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We compute the quantum corrections to the gluon distribution function in the background of 
a non-Abelian Weizs.%cker-Williams field. These corrections are valid to all orders in the effective 
coupling a,& where $ denotes the average valence quark color charge squared per unit area. 
We find ln(l/x) logarithmic corrections to the classical gluon distribution function. The one-loop 
corrections to the classical Weia&cker-Williams field do not contribute to these singular terms in 
the distribution function. Their effect is to cause the running of a.. 
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I. INTRODUCTION 

In a recent work [l] we computed the Green’s func- 
tion in the light cone gauge A+ = 0 for the small fluc- 
tuations about a background Weiz&ker-Williams gluon 
field. This background field is generated by the v+ 
lence quarks in a large A nucleus. For small I partons, 
these valence quarks constitute a static and well local- 
ized source of color fields [z]. The average color charge 
squared per unit area of the valence quarks is denoted by 
11’ and it is of the order of A1/3 fm-‘. The quantity p is 
the only dimensionful parameter in the theory and as a 
result, the coupling constant will run as a function of it. 

Previously, two of us (McL.-V.) have argued that we 
can compute the gluon distribution function from the 
light cone gauge Green’s function [3]. In the present 
paper we use that Green’s function to compute the 
corrections induced by quantum fluctuations on the 
Weiz&ker-Williams distribution function. 

There are several reasons for this computation to be of 
interest. From the practical point of view, we hope that 
an analysis which provides us with a better understand- 
ing of the initial conditions for the evolution of partons 
in the collision of heavy nuclei to form a quark-gluon 
plasma will help establish a firm foundation [4] for par- 
tonic cascade models simulating such collisions [5]. For 
an alternative approach to the problem of initial condi- 
tions in heavy ion collisions, see Ref. [6]. 

From the theoretical point of view, we hope to under- 
stand the small 5 behavior of a nucleus starting from a 
QCD based approach. Let us recall that it is believed 
that in the small z region, the gluon distribution func- 
tion computed perturbatively including leading logarith- 
mic contributions in ln(l/z) for a single nucleon behaves 
like [‘i’] 
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The steep rise of the gluon distribution function for small 
z is sometimes referred to as the Lipatov enhancement. 
It is obtained by solving the Balitsky-Fadin-Kuraev- 
Lipatov (BFKL) kernel for the t-channel exchange of a 
perturbative pomeron [8]. This behavior is also exhib- 
ited in a hadron where the large z part of the hadron 
wave function is taken to be a heavy quark-antiquark 
state. By applying Hamiltonian perturbation theory to 
this state, it is possible to reproduce the kernel of the 
BFKL equation [9] for the emission of a large number of 
soft gluons. 

However, the rapid rise of the gluon distribution func- 
tion with smaller values of z is in conflict with unitarity 
when considering the hadron scattering total cross sec- 
tion at asymptotically high energies (71. Physically, this 
violation of unitarity can be understood to result &om 
ignoring effects that arise due to the large density of par- 
tons at very small values of z [lo]. When the density 
of paxtons is so large that neighboring partons overlap, 
the t-channel picture of an independent parton cascade 
in z breaks down. The former signals that at very small 
values of 2, the picture in which the partons do not in- 
teract with each other has to be modified in order to 
comply with the Fr&s& bound [ll] on the growth of 
cross sections at asymptotically high energies. Although 
some work has been done in recent years to include these 
“higher twist” effects in describing parton evolution at 
high densities [10,12,13], more still remains to be done in 
devising a quantitative mechanism to limit this growth. 

The regime of high parton density is the screening 
regime. This screening is presumably responsible for the 
shadowing phenomena observed in deep inelastic scatter- 
ing experiments off nuclei at small z. It can be addressed 
as a collective or many body effect. It is precisely this 
many body problem of parton interactions that we seek 
to address in our work. As outlined in Refs. [2,3,14], our 
formalism provides us, by means of a novel weak cow 
pling approach, with a technique to solve the many body 
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problem of wee parton distributions in a large nucleus. 
In this work, we will focus on one of the theoretical as- 

pects of the problem-the nature of the small z terms 
in the gluon distribution function of the WeizsZcker- 
Williams fields generated by the valence quarks in the in- 
finite momentum &ne. We do tbis by computing a for- 
mula for the gluon distribution function which includes 
the effects of all orders in the parameter a.~. Working 
in the weak coupling regime a,~ < kt, we extract from 
this formula an expression for the distribution function in 
perturbation theory to second order in a,. Although we 
approach the problem in weak coupling, we will show that 
after the corrections are considered, the series expansion 
parameter becomes a.ln(l/z) which may be large for 
small 2’s. We will argue that this forces us to devise a 
method to isolate and sum up the leading contributions 
to all orders in that effective expansion parameter in or- 
der to compute .the modification to the zeroth order l/z 
distribution function. 

The outline of this work is as follows. In Sec. II, we 
briefly review the basic aspects of the model in which we 
treat the nuclear valence quarks as static souxes of color 
charge as seen by small z partons. We also go briefly 
through the formalism that allows us to compute the 
Green’s function for the small fluctuations equation and 
finish the section by writing the formula for this Green’s 
function. In Sec. III, we use this Green’s function and 
exploit its relation to the gluon density in order to com- 
pute the gluon distribution of small I gluons. We also 
derive from this result a formula for the leading small z 
terms of the distribution function in perturbation theory 
valid to second order in aa. In Sec. IV, we compute 
the corrections to the background field induced by the 
fluctuation field and show that the only effect that tbis 
introduces can be absorbed into the renormalization of 
the background field (which is related to the renormal- 
ization of the coupling constant to one loop). Details of 
the calculations in Sec. III and Sec. IV are discussed in 
Appendix A and Appendii B, respectively. Finally we 
summarize our results in Sec. V. 

II. THE MODEL 

In QCD, a hadcon is a cloud of virtual particles with 
a rather complicated structure. The picture gets simpler 
when we consider the h&on as a quantum system com- 
posed of quasireal particles (partons) with lifetimes much 
larger than the characteristic interaction times. This can 
be done in a reference frame where the hadmn has a 
large momentum [IO]. Partons with large lifetime? can 
produce new partons carrying smaller fractions I of the 
initial h&on’s momentum. The small z partons will 
therefore densely populate the h&on and see the rest of 
it with its longitudinal dimension Lorentz contracted to 
a thin disk. In our model, we look at the small 3: partons 
in a large A nucleus (z < A-l13) where the high par- 
ton density allows us to use weak coupling techniques. 
The rest of the nucleus consists of the valence quarks 
which carry most of the nuclear momentum. They are 
described as a static (recoilless) source of color charges, 
in a reference f&me in which they move with the speed 
of light (infinite momentum frame) 121. 

The problem is well suited to be described using light 
cone variables [15,16] 

YO, Y3 --) Y* = (YO * Y3)lJz. (1) 

In order to compute ground state properties of the wee 
partons, we define a partition function for the system. 
This partition function includes the sum over a large 
number of color conf?gurations. To simplify the prob- 
lem, we resolve the transverse space direction into cells 
which contain a large number of valence quarks, or equiv- 
alently, a large number of color charges. This allows us 
to treat the sum over color configurations classically [2]. 
To write the average over the color charges, we introduce 
a Gaussian weight by inserting into the path integral rep- 
resentation of the partition function the term 

where p is the color charge density (per unit area) and the 
parameter j? is the average color charge density squared 
(per unit area) in units of the coupling constant 9. The 
introduction of the partition function, where we average 
over the sources of external charge, allows us to formu- 
late the theory as a many body problem with modified 
propagators and vertices. 

We treat the system pertwbatively and the first step 
is to solve the classical equations of motion 

D,F’” = gJ”, J” = 6+“p(z+,z@(z-), (3) 

for which (working in the light cone gauge A- = -A+ = 
0) there exists a solution with A+ = -A- = 0. We 
require 

A&) = S(z-)c+) (4) 

(hereafter, latin indices refer to transverse variables), and 
furthermore F’i = 0. The latter condition implies that 
a(zt) is a pure gauge transform~of the vacuum [14]: 

7. a; = ~u(z,)v;ut(zt), (5) 

where V(z,) is a SU(3) local gauge transformation whose 
spatial dependence is only on the two-dimensional trans- 
verse space. It is subject to the physical gauge condition 

v [u(+7ut(zt)] = -igzp. (6) 

The z+ (light cone time) dependence of the charge den- 
sity is a consequence of the extended current conservation 
1ZLW 

D,J” = 0. (7) 

The integration over the sources p in Eq. (2) may be 
written as 
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where we have ignored tl& Faddeev-Popov determinant. 
Note that the effective co:pling constant for this theory 
is g2p so that the expansioh parameter becomes cu&/pt. 

The Green’s function can be computed from the rela- 
tion 

c~~(z,51)=j~J~6(x-P2) 

4C)h%A;):(~‘) (9) 

and the gluon distribution function can be computed 
from the Green’s function by the relation 

dN d3k +&GpP(z+,&.+,~). (10) 

To relate the Green’s functions to the distribution func- 
tion by the above relation, the former must be averaged 
over the external sources of color charge. 

Indeed, the distribution function, to all orders, is re- 
lated by the above expression to the fully connected two 
point Green’s function. This Green’s function is given by 
the relation 

((AA)), = ((AcWcd + h%A,))o. (11) 

In the above, (Acl) is the expectation value of the classical 
field to all orders in li. It can be expanded as 

(A,,) = A$’ + AZ) + , (12) 

where A$’ is the solution discussed in Eqs. (4) and (5). 

The one-loop correction to the classical field, A$), is com- 
puted in Sec. IV of this paper. The term (APA*) above is 
the small fluctuations Green’s function computed to each 
order in the classical field. The symbol (. .)p indicates 
that we have to average over the external sources of color 
With this formalism at hand, we can proceed to corn- 
pute the next order contribution to the gluon distribution 
function. Our strategy is to compute the small fluctua- 
tions correction to the classical equation of motion. Writ- 
ing the field in terms of its background and fluctuation 
parts 

A“(z) = B’(z) + b+), (14) 

we are able to express the equation obeyed by b@ as [l] 

[D(B)‘g’L” - Dp(B)DY(B)] b, - 2F”“b, = 0, (15) 

where B is the background field which according to 
Eq. (4) is nonvanishing only for its transverse compo- 
nents. Dp(B) is the covariant derivative with B as the 
gauge field (notice that D* = a*). As discussed in 
Ref. [I], the set of equations (15) can be unambiguously 
solved in the gauge A- = 0, and by means of Eq. (9) 
we can compute the Green’s function for the fluctuation 
fields in this gauge. To obtain the Green’s function in the 
gauge A+ = 0 (light cone gauge), we perform a gauge 
transformation on the Green’s function in the A- = 0 
gauge and obtain finally (in the’matrix representation) 

charge with the Gaussian weight described above. 
From the above, it is clear that the zeroth order con- 

tribution is (A$)A$)),. This contribution is the QCD 
analog of the well-known WeizsHcker-Williams distribu- 
tion in classical electrodynamics. The general form of the 
solution is given in Ref. [14]. In the range of momenta 
a.+ < kt < p, the zeroth order solution A’ yields a dis- 
tribution function that, written in terms of I = k+/P+, 
with P+ the nuclear longitudinal light cone momentum, 
looks like 

1 1 dN _ w2P,2 - 1) 
nR= dxd= kt 4 xk,” (13) 

The above is the well-known Weiss&cker-Williams distri- 
bution scaled by $ x Ail3 fm-‘. 
-i(4+--P+)Z- 
 

I 

G;@=“‘(z,y) = -I$$= a,+s(2e 
I 

ip+(“--y-)- --ip+y-- ip+r- 
e e )] 

x 
[ 
e(-+y-Y-)T,-PT,-‘@’ + s(z-)e(y-)~~~(Itj~,‘*‘P’(yt) 1 +qez-)qy-) Jf?p, ,i(n+-P+w e~(P*-sht-4 

xF,t”.qz*)F,t”‘P’(yt) 
[ 
&j + -&@+=- - 1) 

+=&- iq+u- _ 1) + P&Pt Pt 
(p-p+)(p-q+) P+=- - IHe- iq+y- - 4 

+w-wY-) (z,)z I d2qt dzzt ,i@~-a)(.~-=~),
xF,t"(r,)$$='P'(z,) 1 Jij + 3%(,-iP+y-- 1) + 2!L(e'q+"-_ 1) 

II , (16) 
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where q+ = p+ + @ and 

F,t”@(zt) = (U(z&,Ut(czt))=@. (17) 

The above result was derived in Ref. (11. The regular- 
i&ion of the poles in p- and p+ is a rather subtle issue 
and was discussed at some length in the above-mentioned 
paper. 

The Green’s function G,(r, y) contains the physical 
deerees of freedom that we need to relate to the cluon 
density. In the following section, the above small flictu- 
ations propagator will be used to compute corrections 
to the WeizsZcker-Williams distribution function. We 
will show that logarithmic corrections, both in 2 and kt, 
arise from here. In Sec. IV, we discuss the corrections 
that the small fluctuations induce on the classical field 
to one loop. These corrections, in contrast, provide no 
such logarithmic terms to the distribution function and 
their only effect is to renormalize the coupling constant 
and the background field. 

In Appendix A, we compute the Fourier transform of 
the Green’s function. This result is useful for the com- 
putation of the distribution functions performed in the 
next two sections. 

III. THE GLUON DISTRIBUTION FUNCTION 

In this section, we will show how one can obtain 
the gluon distribution function from the Green’s fun&- 
tion [Eq. (16)], corresponding to the small fluctuations 
about the Weiss?icker-Williams background color field. 
We will be concerned with the structure of the leading 
terms for small 2 and at the end of the section compute 
a formula for the gluon distribution function valid to a.“. 
To compute the distribution function we need to sum 
over all possible color configurations. Tbis color average 
involves the two-dimensional gauge fields U. We start by 
recalling the properties of these gauge fields under our 
coJo* averaging. 

A. Correlation functions involving the gauge 
transformations U 

According to Eq. (5) the gauge transformations U(Q) 
carry the information on the background field which en- 
ters the Green’s function (16). These gauge transforma- 
tions have the interesting property that the color aver- 
age with the Gaussian weight [defined by Eq. (s)], of the 
combination 

ut(~t)TaU(2t)Ut(Y*)7~U(yt),’ 

can be written as [3] 

(nut(~t)~0U(2t)Ut(Yt)7~U(yt)) 

(18) 

= (N22- %(st-yt), (19) 
where NC is the number of colors and summation over 
repeated indices is implied. 

As pointed out in Ref. [2], the average over the color 
sources yields the information about the ground state 
properties of the system. The average with the Gaussian 
weight is an artifact that simplifies the computation and 
we expect that as long as we resolve the nucleus on a 
transverse size much larger than the typical transverse 
quark separation, such an artifact is justified. 

The function r factorizes the dependence on the trans- 
verse coordinates zt, yt and is a function of their differ- 
ence. Moreover, from Eq. (19) we see that r is real and 
dS0 

l?(O) = 1. 

Defining the Fourier transform of r(z*), 

(20) 

7(Pt) = 
I 

d%te-i=‘z’r(zt), (21) 

we have, together with (20), the sum rule 

The color charge at a given transverse location will be 
zero on average and the only way to generate a nonzero 
color charge will be by fluctuations. Equation (8) can 
be thought of as the generator of those fluctuations and 
thus the function l?(zt, yt) represents the carrelator of 
fluctuating fields at the transverse locations rt and y+ 

In momentum space, the function 7(pt) can be for- 
mally computed by expanding the exponential in (8) in 
powers of the coupling parameter c&pt (weak coupling 
regime). This was done in Ref. [3] for scalars. For gluons, 
the result for a,~ <pt is 

7(pt) = (4a)‘yNe. 

We notice that the expansion is only necessary in order 
to analytically compute expressions of the form 

I 
d%tfk)r(pt) , (24) 

with f(pt) a nontrivial function of pt. However, in prin- 
ciple, we can perform a numerical analysis to take into 
account the many possible different configurations of the 
external field contributing to expressions such as (24). 
This is equivalent to considering the effect to all orders in 
‘~&pt of the different configurations of the background 
field. For a quantitative discussion about the proper- 
ties of the distribution function, we will restrict ourselves 
to the weak coupling regime for which 7(pt) is given by 
Eq. (23). 

B. The distribution function 

With the above remarks in mind, we proceed to the 
computation of the gluon distribution function. We use 
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the formula for the distribution function, 

dN-i21c’ lim - dk- 

Fk- s J (2793 k++k’+ 2n 
$&Dr(b, k’)) , (25) 

where (DFia(k, rC’)) is the small fluctuations propagator 
in momentum space, traced over the color and Lorentz 
indices and averaged over the external sources of color 
charge. This formula follows from computing (at(p 
as an expectation value for the gluon Fock space dis- 
tribution function in the ground state generated by the 
external valence charges (31. 

In Appendix A, we derive explicitly an expression for 
(Dga(k, k’)). Using this result, we obtain the following 
integral expression for the distribution function: 
I 

1 dN 
?rRZ E = G(N,” - 1) liz,, 1 dp+;$- ’ Pt” 

p: - 2p+k- - ic 2 + k-k+k,+ (2~+ - k+ - k’+) 

( 
- (24%@9(p, - kt) ’ 

1 1 1 
x p+-k++~ep+-kk’+-~~-r(pt-kt)p+-k+_~sp+-k’++~s 

+-APL - kt) 
1 

kt” - 2p+k- - ic 
,-k:+d 

2 

k-k+ + ($;i) 

1 1 1 1 
x p+-k+-icq+-k+-is + 

p+-k++icq+-k++ie 
. (26) 

In the last term of this equation, we have taken the limit that k” + k ‘+ since this term has no singularity in that 
limit. 

We now do the integration over k-. We assume that k+ > 0. When we do the integration, two classes of terms 
result. The first set of terms arise from the explicit k- dependence in the above equation and are nonzero. The 
second set of terms arise from the q+ in the last terms of the above equation. These terms result in an unrestricted 
integral over pc. One can show that all the singularities of the resulting integrand are on the same side of the p+ 
integration contour in the complex p+ plane. They therefore integrate to zero. [There is a possible ambiguity in the 
closing of contours associated with the contour at infinity, but this term does not have any contribution proportional 
to ln(l/z).] Therefore, we only get the contribution from the first term, which is only nonzero for p+ < 0: 

+p+pf,kz) (‘it - k’) - (2+(2)(pt - kt)] 

(27) 

Now in this expression, we shall only be concerned with those terms which are proportional to ln(l/z). The terms 
not proportional to ln(l/z) are nonleading for,,small 2. Moreover, we haye found that within our approach, these 
terms are inherently ambiguous. This is due to the fact that the ln(l/z) term? cm only arise by regulating the 
singularity in the above integral as p+ + co. We do this by making the upper limit of integration, to be of the same 
order as the total momentum of a typical nucleon in the nucleus. Of course different regularization schemes will affect 
the nonleading terms in different ways. Presumably, the detailed longitudinal structure of the valence quark charge 
distribution must be known before these terms may be evaluated. 

After some straightforward algebra, we find 

where the subindex q in.the left-hand side of the above equation refers to the correction to the distribution function 
from the small quantum fluctuation field. Equation (28) is our main result. It is normalized so that the vacuum 
density is zero. This can be checked by setting U = 1 in the above equation. 

The terms above can be written in the form 

(29) 
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Now, shift the variable of integration pt + pt + kt and expand r(p t m weak coupling. This restricts the lower limit )” 
of integration for the radial component of pt to be cr,& which comes tiam the weak coupling expansion of 7. Thus 
the above expression becomes 
where 0 is the angle between p< and 6. The integral 
above can be performed e&tly and the contribution 
to (10) from the ln(l/z) terms becomes 

with C(kt) given by 

C(k)=+($)+;]. 
Notice that the above expression means that the sea 

and term in the perturbative expansion of dN/dxd2kt in 
aa, develops the large factor ln(l/z) and that in the kine- 
matical region of interest, the product 01. ln(l/z) is not 
small. 

Furtherniore, let us impose ordering in transverse mo- 
mentum. This is the statement that the main contri- 
bution to the distribution function comes from the mo- 
mentum region for which the emitted gluon’s transverse 
momentum is larger than that of tlie original one [lo]. 
The effect is to restrict the integration interval for the 
radial component of p; in Eq. (30) which now runs be- 
tween a.~ and kt. The reader can check that the above 
results in the modification of (32) which now reads like 

FIG. 1. (a) Coupling of the classical background field to 
the external source. The wavy line represents the background 
field which is of order 0 (i). The external source is shown by 
a cross and to the lowest order in the weak coupling regime it 
is 0 (*). (b) Correlation of two classical ba&ground fields 
where the broken wavy line means that the’momentum kt is 
not integrated over. 
We can now include the contribution from the back- 
ground Weizsiicker-Williams field as given by Eq. (13). 
Thus finally, the perturbative expression for the gluon 
distribution function to second order in a, becomes 

1 dN --= a.fi2(N,2 - 1) 1 

nR= drdzkt 79 xkf 

. (34) 

Equation (34) contains both ln(l/z) and ln(k,) correc- 
tions to the l/(zkt) distribution and they represent the 
first order contributions to the perturbative expansion 
for the distribution function. In the kinematical region 
of validity, these corrections are large. This signals that 
in order to properly account for the perturbative correc- 
tions one has to devise a m&ha&m to isolate and sum 
np these leading contributions. Also notice that Eq. (28) 
is more general. In principle, it contains the information 
about the nonperturbative corrections as well. That in- 
formation is in the function $pt) and it can be extracted 
by means of a Monte Carlo analysis for the whole kt do- 
main. These issues will be treated in a future work. 

Diagrammatically, we can represent the background 
gluon field coupled to the external source (valence 
quarks), in momentum space, by means of Fig. l(a). 
The background field (wavy line) is by itself of order 
l/g, according to Eq. (5) and the coupling to the exter- 
nal souxe (cross) can be considered to nth order in the 

FIG. 2. (a) The perturbative expansion of the gluon prop- 
agator in the presence of the classical background field in 
terms of the coupling constant 9. (b) The gluon propagator 
expanded to the second order in 9. 
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FIG. 3. The correction to the Weiesiicker-Williams dis- 
tribution function to the lowest order in the weak coupling 
regime. 

parameter g’p/kt by means of the weak coupling expan- 
sion of Eq. (8). As an example, the Weizs%cker-Williams 
distribution is obtained through the correlation of the 
background field taking the average over the source to 
iirst order (n=l) in g’p/kt. This can be represented as 
in Fig. l(b) where the broken wavy line means that the 
momentum k is not integrated over. 

The gluon propagator in the presence of the back- 
ground field can be computed perturbatively in the cou- 
pling constant g and the mth order gluon propagator can 
be represented as in Fig. 2(a). This is because the pertur- 
bative expansion of the gluon field involves its coupling 
to the background field through the covariant derivative 
and the background field acts as the gauge field. No- 
tice that rn has to be even since the gluon propagator is 
the carrelator of two gluon fields and each time we cou- 
ple the background field to the gluon field we introduce 
one power of g. In particular, the gluon propagator to 
second order in g can be represented as in Fig. 2(b). 
As suggested in this figure, the explicit dependence on 
a. of a quantity such as the gluon distribution function 
(which involves the gluon propa&or) comes about only 
after performing our color average through the expansion 
in gZp/kt. This is because the coupling constant depen- 
dence of the background field and the order of the pertw- 
bative expansion offset each other. As shown in Sec. III, 
when computing the leading small I terms for the gluon 
distribution function, any term for which we can use the 
sum rule (22) will not exhibit an explicit coupling con- 
stant dependence. This becomes the criterion to decide 
that such terms are vacuum contributions. 

The gluon distribution function computed in Sec. III 
can be represented by the diagram in Fig. 3, where we 
expanded the coupling with the external source to first 
order in g2p/kt. 

IV. LOOP CORRECTIONS TO THE CLASSICAL 
FIELD 

Thus far, we have been concerned exclusively with 
the contribution of the small fluctuations propagator to 
the gluon distribution function. We have shown that 
this propagator induces large corrections proportional to 
a. ln(l/z) ln(kf) and a. ln(l/z) to the distribution func- 
tion and have argued that the presence of these large log- 
arithms signals the need to devise a method to SM them 
up to all orders in the perturbative regime. Before we 
do that we need to consider another contribution, to the 
same order, which comes from the corrections to the low- 
est order classical field induced by quantum fluctuations 
(see Fig. 4). This is apparent from Eqs. (11) and (12) 

where one sees that there is a contribution (Az’A$‘),, of 
the same order as ((APAP))P. 

In this section, we will compute the correction to the 
lowest order classical field induced by the quantum fluc- 
tuations. We will start by writing the total field Af’ in 
terms of background (classical) and fluctuation (quan- 
tum) pieces allowing for the possibility that the back- 
ground field may now be different from our lowest order 
classical (WeizsZcker-Williams) solution. We will then 
write the equations of motion in terms of these new back- 
ground and fluctuation fields keeping terms up to and 
including second order in the fluctuation fields. 

Our strategy will be to consider the expectation value 
of the equations of motion (in the path integral sense) 
and to relate the carrel&or of two quantum fields to the 
gluon propagator in Eq. (16). We will show that only the 
+ component of the equations of motion is modified and 
that the change could be thought pf as the appearance 
of an induced current generated by the loop of fluctua- 
tion fields. We then proceed to explicitly compute this 
induced current and show that its effect is to renormal- 
ize the coupling constant g and the original background 
field. In other words, the modification induced by quan- 
tum fluctuations on the classical equations of motion can 
be cast into the standard expression for the renormalisa- 
tion of the coupling constant and the original background 
field to one loop in the light cone gauge. This result in 
itself is not surprising to QCD practitioners (see, for in- 
stance, Ref. 1171). Whattis surprising is that this result 
persists to all orders in the effective coupling asp. 

We start with the classical equations of motion 

DpFap” = gJy D 

and expand the full gluon field as 

(35) 

Aw=B”+b” (36) 

where BP is the background (classical) field, that is 
(A”) = Bfi while b’ is the fluctuation (quantum) field 
with (bp) = 0. Keeping up to quadratic terms in b’, the 
+ component of the equations of motion can be written 
as 

&O-B,- + (D&B”), = gj,’ + g(J,+), (37) 

PIG. 4. Modification of the classical background field due 
to quantum fluctuations. 
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where j:(r) = jak(bb(~)a+bb(z)). Also, D’ is the co- 
variant derivative with B’ as the gauge potential. The 
corresponding expressions for the minus and transverse 
components of the equations of motion look like 

(D;D”B-), - (D&Bi), + (D+6’+B-), 

+sfczac{ (bb+a+b,) + (Di(b”b-))ac 

+(b:(D’b-),) - @(D-b’),)} = 0, (38) 

(DjDjB’)* - (D@“Bj), + (D+a+B”), - (&D”B-), 

+(L3-B”), + gjak{ (bl;a+bf) + &(b;bf) 

+(Dj(bibi))be - (bi(D;bi)c) + (bi(D’b”)3} = 0. 

(39) 
The expectation values of bilinear products of fields are 
related to the gluon propagator by the relation 

M4b;(d) = --~G::(x,Y). (46) 

In the above, a, b, c,. are color indices and P,V are 
Lorentz indices with i, j representing the transverse com- 
ponents. 

The reader may verify that all the terms involving bi- 
linear products of bp in the minus and transverse compo- 
nents of the equations of motion either vanish by explicit 
computation, or, because they are symmetric in the color 
indices band c, obviously do not contribute since they are 
always contracted with the totally antisymmetric struo 
ture constants jab. In other words, the minus and trans- 
verse components of the classical equations of motion are 
not modified by the quantum fluctuations and the set of 
equations reduces to 
@@We - (D&-B”), + (D+a+B-)a = 0, 

(DjDjB”)a - (Dj@Bj), + (D+a+B”), - (&D”B-), = 0. (41) 
From now on we will concentrate only on the plus com- 
ponent of the equation of motion given by Eq. (37). It 
is clear that this equation is modified by the quantum 
fluctuations due to the presence of the induced current. 
In order to understand this effect, we need to evaluate 
this term explicitly. For this purpose, we write it as 

(42) 

Diagrammatically, this term can be represented as in 
Fig. 4 where the wavy line is the background field and 
the spiral represents the loop of the fluctuation field. 
The loop is the vacuum polarization tensor and the com- 
ponent which contributes to the induced current and 
modifies the background field (which is purely trans- 
verse) is II+“. This allows us to represent the term 
a+@” E D+G”” as nii@, 

We now proceed to compute the induced current ex- 
plicitly. We will use our expression for the gluon propa- 
gator as given by Eq. (16). The first observation is that 
the terms in the Green’s function with both z- and y- 
negative will be symmetric in the color indices and will 
not contribute. Also, it can be shown that the terms 
with both I- and y- positive yield (after we implement 
the limit y + z in a Lorentz-covariant way) an infinite 
constant (independent of the transverse loop momentum) 
which vanishes upon dimensional regularization [18]. 

However, the terms in the Green’s function with op. 
posite signs of I- and y- are a bit tricky. For these 
terms taking the partial detivative with respect to y- 
followed by the limit y -+ I is a very delicate opera- 
tion and must be performed carefully. We find it more 
convenient to rewrite the terms with opposite signs of 
I- and y- in the Green’s function in such a way as to 
avoid acting with a/Oy- on the terms O(+y-). To do so, 
we will change the two-dimensional integral over qt to a 
four-dimensional integral over 4. We can show that as a 
result, the product of 0 functions of z- and y- will be 
replaced by 0 functions of the light cone energy p-. After 
some long but straightforward algebra we can rewrite the 
terms with opposite signs of I- and y- in the Green’s 
function (which we call D$) as 
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x e(P-)e-“(p-~)~~(u+(zt)~“u(z,)~(pt - qt)] 
c 

Jij + x&-++v- _ 1) 

+ Pi% -+i,+r- QiPj(qt ‘Pt) -c~+~- 

9-q+ 
-I)+ _ 

P p+q-q+ 
Ce - q&+2- - 1) 

I 

-e(-P-)e”(P-q)‘Tr[~“(qt - pt)U+(yt)TcU(yt)] + 3&,-i,+,- _ 1) 

+ PiPj -p+=- Piqj(qt ‘Pt) 
- 1) + p-p+q-q+ ce 

--iq+y- 

p-p+ 
- l)(e++=- - 1) 

11 

) 
2+ar). 
where l%u+1 is the Fourier transform of F”fs+) = 
Ut(zt)$‘dii;). In the above expression, we are iogking 
with the color components of expression (16) (as opposed 
to the matrix notation), which is more suitable for the 
computation at hand. 

According to Eq. (42), we now have to compute 

There are three distinct pieces to the computation cor- 
responding to the different number of factors of p- (q-) 
in the denominator of each term in expression (43). For 
the rest of the section, we will outline the procedure for 
the computation of one of them, namely, the term pro- 
portional to 6ij and quote the result for the other two 
terms. In Appendix B, we will show the detailed com- 
putation of some of the integrals necessary to fill in the 
intermediate steps. 

There are two important details to keep in mind while 
computing explicitly expression (44): first, we have to 
implement the limiting procedure in a Lorentz covariant 
way. Second, when carrying out the integration over the 
relative and total (light cone) energies, we have to allow 
for a nonzero energy flow into the loop by not setting 
the total energy to zero, in spite of the structure of the 
integral which seems to require it to be so. The procedure 
is nothing but the well-known point splitting method. 

In order to implement the limit y --t I in a Lorentz 
covariant way, we first transform the induced current to 
momentum space and then integrate over the relative 
(loop) momentum. We make use of the following identity. 
Let j(z, y) be a function of the four-dimensional variables 
x and y for which we want to compute the limit when 
z -+ y. Fourier transform j to momentum space with 
respect to both z and y, 

f(k, k’) = J 
I 

d4xd4y j(z, y)e”“=e”” Y, 

and then make the change of variables 

k - k’ 

s=2’ 

(45) 

S-k+k’ 
2 ’ 

where s and S can be thought of as the relative and total 
momenta, respectively. Then 

~s,s) = J d4zd4yj(2,y)eia(2-s)eis((47) 

Integrating over d4s/(2a)4 will give @(z - y) which will 
set 3 = 2 upon integrating over y. Hence, 

J 
d%f(s, S) = J d% eizsz j(r,z) , (48) 

which is the expression for the Fourier transform of 
j(z, y) in the limit when y + I as a function of 2s. 
With the above remarks in mind, we proceed to take 
the partial derivative with respect to y- in Eq. (43) and 
then to Fourier transform with respect to I and y to the 
momentum variables k and k’. Let us look at the piece 
proportional to &j. Set i = j and then perform the p*, 
q+, and p, integrations to get 
where the index 1 refers to our considering the first of the terms in Eq. (43), namely, the term proportional to Jij. 
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Now, perform the change of variables (46) t o write the above expression in terms of relative and total momentum and 
integrate over the relative momentum. The expression to evaluate becomes, 

d4s d2qt = (-WOW) J (2n)4@p (S- - s-)(s- + *-) (-2s-)(s+ - S+) Tr[&,(s* + s, + qt)F&& -c%- qt)] 

x (s+~s++gj~+s+-#~j) 1 
q-s- + s-) 

-(s++s+-.~)(s+-s+-+e&) 1 
(50) 

We will perform the transverse momentum integrations last. For the moment, let us concentrate on the s+ and 
s- integrals. It is more convenient tp do the s+ integration first since this can be done by contour integration. The 
s+-dependent integral of the above expression, denoted by I, is 

e(-s- + C) 
- (s++*+- y&q (sc - s+ - &) cs+ - s+). 1 

(51) 

This integral has a logarithmically divergent piece which can be isolated by adding and subtracting the term (St - 
st)‘/2(S- -s-) to the numerator. This divergent piece can be shown to give a constant independent of the transverse 
loop momentum and therefore it vanishes upon dimensional regulmization in the transverse direction. The remaining 
piece reads as 

I=- J ‘1 

e(s- - s-) 

;; (s+-s+-I*)(s++s+-~) 

Let us investigate the above expression in some detail. The integrand has two poles in the complex s+ plane. Their 
location depends on the signs of (9 -sm) and (S- -t s-). If the two poles are on the same side of the real axis, then 
we can close the contour of integration on the other side of the real axis and the integral vanishes. So in order to get 
a nonvanishing result, the two poles must be on opposite sides of the real axis. Recall that 2s is the total or external 
momentum flowing into the loop and thus it has to be kept fixed (and finite for a nontrivially zero loop integral) 
while working in momentum space. Thus for a given sign of S- only one of the two terms in the integral (52) above 
contributes. This’can be seen as follows: the first term in (52) is nonzero only if the two conditions 

s--s->o, s-+s->o 

are satisfied, whereas the second term is nonvanishing only if 

(53) 

s- - s- < 0, s- + s- < 0. (54) 

Fist, take S- positive. Then only the first condition (53) gives overlapping intervals for s-, namely S- > s- and 
s- > -Sm or -Sm < s- < S-, whereas the second condition (54) does not. Therefore the second term in Eq. (52) 
can be disregarded and only the first one is nonvanishing. The opposite is true for S- negative in which case only 
the second of the terms in Eq. (52) contributes. 

The integral (50), however, turns out to be independent of the sign of S- (as we shall describe below). The reason is 
the scaling property of the integral over s-. This can be understood by recalling that after all, the overall expression, 
Eq. (50), is explicitly proportional to S(29) and any term proportional,to S- can be thrown away after scaling the 
integration variable s- by S-. With these remarks in mind, let uscontinue working with a definite sign of S-, say, 
S- > 0. Performing the integration (52) we get 
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I= 
-iqs- - Lqqs- + s-)(s- + .9-)(St - St)2 

s-[4s+s-(l - <)(l + e) - $(I - 5) - (St - st)Z(l + f)] (55) 

in terms of which Eq. (50) is 

J 

s- s-as- 
x -s- (S--s-)[4s+(S-+s-)(S--s-)-q,2(S--s-)-(St-st)~(S-+S-)]’ (5’3) 

Let us now look at the integration over s-. We scale s- by S-, that is we define the variable 5 = s-/S-. We notice 
that after scaling we can make use of the explicit factor 6(2S-) in Eq. (50) and we can safely throw away any term 
which is still explicitly proportional to S-. Thus, the term [4SfS-(1 - f)(l + c)] in the denominator of the above 
drops. As a result, the overall expression (50) becomes 

= (%)6(2s-) 1 g$$$ T@“(st + St + qt)-+(St - St - %)I(& - 4 

x J 
1 

-1 (1 -EN?31 -a’+“cst - 4v -tf)l’ (57) 

To proceed further, it is convenient to shift qt + qt - st. Then the arguments of F’” in the trace of the above 
expression become independent of st and can be taken outside the st integral which will be evaluated next. The st 
integral is a formally divergent integral and must be regulated. This is done in Appendix B using the dimensional 
regularization method. We find that 

s 

Ps, (St - stY 
(W [kJ* - st)2(1 - f) + (St - %)2(1 + f)] = qf(1 - fK% - 4$, (58) 

which brings expression (57) to read like 

r(--w) = (Zi)- 
167~ 6(2s-) J (59) 

The integration over .$ can now be done easily. It just gives a factor of 2/3 and the remaining transverse momentum 

integral can be computed by using the explicit form of F in terms of the gauge transforms U. We also show this in 
Appendix B where we find that 

with 

/x&St) = I &c@ 2-pd(q) (61) 

being the Fourier transform of the charge density with respect to 2St. Putting everything together, we get finally the 
result that the expression for the Fourier transform of the induced current coming from the term proportional to & 
a.6 a function of 2S is 
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Vu) 2.. 
= -79 &st)6(i?$-) (62) 
Above, we have written only the diwrgent part of the 7 
function when w + 1 and have used that for SU(3) the 
product f&&d = Ca&d with CA = 3. The remaining 
three term&in Eq. (43) can be evaluated in a similar 
fashion. Here ‘we just quote the result 

i32S),,, = - Q-w) 9 2- Pdw*)s(2s-), 8T 

2:,+(2S),,, = 
U-w) 2- 
--gp Pdwt)6(2s-), 

u-4 2- 
3,+(2S),,, = 4- 8n g Pd(2&)6(2s-) . (63) 

The final result for the Fourier transform of the induced 
current is obtained by adding the four terms given by 
Eqs. (62) and (63) and it becomes 

where we have renamed 2S + p. Thus the term that 
modifies the plus component of the equations of motion 
in momentum space just becomes $2(p). 

We proceed to argue that by rewriting this result in 
terms of an expression involving the components of the 
polarization operator, we can absorb the effect of the loop 
corrections on the equations of motion, into the renormal- 
ization of the coupling constant. Let us first recall that 
according to Eqs. (4) and (5), which are the classical so- 
lutions to the equations of motion, the expression for the 
zeroth order background field inmomentum space can be 
written as 

Therefore, notice that g;“,+(p) can be written as 

with II::(p) given by 

(65) 

(66) 

(67) 

which is the standard expression for the +i components 
of the polarization operator in light cone gauge [19]. The 
fact that we recover this well-known result is truly re- 
markable and is one indicator of the success of our for- 
ldklll. 

We can now take an ansatz for the formal solution of 
the system of Eqs. (41) to be 
B-(z) = 0, 

B’(r) = e(r-)n;z(%$ 

7 ‘c&Z) = ~U(st)V’Ut(z,), (68) 

where SR is the renormalized coupling constant whose 
expression is obtained through the computation of II@” 
and will be given explicitly by 

This in turn means, according to (68), that the field B 
gets renormalized by the inverse of the constant that 
renormalizes g: 

B”(z) = Z-i/2A”@)(z). (76) 

The above exercise has taught us the important lesson 
that the modifications to the background field introduced 
by the quantum fluctuations do not induce extra terms in 
the expression for the distribution function (28). Further, 
their effect can be included by replacing the coupling 
const& g by the renormalized coupling constant gR. 

V. SUMMARY 

We have presented in this paper an expression for the 
quantum corrections to the Wei&cker-Williams gluon 
distribution at small I valid to all orders in the param- 
eter a.+ We used this expression to compute explicitly 
the leading ln(l/r) and ln(kt) terms in the momentum 
regime a.~ < kt. We have shown that the perturba- 
tive approach introduces a series expansion parameter 
a, 1$/z) which is large and thus forces us to devise a 
method to sum up the leading contributions to all orders 
in that expansion parameter. Nevertheless, the present 
result already signals that at small 2 values the gluon 
distribution function will be modified significantly from 
the l/(*kF) behavior. ‘. 

We wish to emphasize that our central result, Eq. (28), 
contains in principle the information about the quantum 
correction to the classical distribution to all orders in the 
parameter a,!.&. 

We have found that the only effect the quantum COP 
rections have on the classical background field can be 
absorbed into the renormalization of the field and the 
running of the couplhig &&ant. 

We have not addressed the issue of summing up the 
perturbative series in this paper. In the weak coupling 
limit, tbis is equivalent to solving an integral equation 
for virtual corrections to the gluon propagator. Another 
issue we would like to address is whether we can relax 
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some of the constraints in the model. In particular, we 
need to pay attention to the restriction set by the neces- 
sity of having a large (perhaps too large) A nucleus in 
order to compare our predictions to experimental data. 
These issues will be addressed in a future work. 
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APPENDIX A: THE PROPAGATOR 
IN MOMENTUM SPACE 

In this appendix, we shall Fourier transform the small 
fluctuations propagator to momentum space. This result 
will be useful for computing the distribution function and 
may also be useful for other computations. We will first 
consider the propagator without averaging over all pos- 
sible color orientations of the source fields. 

We shall derive two representations of the propaga- 
tor. One representation will include an integration over 
the variable p+. This representation will be useful for 
computing distribution functions. We will also present a 
second representation where we have performed this in- 
tegration over pt. Finally, we will present a result for the 
propagator after averaging over the colors of the external 
field. 

We recall that in coordinate space the propagator has 
the form 
(Yt--rt) 
G$‘a’@(z,y) = -/!&$?{ [6h+p~(2e”pt(“--‘-)-e-“P+‘- +iP+=-)] 

x 
[ 
q-z-)e(-y-)@p + qx-)e(y-) F,t*qzt)Fp’(yt) 1 

++ow oz J d2qt pzt ,i(q+-P+)Y-ei(Pt--P1)
xF,t”qz*)F,ta’@(yt) 

1 
6, + pT(e++‘- - 1) 

+$p-‘q+“- - 1) + ($g@+, p+=- _ l&-“‘+Y- _ I)] 

+wwY-) (2T)2 
s 

d2qt dzzZt e”(p~--91)(Zt--zr)e--i(q+-P+)Z- - 

xF,t”P(rt)F,t”‘P’(tt) 
[ 
6, + z!$-+-- 1) f 2!%(““p+z- _ 1) 

PiPjPf . Qt 
+(p-p+)@-qt) p+y- - l)(e”q+*- - 1) 

I> 

, 

where qf = pt + f@ and 

F,t”qQ) = (U(+JJt(lt)) afl. 

We now wish to define the Fourier transformed Green’s function 

G;+~'(k, k') = / d41d4ye-""Zt"""G~~'U'~' @, y) , 

C-41) 

W 

(A3) 

which we can divide into four pieces as 

G;?i”‘P’(k, k’) = G’+$@ (k, k’) + G$$@(k, k’) + Gy5$P’(k, k’) + @$$?‘(k, k’), 
(A4) 

In this equation, the first index f refers to the index of S(iz-) 
coordinate space Green’s function. 

and the second to 0(&y-) in the definition of the 

Let us iirst consider the -- component: 



QUANTUM CORRECTIONS TO THE WEIZS;iCKER-WILLIAMS 471 
We can perform the integrations over p-, p,, 2, and <to obtain 

where 

G:!$P’(k,k’) = -(246(k- - k’-)(2?r)%(‘)(kt - k$,“P@‘A--(k,k’), 646) 

A__(k k,) = 

I 

dz-dy-dp+e(-r-)e(-y-)e-“(P+-E+)Z-+”@+-k’+)y- 

2?r kt” - 2p+k- - ie 

C-47) 

Now let us do the I- and y- integrations. In performing these integrations, ie factors will appear which will 
guarantee the convergence of the integrals at infmity. We find 

A--(k, k’) = J @ 
1 1 1 

27r k,Z-2p+k--iep+-k+fiep+-k’+-h 

k-(k+ $zk,+ + ic) (2~+ - k+ - kr+)} w-3) 

Finally, we can perform the integration over p+ to find 

A--(k,k’) = k,+ _ ;+ + ie p& 6<j + k-(k+ -;e;k,+ + ie) (k’+ - k+) + k,k’ --f -k’, -k . W) 

Now, to fully define this Green’s function, we must specify the nature of the singularity at k- = 0. In the last 
equation, we would like to use the Leibbrandt-Mandelstam prescription on l/(k- + ic/k+) whenever we have the 
combination l/k-k+, and l/(k- + ielk’+) w h enever we have the combination l/k-k’+. We would like to go further, 
however, and define l/k+k- as l/(k-k++ie). This can be done as follows: we use l/(k+-ie) = 2?rib(k+)+l/(k++ie) 
whenever we have the constraint that k- > 0, and a similar modification when k- < 0 for k’+. 

On the other hand, it is more difficult to implement the Leibbrandt-Mandelstam prescription in the expression 
which involves the integral over p+. However, we will only use this result when both k+ and k’+ have the same sign 
and are nonzero. In this case the Leibbrandt-Mandelstam prescription is unambiguous. 

Our results for the two representations are therefore 

G”P;;@‘(k, k’) = -2?rib(k- - k-‘)(2n)%@)(kt - k;)&-:‘“‘& 

k-;$+ (kJ+ - k+) ) ] + k, k’ + -k’, -k 

+2d(k+)O(k-)$$ (W 

Here the k+, k’+, and k- singularities are tre+ted using the Leibbrandt-Mandelstam prescription. 
For k+ and k’+ both nonzero and of the same sign, we have the representation 

G”P;$‘(k,k’) = -2,d(k- - k-‘)(2+@)(kt - k;),,“p@? 
s 

g 
1 1 1 

2~ k,2-2p+k--iep+-k++icp+-k’+-ic 

k;ki 
k-k+k,+ (2~+ - k+ - k’+) 

> 
> (All) 

where the k- singularity is treated using the Leibbrandt-Mandelstam prescription. 
The evaluation of the remaining contributions to the Green’s functions can be done by the same methods as above. 

There is nothing really new in the analysis except that it is longer and more involved. The subtlety is in the treatment 
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))p:-~~k_~!-ir+k’X’~-h’X] 
of the singularities in the k* and k’+ variables. This has been discussed above and is treated as such. The results are 

GI;$$@‘(k, k’) = -2d(k- - k-‘) s d% tap o2Fa (pt - k,)F,t*‘@(k; -pt) 

~{k+-:++ii[~~~j~k~~~,+(k+-k’+
+2d(k’+)O(k-) ““?i 

1 

k k+ p; - 2k-k+ - ie 
+k,k’%-k’,-k 6412) 

For k+ and k’+ both of the same sign and nonzero, the above is equivalent to 

G”;P+;gP’(k, k’) = -2d(k- - k-‘) 
J 

gFpfl(p, - kt)F,‘“‘@(k; -pt) 

1 1 
’ x2 2+ pt- p k--iep+-k+-icp+-k’++ie 

(&ii + k-;$+ (2p+ - k+ - k’+)) (A13) 

We finally also obtain an expression for G+-. It turns out that in this expression, no restrictions on the values of 
k+ and k’+ are needed to get the singularities in l/k* or l/k ‘+ into the Leibbrandt-Mandelstam form. The results 
are 

G’$$‘(k, k’) = 2nib(k- - k-‘)2k-B(k-)& / $$Ft’(pt - kt) 

x F,‘“‘@ (k; - pt) 
1 k!k! 

&j - ‘3 
-pipj p;k;pt k’ 

pt” - 2k- k+ - ic k-k’+ k-k+ + (k-k+)(k-k’+) (AI4) 

We also have the equivalent integral representation tihere 

G$$@'(k, k') = 2&(k- _ k-1) 
s 

dp+d2pt td 03F, (Pt - k,)F,t"'P'(k; -pt) 

1 1 1 k!k! 

x 2 
-pipj pilc(ipt kl 

k,-2k-p+--icq+-k+-iep+-k’+-ic 
l&j - ‘3 k-k’+ k-k+ + (k-k+)(k-k’+) 

In tbis equation, q+ = p+ + ‘S$C. 
The expression for G-+ is 

G;@y?;@‘(k k’) = Gf??‘(-k’ -4). , Y +v 1 (A16) 

We now want to convert these expressions for the propagator from the matrix basis to the component basis. To do 
this, we make the transformation 

(U(z)7vt(e))(U(y)T=Ut(y)) + 4(Tr7nU(I)TCUt(~))(~~~U(y)T=Ut(Y)). 

We then usetheidentity 

C-417) 

which results in the following transformation for the definition of the propagator 

F$(r)F,&,(y) + 2TrF”(z)F’(y). W’) 

We now want to proceed to derive formulas for the propagator which has been averaged over all values of the color 
charges of the valence quarks. To do this we define 

(Trut(~)m(Z)Ut(y)Tvqy)) = p(z - y). 6420) 

Notice that 

P(0) = Pb. (-421) 
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We now define 

(G$(k, k’)) = (2n)b(k- - k’-)(2@6(kt - k;)D$(k, k’) 

As before, we can write D$ as 

D$ = D”b,(k, k’) + D$tij( k, k’) + D$Jk, k’) + Df+Jk, k’) 

Using the above substitutions we find that 

D”b .,2-J”” 
I 

dp+ 1 1 1 k;kj - ---‘J 27r kz-2p+k--icp+-k++iep+-k/+-i6 
b + k-k+kt+ (2P + - k+ - k’+)] , 

C.422) 

(A23) 

(A24) 

which is valid for k+, k’+ nonzero and sgn(k+) = sgn(k’+) . Th e expression with the p+ integral completed is 

6ij + k-;$+ (k’+ - k+)) + Zd(k+)$$ 
I 

+ k, k’ -$ -k’, -k 

For D++ we obtain 

(A25) 

Da” ,.=- J dp+d=pt 6 
o3ra (pt - kt) 

1 
++*3 p; - 2p+k- - ie 

1 
’ 

Xp+-k+-iep+-kk’++ie 
[c$ + k-;&+ (2p+ - k+ - k’+,] > (A26) 

which is valid for k+, k”’ nonzero and Sgn(k+) = sgn(k’+) . Aft er completing the p+ integration, 

2 
D&j = -I=‘& - kt) ($a ’ ’ 

pf - 2k-k+ - ie k+ - k’+ 
(6” + k-:$+ (k+ - k’+)) + 2?rib(k’+)f$$ 1 

+k, k’ + -k’, -k (A27’) 

We also have 

Dab’.. = 
J 

dp+d=pt 6 
(21r)3ra (Pt - kd 

1 1 1 
+ ST k,2-2k-p+-ieq+-k+-icp+-kt++iE 

(A281 

where, again, q+ = p+ + &$. Doing the integration over p+ gives 

Finally, the expression for D-+ is given by 

Df+ij(k, k’) = Dymji(-k’, -k) (A30) 
APPENDIX B: COMPUTATION OF INTEGRALS 

In this appendix, we will explicitly evaluate two of the 
integrals we use in the computation of the one-loop COT- 
rections to the classical background field. The first inte- 
gral we will evaluate is 

631) 
Let us fist shift st + st + S, and write the above as 

I1 = (B2) s 

The denominator in the integral can be written as 

2s: + [2st (St - qt) + (St - q$l(l - 0. 633) 

Performing the change of variables 
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tJ* = St + q) (St - a), 

d=vt = d2st, 

tl,” = sg + S< (St - q*)(l -C) + V(& - qt)2, 

CB41 

Eq. (B3) can be rewritten as 

2 
[ 
wf + q(s, - qt)j (B5) 

and the integral (B2) 

I1 = I d%t [wt - @&St - nt)]’ 
(2d2 2[vf + q (St - pt)21 

P3) 
Written in this form, we can drop the linear term in vt 
and the contributing terms to (B6) will be 

2 6 
II-, g2[v;+“-f(St-qe)2] J 

+ J d% (I- 5)‘/4(St - q$ 

(27V 2[$ + +$qst -pt)“] 
WI 

The fist and second terms in expression (B7) are 
quadratically and logarithmically divergent. To regulate 
the divergences we compute them by dimensional regu- 
larization. We thus write (B7) as 
To exaluate the integrals in the above expression we use the well-known formula 

s 

- ddu 

o (72 +cq= = 
r($ +mrb - ;0 +m 

qcy(~+P)lqy,) (BQ) 

by means of which (B8) becomes 

I,= $ O( > $ 2 2@r(-d/2) (&) I(1 - r”)(st - Qt)2/41d’2. WO) 

We are interested in the divergent part of this expression when d --) 2, thus for that we take d = 2 everywhere except 
in the argument of r. We obtain finally 

I 
1 

= r(P) 
~X(1 - wt - d . 

Next, we want to compute the integral 

CB111 

I2 = (2a)Z J d2qt’W’“(St + @“(St - qt)l[(St - qt)’ - (St + qt)‘]. W) 

For tbis purpose let us write $’ in its explicit form in terms of U: 

@(pt) = J d2ste”P’2’Ut(zt)7aU(zt), (BI3) 

and thus the integrand in (B12) can be written as 

s 
d2~~dZy~ei(St+q~)Zfei(s’-~‘)Y’[(St - q$ - (St + qt)Z]Tr[Ut(z&aU(zt)Ut(yt)~bU(yt)]. 6314) 

The factors (St i qt)z are to be interpreted as derivatives acting on the corresponding exponential. Integrating by 
parts, ignoring the surface terms and with the help of Eq. (B14) we can write Eq. (B12) as 

12 = - 
s 

-d .td2y,e”(s’+~‘)2’e”(S’-~L)~r{Tr[Ut(~t)~”U(~c,)V”(Ut(yt)~bU(y,))] d%t ,. 
(242 

-n(v~(u~(z,)~“u(~,))u~(Yt)?~u(~~)l~. (B15) 
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Performing the qt and yt integrations, Eq. (B12) becomes 

12 = - 
J 

dZ~*eZiS*s~ 
1 

Tr[U+(lt)7aU(lt)V2(U+(Xt)7~U(~t))] - Tr[V~(U+(It)7~U(+t))U+(lt)7*U(lt)] . 
1 

W‘J) 

Since the gauge transformations U and the, charge density are related by Eq. (6), one can prove the identity 

Tr[U+FYJVyU+7%) - VyU+,‘v)U+,*U] = -g fakp&) - f~Cpc(zt) 

(, ) 
6317) 

using the antisymmetry of fabc and plugging the above back into Eq. JB16) we finally obtain the result 

I2 = g= f”b’ 
J 

d%te-*pc(zt) , 

which is the Fourier transform of the charge density with respect to 2~~. 
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