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Stochastic Hamiltonians for noncritical string field theories from double-scaled matrix models

Fumihiko Sugino* and Tamiaki Yoneya†

Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan
~Received 27 October 1995!

We present detailed discussions on the stochastic Hamiltonians for noncritical string field theories on the
basis of matrix models. Beginning from the simplestc50 case, we derive the explicit forms of the Hamilto-
nians for the higher critical casek53 ~which corresponds toc5222/5) and for the casec51/2, directly from
the double-scaled matrix models. In particular, for the two-matrix case, we do not put any restrictions on the
spin configurations of the string fields. The properties of the resulting infinite algebras of Schwinger-Dyson
operators associated with the Hamiltonians and the derivation of the Virasoro andW3 algebras therefrom are
also investigated. Our results suggest a certain universal structure of the stochastic Hamiltonians, which might
be useful for an attempt towards a background-independent string field theory.

PACS number~s!: 11.25.Pm, 11.25.Sq
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I. INTRODUCTION

A common idea towards a nonperturbative formulation
string theory is to start from the concept of string fields. Ju
as the ordinary local fields describe the motion and inter
tion of particles in terms of creation and annihilation oper
tors, we can construct string field theories by appropriat
slicing the world sheets of strings and introducing the fie
operators to create and annihilate the strings. Clearly, ther
continuously infinite amount of arbitrariness in choosin
slicings. For instance, the light-cone string field theory@1#
uses the lightlike plane in the target spacetime to slice
world sheet, while the covariant string field theories@2#, in
general, use different methods of slicing, which are based
the geometry of the moduli space of Riemann surfaces. T
arbitrariness of slicing may be interpreted as a sort of gau
freedom of the theory. At present, however, we have no s
isfactory framework to formulate such a gauge structure i
systematic and general way.

Recently, an interesting new way of slicing has been p
posed@3#, and the corresponding string field theories@4,5#
have been suggested for the case of noncritical strings w
c50 and the case with minimal conformal matte
c5126/m(m11). In this proposal, the world sheets ar
sliced by using a certain time parameter, which is intrin
cally defined on the world sheet as a measure of the distan
from the boundaries of the world sheets. In this paper,
will call the string field theories of this type ‘‘proper-time’
string field theories~PSFT’s!, in analogy with the familiar
proper-time representation of propagators in ordinary fie
theories. In PSFT’s, it seems less difficult to incorporate t
higher-genus~and, hopefully, nonperturbative! effect than in
the moduli space approach as employed in the ordinary
variant string field theories. Remarkably enough, there ex
a single exact Hamilonian operator which directly charact
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izes all of the correlation functions of the system at once.
One of the many unsolved problems of present PSFT

however, is that we do not know definite symmetry prin
ciples, if any, on the basis of which one can more or le
uniquely characterize the theories. Thus, most of previo
attempts had to rely upon guesswork, and one can only ju
tify the theories by checking the agreement of amplitude
with known results obtained from other methods, such as t
matrix models. In this situation, the observation@6# that the
PSFT for c50 can be interpreted as the collective field
theory of matrix models formulated in stochastic quantiza
tion seems very useful and suggestive. In connection w
this, we should recall an attractive idea@7# of relating the
renormalization group formulation of string field equation
to stochastic quantization.

Another crucial question of PSFT’s for further developin
the theory is whether or not this method of slicing is mean
ingful for constructing string field theories forc.1 and criti-
cal strings. The simplicity of proposed PSFT’s for the cas
c,1 is of course due to the simplicity of the target space
For example, in the case where the target space is the Is
model, one can deform the slicings such that the spin co
figuration on each string field is either all spin up or all spi
down @8#. If one goes toc.1, the slicing of this type would,
however, be too singular to be tractable and one would ha
to introduce string fields without making any restrictions o
possible matter configurations.

From this view point, it seems important to treat even th
casesc,1 without such restrictions and to study the struc
ture of resulting PSFT, since we naturally expect that such
formulation should exhibit certain universal structure of th
general PSFT which is common to PSFT for general critic
strings. Since there is no known symmetry principle on th
basis of which we can derive the theories, it is natural
directly derive such a formulation starting from the matri
models. That is what we shall present in this paper. Our ho
is to get some insight into the nature of the PSFT’s by d
riving the formalism from the matrix models as explicitly as
possible. We will follow the suggestion of Ref.@6#, using a
4448 © 1996 The American Physical Society
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53 4449STOCHASTIC HAMILTONIANS FOR NONCRITICAL STRING . . .
slightly different approach, and construct the PSFT Hamilt
nians directly by taking the double-scaling limit of the matri
model Hamiltonians.1

In the next section, we will first review our method o
deriving the stochastic Hamiltonian from the matrix model
We illustrate the method by using a simple quantum
mechanical model with two degrees of freedom and point o
some crucial assumptions required for proper-time stri
field theories. In Sec. III, we treat the case of the one-mat
model and derive the Hamiltonians for the cases of
k52(c50) critical point and, as a simplest example o
higher critical models, ak53 critical point. In Sec. IV, we
discuss the Virasoro algebra structure associated with
Hamiltonians. Using the example withk53, we will clarify
how the closed Virasoro algebra is obtained for higher cri
cal cases. In Sec. V, we proceed to discuss the two-ma
model. Technically, this case is much more complicated th
the case of the one-matrix model and requires some n
ingredients which have not shown up in the case of the on
matrix model. We will exhibit some interesting properties o
the structure of the stochastic Hamiltonians, which may i
deed be regarded as an example of the universal structur
the general PSFT’s. In Sec. VI, we will discuss the closu
property of the infinite algebras associated with our Ham
tonians. Then, in Sec. VII, theW3 algebra of the two-matrix
model will be derived starting from the infinite algebra
These two sections provide consistency checks for the res
of Sec. V, by deriving the expected properties of the tw
matrix model from the present formalism. In the final se
tion, we will conclude the paper by discussing possible im
plications of our work and remaining problems. Througho
this paper, we had to perform a number of tedious compu
tions for which we could not find any appropriate reference
Most of such details will be described in the Appendices.

II. HAMILTONIAN OF STOCHASTIC QUANTIZATION

In this section, we will briefly introduce our method fo
deriving the Hamiltonian of PSFT. For clarity, we take
simple example of zero-dimensional field theory with tw
degrees of freedomx,y with actionS(x,y):

Z5E dxdye2S~x,y!. ~1!

The idea of stochastic quantization@10# can be summa-
rized by introducing the Hamiltonian

H52
]

]x S ]

]x
1

]S

]xD2
]

]y S ]

]y
1

]S

]yD ~2!

and the Fokker-Planck equation

]

]t
C~x,y,t!52HC~x,y,t!. ~3!

1For previous works which discuss the possibility of the PSF
with general matter configurations in the continuum formulatio
see@5,9#.
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As is well known, the Fokker-Planck equation describes t
statistical evolution of the probability distribution function
C(x,y,t) for the system described by the stochastic equ
tions of motion

dx

dt
52

]S

]x
1h1 , ~4!

dy

dt
52

]S

]y
1h2 , ~5!

whereh1 ,h2 are Gaussian random noises. In the limit
t→`, the solution of the Fokker-Planck equation reduces
the ground state

C→e2S, ~6!

satisfyingHC50 under the assumption thateS/2C rapidly
decreases at infinity, corresponding to the positivity of t
Hermitian Laplace operator

eS/2He2S/25D1
†D11D2

†D2 , ~7!

with

D15e2S/2
]

]x
eS/2,

D25e2S/2
]

]y
eS/2.

The Green function of an arbitrary observableO can be
expressed as

^O &5 lim
t→`

E dxdyO ~x,y!C~x,y,t!. ~8!

When ~6! is assumed to be the unique ground state of t
HamiltonianH, we are entitled to suppose that the enti
Schwinger-Dyson equation is replaced by a single groun
state condition given as

lim
t→`

E dxdyO ~x,y!HC~x,y,t!50, ~9!

which is, after partial integrations, equivalent to

E dxdyF ]

]x
e2S

]

]x
1

]

]y
e2S

]

]yGO50. ~10!

Using the generating functional withO5eJ1x1J2y, this is
rewritten as

HS J, ]

]JDZ@J#50, ~11!

Z@J#5E dxdye2S~x,y!1J1x1J2y, ~12!

with

T
n,
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HS J, ]

]JD5J1T1S J, ]

]JD1J2T2S J, ]

]JD , ~13!

T152SxS ]

]J1
,

]

]J2
D1J1 , ~14!

T252SyS ]

]J1
,

]

]J2
D1J2 . ~15!

From the assumption of the uniqueness of the solution
the ground-state condition~11! ~that we call the Hamilton
constraint!, we can impose

T1Z@J#5T2Z@J#50, ~16!

which is nothing but the general form of the Schwinge
Dyson equation for our system:

T1Z@J#5E dxdy
]

]x
e2S~x,y!1J1x1J2y, ~17!

T2Z@J#5E dxdy
]

]y
e2S~x,y!1J1x1J2y. ~18!

Note that the integrability condition is automatically satis
fied:

@T1 ,T2#5SxyS J, ]

]JD2SyxS J, ]

]JD50. ~19!

In general, by introducing more general source term
( iJi f i(x,y), the stochastic Hamiltonian takes the followin
form with a general set of operatorsTi :

H5(
i
JiTi . ~20!

Then, the assumption of uniqueness of the ground state
plies that the partition function satisfies

TiZ@J#50, ~21!

where

TiZ@J#5E dxdyS ]

]x

] f i
]x

1
]

]y

] f i
]y DexpS 2S1(

i
Ji f i D ,

~22!

which can be, for an appropriate choice of the source term
expressed as functional differential operators in terms
Ji ’s and is equivalent to the Schwinger-Dyson equations
the system. This should be regarded as a fundamental
sumption of the method of stochastic quantization. We no
that in general the algebra of the Schwinger-Dyson operat
Ti is non-Abelian.

Here, we add an important remark which partly underlie
our later discussions. Namely, by introducing general sou
terms, together with this assumption, we can make the f
malism background independent. After making a shift of th
source functionJi→Ji1d i ,S , the Hamiltonian equation~20!,
for
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HZ[E dxdyF ]

]x
e2S

]

]x
1

]

]y
e2S

]

]yGexpSS1(
i
Ji f i D

50,

is then recast into the form

TS
0Z1H0Z50, ~23!

where

H0Z[E dxdyS ]2

]x2
1

]2

]y2DexpS (i Ji f i D 5S (
i
JiTi

0DZ.
Thus, under the assumption that the Hamilton equation
equivalent to the Schwinger-Dyson equationsTi

0Z50, the
first term of ~23! vanishes and the Hamilton equation is re
duced toH0Z50, a form which is formally independent of
the starting actionS. Here,Ti

0’s are the Schwinger-Dyson
operators with the shifted sourceJi1d i ,S or, in other words,
with no bare action.

Now, to gain a more concrete understanding on the abo
assumption, let us consider a simple example with the ba
action

S~x,y!5V~x!1V~y!1cxy, V~x!5
x2

2
1g

x3

3
.

The operatorsT1 ,T2 are given as

T152
]

]J1
2g

]2

]J1
2 2c

]

]J2
1J1 , ~24!

T252
]

]J2
2g

]2

]J2
2 2c

]

]J1
1J2 . ~25!

On the other hand, from the viewpoint of the Schwinge
Dyson equations, it is easy to check that the following set
equations gives a closed recursion equation for^xn&:

05E dxdy
]

]x
xne2S, ~26!

05E dxdy
]

]y
xne2S, ~27!

05E dxdy
]

]x
xnye2S, ~28!

which are obtained from theT1 ,T2 constraints by making a
power series expansion inJ1 ,J2 as

]n

]J1
n T1Z@J# U

J50
50, ~29!

]n

]J1
n T2Z@J# U

J50
50, ~30!

]n11

]J1
n]J2

T1Z@J# U
J50

50, ~31!
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respectively. The closed recursion equation for^xn& is ob-
tained by expressing the correlators of the for
^xny&,^xny2& using the last two equations in terms of^xn&
and by substituting the results into the first equation.2

However, it is not difficult to see that we cannot derive a
of these conditions~26!–~28! directly by taking finite order
derivatives with respect toJ1 ,J2 from the single Hamil-
tonian constraint:

~J1T11J2T2!Z@J#50. ~32!

For example, by taking a derivative]n11/]J1
n]J2 of ~32!, we

obtain the sum of~30! and~31!, but can never obtain~30! or
~31!, separately, by taking any derivatives of finite order.

Thus, the equivalence of the Hamiltonian constraint~32!
with the Schwinger-Dyson equations~16! is based on the
assumption of the uniqueness of the solution for~32! which
requires thate2S/2 rapidly decrease at infinityx,y→6`.
This uniqueness assumption amounts to setting certain c
ditions on the partition functionZ@J# which cannotbe ex-
pressed in anyfinite order of the expansion with respect t
the source functionsJi . If the appropriate global conditions
for the uniqueness are not satisfied, the stochastic Ha
tonian would fail3 to give a unique ground state in the lim
t→`, and the limit would, in general, depend on the choi
of the initial state.

In the case of simple quantum-mechanical models, it
relatively easy to identify the necessary global condition
However, in more complex systems such as the doub
scaling limit of matrix models, it is quite nontrivial to stat
such conditions, and, in fact, there has been no known re
replying to this question.

It is clear that the PSFT proposed in Ref.@4# is based on
the tacit assumptions of a similar nature as above. Unless
Hamiltonian is able to define a more or less unique grou
state under the same constraint as for the Schwinger-Dy
equations, the concept of the PSFT Hamiltonians would
come less significant, since in that case we have to reco
to the Schwinger-Dyson equations themselves for the defi
tion of the theory.

In the following sections, we will discuss the Hamilto
nians of PSFT for one- and two-matrix models using t
above methods, keeping those assumptions in mind. We h
mention that our method can be translated into the langu
of Ref. @4# by making a functional transformation

Z@J#→^Zu5^0uexpS ( c i

]

]Ji
DZ@J#uJ50 . ~33!

The source functions and their derivatives are replaced
the annihilation- and creation-string fields

2This procedure is essentially the same as the one employe
Ref. @11# to derive a closed subset of the Schwinger-Dyson eq
tions for the two-matrix model.
3This is obvious for the case of the usual Laplaciann5( i] i] i .

There is an infinite number of polynomial solutions forn f50. The
uniqueness can be guaranteed under the requirement, say, o
L2 normalizability condition.
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Ji↔c i ,
]

]Ji
↔c i

† , ~34!

respectively. Then, the correlators are given as

^Zuc1
†c2

†
•••cn

†u0&5S )
i51

n
]

]Ji
DZ@J#U

J50

. ~35!

Note that under the above transformation the normal order
ing J•••]/]J••• for J,]/]J is automatically transformed
into the onec†

•••c••• for c,c†. The Hamilton constraint
is thus ^Zu:H(c,c†):50, and the statêZu is obtained as
^Zu5 limt→`^0ue2t:H:.

III. PSFT’s FROM THE ONE-MATRIX MODEL

In this section, we derive the stochastic Hamiltonians
from the one-matrix model at thek52 and k53 critical
points which correspond to the matter central chargesc50
andc5222/5, respectively.

A. Stochastic Hamiltonian at c50

We first treat the case ofc50. Although this case has
already been discussed in Ref.@6# within the framework of
the collective field method, we present some details for the
purpose of explaining our method which is slightly different
from Ref. @6#.

The generating functional of thec50 one-matrix model
is defined by

Z@J#5
1

ZE dN
2
Me2N trV~M !eJ•F,

Z5E dN
2
Me2N trV~M !, ~36!

V~M !5
1

2
M22

g

3
M3, ~37!

J•F5E
L

dz

2p i
J~z!F~z!, ~38!

where

F~z!5
1

N
tr

1

z2M
~39!

is a loop operator and the contour ofz-integralL is chosen to
be parallel to the imaginary axis such that in the region of the
right of L there are no poles ofF(z). The source function
J(z) can take an arbitrary form as a function onL. The
variablez can be regarded as being conjugate to the length o
the loop in the sense of a Laplace transform.

We start with the ground-state condition of the stochastic
Hamiltonian,

052
1

ZE dN
2
M (

a51

N2
]

]Ma
S e2N trV~M !

]

]Ma
eJ•FD , ~40!

d in
ua-

f the
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whereM is expanded by the basis ofN3N Hermitian ma-
trices$ta%:

M5 (
a51

N2

Mat
a.

Using the identities

(
a

tr~AtaBta!5 trA trB,

(
a

tr~Ata! tr~Bta!5 trAB,

we obtain formulas such as

(
a

]

]Ma
F~z!

]

]Ma
F~z8!52

1

N
]z]z8Dz~z,z8!F~z!, ~41!
(
a

]2

]Ma
2 F~z!52N

]

]z
F~z!2, ~42!

1

N(
a

tr~Mnta! trS ta 1

~z2M !2D
52

d

dz S znF~z!2 (
k50

n21

zk
1

N
tr~Mn212k!D , ~43!

where the symbolDz is the so-called combinatorial deriva
tive, defined as

Dz~z,z8! f ~z![
f ~z!2 f ~z8!

z2z8
, ~44!

which appears when two loops merge into a new loop.
We can then reduce Eq.~40! to a functional differential

equation with respect to the sourceJ(z):
05HZ@J#, ~45!

H5E
L

dz

2p i
J~z!]zF S d

dJ~z!
2
1

2
~z2gz2! D 22 1

4
~z2gz2!22gzG1

1

N2E
L

dz

2p i
J~z!E

L

dz8

2p i
J~z8!]z]z8Dz~z,z8!

d

dJ~z!
.

~46!
o
In
k

n

The functional derivatived/dJ(z) is defined forz on the
contour and acts on the sourceJ(z8) as a delta function

dJ~z8!

dJ~z!
52p id~z2z8! ~47!

when bothz and z8 reside on the same contour.H is the
exact stochastic Hamiltonian for thec50 PSFT before tak-
ing the double-scaling limit. The first term represents t
splitting process of a loop, while the second represents
merging process of two loops. Note that the expression~46!
is normal ordered in the sense that the differential operat
d/dJ(z) always sit right ofJ(z).

Introducing a lattice spacinga, we now take the con-
tinuum limit ~the double-scaling limit! a→0 by defining the
scaling variables as

z5z* ~11ay!, g5g* ~12a2t !,
1

N
5a5/2gst,

where the critical points are

z*5~A311!331/4, g*5
31/4

6
.

The meanings of the variablesy, t, andgst are the Laplace
conjugate of loop length, the cosmological constant, and
string coupling constant, respectively. From the result of t
disk amplitude@12#, it can be seen that the contribution o
the poles ofF(z) accumulates to a cut of the interva
@2(A321)333/41O(a2), z*243321/4aAt1O(a2)].
he
the

ors

the
he
f
l

The region Rez>z* contains no singularities ofF(z). So,
in the scaling limit we can choose as the contourL the line
@z*2 i`,z*1 i`#, which is mapped to the imaginary axis in
the y plane.

In order to obtain the correct continuum limit, we have t
subtract nonuniversal parts from the correlation functions.
the present case, it is required only for the one-point dis
amplitude. Namely, the connectedK-point function

W~z1 , . . . ,zK!5^F~z1!•••F~zK!&c

is written as

W~z!5
1

2
~z2gz2!1a3/2w~y!1O~a2!,

W~z1 , . . . ,zK!5a3K/2w~y1 , . . . ,yK!1O~a~3K11!/2!

~K>2!,

where 1
2(z2gz2) is the nonuniversal part of the disk ampli-

tude, andw is the universal part giving the correct continuum
limit.

Thus we redefine the sourceJ̃(y) and the functional de-
rivative by

d

dJ~z!
5
1

2
~z2gz2!1a3/2

d

d J̃~y!
, ~48!

J~z!5z
*
21a25/2J̃~y!. ~49!

The shift ~48! corresponds to the rescaling of the partitio
function as
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Z@J#5expS E
L

dz

2p i
J~z!~z2gz2!/2DZ@ J̃~y!#.
Then,H becomes
t

H5a1/2z
*
21F E

2 i`

i` dy

2p i
J̃~y!]yS d2

d J̃~y!2
2C~y32 3

4 Ty!1O~a1!D
1g st

2 z
*
22E

2 i`

i` dy

2p i
J̃~y!E

2 i`

i` dy8

2p i
J̃~y8!]y]y8Dz~y,y8!

d

d J̃~z!
G ,

where

T5
16

3~11A3!2
t, C5

A3
12

~11A3!3.

Note that in the merging interaction~namely, the term of the formJJd/dJ) the shift of the functional derivative does no
contribute because

]z]z8Dz~z,z8!
1

2
~z2gz2!50. ~50!

After finite rescalings

J̃~y!→ J̃~y!C21/2,
d

d J̃~y!
→

d

d J̃~y!
C1/2,

gst→gstz*C
1/2,

we have the stochastic Hamiltonian in the continuum theory,

H5E
2 i`

i` dy

2p i
J̃~y!]y

d2

d J̃~y!2
2E

2 i`

i` dy

2p i
J̃~y!r̃~y!1g st

2 E
2 i`

i` dy

2p i
J̃~y!E

2 i`

i` dy8

2p i
J̃~y8!]y]y8Dz~y,y8!

d

d J̃~z!
, ~51!

r̃~y!53y22
3

4
T, ~52!
n-
where the overall factora1/2z
*
21C1/2 was absorbed by a re

definition of the fictitious time. This result, which has bee
already known from Ref.@6#, essentially coincides with the
form of thec50 noncritical string field theory4 proposed by
Ishibashi and Kawai@4#, if one uses the Laplace-transforme
string fields instead of their loop-length representation.

B. PSFT for a higher critical one-matrix model

We next treat a case of a higher critical poin5

@k53(c5222/5)#. This problem is interesting since a naiv
extension of thec50 Hamiltonian leads to an apparent con
tradiction as discussed in Ref.@15#.

Thek53 critical theory is realized by the potential of th
fourth-degree polynomial

4For a derivation of thec50 Hamiltonian directly from dynami-
cal triangulation, see Ref.@13#.
5Extension of the formalism of Ref.@3# to higher critical cases has

been given in@14#.
-
n

d

t
e
-

e

V~M !5
b

N S g22 M21
g3
3
M31

1

20
M4D , ~53!

whereg3 is a real solution of the cubic equation

25g3
3230g313250

or, explicitly,

g352S 225D
1/3

@~813A6!1/31~823A6!1/3# ~54!

and

g25
5g3

222

3
. ~55!

Note that we do not use the well-known even critical pote
tial ~of sixth order! at the k53 critical point, in order to
avoid a complication caused by theZ2 symmetry.

6
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Now, let us derive the Hamiltonian for thek53 critical
case. Considering the generating functional~36! with the po-
tential ~53!, we have the Hamiltonian before taking the sca
ing limit:

H5E
L

dz

2p i
J~z!]zF S d

dJ~z!
2
1

2
V8~z! D 22 1

4
V8~z!2

1
b

N S g3z1
1

5
z2D1

b

N

1

5
zr

dz8

2p i
z8

d

dJ~z8!G
1

1

N2E
L

dz

2p i
J~z!E

L

dz8

2p i
J~z8!]z]z8Dz~z,z8!

d

dJ~z!
,

~56!

wherer is the integral over the contour encircling the pole
of F(z). Note that

r
dz8

2p i
z8

d

dJ~z8!

corresponds to the insertion of a microscopic loop rep
sented by the operator (1/N) trM . In thec50 case, no such
term appears if one uses the third order potential of~37!,
because of the formula~43!.

Next, we need to identify the nonuniversal parts of loo
operators in the scaling limita→0 defined by

N

b
512a3t, ~57!

z5z* ~11ay!, z*5
25g312

3
. ~58!

From the results of Appendix A, we have

^F~z!&05
1

2
V8~z!1a5/2w~y!1O~a7/2!, ~59!
l-

s

re-

p

K 1N trM L
0

52
32125g3

15
2a3

4

5
t

1a4
3

4
t4/31O~a5!, ~60!

where, in the disk amplitude corresponding to a macrosco
loop, the first term1

2V8(z) is the nonuniversal part, while th
second termw(y) denotes the universal one:

w~y!52
1

5
z
*
5/2S y22 1

2
T1/3y1

3

8
T2/3DAy1T1/3, ~61!

with T5(2z
*
21)3t. For the microscopic disk amplitude~60!,

the first two terms represent the nonuniversal part, and
third term is universal.

Using the above results, we see that the sourceJ̃(y) and
the microscopic loop operatorO 0 in the continuum theory
should be defined by

d

dJ~z!
5
1

2
V8~z!1a5/2

d

d J̃~y!
, J~z!5a27/2z

*
21J̃~y!,

r
dz8

2p i
z8

d

dJ~z8!
52

32125g3
15

2a3
4

5
t1a4O 0 . ~62!

The string coupling constant is introduced as

1

N
5a7/2gst. ~63!

Substituting ~57!, ~58!, and these rescaled expressio
into the lattice Hamiltonian~56!, we obtain
on
H5a3/2z
*
21E

2 i`

i` dy

2p i
J̃~y!]yF d2

d J̃~y!2
2

1

25
z
*
5 S y51 5

8
Ty2D 1

1

5
z* yO 0G

1a3/2z
*
23gst

2E
2 i`

i` dy

2p i
J̃~y!E

2 i`

i` dy8

2p i
J̃~y8!]y]y8Dz~y,y8!

d

d J̃~z!
1O~a2!, ~64!

where as in thec50 case we chose the line@z*2 i`,z*1 i`# as the contourL. Note that in the merging term the shift of the
derivatived/dJ produces a quadratic term with respect toJ̃, but it does not contribute to the leading term ofH asa→0,
because

1

NEL
dz

2p i
J~z!E

L

dz8

2p i
J~z8!]z]z8Dz~z,z8!

1

2
V8~z!5a2gst

2E
2 i`

i` dy

2p i
J̃~y!E

2 i`

i` dy8

2p i
J̃~y8!

1

10
. ~65!

After making the rescalings again,

6We do not know any previous work discussing thek53 critical point using the quartic potential. For a brief explanation of the derivati
of the quartic critical potential, see Appendix A.
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J̃~y!→S 15 z
*
5/2D 21

J̃~y!,
d

d J̃~y!
→

1

5
z
*
5/2 d

d J̃~y!
, O 0→2

1

5
z
*
4
O 0 , gst→

1

5
z
*
7/2gst, ~66!

we finally obtain the continuum Hamiltonian

H5E
2 i`

i` dy

2p i
J̃~y!]y

d2

d J̃~y!2
2E

2 i`

i` dy

2p i
J̃~y!r̃~y!1gst

2E
2 i`

i` dy

2p i
J̃~y!E

2 i`

i` dy8

2p i
J̃~y8!]y]y8Dz~y,y8!

d

d J̃~z!
, ~67!

r̃~y!55y41
5

4
Ty1O 0 , ~68!
-

f
il-

he

l-

he

-

where the overall factora3/215z*
3/2 was absorbed into the fic-

titious time.
We emphasize that in this Hamiltonian, the tadpole ter

2E
2 i`

i` dy

2p i
J̃~y!r̃~y!

is not a purec number, but contains they-independent op-
eratorO 0 . This is in contrast to thec50 case where the
tadpole term consists only of thec-number function. Actu-
ally, the ‘‘operator’’ part of the tadpole is a misnomer. W
should rather call it a kinetic term. The Hamiltonian descri
tion of the higher critical point requires a kinetic term for a
infinitesimally small loop, in addition to the genuine tadpo
corresponding to thec-number part ofr̃.

In Appendix B, we will determine the operatorO 0 using
the Schwinger-Dyson equations. And in the next section,
ing this result, we confirm that it is just necessary for ens
ing the closure of the algebra of the Schwinger-Dyson ope
tors appearing in the Hamiltonian. As is discussed in R
@15# in trying the extension of thec50 Hamiltonian to the
higher critical case, the integrability condition would not b
satisfied if one had naively replaced ther̃(y) of the c50
case withc-number polynomials of higher degree. The a
thors in Ref.@15# proposed a possible way out, which is
however, different from ours.

Before concluding this section, we derive the disk amp
tude from the PSFT Hamiltonian~67! and compare with the
matrix model result as a consistency check of our result.
the sphere approximation, the condition

d

d J̃~y!
HZ@J# U

J50
50 ~69!

is reduced to the equation for the one-point functionw(y):

]y@w~y!22~y51 5
8 Ty

21y^O 0&0!#50. ~70!

By demanding that the cut ofw(y) reside only on the real
axis, as is required from the original definition of the loo
operator~39!, bothw(y) and the expectation value ofO 0 are
uniquely determined as

w~y!5S y22 1

2
T1/3y1

3

8
T2/3DAy1T1/3, ~71!
m

e
p-
n
le

us-
ur-
ra-
ef.

e

u-
,

li-

In

p

^O 0&052
15

64
T4/3, ~72!

which coincide with the results~61! and ~60! obtained di-
rectly without using the Hamiltonian, after taking into ac
count the rescalings~66!.

IV. DERIVATION OF THE VIRASORO CONSTRAINTS

In this section, we examine the integrability condition o
the Schwinger-Dyson operators associated with the Ham
tonian equation:

HZ@J#50 ~73!

for k52,3 cases. As a warmup exercise, let us begin from t
simplest case ofc50.

A. Virasoro algebra at k52

Recalling the discussions of Sec. II, we rewrite the Hami
tonianH in the form

H52E
2 i`

i` dy

2p i
J̃~y!]yT~y!, ~74!

]yT~y!5]yT0~y!1 r̃~y!, ~75!

T0~y!52
d2

d J̃~y!2

2gst
2E

2 i`

i` dy8

2p i
J̃~y8!]y8Dz~y,y8!

d

d J̃~z!
. ~76!

Thus the Schwinger-Dyson equation associated with t
c50 Hamiltonian is

]yT~y!Z@J#50. ~77!

After a straightforward calculation using the functional de
rivative

d J̃~y!

d J̃~y8!
52p id~y2y8!, ~78!

we find a closed algebra forT0 operators:



e
t
e

e

s,
rs
al

d

ed
l
lly
ur
-

-

4456 53FUMIHIKO SUGINO AND TAMIAKI YONEYA
@]y1T0~y1!,]y2T0~y2!#

52gst
2]y1]y2~]y12]y2!

1

y12y2
@T0~y1!2T0~y2!#. ~79!

The algebra of]yT(y) is obtained by substituting

T0~y!5T~y!2Ey

dy8r̃~y8!

into ~79!. Then, using the explicit expression ofr̃, Eq. ~52!,
we find that the effect ofr̃ vanishes:

]y1]y2~]y12]y2!Dz~y1 ,y2!Ez

dyr̃~y!50. ~80!

Thus,]yT(y) forms the same closed algebra as]yT0(y):

@]y1T~y1!,]y2T~y2!#

52gst
2]y1]y2~]y12]y2!

1

y12y2
@T~y1!2T~y2!#, ~81!

This agrees with the Laplace-transformed version of the
sult in Ref.@8#.

B. Schwinger-Dyson operators atk53

Thek53 case is less trivial. The only difference from th
k52(c50) case lies inr̃, Eq. ~68!. Namely, thec-number
part of the tadpole term 5y4 in r̃ gives a nonvanishing effect

]y1]y2~]y12]y2!Dz~y1 ,y2!Ez

dyr̃~y!52~y12y2!,

~82!

which is the reason why the naive extension violates t
integrability condition. However,r̃ is not a purec number
and contains the operator partO 0 . Then, on making the sub-
stitution as in thec50 case, the algebra of]yT0(y) becomes

@]y1T~y1!,]y2T~y2!#

52gst
2]y1]y2~]y12]y2!

1

y12y2
@T~y1!2T~y2!#

12gst
2~y12y2!1]y1@T0~y1!,O 0#2]y2@T0~y2!,O 0#.

~83!

SinceO 0 inserts a microscopic loop, it can be expressed
some local operator, obtained as some coefficient of largey
expansion of the loop operatord/d J̃(y). This is done in
Appendix B. The final results are

O 052E
C

dy

2p i
y1/2

d

d J̃~y!
~84!

52 lim
«→10

E
2 i`

i` dy

2p i
e«yy1/2

d

d J̃~y!
,

~85!
re-

e

he

by

where the contourC surrounds the negative real axis, and th
contour@2 i`,i`# is understood to avoid the singularity a
the origin to the right. Also, the integral is defined by th
analytic continuation using theb function and the limit
«→10 must be takenafter the integration.

Now in calculating the commutator@T0(y),O 0#, we can
use~85! rather than~84!, because the functional derivative

d J̃~y!

d J̃~y8!
52p id~y2y8!

is defined fory,y8 on the imaginary axis. As a result of the
straightforward calculation of performing partial integration
once, the commutator@T0(y),O 0# becomes

@T0~y!,O 0#

52gst
2E

C

dy8

2p i
y821/2

1

y82y S d

d J̃~y8!
2

d

d J̃~y!
D . ~86!

Substituting~B19!, and using the formulas in Appendix B,
we see that only the term

2gst
2y5/2E

C

dy8

2p i
y821/2

1

y2y8

survives after some cancellations. Thus, we obtain

@T0~y!,O 0#52gst
2y2, ~87!

which makes the algebra~83! for T(y) closed:

@]y1T~y1!,]y2T~y2!#

52gst
2]y1]y2~]y12]y2!

1

y12y2
@T~y1!2T~y2!#. ~88!

We note that this algebra is of course identical with th
usual Virasoro algebra, Eq.~B17!, after taking into account
the contribution from the transformation~B18!. All that we
have done is merely a check of self-consistency. It clarifie
however, how the closure of the Schwinger-Dyson operato
associated with the Hamiltonian is satisfied for higher critic
points, owing to the presence of the operator part ofr̃(y).

V. c51/2 PSFT FROM THE TWO-MATRIX MODEL

We now apply our method to the two-matrix model an
derive thec51/2 PSFT without making any restrictions on
the spin configurations of the string fields. As we emphasiz
in the Introduction, such a treatment will hopefully revea
certain universal properties of the PSFT which are basica
independent of the structure of target spaces. This is o
motivation for performing this analysis in spite of its techni
cal difficulties.

A. Stochastic Hamiltonian of the two-matrix model

The generating functional of the two-matrix model is de
fined by
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Z@J#5
1

ZE dN
2
AdN

2
Be2SeJ•F, Z5E dN

2
AdN

2
Be2S,

~89!

S5N tr@V~A!1V~B!2cAB#, V~A!5
1

2
A22

g

3
A3,

J•F5E
L

dz

2p i
JA~z!FA~z!1E

L

ds

2p i
JB~s!FB~s!

1 (
n51

` E
L
)
i51

n
dz i
2p i

ds i

2p i
Jn~z1 ,s1 , . . . ,zn ,sn!

3Fn~z1 ,s1 , . . . ,zn ,sn!, ~90!

where the components of the string fieldF are defined in
terms of the matrix variables as

FA~z!5
1

N
tr

1

z2A
, FB~s!5

1

N
tr

1

s2B
,

Fn~z1 ,s1 , . . . ,zn ,sn!

5
1

N
trS 1

z12A

1

s12B
. . .

1

zn2A

1

sn2BD
~n51,2, . . .!.
The componentFA (FB) represents a loop on which only a
single spinA (B) is put andFn represents a loop on which
two domains ofA andB spins alternatively appearn times.
The variablesz i ,s i( i51,2, . . . ,n) can be regarded as the
conjugate variables corresponding to lengths on the loop
spin statesA,B, respectively.

As before, the stochastic Hamiltonian for this system
derived from the identity

052E dN
2
AdN

2
B(

a51

N2 F ]

]Aa
e2S

]

]Aa
1

]

]Ba
e2S

]

]Ba
GeJ•F.

~91!

By extending the formulas for the one-matrix model, we ca
arrange Eq.~91! in the form

05HZ@J#,

H52J•SK d

dJD2J•S d

dJ
~

d

dJD
2

1

N2 J•FJ•S `
d

dJD G2J•T. ~92!

Here, reflecting the cyclic symmetry of pairs (z i ,s i), the
derivatived/dJn is defined by
al
onents
dJm~z18 ,s18 , . . . ,zm8 ,sm8 !

dJn~z1 ,s1 , . . . ,zn ,sn!
5dm,n

1

n
~2p i !2n (

c: cyclic permutation
d~z12zc~1!8 !d~s12sc~1!8 !•••d~zn2zc~n!8 !d~sn2sc~n!8 !.

~93!

Let us explain the meaning of each term.
~i! The first term, the ‘‘kinetic term,’’J•(Kd/dJ), coming from a part of the product of the derivatives of the classic

action and the source term, symbolizes the contributions which preserve the number of string fields. The first few comp
of the kinetic operatorK are

SK d

dJD
A

~z!5]W z~z2gz2!
d

dJA~z!
2c]zr

ds

2p i
s

d

dJ1~z,s!
, ~94!

SK d

dJD
B

~s!5]Ws~s2gs2!
d

dJB~s!
2c]sr

dz

2p i
z

d

dJ1~z,s!
,

SK d

dJD
1

~z1 ,s1!5@]W z1
~z12gz1

2!1]Ws1
~s12gs1

2!#
d

dJ1~z1 ,s1!

1cr
ds

2p i
s

d

dJ2~z1 ,s,z1 ,s1!
1cr

dz

2p i
z

d

dJ2~z1 ,s1 ,z,s1!
1gS d

dJA~z1!
1

d

dJB~s1!
D ,
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SK d

dJD
2

~z1 ,s1 ,z2 ,s2!5(
j51

2

$]W z j
~z j2gz j

2!1]Ws j
~s j2gs j

2!%
d

dJ2~z1 ,s1 ,z2 ,s2!

1cr
ds

2p i
sS d

dJ3~z1 ,s,z1 ,s1 ,z2 ,s2!
1

d

dJ3~z1 ,s1 ,z2 ,s,z2 ,s2!
D

1cr
dz

2p i
zS d

dJ3~z1 ,s1 ,z,s1 ,z2 ,s2!
1

d

dJ3~z1 ,s1 ,z2 ,s2 ,z,s2!
D

2gDs~s1 ,s2!S d

dJ1~z1 ,s!
1

d

dJ1~z2 ,s! D2gDz~z1 ,z2!S d

dJ1~z,s1!
1

d

dJ1~z,s2!
D ,

... ,
-
ol
where the arrow over] indicates that the derivative acts o
the whole functions that follow it.

The structure of the higher components can be infer
from these expressions. Basically, each component re
sents one of the following two processes. The first is t
propagation of string preserving a spin configuration on
loop, with the loop length being either kept fixed or d
creased by one lattice unit. The second is a process in wh
only a single spin is flipped and the loop length is preserv
For example, let us consider (Kd/dJ)1(z1 ,s1). The first and
last terms express the former process. Note that, as a sp
case when a domain consists of only one spin, the proc
can annihilate the domain. The last term represents this.
the other hand, the second and third terms express the l
process, with a single spin-flip preserving the loop length

In the case of (Kd/dJ)2 , it is noted that

2Ds~s1 ,s2!
d

dJ1~z1 ,s!
in ~Kd/dJ!2~z1 ,s1 ,z2 ,s2!

represents the following loop when it acts on the partiti
function:
n

red
pre-
he
a

e-
ich
ed.

ecial
ess
On
atter
.

on

2Ds~s1 ,s2!
d

dJ1~z1 ,s!
5
1

N
trS 1

z12A

1

s12B

1

s22BD .
Namely, the z2 domain has disappeared in
F2(z1 ,s1 ,z2 ,s2).

~ii ! The second term

J•S d

dJ
~

d

dJD ,
coming from the second derivative of the source term, rep
resents processes where a string splits into two. The symb

S d

dJ
~

d

dJD
I

represents the result of splitting of a string with the spin
configurationI . The first few components are
S d

dJ
~

d

dJD
A

~z!52]z

d2

dJA~z!2
,

S d

dJ
~

d

dJD
B

~s!52]s

d2

dJB~s!2
,

S d

dJ
~

d

dJD
1

~z1 ,s1!522S d

dJA~z1!
]z1

1
d

dJB~s1!
]s1D d

dJ1~z1 ,s1!
,

S d

dJ
~

d

dJD
2

~z1 ,s1 ,z2 ,s2!522(
j51

2 S d

dJA~z j !
]z j

1
d

dJB~s j !
]s j D d

dJ2~z1 ,s1 ,z2 ,s2!

12Dz~z1 ,z2!
d

dJ1~z,s1!
Dz~z1 ,z2!

d

dJ1~z,s2!

12Ds~s1 ,s2!
d

dJ1~z1 ,s!
Ds~s1 ,s2!

d

dJ1~z2 ,s!
,

... . ~95!
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We hope the structure of the higher terms is self-explanat
from these examples.

~iii ! The third term

1

N2 J•FJ•S `
d

dJD G ,
coming from the square of the first derivative of the sour
ory

ce

term, symbolizes processes in which two strings merge into
single string. The symbol

S `
d

dJD
IJ

expresses the result of the two strings with the spin config
rationsI ,J merging into a single string:
S `
d

dJD
A,A

~z;z8!52]z]z8Dz~z,z8!
d

dJA~z!
,

S `
d

dJD
B,B

~s;s8!52]s]s8Ds~s,s8!
d

dJB~s!
,

S `
d

dJD
A,B

~z;s!50,

S `
d

dJD
n,A

~z1 ,s1 , . . . ,zn ,sn ;z8!5S `
d

dJD
A,n

~z8;z1 ,s1 , . . . ,zn ,sn!

52]z8(
j51

n

]z j
Dz~z j ,z8!

d

dJn~z1 ,s1 , . . . ,z,s j , . . . ,zn ,sn!
,

S `
d

dJD
n,B

~z1 ,s1 , . . . ,zn ,sn ;s8!5S `
d

dJD
B,n

~s8;z1 ,s1 , . . . ,zn ,sn!

52]s8(
j51

n

]s j
Ds~s j ,s8!

d

dJn~z1 ,s1 , . . . ,z j ,s, . . . ,zn ,sn!
,

S `
d

dJD
n,1

~z1 ,s1 , . . . ,zn ,sn ;z18 ,s18!5S `
d

dJD
1,n

~z18 ,s18 ;z1 ,s1 , . . . ,zn ,sn!

5(
j51

n

Dz~z j ,z18!Dw~z j ,z18!
d

dJn11~z1 ,s1 , . . . ,z j21 ,s j21 ,z,s18 ,w,s j , . . . ,zn ,sn!

1(
j51

n

Ds~s j ,s18!Dt~s j ,s18!
d

dJn11~z1 ,s1 , . . . ,z j ,s,z18 ,t,z j11 ,s j11 , . . . ,zn ,sn!
,

. . . ~n51,2, . . .!. ~96!
ty
an
ll

be
of

ir
-

We again hope that the structure of the generic term is s
explanatory from these examples.

~iv! The last term~the tadpole term!, which together with
the kinetic term originates from the product of the deriv
tives of the classical action and the source term, shows
processes of the annihilation of a string into nothing:

J•T5E
L

dz

2p i
JA~z!g1E

L

ds

2p i
JB~s!g.
elf-

a-
the

We here would like to emphasize an important proper
which characterizes all of the above formulas and plays
essential role later in studying the scaling limit. Namely, a
the processes occurlocally with respect to the spin domains.
Because of locality, more than two domains can never
created or annihilated at the same time. As a consequence
this rule, only the strings consisting of one domain,FA and
FB , can be annihilated into nothing. Also, only a single pa
of domains can participate in the splitting or merging pro
cesses, and other domains are left intact.
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B. Hamiltonian in continuum theory

Let us now consider the continuum limit of the Hami
tonian ~92!. As in the one-matrix cases, the first task in ca
rying out this is to identify and to subtract the nonunivers
parts of the disk amplitudes. At this point, a new featu
arises. Namely, as we discuss in Appendix C, the nonuniv
sal part of a disk amplitude with a given spin configuratio
contains, in general, the universal parts of the disk amp
tudes with simpler spin configurations, in addition to th
nonuniversalc-number function which has already appear
in the one-matrix model.

By introducing the connectedk-point correlator in the
J50 background as

GI1 , . . . ,I k
~k! 5^F I1

. . .F I k
&, I 1 , . . . ,I k5A,B,1,2, . . . ,

the generating functional is written as

Z@J#5expFJ•G~1!1
1

2!
J•~J•G~2!!
l-
r-
al
re
er-
n
li-
e
ed

1
1

3!
J•@J•~J•G~3!!#1••• G . ~97!

Now, the investigation of disk amplitudes in Appendix C
shows that the universal partF̂I of the operatorF I is ob-
tained by a linear transformation of the form

F I5(
J
M IJF̂J1f I , ~98!

whereM IJ is a mixing matrix of the universal parts, which
is the new feature noted above, andf I is the nonuniversal
c-number function. The mixing matrixM IJ is upper trian-
gular, i.e.,M IJ50, for I,J and is invertible. The first few
components of~98! are
FA~z!5F̂A~z!1fA~z!,

FB~s!5F̂B~s!1fB~s!,

F1~z,s!5A10c@F̂A~z!1F̂B~s!#1F̂1~z,s!1f1~z,s!,

F2~z1 ,s1 ,z2 ,s2!5210c@Dz~z1 ,z2!F̂A~z!1Ds~s1 ,s2!F̂B~s!#2A10c$Dz~z1 ,z2!@F̂1~z,s1!1F̂1~z,s2!#

1Ds~s1 ,s2!@F̂1~z1 ,s!1F̂1~z2 ,s!#%1F̂2~z1 ,s1 ,z2 ,s2!1f2~z1 ,s1 ,z2 ,s2!,

..., ~99!
where

fA~z!52
c

3g
1
2

3
~z2gz2!,

fB~s!52
c

3g
1
2

3
~s2gs2!,

f1~z,s!5c@112s2A10c~z1s!#,

f2~z1 ,s1 ,z2 ,s2!510c2,..., ~100!

and c takes its critical value:c5(2112A7)/27 and
s521A7. Then the connected correlators are transform
as

GI
~1!5(

I
M IJĜJ

~1!1f I ,
ed

GI1 , . . . ,I k
~k! 5 (

J1 , . . . ,Jk
M I1J1

•••M I kJk
ĜJ1 , . . . ,Jk

~k! ~k>2!,

whereĜI1 , . . . ,I k
(k) stands for the universal part ofGI1 , . . . ,I k

(k) .

Thus, by introducing the transformed source

JI5(
K

ĴK~M21!KI , ~101!

the generating functionalẐ@ Ĵ# in the continuum theory is
obtained by the rescalingZ@J#5eJ•fẐ@ Ĵ#, and takes the
form

Ẑ@ Ĵ#5expF Ĵ•Ĝ~1!1
1

2!
Ĵ•~ Ĵ•Ĝ~2!!

1
1

3!
Ĵ•@ Ĵ•~ Ĵ•Ĝ~3!!#1••• G . ~102!

The Hamiltonian acting onẐ@ Ĵ# now becomes



53 4461STOCHASTIC HAMILTONIANS FOR NONCRITICAL STRING . . .
05HẐ@ Ĵ#, ~103!

H52~ ĴM21!•FKSM d

d Ĵ
1f D G2~ ĴM21!•T

2~ ĴM21!•F SM d

d Ĵ
1f D ~SM d

d Ĵ
1f D G
2
1

N2 ~ ĴM21!•H ~ ĴM21!•F`SM d

d Ĵ
1f D G J . ~104!

Next, we arrange Eq.~104! into a simpler form in which
the mixing matrix disappears. We claim the validity of the
equations
2~ ĴM21!•FKSM d

d Ĵ
1f D G2~ ĴM21!•T2~ ĴM21!•F SM d

d Ĵ
1f D ~SM d

d Ĵ
1f D G

52 Ĵ•S F d

d Ĵ
D 2~ ĴM21!•F SM d

d Ĵ
D ~SM d

d Ĵ
D G , ~105!

~ ĴM21!•F SM d

d Ĵ
D ~SM d

d Ĵ
D G5 Ĵ•S d

d Ĵ
~

d

d Ĵ
D , ~106!

~ ĴM21!•F ~ ĴM21!•S `M
d

d Ĵ
D G5 Ĵ•F Ĵ•S `

d

d Ĵ
D G , ~107!

~ ĴM21!•@~ ĴM21!•~`f!#50, ~108!
s

o-

ot

-
-
,
-
s
e

whereF is a part of the kinetic operatorK, representing only
the spin-flip process. These equations make it possible
rewrite the Hamiltonian as

H52 Ĵ•S F d

d Ĵ
D 2 Ĵ•S d

d Ĵ
~

d

d Ĵ
D

2
1

N2 Ĵ•F Ĵ•S `
d

d Ĵ
D G . ~109!

1. Justification of Eqs. (105)–(108)

We now present the arguments for establishing the abo
equations. First, we consider the spin-flip process in the co
tinuum theory. For the universal parts of the disk amplitude
the loop containing a microscopic domain which consis
only of a single flipped spin is obtained from the loop con
taining only macroscopic domains by the rule

2]zŴ1~z!52s21r̂
ds

2p i
s]zŴ

~2!~z,s!, ~110!

Ŵ1~z1 ;z2 ,s1!5s21r̂
ds

2p i
sŴ~4!~z1 ,s,z2 ,s1!,

~111!
•••,

where the domains has been shrunk into the microscopi
domain by integration. Here we borrow the notations of Re
@11# for the disk amplitudes. For their defnitions, see Appe
dix C. The integral symbol
to

ve
n-
s,
ts
-

c
f.
n-

r̂
ds

2p i
s

is used in the sense of the integral of the variablex in the
continuum theory@s5P* (11ax)#:

r̂
ds

2p i
s5P

*
2 aE

C

dx

2p i
, ~112!

where the contourC encircles around the negative real axi
and the singularities of the left half plane.P* stands for the
critical valueP*5s(10c)21/2, anda is the lattice spacing.
Note that there is a sort of finiterenormalizationrepresented
by the factors21. The derivation of the above formulas is
given in Appendix D.

These relations reflect the property that the spin-flip pr
cess occurs locally with respect to domains; in~110!, ~111!
only thes domain is concerned and the other domains do n
change at all. This implies that a relation such as~110! and
~111! should hold for any amplitudes with an arbitrary num
ber of handles with generic spin configurations. The com
plete general proof of this important property would be
however, technically formidable, since it would require ex
plicit identification of the universal part for general loop
with arbitrary spin configurations. We can now rewrite th
spin-flip process in

FKSM d

d Ĵ
1f D G

A

~z!

as
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2]zr
ds

2p i
sF SM d

d ĴD
1

~z,s!1f1~z,s!G
52s21r̂

ds

2p i
s]z

d

d Ĵ1~z,s!

2]zF S 2

3g
2

1

3c
~z2gz2!D d

d ĴA~z!
G

2
1

c
]zFgz1

c

9g
~z2gz2!1

2

9
~z2gz2!2G , ~113!

where the first term is the universal part, and the others
the nonuniversal parts which are obtained by replaci
Ŵ(z) with d/d ĴA(z) in ~C19!.

Similarly, we can derive the expressions for

2]sr
dz

2p i
zF SM d

d ĴD
1

~z,s!1f1~z,s!G
are
ng

in

FKSM d

d Ĵ
1f D G

B

~s!

and

r
ds

2p i
sF SM d

d ĴD
2

~z1 ,s,z1 ,s1!1f2G ,
r
dz

2p i
zF SM d

d ĴD
2

~z1 ,s1 ,z,s1!1f2G
in

FKSM d

d Ĵ
1f D G

1

~z1 ,s1!.

Using these results, we arrive at Eq.~105! with
Ĵ•S F d

d Ĵ
D 5E

L

dz

2p i
ĴA~z!cs21~2]z!r̂

ds

2p i
s

d

d Ĵ1~z,s!

1E
L

ds

2p i
ĴB~s!cs21~2]s!r̂

dz

2p i
z

d

d Ĵ1~z,s!

1E
L

dz1
2p i

ds1

2p i
Ĵ1~z1 ,s1!cs

21F r̂
ds

2p i
s

d

d Ĵ2~z1 ,s,z1 ,s1!
1 r̂

dz

2p i
z

d

d Ĵ2~z1 ,s1 ,z,s1!
G1•••, ~114!
e
-
ss,
the
a
of
.
es,
where the ellipsis stands for the terms containing the high
componentsĴn (n>2).

We here note that the tadpole term is canceled with
contribution of the same form from the kinetic term. This ca
be regarded as a consequence of our definition of the d
universal part of the single-spin-flip amplitudeŴ1(z):
Roughly, the kinetic term contains a product of the form

JA
d

dJA
one-spin-flip1~A→B!,

and hence there is always the freedom of absorbing the t
pole terms, which are polynomials times the sourc
JA(JB), by appropriately defining the universal parts of th
spin-flip disk amplitudes and making the shifts for

d

dJA
one-spin-flipS d

dJB
one-spin -flipD .

In the case of the one-matrix model, the spin-flip process
absent so that the tadpole term is directly responsible
determining the disk amplitude.
er

a
n
isk

ad-
es
e

is
for

Although we do not elaborate further on determining th
explicit continuum limits for higher components, it is natu
ral, because of the local nature of the spin-flipping proce
to suppose that the above expression already indicates
generic structure of the kinetic term, namely, the flipping of
single spin with general spin configurations, the absence
the tadpole term, and the kinetic term without spin flipping

Second, we consider the splitting and merging process
Eqs.~106! and~107!. In Appendix E, it is explicitly checked
that

F SM d

d Ĵ
D ~SM d

d Ĵ
D G

I

5FMS d

d Ĵ
~

d

d Ĵ
D G

I

~115!

for I5A,B,1,2, and that

F`SM d

d Ĵ
D G

I ,J

5(
K,L

M IKMJLS `
d

d Ĵ
D
K,L

~116!

for (I ,J)5(A,A),(B,B),(A,1),(B,1),(A,2),(B,2),(1,1).
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As seen from Eqs.~98! and~99!,M mixes the operators
with configurations which are smaller parts of the configur
tion I , when it acts on the loop operatord/d ĴI . Equation
~115! @Eq. ~116!# means that the mixing is commutative with
the splitting @merging# processes of loops. This result ca
again be regarded as a consequence of locality of the sp
ting and merging processes. It is then reasonable to ass
that the splitting~merging! commutes with mixing matrix for
arbitrary spin configurations. This assertion is nothing b
the claims~106!, ~107!. Proving this for a completely genera
case is prohibitively difficult in our present technical ma
chinery for treating the double-scaling limit. We have to b
satisfied with the explicit confirmation of this property fo
several nontrivial cases as given in Appendix E.

Third, in regard to Eq.~108!, by direct calculation we can
check that

~`f! I ,J50 ~117!

for (I ,J)5(A,A),(B,B),(A,1),(B,1),(A,2),(B,2),(1,1). In
this case, we can give a general proof of this equation
follows. First we show thatfk must be a polynomial for
generalk. Suppose that this is valid up to somek21. Then,
from Staudacher’s recursion equations, as described
~C21!, which relateW(2k) with amplitudes with lower values
of k, we can see that the part of the numerator forW(2k)

consisting only off is a polynomial, because in general th
combinatorial derivative of a polynomial is also a polyno
mial. The denominator, on the other hand, behaves in
scaling limit as

P12gP1
22cQ12W~P1!52a

c1/2s

A10
~y11x1!1O~a4/3!.

Thus, by using the scaled variablesPi5z* (11ayi),
Qi5z* (11axi), the form offk can be written as

fk5
polynomial of~y1 ,x1 , . . . ,yk ,xk!

y11x1
.

However, from the cyclic symmetry of (Pi ,Qi) in
W(2k)(P1 ,Q1 , . . . ,Pk ,Qk), the denominatory11x1 must
be canceled with the numerator, and thusfk should have the
form

fk5 polynomial of~y1 ,x1 , . . . ,yk ,xk!,

where the polynomial has the same symmetry asW(2k).
Thus, by induction, thefk is a polynomial for generalk.

Now from the scaling of the universal partŴ(2k),

Ŵ~2k!~P1 ,Q1 , . . . ,Pk ,Qk!

5a
7
3 2

2
3 kw~2k!~y1 ,x1 , . . . ,yk ,xk!,

which is presented in Appendix C, we expect that the r
evant part offk takes the form

fk5H const, k53,

0, k>4.
~118!
a-

n
lit-
ume

ut
l
-
e
r

as

by

e
-
the

el-

Since every component of̀f contains the derivative or the
combinatorial derivative, Eq.~118! leads to

~`f! I ,J50 for the general components, ~119!

as is claimed.

2. Continuum limit

After these preparations, we are now ready to take t
continuum limit of the stochastic Hamiltonian~109!. From
the scaling behaviors of disk amplitudes presented in Appe
dix C, the scaling of various variables are fixed as

g5g* S 12a2
s2

20
TD , z5P* ~11ay!,

s5P* ~11ax!,
1

N
5a7/3gst,

d

d ĴA~z!
5a4/3P

*
21 d

d J̃A~y!
, ĴA~z!5a27/3J̃A~y!,

d

d ĴB~s!
5a4/3P

*
21 d

d J̃B~x!
, ĴB~s!5a27/3J̃B~x!,

d

d Ĵ1~z,s!
5a5/3P

*
22 d

d J̃1~y,x!
, Ĵ1~z,s!5a211/3J̃1~y,x!,

d

d Ĵ2~z1 ,s1 ,z2 ,s2!
5a1P

*
24 d

d J̃2~y1 ,x1 ,y2 ,x2!
,

Ĵ2~z1 ,s1 ,z2 ,s2!5a25J̃2~y1 ,x1 ,y2 ,x2!,

•••, ~120!

where the critical values are@16,17#

g*5A10c3, P*5s~10c!21/2.

Indeed in the limita→0 all the universal contributions in the
Hamiltonian start withO(a1/3), as it should be for the correct
continuum limit. After finite rescaling as

J̃I→P
*
22J̃I ,

d

d J̃I
→P

*
2 d

d J̃I
, gst

2→P
*
4 gst

2 ,

and absorbing the overall factora1/3 into the fictitious time,
we obtain the continuum Hamiltonian in the form

H52 J̃•S F d

d J̃D 2 J̃•S d

d J̃
~

d

d J̃D
2gst

2 J̃•F J̃•S `
d

d J̃D G , ~121!

where the inner product is defined by
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f •g5E
2 i`

i` dy

2p i
f A~y!gA~y!1E

2 i`

i` dx

2p i
f B~x!gB~x!1 (

n51

` E
2 i`

i`

)
i51

n
dyi
2p i

dxi
2p i

f n~y1 ,x1 , . . . ,yn ,xn!gn~y1 ,x1 , . . . ,yn ,xn!.

~122!

As already emphasized above, only the spin-flip process survives in the kinetic term:

S F d

d J̃D
A

~y!5cs21~2]y!E
C

dx

2p i

d

d J̃1~y,x!
,

S F d

d J̃D
B

~x!5cs21~2]x!E
C

dy

2p i

d

d J̃1~y,x!
,

S F d

d J̃D
1

~y1 ,x1!5cs21F E
C

dx

2p i

d

d J̃2~y1 ,x,y1 ,x1!
1E

C

dy

2p i

d

d J̃2~y1 ,x1 ,y,x1!
G ,

S F d

d J̃D
2

~y1 ,x1 ,y2 ,x2!5cs21F E
C

dx

2p i S d

d J̃3~y1 ,x,y1 ,x1 ,y2 ,x2!
1

d

d J̃3~y1 ,x1 ,y2 ,x,y2 ,x2!
D

1E
C

dy

2p i S d

d J̃3~y1 ,x1 ,y,x1 ,y2 ,x2!
1

d

d J̃3~y1 ,x1 ,y2 ,x2 ,y,x2!
D G ,

... . ~123!

The forms of the splitting

d

d J̃
~

d

d J̃

and the merging

`
d

d J̃

are the same as in the lattice theory, because of the commutativity of the mixing matrix with the processes: The firs
components of the splitting term are

S d

d J̃
~

d

d J̃D
A

~y!52]y
d2

d J̃A~y!2
,

S d

d J̃
~

d

d J̃D
B

~x!52]x
d2

d J̃B~x!2
,

S d

d J̃
~

d

d J̃D
1

~y,x!522S d

d J̃A~y!
]y1

d

d J̃B~x!
]xD d

d J̃1~y,x!
,

S d

d J̃
~

d

d J̃D
2

~y1 ,x1 ,y2 ,x2!522(
j51

2 S d

d J̃A~yj !
]yj1

d

d J̃B~xj !
]xj D d

d J̃2~y1 ,x1 ,y2 ,x2!

12SDy~y1 ,y2!
d

d J̃1~y,x1!
D SDy~y1 ,y2!

d

d J̃1~y,x2!
D

12SDx~x1 ,x2!
d

d J̃1~y1 ,x!
D SDx~x1 ,x2!

d

d J̃1~y2 ,x!
D ,

... . ~124!

Similarly, the merging processes are given as

S `
d

d J̃
D
A,A

~y;y8!52]y]y8Dz~y,y8!
d

d J̃A~z!
, ~125!
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S `
d

d J̃
D
B,B

~x;x8!52]x]x8Ds~x,x8!
d

d J̃B~s!
,

S `
d

d J̃D
A,B

~y;x!50,

S `
d

d J̃
D
n,A

~y1 ,x1 , . . . ,yn ,xn ;y8!5S `
d

d J̃
D
A,n

~y8;y1 ,x1 , . . . ,yn ,xn!

52]y8(
j51

n

]yjDz~yj ,y8!
d

d J̃n~y1 ,x1 , . . . ,z,xj , . . . ,yn ,xn!
,

S `
d

d J̃
D
n,B

~y1 ,x1 , . . . ,yn ,xn ;x8!5S `
d

d J̃
D
B,n

~x8;y1 ,x1 , . . . ,yn ,xn!

52]x8(
j51

n

]xjDs~xj ,x8!
d

d J̃n~y1 ,x1 , . . . ,yj ,s, . . . ,yn ,xn!
,

S `
d

d J̃
D
n,1

~y1 ,x1 , . . . ,yn ,xn ;y18 ,x18!5S `
d

d J̃
D
1,n

~y18 ,x18 ;y1 ,x1 , . . . ,yn ,xn!

5(
j51

n

Dz~yj ,y18!Dw~yj ,y18!
d

d J̃n11~y1 ,x1 , . . . ,yj21 ,xj21 ,z,x18 ,w,xj , . . . ,yn ,xn!

1(
j51

n

Ds~xj ,x18!Dt~xj ,x18!
d

d J̃n11~y1 ,x1 , . . . ,yj ,s,y18 ,t,yj11 ,xj11 , . . . ,yn ,xn!
,

... ~n51,2,...!.

We remark that the final Hamiltonian has no tadpole term and no dependence on the cosmological constantT. Thus in the
two-matrix model case, the cosmological constant should be regarded as an integration constant. This contrasts with w
would naively expect from the result for the one-matrix cases. In Sec. VII, to check consistency of the above results, w
discuss how to obtain a closed set of Schwinger-Dyson equations, leading to theW3 constraints, from this Hamiltonian.

VI. CLOSURE OF THE SCHWINGER-DYSON ALGEBRA

Now we proceed to discuss the algebra of the Schwinger-Dyson operators associated with the Hamiltonian~121!. Com-
paring with the case of one-matrix models, this requires a much more intricate analysis, since there is an infinite num
components for theT operators:

H5E
2 i`

i` dy

2p i
J̃A~y!@2]yTA

A~y!#1E
2 i`

i` dx

2p i
J̃B~x!@2]xTB

B~x!#

1 (
n51

` E
2 i`

i`

)
i51

n
dyi
2p i

dxi
2p i

J̃n~y1 ,x1 , . . . ,yn ,xn!Tn~y1 ,x1 , . . . ,yn ,xn!, ~126!

2]yTA
A~y!52S F d

d J̃D
A

~y!2S d

d J̃
~

d

d J̃D
A

~y!2gst
2F J̃•S `

d

d J̃
D G

A

~y!, ~127!

2]xTB
B~x!52S F d

d J̃D
B

~x!2S d

d J̃
~

d

d J̃D
B

~x!2gst
2F J̃•S `

d

d J̃
D G

B

~x!, ~128!
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Tn~y1 ,x1 ,..., yn ,xn!52S F d

d J̃D
n

~y1 ,x1 , . . . ,yn ,xn!2S d

d J̃
~

d

d J̃D
n

~y1 ,x1 , . . . ,yn ,xn!

2gst
2F J̃•S `

d

d J̃
D G

n

~y1 ,x1 , . . . ,yn ,xn! ~n51,2, . . .!. ~129!

The Tn operators appearing in the Hamiltonian can be regarded as symmetrized versions of the general Schwinger
operatorsTn

A ,Tn
B

T1~y1 ,x1!5T1
A~y1 ;y1 ,x1!1T1

B~y1 ,x1 ;x1!,

T2~y1 ,x1 ,y2 ,x2!5T2
A~y1 ;y1 ,x1 ,y2 ,x2!1T2

A~y1 ,x1 ,y2 ;y2 ,x2!1T2
B~y1 ,x1 ;x1 ,y2 ,x2!1T2

B~y1 ,x1 ,y2 ,x2 ;x2!,

..., ~130!

where the semicolon in the argument on the right-hand side denotes the point where the deformation of a loop occ
constructing the Schwinger-Dyson equation. For example,T1

A(y1 ;y1 ,x1) @T1
B(y1 ,x1 ;x1)# represents a deformation of the

loop with one pair of domains by attaching on it any loops which have at least oneA @B# domain. The explicit forms of the
general Schwinger-Dyson operatorsTn

A ,Tn
B are

Tn
A~yn11 ;y1 ,x1 , . . . ,yn ,xn!5S d

d J̃A~y1!
1

d

d J̃A~yn11!
DDz~y1 ,yn11!

d

d J̃n~z,x1 , . . . ,yn ,xn!

2 (
j51

n21

Dz~y1 ,yj11!
d

d J̃ j~z,x1 , . . . ,yj ,xj !
Dw~yj11 ,yn11!

d

d J̃n2 j~w,xj11 , . . . ,yn ,xn!

2cs21E
C

dx8

2p i

d

d J̃n11~yn11 ,x8,y1 ,x1 , . . . ,yn ,xn!

1gst
2E

2 i`

i` dy8

2p i
J̃A~y8!]y8Dz~yn11 ,y8!Dw~z,y1!

d

d J̃n~w,x1 , . . . ,yn ,xn!

2gst
2 (
m51

` E
2 i`

i`

)
i51

m dyi8

2p i

dxi8

2p i
J̃m~y18 ,x18 , . . . ,ym8 ,xm8 !(

j51

m

Dz~yj8 ,y1!Dw~yj8 ,yn11!

3
d

d J̃n1m~y18 ,x18 , . . . ,yj218 ,xj218 ,z,x1 , . . . ,yn ,xn ,w,xj8 ,yj118 ,xj118 , . . . ,ym8 ,xm8 !
, ~131!

Tn
B~y1 ,x1 , . . . ,yn ,xn ;xn11!5S d

d J̃B~xn!
1

d

d J̃B~xn11!
DDz~xn ,yn11!

d

d J̃n~y1 ,x1 , . . . ,yn ,z!

2 (
j51

n21

Dz~xn11 ,xj !
d

d J̃ j~y1 ,x1 , . . . ,yj ,z!
Dw~xj ,xn!

d

d J̃n2 j~yj11 ,xj11 , . . . ,yn ,w!

2cs21E
C

dy8

2p i

d

d J̃n11~y1 ,x1 , . . . ,yn ,xn ,y8,xn11!

1gst
2E

2 i`

i` dx8

2p i
J̃B~x8!]x8Dz~xn ,x8!Dw~z,xn11!

d

d J̃n~y1 ,x1 , . . . ,yn ,w!

2gst
2 (
m51

` E
2 i`

i`

)
i51

m dyi8

2p i

dxi8

2p i
J̃m~y18 ,x18 , . . . ,ym8 ,xm8 !(

j51

m

Dz~xj8 ,xn11!Dw~xj8 ,xn!

3
d

d J̃n1m~y18 ,x18 , . . . ,yj218 ,xj218 ,yj8 ,z,y1 ,x1 , . . . ,yn ,w,yj118 ,xj118 , . . . ,ym8 ,xm8 !
.

~132!
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It should be noted that the Hamiltonian contains the particular set of the above operatorsTn
A ,Tn

B , with partial identification of
the variables asyn115y1 , xn5xn11 , respectively.

We also remark that, as is expected from our construction of the Hamiltonian, the general Schwinger-Dyson ope
introduced above are the continuum versions of the Schwinger-Dyson operators of the original two-matrix model, appear

05E dN
2
AdN

2
BT~mat!~z,••• !e2S1J•F. ~133!

The explicit forms of the matrix model operators are

TA
~mat!A~z!52

1

N2(
a51

N2
]W

]Aa
trS 1

z2A
taD ,

TB
~mat!B~s!52

1

N2(
a51

N2
]W

]Ba
trS 1

s2B
taD ,

Tn
~mat!A~zn11 ;z1 ,s1 , . . . ,zn ,sn!52

1

N2(
a51

N2
]W

]Aa
trS 1

zn112A
ta

1

z12A

1

s12B
•••

1

zn2A

1

sn2BD ,

Tn
~mat!B~z1 ,s1 , . . . ,zn ,sn ;sn11!52

1

N2(
a51

N2
]W

]Ba
trS 1

z12A

1

s12B
•••

1

zn2A

1

sn2B
ta

1

sn112BD . ~134!
-
l

-

s,
a
-

l-
f

We now compute the algebra of the Schwinger-Dyson
erators, as in Sec. IV, by changing the contourC to the
imaginary axis. For the commutators of the operators w
the same superscript, the result is found to coincide with t
of the corresponding matrix model operators, after mak
the identification

gst↔
1

N
, yi↔z i , xi↔s i .

They are

@]yTA
A~y!,]y8TA

A~y8!#

52gst
2]y]y8~]y2]y8!

1

y2y8
@TA

A~y!2TA
A~y8!#, ~135!

@]yTA
A~y!,T1

A~y8;y8,x8!#

52gst
2]yH 22

~y2y8!2
@T1

A~y;y8,x8!1T1
A~y8;y,x8!#

1
1

~y2y8!2
@T1

A~y;y,x8!13T1
A~y8;y8,x8!#

1
1

y2y8
]y8T1

A~y8;y8,x8!J ,
... . ~136!

A similar result is obtained for the operators with the sup
scriptB.
op-

ith
hat
ing

er-

For commutators between the operators with different su
perscripts, the situation is not so simple, except for the trivia
case

@]yTA
A~y!,]xTB

B~x!#50. ~137!

For example, for the commutator@]yTA
A(y),T1

B(y8,x8;x8)#,
the closed algebra

@]yTA
A~y!,T1

B~y8,x8;x8!#

5gst
2]y]y8

1

y2y8
@T1

B~y,x8;x8!2T1
B~y8,x8;x8!#, ~138!

which coincides with the result of the matrix model opera-
tors, can be obtained only when the formula

]yE
C

dx

2p i
Dz~x,x8!Dw~x,x8!

d

d J̃2~y,z,y8,w!
50 ~139!

holds. To check this formula, we need to know a more de
tailed property of the functional derivativesd/d J̃n(n>2).

Here we try to justify this formula by using the short-
domain expansion of the functional derivative operators. It
will be useful also for the derivation of theW3 constraints
discussed in the next section. The short-domain expansion
in general, depend on the choice of a background. Since
specific background was already assumed in taking the con
tinuum limit of the two-matrix model, use of the short-
domain expansion should be allowed here, as we have a
ready done in the one-matrix cases in studying the closure o
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the Schwinger-Dyson algebra as a consistency check of
continuum results. The difference between the present c
and the one-matrix cases is that the tadpole term is absor
into the definition of the spin-flip amplitudes. Because of th
peculiarity, the Hamiltonian~121! itself apparently contains
no terms which fix the dimensions of the loop operators.
order to fix the dimensions, however, it is sufficient to giv
the dimension of the Hamiltonian, since it then determin
the dimensions of the loop operators and the string coupl
gst uniquely. Following our result of a direct derivation of th
Hamiltonian from the two-matrix model, we assume the d
mension ofH to be @H#5@y#1/3. Also, it is noted that a
new dimensional parameter can enter as the integration c
stant of the Schwinger-Dyson equation]yTA

A(y)Z@J#50 or
]xTB

B(x)Z@J#50. We can relate this parameter to the cosm
logical constant with dimension two (@T#5@y#2), character-
izing thec51/2 background. See the next section, in partic
lar, Eq. ~166!, for more details.

Let us now write down the short-domain expansion
First, for the operators with a single domain,d/d J̃A ,
d/d J̃B , by considering the dimensions of the loop operato
and the cosmological constant, we can assume expans
analogous to the one-matrix case~B19!:
the
ase
bed
is

In
e
es
ing
e
i-

on-

o-

u-

s.

rs
ions

d

d J̃A~y!
5a4/3

A y4/31a22/3
A Ty22/31(

u
Auy

2u21

~y: large!, ~140!

d

d J̃B~x!
5a4/3

B x4/31a22/3
B Tx22/31(

u
Bux

2u21

~x: large!, ~141!

wherea’s stand for dimensionless constants, andu runs over
positive integers divided by 3. The first two terms come from
the disk singular terms~thus,a4/3

A 5a4/3
B , a22/3

A 5a22/3
B ), and

the remaining terms represent both the contributions of th
large y or x expansion of the cylinder singular parts and
those of the local operators.

Second, referring to the explicit form ofw(2)(y,x) in
~C27!, we can assume that the operatord/d J̃1(y,x) has the
largex expansion
d

d J̃1~y,x!
5a5/3

1 x5/31a2/3
1 x2/3y1x21/3~a21/3

1 y21a21/381 T!1x24/3~a24/3
1 y31a24/381 Ty1a24/391 B2/3!

1x27/3~a27/3
1 y41a27/381 Ty21a27/391 B2/3y1a27/3-1 B5/3!1a1/3

1 x1/3
d

d J̃A~y!
1a22/3

1 x22/3y
d

d J̃A~y!

1x25/3S ~a25/3
1 y21a25/381 T!

d

d J̃A~y!
1a25/391 B1D 1x27/3a27/3

~ iv!1B1/3

d

d J̃A~y!
1x21S a21

1
O 1S d

d J̃D ~y!1a2181 B1/3D
1x22Fa22

1 yO 1S d

d J̃D ~y!1a2281 B1/3y1a2291 B4/3G1x27/3a27/3
~v!1

O 2S d

d J̃D ~y!1O~x28/3!, ~142!
whereOm(d/d J̃)(y) represents the loop operator with a mi
croscopicm-spin-flipped domain being added to the domai
y, and the remaining notations are the same as before. He
we assume that the nonpolynomial powers ofy all come
from the loop operators with the macroscopicy domain, and
that the fractional powers ofT appear only through the
B’s. For every disk amplitude whose explicit form is derived
in Appendix C, we can confirm these properties. The abo
form ~142! is then a consequence of the dimensional anal
sis. Note that we do not have to worry about the ordering
B’s and loop operators, because

FBu ,
d

d J̃I
G50

due to
-
n
re,

ve
y-
of

F d

d J̃B
,

d

d J̃I
G50.

Similarly, the largex expansions ofd/d J̃2(y,x,y8,x8),
d/d J̃2(y,x,y8,x) are assumed to be, respectively,

d

d J̃2~y,x,y8,x8!
5a1

2x1a2/3
2 x2/3Dz~y,y8!

d

d J̃A~z!

1a1/3
2 x1/3Dz~y,y8!

d

d J̃1~z,x8!

1a0
2y1a08

2y81a09
2x81O~x21/3!,

~143!
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d

d J̃2~y,x,y8,x!
5ã1

2x1ã2/3
2 x2/3Dz~y,y8!

d

d J̃A~z!

1ã0
2y1ã08

2y81O~x21/3!. ~144!
We can fix the normalizations of the spin-flipped loo
operators, referring to the disk results in Appendix D. F
example,a21

1 5s. This implies the relations
O 1S d

d J̃D ~y!5s21E
C

dx

2p i

d

d J̃1~y,x!
2s21a2181 B1/3,

O 2S d

d J̃D ~y!5s21E
C9

dx8

2p i EC8

dy8

2p i
s21E

C

dx

2p i

d

d J̃2~y,x,y8,x8!
1c21s21ã

d

d J̃A~y!
B1/3,

..., ~145!
the

this

ral
full
ral

of
s a
w

n
il-
y

with ã being some constant, which is a consequence of
above expansions. The first equation of~145! is the
integrated version of Eq. ~110!. Roughly speaking,
Om(d/d J̃)(y) is obtained fromd/d J̃m by integrating the do-
mains excepty, and the factors21 is regarded as a sort of
finite renormalization accompanied with flipping of a sing
spin.

Now substituting expansions~143! and~144!, and using a
formula such as~B22!, we can directly check the validity of
formula ~139!, and thus justify the algebra~138!. From these
results, it is expected that the algebra of higher operators a
coincides with those of the matrix model operators befo
taking the double-scaling limit. In order to prove this for th
general case, we need to obtain more precise informat
with respect to the coefficientsa’s in the expansions of ge-
neric loop operators. We would like to emphasize again th
since we have started from the matrix model which is alrea
an integral solution of the constraints, the closure of t
Schwinger-Dyson algebra is guaranteed in our approach.
confirmation of the closure of the algebra is useful, howev
as a consistency check of the continuum limit. Since t
structure of the algebra of the Schwinger-Dyson operators
essentially determined by the splitting and merging proces
of the loops which are closely related with those in th
Hamiltonian, it is natural to suppose that the algebra is n
affected by the scaling limit, in view of our discussions i
Sec. V.

It is straightforward to see that the matrix model operato
~134! form a closed algebra such as

@TA
~mat!A ,TA

~mat!A#;TA
~mat!A , @TB

~mat!B ,TB
~mat!B#;TB

~mat!B ,

@TA
~mat!A ,Tn

~mat!A#;Tn
~mat!A , @TB

~mat!B ,Tn
~mat!B#;Tn

~mat!B ,

@Tn
~mat!A ,Tm

~mat!A#;Tn1m
~mat!A , @Tn

~mat!B ,Tm
~mat!B#;Tn1m

~mat!B ,

@TA
~mat!A ,Tn

~mat!B#;Tn
~mat!B , @TB

~mat!B ,Tn
~mat!A#;Tn

~mat!A ,

@TA
~mat!A ,TB

~mat!B#50, @Tn
~mat!A ,Tm

~mat!B#;Tn1m
~mat!A1Tn1m

~mat!B

~n,m>1!. ~146!
the

le

lso
re
e
ion

at,
dy
he
The
er,
he
is

ses
e
ot
n

rs

The corresponding algebra of the continuum generators

]yTA
A~y!, Tn

A~y;y1;x1,...,yn,xn!,

]xTB
B~x!, Tn

B~y1,x1,...,yn,xn;x!, ~n51,2,...!

must have the same structure. Half of the generators with
superscriptA(B) form a subalgebra of the full algebra.7 We
note that, as already emphasized in the beginning of
section, the generators contained in the HamiltonianH are
only the particular symmetrized combinations of the gene
Schwinger-Dyson operators. To ensure the closure of the
algebra, we are led to introduce all of the above gene
Schwinger-Dyson operators.

VII. REDUCTION TO THE W3 CONSTRAINTS

In the previous section, we obtained the huge algebra
the Schwinger-Dyson operators. Although this algebra ha
very complicated structure, we will next demonstrate ho
the W3 constraints, characterizing thec51/2 noncritical
string, are naturally derived from the integrability conditio
of the first few constraint operators appearing in our Ham
tonian. This will provide us with yet another consistenc
check of the preceding results.

The constraints associated with the Hamiltonian~126! are

2]yTA
A~y!Z@J#50, ~147!

2]xTB
B~x!Z@J#50, ~148!

T1~y,x!Z@J#50, ~149!

T2~y1 ,x1 ,y2 ,x2!Z@J#50,

... . ~150!

Considering the closure of this constraint algebra,

7The algebra similar to this subalgebra is presented in Ref.@9#.
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@]yTA
A~y!,T1~y8,x!#52gst

2]yH 1

~y2y8!
]y8T1~y8,x!1

1

~y2y8!2
@T1~y,x!13T1~y8,x!#

1
22

~y2y8!2
@T1

A~y;y8,x!1T1
A~y8;y,x!1T1

B~y,x;x!1T1
B~y8,x;x!#J , ~151!

which follows from ~136! and ~138!, we obtain a new combination of the Schwinger-Dyson operators:

@T1
A~y;y8,x!1T1

A~y8;y,x!1T1
B~y,x;x!1T1

B~y8,x;x!#Z@J#50. ~152!

Similarly, from the algebra@]xTB
B(x),T1(y,x8)#, we have

@T1
B~y,x;x8!1T1

B~y,x8;x!1T1
A~y;y,x!1T1

A~y;y,x8!#Z@J#50. ~153!
n

n

Let us consider the integrated versions of these:

Fs21E
C9

dx

2p i EC8

dy8

2p i
@T1

A~y;y8,x!1T1
A~y8;y,x!#

1s21E
C9

dx

2p i EC8

dy8

2p i
T1
B~y8,x;x!GZ@J#50, ~154!

s21E
C9

dx8

2p i EC8

dx

2p i
@T1

B~y,x;x8!1T1
B~y,x8;x!#Z@J#50,

~155!

where the integral contoursC,C8, andC9 successively wrap
around the negative real axis and the singularities in the
half plane.

In order to derive theW3 constraints, it is important to
examine the explicit forms of these integrated operato
First, by using the formulas in Appendix B, we have

E
C

dy

2p i
Dz~y,y8!

d

d J̃I~z,x,y1 ,x1 , . . . !

52
d

d J̃I~y8,x,y1 ,x1 , . . . !
1 (

n50

`

y8ncn
I ~x,y1 ,x1 , . . . !,

~156!

where the second term stands for the polynomial p
with respect to y8 of the large y8 expansion of
d/d J̃I(y8,x8,y1 ,x1 , . . . ). Themeaning of Eq.~156! is as
follows. In terms of the domain lengthl 8 conjugate toy8, the
left-hand side~LHS! represents the operator with the doma
lengthl 81«, where« comes from the procedure of changin
the contour

E
C

dy

2p i
•••5 lim

«→10
E

2 i`

i` dy

2p i
e«y

•••.

When l 8Þ0, the limit «→10 is smooth, and thus it coin-
cides with the first term of the RHS. However, for the sin
gular terms supported only atl 850, if any, the LHS gives no
contribution, since lim«→10d

(n)(«)50(n50,1,2,. . . ) in the
prescription of Appendix B. The second term is needed
subtract such a contribution. As is seen from the expansi
~140!–~143!, for example,cn

I ’s are all zero forI5A,B,1, and
left

rs.

art

in
g

-

to
ons

c1
25a1

2 , c0
25a0

2x1a08
2x11a09

2y1; the others vanish for
I52. Also, for composite operators, the above formula ca
be used. For instance,

E
C

dy

2p i
Dz~y,y8!

d

d J̃A~z!

d

d J̃1~z,x!

52
d

d J̃A~y8!

d

d J̃1~y8,x!
1 (

n50

`

y8ncn
A1~x!. ~157!

From the short-domain expansions,cn
A1(x)’s turn out to be

polynomials ofx and to vanish forn>4. Thus, we have

E
C9

dx

2p i EC8

dy

2p i
Dz~y,y8!

d

d J̃A~z!

d

d J̃1~z,x!

52
d

d J̃A~y8!
E
C9

dx

2p i

d

d J̃1~y8,x!
~158!

and, similarly,

E
C9

dx8

2p i EC8

dx

2p i
Dz~x,x8!

d

d J̃B~z!

d

d J̃1~y,z!

52E
C9

dx8

2p i

d

d J̃B~x8!

d

d J̃1~y,x8!
. ~159!

After using the above formulas and doing the integral o
the RHS of~159! by substituting the expanded forms~141!
and ~142!, the integrated operators are written as

s21E
C9

dx

2p i EC8

dy8

2p i
T1
A~y;y8,x!

52
d

d J̃A~y!
O 1S d

d J̃D ~y!2cO 2S d

d J̃D ~y!

1s21~ ã2a2181 !
d

d J̃A~y!
B1/3

2gst
2E

2 i`

i` dy8

2p i
J̃A~y8!]y8Dz~y,y8!O 1S d

d J̃D ~z!

1@ terms containingJ̃I ~ IÞA!#, ~160!
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s21E
C9

dx8

2p i EC8

dx

2p i
T1
B~y,x;x8!

52s21a4/3
B a27/3

1 y42s21~a4/3
B a27/381 1a22/3

B a21/3
1 !Ty2

2s21~a4/3
B a27/391 1a2/3

1 !B2/3y

2s21~a4/3
B a27/3-1 1a5/3

1 !B5/32s21a22/3
B a21/381 T2

2c~11c21s21a4/3
B a27/3

~v!1 !O 2S d

d J̃D ~y!

1s21~ ã2a4/3
B a27/3

~ iv!12a1/3
1 !

d

d J̃A~y!
B1/3

1@ terms containingJ̃I ~ IÞA!#. ~161!
The disk parts of~160! and ~161! can be interpreted to rep-
resent the continuum versions of the Schwinger-Dyson eq
tions ~C2! and ~C3!, respectively. In~161!, thanks to the
short-domain expansions, the integral

E
C

dx8

2p i

d

d J̃B~x8!

d

d J̃1~y,x8!
,

whosey dependence was difficult to see in this form, turn
out to be essentially a polynomial ofy. This property is
crucial for the derivation of theW3 constraints.

Also, from the results~D10! and~D11! in Appendix D, we
can assume the following identity holds:
rocesses
s21E
C9

dx8

2p i EC8

dy8

2p i
s21E

C

dx

2p i

d

d J̃2~y,x,y8,x8!
5s21E

C9

dx8

2p i EC8

dy8

2p i
s21E

C

dx

2p i

d

d J̃2~y8,x,y,x8!

5s21E
C9

dx8

2p i EC8

dx

2p i
s21E

C

dy8

2p i

d

d J̃2~y,x,y8,x8!

5s21E
C9

dx8

2p i EC8

dx

2p i
s21E

C

dy8

2p i

d

d J̃2~y,x8,y8,x!
. ~162!

In Appendix D, we have confirmed these equations for some simple cases. This means that the results of the spin-flip p
are independent of their orderings. By using these identities for the explicit forms ofT1

A , T1
B , we can see the symmetry

properties:

s21E
C9

dx

2p i EC8

dy8

2p i
T1
A~y;y8,x!Z@J# U

JI50 ~ IÞA!

5s21E
C9

dx

2p i EC8

dy8

2p i
T1
A~y8;y,x!Z@J# U

JI50 ~ IÞA!

,

s21E
C9

dx8

2p i EC8

dx

2p i
T1
B~y,x;x8!Z@J# U

JI50 ~ IÞA!

5s21E
C9

dx8

2p i EC8

dx

2p i
T1
B~y,x8;x!Z@J# U

JI50 ~ IÞA!

. ~163!

SettingJ̃I50 (IÞA), Eqs.~154! and ~155! become, respectively,

F2
d

d J̃A~y!
O 1S d

d J̃D ~y!1O 082cO 2S d

d J̃D ~y!1s21~ ã2a2181 !
d

d J̃A~y!
B1/3

2gst
2E

2 i`

i` dy8

2p i
J̃A~y8!]y8Dz~y,y8!O 1S d

d J̃D ~z!GZ@J# U
JI50 ~ IÞA!

50, ~164!

F2s21a4/3
B a27/3

1 y42s21~a4/3
B a27/381 1a22/3

B a21/3
1 !Ty2

2s21~a4/3
B a27/391 1a2/3

1 !B2/3y2s21~a4/3
B a27/3-1 1a5/3

1 !B5/32s21a22/3
B a21/381 T22c~11c21s21a4/3

B a27/3
~v!1 !O 2S d

d J̃D ~y!

1s21~ ã2a4/3
B a27/3

~ iv!12a1/3
1 !

d

d J̃A~y!
B1/3GZ@J# U

JI50 ~ IÞA!

50. ~165!

We used~160!, ~161!, and~163!, andO 08 is they-independent operator

O 085
1

2
s21E

C9

dx

2p i EC8

dy8

2p i
T1
B~y8,x;x!.



4472 53FUMIHIKO SUGINO AND TAMIAKI YONEYA
Also, from the once-integrated version of~147!, we have

F2
d2

d J̃A~y!2
2cO 1S d

d J̃D ~y!1O 092gst
2E

2 i`

i` dy8

2p i
J̃A~y8!]y8Dz~y,y8!

d

d J̃A~z!GZ@J# U
JI50 ~ IÞA!

50, ~166!

whereO 09 is a y-independent operator introduced as an integration constant.
The three Eqs.~164!, ~165!, and~166! lead to a closed equation of the loop operatorF̃A(y):

Fa4y41a2Ty
21a1B2/3y1a0B5/31a08T

21cO 08

1
d3

d J̃A~y!3
2

d

d J̃A~y!
~O 091aAB1/3!1

1

2
gst
2]y

2 d

d J̃A~y!
1gst

2E
2 i`

i` dy8

2p i
J̃A~y8!]y8Dz~y,y8!S d

d J̃A~z!

d

d J̃A~y!
1

d2

d J̃A~z!2D
1gst

4E
2 i`

i` dy8

2p i E2 i`

i` dy9

2p i
J̃A~y8!J̃A~y9!]y8]y9Dz~y,y9!Dw~z,y8!

d

d J̃A~w!GZ@J#uJI50 ~ IÞA!50. ~167!

The coefficientsa’s are defined by

a45
cs21a4/3

B a27/3
1

11c21s21a4/3
B a27/3

~v!1 , a25
cs21~a4/3

B a27/381 1a22/3
B a21/3

1 !

11c21s21a4/3
B a27/3

~v!1 ,

a15
cs21~a4/3

B a27/391 1a2/3
1 !

11c21s21a4/3
B a27/3

~v!1 , a05
cs21~a4/3

B a27/3-1 1a5/3
1 !

11c21s21a4/3
B a27/3

~v!1 ,

a085
cs21a22/3

B a21/381

11c21s21a4/3
B a27/3

~v!1 , aA5
cs21~ ã2a4/3

B a27/3
~ iv!12a1/3

1 !

11c21s21a4/3
B a27/3

~v!1 2cs21~ ã2a2181 !.

Further, by rescaling as

d

d J̃A~y!
→S 2a4

16 D 1/3 d

d J̃A~y!
, J̃A~y!→S 2a4

16 D 21/3

J̃A~y!,

gst→S 2a4
16 D 1/3gst, T→2

a4
a2
T,

and putting

a1B2/35
a4
16
OD , a0B5/31a08T

21cO 085
a4
16
O 1 , O 091aAB1/35S 2a4

16 D 2/3O 0 ,

Eq. ~167! takes the form

F216y4116Ty22yOD2O 1

1
d3

d J̃A~y!3
2

d

d J̃A~y!
O 01

1

2
gst
2]y

2 d

d J̃A~y!
1gst

2E
2 i`

i` dy8

2p i
J̃A~y8!]y8Dz~y,y8!S d

d J̃A~z!

d

d J̃A~y!
1

d2

d J̃A~z!2D
1gst

4E
2 i`

i` dy8

2p i E2 i`

i` dy9

2p i
J̃A~y8!J̃A~y9!]y8]y9Dz~y,y9!Dw~z,y8!

d

d J̃A~w!GZ@J#uJI50 ~ IÞA!50. ~168!
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Let us now confirm that this equation represents theW3 con-
straints. In order to do so, we have to identify the disk a
cylinder singular parts. For the disk amplitudew(y), the
Schwinger-Dyson equation obtained from~168! is

w~y!32^O 0&0w~y!216y4116Ty22y^OD&02^O 1&050,
~169!

where we consider the solution regular except on the ne
tive real axis. Note that this condition does not determine t
solution uniquely. In fact, we find two solutions:

~i! w~y!524/3S y2AT

6D S y13AT

6D
1/3

,

^O 0&050, ^OD&05128S T6D 3/2, ^O 1&052
4

3
T2,

~170!

~ii ! w~y!5~y1Ay22T!4/31~y2Ay22T!4/3,

^O 0&053T4/3, ^OD&050, ^O 1&052T2. ~171!

It is solution~ii ! that reproduces the matrix model result. B
repeating the argument in Appendix C for deriving~C14!,
without using theZ2 symmetry A↔B, we can see that
^OD&0 is proportional to the next leading order@O(a3)# of
nd

ga-
he

y

the universal part of the quantity (1/N)^ tr(A2B)&0 . This
implies that solution~i! spontaneously breaks theZ2 symme-
try. Here we only consider theZ2 symmetric solution~ii ! and
leave case~i! as a future problem.

For the cylinder amplitudew(y,y1), the Schwinger-
Dyson equation is derived from the lowest order ofgst in the
J̃A(y1) derivative of~168!:

2y^ODF̃A~y1!&02^O 1F̃A~y1!&02^O 0F̃A~y1!&0w~y!

1~3w~y!22^O 0&0!w~y,y1!

1gst
2]y1

1

y2y1
@2w~y!22w~y!w~y1!2w~y1!

2#50.

~172!

If we take solution~ii ! as the disk amplitude, note that it
satisfies

3w~y!22^O 0&050 at y50,6AT

2
. ~173!

The disk amplitude is regular except the regiony<2AT on
the real axis. By assuming the same property for the cylinde
amplitude, Eq.~172! can be solved, by using the similar
argument as for the case~B7!. The result is
w~y,y1!5gst
2 4

9

1

f ~y,y1!g~y,y1!

~y1Ay22T!1/3

~y1Ay22T!2/31~y2Ay22T!2/31T1/3

3
~y11Ay122T!1/3

~y11Ay122T!2/31~y12Ay122T!2/31T1/3
F11

3T1/3

f ~y,y1!
1
3~y1Ay22T!1/3~y11Ay122T!1/3

g~y,y1!
G , ~174!
r

where

f ~y,y1!5~y1Ay22T!1/3~y11Ay122T!1/3

1~y2Ay22T!1/3~y12Ay122T!1/31T1/3,

g~y,y1!5~y1Ay22T!2/31~y11Ay122T!2/3

1~y1Ay22T!1/3~y11Ay122T!1/3.

From ~171! and ~174!, the singular parts can be found as

wsing~y!524/3S y4/32 T

3
y22/3D , ~175!

wsing~y,y1!5gst
2 1

9

1

~y2y1!
2@y

2/3y1
22/312y1/3y1

21/326

12y21/3y1
1/31y22/3y1

2/3#. ~176!

The connected correlation functions are expanded by
local operator insertionsga1 , . . . ,an

as

the

^F̃A~y1!&5wsing~y1!1g~1!~y1!,

^F̃A~y1!F̃A~y2!&5wsing~y1 ,y2!1g~2!~y1 ,y2!,

^F̃A~y1!•••F̃A~yK!&5g~K !~y1 , . . . ,yK! ~K>3!,

g~n!~y1 , . . . ,yn!5 (
a1 , . . . ,an

ga1 , . . . ,an
y1

2a121
•••yn

2an21 ,

~177!

wherea i ’s run over the positive integers1 1
3 and1 2

3, i.e.,
1
3,

2
3,

4
3,

5
3,

7
3, . . . .

Using ~175!–~177!, we expand~168! similarly as in the
argument of the Virasoro constraints in Appendix B. From
here the analysis is parallel to the Ref.@17#, where theW3
constraints were explicitly derived from the two-matrix
model for the first time. So we show only the results. Fo
O 0 , OD , O 1 insertions,
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^O 0&53324/3g1/3,

^O 0F̃A~y1!&5gst
224/3

1

3
y1

22/313324/3(
a1

g1/3,a1y1
2a121 ,

^O 0F̃A~y1!3F̃A~yK!&53324/3 (
a1 , . . . ,aK

g1/3,a1 , . . . ,aKy1
2a121

•••yK
2aK21 ,

^OD&53328/3g2/3,

^ODF̃A~y1!&5gst
228/3

2

3
y1

21/313328/3(
a1

g2/3,a1y1
2a121 ,

^ODF̃A~y1!•••F̃A~yK!&53328/3 (
a1 , . . . ,aK

g2/3,a1 , . . . ,aKy1
2a121

•••yK
2aK21 ,

^O 1&5
16

3
T213328/3g5/3,

^O 1F̃A~y1!&5g st
2 28/3

5

3
y1
2/313328/3(

a1

g5/3,a1y1
2a121 ,

^O 1F̃A~y1!•••F̃A~yK!&53328/3 (
a1 , . . . ,aK

g5/3,a1 , . . . ,aKy1
2a121

•••yK
2aK21

~K>2!. ~178!

This means thatO 0 , OD , O 1 are expressed in terms of the loop operatord/d J̃A :

O 053324/3E
C

dy

2p i
y1/3

d

d J̃A~y!
,

OD53328/3E
C

dy

2p i
y2/3

d

d J̃A~y!
,

O 15
16

3
T213328/3E

C

dy

2p i
y5/3

d

d J̃A~y!
,

as operators acting onZ@J#uJI50 (IÞA) .
For the other contributions, by introducing the generating function

they can be expressed as

LnZ~m!50 ~n>21!,

Wn8Z~m!50 ~n8>22!, ~179!

where

L2152324/3
]

]m4/3
1gst

2 2

3(a ama

]

]ma21
1gst

4 4

81
m2/3~m1/32gst

223324/3T!, ~180!

L052324/3S ]

]m7/3
2
T

3

]

]m1/3
D1gst

2 2

3(a ama

]

]ma
1gst

2 2

27
,

Ll52324/3S ]

]m l17/3
2
T

3

]

]m l11/3
D1 (

b1b85 l

]2

]mb]mb8
1gst

2 2

3(a ama

]

]ma1 l
~ l>1!,
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W2253328/3S ]

]m8/3
2
2

3
T

]

]m2/3
D

1gst
22324/3(

a
amaS ]

]ma11/3
2
T

3

]

]ma25/3
D1gst

2(
a

ama (
b1b85a22

]2

]mb]mb8

1gst
4 1

3(
a,a8

aa8mama8

]

]ma1a822
1gst

6 4

35
m4/3~m1/32gst

223324/3T!21gst
6 8

36
m2/3
3 ,

W2153328/3S ]

]m11/3
2
2

3
T

]

]m5/3
D13324/3

]2

]m2/3
2 1gst

22324/3(
a

amaS ]

]ma14/3
2
T

3

]

]ma22/3
D

1gst
2(

a
ama (

b1b85a21

]2

]mb]mb8
1gst

4 1

3(
a,a8

aa8mama8

]

]ma1a821
1gst

6 1

36
~m1/32gst

223324/3T!3,

Wm53328/3S ]

]mm114/3
2
2

3
T

]

]mm18/3
1
T2

9

]

]mm12/3
D 13324/3S (

b1b85m17/3

2
T

3 (
b1b85m11/3

D ]2

]mb]mb8

1 (
b1b81b95m

]3

]mb]mb8]mb9
1gst

22324/3(
a

amaS ]

]ma1m17/3
2
T

3

]

]ma1m11/3
D

1gst
2(

a
ama (

b1b85a1m

]2

]mb]mb8
1gst

4 1

3(
a,a8

aa8mama8

]

]ma1a81m
~m>0!. ~181!
-

o
-
-

n

This is nothing but theW3 constraints.

VIII. CONCLUSION

Let us first summarize what we have done. We ha
started our paper by discussing the nature of PSFT’s from
viewpoint of the stochastic quantization of the matrix mo
els. Then, we have presented detailed derivations of the
chastic Hamiltonians in the double-scaling limit from th
matrix model, and investigated the infinite algebras of t
Schwinger-Dyson operators appearing in the Hamiltonia
We have also checked that the algebras contain the Viras
~one-matrix model! andW3 algebras~two-matrix model!, as
they should. Proofs of some of the crucial formulas have n
been completed, because of technical complexity. It is the
fore desirable to develop more powerful methods of treati
the double-scaling limit for general target spaces.

After these calculations, we have to reconsider the qu
tions raised in the earlier sections of the present paper. P
haps, one of the most important lessons of our work is th
the structure of the general splitting and merging interactio
of string fields with arbitrary matter configuration is not a
fected by the mixing of the string field components in takin
the scaling limit which is defined for a specific backgroun
This seems to imply that the structure of these terms is co
pletely independent of the backgrounds. Recalling the g
eral discussion in Sec. II, we realize that the purely cub
Hamiltonian of the matrix model with most general sourc
terms and no bare action already captures the structure of
continuum Hamiltonian in a background-independent wa
This conforms to earlier suggestions@18# and points to an
intriguing possibility of formulating a background-
independent string field theory, encompassing critical strin
by starting from general matrix integrals with infinite num
ve
the
d-
sto-
e
he
ns.
oro

ot
re-
ng

es-
er-
at
ns
f-
g
d.
m-
en-
ic
e
the
y.

gs,
-

ber of different matrices. For the casec<1, a related idea
has already been discussed in Ref.@15#.

Before pursuing such possibilities, there remains, how
ever, many important issues to be resolved. In addition to
problems mentioned in the Introduction, what is needed to
make further progress is a deeper understanding of how t
extract real-space-time picture of the string theory from ma
trix models, since matrix models apparently miss some im
portant characteristics@19,20# of the string dynamics.
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APPENDIX A: k53 CRITICAL POINT
AND THE DISK AMPLITUDE

Let us begin from deriving the noneven critical potential
for k53. It is sufficient to recall the well-known formulas in
the method of orthogonal polynomials. For the coefficients
S andR in the recursion equation for the orthogonal polyno-
mialsPn(l)5ln1•••,

lPn~l!5Pn11~l!1SnPn~l!1RnPn21~l!,

we have a set of equations@21# in terms of the potentialV,



4476 53FUMIHIKO SUGINO AND TAMIAKI YONEYA
05r0

dz

2p i

1

z
V8S z1S1

R

z D , ~A1!

x5r0

dz

2p i

N

b
V8S z1S1

R

z D , ~A2!

for the sphere limit N;b→`, where x5n/b,
S5S(x).Sn , R5R(x).Rn . Equations~A1! and~A2! give
the relation that implicitly determines the functionR(x), of
the form

x5W~R!.

Since the free energy is determined byR as

lnZ; (
n51

N21

~N2n!lnRn , ~A3!

the following behavior of theW(R),

W~R!512 const3~12R!3, ~A4!

asx→1, R→1, leads to thek53 criticality of the free en-
ergy:

lnZ;S 12
N

b D 7/3.
This shows that the minimal order of thek53 critical poten-
tial is 4. After lengthy calculations, we find that the potenti

V~M !5
b

N S g22 M21
g3
3
M31

1

20
M4D , ~A5!

with ~54! and ~55! satisfying all of the above conditions.
Next let us derive the disk amplitude in the sphere a

proximation. By using the method of Ref.@12#, the disk am-
plitude in the largeN limit is given by

^F~z!&05
1

2
V8~z!

1
1

2

b

N S 2
1

5
z21Az1BDA~z2b1!~z2b2!,

~A6!

where

A52g32
1

10
~b11b2!,

B52g22
g3
2

~b11b2!2
1

20
~b11b2!22

1

40
~b12b2!2.

By introducing the variable

z510g313~b11b2!, ~A7!

the end points of the cutb2,z,b1 are determined by the
equations
al

p-

2
1

4
z4136z22256z2720181920z2253888

N

b
, ~A8!

~b12b2!252
2

27
z21

80

9
2
2560

27
z21. ~A9!

The disk amplitude with a microscopic loop can be read
off from the coefficient ofz22 in the largez expansion of
Eq. ~A6!:

K 1N trM L
0

5
1

32

b

N
~b12b2!2Fg2~b11b2!

1g3~b11b2!21
g3
8

~b12b2!2

1
3

20
~b11b2!31

3

40
~b11b2!~b12b2!2G .

~A10!

In the scaling limit

N

b
512a3t ~A11!

(a means a lattice spacing!, Eq. ~A8! is iteratively solved as

z528S 11a
3

4
t1/31a2

7

64
t2/32a3

71

1024
t

2a4
8515

442368
t4/31O~a5! D . ~A12!

Thenb1 andb2 are

b15
25g312

3
2a2t1/32a2

7

24
t2/32a3

49

384
t

2a4
1205

165888
t4/31O~a5!, ~A13!

b25
25g3210

3
1a3

5

16
t1a4

15

256
t4/31O~a5!. ~A14!

Also, it can be seen thatz should be tuned to the critical
value atb1 :

z5z* ~11ay!, z*5
25g312

3
. ~A15!

Substituting~A11!–~A15! into ~A6! and ~A10!, we have

^F~z!&05
1

2
V8~z!1a5/2w~y!1O~a7/2!, ~A16!

K 1N trM L
0

52
32125g3

15
2a3

4

5
t

1a4
3

4
t4/31O~a5!, ~A17!
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where

w~y!52
1

5
z
*
5/2S y22 1

2
T1/3y1

3

8
T2/3DAy1T1/3 ~A18!

with T5(2z
*
21)3t.

APPENDIX B: EXPRESSION FOR THE LOCAL
OPERATOR O 0

We give the proof of Eqs.~84! and ~85! using the
Schwinger-Dyson equations. We first rewrite the onc
integrated Schwinger-Dyson equation

T~y!Z@J#50 ~B1!

into the relations among the local operators. Here,

T~y!5T0~y!1E
0

y

dy8r̃~y8!1O 1 , ~B2!

and they-independent operatorO 1 appears as an integration
constant.

Now to correctly extract the local operators, we mu
identify and subtract the singular parts in the correlatio
functions

dKlnZ@J#

d J̃~y1!•••d J̃~yK!
U
J50

5^F̃~y1!•••F̃~yK!&. ~B3!

It appears only in the disk and cylinder amplitudes. For t
disk, from the largey expansion of~71!,

w~y!5y5/21
5

16
Ty21/22

15

128
T4/3y23/21•••, ~B4!

we see that the first two terms of~B4! correspond to the
singular part

wsing~y!5y5/21
5

16
Ty21/2, ~B5!

because it is known that the disk one-point function of th
local operator behaves asT4/31D (D>0) from the analysis of
the continuum theory@22#.

For the cylinder amplitude, we start with a derivation o
the amplitudew(y,y1) from the lowest order ofgst in the
Schwinger-Dyson equation:

d

d J̃~y1!
T~y!Z@J# U

J50
50; ~B6!

that is,

2w~y!w~y,y1!1gst
2]y1Dz~y,y1!w~z!

2y^O 0F̃~y1!&02^O 1F̃~y1!&050. ~B7!

It can be easily solved by noting the fact thatw(y) given in
~71! has single zeros aty5a,ā, wherea,ā are the solutions
of the quadratic equation
e-

st
n

he

e

f

y22
1

2
T1/3y1

3

8
T2/350;

explicitly

a

āJ 5
16 iA5

4
T1/3. ~B8!

By settingy5a or ā in ~B7!, the first term vanishes:8 then,
^O 0F̃(y1)&0 , ^O 1F̃(y1)&0 are determined as

^O 0F̃~y1!&05gst
2]y1

Ay11T1/3, ~B9!

^O 1F̃~y1!&05gst
2]y1S y12 1

2
T1/3DAy11T1/3. ~B10!

Substituting these into~B7!, we obtain

w~y,y1!5
gst
2

4

1

Ay1T1/3Ay11T1/3

3
1

~Ay1T1/31Ay11T1/3!2
. ~B11!

Since the cylinder amplitude of the local operators behav
asT1/31D11D2 (D1 ,D2>0), the singular part is identified to
be

wsing~y,y1!5gst
2 1

4

1

~y2y1!
2 SA y

y1
221Ay1

y D . ~B12!

Thus, the connected correlation functions are expressed

^F̃~y1!&5wsing~y1!1g~1!~y1!,

^F̃~y1!F̃~y2!&5wsing~y1 ,y2!1g~2!~y1 ,y2!,

^F̃~y1!•••F̃~yK!&5g~K !~y1 , . . . ,yK! ~K>3!,
~B13!

whereg(n)(y1 , . . . ,yn) is the part interpreted as local opera
tor insertions, and it is expanded by the correlators amo
local operatorsga1 , . . . ,an

:

g~n!~y1 , . . . ,yn!5 (
a1 , . . . ,an

ga1 , . . . ,an
y1

2a121
•••yn

2an21 ,

~B14!

where a i ’s run over the positive half odd integers12,
3
2,

5
2,•••. Using ~B5!, ~B12!–~B14!, we expand the Schwinger-
Dyson equations

dK

d J̃~y1!•••d J̃~yK!
T~y!Z@J# U

J50
50

~K50,1,2,...!, ~B15!

8Here, we assumed thatw(y,y1) does not have any poles at
y5a,ā. This is justified, sinceF̃(y) is regular except in the nega-
tive real axis as seen from its definition.
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and perform a similar analysis as in Ref.@23#. For example,
the result forK50 is

2y^O 0&2^O 1&1S 516TD 2y211gst
2 1

16
y22

12(
a

gaS y2a13/21
5

16
Ty2a23/2D

1 (
a,a8

~gaga81ga,a8!y
2a2a82250.

Here, we use the Greek indicesa,a8,b,b8 for the positive
half odd integers. From the first two powers of the largey,
^O 0&, ^O 1& are determined as

^O 0&52g1/2, ^O 1&52g3/2.

Performing similar analysis forK>1 in ~B15!, we obtain,
for O 0 , O 1 insertions,

^O 0&52g1/2,

^O 0F̃~y1!&5gst
2 1

2
y1

21/212(
a1

g1/2,a1y1
2a121 ,

^O 0F̃~y1!•••F̃~yK!&52 (
a1 , . . . ,aK

g1/2,a1 , . . . ,aK

3y1
2a121

•••yK
2aK21 ,

^O 1&52g3/2,

^O 1F̃~y1!&5gst
2 3

2
y1
1/212(

a1

g3/2,a1y1
2a121 ,

^O 1F̃~y1!•••F̃~yK!&52 (
a1 , . . . ,aK

g3/2,a1 , . . . ,aK

3y1
2a121

•••yK
2aK21

~K>2!.

~B16!

This shows that̂O 0F(y1)& and^O 1F(y1)& have the singu-
lar partsgst

2 1
2y1

21/2 andgst
2 3
2y1

1/2, respectively.
The other powers ofy give the Virasoro constraints. Fo

K50, we have

2S gl17/21
5

16
Tgl11/2D1 (

b1b85 l
~gbgb81gb,b8!

1gst
2 1

16
d l ,01S 516TD 2d l ,2150 ~ l521,0,1, . . .!,

where g with negative indices is understood as zero. F
general K, by introducing the generating function
r

or

the relations can be expressed in the form

LnZ~m!50 ~n>21!,

L2152
]

]m5/2
1gst

2(
a

ama

]

]ma21
1S 516T1gst

2 1

4
m1/2D 2,

L052S ]

]m7/2
1

5

16
T

]

]m1/2
D1gst

2(
a

ama

]

]ma
1gst

2 1

16
,

Ll52S ]

]m l17/2
1

5

16
T

]

]m l11/2
D1 (

b1b85 l

]2

]mb]mb8

1gst
2(

a
ama

]

]ma1 l
~ l>1!. ~B17!

Note that the operation ofO 0 (O 1) on Z(m) is expressed as
the local operator insertion

2
]

]m1/2
S 2 ]

]m3/2
D .

Next, we notice that as an operator acting onZ(m),
d/d J̃(y) is expanded by the local operator]/]ma :

d

d J̃~y!
5(

a

]

]ma
y2a21 as acting onZ~m!.

Furthermore, since the partition functionZ@J# is related to
theZ(m) through the rescaling

Z@J#5expF E dy

2p i
J̃~y!wsing~y!

1
1

2E dy1
2p i E dy2

2p i
J̃~y1!J̃~y2!w

sing~y1 ,y2!GZ~m!,

~B18!

we see that

d

d J̃~y!
5wsing~y!1E dy1

2p i
J̃~y1!w

sing~y,y1!

1(
a

]

]ma
y2a21 ~B19!

as acting onZ@J#.
After these preparations, we can now prove Eqs.~84! and

~85!. First, we consider~84!. The integral along the contour
C is defined by the analytic continuation using theb func-
tion. For example,
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E
C

dy

2p i
yA5E

2`

0 dy

2p i
~y2 i0!A1E

0

2` dy

2p i
~y1 i0!A

52
sinpA

p E
0

`

dyyA

52
sinpA

p
B~A11,2A21!

52
1

A11

1

G~0!
.

For AÞ21 this is zero, and forA521, because the inte
grand has no cut, the contour can be deformed as encirc
the origin

E
C

dy

2p i
y215r0

dy

2p i
y2151.

We summarize these into

E
C

dy

2p i
yA5dA,21 . ~B20!

From this result, in the case that the poley52y1 exists
inside the contour, we obtain

E
C

dy

2p i

yA

y1y1
5 (

n50

`

~2y1!
nE

C

dy

2p i
yA2n21

5H ~2y1!
A, A50,1,2,. . . ,

0 otherwise.
~B21!

Also, when the poley5y1 is outside the contour,

E
C

dy

2p i

yA

y2y1
5H 0, A50,1,2,. . . ,

2y1
A otherwise.

~B22!

By using these formulas~B20! and ~B22!, we can see that

2E
C

dy

2p i
y1/2(

a

]

]ma
y2a2152

]

]m1/2
,

2E
C

dy

2p i
y1/2wsing~y!505^O 0&

sing,

2E
C

dy

2p i
y1/2wsing~y,y1!5gst

2 1

2
y1

21/25^O 0F~y1!&
sing,

which just mean thatO 0 is written as in~84!.
Next, we verify the second equality~85!. For this purpose,

it is sufficient to show that

lim
«→10

E
2 i`

i` dy

2p i
e«yyA5E

C

dy

2p i
yA ~B23!

for arbitraryA, because formulas such as~B21! and ~B22!
can be derived from~B20!.

We consider the following integral in the caseA¹Z:
-
ling

E
2 i`

i` dy

2p i
yA5

1

p
cos

pA

2 E
0

`

dxxA

5
1

p
cos

pA

2
B~A11,2A21!

5
1

G~0!

1

A11

1

2sinpA
2

50.

This implies that forA¹Z,

lim
«→10

E
2 i`

i` dy

2p i
e«yyA5 lim

«→10
(
n50

`
«n

n! E2 i`

i` dy

2p i
yn1A50.

~B24!

Also, when A521,22,23, . . . , the contour can be de-
formed to the circle enclosing the origin:

lim
«→10

E
2 i`

i` dy

2p i
e«yyA5 lim

«→10
r0

dy

2p i
e«yyA

5 lim
«→10

« uAu21

~ uAu21!!
5dA,21 .

Further, forA50,1,2,. . . , thederivative of thed function at
y5« appears. In our prescription, sinced (A)(«)50 for finite
«, the limit «→10 is also zero:

lim
«→10

E
2 i`

i` dy

2p i
e«yyA5 lim

«→10
d~A!~«!50.

These results are summarized into

lim
«→10

E
2 i`

i` dy

2p i
e«yyA5dA,21 . ~B25!

Comparing this with~B20!, we conclude that Eq.~85! holds.
Similarly, it is easy to see that the operatorO 1 is expressed
as

O 152E
C

dy

2p i
y3/2

d

d J̃~y!
, ~B26!

52 lim
«→10

E
2 i`

i` dy

2p i
e«yy3/2

d

d J̃~y!
.

~B27!

APPENDIX C: DISK AMPLITUDES
IN THE TWO-MATRIX MODEL

Here, we obtain various disk amplitudes~genus zero one-
point functions! in the two-matrix model by using the con-
tinuum limit of the Schwinger-Dyson equations which give
the relations among them. Some of the disk amplitudes be
fore taking the continuum limit have been obtained by Stau
dacher@11#. We will extend his results considerably and give
detailed forms of the continuum disk amplitudes that hav
not appeared in the literature.

We introduce the following notation for the disk ampli-
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tudes~some of which is borrowed from@11#!:

Wn5 K 1N trAnL
0

, Wn,m
~2! 5 K 1N trAnBmL

0

,

W~z!5 K 1N tr
1

z2A L
0

, W~s!5 K 1N tr
1

s2B L
0

,

Wj~z!5 K 1N tr
1

z2A
Bj L

0

,

W~2!~z,s!5 K 1N tr
1

z2A

1

s2B L
0

,

Wj~z1 ;z2 ,s2 , . . . ,zk ,sk!

5 K 1N tr
1

z12A
Bj

1

z22A

1

s22B
•••

1

zk2A

1

sk2B L
0

,

W~2k!~z1 ,s1 , . . . ,zk ,sk!

5 K 1N tr
1

z12A

1

s12B
•••

1

zk2A

1

sk2B L
0

~k51,2, . . .!.

1.W„z…

Let us first start from the disk amplitude with the simple
spin configuration on the loop.~The spins on the loop are al
A.! It is obtained by combining the following three
Schwinger-Dyson equations:

~z2gz2!W~z!5cW1~z!1W~z!2112g~z1W1!,
~C1!

~z2gz2!W1~z!5cW2~z!1W~z!W1~z!

1W12g~zW11W1,1
~2!!, ~C2!

W1~z!2gW2~z!5czW~z!2c. ~C3!
We can eliminateW1(z) andW2(z), and have a cubic

equation ofW(z):

W~z!31a1W~z!21a2W~z!1a350, ~C4!

a15
c

g
22~z2gz2!,

a25~z2gz2!22
c

g
~z2gz2!1S c3g 2gD z112gW1 ,

a35~211gW11gz!~z2gz2!1~123c1cgz!W1

2g2W32g1
c

g
~12c2!2cz,

where in order to eliminateW2 andW1,1
(2) we used

W12gW25cW1 , W22gW35cW1,1
~2!11.
st
l

The expressions ofW1 andW3 are evaluated by the orthogo-
nal polynomial method@16,24# as follows:

W15
1

64g3
@3r426cr322~122c!r222c~122c!2r21

132g22~122c14c2!~122c!#, ~C5!

W35
1

16364g5 F216~r621!190c~r521!

1S 80~122c!2
531

4
c2D ~r421!

1~264294c1380c2160c3!~r321!

1~2481336c2333c22150c3254c4!~r221!

12~122c!~32241c214c2266c3!~r21!

26c~122c!2~7214c22c2!~r2121!

1c~122c!2~16221c26c226c3!~r2221!

24c3~122c!3~r2321!2
3

4
c2~122c!4~r2421!G ,

~C6!

wherer is implicitly determined by

g252
1

32
@4r329cr224~122c!r12c~122c12c2!

2c~122c!2r22#. ~C7!

In the continuum limit, expandingg andr about the critical
points

g*5A10c
*
3 , r*53c* S c*5

2112A7
27 D ,

Eq. ~C7! can be solved iteratively:

r5r*1a2/3
2

3
r* ~5t !1/31a4/3

5

36
r* ~5t !2/3

2a2
35

288
r* t2a8/3

8557

311040
r* ~5t !4/3

2a10/3
3523

746496
r* ~5t !5/3

1a4
21205

442368
r* t

21O~a14/3!, ~C8!

whereg is expanded asg5g* (12a2t).
Substituting this into Eqs.~C5! and~C6!, we haveW1 and

W3 in the expanded form

W15W1
non1Ŵ1 , ~C9!
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W1
non5

28r
*
4 13~2g* !2

3~2g* !3
1a2

2136r
*
4 127~2g* !2

27~2g* !3
t,

Ŵ15a8/3
8r
*
4

27~2g* !3
~5t !4/31a10/3

4r
*
4

81~2g* !3
~5t !5/3

1a4
28527r

*
4 1972~2g* !2

972~2g* !3
t21O~a14/3!,

W35W3
non1Ŵ3 , ~C10!

W3
non5

32~4202839r* !r
*
5

729~2g* !5
1a2

160~2522611r* !r
*
5

729~2g* !5
t,

Ŵ35a8/3
320r

*
6

81~2g* !5
~5t !4/31a10/3

160r
*
6

243~2g* !5
~5t !5/3

1a4
70~115223593r* !r

*
5

729~2g* !5
t21O~a14/3!,

where we denoted the nonuniversal pieces byW1
non,W3

non and
the universal ones which give the continuum limit b
Ŵ1 ,Ŵ3 .

Now, we shall evaluateW(z) in the continuum limit.
ShiftingW(z) as

W~z!52
a1
3

1Ŵ~z!, ~C11!

Eq. ~C4! becomes

Ŵ~z!32
1

3
A2Ŵ~z!2

1

27
A150, ~C12!

where

A159a1a222a1
3227a3 , A25a1

223a2 .

Then the critical point ofz denoted byP* is determined by

A1u*5A2u*50, ~C13!

where u* means thatg,W1 , andW3 are set to the critical
values. It turns out that Eq.~C13! gives a cubic equation of
P* , and its solution is threefold:P*5(113c* )/2g* .

After substitutingz5P* (11ay) into ~C12! and expand-
ing with respect toa, ~C12! becomes
y

Ŵ~z!32
a8/3cs8/3

40322/3
T4/3Ŵ~z!

2
a4c3/2s4

160A10
~16y4216Ty212T2!1O~a13/3!50, ~C14!

wherec is fixed to be the critical valuec* , s is the irrational
numbers521A7, and the rescaled variableT5(20/s2)t is
introduced.

The solution of~C14! is

Ŵ~z!5a4/3
c1/2s4/3

A10324/3
@~y1Ay22T!4/3

1~y2Ay22T!4/3#1O~a5/3!

[a4/3
c1/2s4/3

A10324/3
w~y!1O~a5/3!, ~C15!

which gives the universal part of the disk amplitude.
Also, the nonuniversal partWnon(z) is

Wnon~z!52
a1
3

52
c

3g
1
2

3
~z2gz2!. ~C16!

2.W1„z… andW2„z…

The amplitudeW1(z) @W2(z)# represents the configura-
tion that the spins on the loop all alignA except a smallB
domain consisting of a single spin~two spins!.

From ~C1!,

W1~z!5
1

c
@~z2gz2!Wnon~z!2Wnon~z!2211g~z1W1

non!#

1
1

c
@z2gz222Wnon~z!#Ŵ~z!

1
1

c
@2Ŵ~z!21gŴ1#. ~C17!

We identify the universal and nonuniversal parts as follow
If there are polynomials ofy andT, they are nonuniversal.
Also, if there are amplitudes, with spin configurations sim
pler than that ofW1(z), multiplied by polynomials ofy and
T, they are nonuniversal. After these identifications, the r
maining terms are universal. By using this rule, the univers
and nonuniversal parts, denoted byŴ1(z) andW1

non(z), re-
spectively, are determined as
W1~z!5W1
non~z!1Ŵ1~z!, ~C18!

W1
non~z!5

1

c
@~z2gz2!Wnon~z!2Wnon~z!2211g~z1W1

non!#1
1

c
@z2gz222Wnon~z!#Ŵ~z!, ~C19!
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Ŵ1~z!5
1

c
@2Ŵ~z!21gŴ1#

5a8/3
s8/3

40322/3
@2~y1Ay22T!8/32~y2Ay22T!8/31T4/3#1O~a3!

[a8/3
s8/3

40322/3
w1~y!1O~a3!. ~C20!

By a similar manipulation for Eq.~C2! using

Ŵ~z!252cŴ1~z!1gŴ1 ,

we have

W2~z!5W2
non~z!1Ŵ2~z!,

W2
non~z!5S 1

3g
1

1

3c
~z2gz2! D F2

1

c
1
g

c
z2

c

9g2
1

1

9g
~z2gz2!1

2

9c
~z2gz2!21

g

c
W1

nonG
2
g

c S 2

3g
2

1

3c
~z2gz2! D Ŵ12

1

c S 22
1

c
2gz DW12

g2

c2
W32

g

c2

1F 1

3g2
2

1

3c2
~z2gz2!21

1

c2
~12gz!2

g

c2
W1

nonGŴ~z!1
1

g
Ŵ1~z!1O~a13/3!,

Ŵ2~z!52
1

c
Ŵ~z!Ŵ1~z!1O~a13/3!5a4

s4

160A10c
~16y4216Ty212T2!1O~a13/3![a4

s4

160A10c
w2~y!1O~a13/3!.

3.W„2…
„z,s… andW„4…

„z1 ,s1 ,z2 ,s2…

To discuss the higher disk amplitudes, the recursion equation forW(2k) given by Staudacher@Eq. ~20! in Ref. @11## is useful:

W~2k!~P1 ,Q1 , . . . ,Pk ,Qk!5
1

P12gP1
22cQ12W~P1!

3HDQ~Q1 ,Qk!S gc @Q2gQ22W~Q1!2W~Qk!#211gP1DW~2k22!~P2 ,Q2 , . . . ,Pk ,Q!

2
g2

c
DP~P2 ,Pk!W

~2k24!~P,Q2 , . . . ,Pk21 ,Qk21!

1
g

c (
l52

k21

@DQ~Q1 ,Ql !W
~2l22!~P2 ,Q2 , . . . ,Pl ,Q!#

3@DQ~Ql ,Qk!W
~2k22l !~Pl11 ,Ql11 , . . . ,Pk ,Q!#1cDP~P1 ,P2!W

~2k22!~P,Q2 , . . . ,Pk ,Qk!

2(
l52

k

W~2l22!~Pl ,Q1 , . . . ,Pl21 ,Ql21!DP~P1 ,Pl !W
~2k1222l !~P,Ql , . . . ,Pk ,Qk!J . ~C21!

Let us consider the continuum limit for the casesk51 andk52:

W~2!~z,s!5
~12gz!W~s!2cW~z!2gW1~s!

z2gz22cs2W~z!
, ~C22!

W~4!~z1 ,s1 ,z2 ,s2!5
1

z22gz2
22cs22W~z2!

H @c2W~2!~z1 ,s2!#Dz~z1 ,z2!W
~2!~z,s1!

1Ds~s1 ,s2!Fgc @s2gs22W~s1!2W~s2!#211gz2GW~2!~z1 ,s!1
g2

c
W~z1!J . ~C23!

For k51, puttingz5P* (11ay), s5P* (11ax) and expanding with respect toa, ~C22! becomes
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W~2!~z,s!5W~2! non~z,s!1Ŵ~2!~z,s!, ~C24!

W~2! non~z,s!5c@12as~y1x!#1A10c@Ŵ~z!1Ŵ~s!#, ~C25!

Ŵ~2!~z,s!5a21
10

s

1

y1x
@2Ŵ~z!Ŵ~s!2Ŵ~z!21cŴ1~s!#1a22

103/2

c1/2s2
Ŵ~z!2Ŵ~s!1Ŵ~z!Ŵ~s!2

~y1x!2

1a2
cs2

120

1

~y1x!2
@160~y41x4!180~yx31y3x!240y2x2

112~s210!T~y21x2!124~s25!Tyx2120T~y21x21yx!112sT~y1x!2115T2#1O~a7/3!

[a5/3
cs5/3

4352/3
v~2!~y,x!1O~a2!, ~C26!

where

w~2!~y,x!5
2w~y!22w~y!w~x!2w~x!213T4/3

y1x
, ~C27!

and we calculatedŴ(2)(z,s) up to the next leading order since it will be necessary to obtainW(4)(z1 ,s1 ,z2 ,s2) below.
Repeating the same procedure fork52, we have

W~4!~z1 ,s1 ,z2 ,s2!5W~4! non~z1 ,s1 ,z2 ,s2!1Ŵ~4!~z1 ,s1 ,z2 ,s2!, ~C28!

W~4! non~z1 ,s1 ,z2 ,s2!510c2210c@Dz~z1 ,z2!Ŵ~z!1Ds~s1 ,s2!Ŵ~s!#

2A10c$Dz~z1 ,z2!@Ŵ
~2!~z,s1!1Ŵ~2!~z,s2!#1Ds~s1 ,s2!@Ŵ

~2!~z1 ,s!1Ŵ~2!~z2 ,s!#%,

~C29!

Ŵ~4!~z1 ,s1 ,z2 ,s2!5a
5c2s

8
w~4!~y1 ,x1 ,y2 ,x2!1O~a4/3!

5a
5c2s

8

1

~y12y2!~x12x2!
F2

8

3
~y12y2!~x12x2!~y11y21x11x2!

2
1

2
@w~y1!1w~x1!12w~y2!12w~x2!#w

~2!~y1 ,x1!

1
1

2
@w~y1!1w~x2!12w~y2!12w~x1!#w

~2!~y1 ,x2!

1
1

2
@w~y2!1w~x1!12w~y1!12w~x2!#w

~2!~y2 ,x1!

2
1

2
@w~y2!1w~x2!12w~y1!12w~x1!#w

~2!~y2 ,x2!G1O~a4/3!. ~C30!

We note that the above results have symmetry under the cyclic permutation of variables

z1→s2 , s2→z2 , z2→s1 , s1→z1 ,

which should be satisfied by the definition of the amplitude. In general, however, the symmetry is totally obscure in e
sions such as Eq.~C23!. Obtaining amplitudes with correct symmetry properties constitutes a quite nontrivial consist
check for the continuum results.

4.W1„z1 ; z2 ,s2…

From the Schwinger-Dyson equation

05E dN
2
AdN

2
B(

a51

N2
]

]Aa
F trS 1

z12A
ta

1

z22A

1

s22BDe2SG ,
we have
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W1~z1 ;z2 ,s2!52
1

c
$Dz~z1 ,z2!@z2gz22W~z1!2W~z2!#W

~2!~z,s2!1gW~s2!%. ~C31!

By a similar calculation as before, we find

W1~z1 ;z2 ,s2!5W1
non~z1 ;z2 ,s2!1Ŵ1~z1 ;z2 ,s2!, ~C32!

Wnon~z1 ;z2 ,s2!52Dz~z1 ,z2!~z2gz2!S 12
s

P*
~z1s222P* ! D

1
s

P*
S 2c3g2

2

3
~z12gz1

2!2
2

3
~z22gz2

2! D1gS 1

3g
2

2

3c
~s22gs2

2!2D
2

s

P*
@Ŵ~z1!1Ŵ~z2!#2

g

c
Ŵ~s2!2A10

c S 2c3g2
2

3
~z12gz1

2!2
2

3
~z22gz2

2! DDz~z1 ,z2!Ŵ~z!

2A10

c
Dz~z1 ,z2!$~z2gz2!@Ŵ~z!1Ŵ~s2!#%

2A10cDz~z1 ,z2!Ŵ1~z!2
1

c
Dz~z1 ,z2!@~z2gz2!Ŵ~2!~z,s2!#

2
1

c S 2c3g2
2

3
~z12gz1

2!2
2

3
~z22gz2

2! DDz~z1 ,z2!Ŵ
~2!~z,s2!, ~C33!

Ŵ1~z1 ;z2 ,s2!5
1

c
@Ŵ~z1!1Ŵ~z2!#Dz~z1 ,z2!Ŵ

~2!~z,s2!

5a2
cs2

16
@w~y1!1w~y2!#Dy~y1 ,y2!w

~2!~y,x2!1O~a7/3!. ~C34!
-
d

e
al

e

These results show the following scaling behavior for th
general disk amplitudes:W(2k)(z1 ,s1 , . . . ,zk ,sk):

Ŵ~2k!~z1 ,s1 , . . . ,zk ,sk!

5a
7
3 2

2
3 kw~2k!~y1 ,x1 , . . . ,yk ,xk!, ~C35!

which is consistent with the analysis of the boundary confo
mal field theory@5#. An argument for this is as follows: The
gravitationally dressed spin operator exists at the bound
of domains and its dimension is@y#2/3. This is derived by
considering the gravitational dressing of the spin operat
whose dimension is@y#1/2, in the boundary conformal field
theory in flat space@25#. In Eq. ~C35!, increasingk by one
unit corresponds to adding the two domains. Clearly, t
boundaries of domains are also increased by 2. Then,
dimension ofw(2k) is changed by a factor

@y#23
2
3 123~21!5@y#2

2
3,

where 23 2
3 comes from the dressed spin operators at the t

boundaries, and 23(21) from the two domains. This coin-
cides with~C35!.
e

r-

ary

or,

he
the

wo

APPENDIX D: CONTINUUM SPIN-FLIP OPERATOR

In the matrix model before taking the scaling limit, a do
main consisting of only a single flipped spin can be obtaine
as an integral of a general domain,

1

N
trS 1

z2A
B••• D5r

ds

2p i
s
1

N
trS 1

z2A

1

s2B
••• D . ~D1!

Let us construct the continuum version of this operation. W
can do this by deriving the relation between the univers
parts of the both sides in~D1!.

First, let us considerŴ(2)(z,s) and Ŵ1(z). Comparing
Eqs.~C20! and ~C27!, we have

E
C

dx

2p i
w~2!~y,x!52w~y!21T4/3

5w1~y!22T4/3, ~D2!

where the contourC surrounds the negative real axis and th



n
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polex52y. The calculation can be performed by using th
formula ~B21! after expanding the numerator ofw(2)(y,x)
with respect to the largex. In such a calculation, we assum
that the unintegrated variabley is outside the contour, and
2y is inside. By including the overall factors, it is rewritten
as

s21r̂
ds

2p i
sŴ~2!~z,s!

5Ŵ1~z!2a8/3
21/3s8/3

40
T4/31O~a3!, ~D3!

where the integral symbol

r̂
ds

2p i
s

is used in the sense of

r̂
ds

2p i
s5P

*
2 aE

C

dx

2p i
.

Next, for Ŵ(4)(z1 ,s1 ,z2 ,s2) andŴ1(z1 ;z2 ,s2), we use
the formulas

E
C

dx1
2p i

1

x12x2

x1
a

x11y1
52

x2
a

y11x2
~a¹Z!,

E
C

dx1
2p i

1

x12x2

x1
n

x11y1
52

y1
n

y11x2
~n50,1,2, . . .!,

which are derived from the formulas in Appendix B, wher
we regard again that the unintegrated variablesx2 ,y1 are
outside the contour, and2x2 ,2y1 are inside. After some
calculations, we have

E
C

dx1
2p i

w~4!~y1 ,x1 ,y2 ,x2!

5@w~y1!1w~y2!#Dy~y1 ,y2!w
~2!~y,x2!, ~D4!

s21r̂
ds1

2p i
s1Ŵ

~4!~z1 ,s1 ,z2 ,s2!

5Ŵ1~z1 ;z2 ,s2!1O~a7/3!. ~D5!

We can use this method also for a domain consisting
two flipped spins. For a preparation, we shall compute t
amplitudesŴ2(z1 ;z2 ,s2) andŴ1(z1 ;z2 ,s2 ,z3 ,s3). From
the analysis of the Schwinger-Dyson equations similar in A
pendix C, we obtain
e

e

e

of
he

p-

Ŵ2~z1 ;z2 ,s2!5a10/3
s10/3A10c
320321/3

w2~y1 ;y2 ,x2!,

w2~y1 ;y2 ,x2!

5@2w~y1!
22w~y1!w~y2!2w~y2!

213T4/3#

3Dy~y1 ,y2!w
~2!~y,x2!, ~D6!

Ŵ1~z1 ;z2 ,s2 ,z3 ,s3!5a4/3
5c2s4/3

16321/3
w1~y1 ;y2 ,x2 ,y3 ,x3!,

w1~y1 ;y2 ,x2 ,y3 ,x3!

5@w~y1!1w~y2!#Dy~y1 ,y2!w
~4!~y,x2 ,y3 ,x3!

2Dy~y2 ,y3!w
~2!~y,x2!Dy~y3 ,y1!w

~2!~y,x3!. ~D7!

Then it is easy to see that the following formulas hold:

E
C1

dx2
2p i EC

dy2
2p i

w1~y1 ;y2 ,x2!

5E
C1

dx2
2p i EC

dy2
2p i

w1~y2 ;y1 ,x2!

5E
C1

dx2
2p i EC

dx1
2p i

w1~y1 ,x1 ;x2!

5E
C1

dx2
2p i EC

dx1
2p i

w1~y1 ,x2 ;x1!

5w2~y1!12T4/3w~y1!, ~D8!

where the contourC1 wraps around the contourC. More-
over, after a straightforward but lengthy calculation, we ca
show that

E
C1

dx2
2p i EC

dy2
2p i

w1~y1 ;y2 ,x2 ,y3 ,x3!

5E
C1

dx2
2p i EC

dy2
2p i

w1~y2 ;y3 ,x3 ,y1 ,x2!

5E
C1

dx2
2p i EC

dx1
2p i

w1~y1 ,x1 ;x2 ,y3 ,x3!

5E
C1

dx2
2p i EC

dx1
2p i

w1~y1 ,x2 ;x1 ,y3 ,x3!

5w2~y1 ;y3 ,x3!22T4/3Dy~y1 ,y3!w
~2!~y,x3!. ~D9!

Now by taking the overall factors into account,~D8! and
~D9! are rewritten as
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s21r̂
ds2

2p i
s2S r̂

dz2
2p i

Ŵ1~z1 ;z2 ,s2! D
5s21r̂

ds2

2p i
s2S r̂

dz2
2p i

Ŵ1~z2 ;z1 ,s2! D
5s21r̂

ds2

2p i
s2S r̂

ds1

2p i
Ŵ1~z1 ,s1 ;s2! D

5s21r̂
ds2

2p i
s2S r̂

ds1

2p i
Ŵ1~z1 ,s2 ;s1! D

5Ŵ2~z1!1a8/3
21/3s8/3

40
T4/3Ŵ~z1!1O~a13/3!, ~D10!

s21r̂
ds2

2p i
s2S r̂

dz2
2p i

Ŵ1~z1 ;z2 ,s2 ,z3 ,s3! D
5s21r̂

ds2

2p i
s2S r̂

dz2
2p i

Ŵ1~z2 ;z3 ,s3 ,z1 ,s2! D
5s21r̂

ds2

2p i
s2S r̂

ds1

2p i
Ŵ1~z1 ,s1 ;s2 ,z3 ,s3! D

5s21r̂
ds2

2p i
s2S r̂

ds1

2p i
Ŵ1~z1 ,s2 ;s1 ,z3 ,s3! D

5Ŵ2~z1 ;z3 ,s3!

2a8/3
21/3s8/3

40
T4/3Dz~z1 ,z3!Ŵ

~2!~z,s3!1O~a11/3!,

~D11!

where the integral symbols are used in the sense of

r̂
ds2

2p i
s25P

*
2 aE

C1

dx2
2p i

, r̂
dz2
2p i

5P* aEC
dy2
2p i

,

r̂
ds1

2p i
5P* aEC

dx1
2p i

.

These formulas show us that the domain consisting of t
flipped spins is constructed by shrinking the domain betwe
two microscopic domains consisting of a single flipped sp
Indeed, by substituting Eq.~D5!, the first line of~D10! be-
comes
wo
en
in.

s21r̂
ds2

2p i
s2F r̂

dz2
2p i S s21r̂

ds1

2p i
s1Ŵ

~4!~z1 ,s1 ,z2 ,s2! D G .
Thus the symbol

s21r̂
ds i

2p i
s i

is the single-spin flip operator, while

r̂
dz2
2p i

shrinks the domainz2 to nothing in conformity with the
original matrix model operation.

APPENDIX E: COMMUTATIVITY OF THE MIXING
MATRIX WITH SPLITTING AND MERGING PROCESSES

Here, we present the calculations which lead to Eq.~115!;

F SM d

d Ĵ
D ~SM d

d Ĵ
D G

I

5FMS d

d Ĵ
~

d

d Ĵ
D G

I

,

for the first several componentsI5A,B,1,2, and Eq.~116!,

F`SM d

d Ĵ
D G

I ,J

5(
K,L

M IKMJLS `
d

d Ĵ
D
K,L

,

for (I ,J)5(A,A),(B,B),(A,1),(B,1),(A,2),(B,2),(1,1).
First, we consider Eq.~115!. For I5A,B, it is trivial from

the definition ofM and~:

SM d

d Ĵ
D
A

5
d

d ĴA~z!
,

SM d

d Ĵ
D
B

5
d

d ĴB~s!
,

S d

d Ĵ
~

d

d Ĵ
D
A

52]zS d2

d ĴA~z!2
D , ~E1!

S d

d Ĵ
~

d

d Ĵ
D
B

52]sS d2

d ĴB~s!2
D . ~E2!

For I51, using
SM d

d Ĵ
D
1

5A10cS d

d ĴA~z!
1

d

d ĴB~s!
D 1

d

d Ĵ1~z,s!
, ~E3!
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S d

d Ĵ
~

d

d ĴD
1

522S d

d ĴA~z!
]z

d

d Ĵ1~z,s!
1

d

d ĴB~s!
]s

d

d Ĵ1~z,s!
D , ~E4!

we have

F SM d

d ĴD ~SM d

d ĴD G
1

522F SM d

d ĴD
A

]zSM d

d ĴD
1

1SM d

d ĴD
B

]sSM d

d ĴD
1

G
522A10cS d

d ĴA~z!
]z

d

d ĴA~z!
1

d

d ĴB~s!
]s

d

d ĴB~s!D
22S d

d ĴA~z!
]z

d

d Ĵ1~z,s!
1

d

d ĴB~s!
]s

d

d Ĵ1~z,s!D . ~E5!

On the other hand,

FMS d

d Ĵ
~

d

d ĴD G
1

5A10cF S d

d Ĵ
~

d

d ĴD
A

1S d

d Ĵ
~

d

d ĴD
B

G1S d

d Ĵ
~

d

d ĴD
1

,

which is nothing but the RHS of~E5!. Similarly, we can show the validity of the formula forI52 by noticing the identities

(
j51

2
d

d ĴA~z j !
]z j
Dz~z1 ,z2!

d

d Ĵ1~z,s1!
5Dz~z1 ,z2!

d

d ĴA~z!
]z

d

d Ĵ1~z,s1!
2Dz~z1 ,z2!

d

d ĴA~z!
Dz~z1 ,z2!

d

d Ĵ1~z,s1!
,

(
j51

2
d

d ĴA~z j !
]z j
Dz~z1 ,z2!

d

d ĴA~z!
1S Dz~z1 ,z2!

d

d ĴA~z!
D 25Dz~z1 ,z2!

d

d ĴA~z!
]z

d

d ĴA~z!
. ~E6!

Next, we consider Eq.~116!. Note thatM takes the upper-triangular form:M IJ50 for I,J. For (I ,J)5(A,A),

F`SM d

d Ĵ
D G

A,A

~z;z8!5S `
d

d Ĵ
D
A,A

~z;z8!5(
K,L

MAKMALS `
d

d Ĵ
D
K,L

~z;z8!, ~E7!

becauseMAL5dA,L . For (I ,J)5(A,1),

F`SM d

d Ĵ
D G

A,1

~z8;z1 ,s1!52]z8]z1
Dz~z1 ,z8!SM d

d Ĵ
D
1

~z,s1!

52A10c]z8]z1
Dz~z1 ,z8!

d

d ĴA~z!
2]z8]z1

Dz~z1 ,z8!
d

d Ĵ1~z,s1!
. ~E8!

On the other hand,

(
K,L

MAKM1LS `
d

d Ĵ
D
K,L

~z8;z1 ,s1!5A10cS `
d

d Ĵ
D
A,A

~z8;z1!1S `
d

d Ĵ
D
A,1

~z8;z1 ,s1!, ~E9!

which is nothing but the right-hand side~RHS! of ~E8!.
Similarly, for (I ,J)5(A,2),(1,1), checking the formula is straightforward by utilizing identities such as

Dz~z1 ,z2!]zDw~z8,z!
d

d ĴA~w!
5]z1

Dz~z8,z1!Dw~z,z2!
d

d ĴA~w!
1]z2

Dz~z8,z2!Dw~z,z1!
d

d ĴA~w!
, ~E10!

Dz~z1 ,z18!Dw~z1 ,z18!Dz~z,w!
d

d ĴA~z!
5]z1

]z
18
Dz~z1 ,z18!

d

d ĴA~z!
. ~E11!

The validity for (I ,J)5(B,1),(B,2) is obvious from the symmetry ofM with respect toA↔B.
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