This enables one to find a general path-integral ex-
pression for any set of diagrams starting from quantum field
theory. At this stage, the resulting expression after integrating
out x(7) is equivalent to the Feynman parameter integral

formula. Simple rules for constructing the two-point function
(correlation function on the world Iline Gg(7,7')
~({x(7)x(7")) for a general set of diagrams are obtained.

Second, the path-integral expression allows us to use the
‘J_,r integration by parts technigue both for external and internal
gauge vertices. A manifestly gauge-invariant form with re-

FIG. 14. A set of two-loop diagrams with &*-operator inser- ~ spect to external photons can be obtained before integrating
tion. over the proper-time variables. Surface terms can be ne-



4612

K. DAIKOUJI, M. SHINO, AND Y. SUMINO 53

glected if the external scalars are on shell. The integration by 5 i
parts technique can be used to reduce the number of inde- |(a)=f [dXi]f dPcs| X x;|expg — ZE Xi - XjAij
pendent integrals, which can be interpreted as a nontrivial

reshuffling of the original Feynman diagrams.

We have extended former trials to derive the Bern-
Kosower-type rule from quantum field theory to the general
diagrams for scalar QED, in particular to the diagrams in-
cluding external scalar particles. We have shown a clear cor-
respondence to the conventional Feynman rule, which en-
abled us to avoid any ambiguity coming from the infinite

dimensionality of the path-integral approach.

The method for deriving the general path-integral expres-

sion in Sec. Il relied on the fact that the Lagrangiavith
A=0) is quadratic inp(x), and thaté(x) can be integrate

out straightforwardly. Therefore, it would be possible to ap-
ply the same method to the case of spinor QED. In fact,

world line path-integral formulations for a spinor loppl]

and for a spinor ling12], both in the presence of a back-

ground gauge fieldcorresponding to Eq42.8) and (2.9)],
have been developed.
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APPENDIX A: DERIVATION OF EQS. (3.7 AND (3.9

We show how to integrate over thg's in Eq. (3.3):

(A1)

I(a)Ef [dxi]ex%—jzijzl xi.xinj(a)Jri;l ki X;

First, insert the identity
n
12] chﬁ(E xi—c>,
=1

(A2)

and shift all vertices ag/“— x/“+c*/n. We have

i ki-xi+|ﬁ2 ki-c (A3)
=(2w>05(2 ki)an [dxi]a(Z xi)

XeXF{_%E Xi‘Xinj+iE ki'Xi (A4)

d We may further shift/*— x*—y*/n:

|<a>=<2w)D5(E ki)an [dxi]a(E xi—y)

XeXF{_%E Xi'Xinj+iE ki‘xi . (A5)

It is independent of/. Again insert

D/2

and integrate ovey. Thus,

B D/2
I(a)=(27T)D5(E ki)i(m) nP

xJ [dxi]ex;{—;—fE Xi-Xin’j+i2 ki-xil, (A7)

whereA{; = Aj; + 8. Now the zero mode is removed. We may
integrate over x;’s, and noting the fact that det
=np-det A, we obtain Eqs(3.7) and(3.8) with Z=A’"1,
(It is necessary to transforidy; appropriately for obtaining
Z in a zero-diagonal level scheme; see Appendix B.

APPENDIX B: PROPERTIES OF Z,,

1. Definition

For a given scalar QED diagram without seagull verey, is defined by

f [dDXc](Xa_Xb)M(Xa_Xb) ”eXF{ - %2 Xc'XdAcd}

c,d

i
glwzabz( - Z)

On both sides of each vertéxdummy vertices’ andi” are
inserted as shown in Fig. 5. Hera,b,c,d denote vertices
including dummy verticesi( i’, andi”). The matrixA rep-
resents the topology of the diagram, and is defined by

_ 2
S X Xeho= 2 X (82)

(cd)  A(cd)

i
f [dec]exp[ - ch, Xer XgAcd

(B1)

2. Methods for calculating Z ,,

In order to obtaift Z,,;, from the matrixA, first one may
as well reduce the size & by eliminating all external ver-
tices in the diagranbuta and/orb if it is externa) using the
associativity property1.8) of propagatoK. Then, there are
several ways to calculat,;, from the reduced\. We exem-
plify two such methods here.

wherea .q denotes the Feynman parameter of the propaga-—

tor connecting the vertices andd.

17 . can also be computed using a graph-theoretical forfila
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FIG. 16. The set of diagrams calculated in Appendix C.

Method 1. LetT be a matrix defined by

Ta=1 for Va,b, (B3)
and definez’'=(A+BT) 1. Z' is well defined as long as

B#0. ThenZ,, can be obtained usin@.9 as

1 ! !’
(Zaa+ Zb b) .

Zav=Zi~ 5 (B4)

Obviously the diagonal elements vanighis independent of
B, and so one may simplify the calculation by taking
B— after gettingZ'.

Method 2. LetA be a submatrix oA obtained by deletion
of the cth row andcth column. One may choose any vertex
¢ for this purpose[ This corresponds to fixing the coordinate
of ¢ to bex.=0 in Eq.(B1).] A can be inverted, and so
define

(A1), for ab#c,
L= ° . (B5)
0 otherwise.
ThenZ,, can be obtained as
! l ! !
Zap=LZap~ E(Zaa—'— Zpp)- (B6)
3. Properties
Zab:Zbai (B?)
Z..=0, (B8)
lim Zi’a: lim Zi”a:Ziaa (Bg)
Ui’~>+0 ui”~>+0
Zig—Z d
lim =22 = |im —Z,, (B10)
ui/—>+0 Ui u/ »+0 i
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. Zia_ziua_ . (9
lim — == lim Wzina, (B11)
u’—+0 ! u/—+0" !
9 9 1
lim Tzi/i: lim Hziui:_?, (812)
U{*)‘FO ! L]i"~>+o !
. Zi/j,—le —Zi/j-l-Zi]
lim 0
ui’—>+0 I
Uj,—>+0
(92
fim aulaul " for i #]
[N ! ] 1
_ ul/ +0 (Bl3)
UjH+0
0 for i=j.

Proof. For Eq.(B9), use Eq.(1.7). For Egs.(B10) and
(B11), use Eq.(B9). For Eq.(B12),

. d . Zii—Z; AT
lim —2Z;;;= lim ———= lim ——. (B14)

Ui’*)+0 U{*)‘FO

Then substituting the definitio(B1), the integrand will be

(X{ = X)H(x = xp)” F{ i(Xi’_Xi)z
; expg—+————
u; 4 u;
i i (X —x))?
_(Xi Xi) If?Xi,V ex 4 ui/
i (X —x)?

—2ig*” ex;{

where in the last line we integrated by parts with respect to
x{”. Thus, the numerator will be proportional to the donomi-
nator in(B1).

APPENDIX C: SAMPLE CALCULATION

In this appendix we apply the Bern-Kosower-type rule to
calculation of the set of diagrams shown in Fig. 16. Accord-
ing to Eq.(6.1), the Green function is given by

1

E(ie)?’

4 1 \Dr
GS(k01k2’k4:62)=(277)D5(i20 ki)i(m)
X fxdae*i“Z*iO)afdee*i(mz—ion
0 0
(CY

.
X f dt,dt,dts 7 e,
0

where\ is the photon massZ ¢y is obtained from7Z in Eq.
(6.3 after the manipulatioril)—(5):
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4 4 4 4 4
K o= PP —iZO kiM&lGiBljzo K; M‘93GJBS|ZO eg.kﬁzG'EerialazGészO eé-kja3G§+iazase§3j20 €y ki9,G

4 .
+iD 9193GEY, €h-k G ex;{ 22 ki-k;Gg . (C2
=0 i1 #]
Here, we choose
62'k2
62# 65 2 k#, (CS)
k3

so thate;- k,=0.
Now we integrate by parts with respecttto

Hrea— A 7P (Kgd1 GO Kpd1 G+ kgd1GEY) - (KodsG o+ Kpd3 G2+ kydsGpd) €5 - (KodaG 92+ kyd,G o)
— 391G 52€h- (Kgd3G 23+ k103G a) Ky - (KgdaG o+ K yd,G ) — 93G5€h - (Kod1 G+ ka1 G Ky - (Koda G2+ K4d,Ga2)
+iD 0103G53€h - (Kod2,G 92+ k,Gg) 1exd — i (Ko- koGR2+ Ko- kaG3H+ Ky - kyGEH . (C4)
We do not integrate by parts with respecttioor t3; compare the discussion in Sec. IV C. Thdunction part ind,9;Gg

corresponds to the tadpole diagraff¥gs. 16f), 16(g)].
Then we substitute the explicit forms af, GJ , and their derivatives:

A=a+|t3—t1|, (C5)
i [t —ta] = [ti—ta| = |t; = ta| +|t; — t] 12
G =[ti—t;|—— — — (C6)
i 1
9;Gg=— sgn(t;—t;)+ ﬂ[|ti_tl|_|ti_t3|_|tj_t1|+|tj_t3|][ sgn(t;—ty) — sgn(t;—ts) ], (C7)
13 1
9103G°=—28(t,—t3)+ = (Cy)

2A°

wherety=0 andt,=T. Itis understood that sgn(6)0 in Eq.(C7). Once the time ordering df , t,, andt; is fixed, we can
transform the integral variables using E8.33. The rest is same as the usual Feynman parameter integral. We obtain, for
example,

D/2 i i
Gs(t1<t,<t3)=(2m)°s (E k) <_|> (ie)® 2 k2 }
D
><ie§~(k4—ko)[(1—w)ll+wlz+(—i)D’ZF(Z—E)I } (C9)
wherew=—kq-k,/m?>1, and
I—fld fl_xdzl—z 2_2y)[x2+y?+2 o f 1 3+7 ) C10
1= ], 9% y2( XY = 2Y)[X"+y +20Xy] T =E =7 ——112 6 w1 arccoslw,  (C10

)\2 -1
X2+y?+ 20Xy + W(l—x—y)}

1 1-X
Izzf dxf dy(1—x—y)(x+y—2)?
o Jo

3 o,
6 'm?

1

w’—1

arccosl + deetanhp, (C1y

8 fllz arccosh

w’—1Jo
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1 1-x 1
I3:f dxf dyz(l—x—y)[mz(szrszr2(1)xy)]D’2’2
0 0
1 D-4( 11 1I m 1 [o+l o c1o
AR T A n? 5\, arccosv |. (C12

We set the external scalars on shb@,: kﬁz m?, except for the propagator factors in the above express@gfor other time

orderings can be calculated similar(see below.

Finally, if we are interested in the vertex function, we should amputate the external scalars in the above example. For this
purpose, one should add the counterterm for the wave function correction first, which needs to be calculated separately. After
adding the counterterm and amputating the external propagators, we find the vertex function at dfoe mophell external

scalar$ to be

a1 loop 2 9 9f m? 19 1 (19 17 A2
EZFM (k01k4):_W62'(k4_k0) m—z mW'F)/E +Z+ —w2—1 1—2—Zw—2w InW
Sw 1/2 arccosh
X arccoslw + > f dee tanhp|. (C13
w—1Jo
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