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Fermionic fluctuation corrections to bubble nucleation
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We determine the fermionic corrections to the nucleation rate of bubbles at the electroweak phase trans
The fermion determinant is evaluated at finite temperature, both exactly and by using the gradient expan
The gradient expansion is found to be a reliable approximation and is used to extrapolate to the large valu
nn5(2n11)pT needed in the Matsubara sum. The contribution to the effective action is found to be negat
Only the top quark contribution is evaluated. It is smaller than the loop corrections from Higgs andW bosons
and of opposite sign.

PACS number~s!: 11.27.1d, 11.15.Kc, 12.15.Ji, 98.80.Cq
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I. INTRODUCTION

The physics of the electroweak phase transition has be
discussed recently in various aspects@1#. Many subjects, as
e.g., the question of baryogenesis@2,3# are still controversial
@4,5#. Even the nature of the phase transition is not known
present. The temperature dependence of the effective po
tial has been studied in perturbation theory@6,7# as well as in
lattice simulations@8,9#. If the mass of the Higgs boson is
not too high~less thanMW) the phase transition is suppose
to be first order@10#. In this case the transition from the
symmetric vacuum with massless particles to the brok
symmetry phase would proceed via bubble nucleation. T
phenomenon, as well as its cosmological aspects, has b
studied by various groups@11–13#.

Part of the basic information needed in developing th
bubble formation and expansion scenario is the determi
tion of their nucleation rate. In the small temperature span
1 GeV in which the phase transition takes place bubbles
various sizes can be formed. Their nucleation rate varies o
several orders of magnitude. The basic rate is determin
@14–16# by the exponential of the classical minimal bubbl
action. The semiclassical reaction rate includes, howev
also preexponential factors, the fluctuation determinants,
termined by the fluctuation ofW boson, Higgs and fermion
fields in the background of the minimal bubble profile. Th
bosonic fluctuations have been computed recently@17,18#
and found to yield sizable suppression factors, the one-lo
effective action~or equivalently the free energy divided by
the temperature! being of the same order as the classic
bubble action. In the high temperature theory, obtained
retaining only the Matsubara frequency 0, fermions do n
contribute. However, recent determinations of the fermion
contribution to the sphaleron rate@19# let us expect that at
least the top quark will influence the transition rate in a
essential way. Of course we have to perform such a com
tation in the four-dimensional finite temperature quantu
field theory, i.e., by summing over all Matsubara frequencie

The plan of this paper is as follows. In the next section w
will introduce the model and set up the basic relations for t
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bubble nucleation rate. The fermion determinant is defined
Sec. III. In Sec. IV we will discuss the renormalization of th
leading terms, of first and second order in the external fie
vertex. Part of their contribution is contained already in th
effective potential and should not be included again. Th
renders the discussion of these terms rather lengthy, the
tails of the calculation are given in the Appendix, therefor
In Sec. V we present the computation of the finite high
order contributions to fermionic effective action. The resul
of an exact numerical computation are compared with
analytic approximation based on the gradient expansion. T
latter one is used, then, to obtain the actual results which
presented and discussed in Sec. VI.

II. BASIC RELATIONS

The classical action of the standard model has no so
tions which describe the nucleation of bubbles. We have
include finite temperature one-loop effects in order to have
model which displays a first order phase transition and the
fore bubble nucleation. The way in which this has to be do
is still not established at present; various approaches are
ing discussed. We will use here an action obtained in t
electroweak theory by evaluating at finite temperature t
one-loop effective potential in the manner of Coleman an
Weinberg@20#. This has been computed by various autho
@21–24#; here we use the formulation of Dineet al. @13#. We
will call this action which consists of the sum of classica
action and the integral over the one-loop effective potent
the ‘‘basic action.’’ This basic action displays then a firs
order phase transition, has bubble solutions, and will be us
to compute the bubble profile.

Our aim here is to compute the fermionic partSeff
F @F,T#

of the full finite temperature fermionic one-loop effective
action, i.e., the logarithm of the fermion determinant in th
external Higgs field configurationF of the bubble. Part of
the fermionic effective action, the fermion contribution to th
effective potential, is already contained in the basic actio
and has to be removed fromSeff

F in order to avoid double
counting. While the one-loop effective potential takes int
account only constant external fields, the one-loop effecti
action computed here will take into account the full~spheri-
cal! space dependence of the Higgs field. We will denote t
fermionic correction to the basic action asDSeff

F ; it is ob-
4499 © 1996 The American Physical Society
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4500 53J. BAACKE AND A. SÜRIG
tained as the difference of the full one loop effective acti
and fermion contribution to the effective potential, bo
evaluated in the Higgs field configuration of the bubble. T
same procedure should of course be performed for the ga
and Higgs field fluctuations as well in a complete compu
tion.

We will introduce an approximation here which wa
found to be a very good one in@13#: we will replace in the
basic action the finite temperature effective potential by
high temperature approximation. Since the fermionic con
bution to the one loop effective potential will be subtracted
the end anyway inDSeff

F ~and so would be the gauge field an
bosonic part in a complete computation of one-loop corre
tions! this approximation will affect the total effective action
the sum of basic action andDSeff

F , only indirectly through
slightly modified bubble profiles.

The ‘‘basic’’ ~in the sense discussed above! finite tempera-
ture action of the Higgs field from which the bubble profile
determined is then given by

SFT5E
0

b

dtE d3xF12 ~]mF!†~]mF!1VHT~F†F!G .
~2.1!

F is the complex doublet of Higgs fields. Here this fie
will always occur as a background field describing the min
mal bubble. It can be parametrized then as

F~xW !5v0F~xW !S 01D . ~2.2!

VHT is the high temperature potential which includes t
classical potential and the one-loop effective potential in t
high temperature approximation:

VHT~F†F!5D~T22T0
2!F†F2ET~F†F!3/21

lT

4
~F†F!2.

~2.3!

Its parameters are given, forQw50, by

D5~3mW
2 12mt

2!/8v0
2 ,

E53g3/32p,

B53~3mW
4 24mt

4!/64p2v0
4 ,

T0
25~mH

2 28v0
2B!/4D, ~2.4!

lT5l23S 3mW
4 ln

mw
2

aBT
2 24mt

4ln
mt
2

aFT
2D Y16p2v0

4 ,

~2.5!

with lnaB52 ln4p22g and lnaF52 lnp22g.
For T.T0 the potential has a minimum atuFu50 corre-

sponding to the symmetric phase and a second minimum

uFu5 ṽ~T!5
3ET

2l
1AS 3ET2l D 21v2~T!, ~2.6!

where
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v2~ t !5
2D

lT
~T0

22T2!. ~2.7!

This minimum is degenerate with the one atF50 at a tem-
perature defined implicitly by

TC5T0 /A12E2/DlTC
. ~2.8!

TC marks the onset of bubble formation by thermal barrie
transition.

The bare fermionic Euclidean actionSF , from which the
fermion determinant is derived by integrating out the ferm
ion field in the semiclassical approximation, can be written
for vanishing gauge fields and for Higgs field configurations
of the form ~2.2!, in terms of four component Dirac spinors
as

SF5E
0

b

dtE d3xF(f ~ c̄ fgm]mc f !2(
f f 8

gY
f f 8v0Fc̄ fc f 8G ,

~2.9!

where the Yukawa couplings are related to the fermion mas

matrix viagY
f f 8v05mf f 8. The sum overf is over flavors and

colors. Here we will consider only the contribution of the top
quark. This restriction applies already to the high tempera
ture action given above, for the reason that its contribution
much larger than the one of lighter quark and lepton fields
This will also be the case for the exact one-loop action.

The process of bubble nucleation is, within the approac
of Langer@14# and Coleman and Callan@15,16#, followed by
the work of Affleck@25#, Linde @26# and others, described by
the rate

G/V5
v2

2p S S̃

2p D 3/2exp~2S̃!SJF

JB
D 1/2. ~2.10!

Here S̃ is the high-temperature action, Eq.~2.1!, with the
new rescaling, minimized by a classicalt independent mini-
mal bubble configuration~see below!. JF/B are the fermi-
onic and bosonic fluctuation determinants which describe th
next-to-leading part of the semiclassical approach.JF ,
whose computation is the aim of this work, will be defined
below; its logarithm is related to the fermionic one-loop ef-
fective action by

Seff
F 52

1

2
lnJF . ~2.11!

Finally v2 is the absolute value of the unstable mode fre
quency.

The classical bubble configuration is described by a van
ishing gauge field and a realt independent spherically sym-
metric Higgs field. For the bubble configuration we make th
ansatz

F~xW !5 ṽ~T!f~r !S 01D , ~2.12!
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53 4501FERMIONIC FLUCTUATION CORRECTIONS TO BUBBLE NUCLEATION
where we have rescaled Eq.~2.2! via v0F(r )5 ṽ(T)f(r ). In
all our numerical computations we will use the sca
@gwṽ(T)#

21 for the coordinates. Defining the rescaled hi
temperature potential as

ṼHT5
lT

4g2 Ff42ef31S 32 e22Df2G , ~2.13!

with

e5
4ET

lTṽ~T!
5
4

3 S 12
v2~T!

ṽ~T!2
D ~2.14!

and the high temperature coupling

g̃3
2~T!5

gwT

ṽ~T!
, ~2.15!

the bubble action is given by

S̃5
4p

g̃3
2~T!

E
0

`

r 2drF12 S df

dr D
2

1ṼHT~f!G . ~2.16!

It is minimized iff(r ) is a solution of the associated Eule
Lagrange equation

2f9~r !2
2

r
f8~r !1

dVHT
df~r !

50 ~2.17!

with the boundary conditions

lim
r→`

f~r !50 and f8~0!50. ~2.18!

The bubble configuration varies from small thick wa
bubbles to large thin wall bubbles in the narrow range (.1
GeV! betweenT0 andTC , both of order 100 GeV. We will
use the variable

y53~12e/2!, 0,y,1 ~2.19!

instead ofT to parametrize this range of temperatures.

III. THE FERMIONIC FLUCTUATION DETERMINANT

The bare fermionic Euclidean actionSF of quarks can be
rewritten in four component Dirac notation and for tim
independent background configurations as

SF5E
0

b

dtE d3xc̄@gm]m2m~xW !#c ~3.1!

5E
0

b

dtE d3xc†~]/]t2H !c, ~3.2!

wherem(xW )5gYṽ(T)f(r ) and

H5g0@2 igW •¹W 1m~xW !#. ~3.3!

The field fluctuations are subject to antiperiodic bounda
conditions att50 andt5b, i.e.,
le
gh

r-

ll

e-

ry

c~xW ,b!52c~xW ,0! ~3.4!

which determines their frequencies to be the Matsubara fr
quenciesnn5(2n11)pT with integern, 2`,n,`. Inte-
grating out the fermion field leads to the fermionic prefacto

JF
1/25

Pna~ inn1va!

Pn,a~ inn1va
0 !
, ~3.5!

whereva denotes the eigenvalues ofH. Using the fact that
these eigenvalues occur in pairs6va we can rewrite this as

JF5S Pna~nn
21va

2 !

Pn,a@nn
21~va

0 !2#
D . ~3.6!

The fermion contribution to the effective action is therefore
given by

Seff
F 52

1

2
lnJF52

1

2 (
n52`

`

ln detS nn
21M

nn
21M0D . ~3.7!

Here nn5(2n11)pT, the fluctuation operatorsM and
M0 are defined as

M5H252D1V ~xW !,

M05~H0!252D, ~3.8!

and

V 5H m2~xW ! 2 isW ¹W m~xW !

isW ¹W m~xW ! m2~xW !
J . ~3.9!

A method for computing such fluctuation determinants nu
merically has been described recently@27# ~see also@28–31#
for earlier applications!. Before we discuss the numerical
part of the computation we have to ensure that the quantitie
we are going to compute are finite. The effective action a
defined formally in Eq.~3.7! is divergent. This is easily seen
be expanding it with respect to the potentialV :

Seff
F 5 (

k51

`
~21!k

2k (
n52`

`

Tr @~2D1nn
2!21V #k5 (

k51

`

Seff
~k! .

~3.10!

Here (2D1nn
2)21 is a formal representation of the Green

function associated to that operator. The superscript (k) de-
notes the power of the potentialV or equivalently the order
of the associated Feynman graph. The series of Feynm
graphs corresponding to~3.10! is depicted in Fig. 1. The first
and second order graphs are divergent. We will see that o
numerical method allows us to separate these two grap
from the remaining series:

Seff
~3!̄5 (

k53

`

Seff
~k! ~3.11!

which can be computed exactly and is finite. The divergence
of the two leading graphs are obviously those of ordinar
perturbation theory. Their divergent parts can be cancelled b
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4502 53J. BAACKE AND A. SÜRIG
the counterterms of theT50 theory. This will be described
in the next section, following the work of Refs.@32# and
@13#.

IV. RENORMALIZATION

As usual in finite temperature field theory the renorm
ization of divergent quantities is done at zero temperatu
The effective potential is renormalized in such a way that
vacuum expectation valuev0 and the Higgs boson mass, i.e
the second derivative at the broken symmetry minimum,
kept at their physical values; these are the renormaliza
conditions usually adopted. This fixes the counterterms in
effective action. On the other hand, we need the effect
action which is expanded around the symmetric vacuum
fined byF50. The discussion of renormalization, especia
at finite temperature, is therefore somewhat cumbersome

In order to cover both kinds of expansion we rewrite t
effective action as

Seff52
1

2
lnJ52

1

2 (
n52`

1`

lnS det~nn
22D1mF

21U!

det~nn
22D1mF

2 !
D , ~4.1!

where now mF5mF5gYv0 if one expands around the
T50 broken symmetry vacuum andmF50 if one expands
around the high temperature symmetric phase. The 434 ma-
trix U is then given by

U5V 2mF
25HmF

2F22mF
2

2 imFsW ¹W F

imFsW ¹W F mF
2F22mF

2 J . ~4.2!

The fieldF is normalized in such a way that it takes th
al-
re.
the
.,
are
tion
the
ive
de-
lly
.
he

e

value 1 if the Higgs field is at itsT50 vacuum expectation
value.

As discussed in Sec. III we get the series of one-lo
Feynman graphs depicted in Fig. 1 when we expand
logarithm in ~4.1!. The first two terms of this expansion
which have been labeledSeff

(1) andSeff
(2) , are divergent and so

must be renormalized. Therefore we calculate these qua
ties first at zero temperature with massive propagators
use the proposed renormalization conditions to fix the cou
terterms. ThenSeff

(1) andSeff
(2) are calculated at finite tempera

ture with massless propagators—i.e., in the symme
vacuum. They can be splitted up into a zero temperature p
whose divergences are canceled by the counterterms a
temperature-dependent part. In performing the calculation
Seff
(1) and Seff

(2) in this way one finds contributions that ar
already taken into account in the high temperature effect
potentialVHT of Eq. ~2.3!. These terms must be subtracted
order to avoid double counting; we call the resulting diffe
enceDSren

(112) .
After this procedure, which is presented in detail in th

Appendix, we get the following contribution to the renorma
ized first and second order to the finite temperature one-lo
effective action:

FIG. 1. The loop expansion of the effective action. The lin
represent the propagators and the dots indicate the verticesV(x).
DSren
~112!~F,T!523b

mt
4

16p2E d3q

~2p!3 S uF2̃~q!u21
q2

mt
2uF̃~q!u2D F lnS q2mt

2D 2214E
0

1

daE
0

`dp

Ea

1

exp~Ea /T!11G
23b

mt
4

16p2 lnS mt
2

aFT
2D E d3q

~2p!3
uF2̃~q!u2. ~4.3!
t

i
a

-

he
fined

ic

tes
e

V
h

oth
e

As the evalution of the renormalization parts of first an
second order inV is completely independent of the compu

tation of the finite partSeff
~3!̄ one may as well use differen

schemes of renormalization. A particular one, based on
modified minimal subtraction (MS) scheme has been used
@7#. If we use theMS scheme we find an expression th
differs from ~4.3! in two places:~i! ln(q2/mt

2) is replaced by
ln(q2/m2) wherem is the scale introduced by dimensiona
regularization and ~ii ! ln(mt

2/aFT
2) is replaced by

ln(m2/aFT
2).

The latter modification arises because in the high te
perature potential used in@7# the logarithmic corrections due
to boson loops are proportional toLs5 ln(m2/aBT

2) instead of
ln(mW

2 /aBT
2) here@cf. ~2.5!#. The fermionic ones, not consid
d
-

the
n
t

l

m-

ered in @7#, would similarly containm instead ofmF . Of
course, if theMS scheme is used the couplings and t
masses have to be replaced by couplings and masses de
for this scalem. The authors of Ref.@7# use the invariance
under the renormalization scale to minimize the logarithm
corrections by a special choice ofm. The fact that our first
and second order corrections turn out to be small indica
that the choicem.mt is already almost optimal. Indeed th
fermionic logarithm ln(m2/aFT

2) vanishes for m
5pexp(2g)T.1.76T. For temperatures around 100 Ge
this is indeed near tomt . In @7# the scale was chosen in suc
a way that the bosonic logarithmLs vanishes, requiring
m.7T. With such a choice our results forDSren

(112) change
appreciably. The values are given in the tables. Since b
scalesmF.1.76T andmB.7T are related to the temperatur
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as a common scale, one could think of choosing the
scalesmB andmF for the bosonic and fermionic loops, re
spectively. A complete discussion of such a scheme woul
beyond the scope of this paper.

V. CALCULATION OF THE FINITE PART OF THE
EFFECTIVE ACTION

What remains to be evaluated is the sum of all Feynm
graphs of order 3 and higher. This contribution is finite,

denote it asSeff
~3!̄~f!. We present an exact numerical comp

tation, using a general theorem on functional determina
@33# and an analytic approximation based on the grad
expansion. The results of the two methods will be compa
at the end of this section.

A. Numerical computation

As mentioned above the fermionic one-loop effective
tion at finite temperature can be written, including the co
factor 3, as

Seff52
3

2 (
n52`

`

ln detS 2D1nn
21V

2D1nn
2 D 523(

n50

`

lnJ ~nn!.

~5.1!

As the background field is spherically symmetric the de
minant can be decomposed into its partial wave contr
tions. This is readily done by introducing the usual spin
for given j andl5 j61/2 as given in the textbook of Bjorke
and Drell @34#. One finds then

Seff52 (
n50

`

(
l50

`

6~2l11!lnJ l~nn!. ~5.2!

Here the the partial wave determinantsJ l(n) are defined as

J l~n!5detS M l1n2

M l
01n2D

with the partial wave fluctuation operators

M l5M l
01V~r !,

M l
0521S d2dr2 1

2

r

d

dr D 1
1

r 2 H l ~ l11! 0

0 ~ l11!~ l12!
J ,
~5.3!

V~r !5H m2~r ! dm~r !/dr

dm~r !/dr m2~r !
J . ~5.4!

A very fast method for computing fluctuation determinants
based on a theorem on functional determinants@33# which
can be generalized to a coupled (n3n) system.

Let f(n,r ) andf0(n,r ) denote the (n3n) matrices formed
by n linearly independent solutionsf i

a(n,r ) and f i
a0(n,r ) of

~M l1n2! i j f j
a~n,r !50 ~5.5!

and

~M l
01n2! i j f j

a0~n,r !50, ~5.6!
wo
-
be

an
e

u-
nts
ent
red

c-
lor

er-
bu-
rs

is

respectively, with regular boundary conditions atr50. Here
the latin lower index denotes then components while the
different solutions are labeled by the Greek upper index. Le
these solutions be normalized in such a way that

lim
r→0

f~n,r !@ f0~n,r !#2151. ~5.7!

Then the statement of the theorem is

J l~n![
det~M l1n2!

det~M l
01n2!

5 lim
r→`

detf~n,r !

detf0~n,r !
. ~5.8!

Here the determinants on the left-hand side are determinan
in functional space while those on the right-hand side ar
ordinary determinants of then3n matrices defined above.
The theorem already has been applied to the calculation
the one-loop effective action of a single scalar field on a
bubble background in@27,18# and of a fermion system at
temperatureT50 on a similar background in@35# which we
refer to for more technical details.

In the numerical application the solutionsf k
a are written

as @36#

f k
a~n,r !5@dk

a1hk
a~n,r !# i l k~nr ! ~5.9!

with the boundary conditionhk
a(n,r )→0 asr→0. Of course

the valuel k depends on the channel. This way one generate
a set of linearly independent solutions which nearr50 be-
have like the free solution as required by the theorem whic
then takes the form

J ~n!5 lim
r→`

det@dk
a1hk

a~n,r !#. ~5.10!

The functionshk
a(n,r ) satisfy the differential equation

d2

dr2
hk

a~n,r !12S 1r 1n
i l k8 ~nr !

i l k~nr !D d

dr
hk

a~n,r !

5Vkk8~r !@dk8
a

1hk8
a

~n,r !#
i l k8~nr !

i l k~nr !
. ~5.11!

This equation can easily be used for generating the functio
hk

a order by order in the potentialV. Introducing the contri-

bution of orderk in the potential ash(k) and definingh(k)̄ via

h(k)̄[(
j5k

`

h~ j !

as in @35#, the relevant contributionSeff
~3!̄ is found to be

Seff
~3!̄52 (

n50

`

K ~3!̄~nn!, ~5.12!

where
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K ~3!̄~n !5(
l50

`

6~2l11! lim
r→`

$ ln det@11h~1!̄~n,r !#

2tr~h~1!~n,r !1h~2!~n,r !2 1
2 @h~1!~n,r !#2!%.

~5.13!

The expressionK ~3!̄(n) was evaluated by summing the pa
tial waves computed numerically up tolmax530 extrapolated
for higher values ofl using an ansatzal251bl261cl27.
The asymptotic behavior is supposed to set in at value
l@nR whereR is the typical radius of the bubble. SinceR
has typical values of 20–40, this means that for ourlmax the
extrapolation becomes unreliable already forn of order 1.
We will discuss this point again below.

B. Analytic approximation using the gradient expansion

In @35# an approximation of the gradient expansion ty
has been given for the one-loop effective action at zero t
r-

of

pe
m-

perature for the case of a massive fermion with Yukawa co
pling to an external scalar field. The calculation to be don
here is similar because the Matsubara frequencynn enters in
the same way as a mass term and so the structure of
determinant is of the same type.

The logarithm of the determinantJ (n) can be written
exactly as

lnJ ~n!5Tr ln~11G0V !, ~5.14!

where the free Green functionG0 is defined by

~M1n2!G051. ~5.15!

Defining the Fourier transform of the potentialV as

Ṽ ~q!5E d3xV ~x!exp~2 iqx! ~5.16!

the fluctuation determinant can be expanded as
rking
lnJ ~n!5 (
k51

`

tr
~21!k11

k E d3p

~2p!3)j51

k E d3qj
~2p!3

Ṽ ~qj !

~p1Qj !
21n2

~2p!3d~3!~Qk!, ~5.17!

where

Qj5(
l

j

ql .

Expanding the denominators including terms up to ordern22k24 we get

)
j51

k
1

~p1Qj !
21n2

.
1

~p21n2!k F12(
l51

k Ql
2

~p21n2!
1
4

3

p2

~p21n2!2 S (
l. l 8

QlQl 81(
l51

k

Ql
2D G . ~5.18!

As the potential isV 5mF
2F21mFg¹F we have

tr)
j51

k

Ṽ ~qj !.4mF
2kF)

j51

k

F2̃~qj !2
1

mF
2 (
l. l 8

qlql 8F̃~ql !F̃~ql 8! )
jÞ l ,l 8

F2̃~qj !G . ~5.19!

After inserting these expansions in~5.17! and transforming back tox space the remaining integrations~except one space
integration! and thek summation can be done. Of course we have to omit those terms which are divergent. As we are wo
in four dimensions these are the terms withk51 andk52, they have been discussed in the previous section.

Our final result written in the form ofK (n)53 lnJ (n) is

K ~3!̄~n !.
3n3

2p E d3xH 2
4

3 F S 11
mF
2F2

n2 D 3/2212
3

2

mF
2F2

n2
2
3

8

mF
4F4

n4 G1
mF
2~¹F!2

2n4 F X12S 11
mF
2F2

n2 D 2 1/2C
2
mF
2F2

3n2
X12S 11

mF
2F2

n2 D 23/2CGJ. ~5.20!
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This expression has to be evaluated using forF the numeri-
cal bubble profiles. The accuracy is only limited by the a
curacy of these profiles and by that of the numerical integ
tion. With our numerical precision the results are reliable
at least six significant digits.

The approximate results forK ~3!̄ can be compared with
the exact numerical ones computed using~5.13!. For the pur-
pose of comparison we treatn as a continuous parameter. W
display the exact and approximate results in Figs. 2 and 3
two typical bubble profiles, a small bubble withy50.6 and a
large bubble corresponding toy50.3 @see~2.19! for the defi-
nition of y]. The analytic approximation is seen to describ
the trend of the exact results over the whole range. The g
dient expansion is expected to converge at largen. This
expectation is substantiated by the exact numerical result
the region where they are reliable. It is seen, however, t
the exact results start dropping off at values ofn.1–2; as
mentioned above this is related to the fact that the conv

FIG. 2. Results of the numerical computation compared to
analytic approximation fory50.3, mH560 GeV, andmt5170
GeV. The dots interpolated by a dotted line represent the numer
results; the solid line is the analytic approximation of Eq.~5.13!.
c-
ra-
to

e
for

e-
ra-

s in
hat

er-

gence of the partial wave summation becomes poorer w
increasingn. Since the values ofn relevant for the Matsub-
ara frequency summation~5.12! aren>pT'9 ~ in our units
gṽ) we have to rely on the gradient expansion in computin
the finite temperature effective action.

VI. RESULTS

We have computed the finite temperature fermionic effe
tive action for Higgs boson masses of 60,70, and 80 GeV a
for top quark massesmt5160,170, and 180 GeV. These re-
sults are given in Tables I–III. As mentioned in Sec. II we
have considered only the contribution of the top quark sinc
lighter quarks and leptons will give negligible contributions
Their contribution has already been dismissed in the bas
high temperature action~2.1! and including them would be
inconsistent.

For each set of mass parameters we have determined
bubble profiles for various values of the variabley defined in
~2.19!; y determines the temperature and the bubble actio
We give separately the renormalized first and second ord
contributionsDSren

(112) , Eq. ~4.3! determined in Sec. IV,

the

ical

FIG. 3. The same as Fig. 2 fory50.6.
n

DSren
~112!~F,T!523b

mt
4

16p2E d3q

~2p!3 S uF2̃~q!u21
q2

mt
2uF̃~q!u2D F lnS q2mt

2D 2214E
0

1

daE
0

`dp

Ea

1

exp~Ea /T!11G
23b

mt
4

16p2 lnS mt
2

aFT
2D E d3q

~2p!3
uF2̃~q!u2, ~6.1!

and the finite sum of all higher order contributionsSeff
~3!̄ whose computation was discussed in the previous section. It is give

by the analytic expression Eq.~5.20!, inserted into the Matsubara sum~5.12!:

Seff
~3!̄52 (

n50

` 3nn
3

2p E d3xH 2
4

3 F S 11
mF
2F2

nn
2 D 3/2212

3

2

mF
2F2

nn
2 2

3

8

mF
4F4

nn
4 G

1
mF
2~¹F!2

2nn
4 F X12S 11

mF
2F2

nn
2 D 21/2C2 mF

2F2

3nn
2 X12S 11

mF
2F2

nn
2 D 23/2CG J . ~6.2!
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The total one-loop effective action, reduced by the term
included already in the ‘‘basic’’ effective potential~2.3! is
given, of course, by the sum

DSeff
F 5DSren

~112!1Seff
~3!̄ , ~6.3!

which is exactly the quantity that was introduced the fir
time in Sec. II. The numerical values presented in Tabl
I–III show that the fermion determinantDSeff

F gives a nega-
tive contribution to the effective action, which means th
bubble nucleation is enhanced by this contribution@cf. Eqs.
~2.10! and ~2.11!#. Relative to the tree level actionS̃ this
suppression is not significant, thus supporting the semicl
sical approach. Of course this is only true because a subs
tial part of the fermion free energy was included already
the high temperature action.
s

st
es

at

as-
tan-
in

The situation changes appreciably if one uses t
MS scheme with the renormalization scalem
54p exp(2g)T.7T as proposed in@7# in order to suppress
large logarithmic corrections from boson loops. The resu
for this choice are also given in the tables in the colum
denoted asDSren

(112,MS). Of course these authors have cons
ered only the boson sector of the SU~2! gauge theory. If one
chooses a scalemF5pexp(2g)T.1.76T in order to sup-
press large contributions due to fermion loops then one o
tains essentially our original resultDSren

(112) since this scale is
almost equal to the top quark mass.

In conclusion we have found that the top quark contrib
tion to the finite temperature one loop effective action can
described in analytic form by the expressions~6.1! and~6.2!.
These terms represent minor corrections to the basic act
SFT . While this supports the use of the semiclassical a
proximation it remains a problem that the corrections due
boson loops turn out to be comparable to the basic action
-loop
rk

:

nction
APPENDIX A

In the following we will discuss the calculation of the renormalized first and second order of the fermionic one
effective action both atT50 with massive propagators and at finiteT with massless propagators. Anticipating that we wo
at finite temperature we replace the space-time integration byb*d3x.

For the first order diagram atT50 we have

Seff
~1!~F,0!52

1

2
4bE d3x~mF

2 uF~x!u22mF
2 !E d4p

~2p!4
1

p21mF
2 . ~A1!

Using a four-momentum cutoffL we get

Seff
~1!~F,0!52

1

8p2bE d3x~mF
2 uF~x!u22mF

2 !@L22mF
2 ln~L2/mF

2 !#. ~A2!

Before we dispose further by introducing appropriate counterterms we turn to the second order contribution atT50. We have
to evaluate1

Seff
~2!~F,0!5

1

4
4bE d3q

~2p!3
@ u~mF

2F22mF
2 !;~q!u21mF

2q2uF̃~q!u2#E d4p

~2p!4
1

p21mF
2

1

~p1q!21mF
2 . ~A3!

Performing a standard computation, using again a four-momentum cutoffL, leads to the following result for the loop integral

E d4p

~2p!4
1

p21mF
2

1

~p1q!21mF
2 5

1

16p2 F lnS L2

mF
2 D 212E

0

1

da lnS 11
q2

mF
2 a~12a! D G . ~A4!

Putting this together with the first order contribution and requiring all corrections to the potential and the wave fu
renormalization to vanish atq250 we find that we need a counterterm

Seff
ct 5

L2

8p2bE d3x@mF
2
„uF~x!u221…#2

1

16p2 F lnS L2

mF
2 D 21GbE d3x@mF

4
„uF~x!u421…1mF

2 u¹F~x!u2#

2
1

8p2mF
4bE d3x„uF~x!u221…. ~A5!

If the first and second order diagram are evaluated in the symmetric vacuum we find

1(•••); denotes the Fourier transform of the expression inside the parentheses.
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Seff
112,S~F,0!52

L2

8p2bE d3xmF
2 uF~x!u21

1

16p2bE d3q

~2p!3
@mF

4 uF2̃~q!u21mF
2q2uF̃~q!u2#F lnS L2

q2 D11G . ~A6!

Leaving out the field-independent terms, which are due to a difference in the vacuum energy density, we get

Seff
~112,S!~F,0!1Seff

ct 52
b

16p2E d3q

~2p!3
@mF

4 uF2̃~q!u21mF
2q2uF̃~q!u2#F lnS q2mF

2 D 22G2
1

8p2mF
2bE d3xmF

2 uF~x!u2, ~A7!

which has to be evaluated with the background profile. The last term is already contained in the high temperature p
~2.3!; it occurs in the coefficient2DT0

252(mH
2 28v0

2B)/4 via the top contribution toB.
Turning now to the first order diagram at finite temperature we have to evaluate

Seff
~1!~F,T!52

1

2
4bE d3x@mF

2 uF~x!u22mF
2 #T (

n52`

1` E d3p

~2p!3
1

nn
21mF

21p2
. ~A8!

In order to separateT50 and finite temperature contributions we use@32#

T (
n52`

`
1

@~2n11!pT#21p21mF
2 5

1

2EF
2

1

EF

1

exp~EF /T!11
, ~A9!

with EF5Ap21mF
2. In the last line the second term vanishes asT→0, so the first one represents theT50 contribution which

we have considered earlier. Inserting the second part into the expression forJ (1) we find the finite temperature part

DSeff
~1!~F,T!52bE d3x@mF

2 uF~x!u22mF
2 #E d3p

~2p!3
1

EF

1

exp~EF /T!11
. ~A10!

TABLE I. Corrections to the effective action at finite temperature formH560 GeV.e andy are defined

in Eqs.~2.14! and ~2.19!; DSren
(112) is defined by Eq.~4.3!, DSren

(112,MS) is the corresponding quantity in the

MS scheme withm57T; S~3!̄ is given by Eqs.~5.12! and~5.20!; S̃, the classical action of Eq.~2.16!, is given
for comparison.

mt @GeV# T @GeV# e y nSren
(112)

nSren
(112,MS) Seff

~3!̄ S̃

160 94.894 1.867 0.2 -0.802 20.34 -18.923 308.02
94.854 1.800 0.3 -0.168 8.91 -3.774 132.30
94.682 1.600 0.6 -0.043 1.66 -0.0781 24.847

170 94.5288 1.867 0.2 10.119 20.72 -20.418 278.47
94.495 1.800 0.3 10.250 9.23 -4.184 121.40
94.347 1.600 0.6 10.035 1.71 -0.0854 22.686

180 94.6605 1.867 0.2 11.020 21.03 -20.929 251.60
94.631 1.800 0.3 10.609 9.14 -4.110 107.27
94.5056 1.600 0.6 10.104 1.71 -0.0855 20.245

TABLE II. Corrections to the effective action at finite temperature formH570 GeV. Definitions as in
Table I.

mt @GeV# T @GeV# e y nSren
(112)

nSren
(112,MS) Seff

~3!̄ S̃

160 106.015 1.867 0.2 -1.825 14.36 -6.746 217.14
105.980 1.800 0.3 -0.654 6.35 -1.384 94.690
105.826 1.600 0.6 -0.127 1.18 -0.0282 17.630

170 104.7850 1.867 0.2 -1.14 15.39 -8.412 207.39
104.7545 1.800 0.3 -0.351 6.84 -1.726 90.411
104.6202 1.600 0.6 -0.070 1.27 -0.0352 16.830

180 104.094 1.867 0.2 -0.388 15.96 -9.602 193.72
104.0674 1.800 0.3 -0.0515 7.09 -1.946 83.921
103.951 1.600 0.6 -0.0119 1.32 -0.0396 15.632
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We have to evaluate this expression for a bubble in the symmetric vacuum whereFÞ0 only locally and wheremF50 at
spatial infinity. ThenEF5upu and we find

DSeff
~1!~F,T!5

T2

12
mF
2bE d3xuF~x!u2. ~A11!

This contribution is already taken into account in theT2 term of the three-dimensional high temperature action~2.1!. Therefore
the finite temperature part of the first order tadpole diagram has to be omitted entirely.

As the second order contribution at finiteT we have to evaluate

Seff
~2!~F,T!5bE d3q

~2p!3
@mF

4 uF2̃~x!u21mF
2q2uF̃u2#T (

n52`

1` E d3p

~2p!3
1

~nn
21p2!@nn

21~p1q!2#
. ~A12!

Momentum integration and Matsubara frequency summation can be carried out via

T (
n52`

1` E d3p

~2p!3
1

~nn
21p2!@nn

21~p1q!2#
5T (

n52`

1` E
0

1

daE d3p

~2p!3
1

@nn
21p21a~12a!q2#2

5T (
n52`

1` E
0

1

daE d3p

~2p!3
2d

d~p2!

1

nn
21p21a~12a!q2

5
1

p2TE0
1

daE d3p

~2p!3
2d

d~p2!

p2T

2Ea
tanh~Ea/2T!, ~A13!

whereEa
25p21a(12a)q2. TheT50 part may be recovered by performing the limitT→0. Subtracting this part we find for

the finite temperature supplement

E
0

1

da
1

2p2E
0

`

dpp2
2d

2pdp

21

Ea

1

exp~Ea /T!11
5E

0

1

da
21

4p2E
0

`dp

Ea

1

exp~Ea /T!11
, ~A14!

so that

DSeff
~2!~F,T!52

1

4p2bE d3q

~2p!3
@mF

4 uF2̃~q!u21mF
2q2uF̃~q!u2#E

0

1

daE
0

`dp

Ea

1

exp~Ea /T!11
. ~A15!

Part of this term is already contained in the high temperature effective action. The momentum integral has been conside
Dolan and Jackiw@32#; it can be expanded to leading order inT, i.e., up to terms of order 1/T2 as

E
0

`dp

Ea

1

exp~Ea /T!11
52

1

4 F lnS a~12a!q2

p2T2 D12gG1O~q2/T2!. ~A16!

If this is inserted into the previous equation we find

DSeff
~2!~F,T!5

1

16p2bE d3q

~2p!3
@mF

4 uF2̃~q!u21mF
2q2uF̃~q!u2#E

0

1

daF lnS a~12a!q2

p2T2 D12gG . ~A17!

TABLE III. Corrections to the effective action at finite temperature formH580 GeV. Definitions as in
Table I.

mt @GeV# T @GeV# e y nSren
(112)

nSren
(1124,MS) Seff

~3!̄ S̃

160 117.541 1.867 0.2 -2.22 10.15 -2.512 156.45
117.510 1.800 0.3 -0.849 4.52 -0.514 68.050
117.374 1.600 0.6 -0.155 0.847 -0.0107 12.708

170 115.4848 1.867 0.2 -1.84 11.17 -3.388 153.28
115.4573 1.800 0.3 -0.654 4.99 -0.688 66.460
115.337 1.600 0.6 -0.118 0.93 -0.0142 12.410

180 114.0042 1.867 0.2 -1.40 11.90 -4.163 146.18
113.9801 1.800 0.3 -0.430 5.35 -0.852 63.649
113.874 1.600 0.6 -0.076 1.00 -0.0174 11.846
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The integration overa can then be performed, replacing the second parenthesis by

F lnS q2

p2T2D2212gG . ~A18!

If this is added to the zero temperature result~A7! the term ln(q2/mF
2)22 in this equation gets replaced b

ln(T2/mF
2)12 lnp22g. This term appears in the high temperature potential inlT .

Collecting from Eqs.~A7! and~A15! the terms which have not yet been included into the high temperature potential w
the following renormalized contribution of the first and second order Feynman graphs:

DSren
~112!~F,T!523b

mt
4

16p2E d3q

~2p!3 S uF2̃~q!u21
q2

mt
2uF̃~q!u2D F lnS q2mt

2D 2214E
0

1

daE
0

`dp

Ea

1

exp~Ea /T!11G
23b

mt
4

16p2 lnS mt
2

aFT
2D E d3q

~2p!3
uF2̃~q!u2. ~A19!

Here we have taken into account the color factor 3 and we have replacedmF by mt .
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