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High temperature phase transition in two-scalar theories
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Two-scalar theories at high temperature exhibit a rich spectrum of possible critical behavior, with a secon
or first order phase transition. In the vicinity of the critical temperature one can observe critical exponents
tricritical points, and crossover behavior. None of these phenomena are visible to high temperature perturbat
theory.

PACS number~s!: 11.10.Wx, 64.60.Ak, 64.60.Fr, 98.80.Cq
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I. INTRODUCTION

Scalar field theories have been the prototype for inve
gations concerning the question of symmetry restoration
high temperature. Following the original argument of Kirz
nits and Linde@1#, the O(N)-symmetric scalar theory wa
considered in subsequent studies of the problem@2–4#. The
framework in which these studies were carried out is
perturbative evaluation of the effective potential@5# and its
generalization for nonzero temperature. Even though the
toration of the spontaneously broken symmetry was qual
tively demonstrated, the investigation of the details of t
phase transition was not possible, due to infrared divergen
rendering the perturbative approach unreliable near the c
cal temperature@3,4#. These divergences originate in the a
sence of an infrared cutoff in higher loop contributions wh
the temperature-dependent mass of the scalar fluctuation
proaches zero near the critical temperature. An ameliora
of the situation was achieved through the summation of
infinite subclass of perturbative contributions~the ‘‘daisy’’
graphs! @2#. Indeed, these contributions become dominant
largeN and a quantitative description of the phase transit
can be obtained in this limit. However, the physical pictu
remained unclear for small, physically relevant values
N, for which even the order of the transition was not esta
lished. The question was resolved@6# through the method of
the effective average action@7–10#, which relies on the
renormalization-group approach. The phase transition
shown to be second order for all values ofN. The quantita-
tive behavior near the critical temperature was studied
detail and the critical system was found to have an eff
tively three-dimensional character. Its behavior can be ch
acterized by critical exponents@6,10#, in agreement with
known results from three-dimensional field theory. The p
ture was verified through an independent analysis in the la
N limit @11#, with use of other nonperturbative methods, su

*Present address: Institut fu¨r Theoretische Physik, Universita¨t
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as the solution of the Schwinger-Dyson equations. A sum
mary of the results can be found in Ref.@12#.

In a cosmological context first-order phase transitions a
more spectacular than second order transitions due to
departure from thermal equilibrium. One would like to hav
a prototype model for a first-order transition, for which th
methods of high-temperature field theory can be tested, sim
lar to the O(N) scalar model for second-order transitions. I
statistical physics it is well known that scalar models wit
more than one field and discrete symmetries instead of ma
mal O(N) symmetry exhibit a rich spectrum of critical be-
havior, including first- and second-order transitions and t
critical behavior in between. Since high-temperature fie
theories are in close correspondence to~three-dimensional!
statistical models, it seems natural to investigate such mod
also as prototypes for first order transitions in high
temperature field theory. In this paper we apply the meth
of the effective average action to the study of the hig
temperature phase transitions in theories with two real sca
fields. The symmetry is not O~2!, but rather a discrete sym-
metry. This model can serve as a prototype for a first-ord
phase transition in field theories. It can be easily generaliz
to models in which each scalar field is anN-component vec-
tor.

We are interested in the phenomenon of spontaneous s
metry breaking and symmetry restoration at high tempe
ture. For sufficiently low temperature our two-scalar theo
models the Higgs mechanism in gauge theories, throu
which the expectation value of a scalar field results in a ma
term for gauge fields.1 Perturbative arguments predict a first
order phase transition for this case@13#. However, the reli-
ability of such predictions is questionable when the transitio

1For sufficiently small-gauge coupling the present investigatio
and its generalization to the case where each scalar field hasN
components gives a reasonable approximation to the gauged mo
even in the vicinity of the critical temperature. However, the dete
mination of the meaning of ‘‘sufficiently small’’ needs a detailed
investigation of high-temperature gauge theories.
4552 © 1996 The American Physical Society
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53 4553HIGH TEMPERATURE PHASE TRANSITION IN TWO-SCALAR . . .
becomes weakly first order, due to infrared divergences s
lar to the ones plaguing the study of the O(N)-symmetric
scalar theory@14#. The approximate vanishing of some ma
near the critical temperature results in the absence of an
frared cutoff in higher loop contributions of perturbatio
theory. In two-scalar theories this is connected with the f
that one of the fields gets its mass~or part of it! through the
expectation value of the other.

The present work obtains control over these infrar
problems.2 Depending on the couplings of the model we fin
that the phase transition is either first or second order. F
sufficiently strongly first-order transition high-temperatu
perturbation theory may give realistic results for the tw
scalar model. We concentrate here on the more problem
regions of a second-order transition, a weakly-first-ord
transition, and the tricritical behavior at the separation of
two regimes. For the corresponding values of the coupli
high-temperature perturbation theory fails near the criti
temperature. As a by-product, our results can be used in
der to establish in which region of parameter-space pertu
tion theory gives a reasonable for the description of
phase transition.

Our results are relevant for two specific classes of s
narios in the cosmological context. The first class conce
multi-Higgs-scalar extensions of the standard model at n
zero temperature. The prediction of perturbation theory fo
first-order electroweak phase transition@13#, combined with
the existence of baryon number violating processes at n
zero temperature within the standard model@18#, has gener-
ated much interest in the probability of creating the bary
asymmetry of the universe during the electroweak ph
transition. Several scenarios have been proposed@19# and the
electroweak phase transition has been studied with a var
of methods@20#. ~For an overview of the extensive literatur
see Ref.@21#.! It is not clear, however, if the phase transitio
in the pure standard model is sufficiently strongly first ord
and if there is sufficientCP violation in order to create an
asymmetry of reasonable size. This has led to the study
multi-Higgs-scalar extensions of the standard model,
which the additional scalar fields can be used to make
phase transition more strongly first order or to enhance
sources ofCP violation in the model. Also supersymmetri
extensions of the standard model contain two-scalar d
blets. It is not clear whether the perturbative methods use
Ref. @22# for the calculation of the scalar field contribution
to the effective potential are reliable for such two-sca
models, if we take into account the ‘‘warning’’ from th
study of the O(N)-symmetric theory. Our work gives a reli
able estimate of the effect of these contributions on the
ture of the transition.

The second class of scenarios concerns multi-scalar m
els of inflation@23#. In most such studies some classical p

2We should point out that, for a non-Abelian Higgs model, t
situation is much more involved than the perturbative results in
cate, due to the presence of a confining regime in the symme
phase of the model. As this work deals only with scalar fields, s
a complication does not arise. For a discussion of gauge theorie
the context of the effective average action approach see Refs.@15–
17#.
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tential is employed, which may bear no resemblance to th
effective potential. Thermal effects are often ignored excep
for the temperature dependence of the mass term. If inflatio
is initiated by a high-temperature phase transition our for
malism sets the framework for the proper study of the prob
lem.

We consider a theory of two real scalar fields
xa(a51,2), invariant under the discrete symmetries
(x1↔2x1 ,x2↔2x2 ,x1↔x2), which we denote by
(1↔21, 2↔22, 1↔2) for brevity. The symmetry group is
Z43Z2 , consisting of 90° rotations in the (x1 ,x2) plane and
a reflection on one of the axes. The classical potential can
written as

V~x1 ,x2!5
1

2
m̄2~x1

21x2
21x2

2!1
1

8
l̄~x1

41x2
4!1

1

4
ḡx1

2x2
2

5
1

2
m̄2~x1

21x2
2!1

1

8
l̄~x1

21x2
2!21

1

4
xl̄x1

2x2
2 ,

~1.1!

with

x5
ḡ

l̄
21. ~1.2!

For V to be bounded from below we requirel̄.0, x.22.
For m̄2.0 the classical theory is in the symmetric regime

~which we denote byS) with the minimum of the classical
potential at the origin. Form̄2,0 the theory is in the spon-
taneously broken regime and we distinguish two possibilitie
consistent with the symmetry.

~I! For x,0 four degenerate minima of the potential are
located between the two axes at

x1056x2056A22m̄2/~ l̄1ḡ!. ~1.3!

We denote this regime byM .
~II ! For x.0 the four minima of the potential are located

on the axes at

x1056A22m̄2/l̄, x2050, ~1.4!

or similarly with x10 andx20 interchanged. We denote this
regime byAX. The regimesM andAX are closely related. A
redefinition of the fields according to

x̃15
1

A2
~x11x2!, x̃25

1

A2
~x12x2! ~1.5!

results in a rotation of the axes by 45°, thus transforming th
AX into theM regime. The couplings of the redefined theory
are related to the old ones according to

l̃5l̄S 11
x

2D , x̃52
x

11
x

2

. ~1.6!

There are three characteristic values ofx: ~a! Forx50 the
symmetry of the theory is increased to O~2!; ~b! for x521

he
di-
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the theory decomposes into two disconnectedZ2-symmetric
models forx1 andx2 separately;~c! similarly, for x52 @and
thereforex̃521, according to Eq.~1.6!# the theory decom-
poses into two disconnectedZ2-symmetric models forx̃1
andx̃2 . The above symmetries are expected to be preser
after the quantum or thermal corrections have been tak
into account. This means that any renormalization-gro
flow of the couplings that starts on the surfacesx50,21,2 in
parameter space cannot take the system out of them. A
result the parameter space of the theory is divided into t
four regionsx.2, 2.x.0, 0.x.21, x,21, which are
not connected by the renormalization-group flow of the co
plings. The phase transitions for the theories which corr
spond tox50,21,2 have been discussed in detail in Ref
@6,10#. They are second-order transitions governed by effe
tively three-dimensional fixed points. In our model thes
fixed points exist on surfaces separating the parameter sp
into disconnected regions. We shall demonstrate all t
above points in the following sections.

We should point out that this model was discussed in R
@24# through use of finite-temperature perturbation theor
No part of the rich structure of critical behavior that we sha
describe in the following sections was observed. The univ
sal, effectively three-dimensional behavior of the syste
near the critical temperature is common for statistical sy
tems and three-dimensional field theories which belong
the same universality class.~The statistical systems are char
acterized as two-component spin systems with cubic anis
ropy.!As a consequence, various aspects of the problem h
been investigated in Refs.@25–28# ~and references therein!
through other methods. Our results are in very good agr
ment with all these studies. Similar models have been co
sidered in Ref.@29#.

The outline of our procedure follows. We make use of th
effective average actionGk , which results from the effective
integration of quantum and thermal fluctuations with chara
teristic momentaq2.k2. It contains all the information on
the generalized couplings of the theory and their depende
on the scalek. For k of the order of some ultraviolet cutoff
L the effective average action is equal to the classical~bare!
action ~no integration of fluctuations takes place!. For k50,
Gk is equal to the effective action~all fluctuations are inte-
grated!. The dependence ofGk on the scalek is given by an
exact nonperturbative renormalization-group equation, whi
can be expressed as evolution equations for the running c
plings of the theory. These equations can be solved with
some appropriate approximation scheme, with the classi
couplings as initial conditions fork5L. The renormalized
couplings of the theory are obtained fork50. The calcula-
tion can be performed for zero and nonzero temperature. T
gradual incorporation of the effects of quantum and therm
fluctuations into the running couplings is the essential e
ment which resolves the problem of infrared divergences th
invalidates perturbative schemes. The basic formalism of
effective average action is summarized in Sec. II. We exp
that the running of the couplings fork much smaller than the
temperature has an effectively three-dimensional charac
The reason is that the effective dimensionality is reduce
when the characteristic length scale 1/k of the ‘‘coarse-
grained’’ system is much larger than the periodicity 1/T in
the imaginary time direction set by the temperature. This
ved
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expected to be important near the critical temperature, where
no infrared cutoffs~such as masses! other thank exist. As a
result, the fixed-point structure of the three-dimensional
theory determines the behavior of the critical system. For
this reason we present in Sec. III a qualitative study of the
three-dimensional theory and its fixed points, based on a
crude approximation scheme for the solution of the exact
renormalization-group equation. In Sec. IV, we develop more
elaborate ~and, therefore, more accurate! approximation
schemes. They are generalized for nonzero temperature in
Sec. V. These tools are put into work in Secs. VI and VII:
The evolution of the running couplings is calculated, starting
with the classical theory at scalesk5L@T and finishing at
k50, where the renormalized theory is obtained. In Sec. VII
we explicitly demonstrate how the evolution of the running
couplings becomes effectively three dimensional fork!T.
In Sec. VIII we calculate the critical temperature for the
phase transition. In Secs. IX–XI we discuss the details of
this transition. We observe a rich spectrum of critical behav-
ior with critical exponents, crossover phenomena, tricritical
points, etc. None of these are visible within perturbation
theory. Our conclusions are given in Sec. XII.

II. THE EVOLUTION EQUATION FOR THE EFFECTIVE
AVERAGE POTENTIAL

We consider a theory of two real scalar fields
xa (a51,2), ind-dimensional Euclidean space, with an ac-
tion S@x# invariant under the (1↔21, 2↔22, 1↔2) sym-
metry. We specify the action together with some ultraviolet
cutoff L, so that the theory is properly regulated. We add to
the kinetic term an infrared regulating piece@9#

DS5
1

2E ddq

~2p!d
Rk~q!xa* ~q!xa~q!, ~2.1!

wherexa(q) are the Fourier modes of the scalar fields. The
functionRk is employed in order to prevent the propagation
of modes with characteristic momentaq2,k2. This can be
achieved, for example, by the choice

Rk~q!5
q2f k

2~q!

12 f k
2~q!

, ~2.2!

with

f k
2~q!5expS 2

q2

k2D . ~2.3!

We point out that there are many alternative choices for
Rk(q), some of which were used in Refs.@7–12#. The physi-
cal results which are obtained when the cutoff is removed are
scheme independent. The choice of Eqs.~2.2!, ~2.3! is the
most natural one@9# and is convenient for numerical calcu-
lations. For a massless field the inverse propagator derived
from the actionS1DS has a minimum;k2. The modes
with q2@k2 are unaffected by the infrared cutoff, while the
low frequency modes withq2!k2 are cut off, asRk acts like
a mass term

lim
q2→0

Rk~q!5k2. ~2.4!
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We subsequently introduce sources and define the genera
functional for the connected Green functions for the acti
S1DS. Through a Legendre transformation we obtain t
generating functional for the one particle irreducible~1PI!
Green functionsG̃k@fa#, wherefa is the expectation value
of the field xa in the presence of sources. The use of t
modified propagator for the calculation ofG̃k results in the
effective integration of only the fluctuations withq2.k2.
Finally, the effective average action is obtained by removi
the infrared cutoff:

Gk@fa#5G̃k@fa#2
1

2E ddq

~2p!d
Rk~q!fa* ~q!fa~q!.

~2.5!

For k equal to the ultraviolet cutoffL, Gk becomes equal to
the classical actionS ~no effective integration of modes take
place!, while for k→0 it tends towards the effective actio
G ~all the modes are included! which is the generating func-
tional of the 1PI Green functions computed fromS ~without
infrared cutoff!. For intermediate values ofk the effective
average action realizes the concept of a coarse-grained e
tive action in the sense of Ref.@30#.

The interpolation ofGk between the classical and the e
fective action makes it a very useful field theoretical too
The means for practical calculations is provided by an ex
flow equation3 which describes the response of the effecti
average action to variations of the infrared cuto
@ t5 ln(k/L)# @9#:

]

]t
Gk@f#5

1

2
TrS @Gk

~2!~f!1Rk#
21

]

]t
RkD . ~2.6!

HereGk
(2) is the second functional derivative of the effectiv

average action with respect tofa. For real fields it reads, in
momentum space,

~Gk
~2!!b

a~q,q8!5
d2Gk

dfa* ~q!dfb~q8!
, ~2.7!

with

fa~2q!5fa* ~q!. ~2.8!

The nonperturbative flow equation has the form of a on
loop expression involving the exact inverse propagatorGk

(2)

together with an infrared cutoff provided byRk . No contri-
butions from higher loops appear in this exact equation.

For the solution of Eq.~2.6! one has to develop an effi
cient truncation scheme. The form of the effective avera
action is constrained by the (1↔21, 2↔22, 1↔2) sym-
metry. However, there is still an infinite number of invarian
to be considered. Throughout this paper we shall work w
an approximation which neglects the effects of wav
function renormalization. We shall, therefore, keep only
classical kinetic term in the effective average action

3See Ref.@31# for other versions of exact renormalization-grou
equations.
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Gk5E ddxHUk~r1 ,r2!1
1

2
]mfa]mfaJ , ~2.9!

and neglect all invariants which involve more derivatives of
the fields. We have used the definitionr15

1
2f1

2 and similarly
for r2 . The justification for our approximation lies in the
smallness of the anomalous dimension, which is expected to
beh.0.0320.04 for the three-dimensional theory. We esti-
mate the corrections arising from the proper inclusion of
wave-function renormalization effects to be of the same or-
der ash ~a few percent!. An improved treatment will be
given elsewhere@36#. In order to obtain an evolution equa-
tion for Uk from Eq. ~2.6!, we have to expand around a
constant field configuration@so that the derivative terms in
the parametrization~2.9! do not contribute to the left-hand
side ~LHS! of Eq. ~2.6!#. Equation~2.6! then gives@8–10#

]

]t
Uk~r1 ,r2!5

1

2E ddq

~2p!d S 1

P~q2!1M1
2

1
1

P~q2!1M2
2D ]

]t
Rk~q!. ~2.10!

P(q2) results from the combination of the classical kinetic
contributionq2 and the regulating termRk into an effective
inverse propagator~for massless fields!

P~q2!5q21Rk5
q2

12 f k
2~q!

, ~2.11!

with f k
2(q) given by Eq.~2.3!. For q2@k2 the inverse ‘‘av-

erage’’ propagatorP(q) approaches the standard inverse
propagatorq2 exponentially fast, whereas forq2!k2 the in-
frared cutoff prevents the propagation.M1,2

2 are the eigenval-
ues of the mass matrix at the point (r1 ,r2),

M1,2
2 ~r1 ,r2!5

1

2
$U11U212U11r112U22r2

6@~U12U212U11r122U22r2!
2

116U12
2 r1r2#

1/2%, ~2.12!

and we have introduced the notationU15]Uk /]r1 ,
U125]2Uk /]r1]r2 , etc.

Equation~2.10! is the master equation for our investiga-
tion. It is a nonlinear partial differential equation for three
independent variables (t, r1 , r2). Since it is difficult to
solve it exactly we again resort to some approximation
scheme. We first introduce a Taylor expansion of
Uk(r1 ,r2) around its minimum. This turns Eq.~2.10! into an
infinite system of ordinary~coupled! differential equations
for thek dependence of the minimum and the derivatives of
the effective average potential, with independent variable
t5 ln(k/L). We solve this system approximately by truncat-
ing at a finite number of derivatives. This approach has been
used in the past for the study of the O(N)-symmetric scalar
theory. It has provided a full, detailed picture of the high-
temperature phase transition for this theory@6,10–12#, with
accurate determination~at the few percent level! of such
nontrivial quantities as the critical exponents@10#. An esti-
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mate @32# of the residual errors for high level truncation
indicates that they are smaller than the uncertainties in
duced by the imprecise treatment of the wave-function ren
malization effects. For this work we shall use the lowe
level truncation, which keeps only the second derivatives
the potentialU11,U22,U12. This will be sufficient for a re-
liable determination of the phase diagram and a crude e
mate of universal quantities such as critical exponents a
crossover curves. For an improved treatment see Ref.@35#,
and for a discussion which takes into account the next le
in the truncation forUk and the first corrections arising from
wave-function renormalization see Ref.@36#.

III. THE PHASE STRUCTURE OF THE
THREE-DIMENSIONAL THEORY

Before performing a more detailed analysis we would li
to gain some understanding of the phase structure of
theory. As we have already mentioned in the introductio
the behavior of the four-dimensional theory near a hig
temperature second-order phase transition is expected
have a three-dimensional character. The reason for this is
divergence of the correlation length for the fluctuations
the system~the mass of some fields goes to zero!. As a result,
the characteristic length scale for the critical system is mu
larger than the periodicity in the imaginary time directio
due to temperature4 ~for details see the following sections!.
This leads to dimensional reduction and the critical syst
has effectively three-dimensional behavior. For this reas
we are interested in the phase structure of the thr
dimensional theory. More specifically we want to investiga
the possible existence of fixed points which govern the d
namics of second-order phase transitions.

For the purpose of this section we parametrize the pot
tial by its derivatives at the origin (S regime!:

m̄2~k!5U1~0!5U2~0!, l̄~k!5U11~0!5U22~0!,

ḡ~k!5U12~0!, x~k!5
ḡ~k!

l̄~k!
21. ~3.1!

The equality ofU1 ,U2 and U11,U22 is imposed by the
(1↔21, 2↔22, 1↔2) symmetry of the theory. For the
potential to be bounded we also requirex.22. For a rough
estimate the three-dimensional couplings are related to
effective couplings of the four-dimensional theory at hig
temperature by l̄(2pT)5l4T,ḡ(2pT)5g4T, m̄2(2pT)
5m4

21cT2, with appropriatec ~for details see Secs. VI and
VII !. Evolution equations for the above parameters are
tained by taking derivatives of Eq.~2.10! with respect to
r1,2. It is convenient to define the dimensionless coupling

m2~k!5
m̄2~k!

k2
, l~k!5

l̄~k!

k
, g~k!5

ḡ~k!

k
. ~3.2!

4If the phase transition is strongly first order this need not be tr
because the mass of the fluctuations does not go to zero and
correlation length does not diverge near the transition.
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In terms of these quantities the evolution equations have
scale-invariant form, in the sense that the RHS does not e
plicitly involve a dependence onk:

dm2

dt
522m21v3~41x!lL1

3~m2!, ~3.3!

dl

dt
52l2v3~1012x1x2!l2L2

3~m2!, ~3.4!

dx

dt
5v3~x11!x~x22!lL2

3~m2!, ~3.5!

wherev351/8p2. The threshold functionsLn
3(w) suppress

the contributions of massive modes to the evolution equ
tions. They are studied in detail in the following sections.

We are interested in the fixed points of the last set o
equations. For anyx, there is an ultraviolet-attractive Gauss-
ian fixed point withm25l50. There are also three fixed
points with at least one infrared attractive direction@25–28#.
They all appear form2,0, l.0. ~The exact values are not
important since the discussion in this section is only qualita
tively correct.! For their identification we use their standard
names in statistical physics@25,27#. ~a! The Heisenberg fixed
point hasx50 and corresponds to a theory with symmetr
increased to O~2!, as we have discussed in the introduction
~b! The Ising fixed point hasx521 and corresponds to two
disconnectedZ2-symmetric theories.~c! The cubic fixed
point hasx52 and corresponds to two disconnected theorie
if the fields are redefined according to Eq.~1.5!. All these
points are infrared unstable in them2 direction and are lo-
cated on a critical surfacemcr

25m cr
2 (l,x),0. Solutions of

the evolution equations which start above the critical surfac
with m2.mcr

2 , flow towards the region of positivem2 for
t→2`, and correspond to theories in the symmetric phas
Solutions withm2,mcr

2 flow deep into the region of negative
m2 and correspond to theories in the phase with spontaneo
symmetry breaking.

The relative stability of the fixed points on the critical
surface determines which one governs the dynamics of t
phase transition very close to the critical temperature. For
first simple investigation of the relative stability in the
(l,x) directions we fixm2 to an arbitrary value~we choose
m250 for convenience! and solve Eqs.~3.4!, ~3.5! numeri-
cally. The results are presented in Fig. 1. We observe that
three fixed points are attractive in thel direction. However,
the Ising and cubic fixed points are repulsive in thex direc-
tion, while the Heisenberg fixed point is totally attractive. We
observe four disconnected regions.

~a! 2.x.0. The trajectories flow away from the cubic
and towards the Heisenberg fixed point.

~b! 0.x.21. The trajectories flow away from the Ising
and towards the Heisenberg fixed point.

~c! x.2. The trajectories flow away from the cubic fixed
point and into a region of largex and smalll. Eventually
l turns negative at a finite value ofk. @This can be verified
through the explicit solution of Eqs.~3.4!, ~3.5! in this re-
gion.# At this point an instability arises, as the potentia
seems not to be bounded from below. Our treatment is n
sufficient for a detailed investigation of the nature of thi

e,
the
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instability, since our truncation scheme is very crude. A
tailed discussion is given in Ref.@35#, where improved trun-
cations are employed. It is shown that the instability is
real since the higher derivatives of the potential remain p
tive. The change of sign forl corresponds to the disappea
ance of a false vacuum of the theory and results in a fi
order phase transition. We shall return to this point in
following sections.

~d! x,21. The trajectories flow away from the Isin
fixed point and cross the linex522 at a finitek. This again
implies the presence of an instability whose true natur
related to the disappearance of a false vacuum. The m
exhibits a first-order transition also forx,21. Flows that
start on the linesx50, 21, 2 remain on these lines. N
trajectories exist which connect the four regionsx.2,
2.x.0, 0.x.21, x,21. All this is in agreement with
the discussion at the end of the introduction.

The diagram of Fig. 1 determines the phase structur
the theory when the behavior of the system becomes e
tively three-dimensional~i.e., close to the critical tempera
ture!. For parameters in the regions 2.x.0, 0.x.21 we
expect second-order phase transitions, with critical dynam
governed by the three fixed points. These two regions ca
mapped onto each other through a redefinition of the fie
according to Eqs.~1.5! and~1.6!. This indicates that the Isin
and cubic fixed points should lead to identical universal
havior ~and therefore to identical universal quantities, su
as critical exponents!. Very close to the critical temperatur
we expect the Heisenberg fixed point to dominate the
namics, but the other two can be relevant if the initial valu
of the running parameters are sufficiently close to them
the parameter regionsx.2, x,21 we expect first-orde
phase transitions. In the following sections we shall ve
the above conclusions with improved quantitative accura

IV. TRUNCATIONS OF THE EVOLUTION EQUATION

We proceed now to a more detailed study of the evolu
equation and its truncations. As we have discussed at the
of Sec. II, we parametrize the effective average potentia
its minimum and its derivatives at the minimum. For th

FIG. 1. Flows on the (l,x) plane for the three-dimensiona
theory. The evolution is determined by Eqs.~3.4!, ~3.5! with
m250.
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work we shall use a truncation that preserves up to second
derivatives of the potential.

In thesymmetric regime~which we denote byS) the mini-
mum of the potential is atr10(k)5r20(k)50 and we use the
definitions of Eq.~3.1!. The evolution equations in arbitrary
dimensiond automatically preserve the symmetry. They read

dm̄2

dt
5vdk

d22~41x!l̄L1
d~m̄2!, ~4.1!

dl̄

dt
52vdk

d24~1012x1x2!l̄2L2
d~m̄2!, ~4.2!

dx

dt
5vdk

d24~x11!x~x22!l̄L2
d~m̄2!, ~4.3!

with the dimensionless integralsLn
d(w) given by

Ln
d~w!52nk2n2dp2d/2GS d2D E ddq

]P

]t
~P1w!2~n11!

52nk2n2dE
0

`

dx xd/221
]P

]t
~P1w!2~n11!. ~4.4!

HereP is given by Eq.~2.11!, and

vd
2152d11pd/2GS d2D . ~4.5!

In the spontaneously broken regimethere are two possi-
bilities consistent with the symmetry:

~I! In theM regime the minimum of the potential is lo-
cated symmetrically between the r axes at
r10(k)5r20(k)5

1
2r0(k). We define the couplings

l̄~k!5U11~r0!5U22~r0!.0,

ḡ~k!5U12~r0!, x~k!5
ḡ~k!

l̄~k!
21. ~4.6!

The requirement that the point (1
2r0 ,

1
2r0) is the minimum of

the potential imposesx,0, while the potential is bounded at
infinity for x.22. For x50 the symmetry of the theory is
increased to O~2! and the potential develops a series of de-
generate minima along the circler101r205r0 . For x521
the theory decomposes into two disconnected
Z2(f1,2↔2f1,2)-symmetric models. The mass eigenvalues
are given byM1

25(21x)l̄r0 , M2
252xl̄r0 . The evolution

equation for the minimumr0(k) is obtained by considering
the total t derivative of the conditions]Uk /(]r1)r0
5]Uk /(]r2)r050 @6,8#. Again, the truncated evolution
equations automatically preserve the symmetry and read

dr0
dt

52vdk
d22S 3L1d@~21x!l̄r0#1

22x

21x
L1
d~2xl̄r0! D ,

~4.7!

l



d

s

e

it
f
n

-

r
-

-
-
de

4558 53S. BORNHOLDT, N. TETRADIS, AND C. WETTERICH
dl̄

dt
52vdk

d24
3xl̄

r0

11
x

4

11x
$L1

d@~21x!l̄r0#2L1
d~2xl̄r0!%

2vdk
d24l̄2F9S 11

x

2D
2

L2
d@~21x!l̄r0#

1S 12
x

2D
2

L2
d~2xl̄r0!G , ~4.8!

dx

dt
5vdk

d22
3

r0

21x

11x S x1
x2

4 D $L1
d@~21x!l̄r0#

2L1
d~2xl̄r0!%1vdk

d24xl̄F9S 11
x

2D
2

L
d
[ ~21x!l̄r0]

1S 12
x

2D
2

L2
d~2xl̄r0!G . ~4.9!

For x50 the above evolution equations reproduce the equ
tions of the O~2!-symmetric theory, while forx521 they
reproduce those of theZ2-symmetric one~compare with
Refs.@6,10#!.

~II ! In the regime which we denote byAX, two degener-
ate minima of the potential exist on each one of ther axes.
Without loss of generality we concentrate on the minimum
r10(k)5r0(k),r20(k)50. At the level of truncations that we
are considering, the remaining parameters of the theory
conveniently defined according to Eq.~4.6! and

m̄2
2~k!5U2~r0!. ~4.10!

The symmetry demands that for the truncated potential

m̄2
2~k!5x~k!l̄~k!r0~k!. ~4.11!

The requirement that the point (r0 ,0) is the minimum of the
potential imposesx.0. As before, forx50 the symmetry of
the theory is increased to O~2!. The mass eigenvalues are
given byM1

252l̄r0 ,M2
25xl̄r0 . At this point we encounter

a difficulty. The derivation of truncated evolution equation
is hindered by the fact that the parametrization around
minimum located on one of the axes is asymmetric betwe
the two fields. As a result the symmetry (f1↔f2), is not
maintained by the evolution equations at each level of t
truncations. More specifically, the flow equations for the co
plingsU11(r0), U22(r0) are different. Also, Eq.~4.11! is not
preserved by the evolution equation. This is not surprisin
since these relations are not expected to hold for the ex
potential without truncation. It is easy to see that they a
altered as soon as third derivatives of the potential are
cluded. This is in contrast with what happens in theM re-
gime, where the formulation is symmetric between the tw
fields. For example, in theM regime the couplingsU11,
U22 are expected to remain equal at every level of trunc
tions, and indeed this is guaranteed by the evolution eq
tions. The above remarks indicate a natural method of p
serving the (1↔21, 2↔22, 1↔2) symmetry in theAX
regime. A redefinition of fields and couplings in analogy t
Eqs.~1.5!, ~1.6! results in a rotation of the axes by 45°, thu
transforming theAX into theM regime. The evolution equa-
a-
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o
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tions for the redefined quantities have already been worke
out and are given by Eqs.~4.7!–~4.9!. By simply rewriting
them in terms of the old quantities we obtain

dr0
dt

52vdk
d22@3L1

d~2l̄r0!1~11x!L1
d~xl̄r0!#,

~4.12!

dl̄

dt
52vdk

d24l̄2@9L2
d~2l̄r0!1~11x!2L2

d~xl̄r0!#,

~4.13!

dx

dt
5vdk

d22
6

r0

x1
x2

4

12
x

2

@L1
d~2l̄r0!2L1

d~xl̄r0!#

1vak
d24xl̄@9L2

d~2l̄r0!1~11x!2L2
d~xl̄r0!#.

~4.14!

For x50 the above evolution equations reproduce the one
of the O~2!-symmetric theory. Another special point is
x52 for which the theory, when expressed in terms of th
redefined fieldsf̃1 ,f̃2 , decomposes into two disconnected
Z2(f̃1,2↔2f̃1,2)-symmetric models. We should point out
that Eqs.~4.12!–~4.14! could have been obtained by defining
l 5̄U11(r0) andx5U2(r0)/U11(r0)r0 @in agreement with
Eq. ~4.11!# and inserting Eqs.~4.6!, ~4.10! in the RHS of the
flow equations. The advantage of the redefinition is that
makes transparent how this apparently arbitrary choice o
parameters preserves the original symmetry at this truncatio
level.

In the following sections we shall use the evolution equa
tions ~4.1!–~4.3!, ~4.7!–~4.9!, and ~4.12!–~4.14!, for theS,
M , and AX regimes respectively, in order to obtain the
renormalized theory in its various phases.

V. THE INTEGRALS Ln
d FOR ZERO

AND NONZERO TEMPERATURE

The integralsLn
d(w), defined in Eq.~4.4!, have been dis-

cussed extensively in Refs.@8,10,33# @for various shapes of
the infrared regulating functionRk(q), for which Eqs.~2.2!,
~2.3! are the most natural choice@9##. We refer the reader to
Appendix A of Ref.@10# for a summary of their properties.
The most interesting property ofLn

d(w), for our discussion,
is that they fall off for large values ofw/k2, following a
power law. As a result they introduce threshold behavior fo
the contributions of massive modes to the evolution equa
tions. It is obvious from Eqs.~4.1!–~4.3!, ~4.7!–~4.9!, and
~4.12!–~4.14!, for theS, M , andAX regimes, respectively,
that the various contributions to the evolution equations in
volve Ln

d integrals with the mass eigenvalues as their argu
ments. When the running squared mass of a massive mo
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becomes much larger than the scalek2 ~at which the system
is probed!, these contributions vanish and the massive mo
decouple. We evaluate the integralsLn

d(w) numerically and
use numerical fits for the solution of the evolution equation

In order to extend the formalism of the previous section
nonzero temperature we only need to recall that, in Euc
ean formalism, nonzero temperatureT results in periodic
boundary conditions in the time direction~for bosonic
fields!, with periodicity 1/T @34#. This leads to a discrete
spectrum for the zero component of the momentumq0:

q0→2pmT, m50,61,62, . . . . ~5.1!

As a consequence the integration overq0 is replaced by a
summation over the discrete spectrum

E ddq

~2p!d
→T(

m
E dd21qW

~2p!d21 . ~5.2!

With the above remarks in mind we can easily general
our master equation~2.10! in order to take into account the
temperature effects. For the temperature-dependent effec
average potentialUk(r1 ,r2 ,T) we obtain

]

]t
Uk~r1 ,r2 ,T!5

1

2
~2p!2~d21!T(

m
E dd21qW S 1

P1M1
2

1
1

P1M2
2D ]

]t
Rk , ~5.3!

with the implicit replacement

q2→qW 214p2m2T2 ~5.4!

in Eqs.~2.2!, ~2.3!, and~2.11! for Rk andP. Again, the usual
temperature-dependent effective potential@2–4# is obtained
from Uk(r1 , r2 , T) in the limit k→0. As before, we can
parametrizeUk(r1 , r2 , T) in terms of its minimum and its
derivatives at the minimum. The evolution equations a
given by~4.1!–~4.3!, ~4.7!–~4.9!, and~4.12!–~4.14!, with the
obvious generalizations

r0~k!→r0~k,T!, m̄2~k!→m̄2~k,T!,

l̄~k!→l̄~k,T!, x~k!→x~k,T!. ~5.5!

TheLn
d integrals for nonvanishing temperature read

Ln
d~w,T!522nk2n2dp2d/2 11GS d2DT(m E dd21qW

]P

]T

3~P1w!2~n11!, ~5.6!

where the implicit replacement~5.4! is assumed inP. Their
basic properties can be established analytically. ForT!k the
summation over discrete values ofm in the expression~5.6!
is equal to the integration over a continuous range ofq0 up to
exponentially small corrections. Therefore

Ln
d~w,T!5Ln

d~w! for T!k. ~5.7!

In the opposite limitT@k the summation overm is domi-
nated by them50 contribution. Terms with nonzero value
des

s.
to
lid-

ize

tive

re

s

of m are suppressed by;exp@2(mT/k)2#. The leading con-
tribution gives the simple expression

Ln
d~w,T!5

vd21

vd

T

k
Ln
d21~w! for T@k, ~5.8!

with vd defined in~4.5!. The two regions ofT/k in which
Ln
d(w,T) is given by the equations~5.7!, ~5.8! are connected

by a small interval, in which the exponential corrections re-
sult in a more complicated dependence onw and T. The
above conclusions are verified by a numerical calculation of
L1
4(w,L). In Fig. 2 we plot5 L1

4(w,T)/L1
4(w) as a function of

T/k, for various values ofw/k2. We distinguish three re-
gions.

~a! T/k<u1 . This is the low temperature regionwhere
L1,2
4 (w,T) are very well approximated by their zero tempera-

ture value. We takeu150.15 and useL1,2
4 (w,0) in the evo-

lution equations fork>T/u1 .
~b! u1,T/K,u2 . In the threshold regionwe perform a

numerical fit of the curve corresponding tow50 which we
use for all values ofw. This is a good approximation since
the relevantw/k2 turns out to be small in this region~see
next sections!.

~c! T/k>u2 . We takeu250.4. For thehigh temperature
regionswe use, for the numerical solution of the evolution
equations,

L1,2
4 ~w,T!54

T

k
L1,2
3 ~w!. ~5.9!

The three-dimensional character of the effective theory for
modes withq2!T2 manifests itself in the appearance of the
three-dimensional momentum integrals. It acquires here a
precise quantitative meaning.

5Comparison with results presented in Ref.@6# shows that the
form of these functions depends on the details of the infrared regu-
lating functionRk(q). However, the physical results, which are
obtained when the cutoff is removed, are independent of the shape
of the cutoff. This will be apparent in the next sections and is a
verification of the scheme independence of our conclusions.

FIG. 2. L1
4(w,T)/L1

4(w) as a function ofT/k, for various values
of w/k2.
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We have now developed the necessary formalism for
study of the four-dimensional zero and nonzero temperat
theory. In the following two sections we study the evolutio
of the running parameters of the theory, which leads to
determination of the renormalized theory at zero and nonz
temperature.

VI. THE RUNNING IN THE LOW-TEMPERATURE
AND THRESHOLD REGIONS

In Sec. IV we derived the zero temperature evoluti
equations for the parameters~masses, vacuum expectatio
values, and couplings! of the truncated theory as a functio
of the scalek in the various regimes (S,M ,AX). In Sec. V
we generalized the formalism in order to take into accou
nonzero temperature effects. The evolution equations can
solved for a given set of initial conditions, specified as t
values of the running parameters at a scale equal to the
traviolet cutoff of the theory (k5L). As we pointed out in
Sec. II, at this scale the effective average action is equa
the classical action. Therefore, the initial values for the p
rameters correspond to their classical~or bare! values. Also,
the discussion in Sec. V has shown that in the lo
temperature region (k>T/u1) there is no difference between
the zero and nonzero temperature theory. As a result, we
define the theory in terms of the classical values of its p
rameters atk5L@T, independently of the temperature. Th
integration of the evolution equations gives the running co
plings at lower scales. No temperature effects are observe
the evolution inside the low-temperature region (k>T/u1).
We can, therefore, use the values of the running coupling
k5T/u1 for the definition of the theory, since they are i
one-to-one correspondence with the classical couplings,
dependently of the temperature. This turns out to be the m
convenient choice and we shall use it for the rest of t
paper. The temperature starts to become important when
evolution enters the threshold region (T/u1.k.Tu2). In the
high-temperature region (k<T/u2) the evolution is effec-
tively three-dimensional, as we discussed in Sec. V. Fina
in the limit k→0 the effective average action becomes t
effective action, and the integration of the evolution equ
tions gives the renormalized values for the couplings at va
ous temperatures. All the information on the various pha
of the theory is contained in these renormalized couplin
and their temperature dependence.

We have seen in the introduction and in Sec. IV that t
AX regime (x.0) and theM regime (x,0) can be mapped
onto each other through a simple redefinition of the fields@in
analogy to Eqs.~1.5!, ~1.6!#. For this reason, the physica
behavior in the two regimes is the same. For example,
cubic and Ising fixed points generate the same universal
havior ~characteristic of aZ2-symmetry scalar theory!. For
this reason, we shall concentrate on the regionx.0 only. All
the results can be easily extended to the regionx,0, through
transformations analogous to Eqs.~1.5!, ~1.6!.

Since we are interested in symmetry restoration at n
zero temperature, we first consider the theory in the spon
neously broken regime. The evolution equations in theAX
regime~which is the relevant one forx.0) in four dimen-
sions and nonzero temperature can be easily derived f
Eqs.~4.12!–~4.14! and read
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dr0
dt

52v4k
2@3L1

4~2l̄r0!t1~2l̄r0 ,T!

1~11x!L1
4~xl̄r0!t1~xl̄r0 ,T!#, ~6.1!

dl̄

dt
52v4l̄

2@9L2
4~2l̄r0!t2~2l̄r0 ,T!

1~11x!2L2
4~xl̄r0!t2~xl̄r0 ,T!#, ~6.2!

dx

dt
5v4

6

r0

x1
x2

4

12
x

2

@L1
4~2l̄r0!t1~2l̄r0 ,T!

2L1
4~xl̄r0!t1~xl̄r0 ,T!#

1v4xl̄@9L2
4~2l̄r0!t2~2l̄r0 ,T!

1~11x!2L2
4~xl̄r0!t2~xl̄r0 ,T!#, ~6.3!

wherev451/32p2. We have not indicated explicitly thek
and T dependence of the running parameters
r0(k,T), l̄(k,T), x(k,T). They are defined at zero tem-
perature according to Eqs.~4.6!, ~4.10!, and generalized for
nonzero temperature according to Eq.~5.5!. The functions
t1,2 are defined as

tn~w,T!5
Ln
4~w,T!

Ln
4~w!

, ~6.4!

with t1(w,T) plotted in Fig. 2.
At zero temperature one hastn(w,0)51 and the evolution

equations have only one infrared attractive fixed point, the
Gaussian one. In the limit of smalll̄ we shall neglect the
slow logarithmic running ofl̄, which is eventually stopped
by the mass terms in the threshold functionsL1,2

4 . Similarly
the running ofx can also be neglected since it is suppressed
by l̄/32p2. @For smalll̄ the difference of the twoL1

4 func-
tions in the first line of Eq.~6.3! gives a contribution
}l̄L2

4(0).# For largel̄ the evolution equations can be inte-
grated numerically and the small resulting corrections can b
reliably computed. This has been done in Ref.@6# for the
O(N)-symmetric scalar theory. In this paper we concentrate
on small couplings for which analytical expressions can be
obtained. Equation~6.1! can be integrated easily for smalll̄
and we obtain@L1

4(0)522#

r0~k,0!5r0S Tu1D1
1

32p2 ~x14!Fk22S Tu1D
2G , ~6.5!

where we used the pointk5T/u1 instead ofk5L to start the
evolution, as we have explained in the first paragraph of thi
section. We define the renormalized couplings of the theory
in the limit k→0 as6

6In the case that Goldstone modes are present~as for x50) the
couplings are defined at some appropriate nonzerok. The same
applies for nonzero temperature. This does not affect our results fo
small l̄. For a detailed discussion see Ref.@6#.
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r05r0~0,0!, lR5l̄~0,0!, xR5x~0,0!, ~6.6!

and conclude that

r0S Tu1D5r01
1

32p2 ~xR14!S Tu1D
2

. ~6.7!

At nonzero temperature, the evolution in the low
temperature region (k>T/u1) is identical to the zero-
temperature case. In the threshold region (T/u1.k.T/u2),
the form of t1,2(w,T) is not given by a simple analytical
expression. For smalll̄ we neglect the running ofl̄,x in this
region and find

r0S Tu2 ,TD 5r0S Tu1D 2
1

16p2 ~x14!T2I

5r01
1

16p2 ~xR14!T2S 1

2u1
2 2I D ,

l̄S Tu2 ,TD5l̄S Tu1D 5lR, xS Tu2 ,TD5xS Tu1D5xR ,

~6.8!

where

I5E
1/u2

1/u1
dy yt1S 0,1yD , ~6.9!

and we have made use of the fact thatt1
4(w,T) depends on

T only through the combinationT/k. The integralI can be
evaluated numerically. Foru150.15, u250.4 we find
I519.97. Equation~6.8! set the initial values for the evolu-
tion in the high-temperature region.

VII. THE RUNNING IN THE HIGH-TEMPERATURE
REGION

In the high-temperature region (k<T/u2) the functions
L1,2
4 (w,T) are given by the simplified expression~5.9!. We

can rewrite Eqs.~6.1!–~6.3! in terms of effective three-
dimensional couplings

r08~k,T!5
r0~k,T!

T
, l̄8~k,T!5l̄~k,T!T,

ḡ8~k,T!5ḡ~k,T!T, x~k,T!5
ḡ8~k,T!

l̄8~k,T!
21. ~7.1!

The resulting flow equations are exactly the ones of t
three-dimensional theory at zero temperature, as given
Eqs. ~4.12!–~4.14! with d53. In order to make their fixed-
point structure more transparent we define the dimensionl
parameters

k~k,T!5
r08~k,T!

k
5

r0~k,T!

kT
,

l~k,T!5
l̄8~k,T!

k
5

l̄~k,T!T

k
,

g~k,T!5
ḡ 8~k,T!

k
5
ḡ~k,T!T

k
. ~7.2!
-

he
by

ess

In terms of these we obtain the scale-invariant form of the
evolution equations

dk

dt
52k2v3@3L1

3~2lk!1~11x!L1
3~xlk!#, ~7.3!

dl

dt
52l2v3l

2@9L2
3~2lk!1~11x!2L2

3~xlk!#,

~7.4!

dx

dt
5v3

6

k

x1
x2

4

12
x

2

@L1
3~2lk!2L1

3~xlk!#1v3xl@9L2
3~2lk!

1~11x!2L2
3~xlk!#. ~7.5!

No explicit dependence on the scalek appears on the r.h.s.
The first of the above equations defines a critical surface

kcr5kcr(l,x). It consists of the pointskcr for which the
solution of Eqs.~7.3!–~7.5! approaches, for large negative
t, a scaling solution withk, l, andx independent oft. ~For
a weakly first-order transition the scaling holds only approxi-
mately.! Every point on the critical surface is unstable in the
k direction. Trajectories which start atk.kcr continue to-
wards the region of largek, in such a way that
r0(k,T)5k(k,T)Tk reaches asymptotically a constant value
for k→0. As a result the renormalized theory settles down in
the phase with spontaneous symmetry breaking. If the evo-
lution starts atk,kcr , the flows cross the surfacek50 at
some finiteks . From this point on the system is in the sym-
metric regime. In order to continue the evolution, we define
appropriate parameters according to Eq.~3.1! and effective
three-dimensional couplings according to Eq.~7.1!. The re-
sulting evolution equations are the ones for the three-
dimensional theory in the symmetric regime, as given by
Eqs.~4.1!–~4.3! with d53. We define the dimensionless pa-
rameter

m2~k,T!5
m̄2~k,T!

k2
, ~7.6!

andl(k,T), g(k,T) according to Eq.~7.2!. In terms of these
quantities the evolution equations in the symmetric regime
are given by Eqs.~3.3!–~3.5!. We start the evolution in this
regime atk5ks with m2(ks ,T)50 andl(ks ,T), x(ks ,T)
taking their values at the end of the running in the spontane-
ously broken regime. Fork→0 the evolution is stopped by
the mass terms in the threshold functionsL1,2

3 and the theory
settles down in the symmetric phase. Obviously the critical
temperature Tcr is related to k cr @for given
l(Tcr /u2), x(T cr /u2)# by

kS Tcru2
D5kcr . ~7.7!

On the critical surface there are two fixed points with at
least one attractive direction for the flow towards the infrared
(k→0): ~a! the cubic fixed point located at

kc55.67431022, lc58.747, xc52, ~7.8!
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and ~b! the Heisenberg fixed point located at

kH54.48631022, lH515.265, xH50. ~7.9!

Both fixed points are attractive in thel direction, but the
cubic fixed point is unstable in thex direction while the
Heisenberg one is stable. For fixedx there is also the infrared
unstable Gaussian fixed point. It is located at

kG52v3~x14!L1
3~0!5

1

8p3/2~x14!lG50. ~7.10!

These fixed points are the same as the ones observed in
III. The only difference lies in the parametrization. In Sec.
we used an expansion around the origin of the potential
the evolution equations in the symmetric regime. For t
reason the fixed points appeared for negative values of
mass parameter~the curvature at the origin!, indicating a
minimum away from the origin. In this section we rely on
parametrization around the minimum of the potential, wh
results in increased quantitative accuracy for the truncati

The flows on the critical surface are qualitatively simil
to those in Fig. 1 forx.0. There are two disconnected re
gions:

~a! 2.x.0. The trajectories flow away from the cubi
fixed point and towards the Heisenberg fixed point. This
gion corresponds to a second order phase transition.

~b! x.2. The trajectories flow away from the cubic fixe
point and into a region of smalll and largex. Similarly to
our discussion in Sec. III, we expectl(k,T) to become nega-
tive at some finitek. This indicates that the minimum of th
potential becomes unstable~it turns into a maximum!. Our
crude truncation is not sufficient for the investigation of th
situation, since the higher derivatives of the potential
important. A detailed study is presented in Ref.@35# for the
four-dimensional theory at zero temperature. The dimens
ality of the theory is not crucial for the qualitative behavi
in this region of parameter space. The first term in the R
of Eq. ~7.4! ~which is present only for the effectively three
dimensional theory! is not important for largex. The second
term, which drives the dynamics, is the same as for the fo
dimensional theory~with the replacement ofv3L1

3 by v4L1
4

generating only quantitative corrections!. In Ref. @35# higher
derivatives of the potential are taken into account. Also
parametrization is used which simultaneously follows t
evolution of the potential at its minimum at nonze
r0(k,T) and at the origin. This permits the study of the gl
bal properties of the potential. It is found that during th
evolution in the regionx.2 a second minimum appears
the origin which subsequently becomes the absolute m
mum of the potential. This results in a discontinuity in th
order parameter and a first-order phase transition. At so
point in the evolution,l turns negative and the minimum a
nonzeror0 disappears. From this point on the deeper mi
mum at zero is the only minimum. During the whole evol
tion the higher derivatives stay positive guaranteeing that
potential remains bounded. We cannot reproduce the ab
picture within the crude truncation of a quartic polynomi
for the potential. Instead we shall give in Sec. XI an appro
Sec.
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mate solution of the evolution equation for the potential in
this region, which will demonstrate the existence of the first-
order transition.

VIII. THE CRITICAL TEMPERATURE

A quantity which can be easily calculated from the dis-
cussion in the last two sections is the critical temperature fo
the phase transitions. From Eqs.~6.8! and ~7.2! we obtain

kS Tu2 ,TD 5u2
r0
T2

1
u2
16p2 S 1

2u1
2 2I D ~xR14!,

lS Tu2 ,TD5u2lR, xS Tu2 ,TD5xR . ~8.1!

For smalll the critical surface, which separates the symmet-
ric phase from the phase with spontaneous symmetry brea
ing, goes through the Gaussian fixed point given by Eq
~7.10!. The critical temperature can be computed as the tem
perature for whichk(T/u2 ,T) coincides with the Gaussian
fixed pointkG . This gives

Tcr
2

r0
5

C

xR14
, C215

1

8p2 FAp

u2
2
1

2 S 1

2u1
2 2I D G ,

~8.2!

independently oflR . Substitution of the valuesu150.15,
u250.4, I519.97, which we computed in the first part of
this section, gives

C523.89. ~8.3!

We should point out that the above value for the critical
temperature is not strictly valid forxR.2. In this region the
first-order phase transition occurs fork(T/u2 ,T) slightly
above the critical surface. As a result the transition takes
place at a temperature slightly lower than the one given by
Eq. ~8.2!. In the language of the effective three-dimensional
theory, the distance from the phase transition can be param
etrized, for smalllR , in terms ofdkcr5k(T/u2,T)2kG .
We establish the connection between this quantity and th
temperature as

dkcr5kS Tu2 ,TD 2kG5u2r2S 1T2 2
1

Tcr
2 D . ~8.4!

The critical temperature can be calculated in high-
temperature perturbation theory through the perturbative ex
pansion of the effective potential@5# and its generalization to
nonzero temperature@2–4#. The calculation is straightfor-
ward and we do not present the details here. When the lea
ing term in the high-temperature expansion of the one-loop
contribution to the effective potential is retained, the critical
temperature is found to be

Tcr
2

r0
5

24

xR14
. ~8.5!

This value is in excellent agreement with our result. The
slight discrepancy is due to small deviations of the form of
L1
4(w,T) that we have used from the exact expression, and
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could probably be removed by using loweru1 and larger
u2 . It is well known that the perturbative expansion of th
effective potential breaks down near the critical temperat
for a second or weakly first-order phase transition, due
infrared divergences@6#. The surprising accuracy of the per
turbative estimate for the critical temperature is due to t
fact that the infrared divergences appear at temperatu
uT2Tcru/T cr5O (lR). For sufficiently smalllR the location
of the transition can be accurately computed. However, na
perturbative predictions for the details of the transition~even
its order! can be misleading. This is the case for our mod
for which the next terms in the naive high-temperature e
pansion of the perturbative result fail to reproduce even
correct qualitative picture7 ~apart from a small region in pa-
rameter space which will be discussed at the end of the n
section!. We emphasize that our approach may also be u
for large values oflR not so easily accessible to perturbatio
theory. In this casekG should be replaced by the relevan
exact point on the critical surfacekcr .

IX. SECOND-ORDER PHASE TRANSITION
AND THE CRITICAL BEHAVIOR

Let us briefly summarize the main results of the previo
sections. We have considered theories which at zero temp
ture are in the phase with spontaneous symmetry break
corresponding to theAX regime. They are defined in term
of the classical~bare! parameters at the ultraviolet cutof
L@T. The renormalized parameters are obtained by solv
the evolution equations fromk5L to k50. In the low-
temperature region (L>k>T/u1) there is no difference be-
tween the zero and nonzero temperature case for the ev
tion of the parameters of the theory. The first temperat
effects are observed in the threshold regio
(Tu1.k.T/u2). For small lR the values of the running
parameters at the beginning of the evolution in the hig
temperature region (k5T/u2) can be expressed in terms o
the renormalized parameters of the zero-temperature the
The relation is given by Eq.~6.8!. In the high-temperature
region (k<T/u2) the character of the evolution is effectivel
three-dimensional and is governed by the fixed points of
three-dimensional theory. These are most transparen
terms of the dimensionless parameters defined in Eq.~7.2!.
The evolution equations are given by Eqs.~7.3!–~7.5!. These
equations define a critical surfacekcr5kcr(l,x), which is
unstable in thek direction and separates the phase w
spontaneous symmetry breaking from the symmetric o
The system ends up in either phase depending on the va
of the running parameters atk5T/u2 . For smalll the criti-
cal surface goes through the Gaussian fixed point given
Eq. ~7.10!. As a result, for smalllR the crucial quantity is the
distance from the critical surfacedkcr5k(T/u2,T)2kG .
For dkcr.0 the theory ends up in the phase with spontan
ous symmetry breaking. Fordkcr,0 it ends up in the sym-
metric one. There is a direct connection betweendkcr and the

7Perturbation theory for gap equations@37# may lead to more
reliable results concerning the order of the transition but will fail f
critical exponents unless the effectively three-dimensional runn
of the quaratic scalar coupling is properly included.
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distance from the critical temperature, which is expressed in
Eq. ~8.4!.

In this section we discuss the region in parameter space
0,x,2 where the phase transition is second order. Suffi-
ciently near to the critical temperature the evolution is gov-
erned by the Heisenberg fixed point. In Fig. 3 we plot the
numerical solution of Eqs.~7.3!–~7.5! for the evolution in
the high-temperature region, for a theory with zero tempera-
ture renormalized parameterslR50.01, xR51 and critical
temperatureTcr

2 /r054.78. We display two trajectories,
which start slightly above and below the critical surface~and
therefore correspond to temperatures slightly below and
above the critical one!. We observe that the system flows
towards the Heisenberg fixed point which is attractive in
both thel andx directions. It stays around this fixed point
for several orders of magnitude int and then deviates to-
wards either the phase with spontaneous symmetry breakin
or the symmetric one. During the ‘‘time’’t5 ln(k/L) that the
system stays close the fixed point8 it loses memory of the
initial conditions of the evolution. Its dynamics is fixed
solely by the fixed point, which has a purely three-
dimensional character~as we demonstrated in Sec. VII!. As a
result we expect that the behavior of the theory near the
critical temperature is independent of the details of the zero
temperature theory. It must display universal critical behav-
ior characteristic of systems with Heisenberg fixed point. As
long ask(k,T) stays almost constant around its fixed point
valuekH andk→0 ast→2`, the minimum of the effective
average potential evolves towards zero according to

r0~k,T!5kHkT. ~9.1!

or
ing

8We refer to t5 ln(k/L) as ‘‘time’’ because it gives an intuitive
picture of the evolution. It should not be confused with real time
which plays no role in our study, as we are concerned with the static
effective potential.

FIG. 3. The evolution ofk, l, x in the high-temperature re-
gion, for temperatures slightly above and below the critical one, and
lR50.01, xR51, Tcr

2 /r054.78. The system approaches the
Heisenberg fixed point before deviating towards the symmetric
phase or the phase with spontaneous symmetry breaking.
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If the temperature is equal to the critical one, the syste
never leaves the fixed point andr0(0,Tcr)50. If the tempera-
ture is slightly belowTcr , k(k,T) eventually runs away from
the fixed point and diverges, so thatr0(k,T)5k(k,T)kT
reaches a constant nonzero value ask→0. This value corre-
sponds to the renormalized minimum of the effective pote
tial at nonzero temperature and we denote it by

r0~T!5r0~0,T!. ~9.2!

For a temperature slightly aboveTcr , k(k,T) @and therefore
r0(k,T)# runs to zero at a finiteks . From this point on the
system is in the symmetric regime and the appropriate e
lution equations are given by Eqs.~3.3!–~3.5!. We start the
evolution in this regime atk5ks with m2(ks ,T)50 and
l(ks ,T), x(ks ,T) taking their values at the end of the run
ning in the spontaneously broken regime. Fork→0 the evo-
lution is stopped by the mass terms in the threshold functio
L1,2
3 and the theory settles down in the symmetric phase. W

define the renormalized mass in the symmetric phase as

mR
2~T!5m̄2~0,T!. ~9.3!

We also define the renormalized couplings in both phases

lR~T!5l̄~0,T!, xR~T!5x~0,T!. ~9.4!

It is important to point out that, while the system is stayin
close to the fixed point, the couplingl̄(k,T) evolves towards
zero according to

l̄~k,T!5lH

k

T
. ~9.5!

As a resultlR(T) goes to zero as the critical temperature
approached. Its strong renormalization nearTcr provides the
resolution of the problem of infrared divergences. The rat
lR(T)T/mR(T) does not diverge near the critical tempera
ture, in contrast tolRT/mR(T). ~HerelR is the renormalized
coupling of the zero-temperature theory, which is approx
mately equal to the bare one for small couplings.! We shall
not elaborate on this point, but we refer the reader to Ref.@6#
for an extensive discussion. We also mention that as the te
perature deviates from the critical one the system spends
‘‘time’’ t5 ln(k/L) near the critical point. Its flow deviates
from those depicted in Fig. 3 at earlier stages. As a result
universal behavior ceases to dominate.

The behavior of the renormalized theory at various tem
peratures is shown in Fig. 4 for zero temperature paramet
lR50.01, xR51 and critical temperatureTcr

2 /r054.78. We
observe thatr0(T) moves continuously to zero, indicating a
second-order phase transition. The massmR

2(T) is zero at
Tcr and positive for larger temperatures. The quartic coupli
lR(T) stays close to its zero temperature value for mo
temperatures, but is strongly renormalized towards zero n
Tcr . The ratio of couplingsxR(T) again takes its zero tem-
perature value, unless the temperature is sufficiently close
Tcr for the flow to reach the Heisenberg fixed point. Th
universal behavior nearTcr can be parametrized by critica
exponents, which we define similarly to Ref.@6# as
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r0~T!}~Tcr
22T2!2b, mR

2~T!}~T22Tcr
2 !2n,

lR~T!}~T22Tcr
2 !z, xR~T!}~T22Tcr

2 !m. ~9.6!

More precisely, 2b is given by the derivative of lnr0(T)
with respect to ln(Tcr

22T2), and similarly for the other pa-
rameters. The definition ofz andm applies only to the sym-
metric phase. The exponentb(T) is plotted in Fig. 5 along
with xR(T) @the lines marked by~a!# for temperatures ap-
proachingT cr for a theory withlR50.2, xR51. It is appar-
ent from the temperature dependence ofxR that nearTcr the
Heisenberg fixed point becomes important. During its evolu
tion the system stays long enough on the critical surface f
this fixed point to generate universal critical behavior. Th
exponentb(T) approaches a temperature-independent val

FIG. 4. The phase transition for a theory withlR50.01,
xR51, Tcr

2 /r054.78.

FIG. 5. The critical exponentsb(T),w(T) and the parameter
xR(T) as the phase transition is approached. The horizontal dott
lines indicate the values ofb at the two fixed points and the value
of w at the Cubic fixed point.~a! b(T),xR(T) for a theory with
lR50.2, xR51. ~b! b(T),w(T) for a theory withlR50.5 andxR
slightly smaller than 2. ~c! b(T),xR(T) for a theory with
lR50.2, xR51.99.
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which is independent oflR andxR ~as long asxR,2) and
characteristic of systems with Heisenberg critical behav
This value is

bH50.32 ~9.7!

in agreement with Ref.@6#. Two other exponents are fixed b
the scaling laws and the finite value of the rat
lR(T)T/mR(T). They arenH5zH52bH . The above values
for the exponents are in rough agreement with known valu
from three-dimensional field theory@27,38#. The agreement
improves dramatically when less restrictive truncations a
used for the study of the evolution equation for the potent
and wave-function renormalization effects are taken into
count @10#. We have performed this more accurate calcu
tion and obtained results which agree with the known valu
at the 4–5 % level. This work will be described in Ref.@36#.
Finally, the exponentm also approaches asymptotically
constant value@cf., Eq. ~7.5!#

mH5
nH
8p2 H 6

kH
@L1

3~2lHkH!2L1
3~0!#

1lH@9L2
3~2lHkH!1L2

3~0!#J 50.64. ~9.8!

X. TRICRITICAL POINT AND CROSSOVER

In the above discussion the Heisenberg fixed point w
the only one which played any role. This was expected sin
the cubic fixed point is repulsive in thex direction. Any flow
that starts sufficiently far from it is further repelled and th
system never feels its effect. However, it is possible that
values of the running parameters at the beginning of the e
lution in the high temperature region are within the reg ion
influence of the cubic fixed point. An example is given
Fig. 6, for a theory withlR50.01,xR slightly smaller than 2,

FIG. 6. The evolution ofk, l, x in the high temperature re-
gion, for temperatures slightly above and below the critical one, a
lR50.01, xR slightly smaller than 2,Tcr

2 /r053.98. The system
approaches first the cubic and then the Heisenberg fixed point,
fore deviating towards the symmetric phase or the phase with sp
taneous symmetry breaking.
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andTcr
2 /r053.98. As we have discussed in the introduction

and Sec. III, flows that start on the surfacex52 in parameter
space never move out of it. The flows depicted in Fig. 6 star
with x(T/u2,T)522dx and dx!1. For this reason, their
deviation from the surfacex52 is very slow. We display two
trajectories which start a small distancedkcr above and be-
low the critical surface@and therefore correspond to tempera-
tures slightly below and above the critical one, according to
Eq. ~8.4!#. For udkcru!dx!1 the flows stay on the critical
surface and close tox52 for a large initial part of the evo-
lution. During this ‘‘time’’ they approach the cubic fixed
point and stay near it. Finally,x(k,T) starts growing and the
system moves away from the repulsive~in the x direction!
cubic fixed point and towards the Heisenberg one. After i
approaches this attractive~in the x direction! fixed point the
evolution is similar to the one depicted in Fig. 3. Systems
which start with larger values ofudkcru behave similarly to
Fig. 6, but deviate from the critical surface at earlier stage
of the evolution. As a result, they can feel the influence o
both the cubic and Heisenberg fixed point, or only the cubic
one, or they can deviate from the critical surface too soon fo
any universal behavior to be induced. We calculate the reno
malized parameters of the theory~at various temperatures!
similarly to the previous subsection. Their behavior as a
function of temperature is analogous to that in Fig. 4. The
main difference concerns the small region aroundTcr . In this
region the temperature dependence should reflect the infl
ence of the two fixed points during the evolution. We first
concentrate on values ofdkcr for which the critical behavior
is dominated by the cubic fixed point. For this region we plot
in Fig. 5 the critical exponents corresponding tor0(T) and
xR(T) @lines marked with~b!#, which are defined according
to

r0~T!}~Tcr
22T2!2b, 22xR~T!}~Tcr

22T2!2w.
~10.1!

We observe that they reach constant values as the critic
temperature is approached. The value forb should be char-
acteristic of the cubic fixed point. We find

bc50.25 ~10.2!

and nc5zc52bc , in agreement with the scaling laws and
the finite value of the ratiolR(T)T/mR(T). We expect the
cubic fixed point to generate the universal behavior charac
teristic of an Ising system. This is due to the fact that the
theory decomposes into two disconnectedZ2-symmetric
theories forx52 ~see Introduction and Secs. III and IV!.
Indeed, the critical exponents that we have calculated are
exact agreement with the results of Ref.@6# for N51, which
were obtained at the same level of the truncation schem
Improved truncations result in values for the exponents
which are in agreement with three-dimensional field theory
@27,38# at the few percent level@36#. The exponent
w50.16 is a typical example of a crossover exponen
@25,27#. It is related to the growth of the unstable coupling at
the cubic fixed point, and therefore to the negative eigen
value of the matrix which governs the evolution of small
perturbations around the fixed-point value of the parameter
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We postpone a more detailed discussion of the crosso
behavior for a future publication@36#.

The behavior corresponding to lines~b! of Fig. 5 changes
if the critical temperature is further approached~extension of
the graph to the right!. Eventually the system moves awa
from the cubic fixed point and the exponentsb, n, z take
values different from those typical of an Ising system. Al
the temperature dependence of 22xR(T) cannot be de-
scribed by a crossover exponent anymore andxR(T) will
rather follow Eqs.~9.6!, ~9.8!. We display this behavior in
Fig. 5 @lines marked by~c!#. The values ofxR(T) give an
indication of which fixed point influences the system. It
clear that the Heisenberg fixed point takes over from
cubic one very close toTcr . The temperature dependence
the exponentb is a characteristic example of a crossov
curve. It demonstrates how the critical dynamics chan
from Ising-like „for ln@(T22Tcr

2 )/Tcr
2 #.220… to Heisenberg-

like „for ln@(T22Tcr
2 )/Tcr

2 #.250…. A detailed discussion of
this behavior within more accurate truncation schemes w
be given in Ref.@36#.

XI. FIRST ORDER PHASE TRANSITION

We turn now to the regionx.2 where we expect a first
order phase transition, as we have explained in Secs. III
VII. Our truncation scheme is too crude to describe the
havior of the potential in this region. We have approximat
Uk(r1 , r2 , T) by a second-order polynomial inr1,2. This
permits the discussion of potentials with only one minimu
The study of first-order transitions requires the use of i
proved truncations, where higherr derivatives ofUk are
taken into account and the possibility of two distinct minim
is permitted. This has been done in Ref.@35# for the zero-
temperature theory, and the existence of a first-order tra
tion has been established. We shall not repeat this calcula
here. Instead we shall derive an explicit solution of the e
lution equation in the region of largex, which will demon-
strate the existence of first-order transitions for the hig
temperature theory.

In Fig. 7 we plot the numerical solution of Eqs.~7.3!–
~7.5! in the high-temperature region, for zero-temperatu
renormalized parameterslR50.01, xR52.01,3,5. The tem-
perature is very close to the critical one. We notice that
all three sets of parameters the evolution leads to a regio
largex. In Fig. 7 the curves fork andl are terminated when
x530. We observe that the running parameters tend towa
the same area of parameter space. More specifically,
x530 we find ~very roughly! l;3, k;0.08. This conver-
gence of flows was already apparent in Fig. 1. The differe
in the evolution lies in the ‘‘time’’t5 ln(k/L) that it takes for
the various flows to reach the same region. The flows~a! and
~b! are fast, while the trajectory~c! starts very close to the
surfacex52, is first attracted towards the cubic fixed poin
and finally deviates towards the region of largex. The cubic
fixed point separates the regionx<2, where we have ob-
served second-order phase transitions, from the reg
x.2, for which we expect first-order transitions. For th
reason it is characterized as a tricritical point.~The Ising
fixed point exhibits similar behavior.!

In the regions of largex we haveḡ@l̄. As a result, the
contribution of the f1 fluctuations to the evolution of
ver
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Uk(r1 ,0,T) is suppressed as compared to the contribution of
f2 . Moreover, the increase ofx in this region is mainly due
to the fast decrease ofl̄5lk/T. In contrast, the couplingḡ
evolves only slowly. Ther1-dependent mass term for the
f2 field is approximately given byḡr1 ~for r250 and apart
from a very small region around the origin! and has again a
mild k dependence. Let us assume that for a given scalek0
the solution of the truncated evolution equations depicted in
Fig. 7 gives a good approximation to the exact solution for
the potential.~This means, in particular, that a two-minimum
structure has not appeared yet at this scale for the true po-
tential.! We denote the parameters of the theory at the scale
k0 by k05k(k0 ,T), l̄05l̄(k0 ,T), ḡ05ḡ(k0 ,T),
x05x(k0 ,T), and the mass term for thef2 field by ḡ0r1 .
Based on the remarks at the beginning of this paragraph we
can obtain in the high temperature region an approximate
solution of the evolution equation~5.3! for the potential on
ther1 axis (r250). By neglecting the first term in the r.h.s.
of Eq. ~5.3! and thek-dependence ofU25]Uk/]r2,the dif-
ferential equation~5.3! is easily integrated. We obtain in the
limit k→0 ~up to an irrelevant constant!

U~r1 ,0,T!5Uk50~r1 ,0,T!

5
1

2
l̄0~r12k0k0T!2

2
T

8p2E
0

`

dxAx lnFPk0~x!1ḡ0r1

x1ḡ0r1
G .

~11.1!

The effective inverse propagatorP(x) is given by Eq.~2.11!
and we have indicated that it must be evaluated fork5k0 .
Together with the numerical solution of the flow equations
near the critical surface fork.k0 , which provides the ‘‘in-
tegration constants’’l̄0 , ḡ0 , andk0k0T, we expect the ef-
fective potential of Eq.~11.1! to be a very good approxima-
tion. ~For a sufficiently small ratio of couplingslR /gR we

FIG. 7. The evolution ofk, l, x in the high temperature region
for temperatures close to the critical ones. The zero temperature
parameters are~a! lR50.2, xR52.01, ~b! lR50.2, xR53, and~c!
lR50.2, xR55.
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may identify k0 with T/u2 . This essentially reproduces th
results of high-temperature perturbation theory.!

The effective potential of Eq.~11.1! describes indeed a
first-order phase transition. This can be most easily visu
ized if we approximate for the purpose of demonstration

Pk0
5x for x.k0

2 ,

Pk0
5k0

2 for x,k0
2 . ~11.2!

One finds, for ther1 derivative,

U1~r1 ,0,T!5
]U~r1 ,0,T!

]r1

52k0l̄0k0T1l̄0r1

1
ḡ0
8p2TE

0

k0
2

dxAxS 1

x1ḡ0r1
2

1

k0
21ḡ0r1

D .
~11.3!

Using a rescaled field variable

r̄5
ḡ0r1
k0
2 ~11.4!

this yields~with l05l̄0T/k0)

U1~ r̄ !5
ḡ0k0T

4p2 F232
4p2k0

11x0
2Ar̄ arctanS 1

Ar
D

1
4p2

l0~11x0!
2 r̄1

1

3

r̄

11 r̄
G . ~11.5!

For k0,kA5(11x0)/6p2 the potentialU(r1 , 0, T) devel-
ops a minimum at the origin (r150). For k0 only slightly
below kA the origin is only a local minimum whereas th
global minimum occurs atr1Þ0 and the model is in the
phase with spontaneous symmetry breaking. For sufficien
small k0 /kA , however, the absolute minimum is at the or
gin and the model is in the symmetric phase.@Note that 23
2Ar̄ arctan~1/r̄!11

3r̄/(11 r̄) is a positive function for all
r̄.# There is a critical ratiok0 /kA @depending on the value o
l0(11x0)

2] for which the minima atr150 andr1Þ0 are
degenerate in depth, but they are still well separated fr
each other. Changingk0 ~which is a function ofT) through
this critical value leads to a first-order phase transition with
jump in the order parameter.

The necessity of a first-order phase transition can also
seen by considering ther1-dependent quartic coupling
U11(r1)5]2U(r1 ,0,T)/]r1

2 which obeys

U11~r1!5l̄02
ḡ0
2

8p2TE
0

`

dxAxF 1

~x1ḡ0r1!
2

2
1

@Pk0
~x!1ḡ0r1#

2G . ~11.6!

By keeping only the most singular behavior of the integr
for r1→0 we obtain
e

al-

e
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U11~r1!5l̄01
ḡ0
2

3p2

T

k0
2

ḡ0
3/2

16p
T

1

Ar1
. ~11.7!

We have recovered the leading perturbative result for th
behavior of the quartic coupling near a first-order phase tran
sition. If the minimum of the potentialr10(k) is sufficiently
close to zero at the scalek0 , the remaining evolution of
r10(k) from k0 to k50 causesU11 to vanish at some scale
k between 0 andk0 . As a consequence, the minimum at
r10Þ0 becomes a saddlepoint and disappears subsequen
Already before, a new minimum has been generated at th
origin, which remains the only minimum in the subsequen
evolution tok50. SinceU11(r1) is always negative for suf-
ficiently smallr1 , the phase transition can never be secon
order and all valuesx.2 must lead to a first-order phase
transition.

Let us finally discuss a suitable choice of the scalek0
from which on we can replace the numerical solution of the
flow equations~7.3!–~7.5! by the approximate solution given
by Eq. ~11.1!. On one handx0 must be sufficiently large in
order to justify the neglection of the contribution of thef1
fluctuations in the approximate solution. On the other han
k0 should be sufficiently high so that a second minimum a
the origin has not yet been generated and the truncation o
polynomial aroundr0 is still valid. This requires that trajec-
tories near the critical trajectory not end atk50 too deeply
in the symmetric phase. A realistic choice ofk0 should rather
correspond atk50 to the situation where two minima exist
simultaneously. For the ‘‘quasicritical’’ trajectories depicted
in Fig. 7 a reasonable compromise fork0 seems to be given
by the value for whichx0 reaches 30.~This corresponds to
kA.0.6.) The trajectories~a!, ~b!, and ~c! shown in Fig. 7
correspond then to potentialsU(r1 , 0,T) with two different
minima. They are close to, but not equal to, the critical tra
jectories for whichk would deviate from Fig. 7 towards the
end of the running, thus leading to a potential with two de
generate minima.

In summary, we have established the occurrence of a firs
order phase transition forx.2. Moreover, we have repro-
duced the perturbative prediction for the form of the poten
tial near the origin. We should emphasize, however, that th
perturbative expression applies only to the integration o
fluctuations from the scalek0 ~at whichx@1) to zero. The
flow from the region ofx near 2 to the region where the
perturbative expression becomes valid can be computed on
through the use of evolution equations. The different flow
correspond to first-order transitions of varying strength. Th
discontinuity in the expectation value is of the same order a
k0 . Also the mass gap at the critical temperature is propo
tional to this scale. In consequence the discontinuities inr
for the flows ~a!, ~b!, ~c! in Fig. 7 have a ratio of
Dra /Drb /Drc51/0.016/5.131029. The last flow, which
remains in the vicinity of the tricritical point before deviating
towards the region of largex, corresponds to an extremely
weakly-first-order transition.

Our results can easily be extended to the regionx,0. We
have seen in the Introduction and Sec. IV that theAX regime
(x.0) and theM regime (x,0) can be mapped onto each
other through a simple redefinition of the fields@in analogy
to Eqs.~1.5!, ~1.6!#. For this reason, the physical behavior in
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the two regimes is the same. For example, the cubic
Ising fixed points generate the same universal behavior, c
acteristic of aZ2-symmetric scalar theory. Similarly, a first
order phase transition occurs in the regionx,21. We shall
not repeat our discussion forx,0. All our results can be
extended to this region by the redefinition of fields and co
plings in analogy to Eqs.~1.5!, ~1.6!.

XII. CONCLUSIONS

We have used the formalism of the effective average
tion for the study of the high temperature phase transition
a theory of two real scalar fieldsx1,2, with the symmetry
(x1↔2x1 ,x2↔2x2 ,x1↔x2), and quartic potential

V~x1 ,x2!5
1

2
m̄2~x1

21x2
2!1

1

8
l̄~x1

21x2
2!21

1

4
xl̄x1

2x2
2 .

~12.1!

The phase diagram of the theory is divided into four disco
nected regions:x.2, 2.x.0, 0.x.21, x,21. Three
fixed points with at least one infrared stable direction ex
on the surfaces separating these regions: The Heisen
fixed point (x50) is attractive in thel andx directions, and
corresponds to a theory whose symmetry is increased
O~2!. The cubic (x52) and the Ising (x521) fixed points
are attractive in thel direction and repulsive in thex
direction and correspond to two disconnectedZ2(x1,2
↔2x1,2)-symmetry theories, which are equivalent. Th
model has a second- or first-order phase transition, with c
cal temperature well approximated by the perturbative
pression ifl̄ is small.

Theories with classical parameters in the regio
2.x.0, 0.x.21 have a second-order phase transitio
Very close to the critical temperature the behavior of t
system is universal. It is characterized by critical exponen
which are determined by the Heisenberg fixed point. F
theories with classical parameters near the surfacesx52,
x521 the influence of the cubic or Ising fixed point can b
observed near—but not too close to—the critical tempe
ture. This leads to a crossover phenomenon, characterize
a crossover exponent and crossover curve, for temperat
approachingTcr . The universal behavior is initially deter
mined by the cubic or Ising fixed point for small enoug
(T2T cr)/Tcr . As the critical temperature is further ap
proached the more attractive Heisenberg fixed point do
nates. No part of this rich structure associated with
second-order phase transition can be observed within pe
bation theory. We should mention that for small values ol̄
the region in temperature where these phenomena appe
rather narrow. This changes for largerl̄, where the critical
and
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behavior extends over a larger temperature domain withou
changing the universal results. Even though we concentrate
in the present paper on small values ofl̄ for the purpose of
comparing with analytical results, our method applies
equally well to largel̄.

A first-order phase transition is observed in the regions
x.2, x,21. Therefore, the cubic and Ising fixed points
are tricritical points separating regions of second- and first-
order transitions. The perturbative expression for the effec-
tive potential is a good approximation only forx@2 and
x.22. All theories near the critical temperature with clas-
sical couplingsx.2 or x,21 correspond to renormalized
theories withx@2 or x.22 at scales of the order of the
mass gap of the model. However, we distinguish two classe
of theories.

~I! For classical parametersx@2 or x.22 one finds a
strongly first-order phase transition. Here the effects of quan
tum or thermal fluctuations are well approximated by the
perturbative expression for the effective potential.

~II ! For classical parametersx.2 orX.21 we predict a
very weakly-first-order transition. The use of the renormal-
ization group is indispensable for the correct incorporation of
the quantum or thermal effects which strongly renormalize
the theory towards the regionsx@2 or x.22.

Our results are relevant for multi-Higgs-scalar extensions
of the standard model@22# and multi-scalar models of infla-
tion @23#. They cast doubts on the general validity of pertur-
bative predictions for the high-temperature behavior of these
models even in the case of small scalar couplings. High-
temperature perturbation theory was found to give a reliable
estimate for the effective potential only in limited regions of
the parameter space. Our nonperturbative method works fo
arbitrary values of the couplings in Eq.~12.1! and gives
qualitatively reliable predictions for all temperatures and all
regions in the phase diagram. Whereas our estimate of th
critical temperature can be trusted quantitatively even in the
present very rough truncation, some more refined quantitie
need improved truncations for a precise computation. With
the inclusion ofx6 couplings and anomalous dimension non-
trivial quantities such as critical exponents can be calculated
with a few percent accuracy@6,10#. Quantitatively more pre-
cise predictions for first-order phase transitions can be ob
tained through the solution of the evolution equation~2.10!
for the full effective average potential. Algorithms for the
numerical integration of such partial differential equations
have been developed recently@39#. The model we have stud-
ied is easily extended to the case wherex1 and x2 are
N-component vectors with internal SO(N) symmetries. The
high-temperature phase transition in other two-scalar model
with a different structure of the potential—as for example
supersymmetric two-doublet models—can be treated in com
plete analogy with the present work.
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