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Fermionic fluctuation corrections to bubble nucleation
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We determine the fermionic corrections to the nucleation rate of bubbles at the electroweak phase transition.
The fermion determinant is evaluated at finite temperature, both exactly and by using the gradient expansion.
The gradient expansion is found to be a reliable approximation and is used to extrapolate to the large values of
v,=(2n+1)=7T needed in the Matsubara sum. The contribution to the effective action is found to be negative.
Only the top quark contribution is evaluated. It is smaller than the loop corrections from Higd%' andons
and of opposite sign.

PACS numbgs): 11.27+d, 11.15.Kc, 12.15.Ji, 98.80.Cq

[. INTRODUCTION bubble nucleation rate. The fermion determinant is defined in
Sec. lll. In Sec. IV we will discuss the renormalization of the
The physics of the electroweak phase transition has bedgading terms, of first and second order in the external field
discussed recently in various aspefctd Many subjects, as vertex. Part of their contribution is contained already in the
e.g., the question of baryogenef?s3] are still controversial effective potential and should not be included again. This
[4,5]. Even the nature of the phase transition is not known atenders the discussion of these terms rather lengthy, the de-
present. The temperature dependence of the effective potetails of the calculation are given in the Appendix, therefore.
tial has been studied in perturbation thepdy7] as well asin  In Sec. V we present the computation of the finite higher
lattice simulationgd8,9]. If the mass of the Higgs boson is order contributions to fermionic effective action. The results
not too high(less tharM,,) the phase transition is supposed of an exact numerical computation are compared with an
to be first order{10]. In this case the transition from the analytic approximation based on the gradient expansion. The
symmetric vacuum with massless particles to the brokematter one is used, then, to obtain the actual results which are
symmetry phase would proceed via bubble nucleation. Thigresented and discussed in Sec. VI.
phenomenon, as well as its cosmological aspects, has been
studied by various grougd1-13. Il. BASIC RELATIONS
Part of the basic information needed in developing the
bubble formation and expansion scenario is the determina- The classical action of the standard model has no solu-
tion of their nucleation rate. In the small temperature span ofions which describe the nucleation of bubbles. We have to
1 GeV in which the phase transition takes place bubbles dhclude finite temperature one-loop effects in order to have a
various sizes can be formed. Their nucleation rate varies ovénodel which displays a first order phase transition and there-
several orders of magnitude. The basic rate is determinef®re bubble nucleation. The way in which this has to be done
[14—16 by the exponential of the classical minimal bubble is still not established at present; various approaches are be-
action. The semiclassical reaction rate includes, howeveind discussed. We will use here an action obtained in the
also preexponential factors, the fluctuation determinants, deelectroweak theory by evaluating at finite temperature the
termined by the fluctuation oV boson, Higgs and fermion one-loop effective potential in the manner of Coleman and
fields in the background of the minimal bubble profile. The Weinberg[20]. This has been computed by various authors
bosonic fluctuations have been computed recefttly, 18  [21-24; here we use the formulation of Dire al.[13]. We
and found to yield sizable suppression factors, the one-loopill call this action which consists of the sum of classical
effective action(or equivalently the free energy divided by action and the integral over the one-loop effective potential
the temperatudebeing of the same order as the classicalthe “basic action.” This basic action displays then a first
bubble action. In the high temperature theory, obtained byrder phase transition, has bubble solutions, and will be used
retaining only the Matsubara frequency 0, fermions do not0 compute the bubble profile.
contribute. However, recent determinations of the fermionic Our aim here is to compute the fermionic p&{ ®,T]
contribution to the sphaleron rafé9] let us expect that at of the full finite temperature fermionic one-loop effective
least the top quark will influence the transition rate in anaction, i.e., the logarithm of the fermion determinant in the
essential way. Of course we have to perform such a compiexternal Higgs field configuratio® of the bubble. Part of
tation in the four-dimensional finite temperature quantumthe fermionic effective action, the fermion contribution to the
field theory, i.e., by summing over all Matsubara frequenciesgffective potential is already contained in the basic action
The plan of this paper is as follows. In the next section weand has to be removed fro in order to avoid double
will introduce the model and set up the basic relations for thecounting. While the one-loop effective potential takes into
account only constant external fields, the one-loop effective
action computed here will take into account the fgibheri-
*Electronic address: baacke@het.physik.uni-dortmund.de cal) space dependence of the Higgs field. We will denote the
TElectronic address: suerig@het.physik.uni-dormund.de fermionic correction to the basic action Aﬁgﬂ; it is ob-
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tained as the difference of the full one loop effective action ) S
and fermion contribution to the effective potential, both vi(t) =~ (To—T9). 2.7
evaluated in the Higgs field configuration of the bubble. The T

same procedure should of course be performed for the gauge . q te with th B0 at at
and Higgs field fluctuations as well in a complete computa- IS Minimum is degenerate with the on atatem-
perature defined implicitly by

tion.
We will introduce an approximation here which was 5
found to be a very good one [13]: we will replace in the Tc=To/J1-E/DAr_. 2.9

basic action the finite temperature effective potential by its

high temperature approximation. Since the fermionic contri-T . marks the onset of bubble formation by thermal barrier

bution to the one Ioop effective potential will be subtracted aftransmon

the end anyway it S (and so would be the gauge field and  The bare fermionic Euclidean acti@ , from which the

bosonic part in a complete computation of one-loop correcfermion determinant is derived by integrating out the ferm-

tions) this approximation will affect the total effective action, jon field in the semiclassical approximation, can be written,

the sum of basic action andiSf, only indirectly through  for vanishing gauge fields and for Higgs field configurations

slightly modified bubble profiles. of the form(2.2), in terms of four component Dirac spinors
The “basic” (in the sense discussed abpfiaite tempera- as

ture action of the Higgs field from which the bubble profile is

determined is then given by B
SF: f d'Tf d3
1
S( 9,®)"(9,®)+ VHT(q)Tcp)} . 2.9

B
SFT:J' de d3X
0
(2.9 . .
where the Yukawa couplings are related to the fermion mass

® is the complex doublet of Higgs fields. Here this field matrix V|agY vo m'". The sum ovef is over flavors and
will always occur as a background field describing the mini-colors. Here we will consider only the contribution of the top
mal bubble. It can be parametrized then as guark. This restriction applies already to the high tempera-
ture action given above, for the reason that its contribution is
- - much larger than the one of lighter quark and lepton fields.
(D(X):UO(D(X)( 1)' (2.2 This will also be the case for the exact one-loop action.
The process of bubble nucleation is, within the approach
V7 is the high temperature potential which includes theof Langer[14] and Coleman and Calldi5,16, followed by
classical potential and the one-loop effective potential in thehe work of Affleck[25], Linde[26] and others, described by

x| 3 (' y, 0,00~ gfyf'voclnlfwf’},
ff’

high temperature approximation: the rate
Vir(®'®) =D (T2~ T5) ®'d—ET(D'd)¥2+ E(<1>T<1>)2 o (S| JF
HT 0 4 ' r/v= pye 2—) exp(— S)( 7 ) . (2.10
(2.3 B
Its parameters are given, fér,=0, by Here S is the high-temperature action, E.1), with the
new rescaling, minimized by a classicalndependent mini-
D = (3mg,+2m{)/8v}, mal bubble configuratiorisee below. 7z are the fermi-
onic and bosonic fluctuation determinants which describe the
E=3g°%/32m, next-to-leading part of the semiclassical approach:,
whose computation is the aim of this work, will be defined
B=3(3m{,— 4m})/64m?v}, below; its logarithm is related to the fermionic one-loop ef-
fective action by
=(m&—8v3B)/4D, (2.4
1
AN=A— 3(3mwln 4mtln T2 ) /1677 Vg,

(2.9 Finally w_ is the absolute value of the unstable mode fre-
quency.

The classical bubble configuration is described by a van-
ishing gauge field and a realindependent spherically sym-
etric Higgs field. For the bubble configuration we make the
ansatz

with Inag=2 Ind7r—2y and Iree=2 Inm— 2.
For T>T, the potential has a minimum &P|=0 corre-
sponding to the symmetric phase and a second minimum a

®l—3 T_BET 3ET\?
8] =5(T)=

o +03(T), (2.6)

- 0
‘P(X):v(T)qb(r)(l), (2.12

where
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where we have rescaled E§-2) viavo®(r)=ov(T)#(r). In
all our numerical computations we will use the scale
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P(X,B)=—h(x,0) (3.4

[gw(T)]™* for the coordinates. Defining the rescaled highwhich determines their frequencies to be the Matsubara fre-

temperature potential as

\N/HT:4_gTZ ¢*'—ed®+| 5 _2)¢2}, (2.13
with
_4ET _4(1 UZ(T)) (214
Ao(T) 3 ()2 '
and the high temperature coupling
= 2.1
93(T)= U(T) (2.19
the bubble action is given by
g T fw 2q 1(d¢ gy (¢)|. (218
= redr| 5| =— . .
95(T) Jo 2\ dr HT

It is minimized if ¢(r) is a solution of the associated Euler-
Lagrange equation

—¢'(r)- —¢<m dwm =0 (2.17
with the boundary conditions
imeg(r)=0 and ¢'(0)=0. (2.18

r—om

The bubble configuration varies from small thick wall
bubbles to large thin wall bubbles in the narrow rangel(
GeV) betweenT, and T, both of order 100 GeV. We will
use the variable
y=3(1-€/2),

o<y<1 (2.19

instead ofT to parametrize this range of temperatures.

Ill. THE FERMIONIC FLUCTUATION DETERMINANT

The bare fermionic Euclidean acti@ of quarks can be
rewritten in four component Dirac notation and for time-
independent background configurations as

B — >
SF:L drj A3y y,d,—m(X) 1 (3.1
=fﬁdrf d3xyt(alor—H)y, (3.2
0
wherem(x) =gy (T) $(r) and
H=y[—iy -V+m(x)]. (3.3

quenciesy,=(2n+1)#T with integern, —o<n<oo, Inte-
grating out the fermion field leads to the fermionic prefactor

I, (ivy+ o,)
-—01
n,a(l Vr‘l+wa/)

GA2_
7E

(3.5

wherew, denotes the eigenvalues ldf. Using the fact that
these eigenvalues occur in paitsv, we can rewrite this as

|

The fermion contribution to the effective action is therefore
given by

I, (vi+ w?)
I, [ 12+ (02)?]

na

(,»%::( (3.9

vn+ 2

v+ 70 3.7

1
—Elnﬁ’F:—— E In de(

Here v,=(2n+1)=T, the fluctuation operators#Z and
.70 are defined as

M=H%=—A+7(X),

.//Z°=(H°)2=—A, (3.8
and
m2(x)  —ioVm(X)
=1 .. . R (3.9
iocVm(x) m?(x)

A method for computing such fluctuation determinants nu-
merically has been described recenfy] (see alsd28-31]

for earlier applications Before we discuss the numerical
part of the computation we have to ensure that the quantities
we are going to compute are finite. The effective action as
defined formally in Eq(3.7) is divergent. This is easily seen
be expanding it with respect to the potentiat

o

> Trl(—A+13)

=—»

(-1~
2k \

117/]1(: kgl S(el;f)
(3.10

Here (—A+ vn) 1is a formal representation of the Green
function associated to that operator. The supersckiptde-
notes the power of the potenti@l or equivalently the order

of the associated Feynman graph. The series of Feynman
graphs corresponding t8.10 is depicted in Fig. 1. The first
and second order graphs are divergent. We will see that our
numerical method allows us to separate these two graphs
from the remaining series:

s@-= E S (3.10

which can be computed exactly and is finite. The divergences

The field fluctuations are subject to antiperiodic boundaryof the two leading graphs are obviously those of ordinary

conditions atr=0 andr=23, i.e.,

perturbation theory. Their divergent parts can be cancelled by
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the counterterms of th&=0 theory. This will be described

in the next section, following the work of Ref§32] and 1 1 1

IV. RENORMALIZATION _ _ _ _
FIG. 1. The loop expansion of the effective action. The lines

As usual in finite temperature field theory the renormal-represent the propagators and the dots indicate the vekticds
ization of divergent quantities is done at zero temperature.
The effective potgntlal IS renormahzeq in such a way thqt thevalue 1 if the Higgs field is at it =0 vacuum expectation
vacuum expectation valug, and the Higgs boson mass, i.e.,

the second derivative at the broken symmetry minimum aré’alue' . . .
! As discussed in Sec. Il we get the series of one-loop

kept at their physical values; these are the renormalizatio hs depicted in Fig. 1 wh d th
conditions usually adopted. This fixes the counterterms in th& €YNMan graphs depicted in Fig. 1 when we expand the
ogarithm in (4.1). The first two terms of this expansion,

effective action. On the other hand, we need the effective-' 1 2 )
action which is expanded around the symmetric vacuum dehich have been labele® andS7, are divergent and so
fined by®=0. The discussion of renormalization, especiallymust be renormalized. Therefore we calculate these quanti-
at finite temperature, is therefore somewhat cumbersome. ties first at zero temperature with massive propagators and
In order to cover both kinds of expansion we rewrite theuse the proposed renormalization conditions to fix the coun-
effective action as terterms. Thersly andS{? are calculated at finite tempera-
ture with massless propagators—i.e., in the symmetric
4.1 vacuum. They can be splitted up into a zero temperature part
' ' whose divergences are canceled by the counterterms and a
_ temperature-dependent part. In performing the calculation of
where now ug=mg=gyv, if one expands around the gl and S2 in this way one finds contributions that are
T=0 broken symmetry vacuum and-=0 if one expands ajready taken into account in the high temperature effective
around the high temperature symmetric phase. TRd 4na-  potentialV,,; of Eq. (2.3). These terms must be subtracted in

1 15 [detv2—A+uZ+%)
Seff__i'”/___z ”( det(v2— A+ u2)

n=—o

trix 77 is then given by order to avoid double counting; we call the resulting differ-
(1+2)
242 2 L e enceAS;, “.
Y 7 2 MEPT—pg  —imeoVO 4.2 After this procedure, which is presented in detail in the
S imeoVd mid2—u? ' Appendix, we get the following contribution to the renormal-

ized first and second order to the finite temperature one-loop
The field ® is normalized in such a way that it takes the effective action:

mi [ dq [ — q? . q? 1 [=dp 1
(142) _ _qp_t [ M 2 2, 1 2 U - -
ASren ((DaT) Bﬂ 167T2f (277)3<|CI) (Q)| + mt2|<D(q)| ) ln( mt2 2+4J;) dafo Ea exp(Ea/T)le
~38 m In m f il |%(q)|2 4.3
16m2 " arT?) | 2m3 DI '

As the evalution of the renormalization parts of first andered in[7], would similarly containu instead ofmg. Of
second order i is completely independent of the compu- course, if theMS scheme is used the couplings and the
tation of the finite parS$) one may as well use different Mmasses have to be replaced by couplings and masses defined
schemes of renormalization. A particular one, based on thff" this scalew. The authors of Ref.7] use the invariance

dified minimal sub 'orMS) sch has b di under the renormalization scale to minimize the logarithmic
modified minimal subtractionMIS) scheme has been used in ¢4 tions by a special choice pf The fact that our first

[7]. If we use theMS scheme we find an expression thatand second order corrections turn out to be small indicates
differs from (4.3) in two places:(i) In(qzlmf) is replaced by that the choiceu=m; is already almost optimal. Indeed the
In(0%u?) where u is the scale introduced by dimensional fermionic  logarithm  Ing%a:T?) vanishes for u
regularization and (ii) In(mf/aFTz) is replaced by =mexp(y)T=1.76T. For temperatures around 100 GeV
In(u/agT?). this is indeed near to; . In [7] the scale was chosen in such
The latter modification arises because in the high tema way that the bosonic logarithrhg vanishes, requiring
perature potential used [] the logarithmic corrections due w=7T. With such a choice our results fdrsférfz) change
to boson loops are proportional ko= In(u%agT?) instead of ~ appreciably. The values are given in the tables. Since both
In(mg/agT?) here[cf. (2.5)]. The fermionic ones, not consid- scalesur=1.76T andug=7T are related to the temperature
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as a common scale, one could think of choosing the twaespectively, with regular boundary conditionsrat0. Here
scalesug and up for the bosonic and fermionic loops, re- the latin lower index denotes the components while the
spectively. A complete discussion of such a scheme would bdifferent solutions are labeled by the Greek upper index. Let

beyond the scope of this paper. these solutions be normalized in such a way that
V. CALCULATION OF THE FINITE PART OF THE limf(v,r)[f°(v,r)] =1 (5.7
EFFECTIVE ACTION r—0

What remains to be evaluated is the sum of all FeynmaRrnen the statement of the theorem is
graphs of order 3 and higher. This contribution is finite, we

denote it asS\(¢). We present an exact humerical compu- ’ de(M,+v?)  def(v,r)
tation, using a general theorem on functional determinants J(v)= de(MO+ 12) =1lm def®(v,r)’
[33] and an analytic approximation based on the gradient ! - '

expansion. The results of the two methods will be compared ) ) )
at the end of this section. Here the determinants on the left-hand side are determinants

in functional space while those on the right-hand side are
ordinary determinants of thexXn matrices defined above.

) o ) The theorem already has been applied to the calculation of
As mentioned above the fermionic one-loop effective actne one-loop effective action of a single scalar field on a

tion at finite temperature can be written, including the colorpypple background 27,18 and of a fermion system at

(5.8

r

A. Numerical computation

factor 3, as temperaturd =0 on a similar background ii85] which we
32 A4 2 o refer to for more technical details.
Se=— = E In de(# - _32 In Z(vy). In the numerical application the solutioi§ are written
2n:—w _A+ Vn n=0 ' aS[36]

As the background field is spherically symmetric the deter- fﬁ(v,r)=[5ﬁ+h§‘(v,r)]i|k( vr) (5.9

minant can be decomposed into its partial wave contribu-

tions. This is readily done by introducing the usual spinorswith the boundary conditiohy(v,r)—0 asr—0. Of course

for givenj andl =]+ 1/2 as given in the textbook of Bjorken the valuel, depends on the channel. This way one generates

and Drell[34]. One finds then a set of linearly independent solutions which nea0 be-
have like the free solution as required by the theorem which

z then takes the form
geﬂ:_ngo |Zo 6(21+1)In Z(vy). (5.2
Z(v)=limdef sg+hg(v,r)]. (5.10
Here the the partial wave determinan#@(v) are defined as r—e

2

,%(v)=de<% The functionshi/(v,r) satisfy the differential equation
|

with the partial wave fluctuation operators d? 1 iLny d
P P —hd(r,n)+2| v —| —h&(vr)
dre' ¥ r i (vr)] dr K
M, =MP+V(r), Ik
iy, (vr)
MO— 1 ¢ 2d) 1[0+ 0 =vkk,(r>[5§,+h§,(v,r)]ilk(—yr). (5.11)
o dr2 T rdr) T2 00 (1+0)(1+2)]” K

.3 This equation can easily be used for generating the functions

m2(r)  dm(r)/dr hg order by order in the potentil. Introducing the contri-
V(r)= [ dmryidr  m&(r) ] (5.4 pution of orderk in the potential ag™ and definingh® via
A very fast method for computing fluctuation determinants is .z
based on a theorem on functional determindB&] which h®=>" h)
can be generalized to a couplealXn) system. 1=k
Letf(»,r) andf(v,r) denote thetix n) matrices formed —
by n linearly independent solutiorf(»,r) andfe®(»,r) of ~ as in[35], the relevant contributio® is found to be

(M +22);;f5(v,r)=0 (5.5

S&=—> 7wy, (5.12
and n=0

(MP+22);f%(v,r) =0, (5.6 where
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_ * o perature for the case of a massive fermion with Yukawa cou-
2(v)=2, 6(21+1)lim{In def1+hD(v,r)] pling to an external scalar field. The calculation to be done
1=0 r—o here is similar because the Matsubara frequerncgnters in

—tr(h (v, + W2 (,r) =3 [ (v,1) 1) determinant is of the same type.

(5.13 The logarithm of the determinan#(v) can be written

- exactly as
The expression”Z®(v) was evaluated by summing the par-

tial waves computed numerically up ltg,,= 30 extrapolated In Z(v)=Tr In(1+Gy7"), (5.19
for higher values of using an ansatal >+bl %+cl~7.

The asymptotic behavior is supposed to set in at values afhere the free Green functid®, is defined by

I>vR whereR is the typical radius of the bubble. Sin&e

has typical values of 20—40, this means that for Iy the (M + 12)Gy=1. (5.15
extrapolation becomes unreliable already foof order 1.

We will discuss this point again below. - . .
P 9 Defining the Fourier transform of the potential as

;' . _ 3y s
B. Analytic approximation using the gradient expansion 7/(q)—f d°x7(x)exp( —igx) (5.16

In [35] an approximation of the gradient expansion type
has been given for the one-loop effective action at zero temthe fluctuation determinant can be expanded as

SO dp Lo dg Ty
In/y(y):kgl tr k (277)31131 (277)3 (p+Qj)2+V2(277)35<3)(Qk)1 (517}

where

=§:: q -

Expanding the denominators including terms up to omie?~ 4 we get

,=1(p+Q,)2+v ~ (P2 A 2

X 1 Q7 LA
& (2D 3(p+ 2)

2 Q|Q|r+2 QH (5.18

As the potential is7'=mZ®2+mzyV® we have

H () - 22 aar®(a)da) [ oxq)|.

k
H } (g;)= 4m
= . Mg~y j#I!

(5.19

After inserting these expansions {6.17) and transforming back ta space the remaining integratiofesxcept one space

the same way as a mass term and so the structure of the

integration and thek summation can be done. Of course we have to omit those terms which are divergent. As we are working

in four dimensions these are the terms with 1 andk=2, they have been discussed in the previous section.
Our final result written in the form afZ(v) =3 In Z(v) is

1+

m? q>2 32 3mZd? 3 midd] mi(Vd)? ( m2d? —1’2)
T2 2 8 A 24 1= 1+ V2

m2d2 -3/2
1+ 2 ) } . (5.20

_ 33 4

mﬁsz(
3v?
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FIG. 3. The same as Fig. 2 fgr=0.6.
FIG. 2. Results of the numerical computation compared to the
analytic approximation fory=0.3, my=60 GeV, andm,=170
GeV. The dots interpolated by a dotted line represent the numeric
results; the solid line is the analytic approximation of E§13.

ence of the partial wave summation becomes poorer with
creasingv. Since the values of relevant for the Matsub-
ara frequency summatidh.12 arev=aT~9 (in our units
gv) we have to rely on the gradient expansion in computing

This expression has to be evaluated usingdiothe numeri-  the finite temperature effective action.
cal bubble profiles. The accuracy is only limited by the ac-

curacy of these profiles and by that of the numerical integra-
tion. With our numerical precision the results are reliable to

at least six significant digits. We have computed the finite temperature fermionic effec-
The approximate results forZ @ can be compared with tive action for Higgs boson masses of 60,70, and 80 GeV and
the exact numerical ones computed udid.3. For the pur-  for top quark masses),=160,170, and 180 GeV. These re-
pose of comparison we treatas a continuous parameter. We sults are given in Tables I-Ill. As mentioned in Sec. Il we
display the exact and approximate results in Figs. 2 and 3 fdnave considered only the contribution of the top quark since
two typical bubble profiles, a small bubble wigl=0.6 and a  lighter quarks and leptons will give negligible contributions.
large bubble corresponding yo=0.3[see(2.19 for the defi-  Their contribution has already been dismissed in the basic
nition of y]. The analytic approximation is seen to describe-high temperature actio(2.1) and including them would be
the trend of the exact results over the whole range. The granconsistent.
dient expansion is expected to converge at largeThis For each set of mass parameters we have determined the
expectation is substantiated by the exact numerical results ipubble profiles for various values of the variapldefined in
the region where they are reliable. It is seen, however, tha2.19; y determines the temperature and the bubble action.
the exact results start dropping off at valuesref1-2; as We give separately the renormalized first and second order

mentioned above this is related to the fact that the convereontributionsAS{e 2, Eq. (4.3 determined in Sec. IV,

VI. RESULTS

A 1+2)<DT 3 mff dq 55 2 qz&) 2 q* 0 4J d fxdp
Sten Fiem2) e || 2@ (@) _f T4],%9), E. expE. /T)+l
m4 mt o (D2 )2
Sﬁ 167 2|n ar T2 J(Zﬂ_)3|(b (CI)| ' (61)

and the finite sum of all higher order contributioSSTWhose computation was discussed in the previous section. It is given
by the analytic expression E.20), inserted into the Matsubara sui.12):

1+

Vn

33 4
eff_ 2 . [ 3

m(Vd)? mzd?| ") mzd?
t——Da |\ |1t —2 -z \1-
2v, 3

Vn Vn

2(1)2)3’2 3mzd? 3 m,‘i(l)“}

5 2  q 4
2 v 8 v,

q)2 -3/2
1+ —2—> )“ (6.2

Vn
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The total one-loop effective action, reduced by the terms The situation changes appreciably if one uses the
included already in the “basic” effective potenti&2.3) is MS scheme with the renormalization scaleu
given, of course, by the sum =41 exp(—7y)T=7T as proposed ifi7] in order to suppress
large logarithmic corrections from boson loops. The results
o for this choice are also given in the tables in the column
ASL=ASl 2183, (6.3 denoted aa\ St 2MS). Of course these authors have consid
ered only the boson sector of the @Jgauge theory. If one

which is exactly the quantity that was introduced the firstChOOSES a scalpe = mexp(~y)I=1.76T in order to sup-

) . X . ress large contributions due to fermion loops then one ob-
time in Sec. Il. The numerical values presented in Table%ins essentially our original resutS(+2) since this scale is
I-11l show that the fermion determinadtS;,; gives a nega- y g en

. ibuti he effecti ; hich h almost equal to the top quark mass.
tive contribution to the efiective action, which means that |, snclusion we have found that the top quark contribu-

bubble nucleation is enhanced by this contributiod Eqs.  jon 1o the finite temperature one loop effective action can be
(2.10 and (2.11)]. Relative to the tree level actio8 this  described in analytic form by the expressidfsl) and(6.2).
suppression is not significant, thus supporting the semiclasfhese terms represent minor corrections to the basic action
sical approach. Of course this is only true because a substagz;. While this supports the use of the semiclassical ap-
tial part of the fermion free energy was included already inproximation it remains a problem that the corrections due to
the high temperature action. boson loops turn out to be comparable to the basic action.

APPENDIX A

In the following we will discuss the calculation of the renormalized first and second order of the fermionic one-loop
effective action both at =0 with massive propagators and at finitewith massless propagators. Anticipating that we work
at finite temperature we replace the space-time integratio@ fay’x.

For the first order diagram dt=0 we have

S (P 0)=—143f d3x(mZ| D (x)|2— 2)f—d4p ! (A1)
eff ' 2 F ME (277)4 p2+MF'
Using a four-momentum cutofk we get
(1) 1 3 2 2 2 2 2 27,2
S (P,00=— 82 dx(ME| D (X)|*— ) [A%— weln(A? ug)]. (A2)

Before we dispose further by introducing appropriate counterterms we turn to the second order contriiuti@n Ate have
to evaluaté

1 1
C PPt uE (pHa) g

1 d? - d*
SE®.0= 748 | 5l mEw?= ) @)+ i B | ot (A3)

Performing a standard computation, using again a four-momentum cutdéfads to the following result for the loop integral:
A? 1

Inl—|—-1- f da In
ME 0

Putting this together with the first order contribution and requiring all corrections to the potential and the wave function
renormalization to vanish a?=0 we find that we need a counterterm

d*p 1 1 1
(2m)* p?+ uZ (p+q)2+ui 167?

. (A4)

q2
1+ Fa(l_a))
F

2

A? 1 A
St gz | XME( P00~ 1)]- 35 In m—g)—l}ﬂ | @extmiqcol- 1)+ mlva ool
~ L fd3 d(x)|2-1 A5
g 2MeB | dX( P00~ 1). (A5)

If the first and second order diagram are evaluated in the symmetric vacuum we find

Y(--.)~ denotes the Fourier transform of the expression inside the parentheses.
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TABLE I. Corrections to the effective action at finite temperaturerfgy=60 GeV.e andy are defined
in Egs.(2.14 and(2.19; AS{5,? is defined by Eq(4.3), AS;, >M® is the corresponding quantity in the
MS scheme withu=7T; S® is given by Eqs(5.12 and(5.20); S the classical action of E¢2.16), is given
for comparison.

m, [GeV] T [GeV] € y ASGD AgLrams) sg S

160 94.894 1.867 0.2 -0.802 20.34 -18.923 308.02
94.854 1.800 0.3 -0.168 8.91 -3.774 132.30
94.682 1.600 0.6 -0.043 1.66 -0.0781 24.847

170 94.5288 1.867 0.2 +0.119 20.72 -20.418 278.47
94.495 1.800 0.3 +0.250 9.23 -4.184 121.40
94.347 1.600 0.6 +0.035 1.71 -0.0854 22.686

180 94.6605 1.867 0.2 +1.020 21.03 -20.929 251.60
94.631 1.800 0.3 +0.609 9.14 -4.110 107.27
94.5056 1.600 0.6 +0.104 1.71 -0.0855 20.245

A2
St (@ ,0)= ﬂf A M| (x)|*+ 7o zﬂf = )3[mF|<I>2(q)|2+qu2|(I)(q )71 In( Z/tY e
Leaving out the field-independent terms, which are due to a difference in the vacuum energy density, we get

2
q 1

In(m—é) —2|— Wm,zzﬂf d3xm,2:|(I>(x)|2, (A7)

which has to be evaluated with the background profile The last term is already contained in the high temperature potential

(2.3); it occurs in the coefficient DT5= — (m3— 8v3B)/4 via the top contribution t@.
Turning now to the first order diagram at finite temperature we have to evaluate

N B d3q — .
S 2@ 0+ S~ 1 | o)+ b))

1

eﬁ((b T)———4ﬂf d3x[m,:|<I>(x)|2 MF]T 2 f(277)3 » +M|:+p (A8)

In order to separat&=0 and finite temperature contributions we (i8€]

” 1 1 1 1

T

W [2n+ 1) aT P+ p*+ 2 2E; Er exgEf/T)+1° (A9)

with Eg=/p?+ ,qu. In the last line the second term vanisheSas0, so the first one represents fhie 0 contribution which
we have considered earlier. Inserting the second part into the expressiﬁlfowe find the finite temperature part

1
®,T)=28| d®*[mg|®(x)|*— f A10
Ser(2.T)= BJ (eI =kl | o3 EF eXpEr ) T1° (A10)
TABLE II. Corrections to the effective action at finite temperature figy=70 GeV. Definitions as in
Table 1.
m [GeV] T [GeV] € y A (1+2 AS“}:Z MS) Sg é
160 106.015 1.867 0.2 -1.825 14.36 -6.746 217.14
105.980 1.800 0.3 -0.654 6.35 -1.384 94.690
105.826 1.600 0.6 -0.127 1.18 -0.0282 17.630
170 104.7850 1.867 0.2 -1.14 15.39 -8.412 207.39
104.7545 1.800 0.3 -0.351 6.84 -1.726 90.411
104.6202 1.600 0.6 -0.070 1.27 -0.0352 16.830
180 104.094 1.867 0.2 -0.388 15.96 -9.602 193.72
104.0674 1.800 0.3 -0.0515 7.09 -1.946 83.921

103.951 1.600 0.6 -0.0119 1.32 -0.0396 15.632




4508 J. BAACKE AND A. SURIG 53

TABLE IIl. Corrections to the effective action at finite temperature ifigf=80 GeV. Definitions as in

Table I.

m, [GeV] T [GeV] € y ASE2 ASLF24M9) sy S

160 117.541 1.867 0.2 -2.22 10.15 -2.512 156.45
117.510 1.800 0.3 -0.849 452 -0.514 68.050
117.374 1.600 0.6 -0.155 0.847 -0.0107 12.708

170 115.4848 1.867 0.2 -1.84 11.17 -3.388 153.28
115.4573 1.800 0.3 -0.654 4.99 -0.688 66.460
115.337 1.600 0.6 -0.118 0.93 -0.0142 12.410

180 114.0042 1.867 0.2 -1.40 11.90 -4.163 146.18
113.9801 1.800 0.3 -0.430 5.35 -0.852 63.649
113.874 1.600 0.6 -0.076 1.00 -0.0174 11.846

We have to evaluate this expression for a bubble in the symmetric vacuum wheeonly locally and whereug=0 at
spatial infinity. ThenEx=|p| and we find

T2
ASH (P, T)= Eméﬁf d3x| D (x) 2. (A11)

This contribution is already taken into account in Tifeterm of the three-dimensional high temperature actibf). Therefore
the finite temperature part of the first order tadpole diagram has to be omitted entirely.
As the second order contribution at finitewe have to evaluate

SH(®.T)=p f Tt 0 P S J i : (A12)
eft (2m)3F F ne ) (2m)° (vt p?)vp+ (p+a)?]
Momentum integration and Matsubara frequency summation can be carried out via
1 2 1 d3p 1
n—fw (277)3 G (@] n e (2m)° [vp+p*+ a(1-a)q’]?

1
:Tn;_w f daf (2m)? d(pz) ve+pi+a(l-a)g?

i
_—z—f J 2n)° d(pz) JE., tanh(E/2T), (A13)

whereE§= p’+ a(1—a)g?. TheT=0 part may be recovered by performing the liffiit>0. Subtracting this part we find for
the finite temperature supplement

1 1 -1 oodp 1
fd“ f IOIOZ2pdpE exp(E,/T)+1 jdamfofam, (A14)
so that
B2 )2 2 2 1
ASE(®,T)= 7 2,3f 2m 3[mF|(I) (@) 2+ mzq?|d(q)] ]f da o E. m (A15)

Part of this term is already contained in the high temperature effective action. The momentum integral has been considered by
Dolan and JackiW32]; it can be expanded to leading orderTini.e., up to terms of order If as

|n< a(1-a)g?
72T

+0(q?/T?). (A16)

fdp 1 1 )
0 E, epE,/T)+1 4 ey

If this is inserted into the previous equation we find

a(l-a)g?
In —772?2— +2’y . (Al?)

1 d3q — . 1
(2) — A1 FH2 2 242 2
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The integration over can then be performed, replacing the second parenthesis by

2

In ;2?2')—24'2’)/ . (A18)

If this is added to the zero temperature resgh7) the term |nq2/m§)—2 in this equation gets replaced by
In(T2/m§)+2 Inm—21y. This term appears in the high temperature potential{in

Collecting from Eqs(A7) and(A15) the terms which have not yet been included into the high temperature potential we find
the following renormalized contribution of the first and second order Feynman graphs:

'(—s

4

d3 2.
ASEA(0.T)= -3 f (2:) <|<I>2<q>|2 i—tzlcb(q)lz)

2+4f d“f E. expE, /T)+1

3'8 1677 aFT2

Here we have taken into account the color factor 3 and we have repigedg m; .
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