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U-duality multiplets and nonperturbative superstring states
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We employ an algebraic approach for unifying perturbative and nonperturbative superstring states on a
equal footing, in the form ofU-duality multiplets, at all excited string levels. In compactified type-IIA super-
tring theory we present evidence that the multiplet is labeled by two spaces, ‘‘index’’ space and ‘‘base’’ space
on whichU acts without mixing them. Both spaces are nonperturbative extensions of similar spaces that labe
perturbativeT-duality multiplets. Base space consists of all the central charges of the 11D SUSY algebra, while
index space corresponds to representations of the maximal compact subgroupK , U. This structure predicts
the quantum numbers of the nonperturbative states. We also discuss whether and howU multiplets may coexist
with 11-dimensional multiplets that are associated with an additional nonperturbative 11D structure that seem
to be lurking behind in the underlying theory.

PACS number~s!: 11.25.Sq, 11.25.Hf, 11.25.Mj
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I. INTRODUCTION

It has been conjectured that, in addition toT duality and
S duality, string theory may possess an even larger dua
U duality @1#, that contains bothT andS. There is plenty of
evidence for the existence ofS duality and circumstential
evidence forU duality @1–10# These ideas have provided
degree of reunification of certain string theories thata priori
seemed to be different. It now appears that there is a sin
underlying theory with many moduli fields, and that the va
ous conformal string theories are different perturbative st
ing points from various corners of moduli space. Howev
each perturbative expansion misses nonperturbative asp
that may have already been described by another pertu
tive expansion. Furthermore, beginning with 11-dimensio
~11D! supergravity in the form of the low energy limit, ther
seems to be an 11-dimensional structure lurking behind
nonperturbative aspects of these string theories@2,11–14#.
Further study of duality is bound to reveal more nonpert
bative properties of the underlying theory.

In this paper we investigate the multiplet structures
T- andU-duality transformations and use it as a device
unifying the perturbative and nonperturbative states of
theory. This allows us to put all the states on the same fo
ing. Our discussion sheds new light into the nonperturba
symmetry structure of the underlying theory and provides
algebraic tool for discovering the nonperturbative states.

We will mainly discuss the case of the 10-dimension
type-IIA superstring toroidally compactified onRd3Tc, that
has ad-dimensional Minkowski spacetime withc5102d
dimensions compactified on tori. TheT-duality group is@15#

T5O~c,c;Z! ~1.1!

in all cases. The conjectured noncompactU groups, their
maximal compact subgroupsK,U, and the maximal com-
pact subgroupk of theT group,

k5O~c!3O~c!, ~1.2!
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are listed for various dimensions in Table I. Note that sinc
T,U thenk,K. It is understood that these groups are co
tinuous in supergravity but only their discrete version ca
hold in string theory.

T duality was originally understood in toroidal back
grounds, but the scope ofT duality in string theory is much
larger and it exists in more complicated curved backgroun
involving both compact and noncompact spacetimes@15#, in
particular in all gauged Wess-Zumino-Witten~WZW! mod-
els. T-duality transformations act on perturbative strin
states, and it can be verified thatT duality is valid order by
order in string perturbation theory as well as in string fie
theory@16#. Target spaces related to each other byT duality
give the same physical results forT-invariant quantities such
as the partition function. Different string target spaces are t
analogs of different vaccua, andT duality are the analogs of
large discrete gauge transformations that relate them.

The string states involved in theT duality transformations
are not all degenerate in mass. Therefore,T duality must be
regarded as the analog of a spontaneously broken symme
and the string states must come in complete multiplets d
spite the broken nature of the symmetry.

In this paper we will first clarify the nature ofT multiplets
of excited string states and the properties ofU multiplets in
low energy supergravity. By putting well-known result
@16,17# into a suitable form we will emphasize the hints the

TABLE I. Duality groups and compact subgroups.

d/c U K k

9/1 SL(2)̂ SO(1,1) U(1)̂ Z2 Z2^Z2
8/2 SL(3)̂ SL(2) SO(3)̂ U(1) U(1)^U(1)
7/3 SL~5! SO~5! SO~4!

6/4 SO~5,5! SO~5!^SO(5) SO~4!^SO(4)
5/5 E6(6) USp~8! Sp(4)̂ Sp(4)
4/6 E7(7) SU~8! SU(4)^SU(4)
3/7 E8(8) SO~16! SO~7!^SO~7!
4489 © 1996 The American Physical Society
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provide forU multiplets. Then we will use this information
as boundary conditions to investigate the structure of nonp
turbative U multiplets, first in the supergravity secto
( l50), including nonperturbative Bogomol’ni-Prasad
Sommerfield~BPS! saturates states, and then at all excit
string levelsl . In particular we will explicitly construct the
U multiplets for a number of low lying levels, up to leve
l55.

To avoid later confusion we give a definition of levell
that applies to both perturbative and nonperturbative sta
The mass of perturbative states includes contributions fr
Kaluza-Klein and winding numbers in addition to the strin
excitation levell . Thus, for perturbative statesl is the exci-
tation level ofoscillators, not the mass. For the nonperturba
tive states wedefinethe levell to be the same as the level o
the perturbative states to which they are connected by dua
transformations as explained below. Thus,l is a label of the
entireU multiplet. In the explicit structures that emerge,U
transformations, much likeT transformations, do not mix
perturbative or nonperturbative states that belong to differ
levels ~using the definition of level just given!. This is an
empirical observation that holds in our investigation up
level l55, and thus we assume that it holds at all levels. O
analysis critically depends on this assumption.

Our proposal is that aU multiplet has the form

F indices
~ l ! ~xm,base!, ~1.3!

where the indices and the base form complete multiplets
derK andU, respectively, for every spin. In the rest of th
paper we will collect the evidence that leads to this structu
and then use our proposal to make new statements abou
nonperturbative theory. Both theindex space and thebase
space will include nonperturbative extensions. We will sho
how the full groupU acts on this structure without mixing
the index and base spaces at each levell .

Like in aT multiplet, the states in aU multiplet are not all
mass degenerate. But unlike aT multiplet, aU multiplet can
contain perturbative states together with nonperturbat
states~minimal case!, or only nonperturbative ones~non-
minimalcase!. In the minimal case, by knowing the structur
of a U multiplet as in~3! we can predict algebraically the
quantum numbers of the nonperturbative states by extend
the quantum numbers of the known perturbativeT multiplets
that belong to the biggerU multiplet. This completion pro-
vides the minimal set of nonperturbative states necessary
U duality. There remains the nonminimal case, that includ
the possibility of additional purely nonperturbative, comple
U-duality multiplets. With additional input, our approach ca
provide information on some nonminimalU multiplets, as
we will discuss in Sec. V.

Therefore, our approach is an algebraic method th
should complement the analytic methods of finding solutio
for building up the nonperturbative spectrum of the theo
The nonperturbative spectrum that we find explicitly is on
of the immediate outcomes of our approach.

In addition, our formulation hopefully provides hints fo
the nonperturbative formulation of the theory. In particular,
challenging question is whetherU multiplets can be made
consistent with some deeper underlying structure. A possi
candidate is an underlying 11-dimensional structure wh
er-
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has recently aroused much interest@2,11–14#. We will find a
certain amount of support for hidden 11 dimensions, but w
will also raise some questions that require resolution.

II. T MULTIPLETS

In this section we will show that the structure of pertur
bativeT multiplets at all levelsl , is consistent with~3!. In
particular we want to show that bothbaseandindexspaces
transform and that they do not mix with each other.

The bosonic string onRd
^Tc has the followingperturba-

tive states at oscillator levell :

f indices
~ l ! ~xm,base!↔~oscillators!~ l !upm,mW ,nW &, ~2.1!

where thebase[(mW ,nW ) are c-dimensional vectors on the
Lorentzian latticeGc,c representing the Kaluza-Klein and
winding numbers, while theindicesare inherited from os-
cillators. For the superstring~in the Green-Schwarz formal-
ism @18#! the indices are also inherited from the Ramon
vacuum, but without changing the overall structure. As me
tioned above, these states are clearly not all degenerate
mass, however they are mixed with each other und
T-duality transformations. As we will see later we need t
extend both the index and base spaces to constructU mul-
tiplets.

It is well known thatT5O(c,c;Z) acts linearly on the
2c-dimensional vector (mW ,nW ) @15#. However it also acts on
the indices in definite representations. The action ofT on the
indices is an inducedk transformation that depends not only
on all the parameters inT, but also on the background
c3c matrices (Gi j ,Bi j ) that define the toriTc. To see this
we analyze theT transformations in more detail. As is well
known, O(c,c;Z) acts linearly on the 2c-dimensional vector
(mW ,nW ) in such a way as to keep the following dot produc
invariant:

~mW 1 nW 1!S 0 1

1 0D SmW 2

nW 2
D 5mW 1•nW 21nW 1•mW 2 . ~2.2!

O(c,c;Z) transformations are characterized by 2c32c inte-
ger matrices of the form

M5S a b

c dD , MTS 0 1

1 0DM5S 0 1

1 0D . ~2.3!

Our interest here is in understanding the action of th
O(c,c;Z) transformations on the oscillators, and hence o
the indices of the fields in~1.3!, ~2.1!. This can be extracted
from a study ofT invariance of string field theory@16#: O
(c,c;Z) acts in such a way as to keep the left or right strin
excitation level numbersNL5(a2n

Li Gi jan
Li and NR

5(a2n
Ri Gi jan

Ri invariant. It does so by transforming both the
torus parameters (Gi j ,Bi j ) and the oscillators as

G81B85~a@G1B#1b!~c@G1B#1d!21,

G81B85~2@G1B#cT1dT!21~@G1B#aT2bT!, ~2.4!

G85~VL
21!TGVL

215~VR
21!TGVR

21 ,
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an8
Li5~VL! j

ian
L j , an8

Ri5~VR! j
ian

R j ,

VL[@c~G1B!1d#, VR[@c~2G1B!1d#,

where the second and first equations are equal by using~2.3!.
The third equation is obtained from the first or second
projecting on the symmetric part of both sides. So, the osc
lators undergo transformationsVL ,VR that depend on the O
(c,c;Z) parameters as well as on the target space ba
ground fieldsG,B.

For our purposes we get a clearer picture by defining o
cillators in a flat basis rather than the ‘‘curved’’ basis o
Gi j . Thus, by introducing vielbeinsGi j5ei

aej
a we have the

flat oscillators

an
La5ei

aan
L j , an

Ra5ei
aan

R j ,
~2.5!

NL5( a2n
La an

La , NR5( a2n
Raan

Ra ,

whose transformation properties under O(c,c;Z) amount
to induced maximal compact subgroup rotation
O(c)L3O(c)R . This is seen by noting that orthogonal tran
formations are induced on the flat index of the vielbein
order to maintain the transformation law for the metric

~ei
a!85~VL

21! i
jej
b~TL!b

a ,

~ei
a!95~VR

21! i
jej
b~TR!b

a, ~2.6!

TL,O~c!L , TR,O~c!R .

We emphasize thatTLÞTR sinceVLÞVR , so that the left
and right moving flat oscillatorsan

La ,an
Ra transform under

different orthogonal transformations.
Thus, for massive states theindicesmust form complete

representations

indices↔SO~d21! ^k,
~2.7!

k5O~c!L3O~c!R ,

where SO(d21) is the rotation group that identifies the spi
of the state ind dimensions. In thel50 sector the little
group SO(d22) replaces the SO(d21) factor.1We note that
k is larger than the naive O(c) that is embedded in
SO(10)→SO(d21)^SO(c).

In the superstring theory of type II, which is of interest i
this paper, the above discussion does not change in the p
ence of fermions. The fermions are treated in the Gree
Schwarz formalism. The ‘‘vaccum’’ state is the Clifford
vacuum for the zero-mode fermions, that produces all t
massless states in compactified 11-dimensional supergra
This set of states, already formU multiplets in supergravity
by definition ~see also below!, and therefore are consisten
with the classification withk,K,U. Furthermore, the

1Actually the type-II superstring massless states do form larg
multiplets under SO(d21). This is related to the fact that there i
an 11-dimensional~11D! structure in the type-II supersymmetry
~SUSY!.
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fermion oscillators end up in the spinor representation of t
maximal compact subgroupk5O(c)L3O(c)R . Therefore,
the states that they create at higher levelsl are consistent
with the index structure of O(c)L3O(c)R . The upshot is
that the superstring theory hasT multiplets that are classified
precisely as in~2.1! for various spins, including fermions.
Later in Sec. III, by explicit construction of the states we wi
identify thek multiplets in type-II string theory at each os
cillator level.

III. U MULTIPLETS AT LEVEL 0, ‘‘INDEX’’ AND ‘‘BASE’’

In this section we study the structure ofU multiplets at
level l50 ~including nonperturbative states! and show that
they are of the proposed form~1.3!.

A. Massless states and indices

The low energy sector of the type-II string theory is de
scribed by compactified 11-dimensional supergravity. Th
fields correspond to the vacuum sector of the superstring
the Green-Schwarz formalism

f indices
~0! ~xm!↔uvac,pm&. ~3.1!

The indices come from theR-R vacuum in the Green-
Schwarz formalism. They correspond to the short superm
tiplet 2B

712F
7 of 11D supersymmetry, dimensionally reduce

to Rd
^Tc11. This is shown explicitly in the Appendix. Here

one can start to reclassify the indices underU by using the
original Julia-Cremmer classification@17# of the massless
states, as given in the Appendix. It is seen that the fermio
are not inU multiplets, but rather inK multiplets. Further-
more, the scalars classified in the cosetU/K undergo a non-
linear transformation underU. So, theU transformations
that leave the supergravity Lagrangian invariant act in no
linear ways.

The pattern ofU transformations is clearer in the descrip
tion of supergravity as a gaugeds model. The scalars start
out as a matrix exp(t•f) in the adjoint representation ofU.
One must distinguishingglobal discrete transformation un-
der theUglobal group that acts on one side of the matrix o
scalars, andlocal maximal compact subgroupK local,U8
transformations that act on the other side of the matrix
scalars~whereU8 is isomorphic toU but commutes with it!.
The fermions are classified underK local while the massless
vectors and massless antisymmetric tensors are in repre
tations ofUglobal. The gauge fields for the groupK are non-
propagating, so one can choose a unitary gauge and eli
nate the auxiliary gauge fields through the equations
motion. The remaining physical scalars are classified in t
coset U/K. In the unitary gauge, the transformations o
Uglobal on the scalars have to be compensated with transf
mations ofK local in order to maintain the gauge. The fermi
ons transform under this field dependentK local whose free
parameters are just the ones inU local. The massless vectors
and tensors continue to transform underUglobal. Thus, we
outline thel50 pattern of ‘‘indices’’ in Table II.

This classification is the starting point forU multiplets. It
already hints that one must analyze the whole string sp
trum from the point of view of both global-U and local-K
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transformations that commute with each other. However
the unitary gauge, which is the form in which string theo
presents itself, it is hard to keep track of the ‘‘two sides’’ o
the matrix of scalars. Therefore, in this paper we will be le
ambitious and we will explore some consequences of
diagonal subgroup Kdiag that sits both in the global and loca
sides. It is thisKdiag subgroup that classifies the ‘‘indices’’ of
the fields in~3!. We observe that the classification of all th
massless fields in Table II is consistent with~3! since all of
them correspond to completeK multiplets.

B. Massive fields inl50 multiplet

Next consider all the massive perturbative string states
the form ~4! in the l50 sector that correspond to Kaluza
Klein and winding solutions labeled by (mW ,nW )

f indices
~0! ~xm,mW ,nW !↔uvac,pm,mW ,nW &. ~3.2!

These have the same set ofindices as the massless fields
corresponding to the same 2B

712F
7 short multiplet of 11D

SUSY discussed above. These massive fields can simply
regarded as if coming from the Kaluza-Klein compactific
tion of the supergravity fields, but extended byT-duality
transformations of the base. Evidently they exist in the stri
theory and they formT multiplets consistent with~1.3!.

Now we discuss the nonperturbative BPS saturated s
ton solutions which have nonperturbative chargeszI . The
existence of some such states is proven by finding soli
solutions to the field equations of supergravity@1–10#. This
shows that the supersymmetry algebra has nontrivial nonp
turbative central chargesZ that commute both with the mo-
mentum and supersymmetry generators.

The supercharges, momenta, and central charges form
algebraic system which must be quantum mechanically r
resented in the spectrum. That is, the eigenstates of the c
muting operators, including the central charges,should be
included as labels of the states of the full theory. In o
discussion of the base space below we will show algeb
ically that the nonperturbativezI are at the same footing as
the perturbative (mW ,nW ), so the complete set of states in th
l50 sector must be of the form

f indices
~0! ~xm,mW ,nW ,zI !↔uvac,pm,mW ,nW ,zI&, ~3.3!

where the indices again correspond to the 2B
712F

7 short mul-
tiplet of dimensionally reduced 11D SUSY. For fixed value
of thebasethis multiplet correspond to BPS saturated state
hence the mass is a function of the charges (mW ,nW ,zI). This
provides an algebraic construction of the states that w
found in the form of classical solutions. Actually, there a
many more states, with definite quantum numbers that

TABLE II. The U group acts in two ways in supergravity.

Spin
Action of
U group Representation

Scalars Uglobal̂ K local CosetU/K
Vectors, tensors Uglobal Dim. in Appendix
Spinors K local Dim. in Appendix
in
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uniquely specified byU transformations~given below!. Fur-
thermore, it puts the perturbative and nonperturbative sta
on the same footing. We will give below the preciseU trans-
formation that mixes them. Thus, theU multiplet is in com-
plete agreement with the form~1.3!.

A well-known first example is the uncompactified theor
with (d,c)5(10,0). There are no (mW ,nW ), but there is one
nonperturbative central chargez. The states in thel50 sec-
tor are f indices

(0) (xm,z)↔uvac,pm,z&. The classical solutions
with nontrivialz are known as BPS saturated black holes@1#.
Witten @2# interpreted this set of fields as 11D supergravi
fields compactified onR103S1, thus recovering an additional
dimension. TheU group in this case is trivial, however this
well-known case serves to illustrate that our reasoning so
is consistent with previous discussions. Furthermore,
shows that there are signs of a hidden 11D structure
l50, and serves as a starting point for investigating 11
structutre at higher levelsl @12#.

C. U classification of the base space

Let us now clarify the content and transformation prope
ties of thebase. For the moment we concentrate on the BP
saturated black holes that are 0-brane solutions of the 1
supergravity equations, and return to the more gene
p-branes at the end of the paper. In that case we label
base as above:

base5~mW ,nW ,zI !. ~3.4!

We will show that these quantum numbers correpond to t
central charges of 11D supergravity and at the same time t
they are the sources that couple to the massless vector fi
of 11D supergravity listed in the Appendix. Combining th
two statements we will learn theU classification of the base.

Consider the supersymmetry algebra of type-IIA in 10D
There are two supercharges of opposite chirality. Togeth
they form the 32-component spinor of 11D. In the compa
tified theory the 32 components are labelled asQa

a where
a,a label the spinor representations in the Minkowski an
compactified dimensions respectively. The centrally e
tended superalgebra is

$Qa
a ,Qb

b%5dabgab
m Pm11abZ

ab. ~3.5!

The 1ab denotes either a symmetric or antisymmetric com
bination of Lorentz~spinor! indices into a Lorentz singlet.
Then the corresponding central chargesZabare either sym-
metric or antisymmetric, respectively. Here we will show
that the central chargesZab form completeK andU multip-
lets and that these correspond exactly to the same multip
that describe the massless vector fields listed in the App
dix. This fact is proven by building Table III in three steps
~i! Classify the supercharges under SO(d21,1)^k, noting
that k5SO(c)L^SO(c)R naturally emerges from the two
chiral supercharges,~ii ! construct all possibleZab whenever
a 1ab is allowed by the Lorentz content, and note thek
classification,~iii ! combine thek representations precisely to
completeK representations, as listed.



s.

.

e,
.

-

is

te
l

u-

rs

of
ad-

g
re
i-
-

c-

r-
s-

e
p-
-

53 4493U-DUALITY MULTIPLETS AND NONPERTURBATIVE . . .
Now, by comparing to theU representations of the vec
tors listed in the Appendix we see that both the counting a
theK-representation content is the same2 as theZab. Hence,
the central charges

Zab5~mW ,nW ,zI ! ~3.6!

form a completeU multiplet.
The central charges and the sources for the massless

tors are related as follows. The Kaluza-Klein and windin
charges (mW ,nW ) are the ‘‘perturbative charges’’ among th
Zab. In the Neveu-Schwarz-Ramond~NSR! formalism they
couple to the massless vectors that come from the NS-
sector. From the point of view of 10D supergravity compa
tified onRd

^Tc, these massless vectors are the gravipho
and its axial partner which come from the dimensional r
duction of the 10D metricgmn and antisymmetric tensor
Bmn :

gmn→VW m , Bmn→VW m8 . ~3.7!

The nonperturbative 0-brane solutions have chargeszI that
couple to the remaining massless vector fieldsVm

I . These
vectors come from the Ramond-Ramond sector in the N
formalism. Thus, in string theory compactified onRd

^Tc the
base contains altogetherNd,c charges for 0-branes, which is
the same as the numberNd,c of massless vector fields in 11D
supergravity compactified onRd

^Tc11.

2In the case (d,c)5(5,5) we found one extra central charge i
addition to the 27, listed as 2711 in Table III. According to the
Appendix, it seems that there is no corresponding singlet mass
vector in compactified 11D supergravity. This is curious.

TABLE III. Classification of central charges.

d/c
32 Qa

a , under
SO(d21,1)^k

Zab

underk
Zab

underK

10/0 16L116R 1 1
9/1 1611162 (1

1 ,2
2 ,2

1) (1
1 ,2

2 ,2
1)

8/2
„8L

1 ,(6)L…
1„8R

2 ,(6)R…
(1

1 ,2
2 ,2

1)L
(1

1 ,2
2 ,2

1)R
31132

7/3 „8,@(2,0)1(0,2)#…
(3,0)

1(0,3)
1(2,2)

10

6/4
„4L ,(4spin,0)…

1„4̄R ,(0,4spin)…
(4spin,4spin) ~4,4!

5/5 „4,@(4,0)1(0,4)#…

(5,0)
1(0,5)
1(4,4)

12(0,0)

2711

4/6 „4spin,@(4,0)1(0,4̄)#…
(6,0)

1(0,6̄)
1(4,4̄)

28complex

3/7 „2,@(8,0)1(0,8)#…

(21,0)
1(7,0)
1(0,21)
1(0,7)
1(8,8)

120
-
nd

vec-
g
e

NS
c-
ton
e-

SR

The nonperturbative chargeszI are now on the same foot-
ing as the perturbative charges (mW ,nW ) since they both are
sources in the field equations of the massless vector field
This suggests naturally that thebasein ~3! transforms in the
sameU-duality multiplet as the vector fields themselves
This is precisely the multiplet of sizeNd,c listed in the Ap-
pendix. For example for (d,c)5(6,4) the vectors fall into
the 16-dimensional spinor representation of SO(5,5). Henc
thebasealso transforms in the same linear representation3

IV. U MULTIPLETS AND STRING EXCITATIONS AT l>1

Our approach is the following: We start withT multiplets
that can be defined perturbatively at every levell . The
T-multiplet indices formk multiplets, which are in turn re-
quired to be part of complete largerK multiplets in accor-
dance with~1.3!. This last part is the consistency require
ment for theT multiplets to reassemble intoU multiplets.
The base is already aU multiplet as discussed above, so no
more discussion is needed. The remaining question
whether there is a need to add nonperturbativek multiplets
~indices! to the perturbative ones in order to findK multip-
lets and thus satisfyU duality. Here is a summary of what we
find, and which will be described below in several steps:

We will prove that at levell51 the perturbativek mul-
tiplets have precisely the index structure that forms comple
K multiplets. No additional indices are needed at leve
l51, just like the case of levell50. This gives more cred-
ibility to our proposal in Eq.~1.3!. This fact is quite non-
trivial in various dimensions (d,c), and we will be able to
explain it as a consequence of the underlying spacetime s
persymmetry.

At levels l>2 the requirement of completeK multiplets
predicts the existence of additional nonperturbativek multip-
lets beyond those that can be created by applying oscillato
on the ‘‘base.’’ That is, more ‘‘nonperturbative’’ indices with
predicted properties must be added. The quantum numbers
these states are therefore completely determined. If these
ditional states do not exist in the theory there is noU duality
.

A. Perturbative k multiplets in type-II string at l>1

In order to obtain the perturbativek multiplets explicitly
we examine the known spectrum of the type-IIA superstrin
in 10D before compactification, and notice that there a
some larger symmetry structures that help in extracting d
rectly thek structure after compactification, as explained be
low.

Our analysis begins by reexamining the perturbative spe
trum and extracting the indices

n

less

3In the manifestly spacetime supersymmetric Green-Schwarz fo
malism of the type-II string, all massless fields, including the mas
less vector fields, come from theR-R vaccum sector that is de-
scribed by only the fermionic zero modes. In this sense th
discussion so far has not involved any oscillators, so that it is a
propriate to use the term ‘‘base’’ for all the quantum numbers in
cluded above.
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indices↔~Bose%Fermi oscillators!~ l !uvac&. ~4.1!

This was done up to levell55 in @12#. The result
for d510, c50 is equivalent to a collection of fields
f indices
( l ) (xm) where the indices have the following structure o

representations:

indices⇒~2B
1512F

15!3R~ l !. ~4.2!

The factor 2B
1512F

15 represents the action of 32 supercharg
on a set of SO~9! representationsR( l ) at oscillator levell ,
where SO~9! is the spin group in 10-dimensions for massiv
states. The factorR( l ) is of the form of direct products of
SO~9! representations coming from left or right movers

R~ l !5S (
i
r i

~ l !D
L

3S (
i
r i

~ l !D
R

~4.3!

such that the left factor is identical to the right factor, and
given by the collection of SO~9! L,R representations in Table
IV.

This structure shows that the factorR( l ) is really classified
by the larger group

SO~9!L^SO~9!R . ~4.4!

Furthermore, the supercharge factor 2B
1512F

15 has an even
larger classification group

SO~32! ~4.5!

with 2B
1512F

15 corresponding to the two spinor represent
tions. The diagonal SO~9! subgroup of all these factors is the
familiar rotation group in the Lorentz group SO~9,1!.

When the the string theory is compactified toRd
^Tc,

with c1d510, the set of indices in~19! needs to be reclas-
sified by

SO~d21! ^ @SO~c!L^SO~c!R# ~4.6!

in order to identify the perturbativek multiplets and their
spins. Note that this is a larger group than what is contain
in the rotation group alone SO(9).SO(d21)^SO(c).
Therefore, the larger symmetry structures that we identifi
above are needed to obtain thek multiplets. It is then evident
that theR( l ) factor, described by the representations in Tab
IV, is easily reduced in the form

SO~9!L,R⇒SO~d21!L,R^SO~c!L,R . ~4.7!

For example, ford56, c54,

TABLE IV. L/R oscillator states of 10D superstring.

Level SO~9!L,R representations (( i r i
( l ))L,R

l51 1B
l52 9B
l53 44B116F
l54 (91361156)B1128F
l55 (113614418412311450)B

1@1611281576#F
f

es

e

is

a-

ed

ed

le

l51: 1→1,

l52: 9L,R→~5,1!L,R1~1,4!L,R , etc. ~4.8!

After this step the SO(d21)L3SO(d21)R is reduced to the
diagonal rotation group SO(d21) in order to give the final
classification of states. Naturally the outcome is the desire
classification under SO(d21)^ @SO(c)L^SO(c)R#.

Similarly, the 2B
1512F

15 supercharge factor may be reduced
to the representations of

SO~d21! ^ @SO~c!L^SO~c!R# ~4.9!

since we have already seen in Table II that the 32 supe
charges are already classified under this group. Then the r
classification of the factor 2B

1512F
15 follows by taking the

product of the supercharges. Equivalently, specifying how t
decompose the 32-dimensional vector of SO~32!, provides
the instructions for decomposing the 215-dimensional repre-
sentations as well.

Therefore all the perturbative indices in~19! do form k
multiplets that we can identify explicitly thanks to the larger
structures SO~32! and SO~9! L^SO(9)L . Combining this re-
sult with the base (mW ,nW ) proves that we have explicit control
of theT multipletsf indices

( l ) (xm,mW ,nW ) up to levell55. We will
next constructU multiplets by starting with theseT multip-
lets.

B. U multiplets at l51

In the discussion above we used the explicit SO
(d21)^k classification of the 32 supercharges of Table III.
Here we go one step further and give in Table V the reclas
sification of the 32 supercharges under the grou
@SO(d21)^K#.

Table V was constructed in several steps:~i! The vector of
SO~32! is identified with the 32-dimensional spinor of 11
dimensions.~ii ! This spinor is decomposed into the two 16-
dimensional spinor representations of SO~10!, where SO~10!
is the rotation group in 11 dimensions.~iii ! The SO~10!
spinor representations are decomposed into the products
spinors of SO(d21)3SO(c11) where SO(d21) is the ro-
tation group ind-dimensional Minkowski space.~iv! Then
we find that the resulting spinor representations of SO
(c11) come together with the correct numbers to fit into the
completeK representations given above.

TABLE V. Classification of 32Qa
a exhibitsK.

d

c
→

d21

c11

32 superchargesQa
a ,

under SO(d21)^ K

10/0→9/1 16116
9/1→8/2 (81 ,6)1(82 ,6)
8/2→7/3 (8,2,6)
7/3→6/4 (4,4)1(4* ,4)
6/4→5/5 (4,4,0)1(4,0,4)
5/5→4/6 ((2,0),8)1((0,2),8)
4/6→3/7 (2,8)1(2,8* )
3/7→2/8 (6,16)
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The subgroupK turns out to be the largest subgroup i
SO~32! that remains after identifying the spin group SO
(d21) as described above. So,K emerges in an interesting
way as this largest factor. EachK multiplet then contains
severalk multiplets of the supercharges automatically. F
example, ford56, c54 there are two supercharges class
fied as (4,0)1(0,4) under the K5SO(5)3SO(5)
5Sp(4)3Sp(4). They could be further reclassified unde
k5SO(4)3SO(4).Recall that our goal is to reassemble a
representations intoK multiplets. With this table we have
demonstrated that this is always the case for any represe
tion of SO~32! that is a product of the 32 supercharge
Hence the supercharge factor 2B

1512F
15 admits a reclassifica-

tion underK for all compactifications (d,c).
There remains to discuss theK reclassification of the

R( l ) factor in the perturbative indices in~19! separately for
every levell . According to Table III, at levell51 we have
just a singlet

l51: R~1!51.

Obviously, this is easily reclassified also as a singlet und
K. Therefore, for all compactifications (d,c) we have now
demonstrated that levell51 states do have indices that co
respond to completeK multiplets. Hence at levell51 we
haveU multiplets of the form~3! without needing any addi-
tional nonperturbative indices. The only nonperturbative a
pects at levell51 come through the nonperturbative charg
zI at the base.

C. U multiplets at l>2

Next we analyze levelsl>2. We know that the super-
charge factor 2B

1512F
15 works, so we ignore it, and concen

trate on theR( l ) factor. It is not straightforward to carry ou
the analysis simultaneously for every (d,c). Therefore, we
need to do it one case at a time. It is very easy to analyze
case (d,c)5(6, 4) so we present it here as an illustration.
this case the spin group is SO~5! and there are four internal
dimensions. The duality groups are

U5SO~5,5!, K5SO~5! ^SO~5!,

T5SO~4,4!, k5SO~4!L^SO~4!R ,

R~2!5~5space14L, int! ^ ~5space14R, int!, ~4.10!

R~3!5etc.,

where the indicesR(2)59L^9R have been reclassified ac
cording to their space and internal components. It is cle
from this form that thek5SO(4)L^SO(4)R structure fol-
lows directly from the left-right internal components. Thi
identifies the specifick multiplets inR(2) for various spins.
Can these SO(4)L^SO(4)R multiplets be reassembled into
SO(5)̂ SO(5) multiplets for every spin? The answer is ob
viously no. This means that some nonperturbative states
missing. The structure of the indices that are missing cor
sponds precisely to increasing the

~4int!L,R→~5int!L,R . ~4.11!
n
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This is equivalent to requiring nonperturbative states th
correspond to increasing the size of thel52 multiplet in the
form

R~2!59L^9R→10L^10R . ~4.12!

This result was found in@12# by assuming the presence o
hidden 11-dimensional structure in the nonperturbative typ
IIA superstring theory in 10D. In@12# a justification for
~4.12! could not be given. However, in the present analys
U duality demands~28! and therefore justifies~4.12!.

For (d,c)5(10,0),(9,1),(8,2),(6,4) the analysis for
l52,3,4,5 produces exactly the same conclusion as the 1
analysis, in thatU duality demands that the SO(9)L

^SO(9)R multipletsR( l ) should be completed to SO(10)L
^SO(10)R multiplets. The minimal completion is sufficient
in this case. The necessary minimal completion was giv
and discussed in@12#, where the possibility of additional
nonperturbative complete SO~10! multiplets is also dis-
cussed. For all higher levelsl52,3,4,5 there is a clear re-
markable pattern of theminimal missing nonperturbative
states. Their quantum numbers~for both bosons and fermi-
ons! coincide systematically with the sum of all lower lying
perturbative states listed in Table IV. This observation sy
tematically gives all theminimalstates required byU duality
at all levels. Hence, in these compactificationsU duality is
consistent with a hidden 11D structure.

Next consider the example (d,c)5(7,3). Now we have a
spin group SO~6!5SU~4!

U5SL~5!, K5SO~5!5Sp~4!, ~4.13!

T5SO~3,3!, k5SO~3!L^SO~3!R5SO~4!,

R~2!5~6space13L, int! ^ ~6space13R, int!.

Thek5SO(3)̂ SO(3) structure is obvious from the interna
dimensions (3int)L,R . Can these be put together into com
pleteK5SO(5) multiplets? The answer is no, but this is no
surprizing since we have already seen that thel52 pertur-
bative states are insufficient. Can we add sufficient numb
of nonperturbative states to make completeK multiplets?
The answer is, of course, yes, but the needed states go
yond the minimal extension~4.12!. There is a minimal num-
ber of states that we can add to obtain completeU multiplets,
but these do not agree with the minimal number that ma
SO~10! multiplets.

These examples show that we can always find a minim
set of nonperturbative states to make completeU multiplets
in accordance with Eq.~1.3!. However, the systematics of the
missing states is not always in accordance with the syste
atics ofminimalnumber of 11D multiplets.

V. IS THERE HIDDEN 11D STRUCTURE?

In the previous section we saw that for

~d,c!5~10,0!,~9,1!,~8,2!,~6,4!

U duality is consistent with the presence of hidden 1
dimensional structure atall string levels. However for the
other values of
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~d,c!5~7,3!,~5,5!,~4,6!,~3,7!

we found that the index structure required by the conjectur
U duality is different than theminimal numberof 11-
dimensional supersymmetry multiplets at excited leve
l>2. Does this mean we have to give up the idea that th
is a hidden 11D structure? In view of recent arguments
favor of 11D @2,11–14#, the idea of 11D seems to becom
more compelling. If bothU duality and 11D are true then
together they must give powerful restrictions on the structu
of the theory from two different nonperturbative perspe
tives. The first test is to find a resolution for the spectru
when the two requirements seem to conflict with each oth
as above. The only possible solution is that there exist
collection of states that is bigger than the minimal set r
quired by eitherK or SO~10!. The property of this collection
must be that it can be reclassified either asK multiplets or
SO~10! multiplets. When classified as SO~10! states theK
structure may be obscured or vice versa. This is a testa
hypothesis.

Thus, let us reconsider the case of (d,c)5(7,3) at level
l52. The perturbative states are summarized by the 81 in
ces in the following SO(6)̂ @SO(3)L^SO(3)L# representa-
tions ~besides the 2B

1512F
15 factor!:

R~2!59L^9R→~6space13L, int! ^ ~6space13R, int!

5„1115120,@~0,0!#…1„6,@~3,0!1~0,3!#…

1„0,@~3,3!#…. ~5.1!

We are seeking SO(6)̂SO(5) structures that are compa
ible with a decomposition of SO~10! multiplets. We have
found 94 additional nonperturbative states that combine
gether with the 81 perturbative ones to give 175 states w
the desired properties:

SO~10!: 113310123451545175, ~5.2!

SO~6! ^SO~5!: ~0,0!153~6,0!123~15,0!

1~20,0!1~6,10!123~0,10!1~0,14!.

To see that these match each other, and also include the
perturbative states, we need to decompose them accordin
the following schemes:

SO~10!→SO~6! ^SO~4!1

→SO~6! ^SO~3!,
~5.3!

SO~6! ^SO~5!→SO~6! ^SO~4!2

→SO~6! ^SO~3!,

where SO(4)25SO(3)L^SO(3)L5k is the subgroup of
T5O(3,3), whereas the SO(4)1 is different since it does not
contain the left-right information. However, the SO~3! sub-
group is common to both.

The minimal SO~10! multiplets that came from
(911)L^ (911)R are 1145154. These contain perturba
tive and nonperturbative states. The additional on
3310145 are purely nonperturbative. For the cas
(d,c)5(10,0),(9,1),(8,2),(6,4) the additional ones were no
ed

ls
ere
in
e

re
c-
m
er,
s a
e-

ble

di-

t-

to-
ith

81
g to

-
es
es
t

required by the minimal completion. However, presumabl
these additional multiplets are present also in those cases
there is a common 11D structure behind the whole theory

In this example we have shown that it is possible for bot
U multiplets and 11D multiplets to coexist even though the
appeared to be at conflict at first. It is quite difficult to carry
out a similar analysis for other levelsl and other cases
(d,c). At this stage we have not understood enough of th
theory to know whether a similar conclusion is true mor
generally. Therefore the issue remains open until a bet
approach is found to answer the question: doU duality and
11D structure coexist? Hopefully the answer is yes, othe
wise we have to decide which one is right.

VI. SUMMARY AND COMMENTS

In this work we have investigated the compactified type
IIA superstring for various values of (d,c). We have pre-
sented an algebraic approach which encompasses both
perturbative as well as the nonperturbative states by putti
them intoU multiplets. We have reasoned that the multiple
is labeled by two spaces, ‘‘index’’ space and ‘‘base’’ space
Both spaces are extensions of similar spaces that label
perturbativeT-duality multiplets. In our schemeU transfor-
mations, much likeT transformations, do not mix perturba-
tive states from different levels~note the definition of level
for nonperturbative states, as given in the Introduction!. Our
whole analysis critically depends on this structure which a
lows us to investigate theU multiplets level by level. The
paper presented evidence that this scheme is consistent~to
the extent of our investigation!.

We have found that at levelsl50,1 the existing index
structure for perturbative states is all that is needed to defi
completeU multiplets in the formF indices

( l ) (xm,base) for all
values of (d,c), and that this result directly follows from the
simplest short and long multiplet structure of 11D space-tim
supersymmetry.

At levels l50,1 all nonperturbative aspects appear in th
base5(mW ,nW ,zI). The base quantum numbers are the centr
charges of the 11D SUSY algebra and these correpond to
0-brane sources that couple to the massless vector partic
in supergravity.U acts as a linear transformation on the bas
in a representation that is identical to the one applied to th
massless vector fields in compactified 11D supergravity. Fu
thermore the indices correspond to complete representatio
of K and they mix with a transformation induced byU.

Hence, forl50,1 both index space and base space ofU
multiplets have firm connections to 11D.

To haveU duality at higher levelsl>2 additional non-
perturbative states are needed to complete the index str
ture. If these additional states are absent in the theory there
noU duality in the full theory. We would then have to inter-
pret the successful result atl50,1 as a pure accident. This is
not impossible since thel50,1 cases are fully explained by
SUSY. On the other hand, assuming thatU duality is true for
l>2, our approach provides an algebraic tool for identifyin
the nonperturbative states at every level once the perturb
tive states are listed.

There seems to be a nonperturbative 11D structure lurki
behind the theory. In view of the existence of a classica
membrane theory with some promise of its consistency at t
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quantum level, searching for hidden 11-dimensional struct
is an interesting challenge. It is not necessary for 11D to
present in the 10D theory, but there is mounting evidence
it, including the work we presented here. We have seen t
U duality is distinct from this 11D structure, although i
some cases they appeared to imply each other. We h
found cases where there is a clash between the two if on
restricted to a minimal set of nonperturbative states. We ha
shown at least in one example that the conflicts may be
solved by adding more nonperturbative states. But nevert
less this example clearly shows that 11D andU duality are
quite distinct from each other. If they are both true the
combined effect is quite restrictive on the nonperturbati
structure of the theory. Whether the conflict can be resolv
generally is a major question raised by our work.

Other places where our ideas could be tested is in
proposed dualities between the Heterotic string onR6

^T4

and the type-IIA string onR6
^K3 , as well as other similar

cases involving heterotic, type-I or type-II theories. The pe
turbative plus nonperturbative spectrum of these theor
should match each other. By using the perturbativeT mul-
tiplets of either theory as a starting point and then requiri
U-multiplets at each level one should find the same full spe
trum from either side.

In this paper we have not discussed multiplets wi
p-branes that also enter the picture@19–24#. However, we
propose to include them algebraically as follows. Sin
p-branes are sources forp11 forms we can draw a paralle
between the central charges forp-branes in the SUSY alge-
bra and thep11 forms in compactified supergravity. By
analogy to thep50 case which we have discussed, we e
pect that thep-brane charges are classified in the sameK or
U multiplets corresponding to thep11 forms. Carrying the

TABLE VI. The number of scalars is dim(U/K).

d

c
→

d22

c11

SO(d22) scalars
S( i j )%S@ i jk #

%Sduals

9/1→7/2 2.3
2 101053

8/2→6/3 3.4
2 1

3.2.1
1.2.31057

7/3→5/4 4.5
2 1

4.3.2
1.2.310514

6/4→4/5 5.6
2 1

5.4.3
1.2.310525

5/5→3/6 6.7
2 1

6.5.4
1.2.311(Ãmnp)542

4/6→2/7 7.8
2 1

7.6.5
1.2.317(B̃mn

i )570
3/7→1/8 8.9

2 1
8.7.6
1.2.31(8128)(Ṽm

i 1Vm
@ i j #)5128

TABLE VII. Dimensions ofUglobalmultiplets.

d

c
→

d22

c11

SO(d22) vectors
Vm
i 1Vm

@ i j #1Vm
duals

9/1→7/2 2111053
8/2→6/3 31

3.2
2 1056→(3,2)

7/3→5/4 41
4.3
2 10510

6/4→4/5 51
5.4
2 11 (Ãmnp)516

5/5→3/6 61
6.5
2 16 (B̃mn

i )527
4/6→2/7 71

7.6
2 10528556 (self-dual!

3/7→1/8 0,(dual to scalarsVi1Vi j )
ure
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analogy further we expect the base to include all thep -brane
charges

base5~0-brane charges, . . . ,p-brane charges, . . . !.
~6.1!

Thus, we propose that the base consists of aU multiplet for
eachp-brane. It will be interesting to studyp-branes and
further explore this possibility.
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APPENDIX

In this appendix we review the massless sector of the 10D
type-IIA string that coincides with the fields of 11D super-
gravity. We need to understand the ‘‘index’’ structure of these
fields as this will be the basis for theU -multiplet and
K-multiplet structure at levell50. Since our aim is to find
the largest multiplet structure we will use 11-dimensional
classifications. The massless multiplets are the 11-
dimensional graviton, three-index antisymmetric tensor, and
gravitino. In our notation these are thel50 fields

f indices
~0! :gMN ,AMNP ,cMaW . ~A1!

TABLE VIII. Dimensions ofU multiplets.

d

c
→

d22

c11

SO(d22) tensors
Bmn
i 1Bmn

duals

9/1→7/2 21052
8/2→6/3 31053
7/3→5/4 411 (Ãmnp)55
6/4→4/5 51055510 self dual
5/5→3/6 0, dual to vectorBm

i

4/6→2/7 0, dual to scalarBi

3/7→1/8 0

TABLE IX. Dimensions ofK multiplets.

d

c
→

d22

c11

Gravitinoscma
a under

SO(d22)^K

10/0→8/1 5611562

9/1→7/2 (48,6)
8/2→6/3 (20,2,1)1(20* ,2,2)
7/3→5/4 (16,4)
6/4→4/5 „(2,3),(4,0)…1„(3,2),(0,4)…
5/5→3/6 (4,8)
4/6→2/7 (2,8)1(1,8* )
3/7→1/8 0, dual to fermionca

a
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In the lightcone gauge, the physical degrees of freedom
the string are classified by SO~8! which is the little group for
massless 10-dimensional states. However, it is possible
regroup the SO~8! representations into SO~9!, which is the
little group for massless states in 11 dimensions, by tak
M ,N51, . . . ,9,while ā is the 16-dimensional SO~9! spinor
index. This well-known fact is a first indication of a hidde
extra dimension.

If the string theory is toroidaly compactified toRd3Tc,
with d1c510, then the ‘‘base’’ acquires additional quantum
numbers that correspond to Kaluza-Klein, winding, and ce
tral charge quantum numbers, while the ‘‘indices’’ must no
be split into space and internal parts. In the lightcone no
tion this corresponds to decomposing the SO~9! representa-
tions above to SO(d22)3SO(112d) in order to obtain the
spin and internal symmetry content of the fields. The indic
split as

M→m% i , ā→aa,

m51,2, . . . ,d22↔SO~d22!,

i51,2, . . . ,c11↔SO~c11!5SO~112d!, ~A2!

a5spinor of SO~d22!,

a5spinor of SO~112d!.

Note thatc has been augmented by ‘‘1’’ due to the hidde
compactified 11th dimension. Then the fields are deco
posed as follows

gMN→gmn%Vm
i

%S~ i j !, ~A3!
of

to

ing

n

n-
w
ta-

es

n
m-

AMNP→Amnp%Bmn
i

%Vm
@ i j #

%S@ i jk #,

cM ā→cma
a

% ca
ia ,

where we have written the space indices as subscrips a
internal indices as superscripts. From the point of view o
spins there are scalars, vectors, tensors, and a variety
spinors. We can classify them according to SO(d22)
3SO(c11) since this can be read off directly from the in-
dices above. We can count them, and obtain their total num
bers to see in which representations ofU or K they would fit,
as explained in Table II. The counting has to take into a
count that in some dimensions a tensor may be dual to
vector or scalar, etc. After this is taken into account we ob
tain the classsifications given in Tables VI–X for various
values of (d,c).

TABLE X. Dimension ofK multiplets.

d

c
→

d22

c11

Fermionsca
ia , under

SO(d22)^K

10/0→8/1 81182

9/1→7/2 (8,6)1(8,6)
8/2→6/3 (4,4,1)1(4* ,4,2)1(4,2,1)1(4,2,2)
7/3→5/4 (4,16)

6/4→4/5
„(2,0),(16,0)…1„(2,0),(4,0)…

1„(0,2),(0,16)…1„(0,2),(0,4)…

5/5→3/6 (2,48)
4/6→2/7 (1,56)% (2,56* )
3/7→1/8 128 (ca

ia1ca
a)
.
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