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Trace anomaly and the Hawking effect in generic two-dimensional dilaton gravity theories
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Black hole solutions in the context of a generic matter-coupled two-dimensional dilaton gravity theory are
discussed both at the classical and semiclassical level. Starting from general assumptions, a criterion for the
existence of black holes is given. The relationship between the conformal anomaly and Hawking radiation is
extended to a broad class of two-dimensional dilaton gravity models. A general and simple formula relating the
magnitude of the Hawking effect to the dilaton potential evaluated on the horizon is derived.
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[. INTRODUCTION bal structure of the spacetime. For the particular models
mentioned above one can explicitly show that black holes do
Two-dimensional2D) dilaton gravity[1-10Q] is a subject  exist but analogous statements for the generic model are still
that has been intensively investigated in the last years nd@cking. In principle, the potential being the only free input
only because of its intrinsic mathematical interest but alsdn the action, one should be able to impose conditions on the
because it provides a Simp|e toy model for Studying therI’]CtiOﬂﬁ' form of the potential, which would assure that
Hawking radiation of black holes. Moreover the relation with black holes really exist. Second, assuming that black holes
String theory in noncritical dimensions and the fact that grav.eXiSt, one should be able to describe them Semiclassically. In
ity in two dimensions is renormalizable could make theseParticular one would like to use here the well-known rela-
models very useful in a full quantum description of physicaltionship between trace anomaly and the Hawking effetL
black holes. Several models of 2D dilaton gravity have beerf\gain, this has been done for some special c45¢58,13
analyzed in the literaturg5—10]. Most of them are more or but a treatment for the general model is still lacking.
less motivated either by their relation with string theory or  In this paper we will focus on these two problems and we
by the connection with four-dimension&tD) black-hole will find that they are strongly related. We will set general
physics. We have, for example, the Callan-Giddings-Harveyconditions on the functional form of the potential, which will
Strominger(CGHS model[5], which has been used to de- be enough to assure that black holes exist. On the other hand
scribe back reaction effects in the black hole evaporationve Will find, considering a matter-coupled dilaton gravity
process, and the Jackiw-Teitelboi@l) theory[6,7], which theory, that the same conditions are crucial for having a con-
is historically the first 2D dilaton gravity theory. Other mod- Sistent semiclassical description of black holes. We will show
els of current interest are Spherica”y Symmetric gra\/itythat the relation between the conformal anomaly and Hawk-
(SSQ that is obtained by retaining only the radial modes ofing radiation can be extended to generic 2D dilaton gravity
4D Einstein gravity and string-inspired models that admitintroducing local, dilaton-dependent, counterterms in the
black-hole solutions in 2D anti-de Sitter spacetife9). semiclassical action. We will also derive a simple expression
Even though the spectrum of models for 2D dilaton grav-relating the magnitude of the Hawklng effect to the potential
ity is large and composite, a unified and complete descriptiogvaluated on the event horizon.
of the theory still exist§1—4]. It turns out that dilaton rep-  The paper is organized in the following way. In Sec. Il we
arametrizations and Weyl rescalings of the metric relate difbriefly review the features of generic 2D dilaton gravity that
ferent models in such a way that the most general action foare relevant to our investigation. In Sec. Ill we analyze the
2D dilaton gravity depends only on a function of the dilatonglobal structure of the solution and we show how the func-
field (the potential The resulting theory in its general form tional form of the potential can be constrained so that black
is simple and, in the absence of matter, is exactly solvabl&oles exist. In Sec. IV we study the theory coupled to scalar
both at the classical and quantum-mechanical level. Thougfatter fields. In Sec. V we discuss the relationship between
the classical structure of the theory, including the solutionghe conformal anomaly and Hawking radiation in the context
and the classical observables for black holes, is well undetof generic 2D dilaton gravity. In Sec. VI we discuss some
stood, there are still two main unsolved problems. First, infélevant special cases. Finally, in Sec. VIl we draw our con-
the generic model one can find, using arguments related tglusions.
the local structure of the spacetime, strong evidence for the
existence of black holeb_4]. A rigorpus proof of the exist- Il CLASSICAL 2D DILATON GRAVITY
ence of black holes implies a detailed knowledge of the glo-
Our starting point is the most general two-dimensional
action depending on the met@y and the dilatonp, which
* Electronic address: CADONI@CA.INFN.IT is invariant under coordinate transformations and contains at
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most two derivatives of the fields. This action takes the form M
[1,2] J(P)=—+— (2.10

1 ~ 1 . . . . .
94,,,¢1= _f d2x~/—@{D(¢)R+ ~(V$)2+N2W( o) |, admits at least one solutichg, such that in a neighborhood
. 2m 2 of ®, the functionJ(®) is monotonic, the Killing vector

(2.1) (2.9 becomes spacelike dt,, signalizing the presence of
an event horizon. One is then led to interpret the solution as

a black hole. But the existence of event horizons cannot be
inferred by studying only local properties of the solution. In
he next section we will discuss the global structure of the
spacetime and we will show that for a broad class of models
the interpretation of2.6) as a black hole is possible.

In the next sections we will need the solutid@s6), (2.7)
written in the conformal gaugeds®=—exp(2p)dx"dx .
xing the residual gauge freedom relative to the conformal
subgroup of diffeomorphisms, the solutions can be written as

22 2P—<J— ZTM) (2.12

whereR is the Ricci scalar an® andW are arbitrary func-
tions of the dilatong. The model represents a general|zat|on
of well-known 2D gravity theories such as the CGHS model
[5] and the JT mod€l6]. In its general form, given by2.1),

it has already been analyzed in the literat{te-4]. In the
following we will briefly review some basic features of the
model that are relevant to our further investigation. The
model defined by2.1) actually depends only on the dilaton Fi
potential W(¢), since the Weyl rescaling

exP( JdD/dq&

and the reparametrization @f, ®=D(¢), bring the action o d N
(2.1) into the form f T M -
| oM 2(x X7). (2.12
- —

1
S[gM,,,CID]=EJ d2x(—g[PR+A\ZV(D)], (2.3 A

Assuming that the solutions represent black holes one can
whereV(®) is an arbitrary function ofb. The field equa- associate to them thermodynamical parameters. For the tem-

tions derived from the actiof2.3) have the simple form perature of a generic black hole one has
2 dv A
)\2
V,.V.® - 50, V=0. (2.5 IIl. GLOBAL STRUCTURE OF THE SPACETIME

As stated in the previous section a rigorous proof of the
One can show that a generalized Birkhoff's theorem holdexistence of black hole involves a detailed analysis of the
for the theory: for each choice of the potentiabnd modulo  global structure of the spacetime. The potentiabeing the
spacetime diffeomorphisms, the general static solutions ofnly free input in the actioi2.3), it is evident that the infor-
the theory form a one-parameter family of solutions. In themation about this global structure is encoded in the particular

Schwarzschild gauge the solutions can be written as form of the functionV(®). In the following, starting from
general conditions that assure the existence of a black-hole
2MY 2M\ 1t ) solution, we will single out a broad class of models for
ds’=—| J(Ar)— ~JAEF I =] dr which the interpretation of2.6) as a black hole can be well

(2.6) established. These conditions will be translated in some con-
straints about the functional form of the potental We will
d=Nr, (2.7 consider for simplicity only black holes with a single event
horizon. Our discussion can be easily generalized to the case
whereJ(®)=[*d7V(7). The parameteM labeling the so- of multiple horizons.
lutions is a constant of motion, which can be interpreted as A crucial role in our analysis is played by the fiefol.
the mass of the solution and can be expressed in the coorddecause of its scalar characteb gives a coordinate-
nate invariant form independent notion of location and can therefore be used to
define the asymptotic region, the singularities, and the event
horizon of our 2D spacetime. We will consider only the
spacetime region for which€9® <. This restriction is jus-
tified by the fact that the natural coupling constant of the
The solutions admit a Killing vectdt, , whose magnitude is  theory isg= (®) Y2 the spacetime can therefore be divided
into a strong-coupling regiond{=0) and a weak-coupling
asymptotic region @ ==). & is the correspondent of the
radial coordinater in 4D spherically symmetric solutions
(this analogy is particularly evident for SSG, where the area
If the equation of the transverse two-sphere is proportionafbtd.

— AL 2
M= 5|57 (VO)2=3(®)|. (2.9

k k”—ZNI J(P
W= 3(@). 2.9
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The next step in our analysis is to write down a set of
conditions that, if satisfied make the interpretatiof26) as
a black hole meaningful. Let us assume ttatthe equation
(2.10 has only one solution fod=®,>0 with V(d)
#0 andV(®)>0 for &>, (b) for M>0 naked singu-
larities are not preserithe states wittM <0 describe naked
singularitie$, (c) in the ® = asymptotic region the Killing
vector (2.9 is timelike for every finite value of the mass
M, and(d) in the ® = asymptotic region the curvatukeis
finite. Condition(a) is necessary for the presence of an event
horizon. It implies that the Killing vecto2.9) is timelike for
d>d, and becomes spacelike fdr<d,. Condition(b) is
necessary for the existence of black holes for every positive
value of the mass and to assure that the vactimO has
no event horizons. It implies that for every curvature singu-
larity ®, we have®,<®, and that the functiod(®d) has
no zeros. Both conditions translate into very weak con-
straints on the functional form df. Conditions(c) and (d)
strongly constrain the asymptotic behavior\éf In fact (c)
implies thatJ(®) — o as®—o. This can be easily demon-
strated, assuming tha{® =) =1 with | finite. If this is the
case forM >\ 1/2 the Killing vector(2.9) becomes spacelike.
Furthermore conditior(d) determines the degree of diver-

FIG. 1. Penrose diagram of the spacetinid.2) with
—1<a=0.

The previous discussion enables us to single out those
models in(2.3) for which the solutiong2.6) can be consis-
tently interpreted as black holes. A detailed description of the
causal structure of the spacetime depends of course on the
specific form of the potential/. The form of the Penrose
: ) - ) diagram will depend on the presence of single or multiple
gence ofJ. By looking at equatiori2.4) one easily realizes 41705 and on the nature of the singularities. Yet, the
that if the. curvature must stay finite ds—x the funct|.on knowledge of the asymptotic behavior of the spacetime en-
J must diverge lesser than or equal 4¢. In conclusion  gpjes us to infer some general conclusions about the causal
black holes do exist if the functiot behaves asymptotically gy cture of the spacetime and to draw a qualitative Penrose
as diagram. For our class of models the metric behaves asymp-

totically as
V~®? —l1<as]1. (3.2
ds?=—(Ar)2 1 d 2+ (ar) @t Ddr2,
We have correspondingly two classes of black holes: for
—1<a<l, R—0 as &—=; for a=1, R—const as —1l<a<1, O0sr<o», (3.2
® — o, The asymptotic behavidR— 0 is not enough to as-
sure that the spacetime is asymptotically flat. Asymptotiovhere we make use of EqR.7). Performing the coordinate
flatness requires that asymptotically the metric can be put itransformationga|A\y=(Ar)~2, x"=t+y, andx™ =t—vy,
a Minkowski form. This issue will be settled at the end of the metric becomes
this section after the analysis of the global structure of the
spacetime. 2 _

At this point the alert reader could object that the inter- B
pretation of(2.6) as a black hole fails, even though condi-
tions (a)—(d) are satisfied, if the spacetime has no curvaturg=rom this expression of the metric one can read off the Pen-
singularities and can be maximally extended to describe ase diagram, which turns out to depend on the valua.of
regular spacetime. This happens, for example Vigb) =1 For —1<a=<O0 the metric can be put asymptotically in a
[12] and for the JT theorjV(®)=2d] [7]. In these models Minkowski form. The spacetime is asymptotically flat, the
the black-hole spacetime can be maximally extended to bdine r =o0 (® =) is lightlike whereag =0 ($=0) is time-
come the whole of the Minkowski and anti—de Sitter spacelike. This Penrose diagram is shown in Fig. 1. For
time, respectively, for the two cases. As pointed [Gy12] if O<a<l, R—0 asr—o, but the metric singularity at
one cuts the spacetime at the libe=0 (as we do herethis  r=c (x™=x") cannot be removed by any coordinate trans-
extension is not possible and the spacetime does indeed refprmation. We have a strange situation where even though
resent a black hole. For the general model, in absence dhe curvature is asymptotically zero, the metric cannot be put
curvature singularities, we will therefore consider the lineasymptotically in a Minkowski form. The line=« is time-
® =0 as the boundary of the spacetime. like whereasr =0 is lightlike. This Penrose diagram is de-

Two-dimensional dilaton gravity models, in which the po- picted in Fig. 2. The casa=1 is analogous to the previous
tential behaves likg3.1) with arbitrary a, have been dis- one. The only difference is that noR— —\? asr—o= so
cussed in Ref[13]. In that paper the author points out that that the spacetime is asymptotically anti—de Sitter. Typical
the solutions witha<<1l anda>1 present essentially the Penrose diagrams for black holes with a single event horizon
same physical behavior if one interchangés=0 with  and with the asymptotic behavi@8.1) are depicted in Figs.
d=c0. Here, we will not consider this possibility because 3 and 4.
we want to maintain the identification of the asymptotic re- We end this section with a brief discussion of the ground
gion with the weak-coupling regiofh = oo. state of the theory. Generally we regard the solutions with

—(a+1)/a

aln
2 dxtdx~.

— (X=X
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_ AP v o \? 20y
d,0_p= ge T dyd_d= Ze ,
9,9_f,=0, FAD—29.ps.d=-T",,

4.2

where T;i:%EiN:l(aifi)z is the classical energy-

momentum tensor for the matter fields. For gen&fiand
T. . this system of differential equations is very hard to
solve. Still a solution can be found, maintaining a generic
V, when we have only incoming matter in the form of a
shock wave of magnitudsl atx*=x; , described by

T . =Mé&(x"—xJ), T._=o0.

FIG. 2. Penrose diagram of the spaceti@8) with 0<a<1.

M =0 as the ground states of the theory. Conditibp as-

Thanks to Birkhoff's theorem we can find the solution sim-
ply by patching together a vacuum soluti¢(2.11) and

sures that this state does not describe a black hole, but it dogs. 12 with M=0] and a black hole solution along the tra-

not guarantee that it describes a regular spacetime. For ejectory of the shock wave. We have
ample, forV(®)=1 it has been shown that the vacuum is

not a regular spacetime but rather a Minkowski space en- e’r=],
dowed with a null boundar12]. At the semiclassical level
this fact poses nontrivial questions about the stability of the ¢dr N
ground stat¢12]. Here we will follow the same approach as f n 5 (X7 =x7) 4.3
in [12], i.e., we will use acosmic censorshigonjecture to
rule out the states of negative mass from the physical speder x*<x, and
trum.
2M
eZP=(J——>F’(x‘),
IV. COUPLING TO (CONFORMAL ) MATTER A
Two-dimensional dilaton gravity has no propagating de- >  dr A
grees of freedom. If one wants to describe a dynamical situ- f BTV E[x+ —xg —F(x7)], (4.9
ation in which a black hole forms and théat the semiclas- J(r)——
sical leve) eventually evaporates, one has to couple the A
gravity-dilaton sector to matter fields. We will consider here L
the simplest case dfl, conformally coupled, scalar matter for X' =Xg , where
fields f. The classical action is dF 3
1 i 2 F'(x )—dx_— | oM (4.5
S[gw,@,f]—ﬁf d?x/—g| PR+A2V(D) N

4.1 _ .
@9 ® are continuous along the line" =x; .

N
—321 (Vfi)z).

In the conformal gauge the equation of motion and the con-

Notice that the form of the functioR is such that botlp and

straints that follow from this action are singularity
singularity
P=co D=0, D=0,
P=cc P=co
D=0, O=0,
D=co
singularity singularity

FIG. 3. Typical Penrose diagram of

a black hole with a single FIG. 4. Typical Penrose diagram of a black hole with a single

event horizon atb=®, and with an asymptotic behavior charac- event horizon atb=®, and with an asymptotic behavior charac-

terized by—1<a<0.

terized by G<a<1.
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V. TRACE ANOMALY AND HAWKING RADIATION not consider modifications of the cosmological constant ac-
ttion, i.e., terms of the typ&°N(®), because they are irrel-

So far our discussion has been purely classical. In a firs ; !
evant for our consideratiofhs

approximation one can describe quantum effects at the semi- The Liouville-Polyakov term in the actiofb.1) becomes
classical level, by quantizing the matter fields in the fixed ; : .
local in the conformal gauge, so that in this gauge one can

classical backgrgund qf a ble}ck holg for”.‘ed by Co."apsm.geasily derive the quantum contributions of the matter fields
matter. In two dimensions this semiclassical description IS5 the energy-momentum tensor

greatly simplified by the relation between the conformal
anomaly and Hawking radiation discovered in Rdfl]. In
the context of 2D dilaton gravity this relation has already ‘ N

been used to study the evaporation of the CGHS black holes (Tho)=—15(04d-p+d.9-H), (5.2

[5] and of black holes in anti—de Sitter spacetif@¢ The

generalization to a generic theory of 2D dilaton gravity is

still not trivial. In fact using the one-loop conformal anomaly f N ) ’
contribution stemming from the usual Liouville-Polyakov (Tex)=—35l02pd=p—09sp+20-pd-H—d:H

term one obtains an expression for the quantum corrected

energy-momentum tensdf’ ) that is different from zero =GP P+t (x)]. (5.3
when evaluated on the ground state of the theory. Besides, a

simple calculation shows that for the class of models disThe functionst..(x*) reflect the nonlocal nature of the
cussed in Sec. |||<TLv>gs~q>2a asymptotically. Fora>0  anomaly and are determined by boundary conditions. Next,
the semiclassical energy-momentum tensor diverges in thee have to find the form of the functiot$ andG. They can
®— asymptotic region. At first glance this behavior seemsPe fixed by the condition that the energy-momentum tensor
to make it impossible to use conformal anomaly argumentyanishes identically when evaluated on the classical ground
for the study of the Hawking effect. This conclusion is state of the theory:

strictly true only if one assumes that the contributions to the

trace anomaly come entirely from the usual nonlocal f _

T ; (T,,)gs=0 (5.9
Liouville-Polyakov-action. In general we have the freedom #
to add local, convariant, dilaton-dependent counterterms t
the semiclassical action. The presence of dilaton-dependeg
contribution to the trace anomaly is natural if one treats the
metric and the dilaton on the same footing, and is crucial if

ssuming that the functions. vanish for the ground state
d using Eqgs(5.2), (5.3, and(4.3), from (5.4) we get

one wants to relate the trace anomaly to the Hawking effect. 1 ¢ dr
The inclusion of such terms in the semiclassical action has H(®)=— §|”J(¢’)+C I’
already been discussed in the literature. In particular (5.5)

Strominger[14] has observed that the form of the Polyakov

anomaly action depends on the metric used to define the 1 1 dJ)\? c dJ
path-integral measure. The form of the counterterms can be G(P)=- 4 32(®) | dd + () dd”
chosen in order to satisfy some physical conditions, for in-

stance that they respect all the symmetries of the classicglhe constant appearing in the previous equations is arbi-
theory[15], that the theory becomes a conformal field theoryirary, It turns out that the Hawking radiation effect does not
[16], or that the reparametrization ghosts decouple from th%iepend orc so that we can take, without loss of generality,
outgoing energy flux14]. Here we will follow an approach ._q

similar to the one used in Reff12], where the form of the The expressions.2) and(5.3) for the energy-momentum
dilaton-dependent counterterms was determined by imposingnsor are now unambiguously determined and we can turn
physical conditions on the semiclassical energy-momenturg, the calculation of the Hawking radiation from a black hole

tensor evaluated on the classical vacuum of the theory.  t5med by collapse of & shock wave as if4.3), (4.4). For
Let us now consider the general form of the semiclassica;(+$xg the solution is given by the vacuufd 3)'50 that we

action: have(TLV)=O. For x*=xg the solution is given by the
N 1 black hole solution4.4) so that using’5.5) the expressions
S—s, - _f d?x\/=g| ReyR—4H(®)R (5.2) and(5.3) become, respectively,
967 \Y
NAM[1 M 1\/dJ)?
+4G(P VCDZ}, 5.1 Foyo D2 2o =
(P)(VD) (5.1) (Tt 78 [J(l x3>(dq>)
. , : 2M 1) d?J
where S is the classical actio4.1) andH(®),G(P) are —1-—=| ==, (5.6)
two arbitrary functions. The first term above is the usual A J)do
nonlocal Liouville-Polyakov terntwe set to zero the contri-
bution of the ghosiswhereas the other two represent the N
most general local covariant, with no second derivative f oy (2T i -
counterterms one can add to the semiclassical aftiendo (T=)=(FOXTe+ 24{F’X b .7
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; NAM[1 M 1\/dJ\? This expression is well behaved on the horizon. Inserting Eqg.
(Th)=- 2 13\ N 3/ dp (4.5 into (5.11) we find that as the horizo®=® is ap-
proached the Hawking flux reaches the constgmérma)

1 2M 1\ d2J 1 dJ value

‘z(l‘TJ)W‘ﬁ@}’ 3

~ oo N2 5

T77>as:1_2 1_6[\/((1)0)] . (5.12
whereF is given by(4.5 and{F,x"} denotes the Schwar-

zian derivative of the functiofr (x ™). Using the expression
(3.1) for the asymptotic behavior of the functidaf(®) one  This is the main result of this paper and is consistent with
can now read off the values of the energy momentum tensdraive thermodynamical arguments based on the formula
in the asymptotic region by taking the limit—. For as- (2.13 for the temperature of the black hole. In fact, using
ymptotically flat spaces-{ 1<a<0) this limit can be taken (2.13 one can express the magnitude of the Hawking effect
in two different ways, eithek ™ — or x”— —. Because (5.12 as a function of the temperature,

we are interested in the value taken by the energy-

momentum tensor in the future null infinity region we will - w?

let x*—o as d—o at fixed x~. For 0O<a<1 the line <Tf——>gs:§T2-

® = s timelike and can be reached by letting—x". In

both cases the result of the limit will be a function of the

retarded coordinatg™ and will depend on the value of the VI. SPECIAL CASES
parameten that characterizes the asymptotic behavior of the , i .
spacetime. For-1<a<1 we have The general model2.3) with the potentialV satisfying

the conditions discussed in Sec. Il contains, as particular
cases, models that have already been investigated in the lit-

(1" y—0, (Tt _)—o0, (5.9  erature both classically and semiclassically. In this section
we will show how previous results on the Hawking effect
can be obtained as particular cases of Eql2. Also we

N will work out an example of a model that admits black-hole
f o —
(T--)— 24{F'X ;- (5.10 solutions with multiple horizons.
Fora=1 the spacetime is asymptotically anti—de Sitter and A. String inspired dilaton gravity

<TL+>—>A, with A constant. The constant term in the as-  This is the most popular 2D dilaton gravity model. In its
ymptotic expression fofT". , ) and(T" _) can be eliminated original derivation{5], due to CGHS, the action has the form
with an appropriate choice of the functiohs appearing in  (2.1). The Weyl-rescaled model is of the for(2.3) with
(5.3. Setting t,(x")=(12N)Ad(x" —xg) and t_(x7) V(®)=1. The model admits asymptotically flat black-hole
=(12IN)AG(x~—xg) we obtain also fom=1 the same re- solutions[12]. Using Eqs.(2.13) and (5.12;.we find for the
sults (5.9, (5.10. On the other hand we still have temperature and magnitude of the Hawking effect

(T'. _)—const. This constant term can be interpreted as the 1 N A2
guantum correction to the vacuum energy of the anti—de Sit- T=——N\, ﬁf— —>gs:_ 16" (6.2)
ter background. It is important to note that the asymptotic 4m 1216

behavior(3.1) of the potentiaV is crucial for having a well
behaved expression fc(rTLv>. For example ifV behaves This result coincides, after the redefinitian-2\ needed to
asymptotically as if3.1) but witha>1, (T},,) will diverge ~ match the conventions of Refg5,12], both with the CGHS
as®—. Thus Eq.(3.1) not only assures the existence of results[5] and with the result of Refl12] for the Weyl-
black holes, but also assures that a semiclassical descripti¢fiscaled model.

of them is possible.

The limiting value(T" _),cin (5.10 is the flux of f par- B. Spherically symmetric gravity

ticle energy across future infinity. However insertion Fof
given by (4.5) in (5.10 shows thafT" ), diverges as the

horizon is approached. This is due to the bad behavior of ou?]c 4'_3 \/E|_nste|n grawt.y. It s lchir.actfanze(fj by
coordinate system on the horizon. The divergence can b¥%(®)=1/v2® [4]. According to our classification of Sec.

easily eliminated by defining the new light-cone coordinate!!! We havea= —1/2; therefore the model admits asymptoti-

%~ =F(x"), with F given by Eq.(4.5). Because in5.3 we cally flat black-hole solutions with an event horizon at
have sett_ =0, (T' ) transforms anomalously under con- ®,=2M?/\%. The corresponding Penrose diagram is that

formal coordinate transformations. Using the anomalous'":‘hown in Fig. 3. Using Eq42.13 and(5.12 we obtain

This model is obtained by retaining only the radial modes

transformation law of T” _) (see for examplg8]), one finds 1 \2 . A
erm (Te"ggz 62
oy N —21 F.x~ 5.1
{ “>a5_ﬂ (F") {Fx7} (5.13 The black holes of this model have negative specific heat.
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C. The Jackiw-Teitelboim theory V(D)= 1—(C/CI>)2, (6.7)

The JT theory is obtained from the acti@3) by taking
V(®)=2® (we use the conventions of R¢T]). Being char-  whereC is an arbitrary positive constant. According to our
acterized bya=1 the model admits black holes with anti—de general classification of Sec. Il we will have asymptotically
Sitter behavior. More precisely, as shown[ifl, the black-  flat black-hole solutions. The solutiori8.6), (2.7) become
hole spacetime is obtained from a particular parametrizatiomow
of 2D anti—de Sitter spacetime endowed with a boundary.

The black-hole horizon is aby=2M/\ and Egs.(2.13 c2 , c2 oM\ ! ,
and(5.12 give now ds?=— N dt’+ M+F_T) r2,
— 1 T f h _ N
T=5-V2MA, (Tl )as=5,MA. (6.3 s, 68

The same result for the Hawking radiation rate has bee
obtained in Ref{7] performing the canonical quantization of singularity  at r=0 and two  horizons  at

the scalar field$ in the anti—de Sitter background geometry. = =" 7, VTV
Note that the black holes have positive specific heat, indicat.~"==N IM=VM (CA)7]. .The black hole becomes
é(tremal forM=\C. The potentiaV evaluated on the outer

ing the emergence of a stable state as the mass of the hcﬁorizon i
goes to zero.

Bor M>\C the solution(6.8) describes black holes with a

2
. (6.9

CA

M+ M7= (Cn)?

Both the temperature and the Hawking radiation rate de-
. 8k . . X
R+ ——(V )2+ \2|, crease with the mass of the hole and become zero in the
k=1 extremal case.

D. 2D black holes in anti-de Sitter spacetime

V(O =1-

The models discussed in Ref8,9], characterized by the
action

. 1 -
S[g;wvd)]: %J dZX\/—_ge_2¢

with —1<k=0, admit black-hole solutions in anti—de Sitter VIl. CONCLUSIONS
spacetime. The CGHS and the JT models appear as limiting ) - o
cases of this general class of dilaton gravity models for We have been able to give a unified description at both the
k=—1,0 respectively. The actiof6.4) can be mapped by a classical and semlplassmal Ie_vel of the bIacI_<—h9Ie solutions
Wey! rescaling of the metric of the forrt2.2) into action of a general 2D dilaton gravity theory. A criterion for the
(2.3) with existence of black holes has been formulated and the rela-
tionship between the conformal anomaly and Hawking radia-
V(D) =PkrD/A-k), (6.5  tion has been extended to a broad class of 2D dilaton gravity
models. In particular we could write down a very simple and
For —1<k=0 the parametern characterizing the asymp- general formula relating the magnitude of the Hawking effect
totic behavior of the black-hole solutions verifiesc@<1.  to the dilaton potential evaluated on the horizon. The price
The black-hole solutions of these models give evidence ofhat we had to pay for achieving this general description is a
the peculiar asymptotic behavior in Sec. Ill. The Penrosstrong constraint on the functional form of the potential, in
diagram relative to them is represented in Fig. 4. The evenparticular on its asymptotic behavior. The conditions dis-
horizon of the black hole is at cussed in Sec. Il rely very heavily on the form of the action
O=dy=[4M/((1—k)\)]* W2 The temperature and the (2.3), and they are sensitive to the Weyl rescali@g) that
flux of Hawking radiation are brings the action into the forn§2.1). Though the global
structure of the solutions does not change under this trans-

T= 1(2M (kﬂ)lz(i)(lk)lz formation, local quantities such as the Ricci curvature do
T 2mi1-k 2 ' change so that some conditions of Sec. Ill should be refor-
mulated when one considers the Weyl-rescaled model. It may

- N/ 2M | kD /) A=k therefore be possible that a more general description exists
<Tf>gs:4—8(ﬁ) 5) (6.6 that takes full account of the equivalence of models under

Weyl rescalings of the metric. It may also be possible that in
The result(6.6) coincides with that found in Ref8] for the ~ Such general framework the existence of black-hole solutions
model (6.4), after the redefinitiomHM)\, needeq could be dgnved imposing Weak_er restrictions to the.form of
to match the conventions ¢8]. the potential. At the semiclassical level a description that
takes full account of the equivalence of models under Weyl
rescalings would be even more opportune. In Sec. VI we saw
that the Hawking radiation rate for string-inspired gravity
We conclude this section with a model that admits aand for the model$6.4) does not change under a Weyl res-
black-hole solution with two event horizons. Let us considercaling of the form(2.2). It would be very interesting to see if
the action(2.3) with this fact is a peculiarity of these models or a general feature

E. 2D black holes with multiple horizons
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of 2D dilaton gravity. On the other hand our discussion omit-solution could be found only for a modified version of the
ted the backreaction of the geometry on the radiation, an€€GHS modelthe Russo-Susskind-Thorlacius mog&b]).
guantum gravity effects. Both are expected to be crucial in

order to understand the end point of the evaporation process. ACKNOWLEDGMENTS
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