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High temperature phase transition in two-scalar theories
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Two-scalar theories at high temperature exhibit a rich spectrum of possible critical behavior, with a second
or first order phase transition. In the vicinity of the critical temperature one can observe critical exponents,
tricritical points, and crossover behavior. None of these phenomena are visible to high temperature perturbation
theory.

PACS numbs(s): 11.10.Wx, 64.60.Ak, 64.60.Fr, 98.80.Cq

[. INTRODUCTION as the solution of the Schwinger-Dyson equations. A sum-
mary of the results can be found in REL2].

Scalar field theories have been the prototype for investi- In a cosmological context first-order phase transitions are
gations concerning the question of symmetry restoration amnore spectacular than second order transitions due to the
high temperature. Following the original argument of Kirzh- departure from thermal equilibrium. One would like to have
nits and Linde[1], the O(N)-symmetric scalar theory was a prototype model for a first-order transition, for which the
considered in subsequent studies of the prodl2s4]. The  methods of high-temperature field theory can be tested, simi-
framework in which these studies were carried out is thdar to the O{N) scalar model for second-order transitions. In
perturbative evaluation of the effective poten{i] and its  statistical physics it is well known that scalar models with
generalization for nonzero temperature. Even though the resnore than one field and discrete symmetries instead of maxi-
toration of the spontaneously broken symmetry was qualitamal O(N) symmetry exhibit a rich spectrum of critical be-
tively demonstrated, the investigation of the details of thehavior, including first- and second-order transitions and tri-
phase transition was not possible, due to infrared divergencesitical behavior in between. Since high-temperature field
rendering the perturbative approach unreliable near the crittheories are in close correspondencettovee-dimensional
cal temperatur¢3,4]. These divergences originate in the ab- statistical models, it seems natural to investigate such models
sence of an infrared cutoff in higher loop contributions whenalso as prototypes for first order transitions in high-
the temperature-dependent mass of the scalar fluctuations agegmperature field theory. In this paper we apply the method
proaches zero near the critical temperature. An amelioratioof the effective average action to the study of the high-
of the situation was achieved through the summation of amemperature phase transitions in theories with two real scalar
infinite subclass of perturbative contributiofthe “daisy” fields. The symmetry is not @), but rather a discrete sym-
graph$ [2]. Indeed, these contributions become dominant formetry. This model can serve as a prototype for a first-order
largeN and a quantitative description of the phase transitiorphase transition in field theories. It can be easily generalized
can be obtained in this limit. However, the physical pictureto models in which each scalar field is AirRcomponent vec-
remained unclear for small, physically relevant values oftor.

N, for which even the order of the transition was not estab- We are interested in the phenomenon of spontaneous sym-
lished. The question was resolvgg] through the method of metry breaking and symmetry restoration at high tempera-
the effective average actiof¥—10|, which relies on the ture. For sufficiently low temperature our two-scalar theory
renormalization-group approach. The phase transition wasodels the Higgs mechanism in gauge theories, through
shown to be second order for all valuesNdf The quantita- which the expectation value of a scalar field results in a mass
tive behavior near the critical temperature was studied irterm for gauge field$.Perturbative arguments predict a first-
detail and the critical system was found to have an effecorder phase transition for this cagE3]. However, the reli-
tively three-dimensional character. Its behavior can be charability of such predictions is questionable when the transition
acterized by critical exponents,10], in agreement with
known results from three-dimensional field theory. The pic-
ture was verified through an independent analysis in the largelror sufficiently small-gauge coupling the present investigation
N limit [11], with use of other nonperturbative methods, suchand its generalization to the case where each scalar field\has
components gives a reasonable approximation to the gauged models
even in the vicinity of the critical temperature. However, the deter-
“Present address: Institut rfiTheoretische Physik, Universita mination of the meaning of “sufficiently small” needs a detailed
Kiel, Olshausenstr. 6, 24118 Kiel, Germany. investigation of high-temperature gauge theories.

0556-2821/96/5®)/455218)/$10.00 53 4552 © 1996 The American Physical Society



53 HIGH TEMPERATURE PHASE TRANSITION IN TWO-SCALAR ... 4553

becomes weakly first order, due to infrared divergences simitential is employed, which may bear no resemblance to the
lar to the ones plaguing the study of the NQ¢symmetric  effective potential. Thermal effects are often ignored except
scalar theory14]. The approximate vanishing of some massfor the temperature dependence of the mass term. If inflation
near the critical temperature results in the absence of an ins initiated by a high-temperature phase transition our for-
frared cutoff in higher loop contributions of perturbation malism sets the framework for the proper study of the prob-
theory. In two-scalar theories this is connected with the factem. ) _
that one of the fields gets its ma@s part of it through the We consider a theory of two real scalar fields
expectation value of the other. xa(@a=1,2), invariant under the_ discrete symmetries

The present work obtains control over these infraredlX1<> —X1:X2<> ~X2:X1¢>X2), Wwhich we denote by
problems? Depending on the couplings of the model we find (1= —1, 2= —2, 1= 2) for brevity. The symmetry group is
that the phase transition is either first or second order. For 44X Z2, consisting of 90° rotations in the(., x,) plane and
sufficiently strongly first-order transition high-temperature @ r_eflect|on on one of the axes. The classical potential can be
perturbation theory may give realistic results for the two-Writtén as
scalar model. We concentrate here on the more problematic 1 1 1
regions of a second-order transition, a weakly-first-order ey YO S S NN S Nty 2
transition, and the tricritical behavior at the separation of the Vi) = MOt txz) + ghxatx)  20x1x
two regimes. For the corresponding values of the couplings 1 1 1
high-temperature perturbation theory fails near the critical =SM2(XE+x3) + g MxF+ x5+ X3,
temperature. As a by-product, our results can be used in or- 2 8 4
der to establish in which region of parameter-space perturba- (1.1)
tion theory gives a reasonable for the description of the
phase transition. with

Our results are relevant for two specific classes of sce- _
narios in the cosmological context. The first class concerns g
multi-Higgs-scalar extensions of the standard model at non- X= )\—1- 1.2
zero temperature. The prediction of perturbation theory for a
first-order electroweak phase transitid8], combined with  For v/ to be bounded from below we requixe>0, x>—2.
the existence of baryon number violating processes at non- porm?2>0 the classical theory is in the symmetric regime
zero temperature within the standard mods], has gener- (yhich we denote bys) with the minimum of the classical
ated much interest in the probability of creating the baryorbotential at the origin. Fom?<0 the theory is in the spon-

asymmetry of the universe during the electroweak phasg,neoysly broken regime and we distinguish two possibilities
transition. Several scenarios have been proppkgland the  gnsistent with the symmetry.

electroweak phase transition has been studied with a variety () For x<0 four degenerate minima of the potential are
of methodq20]. (For an overview of the extensive literature |y.ated between the two axes at

see Ref[21].) It is not clear, however, if the phase transition

in the pure standard model is sufficiently strongly first order —— . — \/_—27—

and if there is sufficienCP violation in order to create an X10= = X20= £V 2N (A Q). @3
asymmetry of reasonable size. This has led to the study Gjye denote this regime by.

multi-Higgs-scalar extensions of the standard model, in () Forx>0 the four minima of the potential are located
which the additional scalar fields can be used to make thg, the axes at

phase transition more strongly first order or to enhance the

sources ofCP violation in the model. Also supersymmetric X10=* = 2M2I\,  x2=0, (1.4)
extensions of the standard model contain two-scalar dou-

blets. It is not clear whether the perturbative methods used iy similarly with y;, and y interchanged. We denote this

Ref. [22] for the calculation of the scalar field contributions regime byAX. The regimesv andAX are closely related. A
to the effective potential are reliable for such two-scalaregefinition of the fields according to

models, if we take into account the “warning” from the

study of the ON)-symmetric theory. Our work gives a reli- 1 1

able estimate of the effect of these contributions on the na- Xi=—=W1tx2), Xo=—=(x1—x2) (1.5
ture of the transition. V2 V2

The second class of scenarios concerns multi-scalar mod- ) ) . )
els of inflation[23]. In most such studies some classical po-"ésults in a rotation of the axes by 45°, thus transforming the
AXinto theM regime. The couplings of the redefined theory

are related to the old ones according to

2We should point out that, for a non-Abelian Higgs model, the

situation is much more involved than the perturbative results indi- N=\ 1+§ . X= X . (1.6)
cate, due to the presence of a confining regime in the symmetric 2 1+§

phase of the model. As this work deals only with scalar fields, such 2

a complication does not arise. For a discussion of gauge theories in

the context of the effective average action approach see Réfs. There are three characteristic valuexofa) Forx=0 the

17]. symmetry of the theory is increased t42R (b) for x=—1
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the theory decomposes into two disconnedgesymmetric  expected to be important near the critical temperature, where
models fory; andy, separately(c) similarly, forx=2[and  no infrared cutoffSsuch as massgsther thark exist. As a
thereforex=—1, according to Eq(1.6)] the theory decom- result, the fixed-point structure of the three-dimensional
poses into two disconnectefl,-symmetric models fory,  theory determines the behavior of the critical system. For
andi(z_ The above Symmetries are expected to be preservéﬂis reason we present in Sec. Illl a qualitative Study of the
after the quantum or thermal corrections have been takefiree-dimensional theory and its fixed points, based on a
into account. This means that any renormalization-grougfude approximation scheme for the solution of the exact
flow of the Coup"ngs that starts on the Surfaxeso,_ 1,2 in renormalization—group equation. In Sec. IV, we develop more
parameter space cannot take the system out of them. As®&aborate (and, therefore, more accurat@pproximation
result the parameter space of the theory is divided into théchemes. They are generalized for nonzero temperature in
four regionsx>2, 2>x>0, 0>x>—1, X< — 1, which are Sec. V. These tools are put into work in Secs. VI and VII:
not connected by the renormalization-group flow of the cou-The evolution of the running couplings is calculated, starting
plings. The phase transitions for the theories which correWith the classical theory at scales- A>T and finishing at
spond tox=0,—1,2 have been discussed in detail in Refs k=0, where the renormalized theory is obtained. In Sec. VII
[6,10] They are second-order transitions governed by effecwe eXpIICItly demonstrate how the evolution of the running
tively three-dimensional fixed points. In our model thesecouplings becomes effectively three dimensional KetT.
fixed points exist on surfaces separating the parameter spatie Sec. VIII we calculate the critical temperature for the
into disconnected regions. We shall demonstrate all th@hase transition. In Secs. IX—XI we discuss the details of
above points in the following sections. this transition. We observe a rich spectrum of critical behav-
We should point out that this model was discussed in Refior with critical exponents, crossover phenomena, tricritical
[24] through use of finite-temperature perturbation theorypoints, etc. None of these are visible within perturbation
No part of the rich structure of critical behavior that we shalltheory. Our conclusions are given in Sec. XIl.
describe in the following sections was observed. The univer-
sal, effectively three-dimensional behavior of the systemIl. THE EVOLUTION EQUATION FOR THE EFFECTIVE
near the critical temperature is common for statistical sys- AVERAGE POTENTIAL
tems and three-dimensional field theories which belong to
the same universality clas& he statistical systems are char- : ; . A -
acterized as two—co%ponent spin systemsywith cubic anisoff2 (a=1.2), ind-dimensional Euclidean space, with an ac-

; i iant under the (& —1, 2 —2, 1 2) sym-
ropy, As a conseqguence, various aspects of the problem ha on S{x] Invarian : . .
been investigated in Ref§25—-29 (and references therain metry. We specify the action together with some ultraviolet

through other methods. Our results are in very good agreeC-UtOﬁA' so that the theory is properly regulated. We add to

ment with all these studies. Similar models have been cont-he kinetic term an infrared regulating pie#
sidered in Ref[29]. 1 dig

The outline of our procedure follows. We make use of the AS= —f ——gR(Q) x4 () x2(q), (2.9
effective average actiohi,, which results from the effective 2) (2m)
integration of quantum and thermal fluctuations with charac
teristic momentag®>>k2. It contains all the information on
the generalized couplings of the theory and their dependen
on the scal&k. For k of the order of some ultraviolet cutoff
A the effective average action is equal to the clasgizate
action (no integration of fluctuations takes plac&or k=0, quE(q)
I'y is equal to the effective actiotall fluctuations are inte- Re(q)= 1—f2a)’
grated. The dependence @f, on the scalé is given by an ()
exact nonperturbative renormalization-group equation, whickyitp
can be expressed as evolution equations for the running cou-
plings of the theory. These equations can be solved within 5 2
some appropriate approximation scheme, with the classical fk(Q):eXl{ - F) 2.3
couplings as initial conditions fok=A. The renormalized

couplings of the theory are obtained fo=0. The calcula- \We point out that there are many alternative choices for
tion can be performed for zero and nonzero temperature. ThR,(¢), some of which were used in Ref§—12]. The physi-
gradual incorporation of the effects of quantum and thermata] results which are obtained when the cutoff is removed are
fluctuations into the running couplings is the essential elescheme independent. The choice of Eg®), (2.3) is the
ment which resolves the problem of infrared divergences thagost natural on¢9] and is convenient for numerical calcu-
invalidates perturbative schemes. The basic formalism of thgitions. For a massless field the inverse propagator derived
effective average action is summarized in Sec. Il. We expeGkom the actionS+ AS has a minimum~k2. The modes
that the running of the couplings fearmuch smaller than the with q?>k? are unaffected by the infrared cutoff, while the

temperature has an effectively three-dimensional charactegyy frequency modes with?<k? are cut off, afR, acts like
The reason is that the effective dimensionality is reducedy mass term

when the characteristic length scalek 1df the “coarse-
grained” system is much larger than the periodicit{l ih lim Ry(q)=k>2. (2.9
the imaginary time direction set by the temperature. This is 9°—0

We consider a theory of two real scalar fields

where x?(q) are the Fourier modes of the scalar fields. The
function R, is employed in order to prevent the propagation
@ modes with characteristic momengd<k?. This can be
achieved, for example, by the choice

(2.2
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We subsequently introduce sources and define the generating § 1

functional for the connected Green functions for the action szf d) Uk(p1,p2) + Eﬁ’%a%(ﬁa : (2.9
S+AS. Through a Legendre transformation we obtain the

generating functional for the one particle irreducitlPl)  and neglect all invariants which involve more derivatives of
Green functiond’ %], where ¢? is the expectation value the fields. We have used the definitipg= 2 and similarly

of the field x* in the presence of sources. The use of thefor p,. The justification for our approximation lies in the
modified propagator for the calculation bf results in the  smallness of the anomalous dimension, which is expected to
effective integration of only the fluctuations witi*>k®  be =~0.03-0.04 for the three-dimensional theory. We esti-
Finally, the effective average action is obtained by removingnate the corrections arising from the proper inclusion of

the infrared cutoff: wave-function renormalization effects to be of the same or-
§ der as# (a few percent An improved treatment will be
~ d°q given elsewher¢36]. In order to obtain an evolution equa-
aj_ aj_ — * a
Tl 1=Nd 47 ZJ (2m)8 Ri(@)¢a (@) 47(a). tion for U, from Eq. (2.6), we have to expand around a

(2.5  constant field configuratiofso that the derivative terms in
the parametrizatioi2.9) do not contribute to the left-hand
Fork equal to the ultraviolet cutofh, I', becomes equal to side (LHS) of Eq. (2.6)]. Equation(2.6) then give§8-10|
the classical actiof (no effective integration of modes takes

place, while for k—0 it tends towards the effective action J 1 dYq 1

I (all the modes are includgavhich is the generating func- Euk(pl’pZ)_ 2 2m\ P(g?) + Mi

tional of the 1PI Green functions computed fr@riwithout

infrared cutoff. For intermediate values df the effective " i Ry(q) (2.10
average action realizes the concept of a coarse-grained effec- P(g?) + Mg gt K - ’

tive action in the sense of Rdf30].

The interpolation of", between the classical and the ef- P(g?) results from the combination of the classical kinetic
fective action makes it a very useful field theoretical tool.contributiong? and the regulating termR, into an effective
The means for practical calculations is provided by an exacdihverse propagatoifor massless fields
flow equatiorl which describes the response of the effective

average action to variations of the infrared cutoff P(0?) = a2+ R q? o1
[t=In(k/A)] [9]: (9)=q ST ) (2.11
0’) 1 (9 1 2 1 2 2 H “
v _ = @M +RITZ with fi(q) given by Eq.(2.3). For g“>k* the inverse “av-
8trk[¢] 2Tr [T (@) +R] at Ri 28 erage” propagatorP(q) approaches the standard inverse

propagatoig? exponentially fast, whereas fof<k? the in-
HereI'(®) is the second functional derivative of the effective frared cutoff prevents the propagatitmi2 are the eigenval-
average action with respect . For real fields it reads, in ues of the mass matrix at the point;( p,),
momentum space,
1

5T, M§,2(P17P2)=E{U1+U2+2U1191+2U22P2
(T30 = 505 5% (27
é *[(Uy—Uz+2Uq3p1— 2Upp5)°
with +16U%,p1p,]"3, (2.12
¢*(—a)=¢5(q). (28 and we have introduced the notatiot,=dU,/dp;,

U12: (72Uk/(9p1(9p2, etc.
The nonperturbative flow equation has the form of a one- Equation(2.10 is the master equation for our investiga-
loop expression involving the exact inverse propagﬂfﬁ tion. It is a nonlinear partial differential equation for three
together with an infrared cutoff provided W3. No contri-  independent variablest,( p;, p,). Since it is difficult to
butions from higher loops appear in this exact equation.  solve it exactly we again resort to some approximation
For the solution of Eq(2.6) one has to develop an effi- scheme. We first introduce a Taylor expansion of
cient truncation scheme. The form of the effective averageJ,(p4,p,) around its minimum. This turns ER.10 into an
action is constrained by the (2 —1, 2——2, 12) sym- infinite system of ordinarycoupled differential equations
metry. However, there is still an infinite number of invariantsfor the k dependence of the minimum and the derivatives of
to be considered. Throughout this paper we shall work withthe effective average potential, with independent variable
an approximation which neglects the effects of wave-t=In(k/A). We solve this system approximately by truncat-
function renormalization. We shall, therefore, keep only aing at a finite number of derivatives. This approach has been
classical kinetic term in the effective average action used in the past for the study of the \Dsymmetric scalar
theory. It has provided a full, detailed picture of the high-
temperature phase transition for this thep@yl0—13, with
3see Ref[31] for other versions of exact renormalization-group accurate determinatiofat the few percent levelof such
equations. nontrivial quantities as the critical exponeid]. An esti-
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mate [32] of the residual errors for high level truncations In terms of these quantities the evolution equations have a
indicates that they are smaller than the uncertainties introscale-invariant form, in the sense that the RHS does not ex-
duced by the imprecise treatment of the wave-function renorplicitly involve a dependence okt

malization effects. For this work we shall use the lowest-

level truncation, which keeps only the second derivatives of dnm?
the potentialU;,U,,,U 5. This will be sufficient for a re- dt
liable determination of the phase diagram and a crude esti-

mate of universal guantities such as critical exponents and dx
crossover curves. For an improved treatment see [R&f, ar —N—v3(10+ 2x+x2))\2L§(m2), (3.9
and for a discussion which takes into account the next level

in the truncation folJ, and the first corrections arising from dx

wave-function renormalization see RE36]. m=v3(x+l)x(x—2))\L§(m2), (3.5

=—2m?+vg(4+x)AL3(m?), (3.3

lll. THE PHASE STRUCTURE OF THE

wherev;=1/8x2. The threshold functionsﬁ(w) suppress
THREE-DIMENSIONAL THEORY

the contributions of massive modes to the evolution equa-

Before performing a more detailed analysis we would liketions. They_are studieql in detgil in the_ following sections.
to gain some understanding of the phase structure of the We are interested in the fixed points of the last set of
theory. As we have already mentioned in the introduction&guations. For any, thzere is an ultraviolet-attractive Gauss-
the behavior of the four-dimensional theory near a highJan fixed point withm*=A=0. There are also three fixed
temperature second-order phase transition is expected RPints with at least one infrared attractive directj@5—-2§.
have a three-dimensional character. The reason for this is thEhey all appear fom?<0, A>0. (The exact values are not
divergence of the correlation length for the fluctuations ofimportant since the discussion in this section is only qualita-
the systenithe mass of some fields goes to 2efs a result,  tively correct) For their identification we use their standard
the characteristic length scale for the critical system is mucfi@mes in statistical physi¢&5,27. (a) The Heisenberg fixed
larger than the periodicity in the imaginary time direction Point hasx=0 and corresponds to a theory with symmetry
due to temperatufe(for details see the following sections increased to @), as we have discussed in the introduction.
This leads to dimensional reduction and the critical systentd) The Ising fixed point hag=—1 and corresponds to two
has effectively three-dimensional behavior. For this reasoffisconnectedZ,-symmetric theories(c) The cubic fixed
we are interested in the phase structure of the thregPoint hasx=2 and corresponds to two disconnected theories,
dimensional theory. More specifically we want to investigateif the fields are redefined according to Eg.5). All these
the possible existence of fixed points which govern the dyPoints are infrared unstable in tie? direction and are lo-

namics of second-order phase transitions. cated on a critical surface,=m2/(\,x)<0. Solutions of
For the purpose of this section we parametrize the poterthe evolution equations which start above the critical surface,
tial by its derivatives at the origin§ regime: with m®>>m2,, flow towards the region of positiven? for
t— —o, and correspond to theories in the symmetric phase.
m2(K)=U,(0)=U,(0), MK)=U 11(0)=U,0), Solutions withm?<m?Z flow deep into the region of negative
m? and correspond to theories in the phase with spontaneous
— symmetry breaking.
9(k)=U0), x(k)= w—l. (3.1) The relative stability of the fixed points on the critical
NKk) surface determines which one governs the dynamics of the

phase transition very close to the critical temperature. For a
The equality ofU;,U, and Uy;,U,, is imposed by the first simple investigation of the relative stability in the
(1—1, 2>—2, 12) symmetry of the theory. For the (A,X) directions we fixm? to an arbitrary valugwe choose
potential to be bounded we also require — 2. For a rough M*=0 for convenienceand solve Eqs(3.4), (3.5 numeri-
estimate the three-dimensional couplings are related to th@ally- The results are presented in Fig. 1. We observe that all
effective couplings of the four-dimensional theory at highthree fixed points are attractive in thedirection. However,
temperature by A(27T)=\,T,g(27T)=g,T, m2(2=T) the Ismg and cubp fixed pqlnts are rt_apulswe in thdl_rec-
_ m§+cT2, with appropriatec (for details see Secs. VI and tion, while the Helsenberg flxed_ point is totally attractive. We
VII). Evolution equations for the above parameters are Obgbserve four d|sconneqted réegions. :
tained by taking derivatives of Eq2.10 with respect to (@) 2>x>0. The trajectories flow away from the cubic

. It is convenient to define the dimensionless couplin Sand towards the Heisenberg ﬁ.XEd point. .
P12 PINGS ™ 1) 0>x> — 1. The trajectories flow away from the Ising

— - _ and towards the Heisenberg fixed point.

m2(k) = m(k) (k)= w g(k) = w 3.2 (c) x>2. The trajectories flow away from the cubic fixed

k> k ’ k -~ ' point and into a region of large and small\. Eventually

\ turns negative at a finite value &f [This can be verified

through the explicit solution of Eq43.4), (3.5 in this re-
“If the phase transition is strongly first order this need not be truegion.] At this point an instability arises, as the potential

because the mass of the fluctuations does not go to zero and tis€ems not to be bounded from below. Our treatment is not

correlation length does not diverge near the transition. sufficient for a detailed investigation of the nature of this
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work we shall use a truncation that preserves up to second

Ty rrrrry T T T T T T
_—‘—k derivatives of the potential.
. E In the symmetric regiméwhich we denote byg) the mini-

mum of the potential is gi;o(k) = poo(k) =0 and we use the
definitions of Eq.(3.1). The evolution equations in arbitrary
dimensiond automatically preserve the symmetry. They read

dm?

% Wzvdkd—2(4+x)ﬂg(rﬁz), (4.1
ﬁ%’ o o
T — = —pgkd 410+ 2x+ x)N2LY(m?), 4.2)

ST T

-2 1 2 3 4 5 8 dt
A
dx d—4 Ny
FIG. 1. Flows on the X,x) plane for the three-dimensional azvdk (X+1)X(X—2)AL3(m?), 4.3
theory. The evolution is determined by Eqg8.4), (3.5 with

with the dimensionless integralﬁ(w) given by

instability, since our truncation scheme is very crude. A de-
tail_ed discussion is given _in Rdf35], where injprovgq trun- Lﬂ(w)= _ nkzndwd/zr(g) f dqc
cations are employed. It is shown that the instability is not 2
real since the higher derivatives of the potential remain posi- . IP
tive. The change of sign fox corresponds to the disappear- =_ nkzn*dj dx X2 —(p+w)" "D (4.9
ance of a false vacuum of the theory and results in a first- 0 at
order phase transition. We shall return to this point in the
following sections. Here P is given by Eq.(2.12), and
(d) x<—1. The trajectories flow away from the Ising
fixed point and cross the line= —2 at a finitek. This again d
implies the presence of an instability whose true nature is vgl=2d+17rd’2l“(§). (4.5
related to the disappearance of a false vacuum. The model
exhibits a first-order transition also for<—1. Flows that ) )
start on the linex=0, —1, 2 remain on these lines. No _In the spontaneously broken regintkere are two possi-
trajectories exist which connect the four regiors-2,  Pilities consistent with the symmetry: o
2>x>0, 0>x>—1, x<—1. All this is in agreement with (1) In the M regime the minimum of the potential is lo-
the discussion at the end of the introduction. cated symmefrically between thep ~axes at
The diagram of Fig. 1 determines the phase structure of10(K) = p2o(K) =3po(k). We define the couplings
the theory when the behavior of the system becomes effec-

JP

—(P+w) (0D
4 (Pw)

tively three-dimensionali.e., close to the critical tempera- NKk)=U11(pg) =U,x(pg)>0,

ture). For parameters in the regionsX>0, 0>x>—1 we

expect second-order phase transitions, with critical dynamics 3 9(k)

governed by the three fixed points. These two regions can be g(k)=U1spg), x(k)=——-1. (4.6)
mapped onto each other through a redefinition of the fields A(K)

according to Eq9.1.5) and(1.6). This indicates that the Ising
and cubic fixed points should lead to identical universal beThe requirement that the poinidy,3po) is the minimum of
havior (and therefore to identical universal quantities, suchthe potential imposes<<0, while the potential is bounded at
as critical exponenjs Very close to the critical temperature infinity for x>—2. Forx=0 the symmetry of the theory is
we expect the Heisenberg fixed point to dominate the dyincreased to @) and the potential develops a series of de-
namics, but the other two can be relevant if the initial valueggenerate minima along the circigg+ poo=pg. Forx=-—1
of the running parameters are sufficiently close to them. Inthe  theory decomposes into two disconnected
the parameter regions>2, x<—1 we expect first-order Z,(¢$; > — ¢1)-symmetric models. The mass eigenvalues
phase transitions. In the following sections we shall verifyare given byM2=(2+x)\py, M3=—x\p,. The evolution
the above conclusions with improved quantitative accuracyequation for the minimunpy(k) is obtained by considering
the total t derivative of the conditionsdU,/(dp1)po
=0U, /(dp,)po=0 [6,8]. Again, the truncated evolution
IV. TRUNCATIONS OF THE EVOLUTION EQUATION equations automatically preserve the symmetry and read

We proceed now to a more detailed study of the evolution
equation and its truncations. As we have discussed at the end% _
of Sec. Il, we parametrize the effective average potential by dt
its minimum and its derivatives at the minimum. For this 4.7

d-2( o d N 2=X 4 =
—vgk® 7| 3L3[(2+X)Apo]+ le(—XMOo) ,
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X tions for the redefined quantities have already been worked
N 1+ 2 o o out and are given by Eq$4.7)—(4.9). By simply rewriting
=gkt — {L‘f[(2+x)7\p0]— Lf(—X)\Po)} them in terms of the old quantities we obtain
—vdkd_4p[9 142 2Ld[(2+X)7\_p0] dpo _ _
2) 2 p =~ vak? BLI2Npo) + (14 X)L (xNpo) ],
x\? — 4.1
+1- E) Lg(—xkpo)} 4.8 e
dx 3 2+x x2 — dn — — —
g d-2 " - d h d—4y 2 d 2 d
gt~ Vd o THX X+ 4){L1[(2+X))\p0] T v kO TEINT9ILS(2Mpg) + (1 +X)“L5(XNpo) ],
~ . 2 B (4.13
—LY(—x\pg)} +vgkd~*xA| 9 1+5 | Ll(2+X)\po]
X 2 — + X2
+ 1= 2 LY—xnpo)|. 4.9 dx ARV _
2) =% T at = vk 2 [L(2ho) ~ LiOxheo) ]
0
For x=0 the above evolution equations reproduce the equa- 1- 2

tions of the @2)-symmetric theory, while fox=—1 they
reproduce those of th&,-symmetric one(compare with
Refs.[6,10]).

(I1) In the regime which we denote byX, two degener-
ate minima of the potential exist on each one of phaxes.

Without loss of generality we concentrate on the minimum at-
p1o(K) = po(K),poo(k) =0. At the level of truncations that we
are considering, the remaining parameters of the theory a

conveniently defined according to E@..6) and

m5(k) =Ux(po). (4.10
The symmetry demands that for the truncated potential
(4.1

The requirement that the poinp{,0) is the minimum of the
potential imposes>0. As before, forx=0 the symmetry of

m3(K) =x(K)A(K) po(K).

+0 k9 A[ILY(2Np0) + (14 X)2L3(xNpo) .
(4.19

or x=0 the above evolution equations reproduce the ones
of the (Q2)-symmetric theory. Another special point is
=2 for which the theory, when expressed in terms of the
redefined fieldsp,, ¢,, decomposes into two disconnected
Zy( ¢y 2 — 1 ) -symmetric models. We should point out
that Egqs.(4.12—(4.14) could have been obtained by defining
N =Uq4(pg) andx=U,(pg)/U11(po) po [in agreement with
Eq. (4.11)] and inserting Eq94.6), (4.10 in the RHS of the
flow equations. The advantage of the redefinition is that it
makes transparent how this apparently arbitrary choice of
parameters preserves the original symmetry at this truncation
level.

the theory is increased to(®). The mass eigenvalues are  |n the following sections we shall use the evolution equa-
given byM§=2)\p0,M§=x)\po. At this point we encounter tions (4.1)—(4.3), (4.7—(4.9), and (4.12—(4.14), for the S,

a difficulty. The derivation of truncated evolution equationsM, and AX regimes respectively, in order to obtain the
is hindered by the fact that the parametrization around aenormalized theory in its various phases.

minimum located on one of the axes is asymmetric between
the two fields. As a result the symmetrg{— ¢,), is not
maintained by the evolution equations at each level of the
truncations. More specifically, the flow equations for the cou-
plingsU1(po), UoxApg) are different. Also, Eq4.11) is not
preserved by the evolution equation. This is not surprising, The integrals_j(w), defined in Eq(4.4), have been dis-
since these relations are not expected to hold for the exa€ussed extensively in Ref§8,10,33 [for various shapes of
potential without truncation. It is easy to see that they arghe infrared regulating functioR,(q), for which Eqgs.(2.2),
altered as soon as third derivatives of the potential are int2.3) are the most natural choi¢8]]. We refer the reader to
cluded. This is in contrast with what happens in tere-  Appendix A of Ref.[10] for a summary of their properties.
gime, where the formulation is symmetric between the twoThe most interesting property afi(w), for our discussion,
fields. For example, in théM regime the couplingdJ,4, is that they fall off for large values ofv/k?, following a

U,, are expected to remain equal at every level of truncapower law. As a result they introduce threshold behavior for
tions, and indeed this is guaranteed by the evolution equdhe contributions of massive modes to the evolution equa-
tions. The above remarks indicate a natural method of pretions. It is obvious from Eqs(4.1)—(4.3), (4.7—(4.9), and
serving the (3 —1, 2 —2, 1-2) symmetry in theAX (4.12—(4.14, for the S, M, andAX regimes, respectively,
regime. A redefinition of fields and couplings in analogy tothat the various contributions to the evolution equations in-
Egs.(1.5), (1.6) results in a rotation of the axes by 45°, thus volve Lﬂ integrals with the mass eigenvalues as their argu-
transforming theA X into theM regime. The evolution equa- ments. When the running squared mass of a massive mode

V. THE INTEGRALS Lg FOR ZERO
AND NONZERO TEMPERATURE
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becomes much larger than the sckfe(at which the system 18 [T
is probed, these contributions vanish and the massive modes C i
decouple. We evaluate the integr;hJ%(w) numerically and e — wjeoor h
use numerical fits for the solution of the evolution equations. R w/kz;o} ]
In order to extend the formalism of the previous sectionto o I /i1 ]
nonzero temperature we only need to recall that, in Euclid- ,:«’ Sl . w10 7
ean formalism, nonzero temperatuferesults in periodic = L A
boundary conditions in the time directioffor bosonic E L ]
fields), with periodicity 1T [34]. This leads to a discrete <3 i 7 1
spectrum for the zero component of the momentyn 3 e .
1 S - —
Qo—2mmT, m=0,+1,+2, ... (5.1 L ]
- 8, 8.
1111 1111 I 1111 I 11 1) | 1111 I 11 b | L1 | Ll 1|
As a consequence the integration oegris replaced by a °1 15 2 25 /3 35 4 45
T/k

summation over the discrete spectrum

ddfla

ddq
f 2y T2 f(%)a‘l' ®2

FIG. 2. L{(w,T)/L(w) as a function off/k, for various values
of w/k2.

With the above remarks in mind we can easily generalizedf m are suppressed by exf —(mTk)?]. The leading con-
our master equatiof2.10 in order to take into account the tribution gives the simple expression
temperature effects. For the temperature-dependent effective

average potentidl(p;,p2,T) we obtain

S UMprpa T)= %(277)*“’*”@ f d'™iq P+1|v|§
1 d
+P+M§ ER“’ (5.3
with the implicit replacement
q?— Q2+ 4m2m?T? (5.4)

in Egs.(2.2), (2.3, and(2.1]) for R, andP. Again, the usual
temperature-dependent effective poteniat4| is obtained

from U, (p1, po, T) in the limit k—0. As before, we can
parametrizéJ,(p1, po, T) interms of its minimum and its

Ug_1 T
L w)

Law.T)== =

for T>k, (5.8

with vy defined in(4.5). The two regions ofTf/k in which
Lﬂ(w,T) is given by the equation&.7), (5.8) are connected
by a small interval, in which the exponential corrections re-
sult in a more complicated dependence wnand T. The
above conclusions are verified by a humerical calculation of
L3(w,L). In Fig. 2 we plot Lj(w,T)/L}(w) as a function of
T/k, for various values ofw/k?. We distinguish three re-
gions.

(@ T/k=#0,. This is thelow temperature regiorwhere
L‘l‘,z(w,T) are very well approximated by their zero tempera-
ture value. We take,;=0.15 and usé_‘l‘,z(w,O) in the evo-
lution equations fok=T/#6, .

derivatives at the minimum. The evolution equations are (0) 1<T/K<#,. In the threshold regionwe perform a

given by(4.1)—(4.3), (4.7—(4.9), and(4.12—(4.14), with the
obvious generalizations

po(K)— po(k,T),

AK)—A(K,T),

m?(k) —m?(k,T),

(5.9

The Lﬂ integrals for nonvanishing temperature read

x(k)—x(k,T).

d _oP
|_2(W,T)=—2nk2”dwd’“lr(E > jddflqﬁ
m
X (P+w)~ ("D, (5.6)

where the implicit replacemel(b.4) is assumed irP. Their
basic properties can be established analytically. Trek the
summation over discrete values ofin the expressioti5.6)
is equal to the integration over a continuous rangegaiip to
exponentially small corrections. Therefore

Ldw,T)=Ldw) for T<k. (5.7

In the opposite limitT>k the summation ovem is domi-

numerical fit of the curve corresponding wo=0 which we
use for all values ofv. This is a good approximation since
the relevantw/k? turns out to be small in this regiotsee
next sections

(c) T/k=0,. We takef,=0.4. For thehigh temperature
regionswe use, for the numerical solution of the evolution
equations,

L (w,T) =4I L3 (w) (5.9
1AW, Lidw). :

The three-dimensional character of the effective theory for
modes withg?>< T2 manifests itself in the appearance of the
three-dimensional momentum integrals. It acquires here a
precise quantitative meaning.

SComparison with results presented in RES] shows that the
form of these functions depends on the details of the infrared regu-
lating function R(q). However, the physical results, which are
obtained when the cutoff is removed, are independent of the shape
of the cutoff. This will be apparent in the next sections and is a

nated by then=0 contribution. Terms with nonzero values verification of the scheme independence of our conclusions.
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We have now developed the necessary formalism for the dpo ot 4o _
study of the four-dimensional zero and nonzero temperature g = T UaKT3LL(2N00)t1(20po, T)
theory. In the following two sections we study the evolution
of the running parameters of the theory, which leads to the +(1+X)|-‘11(X>\_Po)t1(x>\_po,T)], (6.2
determination of the renormalized theory at zero and nonzero _
temperature. d 3 Sy 4y _
qr- veh [9L5(2Npo)t2(2Npo, T)
AL DL 62
In Sec. IV we derived the zero temperature evolution x+X—2
equations for the parametefmasses, vacuum expectation dx 6 4o —
values, and couplingof the truncated theory as a function at V4% T X [L1(2Npo)t1(2Npo,T)
of the scalek in the various regimesM,AX). In Sec. V 1--
we generalized the formalism in order to take into account 2
nonzero temperature effects. The evolution equations can be 14 xnn N
solved for a given set of initial conditions, specified as the Ll()i\f)O)tl(X_)\F’OvT)]_
valu-es of the running parameters at a scale gqual to the ul- +v4x)\[9L‘2‘(2)\p0)t2(2)\po,T)
traviolet cutoff of the theoryK=A). As we pointed out in _ _
Sec. Il, at this scale the effective average action is equal to +(1+%)2L3(XApo)ta(XApo, T)], (6.3

the classical action. Therefore, the initial values for the pa- o o

rameters correspond to their classital barg values. Also, Wherev,= 1/32%. We have not indicated explicitly thie
the discussion in Sec. V has shown that in the low-and T _dependence of the running parameters
temperature regiork& T/ ;) there is no difference between po(K,T), MK, T), x(k,T). They are defined at zero tem-
the zero and nonzero temperature theory. As a result, we cdterature according to Eq§t.6), (4.10, and generalized for
define the theory in terms of the classical values of its pahonzero temperature according to E§.5). The functions
rameters ak= A>T, independently of the temperature. The t1, are defined as

integration of the evolution equations gives the running cou- Lﬁ(w,T)
plings at lower scales. No temperature effects are observed in th(w, T)= W’
the evolution inside the low-temperature regidee(T/6,). n
We can, therefore, use the values of the running couplings Atith t,(w,T) plotted in Fig. 2.

k=T/6, for the definition of the theory, since they are in At zero temperature one hggw,0)=1 and the evolution

one-to-one correspondence with th_e classical couplings, 'rléquations have only one infrared attractive fixed point, the
depend.ently of t'he temperature. This turns out to be the mo%aussian one. In the limit of small we shall neglect the
convenient choice and we shall use it for the rest of the ’ —

paper. The temperature starts to become important when tfi0" l0garithmic running o, which is ev_en}ually_ stopped
evolution enters the threshold regioi/ ¢, >k>T#6y). Inthe oY the mass terms in the threshold functidns,. Similarly
high-temperature regionk&T/6,) the evolution is effec- the running ofx can also be n_eglected since it is iuppressed
tively three-dimensional, as we discussed in Sec. V. Finallyby M32m%. [For small\ the difference of the twd.{ func-
in the limit k—0 the effective average action becomes thetions in the first line of Eq.(6.3 gives a contribution
effective action, and the integration of the evolution equa-=<AL3(0).] For largex the evolution equations can be inte-
tions gives the renormalized values for the couplings at varigrated numerically and the small resulting corrections can be
ous temperatures. All the information on the various phasegeliably computed. This has been done in R&f for the
of the theory is contained in these renormalized coupling®(N)-symmetric scalar theory. In this paper we concentrate
and their temperature dependence. on small couplings for which analytical expressions can be

We have seen in the introduction and in Sec. IV that theobtained. Equatiof6.1) can be integrated easily for small
AX regime >0) and theM regime k<0) can be mapped and we obtair[L‘l‘(O)z -2]

T 2
O e i po(k,0)=p k?—| —

behavior in the two regimes is the same. For example, the 0 (01)
cubic and Ising fixed points generate the same universal be-

onto each other through a simple redefinition of the fi¢ids
havior (characteristic of &,-symmetry scalar theojyFor = where we used the poikt=T/ 4, instead ok= A to start the

(6.9

analogy to Egs(1.5, (1.6)]. For this reason, the physical ©.5

LI P

this reason, we shall concentrate on the regio only. Al evolution, as we have explained in the first paragraph of this
the results can be easily extended to the regia), through  section. We define the renormalized couplings of the theory
transformations analogous to Eq%.5), (1.6). in the limit k—0 a$

Since we are interested in symmetry restoration at non-
zero temperature, we first consider the theory in the sponta-—
neously broken regime. The evolution equations in A ®In the case that Goldstone modes are pregamtforx=0) the
regime (which is the relevant one for>0) in four dimen-  couplings are defined at some appropriate nonerdhe same
sions and nonzero temperature can be easily derived frompplies for nonzero temperature. This does not affect our results for
Egs.(4.12—(4.14 and read small\. For a detailed discussion see Rig].



po=po(0,0, Ag=M\(0,0, Xz=x(0,0, (6.6
and conclude that
T\ 1 . T\? 6
Pol g, =po+t W(XR+ ) AR (6.7

At nonzero temperature, the evolution in the low-
temperature region k&T/6;) is identical to the zero-
temperature case. In the threshold regidnd; >k>T/46,),
the form oft; (w,T) is not given by a simple analytical
expression. For small we neglect the running of,x in this
region and find

)ZPO

Po(
ot s (Xt DT oy
_p0+ 16’772(XR+ ) 205_ ’
,T :)\ o :)\RY X =X| — :XR1
01

01
(6.8
1/6, 1)
Ol_ 7
y

-
1/6,

and we have made use of the fact th‘%{t/v,T) depends on
T only through the combinatioii/k. The integrall can be

evaluated numerically. Forg;=0.15, 6,=0.4 we find

| =19.97. Equation(6.8) set the initial values for the evolu-
tion in the high-temperature region.

TT
0_21

T 1 )
0—1 - W(X+4)T |

XT TT
0, 2%

where

dy yt (6.9

VII. THE RUNNING IN THE HIGH-TEMPERATURE
REGION

In the high-temperature regiork€T/6,) the functions
L‘l"z(w,T) are given by the simplified expressi@b.9). We
can rewrite EQs.(6.1)—(6.3 in terms of effective three-
dimensional couplings

po(k.T)= p"(i‘T), N (k=K TT,
g’ (k,T)=g(k, )T, x(k T)=§’(k’T)—1 (7.2
’ B ’ N(kT) '
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In terms of these we obtain the scale-invariant form of the
evolution equations

dx 3 3
Tp = ~*val3LI2A k) + (1+X)LIxAK)], (7.3
Ez—)\—vs)\z[QLg(Z)\K)+(1+x)2L§(x)\K)],
(7.9
X2
dx 6 X+Z 3 3 3
Gt~V L1200 — L0 k) 1+ vaxA[9L5(20 k)
2
+(1+x)2L3(xn k)] (7.5

No explicit dependence on the sc&l@ppears on the r.h.s.
The first of the above equations defines a critical surface
ko= Kko(N,X). It consists of the pointse., for which the
solution of Egs.(7.39—(7.5 approaches, for large negative
t, a scaling solution with¢, \, andx independent of. (For
a weakly first-order transition the scaling holds only approxi-
mately) Every point on the critical surface is unstable in the
k direction. Trajectories which start at> k., continue to-
wards the region of largex, in such a way that
po(K,T)=«(k,T) Tk reaches asymptotically a constant value
for k— 0. As a result the renormalized theory settles down in
the phase with spontaneous symmetry breaking. If the evo-
lution starts atk<k,,, the flows cross the surface=0 at
some finiteks. From this point on the system is in the sym-
metric regime. In order to continue the evolution, we define
appropriate parameters according to E8}1) and effective
three-dimensional couplings according to Eg.1). The re-
sulting evolution equations are the ones for the three-
dimensional theory in the symmetric regime, as given by
Egs.(4.1)—(4.3) with d=3. We define the dimensionless pa-
rameter

Mk, T)

m2(k,T)= —Z (7.6)

and\ (k,T), g(k,T) according to Eq(7.2). In terms of these
quantities the evolution equations in the symmetric regime
are given by Eqgs(3.3—(3.5. We start the evolution in this
regime atk=kg with m?(ks,T)=0 and\(ks,T), x(ks,T)
taking their values at the end of the running in the spontane-

The resulting flow equations are exactly the ones of thedusly broken regime. Fdk—0 the evolution is stopped by
three-dimensional theory at zero temperature, as given bije mass terms in the threshold functidris, and the theory

Egs. (4.12—(4.14) with d=3. In order to make their fixed-

point structure more transparent we define the dimensionleggmperature T,

parameters
'(k,T) kT
K(k,T)=p0 ) :Poﬁ(T )’
NKkT) MkDT
o= X 6T _ Mk TT,
g'(kT) gkT)T
g(k,T)=g (kT)_g(k.T) . (7.2

k k

settles down in the symmetric phase. Obviously the critical

is related to k. [for given
)\(Tcr/GZ): X(T crlez)] by
T
K(e—cr)chr. (7.7
2

On the critical surface there are two fixed points with at
least one attractive direction for the flow towards the infrared
(k—0): (a) the cubic fixed point located at

k.=5.674x1072, \,=8.747,

Xe=2, (7.8
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and (b) the Heisenberg fixed point located at mate solution of the evolution equation for the potential in
this region, which will demonstrate the existence of the first-

Ku=4.486<10"2, \,=15.265, x,=0. (7.9  Ordertransiton.

_ _ o o VIIl. THE CRITICAL TEMPERATURE
Both fixed points are attractive in the direction, but the

cubic fixed point is unstable in the direction while the A quantity which can be easily calculated from the dis-
Heisenberg one is stable. For fixedhere is also the infrared cussion in the last two sections is the critical temperature for
unstable Gaussian fixed point. It is located at the phase transitions. From E¢6.8) and(7.2) we obtain
T 0 1
1 K(e—,T):az‘%JrFZz(—z—' (Xgt4),
Ke=—vs(x+A)L3(0)= ggp(x+ Hre=0. (7.10 2 7o\ 201
T T

. ) A )\(_,T>:02)\R, X(_,T>:XR. (81)

These fixed points are the same as the ones observed in Sec. 0> 0>

[ll. The only difference lies in the parametrization. In Sec. IlI

we used an expansion around the origin of the potential anfO" SmallX the critical surface, which separates the symmet-
the evolution equations in the symmetric regime. For this ' phase from the phase with spontaneous symmetry break-

reason the fixed points appeared for negative values of thf9: 90€s through the Gaussian fixed point given by Eq.
mass parametefthe curvature at the origin indicating a 7.10. The cnucgl temperature can be computed as thg tem-
minimum away from the origin. In this section we rely on a Perature for whichk(T/6,,T) coincides with the Gaussian
parametrization around the minimum of the potential, whichfiX€d pointxg. This gives

results in increased quantitative accuracy for the truncation. 2

The flows on the critical surface are qualitatively similar Tcr: ¢ , (;—1:_12 ﬁ_ 1<_12_ I ) }
to those in Fig. 1 fox>0. There are two disconnected re- po Xgt4 877 0, 21267
gions: (8.2

(@) 2>x>0. The trajectories flow away from the cubic
fixed point and towards the Heisenberg fixed point. This re
gion corresponds to a second order phase transition.

(b) x>2. The trajectories flow away from the cubic fixed
point and into a region of smal and largex. Similarly to C=23.89. (8.3
our discussion in Sec. I, we expectk,T) to become nega-
tive at some finitek. This indicates that the minimum of the We should point out that the above value for the critical
potential becomes unstabl turns into a maximum Our  temperature is not strictly valid fotz> 2. In this region the
crude truncation is not sufficient for the investigation of thisfirst-order phase transition occurs faf(T/6,,T) slightly
situation, since the higher derivatives of the potential areabove the critical surface. As a result the transition takes
important. A detailed study is presented in R&b] for the  place at a temperature slightly lower than the one given by
four-dimensional theory at zero temperature. The dimensiongq, (8.2). In the language of the effective three-dimensional
ality of the theory is not crucial for the qualitative behavior theory, the distance from the phase transition can be param-
in this region of parameter space. The first term in the RHStrized, for small\g, in terms of k= «(T/ 65, T) — kg

of Eq. (7.4) (which is present only for the effectively three- we establish the connection between this quantity and the
dimensional theoryis not important for large. The second  temperature as

term, which drives the dynamics, is the same as for the four-
dimensional theorywith the replacement afi;L3 by v,L7 T 1
generating only quantitative correctionin Ref.[35] higher 0K = K g_Z'T T K= O2p2| 2 TZ
derivatives of the potential are taken into account. Also, a
parametrization is used which simultaneously follows theThe critical temperature can be calculated in high-
evolution of the potential at its minimum at nonzero temperature perturbation theory through the perturbative ex-
po(K,T) and at the origin. This permits the study of the glo- pansion of the effective potentigd] and its generalization to
bal properties of the potential. It is found that during thenonzero temperaturg2—4]. The calculation is straightfor-
evolution in the regiorx>2 a second minimum appears at ward and we do not present the details here. When the lead-
the origin which subsequently becomes the absolute miniing term in the high-temperature expansion of the one-loop
mum of the potential. This results in a discontinuity in the contribution to the effective potential is retained, the critical
order parameter and a first-order phase transition. At somemperature is found to be
point in the evolution) turns negative and the minimum at

. h . .. 2
nonzerop, disappears. From this point on the deeper mini- Tcr_ 24
mum at zero is the only minimum. During the whole evolu- %_ Xg+4' (8.9
tion the higher derivatives stay positive guaranteeing that the
potential remains bounded. We cannot reproduce the abovEhis value is in excellent agreement with our result. The
picture within the crude truncation of a quartic polynomial slight discrepancy is due to small deviations of the form of
for the potential. Instead we shall give in Sec. XI an approxi—L‘l‘(W,T) that we have used from the exact expression, and

independently of\g. Substitution of the valueg;=0.15,
0,=0.4,1=19.97, which we computed in the first part of
this section, gives

. (8.9
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could probably be removed by using lowé§ and larger 2
0,. It is well known that the perturbative expansion of the
effective potential breaks down near the critical temperature

for a second or weakly first-order phase transition, due to
infrared divergencefs]. The surprising accuracy of the per- %
turbative estimate for the critical temperature is due to the
fact that the infrared divergences appear at temperatures
|T—Tgl/T o=(\R). For sufficiently small\ the location PN .
of the transition can be accurately computed. However, naive N\
perturbative predictions for the details of the transitiewen

its ordep can be misleading. This is the case for our model,
for which the next terms in the naive high-temperature ex-
pansion of the perturbative result fail to reproduce even the
correct qualitative picture(apart from a small region in pa-

.05

/
,

. X : ) “_H S
rameter space which will be discussed at the end ofthe next olilocess 1oy la ¥l b b baabin by

0 -5 -10 -15 -20 -25 -30 -35

section. We emphasize that our approach may also be used 1/2
In[k/po "]

for large values oh g not so easily accessible to perturbation
theory. In this casecg should be replaced by the relevant
exact point on the critical Surfamcr. FIG. 3. The evolution ofk, N, x in the high-temperature re-
gion, for temperatures slightly above and below the critical one, and
Ar=0.01, xg=1, Tﬁ,/po=4.78. The system approaches the
IX. SECOND-ORDER PHASE TRANSITION Heisenberg fixed point before deviating towards the symmetric
AND THE CRITICAL BEHAVIOR phase or the phase with spontaneous symmetry breaking.

Let us briefly summarize the main results of the previous . o _
sections. We have considered theories which at zero tempergistance from the critical temperature, which is expressed in
ture are in the phase with spontaneous symmetry breakingd: (8-4)- . ) o
corresponding to th& X regime. They are defined in terms _ I this section we discuss the region in parameter space
of the classical(bare parameters at the ultraviolet cutoff 0<<X<2 where the phase transition is second order. Suffi-

A>T. The renormalized parameters are obtained by solvingi€ntly near to the critical temperature the evolution is gov-
the evolution equations fronk=A to k=0. In the low- erned by the Heisenberg fixed point. In Fig. 3 we plot the

temperature regionA=k=T/#6,) there is no difference be- numgrical solution of Eq_s(7.3)—(7.5) for thg evolution in
tween the zero and nonzero temperature case for the evolffle high-temperature region, for a theory with zero tempera-
tion of the parameters of the theory. The first temperaturdré renormalized parametekg=0.01, xz=1 and critical
effeccts are observed in the threshold regiontemperature Tg/po=4.78. We display two trajectories,
(TO,>k>T/6,). For small\g the values of the running which start slightly above and below the cr|_t|cal surfdard
parameters at the beginning of the evolution in the hightherefore correspond to temperatures slightly below and
temperature regionkET/6,) can be expressed in terms of above the critical one We observe that the system flows
the renormalized parameters of the zero-temperature theorf@wards the Heisenberg fixed point which is attractive in
The relation is given by Eq(6.8). In the high-temperature DPoth theh andx directions. It stays around this flxed point
region k<T/#6,) the character of the evolution is effectively for several orders of magnitude inand then deviates to-
three-dimensional and is governed by the fixed points of thavards either the phase with spontaneous symmetry breaking
three-dimensional theory. These are most transparent if the symmetric one. During the “timet=In(k/A) that the
terms of the dimensionless parameters defined in(E@).  System stays close the fixed pdirit: loses memory of the
The evolution equations are given by Eqﬁs)_(?s) These initial Conditions- of the -evolutio-n. Its dynamiCS is fixed
equations define a critical surface,= xq(\,x), which is ~ Solely by the fixed point, which has a purely three-
unstable in thex direction and separates the phase withdimensional charact¢as we demonstrated in Sec. ¥IAs a
spontaneous symmetry breaking from the symmetric ond€Sult we expect that the behavior of the theory near the
The system ends up in either phase depending on the valugHtical temperature is |ndeper_1dent of t_he detalls_of the zero
of the running parameters &t=T/6,. For smallx the criti- ~ temperature theory. It must display universal critical behav-
cal surface goes through the Gaussian fixed point given b r characteristic of systems with Heisenberg flxec_i point. .As
Eq.(7.10. As a result, for smalkg the crucial quantity is the 10ng as«(k,T) stays almost constant around its fixed point
distance from the critical surfacéx .= «(T/6,,T)— k. valueky andk—_>0 ast— — o, the minimum of th(_a effective
For Sx.=>0 the theory ends up in the phase with spontane@verage potential evolves towards zero according to

ous symmetry breaking. Fatk.<O0 it ends up in the sym-

metric one. There is a direct connection betwéeg and the po(K,T)=kykT. (9.1

"Perturbation theory for gap equatiofid7] may lead to more 8We refer tot=In(k/A) as “time” because it gives an intuitive
reliable results concerning the order of the transition but will fail for picture of the evolution. It should not be confused with real time
critical exponents unless the effectively three-dimensional runningvhich plays no role in our study, as we are concerned with the static
of the quaratic scalar coupling is properly included. effective potential.
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If the temperature is equal to the critical one, the system —— T —
never leaves the fixed point apgd(0,T,) =0. If the tempera- 14
ture is slightly belowT ., «(k,T) eventually runs away from

the fixed point and diverges, so thap(k,T)=x(k, T)kT 12
reaches a constant nonzero valug&kas0. This value corre-
sponds to the renormalized minimum of the effective poten-
tial at nonzero temperature and we denote it by

—  poT)/po =---= 100 A(T)

————— 100 mK(T)/p o X(T)

-

-4

po(T)=po(0,T). (9.2

=3

© LI L L L L L LB
AN

For a temperature slightly abovg,, «(k,T) [and therefore 4
po(k,T)] runs to zero at a finités. From this point on the
system is in the symmetric regime and the appropriate evo- =
lution equations are given by Eq&8.3—(3.5). We start the
evolution in this regime ak=k, with m?(ks,T)=0 and 0
N(ks,T), X(ks,T) taking their values at the end of the run- T/,

ning in the spontaneously broken regime. kes 0 the evo-

lution is stopped by the mass terms in the threshold functions s 4 The phase transition for a theory withy=0.01
L3, and the theory settles down in the symmetric phase. WE =1, T2/p,=4.78. '
define the renormalized mass in the symmetric phase as

I
'S
(2]
@
)

2_T2\28 2 2_ T2 \2v
mZR(T):mz(O,T) (93) pO(T)Oc(Tcr T ) ’ mR(T)OC(T TCr) ’
2_T27\¢ 2_T2\n
We also define the renormalized couplings in both phases as (DT Te)® Xe(Dx(T-Te)®. (9.6
_ More precisely, B is given by the derivative of lpy(T)
AR(T)=MOT),  Xr(T)=x(0.T). (94 with respect to In(3—T?), and similarly for the other pa-
rameters. The definition af and u applies only to the sym-
It is important to point out that, while the system is stayingmetric phase. The exponep(T) is plotted in Fig. 5 along
close to the fixed point, the couplingk,T) evolves towards  with xg(T) [the lines marked bya)] for temperatures ap-
zero according to proachingT ., for a theory withAg=0.2, xg=1. It is appar-
ent from the temperature dependencegthat nearT, the
= Heisenberg fixed point becomes important. During its evolu-
)‘(k’T):AH?' (99 fion the system stays long enough on the critical surface for
this fixed point to generate universal critical behavior. The
As a result\ (T) goes to zero as the critical temperature is@Ponent3(T) approaches a temperature-independent value
approached. Its strong renormalization n&grprovides the
resolution of the problem of infrared divergences. The ratio 12 r—r——r——r
AR(T)T/mg(T) does not diverge near the critical tempera- L ]
ture, in contrast ta g T/mg(T). (Here\g is the renormalized L (@ —— 280D

coupling of the zero-temperature theory, which is approxi- '''''''''''''' T x(T)/2
mately equal to the bare one for small coupling®e shall L B —4(T)
8 AN

not elaborate on this point, but we refer the reader to Féf.
for an extensive discussion. We also mention that as the tem-
perature deviates from the critical one the system spends less s
“time” t=In(k/A) near the critical point. Its flow deviates
from those depicted in Fig. 3 at earlier stages. As a result the ,
universal behavior ceases to dominate.

The behavior of the renormalized theory at various tem-
peratures is shown in Fig. 4 for zero temperature parameters *
Ar=0.01, xg=1 and critical temperaturégr/p0=4.78. We
observe thapo(T) moves continuously to zero, indicatinga  ° '_'5' = '_'10' ! _is T '_'3(; = '_'35' = '_1‘0”‘“_&5‘ !
second-order phase transition. The maﬁT) is zero at In[|T*=T%..// 0]
T and positive for larger temperatures. The quartic coupling

Ar(T) stays close. to its zero temper_ature value for most ric 5 The critical exponent8(T),o(T) and the parameter
temperatures, but is strongly renormalized towards zero negr 1y as the phase transition is approached. The horizontal dotted
Ter. The ratio of couplingsz(T) again takes its zero tem- jines indicate the values ¢ at the two fixed points and the value

perature value, unless the temperature is sqfficiently close ¥ ¢ at the Cubic fixed point(a) B(T),xx(T) for a theory with
T, for the flow to reach the Heisenberg fixed point. Thex;=0.2, xz=1. (b) B(T),¢(T) for a theory with\g=0.5 andxg

universal behavior nedf can be parametrized by critical slightly smaller than 2.(c) B(T),xg(T) for a theory with
exponents, which we define similarly to Rg6] as Ar=0.2, xg=1.99.
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andT2/po=3.98. As we have discussed in the introduction
and Sec. lll, flows that start on the surface 2 in parameter
space never move out of it. The flows depicted in Fig. 6 start
with X(T/6,,T)=2—6x and 6x<1. For this reason, their
deviation from the surface=2 is very slow. We display two
trajectories which start a small distanée., above and be-
low the critical surfacéand therefore correspond to tempera-
tures slightly below and above the critical one, according to
Eq. (8.4)]. For |d«k.|<dx<1 the flows stay on the critical
surface and close to=2 for a large initial part of the evo-
lution. During this “time” they approach the cubic fixed
point and stay near it. Finallk(k,T) starts growing and the
system moves away from the repulsitia the x direction
y cubic fixed point and towards the Heisenberg one. After it
0 (l)“" : ‘_'10' = '_'20' = '_Lo' = L_Lo' = '_Lo' = approaches this attractivien the x direction fixed point the
In[k/ppo""?] evolution is similar to the one depicted in Fig. 3. Systems
which start with larger values df5«.| behave similarly to
Fig. 6, but deviate from the critical surface at earlier stages
f the evolution. As a result, they can feel the influence of
oth the cubic and Heisenberg fixed point, or only the cubic
gne, or they can deviate from the critical surface too soon for
2Ny universal behavior to be induced. We calculate the renor-
malized parameters of the theofgt various temperaturgs
similarly to the previous subsection. Their behavior as a

which is independent ok andxg (as long asxg<2) and function of temperature is analogous to that in Fig. 4. The

characteristic of systems with Heisenberg critical behaviormain difference concerns the small region aroligd In this
This value is region the temperature dependence should reflect the influ-

ence of the two fixed points during the evolution. We first
By=0.32 (9.77  concentrate on values @k, for which the critical behavior

is dominated by the cubic fixed point. For this region we plot
in agreement with Ref6]. Two other exponents are fixed by in Fig. 5 the critical exponents correspondingpig(T) and
the scaling laws and the finite value of the ratioxg(T) [lines marked with(b)], which are defined according
AR(T)T/mg(T). They arevy={,=2B . The above values to
for the exponents are in rough agreement with known values
from three-dimensional field theof27,38. The agreement po(Mx(T2=TH)28, 2—xg(T)x(T2—T2) .
improves dramatically when less restrictive truncations are (10.1)
used for the study of the evolution equation for the potential,
and wave-function renormalizatior! effects are taken into a%We observe that they reach constant values as the critical
qount[lo]. W? have perform_ed this more accurate CaICU"':I'temperature is approached. The value foshould be char-
tion and obtained results which agree with the known value%ICteristiC of the cubic fixed point. We find
at the 4—5 % level. This work will be described in RES6]. '
Finally, the exponenfu also approaches asymptotically a
constant valugcf., Eq.(7.5]

'IIIIIIIII T 1 1T 71 T 1 17T IIII|II'|
Py I _ SB |
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FIG. 6. The evolution ofc, A, X in the high temperature re-
gion, for temperatures slightly above and below the critical one, an
Ar=0.01, xg slightly smaller than 2fr§/p0=3.98. The system
approaches first the cubic and then the Heisenberg fixed point, b
fore deviating towards the symmetric phase or the phase with spo
taneous symmetry breaking.

B.=0.25 (10.2

_vw| 6 g 3 and v.={.=28;, in agreement with the scaling laws and
MH=g 2 K_H[Ll(Z)‘HKH)_Ll(O)] the finite value of the ratio.g(T) T/mg(T). We expect the
cubic fixed point to generate the universal behavior charac-
teristic of an Ising system. This is due to the fact that the
theory decomposes into two disconnectgg-symmetric
theories forx=2 (see Introduction and Secs. Illl and)IV
Indeed, the critical exponents that we have calculated are in
exact agreement with the results of R@] for N=1, which

In the above discussion the Heisenberg fixed point wasvere obtained at the same level of the truncation scheme.
the only one which played any role. This was expected sincémproved truncations result in values for the exponents
the cubic fixed point is repulsive in thedirection. Any flow  which are in agreement with three-dimensional field theory
that starts sufficiently far from it is further repelled and the[27,3§ at the few percent level[36]. The exponent
system never feels its effect. However, it is possible that thep.=0.16 is a typical example of a crossover exponent
values of the running parameters at the beginning of the evd25,27). It is related to the growth of the unstable coupling at
lution in the high temperature region are within the reg ion ofthe cubic fixed point, and therefore to the negative eigen-
influence of the cubic fixed point. An example is given in value of the matrix which governs the evolution of small
Fig. 6, for a theory withhg=0.01, Xy slightly smaller than 2, perturbations around the fixed-point value of the parameters.

+Au[9L3(2N k) +L3(0)]}=0.64. (9.9

X. TRICRITICAL POINT AND CROSSOVER
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We postpone a more detailed discussion of the crossover g,
behavior for a future publicatiof36].

The behavior corresponding to lin@s of Fig. 5 changes
if the critical temperature is further approachedtension of
the graph to the right Eventually the system moves away
from the cubic fixed point and the exponerms v, { take
values different from those typical of an Ising system. Also
the temperature dependence of-23(T) cannot be de- 10
scribed by a crossover exponent anymore ap(r) will
rather follow Eqgs.(9.6), (9.8). We display this behavior in
Fig. 5 [lines marked by(c)]. The values ofxg(T) give an
indication of which fixed point influences the system. It is
clear that the Heisenberg fixed point takes over from the
cubic one very close td,,. The temperature dependence of (@ 777 (@)
the exponentB is a characteristic example of a crossover oloiaamt=iy v (100 1o bon o b0 |
curve. It demonstrates how the critical dynamics changes ° - ln[;/o 2 e 0 =
from Ising-like (for In[(T?—T2)/T2]=—20) to Heisenberg- Po
Iikg (for In.[(Tz_.Tgf)/Tgr]: —50. A detailed' discussion of . FIG. 7. The evolution ok, A, x in the high temperature region
this behaylor within more accurate truncation schemes W'”for temperatures close to the critical ones. The zero temperature
be given in Ref{36]. parameters ar@) A\g=0.2, xg=2.01, (b) Ag=0.2, xg=3, and(c)

Ar=0.2, xg=5.
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XI. FIRST ORDER PHASE TRANSITION
U(p1,0,T) is suppressed as compared to the contribution of

We turn now to the region>>2 where we expect a first- Moreover, the increase afin this region is mainly due
order phase transition, as we have explained in Secs. llI ang2 .h fast d ' o NK/T. | h lina
VII. Our truncation scheme is too crude to describe the beJ—[0 the fast decrease ai=AK/T. In contrast, the coupling
havior of the potential in this region. We have approximateolevo'.ves .only sIov_va. The;oll—depegdent mass term for the
Uw(p1, p2. T) by a second-order polynomial jy ,. This 2 field is approximately given bgp, (for p,=0 and apart
permits the discussion of potentials with only one minimum.from a very small region around the origiand has again a

The study of first-order transitions requires the use of imMild k dependence. Let us assume that for a given scale

proved truncations, where higher derivatives ofU, are the solution of the truncated evolution equations depicted in

taken into account and the possibility of two distinct minimafh'g' 7otgelr\1/tei§IFrr?izor?]ezpnpsroi)r(]lmgﬂﬁ:r:llfr t?ﬁ;ﬁ\?\};ﬁ::ﬁ;&l:}?
is permitted. This has been done in RE85] for the zero- P NP '

temperature theory, and the existence of a first-order transgaﬂpénrsvgajeggtea&?azgmyg;[e?; ?;Sthsec?rl\i;?r ;rt]ethtéuscgl(s)a-
tion has been established. We shall not repeat this calculatio al, parameter y

here. Instead we shall derive an explicit solution of the evoXo by xo=x(ko,T),  No=MN(ko,T), _gozg(kg,T),
lution equation in the region of large, which will demon-  X0=X(ko,T), and the mass term for thg, field by gop; .
strate the existence of first-order transitions for the high-Based on the remarks at the beginning of this paragraph we
temperature theory. can thaln in the h|gh temperature region an approximate
In Fig. 7 we plot the numerical solution of Eq&.3)— solution _of the evolution equatlo(S.S) fc_)r the po_tentlal on
(7.5 in the high-temperature region, for zero-temperaturdN€p1 axis (p2=0). By neglecting the first term in the r.h.s.
renormalized parametedsz=0.01, xg=2.01,3,5. The tem- Of Ed. (5.3 and thek-dependence oi,= U,/ dpy,the dif-
perature is very close to the critical one. We notice that forferential equation(5.3) is easily integrated. We obtain in the
all three sets of parameters the evolution leads to a region ¢fMit k—0 (up to an irrelevant constant
largex. In Fig. 7 the curves fok and\ are terminated when _
x=30. We observe that the running parameters tend towards U(p1,0.1)=Uy=0(p1,0.T)
the same area of parameter space. More specifically, for 1
x=30 we find (very roughly \~3, k~0.08. This conver- = 5?\0(/01—Koko'|')2
gence of flows was already apparent in Fig. 1. The difference

in the evolution lies in the “time’t=In(k/A) that it takes for T (= Pro(X)+op1

the various flows to reach the same region. The fl@ayand - WJ dxyx In| ———=——|.

(b) are fast, while the trajectorfc) starts very close to the ™ Jo X+0op1
surfacex=2, is first attracted towards the cubic fixed point, (11.2)

and finally deviates towards the region of lasgeThe cubic
fixed point separates the region<2, where we have ob- The effective inverse propagatB(x) is given by Eq.(2.11)
served second-order phase transitions, from the regioand we have indicated that it must be evaluatedkferky.
x>2, for which we expect first-order transitions. For this Together with the numerical solution of the flow equations
reason it is characterized as a tricritical poifithe Ising near the critical surface fdt>k,, which provides the “in-
fixed point exhibits similar behavigr. tegration constantsi,, gy, and kokoT, we expect the ef-
In the regions of largex we haveg>\. As a result, the fective potential of Eq(11.1) to be a very good approxima-
contribution of the ¢, fluctuations to the evolution of tion. (For a sufficiently small ratio of couplingsg/gg we
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may identify ko with T/6,. This essentially reproduces the

results of high-temperature perturbation thepory.

The effective potential of Eq(11.1) describes indeed a

4567

5(2) T 63/2

Ull(pl):xojLﬁk_o_ETﬁ' (117

first-order phase transition. This can be most easily visual-

ized if we approximate for the purpose of demonstration

Pe,=Xx for x>k3,
Pko=k§ for x<k3. (11.2
One finds, for thep, derivative,
dU(p1,0,T)
Ui(p1,0,T)= g
= — KkohoKoT+Nop1
] K 1 1
+%TJ de\& — = .
™ Jo X+gop1  Ko+dopa
(11.3
Using a rescaled field variable
— Qop
=" (11.4
0
this yields(with \o=NoT/Ko)
— OokoT|2 47°kg = 1
Vilp)= 277137 Toxg ~p arcta o
+ Sl p+ L p (11.5
No(1+x0)?" " 3 145 '

For ko< xa=(1+Xo)/672 the potentiall(p,, 0, T) devel-
ops a minimum at the originpg=0). For kg only slightly

We have recovered the leading perturbative result for the
behavior of the quartic coupling near a first-order phase tran-
sition. If the minimum of the potentigh (k) is sufficiently
close to zero at the scale,, the remaining evolution of
p1o(K) from ky to k=0 causedJ,; to vanish at some scale

k between 0 ank,. As a consequence, the minimum at
p10# 0 becomes a saddlepoint and disappears subsequently.
Already before, a new minimum has been generated at the
origin, which remains the only minimum in the subsequent
evolution tok=0. SinceU 14(p4) is always negative for suf-
ficiently smallp,, the phase transition can never be second
order and all valuex>2 must lead to a first-order phase
transition.

Let us finally discuss a suitable choice of the sdale
from which on we can replace the numerical solution of the
flow equationg7.3)—(7.5) by the approximate solution given
by Eqg.(11.1). On one hand, must be sufficiently large in
order to justify the neglection of the contribution of tite
fluctuations in the approximate solution. On the other hand
ko should be sufficiently high so that a second minimum at
the origin has not yet been generated and the truncation of a
polynomial aroundp, is still valid. This requires that trajec-
tories near the critical trajectory not endkat 0 too deeply
in the symmetric phase. A realistic choicekgfshould rather
correspond ak=0 to the situation where two minima exist
simultaneously. For the “quasicritical” trajectories depicted
in Fig. 7 a reasonable compromise fqy seems to be given
by the value for whichx, reaches 30(This corresponds to
ka=0.6.) The trajectorie$a), (b), and(c) shown in Fig. 7
correspond then to potentidli(p,, 0, T) with two different
minima. They are close to, but not equal to, the critical tra-
jectories for whichkx would deviate from Fig. 7 towards the

below x4 the origin is only a local minimum whereas the €nd Of the running, thus leading to a potential with two de-
global minimum occurs ap;#0 and the model is in the 9enerate minima. _ .
phase with spontaneous symmetry breaking. For sufficiently [N summary, we have established the occurrence of a first-
small ko/ x5, however, the absolute minimum is at the ori- order phase transition for>2. Moreover, we have repro-

gin and the model is in the symmetric phafidote that3
—\p arctaril/p)+3p/(1+p) is a positive function for all

p.] There is a critical ratioc,/ x5 [depending on the value of

No(1+Xo)?] for which the minima atp;=0 andp,#0 are

degenerate in depth, but they are still well separated fro

each other. Changingg (which is a function ofT) through

this critical value leads to a first-order phase transition with

jump in the order parameter.

The necessity of a first-order phase transition can also b
seen by considering they;-dependent quartic coupling

U11(p1)=3?U(p1,0,T)/dp? which obeys

J— 6(2) £ 1
U =X\ ——Tf dxyx =
1(p1)=No 8m2 ), \/_ (X+ Gop1)?
= (116
_——Z . .
[Piy(X)+9opi]

duced the perturbative prediction for the form of the poten-
tial near the origin. We should emphasize, however, that the
perturbative expression applies only to the integration of
fluctuations from the scalle, (at whichx>1) to zero. The

Hflow from the region ofx near 2 to the region where the

perturbative expression becomes valid can be computed only

éhrough the use of evolution equations. The different flows

correspond to first-order transitions of varying strength. The
giscontinuity in the expectation value is of the same order as
ky. Also the mass gap at the critical temperature is propor-
tional to this scale. In consequence the discontinuitieg in
for the flows (a), (b), (c) in Fig. 7 have a ratio of
ApalApp/Ap.=1/0.016/5.x 10 °. The last flow, which
remains in the vicinity of the tricritical point before deviating
towards the region of largr, corresponds to an extremely
weakly-first-order transition.

Our results can easily be extended to the regiar0. We
have seen in the Introduction and Sec. IV thatA¢regime
(x>0) and theM regime &<0) can be mapped onto each

By keeping only the most singular behavior of the integralother through a simple redefinition of the fields analogy

for p;—0 we obtain

to Egs.(1.5), (1.6)]. For this reason, the physical behavior in
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the two regimes is the same. For example, the cubic antehavior extends over a larger temperature domain without
Ising fixed points generate the same universal behavior, chachanging the universal results. Even though we concentrated
acteristic of aZ,-symmetric scalar theory. Similarly, a first- in the present paper on small valuesiofor the purpose of
order phase transition occurs in the region—1. We shall comparing with analytical results, our method applies

not repeat our discussion for<<0. All our results can be equally well to largen.
extended to this region by the redefinition of fields and cou- A first-order phase transition is observed in the regions

plings in analogy to Eqg1.5), (1.6). x>2, x<-—1. Therefore, the cubic and Ising fixed points
are tricritical points separating regions of second- and first-
XII. CONCLUSIONS order transitions. The perturbative expression for the effec-

tive potential is a good approximation only fee>2 and
We have used the formalism of the effective average acx=—2. All theories near the critical temperature with clas-
tion for the study of the high temperature phase transition fosical couplingsx>2 or x<—1 correspond to renormalized
a theory of two real scalar fieldg; , with the symmetry theories withx>2 or x=—2 at scales of the order of the

(X1 — X1, X2 — X2.X1< X2), and quartic potential mass gap of the model. However, we distinguish two classes
of theories.
1, 5, L 1=, 5, —5 5 (I) For classical parameterss>2 or x=—2 one finds a
V(x1.x2) = 7M1+ x2) + gAMxi+x2)"+ 7XAxaxz. strongly first-order phase transition. Here the effects of quan-

(12.)  tum or thermal fluctuations are well approximated by the
perturbative expression for the effective potential.
The phase diagram of the theory is divided into four discon- (Il) For classical parametexs=2 or X=—1 we predict a
nected regionsx>2, 2>x>0, 0>x>—1, x<—1. Three very weakly-first-order transition. The use of the renormal-
fixed points with at least one infrared stable direction existization group is indispensable for the correct incorporation of
on the surfaces separating these regions: The Heisenbelfge quantum or thermal effects which strongly renormalize
fixed point (x=0) is attractive in the. andx directions, and the theory towards the regioms>2 or x=—2.

corresponds to a theory whose symmetry is increased to Our results are relevant for multi-Higgs-scalar extensions
O(2). The cubic k=2) and the Ising X=—1) fixed points  Of the standard mod¢2] and multi-scalar models of infla-

are attractive in thex direction and repulsive in the Ei)or! [23]. Lhey casft do;]Jbtrs]_okr: the general vsligity_of pfer;]ur—
direction and correspond to two disconnect@d(y;, Dave predictions for the high-temperature behavior of these

o — y1)-symmetry theories, which are equivalent. Themodels even in the case of small scalar coupllngs. I-_||gh-
: . " . .—.temperature perturbation theory was found to give a reliable
model has a second- or first-order phase transition, with criti-

Lt ¢ I imated by th turbati estimate for the effective potential only in limited regions of
cal temperatureé well approximated by the perturbative €Xy,q parameter space. Our nonperturbative method works for

pression ifx is small. _ _arbitrary values of the couplings in Eq12.1) and gives

Theories with classical parameters in the regiongyyajitatively reliable predictions for all temperatures and all
2>x>0, 0>x>—1 have a second-order phase transition.regjons in the phase diagram. Whereas our estimate of the
Very close to the critical temperature the behavior of thegyitical temperature can be trusted quantitatively even in the
system is universal. It is characterized by critical exponentspresent very rough truncation, some more refined quantities
which are determined by the Heisenberg fixed point. Foneed improved truncations for a precise computation. With
theories with classical parameters near the surfaceg,  the inclusion ofy® couplings and anomalous dimension non-
x=—1 the influence of the cubic or Ising fixed point can betrjvial quantities such as critical exponents can be calculated
observe_d near—but not too close to—the critical tem_perawith a few percent accurady,10]. Quantitatively more pre-
ture. This leads to a crossover phenomenon, characterized Ryge predictions for first-order phase transitions can be ob-
a crossover exponent and crossover curve, for temperaturgsined through the solution of the evolution equati@ri0
approachingT,. The universal behavior is initially deter- for the full effective average potential. Algorithms for the
mined by the cubic or Ising fixed point for small enough hymerical integration of such partial differential equations
(T=Te)/Te. As the critical temperature is further ap- have been developed recenit8g]. The model we have stud-
proaChed the more attractive Heisenberg fixed pOint domlred is eas"y extended to the case Whe{? and X2 are
nates. No part of this rich structure associated with they-component vectors with internal S®J symmetries. The
second-order phase transition can be observed within pertufigh-temperature phase transition in other two-scalar models
bation theory. We should mention that for small values\of with a different structure of the potential—as for example
the region in temperature where these phenomena appearggpersymmetric two-doublet models—can be treated in com-
rather narrow. This changes for larger where the critical plete analogy with the present work.
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