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We employ an algebraic approach for unifying perturbative and nonperturbative superstring states on an
equal footing, in the form oB-duality multiplets, at all excited string levels. In compactified type-llIA super-
tring theory we present evidence that the multiplet is labeled by two spaces, “index” space and “base” space,
on whichU acts without mixing them. Both spaces are nonperturbative extensions of similar spaces that label
perturbativeT -duality multiplets. Base space consists of all the central charges of the 11D SUSY algebra, while
index space corresponds to representations of the maximal compact subgoup. This structure predicts
the quantum numbers of the nonperturbative states. We also discuss whether dudrhdtiplets may coexist
with 11-dimensional multiplets that are associated with an additional nonperturbative 11D structure that seems
to be lurking behind in the underlying theory.

PACS numbgs): 11.25.Sq, 11.25.Hf, 11.25.Mj

[. INTRODUCTION are listed for various dimensions in Table I. Note that since
TCU thenkCK. It is understood that these groups are con-
It has been conjectured that, in additionTtaduality and  tinuous in supergravity but only their discrete version can
S duality, string theory may possess an even larger dualityhold in string theory.
U duality [1], that contains botfl andS. There is plenty of T duality was originally understood in toroidal back-
evidence for the existence & duality and circumstential grounds, but the scope af duality in string theory is much
evidence forU duality [1-10] These ideas have provided a larger and it exists in more complicated curved backgrounds
degree of reunification of certain string theories thatriori involving both compact and noncompact spacetifdés, in
seemed to be different. It now appears that there is a singlparticular in all gauged Wess-Zumino-Witt¢w/ZW) mod-
underlying theory with many moduli fields, and that the vari-els. T-duality transformations act on perturbative string
ous conformal string theories are different perturbative startstates, and it can be verified thatduality is valid order by
ing points from various corners of moduli space. Howeverorder in string perturbation theory as well as in string field
each perturbative expansion misses nonperturbative aspedteory[16]. Target spaces related to each othefTbguality
that may have already been described by another perturbgive the same physical results fésinvariant quantities such
tive expansion. Furthermore, beginning with 11-dimensionahs the partition function. Different string target spaces are the
(11D) supergravity in the form of the low energy limit, there analogs of different vaccua, afidduality are the analogs of
seems to be an 11-dimensional structure lurking behind thiarge discrete gauge transformations that relate them.

nonperturbative aspects of these string theofizé1-14. The string states involved in theduality transformations
Further study of duality is bound to reveal more nonpertur-are not all degenerate in mass. Therefdrejuality must be
bative properties of the underlying theory. regarded as the analog of a spontaneously broken symmetry,

In this paper we investigate the multiplet structures forand the string states must come in complete multiplets de-
T- and U-duality transformations and use it as a device forspite the broken nature of the symmetry.
unifying the perturbative and nonperturbative states of the In this paper we will first clarify the nature df multiplets
theory. This allows us to put all the states on the same footef excited string states and the propertiedJofnultiplets in
ing. Our discussion sheds new light into the nonperturbativéow energy supergravity. By putting well-known results
symmetry structure of the underlying theory and provides ai16,17 into a suitable form we will emphasize the hints they
algebraic tool for discovering the nonperturbative states.
We will mainly discuss the case of the 10-dimensional
type-1IA superstring toroidally compactified d®f' < T¢, that
has ad-dimensional Minkowski spacetime witb=10—-d  g/¢ U K K
dimensions compactified on tori. TAeduality group ig15]

TABLE |. Duality groups and compact subgroups.

9/1 SL(2)®S0(1,1) U(1pz, 7,07,
T=0(c,c;2) (1.1 812 SL(3)®SL(2) SO(3U(1) U(1)®U(1)
713 SLu(5) SQ5) SQO4)
in all cases. The conjectured noncompéktgroups, their 6/4 SQa5,5 SO(5)®S0(5) S@4)®SO(4)
maximal compact subgroupéC U, and the maximal com- 5/5 Es(s) usSp(8) Sp(4)2Sp(4)
pact subgrougk of the T group, 4/6 Ez7) SU(8) SU(4)®SU(4)
3/7 Es(s) SQ(16) SQ7)®SA7)

k=0(c)Xx0O(c), (1.2
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provide forU multiplets. Then we will use this information has recently aroused much intergatl1-14. We will find a
as boundary conditions to investigate the structure of nonpesertain amount of support for hidden 11 dimensions, but we

turbative U multiplets, first in the supergravity sector will also raise some questions that require resolution.
(I=0), including nonperturbative Bogomol'ni-Prasad-

Sommerfield(BPS saturates states, and then at all excited II. T MULTIPLETS

string levelsl. In particular we will explicitly construct the ) ) )

U multiplets for a number of low lying levels, up to level I'n this seqtlon we will show that the 'structurg of pertur-
|=5. bative T multiplets at all leveld, is consistent with3). In

To avoid later confusion we give a definition of level ~Particular we want to show that bolfaseandindexspaces

that applies to both perturbative and nonperturbative state§@nsform and that they ddo not mix with each other.

The mass of perturbative states includes contributions from The bosonic string oR“® T¢ has the followingoerturba-
Kaluza-Klein and winding numbers in addition to the string tive states at oscillator levét

excitation levell. Thus, for perturbative statéds the exci- 0 . o -

tation level ofoscillators not the mass. For the nonperturba- Pindiced X, Dase« (oscillatorg™”[p#,m,n), (2.1

tive states walefinethe levell to be the same as the level of .o

the perturbative states to which they are connected by dualithere thebase=(m,n) are c-dimensional vectors on the
transformations as explained below. Thuss a label of the ~ Lorentzian latticel'> representing the Kaluza-Klein and
entire U multiplet. In the explicit structures that emerg¢, Winding numbers, while thendices are inherited from os-
transformations, much likd transformations, do not mix Cillators. For the superstringn the Green-Schwarz formal-
perturbative or nonperturbative states that belong to differeriéM [18]) the indices are also inherited from the Ramond
levels (using the definition of level just givenThis is an ~ vacuum, but without changing the overall structure. As men-
empirical observation that holds in our investigation up totioned above, these states are clearly not all degenerate in
level| =5, and thus we assume that it holds at all levels. Oufnass, however they are mixed with each other under

analysis critically depends on this assumption. T-duality transformations. As we will see later we need to
Our proposal is that & multiplet has the form extend both the index and base spaces to constiuetul-
tiplets.
o). _(x* base, (1.3 It is well known thatT=0(c,c;Z) acts linearly on the

2c-dimensional vectorrfi,n) [15]. However it also acts on
where the indices and the base form complete multiplets urthe indices in definite representations. The actiof oh the
derK andU, respectively, for every spin. In the rest of the indices is an induce#l transformation that depends not only
paper we will collect the evidence that leads to this structuren all the parameters i, but also on the background
and then use our proposal to make new statements about the ¢ matrices G;;,B;;) that define the torT®. To see this
nonperturbative theory. Both thedex space and thbase we analyze thd transformations in more detail. As is well
space will include nonperturbative extensions. We will showknown, O(c,c;Z) acts linearly on the @dimensional vector

how the full groupU acts on this structure without mixing (m,n) in such a way as to keep the following dot product

the index and base spaces at each lével invariant:
Like in aT multiplet, the states in @ multiplet are not all
mass degenerate. But unlikéTamultiplet, aU multiplet can L (o 1) ( rﬁz) o
contain perturbative states together with nonperturbative (my ny) . |=mg-n,+ng;-my. (2.2
states(minimal caseg, or only nonperturbative onegon- 1 0/\n,

minimalcase. In the minimal case, by knowing the structure
of a U multiplet as in(3) we can predict algebraically the )
quantum numbers of the nonperturbative states by extendir@f" Matrices of the form

O(c,c;2) transformations are characterized by>22c inte-

the quantum numbers of the known perturbafivenultiplets a b 0 1 0 1
that belong to the bigged multiplet. This completion pro- :( , MT( )M :( ) (2.3
vides the minimal set of nonperturbative states necessary for c d 10 10

U duality. There remains the nonminimal case, that includes ) o ] ]
the possibility of additional purely nonperturbative, complete©QUr intérest here is in understanding the action of the
U-duality multiplets. With additional input, our approach can ©(¢,¢;Z) transformations on the oscillators, and hence on
provide information on some nonminimél multiplets, as the indices of the flelds_ inL.3), (2.1).. Thl_s; can be extracted
we will discuss in Sec. V. from a study ofT invariance of string field theorj16]: O
Therefore, our approach is an algebraic method thatCC:Z) acts in such a way as to keeLp the 'f.ft or right string
should complement the analytic methods of finding solutiongXcitation level numbers Ny =o' Gjjey'  and Ng
for building up the nonperturbative spectrum of the theory.=<a%,,Gj;ay' invariant. It does so by transforming both the
The nonperturbative spectrum that we find explicitly is onetorus parametersq;; ,B;;) and the oscillators as
of the immediate outcomes of our approach.
In addition, our formulation hopefully provides hints for G'+B’'=(a[G+B]+b)(c[G+B]+d) *,
the nonperturbative formulation of the theory. In particular,a =~ T T -
challenging question is wheth&t multiplets can be made G tB'=(-[G+B]c'+d’)"([G+Bla'—b’), (2.4
consistent with some deeper underlying structure. A possible LT 1 T 1
candidate is an underlying 11-dimensional structure which G'=(V.") GV "=(Vg) GVg",
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a(,Li=(V,_)}ahj ' a;R‘=(VR)}an, fermion oscillators end up in the spinor representation of the
maximal compact subgrouk=0(c), X O(c)g. Therefore,
V. =[c(G+B)+d], Vg=[c(—G+B)+d], the states that they create at higher levelre consistent

with the index structure of @), X O(c)g. The upshot is

where the second and first equations are equal by U883  that the superstring theory h@ismultiplets that are classified
The third equation is obtained from the first or second byprecisely as in(2.1) for various spins, including fermions.
projecting on the symmetric part of both sides. So, the oscilt ater in Sec. Ill, by explicit construction of the states we will
lators undergo transformationg ,Vg that depend on the O identify thek multiplets in type-Il string theory at each os-
(c,c;Z) parameters as well as on the target space backillator level.
ground fieldsG,B.

For our purposes we get a clearer picture by defining os- . , . .,
cillators in a flat basis rather than the “curved” basis of - U MULTIPLETS AT LEVEL O, "INDEX" AND "BASE

Gij . Thus, by introducing vielbein§;; = e'ef we have the In this section we study the structure of multiplets at
flat oscillators level I =0 (including nonperturbative stateand show that
. . they are of the proposed forfd.3).

aff=efal), af=eaf),

(2.5 A. Massless states and indices
N=2 a'far®, Ne=2 a%faf?, The low energy sector of the type-Il string theory is de-
scribed by compactified 11-dimensional supergravity. The
whose transformation properties underc@;Z) amount fields correspond to the vacuum sector of the superstring in
to induced maximal compact subgroup rotationsthe Green-Schwarz formalism
O(c) X O(c)g. This is seen by noting that orthogonal trans-
formations are induced on the flat index of the vielbein in Pimiced X*) < [vac ph). 3.9
order to maintain the transformation law for the metric
avs nj—1\jb a The indices come from thé&R-R vacuum in the Green-
(&) =(VL)ig(Tu, Schwarz formalism. They correspond to the short supermul-
tiplet 25+ 2. of 11D supersymmetry, dimensionally reduced
to RA@ T°*1. This is shown explicitly in the Appendix. Here
one can start to reclassify the indices untdeby using the
original Julia-Cremmer classificatiofll7] of the massless
states, as given in the Appendix. It is seen that the fermions
are not inU multiplets, but rather irK multiplets. Further-
more, the scalars classified in the coSéK undergo a non-
linear transformation unded. So, theU transformations
that leave the supergravity Lagrangian invariant act in non-

(e})"=(Ve )l (TR, (2.6)
T,CO(c),, TrCO(C)g.

We emphasize thaf, # Tg sinceV| #Vg, so that the left
and right moving flat oscillators-?,aR? transform under
different orthogonal transformations.

Thus, for massive states thedicesmust form complete

representations linear ways
indices—SO(d—1)®Kk, . The pattern ot._l transformations is clearer in the descrip-
2.7) tion of supergravity as a gauged model. The scalars start
k=0(c) X O(C)R, ' out as a matrix expp(¢) in the adjoint representation &f.

One must distinguishinglobal discrete transformation un-
where SO¢— 1) is the rotation group that identifies the spin der theU gqp, group that acts on one side of the matrix of
of the state ind dimensions. In thd =0 sector the little scalars, andocal maximal compact subgrouf,.CU’
group SO(— 2) replaces the S@(- 1) factor! We note that  transformations that act on the other side of the matrix of
k is larger than the naive ©]f that is embedded in scalarSwhereU’ is isomorphic toJ but commutes with )t
SO(10)-S0Od—-1)®SO(c). The fermions are classified undij,.; while the massless

In the superstring theory of type II, which is of interest in vectors and massless antisymmetric tensors are in represen-
this paper, the above discussion does not change in the prdgtions ofU y,n,. The gauge fields for the group are non-
ence of fermions. The fermions are treated in the Greenpropagating, so one can choose a unitary gauge and elimi-
Schwarz formalism. The “vaccum” state is the Clifford nate the auxiliary gauge fields through the equations of
vacuum for the zero-mode fermions, that produces all thenotion. The remaining physical scalars are classified in the
massless states in compactified 11-dimensional supergravitgoset U/K. In the unitary gauge, the transformations of
This set of states, already forbh multiplets in supergravity U gopa ON the scalars have to be compensated with transfor-
by definition (see also beloyy and therefore are consistent mations ofK y., in order to maintain the gauge. The fermi-
with the classification withkCKCU. Furthermore, the ons transform under this field dependdf., whose free

parameters are just the onesUn,.,. The massless vectors
and tensors continue to transform undggj,p,. Thus, we
Actually the type-Il superstring massless states do form largeputline thel =0 pattern of “indices” in Table II.
multiplets under SQ{—1). This is related to the fact that there is ~ This classification is the starting point for multiplets. It
an 11-dimensiona(11D) structure in the type-ll supersymmetry already hints that one must analyze the whole string spec-
(SUSY). trum from the point of view of both globdll and localK
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TABLE Il. The U group acts in two ways in supergravity.  uniquely specified by transformationggiven below. Fur-
thermore, it puts the perturbative and nonperturbative states

_ Action of _ on the same footing. We will give below the precldearans-
Spin U group Representation formation that mixes them. Thus, tiue multiplet is in com-
Scalars Ugopa®Kiocal CosetU/K plete ag”rekementf\_/vnh the forlm'.S).h o th
Vectors, tensors Ugopal Dim. in Appendix _Awe -known first example is t 9 Emcompactl |e_ theory
Spinors K ocal Dim. in Appendix with (d,c)=(10,0). There are nong,n), but there is one

nonperturbative central charge The states in the=0 sec-

tor are ¢} .dXx*,2)—|vacp*,z). The classical solutions
transformations that commute with each other. However irwith nontrivial z are known as BPS saturated black hdlEs

the unitary gauge, which is the form in which string theory Witten [2] interpreted this set of fields as 11D supergravity
presents itself, it is hard to keep track of the “two sides” of fields compactified oR°x St, thus recovering an additional
the matrix of scalars. Therefore, in this paper we will be lessiimension. TheU group in this case is trivial, however this
ambitious and we will explore some consequences of thgvell-known case serves to illustrate that our reasoning so far
diagonal subgroup g that sits both in the global and local is consistent with previous discussions. Furthermore, it
sides. It is thisK 4,4 Subgroup that classifies the “indices” of shows that there are signs of a hidden 11D structure at
the fields in(3). We observe that the classification of all the | =0, and serves as a starting point for investigating 11D
massless fields in Table Il is consistent wiB) since all of  structutre at higher levels[12].

them correspond to compleke multiplets.

B. Massive fields inl =0 multiplet C. U classification of the base space

Next consider all the massive perturbative string states otfie;_?); ?ﬁeggvgedggzgzer:g;f:ttﬁgigﬁ:j}?&‘:ﬂ%ﬂﬁ?g;g
the.form (4)_|n .the ! =O.sector that co[re§pond to Kaluza- saturated black holes that are 0-brane solutions of the 11D
Klein and winding solutions labeled byr(n) supergravity equations, and return to the more general
p-branes at the end of the paper. In that case we label the

b ced X¥,m,N) < [vac,p”,m,n). 82 pase as above:

These have the same setiofdices as the massless fields
corresponding to the same}2 2/ short multiplet of 11D
SUSY discussed above. These massive fields can simply be
regarded as if coming from the Kaluza-Klein compactifica-We will show that these quantum numbers correpond to the
tion of the supergravity fields, but extended Byduality  central charges of 11D supergravity and at the same time that
transformations of the base. Evidently they exist in the stringhey are the sources that couple to the massless vector fields

base=(m,n,z"). (3.9

theory and they fornT multiplets consistent witl1.3). of 11D supergravity listed in the Appendix. Combining the
Now we discuss the nonperturbative BPS saturated solitwo statements we will learn the classification of the base.
ton solutions which have nonperturbative charges The Consider the supersymmetry algebra of type-llIA in 10D.

existence of some such states is proven by finding solitofhere are two supercharges of opposite chirality. Together

solutions to the field equations of supergravity-10]. This  they form the 32-component spinor of 11D. In the compac-

shows that the supersymmetry algebra has nontrivial nonpetified theory the 32 components are labelled@f where

turbative central charges that commute both with the mo- «,a label the spinor representations in the Minkowski and

mentum and supersymmetry generators. compactified dimensions respectively. The centrally ex-
The supercharges, momenta, and central charges form aended superalgebra is

algebraic system which must be quantum mechanically rep-

resented in the spectrum. That is, the eigenstates of the com-

muting operators, including the central chargsisould be {Qz'Qg}zéabyzﬁpﬂ+laﬁzab' 3.9

included as labels of the states of the full theory. In our

discussion of the base space below we will show algebrathe 1,, denotes either a symmetric or antisymmetric com-

ically that the nonperturbative' are at the same footing as pination of Lorentz(spinop indices into a Lorentz singlet.

the perturbative f,n), so the complete set of states in the Then the corresponding central charg®are either sym-

I =0 sector must be of the form metric or antisymmetric, respectively. Here we will show
. . that the central chargeg?® form completeK andU multip-
¢§r?(§icegx“,m,n,z')<—>|vac,p“,m,n,z'>, (3.3 lets and that these correspond exactly to the same multiplets

that describe the massless vector fields listed in the Appen-
where the indices again correspond to tifer2f short mul-  dix. This fact is proven by building Table Iil in three steps:
tiplet of dimensionally reduced 11D SUSY. For fixed values(i) Classify the supercharges under §6(1,1)®k, noting
of thebasethis multiplet correspond to BPS saturated statesthat k=SO(c), ® SO(c)r naturally emerges from the two
hence the mass is a function of the chargesn(z'). This  chiral superchargesii) construct all possibl@2® whenever
provides an algebraic construction of the states that werg 1,5 is allowed by the Lorentz content, and note tke
found in the form of classical solutions. Actually, there areclassification(iii) combine thek representations precisely to
many more states, with definite quantum numbers that areompleteK representations, as listed.
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TABLE llI. Classification of central charges. The nonperturbative chargeSare now on the same foot-
ing as the perturbative chargeeﬁ,(ﬁ) since they both are

32 Q7 under ze z sources in the field equations of the massless vector fields.
dfc SO@-1.1)zk underk underK  This suggests naturally that thasein (3) transforms in the
10/0 16 + 165 1 1 same U-duality multiplet as the vector fields themselves.
9/1 16, +16_ ot S This is precisely the multiplet of sizN . listed in the Ap-

6 () OO pendix. For example ford,c)=(6,4) the vectors fall into
8/2 + 8, (£)R) A 3:+3-  the 16-dimensional spinor representation of SO(5,5). Hence,
(3,0) the basealso transforms in the same linear representation.
713 (81(2,0)+(0,2)]) +(0,3) 10
+(2,2)

(4, (45pin0)) IV. U MULTIPLETS AND STRING EXCITATIONS AT  |=1
6/4 P (4spinv4spir> (4,4

+ (4= (04i) Our approach is the following: We start withmultiplets

(5.0 that can be defined perturbatively at every leVelThe
5/5 (4[(4,0)+(0,4] Igg’ii 27+1 T-multiplet indices formk multiplets, which are ip turn re-
+2((’) 0) quired to be part of_ complete IargKr multlp_lets in accor-
(6 0’) dance]c W|tlfr1](1_|._3). T|h_|sI last part is theblconststencly_ rlequwe—
— T ment for theT multiplets to reassemble intd multiplets.
416 (Aspin [ (4.0)+(0.4]) +(0.8 28complex The base is already d multiplet as discussed above, so no
(4.4 more discussion is needed. The remaining question is
J(r2(17%)) vyhgther there is a need. to add npnperturbalkiyaultiplgts
37 21(8.0)+(0,8)]) (0 ’21) 120 (indices to the p_erturbaﬂye ones in order to filkd multip-
e ' n (0’,7) lets and thus satisfy duality. Here is a summary of what we

+(8.8) find, and which will be described below in several steps:
We will prove that at level =1 the perturbativek mul-
tiplets have precisely the index structure that forms complete
Now, by Comparing to thé representations of the vec- K multlplets No additional indices are needed at level
tors listed in the Appendix we see that both the counting andi= 1, just like the case of level=0. This gives more cred-
the K-representation content is the sanas thez2°. Hence, ibility to our proposal in Eq(1.3. This fact is quite non-

the central charges trivial in various dimensionsd,c), and we will be able to
explain it as a consequence of the underlying spacetime su-
z3=(m,n,z) (3.6)  persymmetry.
At levels | =2 the requirement of completé¢ multiplets
form a completdJ multiplet. predicts the existence of additional nonperturbakivaultip-

The central charges and the sources for the massless vdets beyond those that can be created by applying oscillators
tors are related as follows. The Kaluza-Klein and windingon the “base.” That is, more “nonperturbative” indices with
charges fn,n) are the “perturbative charges” among the predicted properties must be added. The quantum numbers of
Z25 |n the Neveu-Schwarz-RamoriSR) formalism they these states are therefore completely determined. If these ad-
couple to the massless vectors that come from the NS-Ngitional states do not exist in the theory there isthduality
sector. From the point of view of 10D supergravity compac--
tified on R® TC, these massless vectors are the graviphoton
and its axial partner which come from the dimensional re-
duction of the 10D metriag,, and antisymmetric tensor
Buy: In order to obtain the perturbativie multiplets explicitly

. . we examine the known spectrum of the type-llA superstring
9ur—Vyu, BMVHVL. (3.7 in 10D before compactification, and notice that there are
some larger symmetry structures that help in extracting di-
The nonperturbative 0-brane solutions have chamjebat  rectly thek structure after compactification, as explained be-
couple to the remaining massless vector fi . These low.
vectors come from the Ramond-Ramond sector in the NSR Our analysis begins by reexamining the perturbative spec-
formalism. Thus, in string theory compactified BA® T¢ the  trum and extracting the indices
base contains altogethbl, . charges for O-branes, which is
the same as the numbh . of massless vector fields in 11D
supergravity compactified oR9® T¢*1, 3In the manifestly spacetime supersymmetric Green-Schwarz for-
malism of the type-Il string, all massless fields, including the mass-
less vector fields, come from the-R vaccum sector that is de-
2In the case ¢,c)=(5,5) we found one extra central charge in scribed by only the fermionic zero modes. In this sense the
addition to the 27, listed as 271 in Table lll. According to the discussion so far has not involved any oscillators, so that it is ap-
Appendix, it seems that there is no corresponding singlet masslegsopriate to use the term “base” for all the quantum numbers in-
vector in compactified 11D supergravity. This is curious. cluded above.

A. Perturbative k multiplets in type-Il string at 1=1
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TABLE IV. L/R oscillator states of 10D superstring. TABLE V. Classification of 32Q2 exhibitsK.
Level SQ9), g representations¥;r{), g d d-1 32 supercharge®?,
c c+1 under SOd—1)® K
=1 1g
=2 % 10/0-9/1 16+ 16
1=3 445+ 16; 9/1-8/2 (8, ,+)+(8_,*
=4 (9+36+156)5+ 128 8/2—7/3 (8,2+)
=5 (1+36+44+84+231+450), 713—6/4 (4,4)+ (4% ,4)
6/4—5/5 (4,4,0)+(4,0,4)
+[16+128+
|16+ 126+ 576 5/5-4/6 ((2.0),8%((02).8)
416317 (2,8)+(2,8%)
indices— (Bosed Fermi oscillatory)|vad. (4.1  3/7—2/8 (=,16)
This was done up to level=5 in [12]. The result
for d=10, c=0 is equivalent to a collection of fields I=1: 1-1,
m PN .
Pindiced X*) \{vhere the indices have the following structure of 1=2: 9 g—(5D) r+(L4) g, etc. (4.8
representations:

indices= (25°+ 28 x R 4.2)

After this step the SQ{— 1), X SO(d— 1)y is reduced to the
diagonal rotation group S@1) in order to give the final

The factor 2°+ 21 represents the action of 32 superchargeslassification of states. Naturally the outcome is the desired

on a set of S) representation®) at oscillator levell,

where S@) is the spin group in 10-dimensions for massive

states. The factoR(") is of the form of direct products of
SQ(9) representations coming from left or right movers

R<|>:<2i rh > ri<|>)

X
L

4.3

classification under SA(- 1)®[SO(c), ® SO(C)R]-
Similarly, the 2°+ 21> supercharge factor may be reduced
to the representations of
SAd-1)®[SA(c) ®SA(C)R] (4.9

since we have already seen in Table Il that the 32 super-
charges are already classified under this group. Then the re-

such that the left factor is identical to the right factor, and isc|assification of the factor §+ 2;1:5 follows by taking the

given by the collection of S@), g representations in Table
V.

This structure shows that the fac®f" is really classified
by the larger group

SQ(9), ®SA9)k.

Furthermore, the supercharge factdf22f has an even
larger classification group

SQ(32)

4.9

(4.9

with 28>+ 2% corresponding to the two spinor representa-

tions. The diagonal S@) subgroup of all these factors is the
familiar rotation group in the Lorentz group $01).

When the the string theory is compactified RI® TC,
with c+d=10, the set of indices (19 needs to be reclas-
sified by

SQd-1)®[SAc) ®SAc)g]

in order to identify the perturbativk multiplets and their

(4.9

spins. Note that this is a larger group than what is containe

in the rotation group alone SO(9)SO(d—1)®SO(c).

Therefore, the larger symmetry structures that we identifie

above are needed to obtain thenultiplets. It is then evident
that theR(") factor, described by the representations in Tabl
IV, is easily reduced in the form

SA9) r=SAd—-1) g®SA(C) -

For example, fod=6, c=4,

(4.7

e

product of the supercharges. Equivalently, specifying how to
decompose the 32-dimensional vector of (32, provides
the instructions for decomposing thé®limensional repre-
sentations as well.

Therefore all the perturbative indices (@9 do form k
multiplets that we can identify explicitly thanks to the larger
structures S(82) and S@9), ® SO(9). . Combining this re-
sult with the baserfi,n) proves that we have explicit control
of the T multiplets ¢{)..{x*,m,n) up to levell =5. We will

next construct) multiplets by starting with thes& multip-
lets.

B. U multiplets at I=1

In the discussion above we used the explicit SO
(d—1)®k classification of the 32 supercharges of Table IIl.
Here we go one step further and give in Table V the reclas-
sification of the 32 supercharges under the group
[SOd—-1)®K].

Table V was constructed in several stefpsThe vector of

50(32) is identified with the 32-dimensional spinor of 11

imensions(ii) This spinor is decomposed into the two 16-

&iimensional spinor representations of(%Q, where S@10)

is the rotation group in 11 dimension§ii) The SQ10)
spinor representations are decomposed into the products of
spinors of SO§—1) X SO(c+ 1) where SO§—1) is the ro-
tation group ind-dimensional Minkowski spacdiv) Then

we find that the resulting spinor representations of SO
(c+1) come together with the correct numbers to fit into the
completeK representations given above.
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The subgrouK turns out to be the largest subgroup in This is equivalent to requiring nonperturbative states that
SQO(32) that remains after identifying the spin group SO correspond to increasing the size of the2 multiplet in the
(d—1) as described above. S§,emerges in an interesting form
way as this largest factor. Eadk multiplet then contains
severalk multiplets of the supercharges automatically. For R?=9 ©9z—10 ®10Gk. (4.12

example, ford=6, c=4 there are two supercharges classi-__ . . ,
fied as (4,0¥(0,4) under the K=SO(5)xSO(5) This result was found ih12] by assuming the presence of

—Sp(4)x Sp(4). They could be further reclassified under hidden ll—dimensional §tructure in the no_npe'r.turpative type-
k=S0(4)x SO(4).Recall that our goal is to reassemble all llA superstring theor_y in 10D. Ir[le a justification for .
representations int& multiplets. With this table we have (4.12 9OUId not be given. However, n th(_a present analysis
demonstrated that this is always the case for any representsl- duality demands28) and therefore justifiet4.12.

tion of SO32) that is a product of the 32 supercharges. For (d,¢)=(10,0,(9.1),(8,2),(6,4) the analysis for

. . =2,3,4,5 produces exactly the same conclusion as the 10D
Hence the supercharge factof2 22> admits a reclassifica- 2 | ;
tion underK for all compactificatio:flscﬂ,c). analysis, in thatU duality demands that the SO(9)

i (1
There remains to discuss th€ reclassification of the ®SO(9k muIUpIetsR ShOL."(.j be completled .to So.(].LO)
RO factor in the perturbative indices i19) separately for ®SO(10%k multiplets. The minimal completion is sufficient

. in this case. The necessary minimal completion was given
levell. A Table 11l at level=1 we h in-this . y -omp as g
ﬁj\grg sﬁxglet ccording to Table lil, at level we have and discussed i12], where the possibility of additional

nonperturbative complete $0D) multiplets is also dis-
=1 RW=1. cussed. For all higher levels=2,3,4,5 there is a clear re-

markable pattern of theninimal missing nonperturbative
Obviously, this is easily reclassified also as a singlet undegtates. Their quantum numbelfsr both bosons and fermi-
K. Therefore, for all compactificationsi(c) we have now ©ns coincide systematically with the sum of all lower lying
demonstrated that leveE 1 states do have indices that cor- Perturbative states listed in Table IV. This observation sys-
respond to complet& multiplets. Hence at level=1 we tematically gives all theninimal states required by duality
haveU multiplets of the form(3) without needing any addi- at all levels. Hence, in these compactificatidhduality is
tional nonperturbative indices. The only nonperturbative asconsistent with a hidden 11D structure.
pects at level =1 come through the nonperturbative charges Next consider the examplel(c) =(7,3). Now we have a

Z' at the base. spin group S@)=SU(4)
U=SL(5), K=SQ5)=Sp4), 4.1
C. U multiplets at [=2 (5) A5) R4) (4.13
Next we analyze level$=2. We know that the super- T=80Q(3,3, k=SQ3) ®SQA3)g=SA4),
charge factor £+ 2%° works, so we ignore it, and concen- ,
trate on theR(") factor. It is not straightforward to carry out R® = (Bgpacat 3L,in) ® (Bspacet 3r.in)-

the analysis simultaneously for everg,€). Therefore, we B ) ) ,
need to do it one case at a time. It is very easy to analyze theN€k=S0(3)® SO(3) structure is obvious from the internal

case (I,c)=(6, 4) so we present it here as an illustration. Indimensions (3, r. Can these be put together into com-
this case the spin group is $8 and there are four internal pleteK=SO(5) multiplets? The answer is no, but this is not

dimensions. The duality groups are surprizing since we have already seen thatlth@ pertur-
bative states are insufficient. Can we add sufficient number
U=SQ5,5, K=SQ5)®SQ05), of nonperturbative states to make complé&emultiplets?
The answer is, of course, yes, but the needed states go be-
T=S04,4), k=SQ4) ®SA4)g, yond the minimal extensio(.12). There is a minimal num-
ber of states that we can add to obtain complétaultiplets,
R(2)2(5space+ 40 100 ® (Bepacet 4r.int) (4.10 but these do not agree with the minimal number that make

SQO(10) multiplets.
These examples show that we can always find a minimal
set of nonperturbative states to make complétenultiplets
. 2)_ - ) |n.ac.cordance vy|th Ed1.3. quever, the systematics of the
Whefe the |nd|_cesR 9'-®9.R have been reclassme_d ac missing states is not always in accordance with the system-
cording to their space and internal components. It is cleal

from this form that thek=S0(4) ® SO(4) structure fol- atics ofminimal number of 110 multiplets.
lows directly from the left-right internal components. This
identifies the specifi multiplets inR(®) for various spins.
Can these SO({)@ SO(4)R multiplets be reassembled into In the previous section we saw that for
SO(5)®S0O(5) multiplets for every spin? The answer is ob-

R® =etc.,

V. IS THERE HIDDEN 11D STRUCTURE?

viously no. This means that some nonperturbative states are (d,c)=(10,0,(9,2),(8,2,(6,9
missing. The structure of the indices that are missing corre-
sponds precisely to increasing the U duality is consistent with the presence of hidden 11-

dimensional structure all string levels However for the
(4in) L rR— (Sint)LR- (4.11 other values of
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(d,c)=(7,3),(5,5),(4,6),(3,7) required by the minimal completion. However, presumably
these additional multiplets are present also in those cases if

we found that the index structure required by the conjecturethere is a common 11D structure behind the whole theory.
U duality is different than theminimal numberof 11- In this example we have shown that it is possible for both
dimensional supersymmetry multiplets at excited levelsU multiplets and 11D multiplets to coexist even though they
I=2. Does this mean we have to give up the idea that therappeared to be at conflict at first. It is quite difficult to carry
is a hidden 11D structure? In view of recent arguments irout a similar analysis for other levels and other cases
favor of 11D [2,11-14, the idea of 11D seems to become (d,c). At this stage we have not understood enough of the
more compelling. If bothJ duality and 11D are true then theory to know whether a similar conclusion is true more
together they must give powerful restrictions on the structurgyenerally. Therefore the issue remains open until a better
of the theory from two different nonperturbative perspec-approach is found to answer the question:Uauality and
tives. The first test is to find a resolution for the spectrum11D structure coexist? Hopefully the answer is yes, other-
when the two requirements seem to conflict with each othefyise we have to decide which one is right.
as above. The only possible solution is that there exists a

collection of states that is bigger than the minimal set re- VI. SUMMARY AND COMMENTS
quired by eitheiK or SQ(10). The property of this collection . . _ -
must be that it can be reclassified eitherkasnultiplets or In this work we have investigated the compactified type-

SQ(10) multiplets. When classified as $1) states the<  IIA superstring for various values ofd(c). We have pre-

structure may be obscured or vice versa. This is a testabRented an algebraic approach which encompasses both the

hypothesis. perturbative as well as the nonperturbative states by putting
Thus, let us reconsider the case df€)=(7,3) at level them intoU multiplets. We have reasoned that the multiplet

| =2. The perturbative states are summarized by the 81 indiS labeled by two spaces, “index” space and “base” space.

ces in the following SO(63[SO(3). ® SO(3) ] representa- Both spaces are extensions of similar spaces that label the

tions (besides the 2+22° facton: perturbativeT-duality multiplets. In our schemd transfor-
mations, much likeT transformations, do not mix perturba-
R(2)=9L®9R—>(6Space+ 3L,int) ® (Bspacet 3r,int) tive states from different levelgote the definition of level

for nonperturbative states, as given in the Introdugti@ur
=(1+15+20[(0,0D+(6[(3,0+(0,3]) whole analysis critically depends on this structure which al-
+(0[(3,3]). (5.1) lows us to investigate th&) multiplets level by level. The
paper presented evidence that this scheme is consigtent
We are seeking SO(&SO(5) structures that are compat- the extent of our investigation
ible with a decomposition of S@0) multiplets. We have We have found that at levells=0,1 the existing index
found 94 additional nonperturbative states that combine tostructure for perturbative states is all that is needed to define
gether with the 81 perturbative ones to give 175 states wititompleteU multiplets in the form®{),. . (x* ,base) for all

the desired properties: values of @,c¢), and that this result directly follows from the
simplest short and long multiplet structure of 11D space-time
SQ(10):  1+3x10+2x45+54=175, (52 supersymmetry.

At levels| =0,1 all nonperturbative aspects appear in the
baS@(n?,ﬁ,z'). The base quantum numbers are the central
+(20,0+ (6,10 +2X (0,10 +(0,14. charges of the 11D SUSY algebra and these correpond tq the
0-brane sources that couple to the massless vector particles
To see that these match each other, and also include the 81 supergravityU acts as a linear transformation on the base
perturbative states, we need to decompose them according ifo & representation that is identical to the one applied to the

SO6)®SA5): (0,00+5%X(6,0+2X(15,0

the following schemes: massless vector _fields in compactified 11D supergravity. Eur—
thermore the indices correspond to complete representations
SO10)—SQ6)®S04), of K and they mix with a transformation induced by
Hence, forl =0,1 both index space and base spacdof
—S0(6)8SA3), 5.3 multiplets have firm connections to 11D.

. To haveU duality at higher level§=2 additional non-
SQ(6)®SA(5)—SA6)@S04), perturbative states are needed to complete the index struc-
—SQ(6)®SA(3), ture. If these additional states are absent in the theory there is

no U duality in the full theory. We would then have to inter-

where SO(4)=S0(3) ®SO(3) =k is the subgroup of pretthe successful resultlat 0,1 as a pure accident. This is
T=0(3,3), whereas the SO(#is different since it does not not impossible since thie=0,1 cases are fully explained by
contain the left-right information. However, the &P sub-  SUSY. On the other hand, assuming thiatluality is true for
group is common to both. =2, our approach provides an algebraic tool for identifying

The minimal S@10) multiplets that came from the nonperturbative states at every level once the perturba-
(9+1), ®(9+1)g are 1+45+54. These contain perturba- tive states are listed.
tive and nonperturbative states. The additional ones There seems to be a nonperturbative 11D structure lurking
3X10+45 are purely nonperturbative. For the casesbehind the theory. In view of the existence of a classical
(d,c)=(10,0,(9,1),(8,2),(6,4) the additional ones were not membrane theory with some promise of its consistency at the
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TABLE VI. The number of scalars is diri/K). TABLE VIII. Dimensions of U multiplets.
d d-2 SO(—-2) scalars d d-2 SO(d—2) tensors
c c+1 S gkl gtuas c c+1 Blant B
9/1-7/2 231 0+0=3 9/1-7/2 2+0=2
8/2—6/3 341321, 0=7 8/2—6/3 3+0=3
7/3—5/4 421 432, 0=14 7/3—5/4 4+1 (Apnp =5
6/4— 415 S+ 3551 0=25 6/4— 45 5+0=5=10 self dual
5/5—3/6 &4 2 1(Apnp) =42 5/5—3/6 0, dual to vectoBy,
416217 BBy 1824+ 7(BL,) =70 4/6—2/7 0, dual to scalaB'
3/7—1/8 824 8284 (8+28) (Vi + Vil =128 3/7-1/8 0

guantum level, searching for hidden 11-dimensional structur%ﬂglrggg further we expect the base to include allhbrane

is an interesting challenge. It is not necessary for 11D to be
present in the 10D theory, but there is mounting evidence for  pase=(0-brane charges. . ,p-brane charges. .).

it, including the work we presented here. We have seen that (6.1)
U duality is distinct from this 11D structure, although in

some cases they appeared to imply each other. We havkhus, we propose that the base consists bf multiplet for
found cases where there is a clash between the two if one machp-brane. It will be interesting to studg-branes and
restricted to a minimal set of nonperturbative states. We havaurther explore this possibility.

shown at least in one example that the conflicts may be re-
solved by adding more nonperturbative states. But neverthe-
less this example clearly shows that 11D andluality are . o
quite distinct from each other. If they are both true their Both of us would like to acknowledge the hospitality and
combined effect is quite restrictive on the nonperturbativeSuPport of CERN where this work was initiated. We would

structure of the theory. Whether the conflict can be resolve@!So like to thank M. Poratti for discussion gnduality. The
generally is a major question raised by our work. research of I.B. was supported in part by the DOE Grant No.

Other places where our ideas could be tested is in th®E-FG03-84ER-40168. The research of S.Y. was supported
proposed dualities between the Heterotic stringR§eT#  in part by the US-Israel Binational Science Foundation and
and the type-IIA string oiR®® K, as well as other similar by GIF, the German-Israel FOl_Jndatlon for scientific research
cases involving heterotic, type-1 or type-Il theories. The per-2nd the Israel Academy of Science.
turbative plus nonperturbative spectrum of these theories
should match each other. By using the perturbafivenul- APPENDIX

tiplets 9f either theory as a starting po_mt and then requiring In this appendix we review the massless sector of the 10D
U-multiplets at each level one should find the same full spec:

trum from either side type-llA string that coincides with the fields of 11D super-
In this paper we. have not discussed multiplets Wi,[hgravity. We need to understand the “index” structure of these

p-branes tf?atpalso enter the pictre9—-24 Howe\?er we fields as this will be the basis for th® -multiplet and

propose to include them algebraically as follows. SinceKh'mIUItIpIet strulc.tulre at level =0. Slnc_:ltla our almd|§ to fmd |

p-branes are sources fpr+-1 forms we can draw a parallel the gr_ge;t multiplet structure we wi use 11-dimensiona

between the central charges foibranes in the SUSY alge- cl_a55|f|gat|ons. The mass_less mu_ltlplets are the ~ 11-

bra and thep+1 forms in compactified supergravity. By dimensional graviton, three-index antisymmetric tensor, and

X A ’ itino. | ion th fiel

analogy to thep=0 case which we have discussed, we ex_gravmno n our notation these are the 0 fields

pect that thep-brane charges are classified in the saner (0) . A - Al

U multiplets corresponding to the+1 forms. Carrying the Pincices: Guan - Aune - ma (A1)
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TABLE IX. Dimensions ofK multiplets.

TABLE VII. Dimensions ofU gg,multiplets.

d d-2 Gravitinos 3, under
EH d-2 S?(d —[iZj% vecdtglrss c c+1 SOd-2)®K
¢ c+l Vit Vi~ Vi 10/0-8/1 56, +56_
9/1-7/2 2+1+0=3 9/1-7/2 (487x)
8/2—6/3 3+ ¥+0=6—(3,2) 8/2—6/3 (20,2:+) +(20%,2,-)
7/3—5/4 4+ %2+ 0=10 7/3-5/4 (16,4)
6/4—4/5 5+ %5+ 1 (Apn) =16 6/4—4/5 ((2,3),(4,00+((3,2),(0,4)
5/5—3/6 6+%2+6 (B,)=27 5/5—3/6 (4,8)
416217 7+ %8+ 0=28=56 (self-dual 4/6—2/7 (—,8)+(+,8)
3/7—1/8 0,(dual to scalar¥’ + V') 3/7—1/8 0, dual to fermiony?
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In the lightcone gauge, the physical degrees of freedom of TABLE X. Dimension ofK multiplets.

the string are classified by $8) which is the little group for
massless 10-dimensional states. However, it is possible @ d—2
regroup the S@) representations into §@), which is the c c+1
little group for massless states in 11 dimensions, by takinglOKHS/1
M,N=1,...,9,while « is the 16-dimensional SO) spinor 91712
index. This well-known fact is a first indication of a hidden 8/26/3
extra dimension.

If the string theory is toroidaly compactified ®%X T¢, 713504
with d+c¢=10, then the “base” acquires additional quantum g/4_, 4/5
numbers that correspond to Kaluza-Klein, winding, and cen-

Fermionsy'?, under
sod-2)®kK

8,+8_
(8x)+(8,*)
(4,44)+ (4% 4,—)+(4,2,+)+(4,2,—)
(4,16)
((2,0),(16,0)+ ((2,0),(4,0)

+((0,2),(0,16)+((0,2),(0,4)

tral charge quantum numbers, while the “indices” must now5/5— 3/6 (2,48)
be split into space and internal parts. In the lightcone nota4/6—2/7 (+.56)®(—,56")
tion this corresponds to decomposing the($Qepresenta- 3/7—1/8 128 (yi2+ 2)

tions above to SQ[—2)X SO(11-d) in order to obtain the
spin and internal symmetry content of the fields. The indices

split as
M—mai, a—aa,
m=1.2,...,d-2-SQ(d-2),
i=1,2,...,c+1-SQc+1)=SQ(11-d), (A2)
a=spinor of SQd - 2),

a=spinor of S@11—d).

AMNP‘“A‘mnp69 Bimn@vw]@s[ijk],

Ima— V2@V,

where we have written the space indices as subscrips and
internal indices as superscripts. From the point of view of
spins there are scalars, vectors, tensors, and a variety of
spinors. We can classify them according to 80@)

X SO(c+1) since this can be read off directly from the in-
dices above. We can count them, and obtain their total num-
bers to see in which representationdobr K they would fit,

Note thatc has been augmented by “1” due to the hiddenas explained in Table Il. The counting has to take into ac-
compactified 11th dimension. Then the fields are decomeount that in some dimensions a tensor may be dual to a

posed as follows

Ivn— Imn® Vin® S, (A3)

vector or scalar, etc. After this is taken into account we ob-
tain the classsifications given in Tables VI-X for various
values of €,c).
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