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Stochastic Hamiltonians for noncritical string field theories from double-scaled matrix models
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We present detailed discussions on the stochastic Hamiltonians for noncritical string field theories on the
basis of matrix models. Beginning from the simplestO case, we derive the explicit forms of the Hamilto-
nians for the higher critical case=3 (which corresponds to= —22/5) and for the case= 1/2, directly from
the double-scaled matrix models. In particular, for the two-matrix case, we do not put any restrictions on the
spin configurations of the string fields. The properties of the resulting infinite algebras of Schwinger-Dyson
operators associated with the Hamiltonians and the derivation of the Virasoi/aathebras therefrom are
also investigated. Our results suggest a certain universal structure of the stochastic Hamiltonians, which might
be useful for an attempt towards a background-independent string field theory.

PACS numbs(s): 11.25.Pm, 11.25.Sq

I. INTRODUCTION izes all of the correlation functions of the system at once.
One of the many unsolved problems of present PSFT's,
A common idea towards a nonperturbative formulation ofhowever, is that we do not know definite symmetry prin-
string theory is to start from the concept of string fields. Justiples, if any, on the basis of which one can more or less
as the ordinary local fields describe the motion and interacuniquely characterize the theories. Thus, most of previous
tion of particles in terms of creation and annihilation opera-attempts had to rely upon guesswork, and one can only jus-
tors, we can construct string field theories by appropriatelytify the theories by checking the agreement of amplitudes
slicing the world sheets of strings and introducing the fieldwith known results obtained from other methods, such as the
operators to create and annihilate the strings. Clearly, there imatrix models. In this situation, the observatidj that the
continuously infinite amount of arbitrariness in choosingPSFT forc=0 can be interpreted as the collective field
slicings. For instance, the light-cone string field thefty  theory of matrix models formulated in stochastic quantiza-
uses the lightlike plane in the target spacetime to slice théion seems very useful and suggestive. In connection with
world sheet, while the covariant string field theor[@$, in  this, we should recall an attractive idga] of relating the
general, use different methods of slicing, which are based orenormalization group formulation of string field equations
the geometry of the moduli space of Riemann surfaces. Th® stochastic quantization.
arbitrariness of slicing may be interpreted as a sort of gauge Another crucial question of PSFT's for further developing
freedom of the theory. At present, however, we have no sathe theory is whether or not this method of slicing is mean-
isfactory framework to formulate such a gauge structure in angful for constructing string field theories for>1 and criti-
systematic and general way. cal strings. The simplicity of proposed PSFT’s for the case
Recently, an interesting new way of slicing has been proe<1 is of course due to the simplicity of the target spaces.
posed[3], and the corresponding string field theor{ds5]  For example, in the case where the target space is the Ising
have been suggested for the case of noncritical strings witmodel, one can deform the slicings such that the spin con-
c=0 and the case with minimal conformal matter figuration on each string field is either all spin up or all spin
c=1-6/m(m+1). In this proposal, the world sheets are down|[8]. If one goes ta@> 1, the slicing of this type would,
sliced by using a certain time parameter, which is intrinsi-however, be too singular to be tractable and one would have
cally defined on the world sheet as a measure of the distancés introduce string fields without making any restrictions on
from the boundaries of the world sheets. In this paper, weossible matter configurations.
will call the string field theories of this type “proper-time” From this view point, it seems important to treat even the
string field theorieSPSFT’9, in analogy with the familiar casesc<1 without such restrictions and to study the struc-
proper-time representation of propagators in ordinary fieldure of resulting PSFT, since we naturally expect that such a
theories. In PSFT’s, it seems less difficult to incorporate theformulation should exhibit certain universal structure of the
higher-genugand, hopefully, nonperturbatiyeffect than in  general PSFT which is common to PSFT for general critical
the moduli space approach as employed in the ordinary castrings. Since there is no known symmetry principle on the
variant string field theories. Remarkably enough, there existbasis of which we can derive the theories, it is natural to
a single exact Hamilonian operator which directly characterdirectly derive such a formulation starting from the matrix
models. That is what we shall present in this paper. Our hope
is to get some insight into the nature of the PSFT’'s by de-
*Electronic address: sugino@hep1.c.u-tokyo.ac.jp riving the formalism from the matrix models as explicitly as
TElectronic address: tam@hep1.c.u-tokyo.ac.jp possible. We will follow the suggestion of RdB], using a
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slightly different approach, and construct the PSFT Hamilto-As is well known, the Fokker-Planck equation describes the

nians directly by taking the double-scaling limit of the matrix statistical evolution of the probability distribution function

model Hamiltoniang. ¥ (x,y,r) for the system described by the stochastic equa-
In the next section, we will first review our method of tions of motion

deriving the stochastic Hamiltonian from the matrix models.

We illustrate the method by using a simple quantum- dx )

mechanical model with two degrees of freedom and point out dr- T (4)
some crucial assumptions required for proper-time string

field theories. In Sec. I, we treat the case of the one-matrix dy S

model and derive the Hamiltonians for the cases of a EZ_WJF 72, 6)

k=2(c=0) critical point and, as a simplest example of

higher critical models, &= 3 critical point. In Sec. IV, we where 7,,7, are Gaussian random noises. In the limit of

discuss the Virasoro algebra structure associated with th?_m the solution of the Fokker-Planck equation reduces to
Hamiltonians. Using the example witt= 3, we will clarify the g;ound state

how the closed Virasoro algebra is obtained for higher criti-
cal cases. In Sec. V, we proceed to discuss the two-matrix ¥_e S (6)
model. Technically, this case is much more complicated than

the case of the one-matrix model and requires some neWatisfyingHW¥ =0 underthe assumption thaS>¥ rapidly
ingredients which have not shown up in the case of the onegecreases at infinity, corresponding to the positivity of the
matrix model. We will exhibit some interesting properties onHermitian Laplace operator

the structure of the stochastic Hamiltonians, which may in-

deed be regarded as an example of the universal structure of eS?He $2=DID,+DJD,, (7

the general PSFT's. In Sec. VI, we will discuss the closure

property of the infinite algebras associated with our Hamil-with

tonians. Then, in Sec. VII, thé/; algebra of the two-matrix

model will be derived starting from the infinite algebra. 529 op

These two sections provide consistency checks for the results e
of Sec. V, by deriving the expected properties of the two-
matrix model from the present formalism. In the final sec-
tion, we will conclude the paper by discussing possible im- D,=e"
plications of our work and remaining problems. Throughout
this paper, we had to perform a number of tedious computa-
tions for which we could not find any appropriate references
Most of such details will be described in the Appendices.

2.9

Si2
ay

e

The Green function of an arbitrary observablecan be
expressed as

II. HAMILTONIAN OF STOCHASTIC QUANTIZATION (@)= lim J dxdy”(x,y)¥(x,y, 7). (8

T—®

In this section, we will briefly introduce our method for ) )
deriving the Hamiltonian of PSFT. For clarity, we take a When (6) is assumed to be the unique ground state of the

simple example of zero-dimensional field theory with two HamiltonianH, we are entitled to suppose that the entire
degrees of freedom,y with actionS(x,y): Schwinger-Dyson equation is replaced by a single ground-
state condition given as

= 5+ S(X,y)
z f dxdye =2 @) lim f dxdy (x,y)H (x,y,7) =0, ©

The idea of stochastic quantizatiphO] can be summa-

rized by introducing the Hamiltonian which is, after partial integrations, equivalent to

0 0 J 0
Jd[ad IS Jd [ ad IS f dxdy —e S—+ —e S—|7=0. (10

S i) I 2) X ax gy ay

ax\ax ' ox| ay\ay ' ay
Using the generating functional witth=e’**J%2Y  this is
and the Fokker-Planck equation rewritten as

J (3. z191=0 11
V(XY= —HY(xy,7). 3) 153/ 231=0, (1D

—  S(X,y) +J1X+Joy
For previous works which discuss the possibility of the PSFT Z[J] J’ dxdye S (12

with general matter configurations in the continuum formulation,
see[5,9]. with
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HJa—JTJ(9+JTJa 13 HZ—fdda’SaJra’Sﬁ S+ Jif
19d) TN T eg) T2 T ) (13 = Y Tax Ty ey =~
o)
T,=— Ji, (14)
1= EATRECN, ! is then recast into the form
T AT 15 TZ+HZ=0, (23)
2= S 73, 33,33, ¥ (19

where

From the assumption of the uniqueness of the solution for
the ground-state conditiofill) (that we call the Hamilton HOz= f dxdy(—er —
constrain}, we can impose

w3 )

T,Z[J]=T,Z[J]=0, (16)  Thus, under the assumption that the Hamilton equation is
equivalent to the Schwinger-Dyson equatioT\%Z=0, the
which is nothing but the general form of the Schwinger-first term of (23) vanishes and the Hamilton equation is re-
Dyson equation for our system: duced toH°Z=0, a form which is formally independent of
the starting actiorss. Here,TiO’s are the Schwinger-Dyson

Z JiTi(’)Z

J _ operators with the shifted sourde+ &, 5 or, in other words
— _ S(x,y) +JI1x+Jry p i,S ’ ’
T120J] f dxdyaxe T (A7 with no bare action.
Now, to gain a more concrete understanding on the above
9 assumption, let us consider a simple example with the bare
T,2001= [ dxdye S0 18)  acton
. . L . . x2 X3
Note that the integrability condition is automatically satis- S(x,y)=V(X)+V(y)+cxy, V(x)= §+9§'
fied:
a The operator§;,T, are given as
[T1.T2=S4| J. 2| =Su{ . 25/=0. (19 e
Ti=——3-=9-5—Co3 -+, (24)
In general, by introducing more general source terms 1 9J1 2
>;Jifi(x,y), the stochastic Hamiltonian takes the following P 2 p
form with a general set of operators: - g——C—+
T, a7, 9(9Jg C(?Jl Js. (25
HZZ JiTi. (200 On the other hand, from the viewpoint of the Schwinger-

Dyson equations, it is easy to check that the following set of

Then, the assumption of uniqueness of the ground state infduations gives a closed recursion equation(fo):

plies that the partition function satisfies

J
=f dxdy—x"e"S, (26)
T,2[3]=0, (22) %
J
where o=f dxdywx”e_s, 27
T.2[J] fdd (”f+(”fi> p( s+2af)
i = X — —|exp — ili ], J
X Ix  ay ay i _ YNy a—S
22 0 dedyﬂxx ye S, (28)

which can be, for an appropriate choice of the source termsyhich are obtained from th&,,T, constraints by making a
expressed as functional differential operators in terms opower series expansion ih,J, as
Ji's and is equivalent to the Schwinger-Dyson equations of

the system. This should be regarded as a fundamental as- " 2 T,2[3] —0 (29)
sumption of the method of stochastic quantization. We note aJ“ 1 J:O_ '
that in general the algebra of the Schwinger-Dyson operators
T; is non-Abelian. "

Here, we add an important remark which partly underlies o 1241 =0, (30
our later discussions. Namely, by introducing general source 1 J=0
terms, together with this assumption, we can make the for- g+l
malism background independent. After making a shift of the —T,7[J] =0, (31
source functior;—J; + & s, the Hamiltonian equatio20), N 3=0
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respectively. The closed recursion equation {®?) is ob-

tained by expressing the correlators of the form Jiedi, ﬁﬁi/f;r, (34)
(x"y),(x"y?) using the last two equations in terms @f") '
and by substituting the results into the first equafion. respectively. Then, the correlators are given as

However, it is not difficult to see that we cannot derive all

of these condition$26)—(28) directly by taking finite order no5
derivatives with respect td;,J, from the single Hamil- (Z| gl -¢$|0>=(H T) Z[J] (35)
tonian constraint: i=1 dJ; J=0
_ Note that under the above transformation the normal order-
(31 T1+3,T,)Z[J]=0. (32

ing J---9/dd--- for J,d/9J is automatically transformed

. 1 into the oney™- - - - - - for ¢,y". The Hamilton constraint

For example, by taking a derivativ@™*~/9J79J, of (32), we is thus (Z|:H(4, ¢1):=0, and the statéZ| is obtained as
obtain the sum of30) and(31), but can never obtai(80) or (z|=lim,_..(0]e~ "H:.

(31), separately, by taking any derivatives of finite order. T
Thus, the equivalence of the Hamiltonian constr&88)
with the Schwinger-Dyson equatiori$6) is based on the
assumption of the uniqueness of the solution(&®) which In this section, we derive the stochastic Hamiltonians

requires thate™ 52 rapidly decrease at infinit,y—*%.  from the one-matrix model at the=2 andk=3 critical

This uniqueness assumption amounts to setting certain Cofmints which correspond to the matter central chage®
ditions on the partition functio[J] which cannotbe ex-  andc=—22/5, respectively.

pressed in anyinite order of the expansion with respect to
the source functiong; . If the appropriate global conditions
for the uniqueness are not satisfied, the stochastic Hamil-
tonian would faif to give a unique ground state in the limit ~ We first treat the case af=0. Although this case has
7—, and the limit would, in general, depend on the choicealready been discussed in Rg8] within the framework of
of the initial state. the collective field method, we present some details for the
In the case of simple quantum-mechanical models, it igourpose of explaining our method which is slightly different
relatively easy to identify the necessary global conditionsfrom Ref.[6].
However, in more complex systems such as the double- The generating functional of the=0 one-matrix model
scaling limit of matrix models, it is quite nontrivial to state is defined by
such conditions, and, in fact, there has been no known result
replying to this question. Z[3]= EJ dV’Me NtV(M)gd-@
It is clear that the PSFT proposed in REf] is based on VA ’
the tacit assumptions of a similar nature as above. Unless the

lll. PSFT’'s FROM THE ONE-MATRIX MODEL

A. Stochastic Hamiltonian atc=0

Hamiltonian is able to define a more or less unique ground 2
i i z=| dV"Me N"VW (36)
state under the same constraint as for the Schwinger-Dyson '
equations, the concept of the PSFT Hamiltonians would be-
come less significant, since in that case we have to recourse 1 g
to the Schwinger-Dyson equations themselves for the defini- V(M)= EMZ— §M3, (37

tion of the theory.
In the following sections, we will discuss the Hamilto-
nians of PSFT for one- and two-matrix models using the J~<I>=fd—;J(§)CI>(§), (39)
above methods, keeping those assumptions in mind. We here L2mi
mention that our method can be translated into the language
of Ref.[4] by making a functional transformation where

J _1 1
Z[J]H<Z|=<0|exp(2 wia—Ji)Z[J]lJo. (33 PO=5"7=m (39

i ) o is a loop operator and the contourfntegrall is chosen to
The source functions and their derivatives are replaced bjg paraliel to the imaginary axis such that in the region of the
the annihilation- and creation-string fields right of L there are no poles ob(¢). The source function
J({) can take an arbitrary form as a function @n The
. _ _ variable{ can be regarded as being conjugate to the length of
This procedure is essentially the same as the one employed ihe loop in the sense of a Laplace transform.

Ref. [11] to derive a closed subset of the Schwinger-Dyson equa- \ng start with the ground-state condition of the stochastic
tions for the two-matrix model. Hamiltonian

3This is obvious for the case of the usual Laplaciar: 3;4,4; .
There is an infinite number of polynomial solutions faf =0. The N2
. . 1 2 J N d
uniqueness can be guaranteed under the requirement, say, of the- _ — | gN“\m 2 e~ N V(M) gl ® (40)
L2 normalizability condition. z =1 M M

a
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whereM is expanded by the basis dFXN Hermitian ma- 92 9 5
trices {t?}: > a2z PO="NZ0(0? 42
N? :
1 1
M= M,t~ * neay 1ol ra
VS ]
Using the identities n—1
= dg( ro(f- 2 R k)), (43

> tr(At*BtY) = trA trB,
¢ where the symboD, is the so-called combinatorial deriva-

tive, defined as
> tr(At?) tr(BtY) = trAB,

f(O)—f(¢
Dz(g,wf(z)E%, (44)
we obtain formulas such as
1 which appears when two loops merge into a new loop.
N ) , We can then reduce E@40) to a functional differential
2 M, o, PO g, D=7y 90 DALLR(2), (4] equation with respect to the sourd?):
|
0=72[J], (45
5= [ e300 553 )| - - ad] | a0 [ S s DA s

(46)

The functional derivatives/ 6J({) is defined for{ on the  The region Ré=¢, contains no singularities ab(Z). So,

contour and acts on the sourd€’) as a delta function in the scaling limit we can choose as the conthuthe line
[¢, —ic, L, +i], which is mapped to the imaginary axis in
33(¢") Coris , 4 they plane.
8J(0) m o(¢=¢") 47 In order to obtain the correct continuum limit, we have to

subtract nonuniversal parts from the correlation functions. In

when both¢ and ¢’ reside on the same contou#Z is the  the present case, it is required only for the one-point disk
exact stochastic Hamiltonian for tle=0 PSFT before tak- amplitude. Namely, the connecté&dpoint function
ing the double-scaling limit. The first term represents the _
splitting process of a loop, while the second represents the W(La - L) =(P (L) @ (L))e
merging process of two loops. Note that the expres&@  is written as
is normal ordered in the sense that the differential operators
8183(¢) always sit right ofJ(¢).

Introducing a lattice spacing, we now take the con-
tinuum limit (the double-scaling limjta— 0 by defining the
scaling variables as W(Lq, - L) =a%w(yy, ... yx) +0(@B 172

1
W(0) =5 (¢{—g¢?)+a%w(y)+0(a%),

(K=2),

1
=¢,(1+ay), g=g,(1-a%), —=a"%,
=4l Y) 970! hON Ot where(¢—g¢?) is the nonuniversal part of the disk ampli-

tude, andw is the universal part giving the correct continuum

where the critical points are limit.
314 Thus we redefine the sour&éy) and the functional de-
,=(3+1)x3¥ g, == rivative by
1 5 é
The meanings of the variablgs t, andg,, are the Laplace 500 =590+ T (48)
conjugate of loop length, the cosmological constant, and the ()
string coupling constant, respectively. From the result of the )= g;la‘s’zj(y). (49)

disk amplitude[12], it can be seen that the contribution of

the poles of®({) accumulates to a cut of the interval The shift (48) corresponds to the rescaling of the partition
[—(V3-1)x3¥+0(a?), ¢, —4x3 Yat+0(a?)]. function as
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Then,.77 becomes

2[3)= exp( f o O 952>/2)Z[J .

52

i dy
o Ali2,—1 _ 3_3 1
o=l “ P (y)a(wy)z Cly*~ 3 Ty) +0(a!)

E 5
+gzst£;f 27T,J(y)f J(y )aydy: Dz(yy)ml

where

16 3
o3

e — - 3
3(1+\/§)2t, 12(1+ﬁ) .

Note that in the merging interactiomamely, the term of the forndJé/ 8J) the shift of the functional derivative does not
contribute because

1
343g'Dz(§:§')§(Z_922)=0- (50)

After finite rescalings
1)

- - )
J )HJ )C— 1/2, N C1/2,
(¥) =y 33(y)  83(y)

Ost— 9std« C1/27

we have the stochastic Hamiltonian in the continuum theory,

=[5 il A 2 [* dy J f J D i 51
A=) o (y)é’ym_ 2 WP +as| J(y) Ny (y")dydy:Do(y,y’ )m (51
) , 3
p(y)=3y*— 7T, (52)
|
where the overall factoa'/?;, *CY? was absorbed by a re- 819> 93 .
definition of the fictitious time. This result, which has been VIM)= 5| 5 M2+ M3+ SoM* (53)

already known from Refl.6], essentially coincides with the

form of thec=0 noncritical string field theofyproposed by whereg; is a real solution of the cubic equation
Ishibashi and Kawdi4], if one uses the Laplace-transformed

string fields instead of their loop-length representation. 259%—3093+ 32=0

B. PSFT for a higher critical one-matrix model or, explicitly,

We next treat a case of a higher critical pdint 0\ 13
[k=3(c= —22/5)]. This problem is interesting since a naive __ (_) + 13, (g— vy 4
extension of the&e=0 Hamiltonian leads to an apparent con- 9s 25 [® 376) (8-316) ’ (54
tradiction as discussed in R¢fl5].

Thek=3 critical theory is realized by the potential of the and
fourth-degree polynomial

92=—3 (55)

“For a derivation of the=0 Hamiltonian directly from dynami-
cal triangulation, see Ref13]. Note that we do not use the well-known even critical poten-
SExtension of the formalism of Reff3] to higher critical cases has tial (of sixth ordej at the k=3 critical point, in order to
been given ir{14]. avoid a complication caused by tdg symmetnf
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Now, let us derive the Hamiltonian for tHe=3 critical 1 32+ 259, 34
case. Considering the generating functiot®) with the po- N trM) =— 15 a gt
tential (53), we have the Hamiltonian before taking the scal- 0
ing limit: 3
+a* %3+ 0(a%), (60)
T = g 21y 2 Ly ’

where, in the disk amplitude corresponding to a macroscopic

B 1, 1 loop, the first termgV’ () is the nonuniversal part, while the
+ N 93l + 55 595 277, 5J(é") second ternw(y) denotes the universal one:
0 1 1 3
2 J(g’)f J(g’ )30 DLL,{ )6J(Z) W(y)—— 5/2 y2— §T1/3y+ §-|-2/3 \/W/? (61)
(56)

with T= (2§;1)3t. For the microscopic disk amplitudé0),
the first two terms represent the nonuniversal part, and the
third term is universal. .
o Using the above results, we see that the sod(e® and
Zm 53@/) the microscop_ic loop operatafy, in the continuum theory
should be defined by
corresponds to the insertion of a microscopic loop repre-
sented by the operator (&) trM. In thec=0 case, no such

where§ is the integral over the contour encircling the poles
of ®(¢). Note that

sﬁ

term appears if one uses the third order potentia(33, —_—= EV’(§)+a5’2~i, JO=a" " ),
because of the formul&t3). 83(¢) 2 od(y)
Next, we need to identify the nonuniversal parts of loop
operators in the scaling lima—0 defined by dz’ 5 32+ 2595 4
$—' = —al=t+a*7,. (62
N 2mi 7 63(L") 15 5
E=l—a3t, (57)
The string coupling constant is introduced as
{={(1+ay), g*:T- (58 1
N _a7lzg st (63)
From the results of Appendix A, we have
_Tyr 5/ 7/ ubstituting (57), (58), and these rescaled expressions
(2(D)o 2V (§)+a*w(y) +0(a™), (59 into the lattice Hamiltoniar{56), we obtain
|
= 3/27Ji°° dy 5 ATY [P B B
R I 53<y>z‘z_s§* Yo+ Ty |+ 54
a-3.2 [ g 2
a0y —J(y) —J(y )dydyDa(y,y’ )gjﬁ O(a%), (64)

where as in the=0 case we chose the lifg, —ix,{, +ix] as the contout. Note that in the merging term the shift of the

derivative 6/ J produces a quadratic term with respectJtobut it does not contribute to the leading term.af asa— 0,
because

1 ie dy - i dy’ ~ 1
5] 290 [ searaaeniegvio=aa ] 23w [ g (65

After making the rescalings again,

5We do not know any previous work discussing kve3 critical point using the quartic potential. For a brief explanation of the derivation
of the quatrtic critical potential, see Appendix A.
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- 1 ..\ 5 1 5 1 1
J(Y)—>(§§EIZ> W 5575 i’zm, Co=— 2600 G g6 Os (66)

we finally obtain the continuum Hamiltonian

joo

ie dy o
]/=Lw2m I(y)o yw( f ol (y)p(y)+gsJ oY (y)J —J(y )ydy DAYy )= —,  (67)

8J(z)’

- 5 ‘
p(y)=5y*+ 7 Ty+ %, (69)

where the overall factoa®?73? was absorbed into the fic- 15 "
S

titious time. (“0)o=~52 (72)
We emphasize that in this Hamiltonian, the tadpole term
which coincide with the result§61) and (60) obtained di-
_f"” dy 3(y)p( ) rectly without using the Hamiltonian, after taking into ac-

2mi count the rescalingé66).
iS not a purec number, but contains thg-independent op- IV. DERIVATION OF THE VIRASORO CONSTRAINTS
erator 7. This is in contrast to the=0 case where the
tadpole term consists only of thenumber function. Actu- In this section, we examine the integrability condition of

ally, the “operator” part of the tadpole is a misnomer. We the Schwinger-Dyson operators associated with the Hamil-
should rather call it a kinetic term. The Hamiltonian descrip-tonian equation:

tion of the higher critical point requires a kinetic term for an

infinitesimally small loop, in addition to the genuine tadpole Z[3]=0 (73
corresponding to the-number part of. i _

In Appendix B, we will determine the operatef, using for k=2,3 cases. As a warmup exercise, let us begin from the
the Schwinger-Dyson equations. And in the next section, ussimplest case o =0.
ing this result, we confirm that it is just necessary for ensur-
ing the closure of the algebra of the Schwinger-Dyson opera- A. Virasoro algebra at k=2
tors appearing in the Hamiltonian. As is discussed in Ref. Reacalling the discussions of Sec. II, we rewrite the Hamil-
[15] in trying the extension of th_e;O Ham_lltoman to the  tonian.77 in the form
higher critical case, the integrability condition would not be
satisfied if one had naively replaced tpéy) of the c=0 , i dy
case withc-number polynomials of higher degree. The au- H= fﬁ oy
thors in Ref.[15] proposed a possible way out, which is, '
however, different from ours.

Before concluding this section, we derive the disk ampli-
tude from the PSFT Hamiltoniaf67) and compare with the )
matrix model result as a consistency check of our result. In To(y)=— ~5
the sphere approximation, the condition 8J(y)?

J(y)& T(y), (749

ayT(y)=dyTo(y)+p(y), (75)

_ —ngim B 3 y)0y DAYy )~ (76
Sy A 7O 9 s 2 YY) BAY Y ) m

Thus the Schwinger-Dyson equation associated with the
c=0 Hamiltonian is

aW(Y)?=(Y°+ § Ty*+Y(“0)0)]=0. (70) 3,T(y)Z[3]=0. 77)

is reduced to the equation for the one-point functiafy):

By demanding that the cut of(y) reside only on the real After a straightforward calculation using the functional de-
axis, as is required from the original definition of the loop rivative

operaton39), bothw(y) and the expectation value of, are .

uniquely determined as 6J(y)

aJ(y’)

=27 d(y—y'), (78)
1 3
w(y)=|y%— §T1/3y+ §T2’3 W+ TR (71)

we find a closed algebra fdr, operators:
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[ﬂleO(yl) ’ r9y2To(Y2)]

1
= —g2dy,dy,(dy,— dy) ——[To(y1) ~ To(y2)]. (79

Yi—Y2
The algebra of), T(y) is obtained by substituting
y ’r- !
To(y)=T(y)—f dy’'p(y’)

into (79). Then, using the explicit expression @f Eq. (52),
we find that the effect op vanishes:

z
&ylﬁyz(ayl_ é’yz)Dz(ylayz)J dyﬁ(Y)=0 (80)
Thus, d,T(y) forms the same closed algebrag3(y):

[(9y1T(y1) ’ U')sz(yZ)]
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where the contou€ surrounds the negative real axis, and the
contour[ —io,ic] is understood to avoid the singularity at
the origin to the right. Also, the integral is defined by the
analytic continuation using thg function and the limit
e—+0 must be takemfter the integration.

Now in calculating the commutatdiy(y),7y], we can
use(85) rather than(84), because the functional derivative

83(y)

WIZWi 5(y_y’)

is defined fory,y’ on the imaginary axis. As a result of the
straightforward calculation of performing partial integration
once, the commutatdiTy(y),,] becomes

[To(y). 0]

:_gzjd_y/yl—l/z 1 s _
) c2mi y'=yl8dly') 83(y)

) . (86)

= —giﬁyléyz(ﬁyl—ﬂyz);[T(yl)—T(yz)], (81 Substituting(B19), and using the formulas in Appendix B,
Yi7Y2 we see that only the term
This agrees with the Laplace-transformed version of the re- dy’ 1
sult in Ref.[8]. —gzy5/2 ——y
s c2mi y=y’

B. Schwinger-Dyson operators ak=3

Thek=3 case is less trivial. The only difference from the

survives after some cancellations. Thus, we obtain

k=2(c=0) case lies irp, I_Eq;(6€_3). Namely, th_ec—number [To(Y),7]= _ggtyZ, (87
part of the tadpole termy8' in p gives a nonvanishing effect
, which makes the algebr@3) for T(y) closed:
dy,dy,(dy, —dy )D (yl,yz)f dyp(y)=2(y1—Y2),
y19y,\ %, %y, Pz
e 82 [P T00.9,T(y2)]
which is the reason why the naive extension violates the :_ggﬂylgyz(gyl_ayz);[T(yl)_-r(yz)]. (88)

integrability condition. Howeverp is not a purec number

and contains the operator paft. Then, on making the sub-

stitution as in the=0 case, the algebra &fTy(y) becomes

[5le(y1) ' 0y2T(y2)]
1
= =920y, By, = dy,) S [T =T(y2)]
+209%3(y1~Y2) + dy [To(Y1),70] = 9y, [ To(Y2), o).
(83)

Yi—Y2

We note that this algebra is of course identical with the
usual Virasoro algebra, EGB17), after taking into account
the contribution from the transformatidB18). All that we
have done is merely a check of self-consistency. It clarifies,
however, how the closure of the Schwinger-Dyson operators
associated with the Hamiltonian is satisfied for higher critical
points, owing to the presence of the operator parb@f).

V. c=1/2 PSFT FROM THE TWO-MATRIX MODEL

We now apply our method to the two-matrix model and

Since” inserts a microscopic loop, it can be expressed byyerive thec=1/2 PSFT without making any restrictions on
some local operator, obtained as some coefficient of Igrge the spin configurations of the string fields. As we emphasized

expansion of the loop operatoi/&j(y). This is done in
Appendix B. The final results are

dy 1)
(/; =2 _ 1/2 84
0 027T| y 5‘](y) ( )
ie d 1)
=2 lim J s eVy2
o ro) -2 33(y)

(89

in the Introduction, such a treatment will hopefully reveal
certain universal properties of the PSFT which are basically
independent of the structure of target spaces. This is our
motivation for performing this analysis in spite of its techni-
cal difficulties.

A. Stochastic Hamiltonian of the two-matrix model

The generating functional of the two-matrix model is de-
fined by
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1 — — The componentb , () represents a loop on which only a
Z[J3]= zf dV'AdV'Be %’ ?, sz dV'AdV'Be™S, single spinA (B) is put and®, represents a loop on which
(89) two domains ofA andB spins alternatively appear times.
The variables; ,o(i=1,2,...,n) can be regarded as the
conjugate variables corresponding to lengths on the loop for
1 g spin statedA,B, respectively.
S=Nt[V(A)+V(B)—-CcAB], V(A)= §A2— §A3, As before, the stochastic Hamiltonian for this system is
derived from the identity

J- = JZm fLZ i a(0) N?

_ N2 p N2 7 —si J si J.- P
0 fd Ad Bazl aAae 0Aa 7B, —e" aBae .
+E ] 24 9%, L) (91
Liz 1 27 27 SN eL Ty e 60T
XD(L1,01, - ln,Tn), (90) By extending the formulas for the one-matrix model, we can
arrange Eq(91) in the form
where the components of the string field are defined in
terms of the matrix variables as
0=77[J],
® 1 ® B 1
7emafg) o5y
H=—J- ——J- _\/_
8J 83V 8
(I)n(glaa-lv CNC vgnvo-n)
1 o
I 1 1 1 —WJ{J(/\&J” J-T. (92
N gl_Agl_Bgn_A O'n_B

Here, reflecting the cyclic symmetry of pairg; (o), the
(n=1,2,...). derivative 6/ 6J,, is defined by

8In(L1,071, -« LT

1
2n et ot et !
5Jn(§1.0'1,...,§n,0'n) 5mn (27”) ccyclic%rmutationé)‘(gl gc(l))g(al Uc(l)) 6(§n {C(n))ﬁ((fn Uc(n))'
(93)

Let us explain the meaning of each term.
(i) The first term, the “kinetic term,”J- (K &/ 48J), coming from a part of the product of the derivatives of the classical

action and the source term, symbolizes the contributions which preserve the number of string fields. The first few components
of the kinetic operatoK are

do 1)

99 i " S L) (94

1)
(K(S—J)Au“) TR . N

dZ B
ﬁgé\]l({,a)’

( 5) . , 0

g _r2 2 3 2
(KE) 1(51101)—[%1(51—9(1)4‘(701(01—901)]m

. 9Sd(r P dg P 6, 8
o T o3, (Lrno o) P 2mi 83yl ooy O\ 8IaLy) | B3a(an))
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2

1) - -
(KJJ) ({1,01,82,02)= 21 {551-(5]—QZjZ)WLaaj(Uj_ngz)}aJ

2(£1,01,82,07)

to$ do ( o . o )
@ 2mi T\ 835(01,0,01.01,02,02) | 033(L1,01,L2,0.L2,0)

+chd—§.§( 0 + i )
2mi 7\ 633({1,01,4,01,82,02)  633({1,01,{2,02,{,02)

o o S
_gD“("l"’z)( S 5J1(z2,a>) _9D4(§1'§2)< 3L 531@,02))'

where the arrow ove# indicates that the derivative acts on S 1
the whole functions that follow it.

The structure of the higher components can be inferred
from these expressions. Basically, each component repre-
sents one of the following two processes. The first is theNamely, the (, domain has disappeared in
propagation of string preserving a spin configuration on aP,({1,01.{2,07).
loop, with the loop length being either kept fixed or de- (i) The second term
creased by one lattice unit. The second is a process in which
only a single spin is flipped and the loop length is preserved. (

1 1
Do N A e

1
B (TZ_B ’

For example, let us consideK ¢/ 8J)1({1,04). The first and
last terms express the former process. Note that, as a special
case when a domain consists of only one spin, the process

can annihilate the domain. The last term represents this. Oébm”']g from the second derivative of the source term, rep-

the other hand, the second and third terms express the lattR¥sents processes where a string splits into two. The symbol
process, with a single spin-flip preserving the loop length.

In the case of K&/8J),, it is noted that

NN
Ve

( 1) 1)
5 53V'5
Da(Ulyﬂz)m in (K&/83)2(81,01,82,02) !
represents the following loop when it acts on the partitionrepresents the result of splitting of a string with the spin
function: configurationl. The first few components are
|
5§ 4 5
Vs (g) "YU D2
52
(au\/m) (0)==00 53002’
( o 5) ( - 2( 1) P o 5 ) 1)
53V 83 1 ‘)= 8Ia(L1) " 83g(oy) 1) 831(Lr,00)]
(v s od=—23, (g gy e
5V &), oD 22 5, % Sa(o) 1) S3(Gon. L)
+2D({1,42) 4 D(£1,42)
EE1220600(¢,ay) TP 634(L o)
o

+2D,(01,02) 55 7 Polonod s

(95
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We hope the structure of the higher terms is self-explanatoryerm, symbolizes processes in which two strings merge into a
from these examples. single string. The symbol
(iii) The third term 5
"5
( 8d/ 5

! J-|J- A d
expresses the result of the two strings with the spin configu-
coming from the square of the first derivative of the sourcerationsl,J merging into a single string:

8
</\5_J (£;¢')==09:9,DAL,L )mA(Z),
AA
(/\ 5) Y — '
E B,B(U'U )__aU'&U"DS(O-io- )m,
</\ i (£;0)=0
= ;0)=0,
8/ p s
6 )
[n2) o sumer=(nE] @it su
_—19g'j:l 3§jDz(§j :g )5\]“(&“0_1’ L ,Z,O’j, . ’gn’o_n),
o )
(/\5—3)“’8(51.01,---,én,an;a’)=(/\5—J)B‘n(a’;gl,al,...,gn,an)
: 5

=—4d J D iy ! y
",Zl oiDs(7) ”)5Jn(gl,al,...,gj,s,...,gn,an)

d )
(/\5) ({1,005 - ,gnaO'n;gi,o'i):(Aﬁ)l‘n(ﬁ,a’i;é’l,al, oo dna o)

n1

n

)
= Dy, {)DW(¢ .40

i=1 On+1(1,01, + {j-1,0j-1,2,01,W, 0, ... {n,0p)

n

+J§l De(aj,01)D(0;,07)

o
5‘]n+l(§110-1! LR !gj ,S,éi,t,§j+1,0'j+l, B .fn.(Tn)’

(n=1,2,...). (96)

We again hope that the structure of the generic term is self- We here would like to emphasize an important property
explanatory from these examples. which characterizes all of the above formulas and plays an
(iv) The last termthe tadpole term which together with  essential role later in studying the scaling limit. Namely, all

the kinetic term originates from the product of the deriva-the processes occlocally with respect to the spin domains.
tives of the classical action and the source term, shows thBecause of locality, more than two domains can never be
processes of the annihilation of a string into nothing: created or annihilated at the same time. As a consequence of
this rule, only the strings consisting of one domalr, and
®z, can be annihilated into nothing. Also, only a single pair
T of domains can participate in the splitting or merging pro-
3T L2mi JA(g)ngf Js(7)9: cesses, and other domains are left intact.
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B. Hamiltonian in continuum theory

1
—3.713-(3.-¢a® -
Let us now consider the continuum limit of the Hamil- + 3! J-[3-(3- G+ ) (97

tonian(92). As in the one-matrix cases, the first task in car-
rying out this is to identify and to subtract the nonuniversal

parts of the disk amplitudes. At this point, a new featureNow, the investigation of disk amplitudes in Appendix C
arises. Namely, as we discuss in Appendix C, the nonunivelspows that the universal pa&h of the operatord, is ob-

sal part of a disk amplitude with a given spin configurationtained by a linear transformation of the form
contains, in general, the universal parts of the disk ampli-

tudes with simpler spin configurations, in addition to the
nonuniversak-number function which has already appeared

in the one-matrix model. @, =2 /zuci)ﬁ &, (99)
By introducing the connecte#-point correlator in the J
J=0 background as
Gf'l‘) ___,.k=(<I>|l @) T k=ABL2 L where. 7,5 is a mixing matrix of the universal parts, which
is the new feature noted above, aid is the nonuniversal
the generating functional is written as c-number function. The mixing matrix/,, is upper trian-
1 gular, i.e.,.7,;=0, for | <J and is invertible. The first few
Z[J]:eXF{J.G(1)+ E‘].(J.G(Z)) components 0f98) are

DA(L)=DA(L) + Ba(L),
Do) =Dg(0) + pp(0),
®1(£,0) = J10c[DA(Q) + Dg(0) ]+ Dy(L,0) + B1(,0),

Dy(L1,01,L2,02)=—106[D({1,{2)PA(L) + Do 01,0) Pe(0) 1= V10{D ({1, L) [ 1(L, 04) + Py (£,05) ]
+Da(O'lao'z)[(i)l(gl-0')+(i)1(§210')]}+‘i)2(§1-0'1152,0'2)"‘ ¢2({1,01.82,07),

" (99

where -
G = ZJ Mgy g G (k=2),

_ c 2 2
¢A(§)__@+§(§_g§ ),

Whereé,(';{ .4, Stands for the universal part &, .
Thus, by introducing the transformed source
c 2
pg(0)=— o=+ z(0—gd?), R
3 3= 3 N, (101
K
$1(¢,0)=c[1+25=y10c({+a)], the generating functionaZ[J] in the continuum theory is
obtained by the rescaling[J]=e’ #Z[J], and takes the
$o(1,01,82,0) =106, .., (109 ~ form

and c takes its critical value:c=(—1+2\/7)/27 and

s=2+ \/7 . Then the connected correlators are transformed
as

A~ A 1. .~ -
Z[J]zexp[J.Gﬂu5J-(J~G<2>)
1a a o oa
+§J-[J-(J~G(3))]+~-- : (102

GM=> #,GP+¢,, .
' Z Gy The Hamiltonian acting o&[J] now becomes
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0=.72[3], (103

1 .
- W(J.,/Zf .

- 8
INHANN H—+
( ) { ( 5 ¢

] . (109

H=—Q0.7 Y| K QYT

Pl +é
. //53

Next, we arrange Eq104) into a simpler form in which
the mixing matrix disappears. We claim the validity of the

—QA7Y. \
equations

P 5
M— + M—+
83 ¢) \/( 5 ¢>

Y- —QAu Y T-Q.77Y).

5 5 5
(/ 5 d’) ( 5 ¢ \/( 5 d))

- j(F5 (J.77Y (//5 Pl (105
5‘3 W74 .///53 \/ A /53 y
QY- || .z i Vi 5) N A (106)
- SIS 5V
QY |Qz Y| Aw °11=3.13.[ A2 (107)
o %4 /5:] 53 y
3.2 Y (3.7 (N\$)]=0, (108
|
whereF is a part of the kinetic operatdt, representing only . do
the spin-flip process. These equations make it possible to 95%0
rewrite the Hamiltonian as
5 s s is used in the sense of the integral of the variable the
w=—3. ( F2-3. (_A\/_A continuum theorfo=P, (1+ax)]:
8 8J 8
~ do _p2 dx 112
1. |- S §27Ti0-_ *a 027Ti,
_WZJ' J | NAN—=]||. (109
N where the contou€ encircles around the negative real axis

o and the singularities of the left half plan@e, stands for the
1. Justification of Egs. (105}(108) critical value P, =s(10c) "2 anda is the lattice spacing.

We now present the arguments for establishing the abovilote that there is a sort of finitenormalizationrepresented
equations. First, we consider the spin-flip process in the corY the factors™*. The derivation of the above formulas is
tinuum theory. For the universal parts of the disk amplitudesd!ven In Apperjdlx D. o
the loop containing a microscopic domain which consists These relations reflect the property that the spin-flip pro-

only of a single flipped spin is obtained from the loop con-Ccess occurs locally with respect to domains(140), (111)
taining only macroscopic domains by the rule only theo domain is concerned and the other domains do not

change at all. This implies that a relation such(&E0) and
N _,n do ~ o) (119 should hold for any amplitudes with an arbitrary num-
— I Wi (§)=—s Ssﬁaagw ({,0), (110 ber of handles with generic spin configurations. The com-
plete general proof of this important property would be,
R ~do . however, technically formidable, since it would require ex-
Wl(gl;gz,al)=s‘1gﬁra\/\/(4>(§1,a,gz,al), plicit identification of the universal part for general loops
! with arbitrary spin configurations. We can now rewrite the

(11D spin-flip process in

where the domairr has been shrunk into the microscopic
domain by integration. Here we borrow the notations of Ref.
[11] for the disk amplitudes. For their defnitions, see Appen-
dix C. The integral symbol as

K Q)

A

A
0 53
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do 1) in
_5g§m0' /// ({,0)+ ¢1(L,0) 5
! K<,,//5—A+¢ (o)
5J B
in do S
=-S5 Sﬁ P
2 " 53, Lo) and
1 do | 5 ]
. (r_qr2 y
L 2 d
1 c ) 2 22 _ Bl
599+ %(é—gz )+ gE—9)7), (113 d¢ //5
py «//’5 ({1,01,8,01)+ ¢
L 2 J

where the first term is the universal part, and the others are
the nonuniversal parts which are obtained by replacing
W(g) with 5/5JA(§) in (C19.

Similarly, we can derive the expressions for

o
K|\ #Z—=+d¢
d¢ 5

(£1,01).
Mz |§ '

(/// )(ZU)+¢1( )}

Using these results, we arrive at E405 with

3.(e2) = Jng J S
: 5 2 AlQ)es™H(— g)?ﬁzﬂ_l 6J1(§,0')

)
f_JB(U)CS Y- rr)952m m
dy doy+ il 4o ° For 5
) Py N e
fLZ’iTI 2mi Ji({1,01)cs” E1;2771 7 2(5110’ {1,01) 452771 Pl + B

where the ellipsis stands for the terms containing the higher Although we do not elaborate further on determining the
componentsA]n (n=2). explicit continuum limits for higher components, it is natu-
We here note that the tadpole term is canceled with dal, because of the local nature of the spin-flipping process,
contribution of the same form from the kinetic term. This canto suppose that the above expression already indicates the
be regarded as a consequence of our definition of the distteneric structure of the kinetic term, namely, the flipping of a
universal part of the single-spin-flip amplitudé/,(¢): single spin with general spin configurations, the absence of

Roughly, the kinetic term contains a product of the form  the tadpole term, and the kinetic term without spin flipping.
Second, we consider the splitting and merging processes,

Egs.(106) and(107). In Appendix E, it is explicitly checked

JAW"‘(A_’B), that
and hence there is always the freedom of absorbing the tad- ///i //i |y i K (115
pole terms, which are polynomials times the sources Y v 83 | e 5,3\/53

Ja(Jg), by appropriately defining the universal parts of the
spin-flip disk amplitudes and making the shifts for
for 1=A,B,1,2, and that

5
N A=
8 )

In the case of the one-matrix model, the spin-flip process is J
absent so that the tadpole term is directly responsible for
determining the disk amplitude. for (1,3)=(A,A),(B,B),(A1),(B,1),(A,2),(B,2),(1,1).

) 1)
5Jzne—sp|n—ﬂ|p 5Jgne—sp|n -flip) *

, )
=> //4,.(//@( A —A) (116)
KL 6J

K,L
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As seen from Eq998) and(99), .# mixes the operators Since every component @f ¢ contains the derivative or the
with configurations which are smaller parts of the configura-combinatorial derivative, E118) leads to
tion I, when it acts on the loop operaté¥5J,. Equation
(115 [Eq. (116)] means that the mixing is commutative with (A\¢), ;=0 for the general components, (119
the splitting[merging processes of loops. This result can
again be regarded as a consequence of locality of the spligs is claimed.
ting and merging processes. It is then reasonable to assume . o
that the splittingmerging commutes with mixing matrix for 2. Continuum limit
arbitrary spin configurations. This assertion is nothing but After these preparations, we are now ready to take the
the claims(106), (107). Proving this for a completely general continuum limit of the stochastic Hamiltoniai09). From
case is prohibitively difficult in our present technical ma- the scaling behaviors of disk amplitudes presented in Appen-
chinery for treating the double-scaling limit. We have to bedix C, the scaling of various variables are fixed as
satisfied with the explicit confirmation of this property for
several nontrivial cases as given in Appendix E.

Third, in regard to Eq(108), by direct calculation we can g=0,
check that

2
1—a25—T) (=P, (1+ay)
20 | * ’

Ad)1 ;=0 11 !
(AN g (117 o=P,(1+ax), NZamgst:

for (1,3)=(A,A),(B,B),(A1),(B,1),(A,2),(B,2),(1,1). In

this case, we can give a general proof of this equation as

follows. First we show thatp, must be a polynomial for 0 a1
generalk. Suppose that this is valid up to sorke 1. Then, 5jA(§) —ahy SIaly)’
from Staudacher’s recursion equations, as described by
(C21), which relatew(?¥ with amplitudes with lower values

of k, we can see that the part of the numerator g% _ g — g43p-1
consisting only of¢ is a polynomial, because in general the 8Jg(o) * 8Jg(x)’
combinatorial derivative of a polynomial is also a polyno-

mial. The denominator, on the other hand, behaves in the

IO =a""Ia(y),

Jg(o)=a""g(x),

. - o) ~ o
scaling limit as ———=a"P P ———— Jy({,0)=a M (y,x),
83,(,0) = S3y(yx) 1y
1/
P,—gP?—cQ;—W(P;)=—a——(y,+x;)+0(a*?).
1—gP1—cQ, (P1) \/E(yl 1) (@™) F) a4 1)

= =aP, ,
83,(L1,01,85, 0d5(Y1,X1,Y2,X2)
Thus, by using the scaled variableB,=¢, (1+ay;), 2(81,01.82.02) ZInT I

Qi=¢,(1+ax), the form of ¢, can be written as jz(ﬁl,01,§2,02)=a_532(y1,Xl.yZ,Xz),

_ polynomial of(y1,Xq, - .. Yk, Xk) - (120
K Y1tXg '
] ) where the critical values afd 6,17

However, from the cyclic symmetry of R(,Q;) in

WP, Qq, ... ,Pc.Qu, the denominatory;+x; must g, =10c%, P, =s(10c) 2

be canceled with the numerator, and tlysshould have the

form Indeed in the limia— 0 all the universal contributions in the
Hamiltonian start wittD(a'®), as it should be for the correct

¢ = polynomial of(yq1,X1, - - - Yk, Xk)s continuum limit. After finite rescaling as
where the polynomial has the same symmetryVeg¥. N 6 ., 06 o 4 o
Thus, by induction, thep, is a polynomial for generéak. J=P 337_”3* 53, 95— P Ost

Now from the scaling of the universal paht(?,
and absorbing the overall factal”® into the fictitious time,

\7v<2k>(p1,Ql, . P,Qu) we obtain the continuum Hamiltonian in the form
7 2
=as3 §kW(Zk)(Yl!le s vyk!xk)! %:—j(F—b; —j(—{-\/—{-)
6J 8 7 8
which is presented in Appendix C, we expect that the rel-
evant part of¢, takes the form 2 I. S
—g2d- J-(Agjﬂ, (121)

const, k=3,

A= 0 k=4 (118

where the inner product is defined by
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n

dyI dx;
L 127-r| 2mi

f-g= f —fA(y)gA(yHJ a7 B(X¥)ge(x)+ 2 Fa(Ya: Xy -+ YnXn)Gn(Y1, X, - - - Yn Xn)-
(122

As already emphasized above, only the spin-flip process survives in the kinetic term:

dx S

c2mi 83;(y,x)’

g
EEA(y)_CS( y)

) )
( ) (=57~ ﬁx)f 271 59,(y)

dx 1) f dy o
c2mi 6 2(Y1.%.Y1.X1)  Je2mi 8,(y1.%1,Y,%1) |

g 1
g“’) (Y1,X1)=cs”

EP TR PR S S
— X1,Y2,X5)=CS —
8JJ, YiXyaXe c2mi | 833(y1,X,Y1.X1,Y2.X2)  8J3(Y1.,X1,Y2,X,Y2,X2)

o d_y.( ° n ° )
c2mi\ 633(Y1.X1,Y.X1,Y2.X2)  8J3(Y1.X1,Y2,%X2,Y,%0) | |’
(123
The forms of the splitting

and the merging

are the same as in the lattice theory, because of the commutativity of the mixing matrix with the processes: The first few
components of the splitting term are

5 6 52
(53\/53)A(Y): —3ym,
5 6 52
( 5Jv53> B(X): T2

e
3V YT A Y 50 M Sy

5 6 2 5 )
(EE\/EE) (Y1,X1,Y2,X2) = Z ( )

J =
0Jalyj) Mt 838(X)) 1) 835(y1,%1,Y2.X2)

Dy(y1.Y2)

) ( Dyl ¥2) 6J1(y,x2>)

)
6J1(Y,%1)

o
i DX(Xl’XZ)aJl(yl,m)(DX(Xl’XZ)élez,x))’
(124
Similarly, the merging processes are given as
(Ai) (Yiy')==0dydy:Do(y,y' )=, (129
83) . 8Ja(2)



S
/\—N) (X;X") ==y Dg(X,X")
2 B,B

STOCHASTIC HAMILTONIANS FOR NONCRITICAL STRING . . .

8Jg(s)’

6

5
: ,yn,xn:y’)=(/\—~) (Y'5Y1: X1, -+ YniXn)
An

n
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- —ay,j; dyDaly; ¥ =

)
CVnaXn X = N\ — X 1V1,X1, .. Yn X
Yn:Xn:X") ( 5‘])Bn( Y1.:X1 YnXn)

n

- —&X/El 0x Ds(X; X')
=

1)
. !yn!Xn;yZ,I_'XZ,l)z /\_~) (yjll_!lel_;yllxlv ree ,yn,Xn)
N Y.

n
=J§l D.(y;,y1)Duwlyj Y1) —=

n
+j§l Do(X; , X)) Di(Xj ,X1)—=

(n=1,2,..).

1)

SIn(Y1, Xs + - - ZXj s e YniXn)
1)

5jn(ylixl! e !yJ B ,yn,Xn)’

1)
5‘]n+1(yllxl' e ’yj—llxj—lizlxilwixj 3 e 1yn 1Xr|)
1)
0dn1(Y1.Xg, - Yj ,S,y1,t,y]'+1,Xj+1, .. ,yn,xn)'

We remark that the final Hamiltonian has no tadpole term and no dependence on the cosmological Tofi$tagnin the
two-matrix model case, the cosmological constant should be regarded as an integration constant. This contrasts with what one
would naively expect from the result for the one-matrix cases. In Sec. VII, to check consistency of the above results, we will
discuss how to obtain a closed set of Schwinger-Dyson equations, leading\é; tbenstraints, from this Hamiltonian.

VI. CLOSURE OF THE SCHWINGER-DYSON ALGEBRA

Now we proceed to discuss the algebra of the Schwinger-Dyson operators associated with the Hartil&dhid®om-
paring with the case of one-matrix models, this requires a much more intricate analysis, since there is an infinite number of
components for th@ operators:

i d

>

n=1

joo

dyi dXi ~
—ioci=12_7-;-i2_ﬂ.i n(Y1: X1, -

6

o TA=—| F2 — ° —g2J
yTaly)= 5 A(Y) V5 A(Y) gst_ :

6 0

_ Biy)= — o — —ad?l J.
ﬁxTB(X)_ (FEE)B(X) (33\/_’)8()() gst_‘J

~ i dx
oS- oA+ [ o

Js(X)[— A TE(X)]

' -yn 1Xn)Tn(y1 'Xl’ "

-+ YnXn), (126
(y), (127
1A
(%), (128
iB
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53
o o o
Tn(ylixlv"'i yn1xn):_ ng n(ylixlv . vynvxn)_ gj\/gj n(y11X11 . 1yn1Xn)
5~ )
—05 J- /\E (Y1:X1y -+ - ¥ Xn) (N=1,2,..)). (129
n

The T,, operators appearing in the Hamiltonian can be regarded as symmetrized versions of the general Schwinger-Dyson

A TB
operatorsl,, T,

To(y1.X1) = TH(Y1;Y1.X0) + T2(Y1,X15X1),

To(Y1,X1,Y2,%2) = T5(Y1;Y1,X1,Y2.X2) + To(Y1,X1,Y2: Y2, X2) + T5(Y1,X1:X1,Y2,X2) + To(Y1,X1,Y2,X2:X2),

(130

where the semicolon in the argument on the right-hand side denotes the point where the deformation of a loop occurs in

constructing the Schwinger-Dyson equation. For exampféy,;y1,x1) [T2(y1.X1;X,)] represents a deformation of the

loop with one pair of domains by attaching on it any loops which have at leasAofig] domain. The explicit forms of the
general Schwinger-Dyson operatdrs, TE are

o o
T? V1 X1y e Y Xn) = + D,(Y1,Yns+1)
"V Yo ) (M(yl) 5JA<yn+1>) Ayt s - Y
n-1 P 5
- D Vi Dw(Vis1,
]_21 z(yl yJ+1)5JJ-(Z,X1, o ,y]_ an) W(yj+l yn+l)5Jn,j(W,Xj+1, o Yn vXn)
I S
CZWI 5‘]n+1(yn+lvxrvylixlv e vyn !Xn)

ie dy’ .
+9§J 5 IA(Y )y Dy(Yni1,Y )Du(Z,y1)

—ioo27Ti

0Jn(W,X1, - .. Yn Xn)

* jo M y.’ dx’ . m
2 ! | ’ ’ ’ ’ ’ ’
~052 | Lo oo dntyixg - i) 2 Daty] YuDwY] V)

6

X ! ! ! ! ! ! ’ ! ! ! (131)

Odnrm(Y1 X1s - Y1 X -1 Z.Xas -+ Yo X s WX LY X 1 - Y Xm)
Th( )=+ D ) d
X1y« Yn i Xn X = Xn,
I R Y | TR NS

n-1 S S

= 2 DuXn41.%)) Du(X; . Xp)
=1 2o 5‘Jj(Y11X11 ---vijz) v 5Jnfj(yl'+1vxj+l1 e YnsW)

o5t dy’ i
c27T| 6Jn+1(y1,xl, . ,yn,Xn ,y’,Xn+1)

6

n(ylixl! ree !yn!W)

ie dx’ ~
+g§tf_iw2_ﬂ_i‘]B(X,)‘9x’Dz(Xn vX,)Dw(Z:Xn-#l) 53

* joo M y.’ dx’ . m
2 ! ! 1! ' ' ’ ’
_gstmzzl imfl ﬁ ﬁ‘]m(yl Xy e !ymvxm)zl Dz(xj vXn+1)DW(Xj Xn)
o
X ! ! ! ! ! ! ! ! ! "
Odnem(Y1 X1y - Y o1 X— 1Y ZY X - YWY X1 - e - YmeXm)

(132



53 STOCHASTIC HAMILTONIANS FOR NONCRITICAL STRING . . . 4467

It should be noted that the Hamiltonian contains the particular set of the above opé’ﬁb,tﬁﬁs with partial identification of
the variables ag,,1=Y1, Xp,=X,+1, respectively.

We also remark that, as is expected from our construction of the Hamiltonian, the general Schwinger-Dyson operators
introduced above are the continuum versions of the Schwinger-Dyson operators of the original two-matrix model, appearing in

=f dVAdVBTM (.. )e ST (133

The explicit forms of the matrix model operators are

1 ¥ 5 1
TN =~ 22, A (—t)

N2

1 N5 1
(mapB __ . @
T =~ e, 5Batr(0'—B )

N2 2
1 J 1 1 1 1 1
(mapA . a e
Tn (§n+ll§llo-l! .. gnao-n) NZD;]_ aA r( §n+1_At é/l_A 0,1_B é/n_A O'n_B)
1 1 1 1 1
(matB o )= «
Tn (él’o-l! e agnao'nvo'n-%—l) z (gl A O_l_B gn_A O_n_Bt 0_n+1_B) (134)

We now compute the algebra of the Schwinger-Dyson op- For commutators between the operators with different su-
erators, as in Sec. IV, by changing the cont@irto the perscripts, the situation is not so simple, except for the trivial
imaginary axis. For the commutators of the operators withcase
the same superscript, the result is found to coincide with that
of the corresponding matrix model operators, after making [d, (y) a,TB B(x)]=0. (137
the identification

For example, for the commutats, TA(Y), TZ(y' X" ;x")],

1 the closed algebra

9= N Yierdis X0,

They are [ayTA(Y), TE(Y X' 5x")]

[a,TAY), 3y TA(Y')] = g2dydy ,[Tl(yX X)=TE(y' x';x)], (138

1
= —ggl&yay,(ay—&y ) ,[T (y)—TA Ayl (13H which coincides with the result of the matrix model opera-
y= tors, can be obtained only when the formula

[ayTAY). TRy X')] dx s
. [ =2 Ay O g DX R o0 s
=~ Usdy W[Tl(y;y XD +TIY" 1y x)]

holds. To check this formula, we need to know a more de-

1 z[TA(y Y, X )+3-|— (y":y' x)] tailed property of the functional derivative®6J,(n=2).

(y y’) Here we try to justify this formula by using the short-
domain expansion of the functional derivative operators. It
will be useful also for the derivation of thé/; constraints
discussed in the next section. The short-domain expansions,
in general, depend on the choice of a background. Since a

(136 specific background was already assumed in taking the con-
tinuum limit of the two-matrix model, use of the short-

A similar result is obtained for the operators with the super-domain expansion should be allowed here, as we have al-

script B. ready done in the one-matrix cases in studying the closure of

1 Ay ot !
+—y_y,8yfT1(y Y XD
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the Schwinger-Dyson algebra as a consistency check of the A as A s -

continuum results. The difference between the present CaS;T:aMay +alysly +2 Ay

and the one-matrix cases is that the tadpole term is absorbe A(Y) !

into the definition of the spin-flip amplitudes. Because of this

peculiarity, the Hamiltoniar{121) itself apparently contains (y: large), (140

no terms which fix the dimensions of the loop operators. In

order to fix the dimensions, however, it is sufficient to give

the dimension of the Hamiltonian, since it then determines

the dimensions of the loop operators and the string coupling d

gst Uniquely. Following our result of a direct derivation of the 6Jg(X)

Hamiltonian from the two-matrix model, we assume the di-

mension of 7 to be[.77]=[y]*3. Also, it is noted that a

new dimensional parameter can enter as the integration con-

stant of the Schwinger-Dyson equatiepTﬁ(y)Z[J]=O or

aXTE(x)Z[J] =0. We can relate this parameter to the cosmo-wherea’s stand for dimensionless constants, andins over

logical constant with dimension twd T]=[y]?), character-  positive integers divided by 3. The first two terms come from

izing thec= 1/2 background. See the next section, in particu-the disk singular terméhus,aj,=a%;, a®,,=a% ), and

lar, Eq.(166), for more details. the remaining terms represent both the contributions of the
Let us now write down the short-domain expansions.largey or x expansion of the cylinder singular parts and

First, for the operators with a single domai#/8J,,  those of the local operators.

81835, by considering the dimensions of the loop operators Second, referring to the explicit form of®)(y,x) in

and the cosmological constant, we can assume expansiofl§27), we can assume that the opera6J,(y,x) has the

_ B 43, 4B —2/3 —u-1
=auX ot a 55l X +; B, x

(x: large), (141

analogous to the one-matrix cad#19): largex expansion
g 1 53, 41 2/ —U3 a1 2 a1l —4/3 .1 3, 1 1

Tyx) =agx” + ayx Yy +x M@l yyy?+allsT) +x M@l yy® +alysTy+alyBan)

+x" @l gyt altysTy? +aly Bay + a3 Bss) + ai/sxlls_‘ﬁ_ +al xRy °

oJaly) oJaly)
+x7%7 (algy?+a’l T)—~—6 +a"%,B; +x‘7’3a“v>1Bl,3—»—(S +x~ Y at /1<—5~ (y)+a’lBll3)
-5/ 530 ST (y) | o5 —IPUST (y) -1711 53 -1
-2 51 2 g 11 nl -713,(V)1 - 4 -8/
+XTaiyy 5 (y)+alBygy +al,Bys|+ X~ a7, 55 (y)+O(x %), (142
|

Whereéh(ﬁlﬁj)(y) represents the loop operator with a mi- 5 0
croscopicm-spin-flipped domain being added to the domain 53;’ g’i =

y, and the remaining notations are the same as before. Here,
we assume that the nonpolynomial powersyofll come

from the loop operators with the macroscogidomain, and Similarly, the largex expansions 0f5/532(y,x,y,,xf),
that the fractional powers of appear only through the 5/532(y x,y’,x) are assumed to be, respectively

B’s. For every disk amplitude whose explicit form is derived e ’ ’
in Appendix C, we can confirm these properties. The above
form (142 is then a consequence of the dimensional analy-
sis. Note that we do not have to worry about the ordering of

B’s and loop operators, because S
_ a2 2 213 ’
—————=ajx+a D,(y,
STy oy x) TRy
+a2 1/3D ' ’
KA u DY ST
By, 0
89,

+ady+aly’ +apix’ +0(x B,
due to (143
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S a2 a3 o ) We can fix the normalizations of the spin-flipped loop
m:alx+az/3x Dz(y,)")m operators, referring to the disk results in Appendix D. For

example,al_lzs. This implies the relations
+agy+ag%y +0o(x ). (144

P ) (y)=s-1 dx S it
| —= =s — =5 -al ,
153 y c2mi 83,(y.X) 1P13
6 dx’ dy’ dx 6 6
Oyl —= :sflf —f —s ! -——=————+c 15715 Bus,
2(53)(y) cr2mi ) 2mi c2mi 83,(y,x,y',X") €S aéJA(y) 3

. (145

with a being some constant, which is a consequence of th&he corresponding algebra of the continuum generators
above expansions. The first equation @f45 is the

integrated version of Eq.(110. Roughly speaking, WTAY),  TAYY1 X1, YniXn),

Om(8153)(y) is obtained froms/ 5J,,, by integrating the do-

mains excepy, and the factos™! is regarded as a sort of 0XTE(X), TE(yl,xl,...,yn,xn;x), (n=1,2,..)

finite renormalization accompanied with flipping of a single

spin. must have the same structure. Half of the generators with the

Now substituting expansior@43) and(144), and using a  superscripiA(B) form a subalgebra of the full algebfaNe
formula such agB22), we can directly check the validity of note that, as already emphasized in the beginning of this
formula(139), and thus justify the algebid38. From these section, the generators contained in the Hamiltonidrare
results, it is expected that the algebra of higher operators alsanly the particular symmetrized combinations of the general
coincides with those of the matrix model operators beforeSchwinger-Dyson operators. To ensure the closure of the full
taking the double-scaling limit. In order to prove this for the algebra, we are led to introduce all of the above general
general case, we need to obtain more precise informatioBchwinger-Dyson operators.
with respect to the coefficien&ss in the expansions of ge-
neric loop operators. We would like to emphasize again that, VIl. REDUCTION TO THE W, CONSTRAINTS
since we have started from the matrix model which is already

an integral solution of the constraints, the closure of the |, he previous section, we obtained the huge algebra of

Schwinger-Dyson algebra is guaranteed in our approach. The gchywinger-Dyson operators. Although this algebra has a

confirmation of the closure of the algebra is useful, howeververy complicated structure, we will next demonstrate how

as a cons:cstﬁncyi crg)eck fththe (k:]or}tinuum limit. Since thena"\y., constraints, characterizing the=1/2 noncritical
structure of the algebra of the Schwinger-Dyson operators '§tring, are naturally derived from the integrability condition

essentially determined by the splitting and merging ProCeSS&St the first few constraint operators appearing in our Hamil-

of th_e Io_ops _W_h'Ch are closely related with those in thegnian. This will provide us with yet another consistency
Hamiltonian, it is natural to suppose that the algebra is NOfnack of the preceding results

affected by the scaling limit, in view of our discussions in The constraints associated with the Hamilton(a@6) are

Sec. V.
It is straightforward to see that the matrix model operators — . TAWZII1=0 14
(134) form a closed algebra such as yTa(Y)ZLJ]=0, (149
(mapA T(mapAq__ (mahA (mayB ++(mahB__q(mahB —&XTE(X)Z[J]ZO, (148)
[TA 1TA ] TA ’ [TB 1TB ] TB ’
[T(Amat)A ,Tgmat)A]NTgmat)A, [TgmaDB ,Tgmat)B]NTgmat)B T1(y,x)Z[J]=0, (149
[T(MabA (maoA] _[(masA  f(mate (marsy _(mate Tao(Y1.X1,Y2,X%2)Z[J]=0,
n 1i'm n+m n 1 i'm n+m
(150

[T(AmabA ,Tgmat)B] — Tgmat)B ' [Tgmat)B ,Tamat)A] NTgmat)A ’

Considering the closure of this constraint algebra,
[T,(AmaDA ,TgmabB] — 0, [Tgmat)A 'Tsnmat)B] NTgr‘rla:gA_’_ T(mat)B

n+m

(n,m=1). (146 "The algebra similar to this subalgebra is presented in [R&f.
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1 1
[a,TA(Y), Ta(y' X) 1= — 930y Way’Tl(y,aX)"' W[Tl(y,X)%Tl(y’,X)]
+W[Té‘w;y',x)”’fw';y,x)+T?<y,x;x)+T?<y',x;x>] , (151)

which follows from(136) and (138), we obtain a new combination of the Schwinger-Dyson operators:
[TR0YY 0+ T Y,X) + THYXx) + T2y’ %:%)]Z[ 3] =0. (152

Similarly, from the algebrfia, T5(x),T1(y,x")], we have

[TE(y. ;X" )+ TRy, %) + TR(y3y, %)+ TR(y;y,x")1Z[3]=0. (153
|
Let us consider the integrated versions of these: c?=a?, ci=aix+ap’x;+ag?y,; the others vanish for
q q I =2. Also, for composite operators, the above formula can
- X y' be used. For instance
l L
{s fc,, 5| 3 THYY 0+ Ty Y. 0)]
y , o
ts f f By’ x:x)|2[3]=0, (154 meDZ(y,y RO
cr2mi 2 Toly"x ’
o o
. T SIAY) 83y x) 2 e (0. (159
- A 1 ’ n=0
fc//zwlf oy STy X))+ TRy, X' ;x)]Z[3]=0,

(155 From the short-domain expansiors(x)’s turn out to be

where the integral contours,C’, andC” successively wrap polynomials ofx and to vanish fon=4. Thus, we have

around the negative real axis and the singularities in the left dx

half plane. f f dy DY,y )—=——— o _,5_
In order to derive théN; constraints, it is important to  J¢"27 2mi 0Ja(2) 631(z,X)
examine the explicit forms of these integrated operators. S dx S
First, by using the formulas in Appendix B, we have = | — (158
8Ialy")Jcr2mi 831y’ x)
dy o
2m D.(y,y )5J,(z Xy ) and, similarly,
43 Joorilozm :
- Al (X,X —
TR TR +n§0 Y "Cn(X, Y1 Xg, - 0), cr2mi Jor2mi D. 535(2) 53,(y,2)
(156) dx’ 1) 1)

__[ & _ 159
cr2mi §dg(x') 8341(y,x") 199

where the second term stands for the polynomial part
with respect toy’ of the large y' expansion of

6163,(y’,x",y1,Xg, . ..). Themeaning of Eq.(156 Is 85 the RHS 0f(159 by substituting the expanded form41)
follows. In terms of the domain length conjugate tyy’, the 59 (142), the integrated operators are written as
left-hand sidgLHS) represents the operator with the domain

lengthl’ + &, wheres comes from the procedure of changing y'

the contour Jc~2m Zm TH(Y:Y'X)
dy : fiw dy 8 B )
— ...= |im — Y. .., -__Z il
c2i &40 i 2T - 5‘]A(y)/ ( )(y) (5J)(y)

Whenl’#0, the limit e— +0 is smooth, and thus it coin-
cides with the first term of the RHS. However, for the sin-
gular terms supported only(bgtz 0, if any, the LHS gives no
contribution, since lin_, ;6" (e)=0(n=0,1,2,...) inthe o dy'~ R
prescription of Appendix B. The second term is needed to _ggtJ_ixz_TriJA(y )3y DA(y,y )0’1(53>(Z)
subtract such a contribution. As is seen from the expansions .

(140—(143), for examplec,’s are all zero fol =A,B,1, and +[terms containing, (I#A)], (160

Lz—
+s *(a al&]A()

After using the above formulas and doing the integral on
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The disk parts 0f160 and(161) can be interpreted to rep-
f 2 e 2 TR(Y.%X') resent the continuum versions of the Schwinger-Dyson equa-
¢ ¢ tions (C2) and (C3), respectively. In(161), thanks to the
=—s tafal,yt—-s Yajal+al Al )Ty? short-domain expansions, the integral

1 1
—s Yaga gt az9) By

. dx é é
—s H(agm" 75+ a5 By~ 1Al ygal Y 5T ch_ﬂ-i 5Ta(x') 331y x)’
B 1 ’

—c(l+c's” a4/3av)13)/2( (Z (y)
whosey dependence was difficult to see in this form, turns
1 (V1 _ out to be essentially a polynomial gf. This property is
s HEa-agalis-ay) 5 53 (y) crucial for the derivation of th&V; constraints.
. Also, from the result$D10) and(D11) in Appendix D, we
+[ terms containing, (1#A)]. (161 can assume the following identity holds:

o1 dx _, [ dx 1)

anqﬂ 2m c2mi 5J2(yx y' SI(yy X fc”277| 277!S c2mi 83,(y',x,y,x")
f dx N dy S
cr2mi Jor 2 c2mi 83,(y,x,y' ,X")
dx d 1
_1f —y —_— (162
o2 27T| C2’7T| 8J,(y, X"y’ X)

In Appendix D, we have confirmed these equations for some simple cases. This means that the results of the spin-flip processes
are independent of their orderings. By using these identities for the explicit fornT§ ,oﬂ'f, we can see the symmetry

properties:
fc Q f g —0(1% fc g f 71
n2mi Jor 2 | 3,=0(1%A) n2mi Jor2mi |

J=0(1#A)
,1 B ’.
fc/'Zwlf 2 fc”Z’ITIf 20 To(yx"x) (163
J=0(1#A) J=0(#A)
Settingj|=0 (1#A), Egs.(154 and (155 become, respectively,
{ > (5)()/ (<5()+ Y3
—C s (a—a’
éJA(y) y 0 2 y 1 5JA( ) By
i dy’ ~ 1)
—gstf 5 IAY)9y DAYy )| 5= | (2) | 2L3] =0, (164
J=0(1#A)
{ —s tagal ;yt—s N afzal st al At ) TY?
nl ml (V)1 5
—s Nag st aze)Byy—s Naga" st ags)Bsz—s tal mah sT—c(1+c s aga ) Oy — 5 (y)
+s Ya-agai- 1/3)5J ) /3}2[\]] =0. (165

J=0(1#A)

We used(160), (161), and(163), and 7 is they-independent operator

! —1 B Iy
“o=3 fc”ZWlf 2 T2y x:%).
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Also, from the once-integrated version @f47), we have

52 . )
- —CO =
8JA(Y)2 1 53

where(7g is ay-independent operator introduced as an integration constant. 3
The three Eqs(164), (165, and(166) lead to a closed equation of the loop operatg(y):

joo

d
W+ch-di| L3,y)0, D)

Z[J]

63a(2) J=0(1#A)

agy*+a,Ty?+a;Byay +agBsstagT?+ ¢

01

52

+ a ®  (hramB )+1 ¥ - fiw ;5 Ja(Y")dyDLy.y") i i
5\JA(y)3 5\]A(y)( 0 AP1/3 ngl&y 5‘]A(y) Ost 2 i y z(y y

Z[J]|J|:0(I¢A):O-

+94in0 difm i = JA(Y)IAY") 3y dyD Y,y ) D2y ) ——
st —ioo27T| 27T| A A z w §JA(W)

The coefficientsa’s are defined by

a cs tagal 4 a :cs‘l(a§,3a’l7,3+ %yl
Clvc s lafaVy 7 1+c s tagay,
. cs NagR" st azs) o cs H(agR" 75t a5)
U vc s aBavl 0T 1c Is gt
o= cs ta®, 8 Y, a _CS Ya- a4,3a(“’7,3 ays) _csY(E—at
O 1+c s talaMy Y 1+cistafaM, o
Further, by rescaling as
5 —a\ B 5 i) (_a4)1/33 )
Ty V16 Sy M 7Ee ) )
1/3
— , T———T,
gSt 16 gSt aZ
and putting
_a4 -~ 112 ! 1 _ _a4 28 @)
a1Bas=7g s @0BsatagT™+cp= 16(/ “otasBus=| 75| o
Eq. (167 takes the form
[— 16y*+16Ty?—yo\— 7
+ > i 11(? i fmdle()o"D( )( i 0 + il
g +9 y D
SIaY)? 5JA(y) T 29 5T Aly) S w2 A 0Ja(z) 6Jaly)  6Ja(2)

oo dy oo dy
+g§tf_ - Jaly’ )JA(y”)ﬁ 19yrD,(Y,y")Dw(Z,y")

—|oo2’7T| —|m27T| 5JA(W) Z[J]|J|=0(I#A):O-

+
6Ja(2) 8Ia(Y)

d

8Ia(2)?

(166)

(167)

(168
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Let us now confirm that this equation represgntsw@ecpn- the universal part of the quantity (0){ tr(A—B))y. This
straints. In order to do so, we have to identify the disk andmplies that solutiori) spontaneously breaks tdg symme-
cylinder singular parts. For the disk amplituaey), the  try. Here we only consider th&, symmetric solutioriii) and
Schwinger-Dyson equation obtained frd@68) is leave caséi) as a future problem.
‘ § ‘ For the cylinder amplitudew(y,y;), the Schwinger-
3_ /o _ 4 2_ 9) (/5 — i ) . .

W(y)"=(“o)oW(y) —16y"+ 16Ty —y(“a)o—(“1)0=0, Dyson equation is derived from the lowest ordeggfin the
Ja(y,) derivative of(168):
where we consider the solution regular except on the nega-
tive real axis. Note that this condition does not determine the-Y{©a®a(y1))o—(1®Pa(y1))o—(CoPa(y1))oW(y)

luti ly. In fact, find t lutions:

solution uniguely. In fact, we find two solutions: +(BW(Y)2— (Coho)W(Y, Y1)

-
() w<y>=24’3(y— \[g

3/2 4
(=0, (Fo=128g| . (Fho=- 3T
(170

T 1/3 1
y+3\[€) ’ sﬂyly Ve [2w(y)2—w(y)W(y;) —W(y;)?]=0.
(172

If we take solution(ii) as the disk amplitude, note that it
satisfies

(i) w(y)=(y+y2=T)*+(y—y?=T)*",

T
3w(y)2—(7)o=0 at y=0,* \ﬁ (173

(C0)0=3T%, (C2)0=0, (F1)o=2T% (7D W7 {Colom0 Aty 2

It is solution (i) that reproduces the matrix model result. By The disk amplitude is regular except the regios — JTon

repeating the argument in Appendix C for derivit@14), the real axis. By assuming the same property for the cylinder

without using the Z, symmetry A—B, we can see that amplitude, Eq.(172 can be solved, by using the similar

(4) is proportional to the next leading ordg®(a®)] of  argument as for the cagB7). The result is

1 i
w(y,y1)= gstg f(y,y1)a(y,y1) (y+ \/—)2/3+ (y— \/—)2/3+T1/3
y (it VyE-T)*" L 0 i 7S Dl [N
(Y1 WE— TP+ (y— WWE-T) 23+ 7Y f(y.ya) 9(y,y1) ’
|
where (DalyD))=wdy;)+g(yy),
fy.y0) =+ W=Dy + Wy - o ‘
SIVERN v STV v SIS 1) (Pa(YD) DPA(Y2)) =Wy 1,Y,) + 9P (y1.Y2),
9(y.y1)=(y Ny =)+ (ys Vyi_T)% <&)A(yl)' : '&)A(YK»:Q(K)(YL coYk) (K=3),

+(y+ VY2 - T) ¥y, +\yi-T)¥

From (171) and (174, the singular parts can be found as  g"(y;, ... y))= 2 G . .« y, 4y ot

ag, ..., ap
. T 177
Wsmg(y) — 24/3( y4/3_ §y—2/3) ’ (175)
where «;’s run over the positive integers 3 and + 2, i.e.,
. 1 1 12457
— 2 203,- 23 o\, 13, —1/3 33131313 - - -
Ws'ng(y,h)—gs@ (y_yl)z[y Yy, P2yt -6 Using (175—-(177), we expand(168 similarly as in the
U3 o3 argument of the Virasoro constraints in Appendix B. From
+2y " My Py~ 2328 (1760 here the analysis is parallel to the REE7], where theW,

constraints were explicitly derived from the two-matrix
The connected correlation functions are expanded by thenodel for the first time. So we show only the results. For
local operator insertiong,, ... 4, as o, Oy, (71 insertions,
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(o) =3% 235,
(CoPalyn) =052"3y1 #*+3x 2% 910y,
ay

(CoDa(yr) X Da(ye))=3x2% > 913,04, ..., aKyl_al_l‘ : 'y|ZaK_1,

(Oa)=3%2%gy,,

. > o
(OaPa(y1))= 95128/35 ys H3+3% 285 923.0,Y1 g
ay

<(9k(h13A(Y1)' . '&)A(yK)>:3X 283 2 923,04, ..., aKyIalil' : 'y;aKil,

16
(F1)= 5 T#+3x 2%y,

. 5 “ar-
<01<I>A(y1)>=925128/3§yf/3+3><28/32 Osi3ayyy K
ag

-1 —akg—1

(C1Pa(yn) - Raly)=8%2% X gaga sy (K22),

This means that?,, 7, , 7, are expressed in terms of the loop operaﬂxﬁjA:

(On=13X% 24/3 ﬂ 1/3 g
° c2mi”  sJa(y)’

d 1)
(Z‘vA:3X28/3J’ _y.y2/3 ,
c2mi ™ 5Ia(Y)

@71=£5T2+3><28’3J'd—y_y5’3 6 ,
3 c2mi”  8a(Y)

as operators acting oZ)[J]|J|:0(|¢A).
For the other contributions, by introducing the generating function

oo nys o, 13
Ky By
InZ(p)= 2, T8 U3, L1323, L 23,
ne=0 My13: Nyt Nt — —
nys n23

they can be expressed as
LaZ(1)=0 (n=-1),
Wi Z(u)=0 (n'=-2),

where

2 d 4

d _
L_,=2X 24/3@ + ggtg; P + 9§t8—1ﬂz/3(,u1/3— s 73X 24°T),

Lo=2%x2%3

Ipzs 3 dpa

d T 9 ) 92 . 222 d (I>1)
-— _ > ap,—— (1=1),
pr+73 3 I3 953 =

0 T 9 2 0 2
)*’95@% a#aﬁ"‘"ggtz_?i

L,=2x2%3

B+Br=| 0-',“[;0-'#,[;/

(179

(179

(180)
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8/ J 2 Jd
W_,=3x2% — — =T
gz 3 dpons
J T 9 9?
2 413 2
+gi2x2 Eau( -z +OED ap, X
S a Noparys 3 ass ~a a2 Mg

1 1% 4 8
4 6 -2 6 3
+gst—2 aa pop g —————+0%z5 Ha H1s— s 3X 27T+ 9gzp 33,
3a o’ (9,(La+ar,2 3 3
d 2 92 ] T 9
W_;=3x 2873 - +3x 24—+ gZ22x 2% au ( - = )
! dpiyz 3 s a3 512 a NOparan 3 Ipa—23
9? 1 9 1
2 6 -2
+04> ap, X ﬁﬂlégz aa’uauarﬁ—Jrgs@(m/s—gst 3x2%°T)3,
@ B+B =a—1 ’uﬁ MB/ a,a’ Ma+a’—1
2 d T? T @
W,,=3x% 283 - = — +3x2% Y - —
Ipmr1a3 3 migz 9 IMmi2 Bip —m+73  Spip—me1z | OMpotp
9 d T d
+ > — 1 g%2x2*3> au -=
pipir g —m OMpdpg gy 5 @\ OMarmi7z 3 IMarmiua
5 92 A1 , d
O ap, 2 o+ Qiz D ad papy5——— (M=0). (18
a B+B =a+m Mpofp a,a’ Mata’+m
|
This is nothing but th&V; constraints. ber of different matrices. For the case=1, a related idea

has already been discussed in Réb|.
Before pursuing such possibilities, there remains, how-
Viil. CONCLUSION ever, many important issues to be resolved. In addition to
Let us first summarize what we have done. We havdroblems mentioned in the Introduction, what is needed to

started our paper by discussing the nature of PSFT’s from thE@ke further progress is a deeper understanding of how to
viewpoint of the stochastic quantization of the matrix mod-EXtract real-space-time picture of the string theory from ma-
els. Then, we have presented detailed derivations of the stdfix models, since matrix models apparently miss some im-
chastic Hamiltonians in the double-scaling limit from the POrtant characteristidsl9,2q of the string dynamics.

matrix model, and investigated the infinite algebras of the

Schwinger-Dyson operators appearing in the Hamiltonians. ACKNOWLEDGMENTS
We have also checked that the algebras contain the Virasoro _ _
(one-matrix modeélandW; algebrastwo-matrix model, as At an early stage of this work, we benefited from collabo-

they should. Proofs of some of the crucial formulas have notative discussions with A. Tsuchiya and from comments from
been completed, because of technical complexity. It is thereA. Jevicki. The present work was partially supported by
fore desirable to develop more powerful methods of treatind>rant-in-Aid for Scientific ResearaNo. 06640378 Grand-
the double-scaling limit for general target spaces. in-Aid for Priority Area(No. 0622121] from the Ministry of
After these calculations, we have to reconsider the queg=ducation, Science and Culture, and also by the U.S.-Japan
tions raised in the earlier sections of the present paper. Pefollaborative Program from the Japan Society of Promotion
haps, one of the most important lessons of our work is tha®f Science.
the structure of the general splitting and merging interactions
of string fields with arbitrary matter configuration is not af-
fected by the mixing of the string field components in taking
the scaling limit which is defined for a specific background.
This seems to imply that the structure of these terms is com- Let us begin from deriving the noneven critical potential
pletely independent of the backgrounds. Recalling the gerfor k= 3. It is sufficient to recall the well-known formulas in
eral discussion in Sec. Il, we realize that the purely cubiahe method of orthogonal polynomials. For the coefficients
Hamiltonian of the matrix model with most general sourceS andR in the recursion equation for the orthogonal polyno-
terms and no bare action already captures the structure of thgials P,,(\)=\"+- - -,
continuum Hamiltonian in a background-independent way.
This conforms to earlier suggestiofis8] and points to an
intriguing possibility of formulating a background-
independent string field theory, encompassing critical strings,
by starting from general matrix integrals with infinite num- we have a set of equatiofi2l] in terms of the potentiaV/,

APPENDIX A: k=3 CRITICAL POINT
AND THE DISK AMPLITUDE

APL(N)=Pp11(N)+SPo(N) +RP_1(N),
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0 dz A S R Al
$op =5 V'|2HST ], (A1)
g, 22 NV’ S A2
—Sﬁoz—wiﬁ z+S+ |, (A2)
for the sphere limit N~B—», where x=n/g,

S=3(x)=S,, R=R(x)=R,. EquationgAl) and(A2) give
the relation that implicitly determines the functi®{x), of
the form

x=W(R).

Since the free energy is determined Ryas

N—-1
InZ~ Y, (N—n)InR,, (A3)
n=1
the following behavior of thaV(R),
W(R)=1— consix (1—R)3, (A4)

asx—1, R—1, leads to th&k=3 criticality of the free en-
ergy:
N 713
InZ~ ( 1- —)
B

This shows that the minimal order of thke=3 critical poten-

tial is 4. After lengthy calculations, we find that the potential

(A5)

B9 ,, 93
2 3 20

3 1 4
VM) =5 5 M2+ M+ oM,

with (54) and (55) satisfying all of the above conditions.

Next let us derive the disk amplitude in the sphere ap-

proximation. By using the method of Ré¢fL2], the disk am-
plitude in the largeN limit is given by

1
(@(D))=5V'(0)

s o - gerarrs @B
t5 Nl gt HALHBN(E=b)(E-bo),
(A6)
where
1
Az—gs_ﬁ(b-#_"b—)'
1 1
B=—0,— 22(b, +b_ )~ os(b, +b )~ 2(b, b )2

By introducing the variable
z=10g;5+3(b,.+b_), (A7)

the end points of the cli_<{/<b, are determined by the
equations
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1 N
— Zz4+ 3622—256z— 720+ 81920 2= 38885 , (A8)

2 80 2560
(b, —b_)2=— 72+ -

1
57 9 . (A9)

=552

The disk amplitude with a microscopic loop can be read
off from the coefficient ofZ =2 in the largel expansion of
Eq. (A6):

Lim) ==L b, —b )2 gyb,+b
Ntr 0_32N( + —) 92( ++ —)
2, 93 2
+ga(b,+b )2+ L(b,—b.)

> b,+b_)3 3 b,+b_)(b,—b_)?
+§)( ++bo) +4_0( ++b)(by—=b_)%|.
(A10)

In the scaling limit

N_ 1-ast (A11)
5

(a means a lattice spacipgeq. (A8) is iteratively solved as

3 7 71
- _ L gty g2 2843
z 81 a4t a 64t a 1024t

8515
-at 1“3+ 0(a%) |.

442368 (A12)
Thenb, andb_ are
- :y — a2tk aZ%IZIS_ ag%t
& 1:3&23228t4ls+ (@), (A13)
b—=_59+_10+a315_6t+a4%t4’3+0(a5). (A1)

Also, it can be seen that should be tuned to the critical
value atb, :

_ —5Qg3t2

(=1, (1+ay), a—T (A15)

Substituting(A11)—(A15) into (A6) and (A10), we have

1
(P(D)=5V'(H+a%Aw(y)+0(@"™),  (A16)
1 _ 32+25y; 4
<N”M>O—‘T‘a 5!
43 4/3 5
+a Zt +0(a>), (A17)
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where

1 3
w(y)=-— —f”z — S THY+ TRy + T (A18)

with T=(2¢, )%

APPENDIX B: EXPRESSION FOR THE LOCAL
OPERATOR 7

We give the proof of Eqgs(84) and (85 using the

Schwinger-Dyson equations. We first rewrite the once-

integrated Schwinger-Dyson equation

T(y)Z[3]=0 (81)
into the relations among the local operators. Here,
y 1 ’
T=Ton+ [[aypyee, @2

and they-independent operate?; appears as an integration
constant.
Now to correctly extract the local operators, we must
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4477

y2_ %Tll'&y_i_ §T2l3:0;

|

By settingy =« o[E in (B7), the first term vanishebthen,
(o®(y1))o, (1 P(y1))o are determined as

explicitly

(a4

o

1ii\/§Tl/3
— T

(B8)

(Co®(y1))o= 0%y, Y1+ T, (BY)
- 1
(“1®(Y1))o= giﬂyl( yi— 5Ty + T (B10)
Substituting these int@B7), we obtain
w(y,y1)= g—gt -
X ! (B11)
(Y +T+y + 792

identify and subtract the singular parts in the correlation

functions

sKInz[J]
6J(y1) -+ - 8I(yk) l3-0

=(D(yy)---D(y)). (B3

It appears only in the disk and cylinder amplitudes. For the

disk, from the largey expansion of71),

5 5
W(y) :y5/2+ 1_6Ty* 1/2__ 128T4/3y 3/2+ (B4)

we see that the first two terms 6B4) correspond to the
singular part

: 5
Wsmg(y) y5/2+ 1_6-|—y— l/2, (BS)

because it is known that the disk one-point function of thelocal operatorg),,,

local operator behaves @82 (A=0) from the analysis of
the continuum theory22].

For the cylinder amplitude, we start with a derivation of
the amplitudew(y,y;) from the lowest order ofy in the
Schwinger-Dyson equation:

Sy TWAN | =0 (B6)
that is,
2w(y)W(y,y1) +dzdy, DAY,y W(2)
~Y(CoP(Y1))o—(1P(Y1))o=0. (B7)

It can be easily solved by noting the fact thafy) given in
(71 has single zeros at= «a, @, wherea, « are the solutions
of the quadratic equation

Since the cylinder amplitude of the local operators behaves
asTY3*tA1+42 (A, A,=0), the singular part is identified to

51 1
WYY =057 [y =y 2 (\ﬁ—2+ \/%) (B12)

Thus, the connected correlation functions are expressed as
(D(y)=w"Yy;)+gD(yy),
(DY) D(y2)) =W ™y1,y2) +9(y1,y2),

(Dyy)- - D(ye))=9"(ys, . . .

=

(K=3),

(B13)

Yk)

whereg™(y;, ....y,) is the part interpreted as local opera-
tor insertions, and it is expanded by the correlators among

—ap—1

—ay—1
.. .yn

a1

n

9" (y1, -

(B14)

.....

where «;’s run over the positive half odd integers?,
3,---. Using(B5), (B12)—(B14), we expand the Schwinger-
Dyson equations

5K

6J(y1)-

0

T(y)Z[J]| =

- 6J(Yk) J=0

(K=0,1,2..

D (B15)

8Here, we assumed that(y,y;) does not have any poles at
y=a,a. This is justified, sinceb(y) is regular except in the nega-
tive real axis as seen from its definition.
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and perform a similar analysis as in REZ3]. For example, the relations can be expressed in the form

the result forK =0 is

5 \2 . L1, LnZ(w)=0 (n=-1),
—_ - + —\

Y~

S L =2 J + th J + > T+ 2 1 2
+22 ga<y_a+3/2+ 16Ty_a 3/2) -1 (9,(1,5/2 gs = aﬂa(?,u/a,l 16 gst4 M2
+ E (gaga’+ga,a’)y_a_a,_2:0- _ d i 2 1

aa Lo=2 _(9#7/2+ 16 (9/1«1 Z a,uaa gstl6

Here, we use the Greek indicesa’, 3,8’ for the positive

half odd integers. From the first two powers of the layge 9 5 9 > 92
o), {7,) are determined as L =2( + o= —
(o) (“1) U i 160 i pip = OMpotp
(C0)=20912, (1)=203p. ) 9
o . . . +05Y ap, (I1=1). (B17)
Performing similar analysis foKk=1 in (B15), we obtain, a I ot
for @y, 7y insertions,
A Note that the operation af (71) onZ(u) is expressed as
(C0)=2912, . )
the local operator insertion
o~ 1 _ —aq—1
<@'O¢(Y1)>:9§t§)’1 Y2122 Y1201 " d ( d )
“1 2 .
I\ Ipap

(Co®(yr)- - Dly)=2 Z LTS _ ,
----- Next, we notice that as an operator acting atu),

v —al—l‘ gkl 5/53(y) is expanded by the local operatéfow,, :
Yq Yk ,

(1) =203, § 5 9 e

———= as actingorZ(w).
5o 2 9 orE()

(O1D(y1) = gst2y1/2+22 9324,Y1 ©
Furthermore, since the partition functiati J] is related to
the Z(w) through the rescaling

(1 ®(yy)- - D(yy)= 2 2 93/2,a1

..... ay
..... _ dy 3 sin
Xyl—al—l ”y;aK—l (K=2). Z[J]—exp{fﬁJ(y)w qy)
(816) dy1 sin
A 53y IYIW Y 1,y2) | Z(),
This shows that @ (y,)) and(@;®(y,)) have the singu-

lar partsg32y; ¥2 andg23yY?, respectively. (B18)

The other powers of give the Virasoro constraints. For
K=0, we have

we see that
5
2| gzt 1gT9 |t 2 (9p0p +9p0) 5 dyp-
+8'= —\Si 7= i

5 2
ET) 8 _1=0 (I=—1,01,..),

2 1
+gst1_65l,0+

y ot (B19)

where g with negative indices is understood as zero. For
general K, by introducing the generating function
as acting orz[ J].
® '1'/12/2 ,u;'/szfz After these preparations, we can now prove Eg4) and
InZ{u)= > T8 2,12, M2, 3, (85). First, we conside(84). The integral along the contour
ne=0 M12: N3t S N— C is defined by the analytic continuation using taefunc-

tion. For example,
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dy , [©° dy —=dy A e dy , 1
fcmy —fﬁ (y i0)A fo ﬁ(y+|0) ffiwm ——cos—f dxx?
sinmA 1 =A
=- f dyy* =—cos-B(A+1,-A-1)
SimTABA-i—l A1 _ 1 1 1 B
- (A+1-A-1) T(0) A+1 pginz
- _ L L This implies that forA & Z,
A+1T(0)"

For A# —1 this is zero, and foA=—1, because the inte-
grand has no cut, the contour can be deformed as encircling”°

the origin
dy -1 -1
Lm =fogy =L
We summarize these into
dy
ch_wiy =0p-1 (B20)

From this result, in the case that the pole —y,; exists
inside the contour, we obtain

L2 AN S f dy A ns
c27T| y+y, n:g L 2i
(=Y A=01,2,..., Bo1
0 otherwise. (B2Y)
Also, when the pole/=y, is outside the contour,
d A 0, A=012,...,
c2mi y—y, =) otherwise.

By using these formulagB20) and(B22), we can see that

1/2
f02’77| 2

ZJ’ 27” 1/2Wsmg(y) 0= </ >smg

J
dpasp’

a*l:2

dy . 1 | |
chﬁ MWsmg(y'h):ggtEyl 1/2=(ﬁ0q>(y1)>smg’

which just mean that?, is written as in(84).

Next, we verify the second equali{g5). For this purpose,

it is sufficient to show that

M) 2m

e—+0

dy
gy A A
ey J’c27ri y (B23)

for arbitrary A, because formulas such é321) and (B22)
can be derived froniB20).
We consider the following integral in the calet Z:

joo dy joo dy
i eyyA— n+A
lim fﬂme y lim E f =0.

o +on=0 n! ,|m27-r|
(B24)

Also, whenA=—-1,—2,—3, ..., thecontour can be de-
formed to the circle enclosing the origin:

1= dy dy
lim f 2—e8yy = lim 9502 esYyA

_iw2i

e—+0 e—+0
glAl-1
im —————= 5A —1-
ool A=A

Further, forA=0,1,2,. . ., thederivative of thes function at
y=¢ appears. In our prescription, siné&" (&) =0 for finite
e, the limit e— +0 is also zero:

i g
lim f —y.eEVyA= lim 8" (g)=0.
s t+0J —ix sl 640

These results are summarized into

i Jiw dy
im
e—+0 —|002’7T|

Comparing this with B20), we conclude that Eq85) holds.
Similarly, it is easy to see that the operatoy is expressed
as

eVyA= 5, _ (B25)

d 5
=2 f ey (B26)
c2mi 8J(y)
i d 5
=2 lim f Y vy
e—+0 _IDOZWI 5‘](y)
(B27)

APPENDIX C: DISK AMPLITUDES
IN THE TWO-MATRIX MODEL

Here, we obtain various disk amplitudegenus zero one-
point functiong in the two-matrix model by using the con-
tinuum limit of the Schwinger-Dyson equations which give
the relations among them. Some of the disk amplitudes be-
fore taking the continuum limit have been obtained by Stau-
dacher{11]. We will extend his results considerably and give
detailed forms of the continuum disk amplitudes that have
not appeared in the literature.

We introduce the following notation for the disk ampli-
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tudes(some of which is borrowed frorfil1]): The expressions diV; andW; are evaluated by the orthogo-

L L nal polynomial method16,24 as follows:

Wn=<ﬁtrA“> , Wg?gn:<ﬁtrA”Bm> ,
0

1
0 wlzw[sp“—ecf—z(l—2c)p2—2c(1—2c)2p*1

1 1
Ntra—B>O’ +329%—(1—2c+4c?)(1-20)], (CH

W3:16><—&495[ —16(p°—1)+90c(p°—1)

|
" 1

1 1 1 +80(1—2c)—§1c2)( 4-1)
woigor=(Rute ) e
0

+(— 64— 94c+ 3802+ 60c?) (p3— 1)
Wi(£1:82,02, - Lk, o) +(—48+336c— 3332 1503~ 54c%) (p2— 1)
1 11 11

:<Etr B > , +2(1—2¢)(32— 41c— 14c?— 66¢%) (p— 1)
N {1i—A H—Ao,=B —Ao—B/,

—6c(1—2¢)%(7—14c—2¢?)(p 1—1)

WE(L,00, ki) +e(1-20)4(16—21c— 6¢2— 6¢%) (p~2—1)
1 1 1 1 1 3
= Ntrgl—A a'l—B.” L —Ao—B . _4C3(1_2C)3(p—3_1)_ZCZ(l_ZC)4(p—4_1) ,
(k=1,2,...). (C6)
wherep is implicitly determined b
1.W(0) P plicitly y

Let us first start from the disk amplitude with the simplest ) 1 . ) )
spin configuration on the loogThe spins on the loop are all ~ 9°= — 35[4p”~9¢p"—4(1-2¢)p+2¢(1-2¢c+2c)
A.) It is obtained by combining the following three
Schwinger-Dyson equations: —c(1-2¢)%p 2. (C?

R - 2,9
(£=9LIWIO)=CWi(O) TWL)"+ 1=g(L{+ W), In the continuum limit, expanding andp about the critical

points
(4= 9LH)W1(2) =cWo() +W(HW1(E)
” —1427
+W1_9(§W1+VV(1,1)1 (CZ) 0+ = \/lm*! p*:3C* C*:T ’
Wi (£) —gWa(£)=ciW({) —c. (€3 o
We can eliminateW,({) and W,(¢), and have a cubic Eq. (C7) can be solved iteratively:
equation ofW({):
3 2 p=p +a2/3Ep (5t)1/3+ a4/3ip (5t)2/3
W({)°+aiW({)“+a,W({) +as=0, (CH * 37 36"*
c 35 8557
=g 20m0e), ~ 2 58P+ 310800+ 30"
3523
c c? _ 4103 53
8= ({= 9%~ S(L-08)+| 5 =0 L+1-gWy, & T a6a0d’* oY
az=(—1+gW;+90)({—g¢?) +(1-3c+cgd)W +a4% t2+0(a?) (C8)
3 gw;+g g g 1 44236g)* ’
c
—g?W;—g+ =(1-c?) —c{, whereg is expanded ag=g, (1—a?t).
9 Substituting this into EqgC5) and(C6), we havew; and
where in order to eliminaté/, and W{?) we used W; in the expanded form

Wi—gWo=cWy, Wy~ gWs=cW+1. W, =W+ Wy, (C9)
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2 4 2
Whon_ —8p; +3(29,) 2—13ﬁp*+27(329*) .
! 3(29,)° 27(29,) '
\7V _ .83 8p * 4/3 10/3 ] 5/3
1=a W(St) +a W(St)

_ 2
gt 8527p*+972(29*) +0(al?),
97229, )°
W= W+ W, (C10
non_ 32(420-83%, )p> 2160(252—611,0*),)2t
3 72929,)° 72929,)° '
6 6
A — 5853 320p, (5t )4/3 al03 160p,, (5t)5/3
3 81(2g,)° 24329,)°
70(1152- 359 >
rat D)0 2 (a1,

72929,)°

where we denoted the nonuniversal pieces\§§", W3°" and

the universal ones which give the continuum limit by

Wy, Ws.
Now, we shall evaluataN({) in the continuum limit.
Shifting W({) as

a; -
W) == 5 +W(2), (C1y
Eq. (C4) becomes
W)= S A L A=0 c1
(0)°= 3AW({) — 55A1=0, (C12
where
A,=9aja,—2a}—27a;, A,=a’—3a,.

Then the critical point of denoted byP, is determined by

Al =A,, =0, (C13

where |, means thag,W,;, andW; are set to the critical

values. It turns out that EqC13) gives a cubic equation of

P, , and its solution is threefold®, =(1+3c, )/2g, .
After substituting=P, (1+ay) into (C12 and expand-
ing with respect ta, (C12 becomes

Wi(8) =W ) +Wi(Q),

1 1
WE(Q) = ZL(£=QE) W Q) =W £)2~ 1+ gL +WE™)]+ Z[£- 062~

4481
R a8/3 /3 R
3_ 4],
W({) W@T W()
a 03/254
(16y*—16Ty?+2T?)+0(a*®*? =0, (C14

16010

wherec is fixed to be the critical value, , s is the irrational
numbers=2+ /7, and the rescaled variable= (2052t is
introduced.

The solution of(C14) is

A _ 43 cl/%s1° J— 4/3
W(g) =Rl + =T

+(y_ f 2_T)4/3]+O(a5/3)

01/234/3
=a'®————w(y)+0(a*°),

\/l—ox 24/3

which gives the universal part of the disk amplitude.
Also, the nonuniversal pav/"°\¢) is

(C19

c
W"°%§>——§l=—@ (e (€19

2. W1(&) and W,(?)

The amplitudeW,({) [W,({)] represents the configura-
tion that the spins on the loop all aligh except a smalB
domain consisting of a single spitwo spins.

From (C1),

1
Wy (&)= E[(Z—g§2)Wn°"(§)—Wn°n(§)2—1+9(§+Wr110n)]
1 2 no A
+ 21298~ 2WON )W)

1 . -
+ [~ WD)+ gWi]. (C17
We identify the universal and nonuniversal parts as follows.
If there are polynomials of and T, they are nonuniversal.
Also, if there are amplitudes, with spin configurations sim-
pler than that ofV;(¢), multiplied by polynomials ofy and
T, they are nonuniversal. After these identifications, the re-
maining terms are universal. By using this rule, the universal
and nonuniversal parts, denoted W (¢) andW;°(¢), re-
spectively, are determined as

(C18

2WMN £) TW(Q) (C19
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A 1 A A
Wi(¢)=Z[~W(5)*+gWy]
S8/3
=a®® o ol — (v + Y= (y= Y= T)**+ T+ 0(a’)

8/3

WM(Y) +0(ad). (C20

T

By a similar manipulation for EQ(C2) using
W(5)?=—cWy(¢)+gWy,

we have
Wa(4) = W5 &) +Wa(Q),

1 g c 1 2 2 2\ 2 g non
PR g—ngF%((—gé )+§(§—9§) +EW1

1 1
W2°"(§)=(@+ §(§—9§2))

92 g

o] W 1 1
17527798 Wam 2Wa— 2

C

1 1 1 A 1.
+3g2~ 32 ({- 9%+ H(1-00) - %wa“’"}wqw 5 Wa(0)+ 0@+,

4 S4

A 1. - S
We(0) == SWOWa(0) +O(a')=a’ - (16y"~16Ty*+ 2T+ O(a™*) =a’ __“—wy(y) +0(a'*).

3. WP(g,0) and W(8y,0,85,0)
To discuss the higher disk amplitudes, the recursion equatio$? given by StaudachéEq. (20) in Ref.[11]] is useful:

1
WZ(P,Qq, ..., Pe.Qo=
(P1,Qq k> Qi) P,—gP’—cQ,—W(P,)

x DQ<Q1,QK><%[Q—ng—W<Ql>—W<Qk)]—1+gP1 W (Py,Qp, . Pi,Q)

9° B
- ?DP(PZ-Pk)W(Zk D(P,Qz, .. ,Pr-1,Qu-1)

+

olQ

k—1
I:22[DQ<Ql,Q|>w<2'—2><P2.Qz ..... P.Q)]

X[Do(Qy QWP Qg -, P¢.Q)]+cDp(Py,P)WH2(P,Q,, ..., Pk, Qi)

k
—IZZ W2 =2(P,Qy, ... Pi_1,Q-1)Dp(P1,PYW2720(P,Q, . . ., P.,QJ(. (C2D)

Let us consider the continuum limit for the cases1 andk=2:

(1-94)W(o)—cW({) —gWy(o)
(2) =
W (L, o) = 9—co—W(0) (C22
1
W(4)(§1,0'1,§2102): §z—g§§—CUZ—W(§2){[C_W(Z)(gl’02)]D§(§1’§2)W(2)(§'01)

2

+D,(01,02)| L0 =907~ W(oy) ~W(0) ]~ 1+, W(£y,0)+ SW(Zp) | (C23

Fork=1, putting{=P, (1+ay), =P, (1+ax) and expanding with respect &g (C22 becomes
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WR(¢,0)=W2 ", 0) + WP (¢, ), (C24
W@ MY £ ) =c[1—as(y+x)]+ VI0c[W({) +W(a)], (C25

) 1001 . . 5 . _, 1072 W(0)2W(0) + W(H)W(0)?
W, 0)=a 15 o W W(o) ~ W02+ (o] +a 2 g VI

cs? 1
+ a2ﬁ)(y+—x)2[16qy4+ x*) +80(yx3+y3x) — 40y*x?

+12(s—10) T(y?+x?) + 24(s— 5) Tyx— 120T (y?+ x?+ yx) + 125 T(y + x)2+ 15T%]+ O(a’3)

Cs5/3

5/3W§ w?(y,x)+0(a?), (C26

=a

where

—w(y)2—w(y)w(x) —w(x)2+3T*?
y+X

W@ (y,x)= : (C27)

and we calculatetV®(¢, o) up to the next leading order since it will be necessary to obtdh(¢,,01,¢5,0) below.
Repeating the same procedure kot 2, we have

W (L1,00,85,0,) =W nor(fly(Tl,52102)+W(4)(§1,01,§2,02)y (C28
WO £ 1, Lp,05)=10c—10c[ D ((£1,{2)W({) + D (a1, 0)W(0r)]
—10c{D (¢4, L) WL, 01) + W () ]+ Dy (01,0 [WP(Ly,0) + WP (L, 0) ]},
(C29

. 5¢’s
WH(Ly,01,00,02)= aTW(4)(y1 X1,Y2,%2) +0(a*?)

5¢’s 1
:a —_
8 (Y1—Y2)(X1—Xp)

g(yl_yz)(xl_XZ)(yl+ Yo+ X1+ X5)
- %[W(y1)+W(X1)+2W(y2) +2wW(xo) W (y1, %)
* % [W(y1) +W(Xz) +2W(y2) +2W(x1) W (y1,%7)
n %[W(yz) +FW(xg)+2wW(y1) +2wW(x2) W (y,%;)

1
— 5 [W(y2) +w(xz) +2w(y,) + 2w(x1) WP (y2,x,) [+ 0(a*?). (C30

We note that the above results have symmetry under the cyclic permutation of variables

{1— 0y, 02—, (H—oy, 01—,

which should be satisfied by the definition of the amplitude. In general, however, the symmetry is totally obscure in expres-
sions such as EqC23. Obtaining amplitudes with correct symmetry properties constitutes a quite nontrivial consistency
check for the continuum results.

4. W1(&1,85.07)
From the Schwinger-Dyson equation

N2
_ N2 p N2 i 1 @ 1 1 -s
O‘Jd AdYB 2, aAJ"(zl—At Gr-Ao-B/% |

we have



4484 FUMIHIKO SUGINO AND TAMIAKI YONEYA 53

1
Wi({1:82,00)=— E{Dg(flygz)[g_gfz_w(fl)_W(fz)]W(z)(g,Uz)+9W(0'2)}- (C31

By a similar calculation as before, we find

Wi(£1582,02) =W {15 L0,00) T Wa(L1: Lo, 02), (C32)

S
Wnon(gl;gzvo'z): _Dg(flvgz)(g_g§2)< 1- P_(§+02_2P*))

s ( 2 , 2 , ) ( 1 2 b
+i @—5(51—951)—5(52—952) +9 @—5(02—902)

S W W gw \/E(ZC 2 2 2 ) )D W
_E[ ({1)+ (fz)]_g (02)— F@_g(gl_ggl)_§(§2_g§2) (L1, L)W(E)
10 o
- \/;Dg(gl,é'z){(g_952)[W(§)+W((Tz)]}

A 1 A
—10eD(£1.L)Wa() = S D (£, L)L ({= 9P WP (L, 07)]

2 2 2 2 A(2)
___(gl_ggl)_§(§2_g§2) D ({1,{)W (L, 07), (C33

~ 1 - ~ ~
Wi({1:82,02)= E[W(gl)+W(§2)]D5(§1,{2)W(2)(§,0'2)

ZCSZ (2) 713
=a” 7= [W(y1) +w(y2) IDy(y1,y2)W(y,Xz) + O(a™). (C39

These results show the following scaling behavior for the APPENDIX D: CONTINUUM SPIN-FLIP OPERATOR

; ; (2K) .
general disk amplitudes¥=(Zy, 0, - .. Ly, 0%): In the matrix model before taking the scaling limit, a do-

main consisting of only a single flipped spin can be obtained
W1, 01, el o) as an integral of a general domain,

7 2
=a3 3wy Xg, L YoXe), (C39
1 1 do 1 1 1

which is consistent with the analysis of the boundary conforN tr( g—AB' . ) R tr( —Aoc—B ) (b1)
mal field theory[5]. An argument for this is as follows: The
gravitationally dressed spin operator exists at the boundary
of domains and its dimension [g/]2. This is derived by Let us construct the continuum version of this operation. We
considering the gravitational dressing of the spin operatorcan do this by deriving the relation between the universal
whose dimension igy]'2 in the boundary conformal field parts of the both sides ifD1). i
theory in flat spacg25]. In Eq. (C35), increasingk by one First, let us consideW?)(¢,0) and W;(¢). Comparing
unit corresponds to adding the two domains. Clearly, theEgs.(C20 and(C27), we have
boundaries of domains are also increased by 2. Then, the
dimension ofw(®¥ is changed by a factor

2 - 2 J %W(Z)(yvx)z_W(Y)z+T4/3
[y]2><§+2><( 1)=[y] §, C
=w,(y)—2T*, (D2)
where 2x 2 comes from the dressed spin operators at the two
boundaries, and 2 (—1) from the two domains. This coin-
cides with(C35). where the contou€ surrounds the negative real axis and the
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pole x=—y. The calculation can be performed by using the _ s193,/10c

formula (B21) after expanding the numerator of2(y,x)  Wa({1;{2,05)=a'%® o0 2B W2(Y11Y2.%2),
with respect to the large. In such a calculation, we assume

that the unintegrated variable is outside the contour, and

—y is inside. By including the overall factors, it is rewritten

as Wa(Y1;Y2,X2)
=[—w(y1)>=w(y)W(yz) —w(yp)*+3T*
lEﬁ_U'W '(¢,0) XDy(y1,Y2)W2(y,Xp), (D6)
R 1/3:8/3
=W, ({)—a®? 70 T4R+0(a3), (D3) . 502543

W1(§1;§2102a§3103)=a4/3W§W1(y1iYZ:X2,Y3:X3)a
where the integral symbol

SﬁT" W1(Y1;Y2.:X2,Y3:X3)
i
:[W(Y1)+W(y2)]Dy(y1:Y2)W(4)(y,X2,Y3vX3)
is used in the sense of —Dy(Y2,¥2) W2 (y,X2)Dy(y3,y1)W?(y,x3). (D7)
do dx Then it is easy to see that the following formulas hold:
sdo dx
9327Ti0- Pl c2mi
- - dx, dyz
NeXt, forW(4)(é’1,0'1,§2,0'2) andW1(§1;§2,0'2), we use f 27”] 27_” yllyZ!XZ)
the formulas €1 ¢
dx,  dy,
:L ﬁf i 5 Wi(Y2:Y1,X2)
dx; 1 X7 5 (@e2) '
pyr =- agl), dx, [ dx
c2mi X3 =X X1 +Y1 Y1it+Xo :f _Zf - .
c,2m | 2 W1 (Y1,X1;X2)
n n _ dX2 Xm
J% 1 W n=012, ..) o2 C2mW1(Y1 X2;X1)
c2m X1—Xp X1 +tY;  Yi+Xo (n=0,1.2,...), !
=wy(y1)+2T%3w(y,), (D8)

which are derived from the formulas in Appendix B, where
we regard again that the unintegrated variablgsy; are  where the contouC; wraps around the contout. More-
outside the contour, ane x,,—Yy, are inside. After some over, after a straightforward but lengthy calculation, we can

calculations, we have show that
Xm dx, [ dy
WY1 X1 Yo X f 2] 2.
f (Y1.X1,Y2,X2) c 2 c27T| 1(Y1:Y2.%2,Y3.X3)
:[W(yl)+W(y2)]Dy(yl!yZ)W(Z)(y1X2)! (D4) _j dXZJ dyz .
= c,2m Czﬂ_iwl(YZ,Y&Xs,YLXz)
Adﬂ'l ~ dX2 Xm
3_1452_7ﬂ01W(4)(§1:<71-§2102) = c2_17i Cz_ﬂ_iwl(h,xl;xz’)/s'xs)
1
=Wi({1:42,05)+0(@™). (D5) dx, [ dxg
HeLea = ch_wi Cz_ﬂ_iwl(h,xz;xl-h-xs)

We can use this method also for a domain consisting of
two flipped spins. For a preparation, we shall compute the =Wo(Y1:Y3.X3) — 2T¥D(y1,y2)W(y,X3). (D9)
amplitudesWy(Z1;¢2,05) andW({1;{>,05,{3,03). From
the analysis of the Schwinger-Dyson equations similar in ApNow by taking the overall factors into accourf)8) and
pendix C, we obtain (D9) are rewritten as
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Ad ~d Ad d
B 432 |20'2(§2§|W1(§1,§210'2)) B 02 Eﬁﬁ< 7145 0'1VV( )(§1,0'1,§210'2))
~.d ~dly A Thus the symbol
=s! 0202(5ﬁ2_7é;2iW1(§2i§1,02)) g do
-1 ]
s ¢ —o0;
2i

o
~d d
:5_1362;;20 (Sﬁzo-ll Wi({1,071; 02))
d
5

_ ) ~do 1
=s £ 02 932 Wi(£y,02;00) ;%
2i
1130813
—W2(§1)+38/3 T4/3VV(§ +0(a'®?), (D10)  shrinks the domain?, to nothing in conformity with the

original matrix model operation.

APPENDIX E: COMMUTATIVITY OF THE MIXING

~do A dgs MATRIX WITH SPLITTING AND MERGING PROCESSES

5_1452—7Tizaz(952—7ﬂ\7V1(§1?§2102.§3103))

~d di, ~
=s"1$ 72 (932 | Wi({2:83,03.41, 02))

Here, we present the calculations which lead to @§5);

o P 1)
N~
J v 6J

5 6
5V 5

for the first several components-A,B,1,2, and Eq(116),

é
3
6J KL

2_
Ad dO'l
452_ Sﬁz I Wi({1,01,02,43, 03))
~do
2_

do
=s" o (Eﬁz |1W1(§1,0'2,0'1,§3 0'3)) [
/\

B
M=
8J )

:z .,///;/”(‘///éJL
T

=Wy({1:83,03)
1/3.8/3

- for (1,J)=(A,A),(B,B),(A1),(B,1),(A,2),(B,2),(1,1).
—a% 40 TABD{(él*53)W(2)(§"73)+O(a11/3)' First, we consider Eq115). Forl =A,B, itis trivial from
the definition of 7 and\/:
(D11)
where the integral symbols are used in the sense of ////i S '
53/, 83a(0)
~do, 2 dx; - d¢, dy,
22— ) 2 _ _2< S
SﬁZﬂ'i T2=Pia c,2mi’ 2mi *aICZﬂ'i ' ( //—) =— ,
3% _p o[ 20 ( i 5) > ) (ED)
i a| —. —\/—=| =—0d{] ==,
2i *7 )2 53\/ A/, ¢ 8JA(0)?

These formulas show us that the domain consisting of two

flipped spins is constructed by shrinking the domain between ﬁ ﬁ -y & (E2)
two microscopic domains consisting of a single flipped spin. 53 v 83 7\ 83g(0)?
Indeed, by substituting EGD5), the first line of(D10) be- B
comes For =1, using
(.,//—A) =\/ﬁ< A(S + Ab‘ )+ - o ) (E3)
N 0Ja()  8dg(o)]  631({,0)
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( 1) 5) _ 5 o o N ) 1) ) 4
33V, SN0 o) Se) o)) (=
we have
o o R o 0 6
6J 6J 6J 6J 6J 6J
1 A B 1
) o 1)
=-210c ——t 0,
5JA(§) 5~]A(§) 6Jg(o) 6Jg(o)
) o ) o
- 2( ~ &g ~ + ~ 0"0. ~ ) . (E5)
OJa(g) " 8d1(L,0) 8Ig(o)  631(&,0)

On the other hand,

Vioc

% 1) 1) 1) 1) 1) 1) N 1) 1)
| —=\/ —= = —\/ —~= —\/ —= ,
5J\/ 6J . 5J\/ 8J 5J\/ 5J\/ 8J .

which is nothing but the RHS dE5). Similarly, we can show the validity of the formula for=2 by noticing the identities

2
)
() —=———=D o) —= = , o),
25 JA@,) D) e DA S g ey DA DD A0 DS
2 i Dy(&1.82)=—— i ( Dy({1.82)= )2 Dy({1.82)= i (E6)
F1a3ag) T ) P 0
Next, we consider Eq116). Note that # takes the upper-triangular formz,;=0 for 1 <J. For (1,J) =(A,A),
A(./zi) (z;m:(Ai) (6= .//ZAK%AL(AEA) (Geh, (E7
6 AA 2 AA KL 2 K,L
becauseZa = 6a . For (1,J)=(A/1),
0 K
A //45 Al(éw;(l:(fl):_a{’allDz(éulyg/)(a//Jg)l(Zy(Tl)
=—/10cd, 9, D,( ’)L—a 9, D ’)L (E9)
= 96,081, 63A(Z) 09, DA1,C 531(2,01)-
On the other hand,
, é S )
> .//éAK.//ZlL(/\—A) (é';gl,gl):\/ﬁ(/\_ﬂ) (5’?51)+(/\_A) ({381,071, (E9
KL 6J K,L J AA 6J Al
which is nothing but the right-hand sidBHS) of (E).
Similarly, for (1,J)=(A,2),(1,1), checking the formula is straightforward by utilizing identities such as
(s“{)f?D(g’) i 9¢,D{",81)DW(Z,{2)=—— i +39.,D¢",2)Dw(Z,41) ° (E10
z ' w Z)-= - z wlZ 2 z wlZ
v Saw) & ' Y olaw) ’ Y daw)’
D2(£1,¢1)Dw({1,81)D(z,w) > D( )= (E1)
Z,W)————=4¢
A£1,81)Dw({1,£1)D (2, S 0) 90Dz 01,41 5n2)

The validity for (1,J)=(B,1),(B,2) is obvious from the symmetry ofZ with respect toA—B.



4488 FUMIHIKO SUGINO AND TAMIAKI YONEYA 53

[1] M. Kaku and K. Kikkawa, Phys. Rev. D0, 1110(1974); 10, Ikehara, Prog. Theor. Phy83, 1141(1995.

1823(1974; E. Cremmer and J. L. Gervais, Nucl. Phi90, [16] D. Boulatov and V. Kazakov, Phys. Lett. B86, 379(1987.
707 (1975. [17] E. Gava and K. S. Narain, Phys. Lett. 283 213(1991.

[2] E. Witten, Nucl. PhysB268 253(1986; H. Hata, K. Itoh, T.  [18] T. Yoneya, inProceedings of the Seventh Workshop on Grand
Kugo, H. Kunitomo, and K. Ogawa, Phys. Rev.34, 2360 Unification (ICOBAN '86) Toyama, Japan, 1986, edited by J.
(1986; 35, 1318(1987); 35, 1356(1987. For recent develop- Arafune (World Scientific, Singapore, 1986H. Hata, K. Itoh,
ments, see, e.g., B. Zwiebach, Nucl. Ph$890, 33 (1993. T. Kugo, H. Kunitomo, and K. Ogawa, Phys. Lett.185, 138

[3] H. Kawai, N. Kawamoto, T. Mogami, and Y. Watabiki, Phys. (1988: G. T. Horowitz, J. Lykken, R. Rohm, and A.

Lett. B 306, 19 (1993.

[4] N. Ishibashi and H. Kawai, Phys. Lett. B4, 190(1993.

[5] M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama,
and N. Sasakura, Phys. Rev.9D, 7467 (1994; M. Ikehara,
Phys. Lett. B348 365 (1995.

[6] A. Jevicki and J. Rodrigues, Nucl. Phyg421, 278(1994.

[7] See, e.g., T. Banks and E. Martinec, Nucl. PHBg94, 733
(1987, and references therein.

Strominger, Phys. Rev. Letb7, 283(1986.

[19] M. Natsuume and J. Polchinski, Nucl. Phil24, 137 (1994);
J. Polchinski, Phys. Rev. Leff4, 638 (1995.

[20] A. Jevicki, M. Li, and T. Yoneya, Nucl. PhysB448 277
(1995.

[21] E. Brezin and V. Kazakov, Phys. Le®236, 144 (1990; M.
Douglas and S. Shenker, Nucl. Phy335 635 (1990; D.

[8] N. Ishibashi and H. Kawai, Phys. Lett. 82, 67 (1994. Gross and A. A. Migdal, Phys. Rev. Le@4, 127(1990; Nucl.
[9] R. Nakayama and T. Suzuki, Phys. Lett3B4, 69 (1995. Phys.B34Q 333 (1990
[10] G. Parisi and Y. Wu, Sci. Sir24, 483 (1981. [22] V. Knitzhnik, A. Polyakov, and A. Zamolodchikov, Mod. Phys.
[11] M. Staudacher, Phys. Lett. 805 332 (1993. Lett. A3, 819(1988; F. David,ibid. 3, 1651(1988; J. Distler
[12] E. Brezin, C. ltzykson, G. Parisi, and J. Zuber, Commun.  and H. Kawai, Nucl. PhysB321, 509 (1989.
Math. Phys59, 35 (1978. [23] M. Fukuma, H. Kawai, and R. Nakayama, Int. J. Mod. Phys. A
[13] Y. Watabiki, Nucl. PhysB441, 119(1995. 6, 1385(199)); R. Dijkgraaf, E. Verlinde, and H. Verlinde,
[14] S. S. Gubser and I. R. Klebanov, Nucl. Phy414, 827 Nucl. Phys.B348 435(199)).
(19949; A. Tsuchiya(unpublisheg [24] M. L. Mehta, Commun. Math. Phy§9, 327 (1981).

[15] N. Ishibashi and H. Kawai, Phys. Le8352 75 (1995; M. [25] J. L. Cardy, Nucl. PhysB275[FS17, 200 (1986.



