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Trace anomaly and the Hawking effect in generic two-dimensional dilaton gravity theories
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Black hole solutions in the context of a generic matter-coupled two-dimensional dilaton gravity theory are
discussed both at the classical and semiclassical level. Starting from general assumptions, a criterion for the
existence of black holes is given. The relationship between the conformal anomaly and Hawking radiation is
extended to a broad class of two-dimensional dilaton gravity models. A general and simple formula relating the
magnitude of the Hawking effect to the dilaton potential evaluated on the horizon is derived.
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I. INTRODUCTION

Two-dimensional~2D! dilaton gravity@1–10# is a subject
that has been intensively investigated in the last years
only because of its intrinsic mathematical interest but al
because it provides a simple toy model for studying t
Hawking radiation of black holes. Moreover the relation wit
string theory in noncritical dimensions and the fact that gra
ity in two dimensions is renormalizable could make the
models very useful in a full quantum description of physic
black holes. Several models of 2D dilaton gravity have be
analyzed in the literature@5–10#. Most of them are more or
less motivated either by their relation with string theory o
by the connection with four-dimensional~4D! black-hole
physics. We have, for example, the Callan-Giddings-Harve
Strominger~CGHS! model @5#, which has been used to de
scribe back reaction effects in the black hole evaporat
process, and the Jackiw-Teitelboim~JT! theory @6,7#, which
is historically the first 2D dilaton gravity theory. Other mod
els of current interest are spherically symmetric gravi
~SSG! that is obtained by retaining only the radial modes
4D Einstein gravity and string-inspired models that adm
black-hole solutions in 2D anti-de Sitter spacetime@8,9#.

Even though the spectrum of models for 2D dilaton gra
ity is large and composite, a unified and complete descript
of the theory still exists@1–4#. It turns out that dilaton rep-
arametrizations and Weyl rescalings of the metric relate d
ferent models in such a way that the most general action
2D dilaton gravity depends only on a function of the dilato
field ~the potential!. The resulting theory in its general form
is simple and, in the absence of matter, is exactly solva
both at the classical and quantum-mechanical level. Thou
the classical structure of the theory, including the solutio
and the classical observables for black holes, is well und
stood, there are still two main unsolved problems. First,
the generic model one can find, using arguments related
the local structure of the spacetime, strong evidence for
existence of black holes@4#. A rigorous proof of the exist-
ence of black holes implies a detailed knowledge of the g
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bal structure of the spacetime. For the particular mode
mentioned above one can explicitly show that black holes
exist but analogous statements for the generic model are
lacking. In principle, the potential being the only free inpu
in the action, one should be able to impose conditions on t
functional form of the potential, which would assure tha
black holes really exist. Second, assuming that black ho
exist, one should be able to describe them semiclassically
particular one would like to use here the well-known rela
tionship between trace anomaly and the Hawking effect@11#.
Again, this has been done for some special cases@5,7,8,12#
but a treatment for the general model is still lacking.

In this paper we will focus on these two problems and w
will find that they are strongly related. We will set genera
conditions on the functional form of the potential, which wil
be enough to assure that black holes exist. On the other h
we will find, considering a matter-coupled dilaton gravit
theory, that the same conditions are crucial for having a co
sistent semiclassical description of black holes. We will sho
that the relation between the conformal anomaly and Haw
ing radiation can be extended to generic 2D dilaton grav
introducing local, dilaton-dependent, counterterms in th
semiclassical action. We will also derive a simple expressi
relating the magnitude of the Hawking effect to the potenti
evaluated on the event horizon.

The paper is organized in the following way. In Sec. II w
briefly review the features of generic 2D dilaton gravity tha
are relevant to our investigation. In Sec. III we analyze th
global structure of the solution and we show how the fun
tional form of the potential can be constrained so that bla
holes exist. In Sec. IV we study the theory coupled to sca
matter fields. In Sec. V we discuss the relationship betwe
the conformal anomaly and Hawking radiation in the conte
of generic 2D dilaton gravity. In Sec. VI we discuss som
relevant special cases. Finally, in Sec. VII we draw our co
clusions.

II. CLASSICAL 2D DILATON GRAVITY

Our starting point is the most general two-dimension
action depending on the metricĝmn and the dilatonf, which
is invariant under coordinate transformations and contains
4413 © 1996 The American Physical Society
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4414 53MARIANO CADONI
most two derivatives of the fields. This action takes the for
@1,2#

S@ ĝmn ,f#5
1

2pE d2xA2ĝFD~f!R̂1
1

2
~¹̂f!21l2W~f!G ,

~2.1!

whereR̂ is the Ricci scalar andD andW are arbitrary func-
tions of the dilatonf. The model represents a generalizatio
of well-known 2D gravity theories such as the CGHS mod
@5# and the JT model@6#. In its general form, given by~2.1!,
it has already been analyzed in the literature@1–4#. In the
following we will briefly review some basic features of th
model that are relevant to our further investigation. Th
model defined by~2.1! actually depends only on the dilaton
potentialW(f), since the Weyl rescaling

gmn5expS 12E df

dD/df D ĝmn ~2.2!

and the reparametrization off, F5D(f), bring the action
~2.1! into the form

S@gmn ,F#5
1

2pE d2xA2g@FR1l2V~F!#, ~2.3!

whereV(F) is an arbitrary function ofF. The field equa-
tions derived from the action~2.3! have the simple form

R52l2
dV

dF
, ~2.4!

¹m¹nF2
l2

2
gmnV50. ~2.5!

One can show that a generalized Birkhoff’s theorem hol
for the theory: for each choice of the potentialV and modulo
spacetime diffeomorphisms, the general static solutions
the theory form a one-parameter family of solutions. In th
Schwarzschild gauge the solutions can be written as

ds252S J~lr !2
2M

l Ddt21S J~lr !2
2M

l D 21

dr2,

~2.6!

F5lr , ~2.7!

whereJ(F)5*FdtV(t). The parameterM labeling the so-
lutions is a constant of motion, which can be interpreted
the mass of the solution and can be expressed in the coo
nate invariant form

M52
l

2 F 1l2 ~¹F!22J~F!G . ~2.8!

The solutions admit a Killing vectorkm , whose magnitude is

kmk
m5

2M

l
2J~F!. ~2.9!

If the equation
m

n
el

e
e

ds

of
e

as
rdi-

J~F!5
2M

l
~2.10!

admits at least one solutionF0 , such that in a neighborhood
of F0 the functionJ(F) is monotonic, the Killing vector
~2.9! becomes spacelike atF0 , signalizing the presence of
an event horizon. One is then led to interpret the solution
a black hole. But the existence of event horizons cannot
inferred by studying only local properties of the solution. I
the next section we will discuss the global structure of th
spacetime and we will show that for a broad class of mode
the interpretation of~2.6! as a black hole is possible.

In the next sections we will need the solutions~2.6!, ~2.7!
written in the conformal gauge,ds252exp(2r)dx1dx2.
Fixing the residual gauge freedom relative to the conform
subgroup of diffeomorphisms, the solutions can be written

e2r5S J2
2M

l D , ~2.11!

EF dt

J~t!2
2M

l

5
l

2
~x12x2!. ~2.12!

Assuming that the solutions represent black holes one c
associate to them thermodynamical parameters. For the te
perature of a generic black hole one has

T5
l

4p
V~F0!. ~2.13!

III. GLOBAL STRUCTURE OF THE SPACETIME

As stated in the previous section a rigorous proof of th
existence of black hole involves a detailed analysis of t
global structure of the spacetime. The potentialV being the
only free input in the action~2.3!, it is evident that the infor-
mation about this global structure is encoded in the particu
form of the functionV(F). In the following, starting from
general conditions that assure the existence of a black-h
solution, we will single out a broad class of models fo
which the interpretation of~2.6! as a black hole can be well
established. These conditions will be translated in some co
straints about the functional form of the potentialV. We will
consider for simplicity only black holes with a single even
horizon. Our discussion can be easily generalized to the c
of multiple horizons.

A crucial role in our analysis is played by the fieldF.
Because of its scalar character,F gives a coordinate-
independent notion of location and can therefore be used
define the asymptotic region, the singularities, and the ev
horizon of our 2D spacetime. We will consider only th
spacetime region for which 0<F,`. This restriction is jus-
tified by the fact that the natural coupling constant of th
theory isg5(F)21/2; the spacetime can therefore be divide
into a strong-coupling region (F50) and a weak-coupling
asymptotic region (F5`). F is the correspondent of the
radial coordinater in 4D spherically symmetric solutions
~this analogy is particularly evident for SSG, where the ar
of the transverse two-sphere is proportional toF).
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53 4415TRACE ANOMALY AND THE HAWKING EFFECT IN GENERIC . . .
The next step in our analysis is to write down a set
conditions that, if satisfied make the interpretation of~2.6! as
a black hole meaningful. Let us assume that~a! the equation
~2.10! has only one solution forF5F0.0 with V(F0)
Þ0 andV(F).0 for F.F0 , ~b! for M.0 naked singu-
larities are not present~the states withM,0 describe naked
singularities!, ~c! in theF5` asymptotic region the Killing
vector ~2.9! is timelike for every finite value of the mass
M , and~d! in theF5` asymptotic region the curvatureR is
finite. Condition~a! is necessary for the presence of an eve
horizon. It implies that the Killing vector~2.9! is timelike for
F.F0 and becomes spacelike forF,F0 . Condition~b! is
necessary for the existence of black holes for every posit
value of the mass and to assure that the vacuumM50 has
no event horizons. It implies that for every curvature sing
larity F1 we haveF1,F0 and that the functionJ(F) has
no zeros. Both conditions translate into very weak co
straints on the functional form ofV. Conditions~c! and ~d!
strongly constrain the asymptotic behavior ofV. In fact ~c!
implies thatJ(F)→` asF→`. This can be easily demon-
strated, assuming thatJ(F5`)5 l with l finite. If this is the
case forM.l l /2 the Killing vector~2.9! becomes spacelike.
Furthermore condition~d! determines the degree of diver
gence ofJ. By looking at equation~2.4! one easily realizes
that if the curvature must stay finite asF→` the function
J must diverge lesser than or equal toF2. In conclusion
black holes do exist if the functionV behaves asymptotically
as

V;Fa, 21,a<1. ~3.1!

We have correspondingly two classes of black holes:
21,a,1, R→0 as F→`; for a51, R→const as
F→`. The asymptotic behaviorR→0 is not enough to as-
sure that the spacetime is asymptotically flat. Asympto
flatness requires that asymptotically the metric can be pu
a Minkowski form. This issue will be settled at the end o
this section after the analysis of the global structure of t
spacetime.

At this point the alert reader could object that the inte
pretation of~2.6! as a black hole fails, even though cond
tions ~a!–~d! are satisfied, if the spacetime has no curvatu
singularities and can be maximally extended to describe
regular spacetime. This happens, for example, forV(F)51
@12# and for the JT theory@V(F)52F# @7#. In these models
the black-hole spacetime can be maximally extended to
come the whole of the Minkowski and anti–de Sitter spac
time, respectively, for the two cases. As pointed out@7,12# if
one cuts the spacetime at the lineF50 ~as we do here! this
extension is not possible and the spacetime does indeed
resent a black hole. For the general model, in absence
curvature singularities, we will therefore consider the lin
F50 as the boundary of the spacetime.

Two-dimensional dilaton gravity models, in which the po
tential behaves like~3.1! with arbitrary a, have been dis-
cussed in Ref.@13#. In that paper the author points out tha
the solutions witha,1 and a.1 present essentially the
same physical behavior if one interchangesF50 with
F5`. Here, we will not consider this possibility becaus
we want to maintain the identification of the asymptotic r
gion with the weak-coupling regionF5`.
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The previous discussion enables us to single out tho
models in~2.3! for which the solutions~2.6! can be consis-
tently interpreted as black holes. A detailed description of t
causal structure of the spacetime depends of course on
specific form of the potentialV. The form of the Penrose
diagram will depend on the presence of single or multip
horizons and on the nature of the singularities. Yet, th
knowledge of the asymptotic behavior of the spacetime e
ables us to infer some general conclusions about the cau
structure of the spacetime and to draw a qualitative Penro
diagram. For our class of models the metric behaves asym
totically as

ds252~lr !a11dt21~lr !2~a11!dr2,

21,a<1, 0<r,`, ~3.2!

where we make use of Eq.~2.7!. Performing the coordinate
transformationsuauly5(lr )2a, x15t1y, and x25t2y,
the metric becomes

ds252F uaul
2

~x12x2!G2~a11!/a

dx1dx2.

From this expression of the metric one can read off the Pe
rose diagram, which turns out to depend on the value ofa.
For 21,a<0 the metric can be put asymptotically in a
Minkowski form. The spacetime is asymptotically flat, th
line r5` (F5`) is lightlike whereasr50 (F50) is time-
like. This Penrose diagram is shown in Fig. 1. Fo
0,a,1, R→0 as r→`, but the metric singularity at
r5` (x15x2) cannot be removed by any coordinate tran
formation. We have a strange situation where even thou
the curvature is asymptotically zero, the metric cannot be p
asymptotically in a Minkowski form. The liner5` is time-
like whereasr50 is lightlike. This Penrose diagram is de
picted in Fig. 2. The casea51 is analogous to the previous
one. The only difference is that nowR→2l2 as r→` so
that the spacetime is asymptotically anti–de Sitter. Typic
Penrose diagrams for black holes with a single event horiz
and with the asymptotic behavior~3.1! are depicted in Figs.
3 and 4.

We end this section with a brief discussion of the groun
state of the theory. Generally we regard the solutions w

FIG. 1. Penrose diagram of the spacetime~3.2! with
21,a<0.
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M50 as the ground states of the theory. Condition~b! as-
sures that this state does not describe a black hole, but it d
not guarantee that it describes a regular spacetime. For
ample, forV(F)51 it has been shown that the vacuum
not a regular spacetime but rather a Minkowski space e
dowed with a null boundary@12#. At the semiclassical level
this fact poses nontrivial questions about the stability of t
ground state@12#. Here we will follow the same approach a
in @12#, i.e., we will use acosmic censorshipconjecture to
rule out the states of negative mass from the physical sp
trum.

IV. COUPLING TO „CONFORMAL … MATTER

Two-dimensional dilaton gravity has no propagating d
grees of freedom. If one wants to describe a dynamical s
ation in which a black hole forms and then~at the semiclas-
sical level! eventually evaporates, one has to couple t
gravity-dilaton sector to matter fields. We will consider he
the simplest case ofN, conformally coupled, scalar matte
fields f . The classical action is

S@gmn ,F, f #5
1

2pE d2xA2gS FR1l2V~F!

2
1

2(i51

N

~¹ f i !
2D . ~4.1!

In the conformal gauge the equation of motion and the co
straints that follow from this action are

FIG. 3. Typical Penrose diagram of a black hole with a sing
event horizon atF5F0 and with an asymptotic behavior charac
terized by21,a<0.

FIG. 2. Penrose diagram of the spacetime~3.2! with 0,a<1.
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]1]2r52
l2

8
e2r

dV

dF
, ]1]2F52

l2

4
e2rV,

]1]2 f i50, ]6
2 F22]6r]6F52T66

f ,

~4.2!

where T66
f 5 1

2( i51
N (]6 f i)

2 is the classical energy-
momentum tensor for the matter fields. For genericV and
T66 this system of differential equations is very hard t
solve. Still a solution can be found, maintaining a gener
V, when we have only incoming matter in the form of
shock wave of magnitudeM at x15x0

1 , described by

T11
f 5Md~x12x0

1!, T22
f 50.

Thanks to Birkhoff’s theorem we can find the solution sim
ply by patching together a vacuum solution@~2.11! and
~2.12! with M50# and a black hole solution along the tra
jectory of the shock wave. We have

e2r5J,

EF dt

J~t!
5

l

2
~x12x2! ~4.3!

for x1<x0
1 and

e2r5S J2
2M

l DF8~x2!,

EF dt

J~t!2
2M

l

5
l

2
@x12x0

12F~x2!#, ~4.4!

for x1>x0
1 , where

F8~x2!5
dF

dx2 5S J

J2
2M

l
D
x15x

0
1

. ~4.5!

Notice that the form of the functionF is such that bothr and
F are continuous along the linex15x0

1 .

le
-

FIG. 4. Typical Penrose diagram of a black hole with a sing
event horizon atF5F0 and with an asymptotic behavior charac
terized by 0,a<1.
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V. TRACE ANOMALY AND HAWKING RADIATION

So far our discussion has been purely classical. In a fi
approximation one can describe quantum effects at the se
classical level, by quantizing the matter fields in the fixe
classical background of a black hole formed by collapsi
matter. In two dimensions this semiclassical description
greatly simplified by the relation between the conform
anomaly and Hawking radiation discovered in Ref.@11#. In
the context of 2D dilaton gravity this relation has alread
been used to study the evaporation of the CGHS black ho
@5# and of black holes in anti–de Sitter spacetime@8#. The
generalization to a generic theory of 2D dilaton gravity
still not trivial. In fact using the one-loop conformal anomal
contribution stemming from the usual Liouville-Polyako
term one obtains an expression for the quantum correc
energy-momentum tensor^Tmn

f & that is different from zero
when evaluated on the ground state of the theory. Beside
simple calculation shows that for the class of models d
cussed in Sec. III,̂Tmn

f &gs;F2a asymptotically. Fora.0
the semiclassical energy-momentum tensor diverges in
F→` asymptotic region. At first glance this behavior seem
to make it impossible to use conformal anomaly argume
for the study of the Hawking effect. This conclusion i
strictly true only if one assumes that the contributions to t
trace anomaly come entirely from the usual nonloc
Liouville-Polyakov-action. In general we have the freedo
to add local, convariant, dilaton-dependent counterterms
the semiclassical action. The presence of dilaton-depend
contribution to the trace anomaly is natural if one treats t
metric and the dilaton on the same footing, and is crucia
one wants to relate the trace anomaly to the Hawking effe
The inclusion of such terms in the semiclassical action h
already been discussed in the literature. In particu
Strominger@14# has observed that the form of the Polyako
anomaly action depends on the metric used to define
path-integral measure. The form of the counterterms can
chosen in order to satisfy some physical conditions, for
stance that they respect all the symmetries of the class
theory@15#, that the theory becomes a conformal field theo
@16#, or that the reparametrization ghosts decouple from
outgoing energy flux@14#. Here we will follow an approach
similar to the one used in Ref.@12#, where the form of the
dilaton-dependent counterterms was determined by impos
physical conditions on the semiclassical energy-moment
tensor evaluated on the classical vacuum of the theory.

Let us now consider the general form of the semiclassi
action:

S5Scl 2
N

96pE d2xA2gFR 1

¹2R24H~F!R

14G~F!~¹F!2G , ~5.1!

whereScl is the classical action~4.1! andH(F),G(F) are
two arbitrary functions. The first term above is the usu
nonlocal Liouville-Polyakov term~we set to zero the contri-
bution of the ghosts! whereas the other two represent th
most general local covariant, with no second derivati
counterterms one can add to the semiclassical action@we do
rst
mi-
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not consider modifications of the cosmological constant a
tion, i.e., terms of the typel2N(F), because they are irrel-
evant for our considerations#.

The Liouville-Polyakov term in the action~5.1! becomes
local in the conformal gauge, so that in this gauge one c
easily derive the quantum contributions of the matter fiel
to the energy-momentum tensor

^T12
f &52

N

12
~]1]2r1]1]2H !, ~5.2!

^T66
f &52

N

12
@]6r]6r2]6

2 r12]6r]6H2]6
2 H

2G]6F]6F1t6~x6!#. ~5.3!

The functions t6(x
6) reflect the nonlocal nature of the

anomaly and are determined by boundary conditions. Ne
we have to find the form of the functionsH andG. They can
be fixed by the condition that the energy-momentum tens
vanishes identically when evaluated on the classical grou
state of the theory:

^Tmn
f &gs50. ~5.4!

Assuming that the functionst6 vanish for the ground state
and using Eqs.~5.2!, ~5.3!, and~4.3!, from ~5.4! we get

H~F!52
1

2
lnJ~F!1cEF dt

J~t!
,

~5.5!

G~F!52
1

4

1

J2~F! S dJdF D 21 c

J2~F!

dJ

dF
.

The constantc appearing in the previous equations is arb
trary. It turns out that the Hawking radiation effect does n
depend onc so that we can take, without loss of generality
c50.

The expressions~5.2! and~5.3! for the energy-momentum
tensor are now unambiguously determined and we can t
to the calculation of the Hawking radiation from a black hol
formed by collapse of af shock wave as in~4.3!, ~4.4!. For
x1<x0

1 the solution is given by the vacuum~4.3! so that we
have ^Tmn

f &50. For x1>x0
1 the solution is given by the

black hole solution~4.4! so that using~5.5! the expressions
~5.2! and ~5.3! become, respectively,

^T11
f &52

NlM

48 F1J S 12
M

l

1

JD S dJdF D 2
2S 12

2M

l

1

JD d
2J

dF2G , ~5.6!

^T22
f &5~F8!2^T11

f &1
N

24
$F,x2%, ~5.7!
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^T12
f &52

NlM

24 F1J S 12
M

l

1

JD S dJdF D 2
2
1

2 S 12
2M

l

1

JD d
2J

dF2 2
1

2J

dJ

dF G , ~5.8!

whereF is given by~4.5! and $F,x2% denotes the Schwar-
zian derivative of the functionF(x2). Using the expression
~3.1! for the asymptotic behavior of the functionV(F) one
can now read off the values of the energy momentum ten
in the asymptotic region by taking the limitF→`. For as-
ymptotically flat spaces (21,a<0) this limit can be taken
in two different ways, eitherx1→` or x2→2`. Because
we are interested in the value taken by the energ
momentum tensor in the future null infinity region we wil
let x1→` as F→` at fixed x2. For 0,a<1 the line
F5` is timelike and can be reached by lettingx1→x2. In
both cases the result of the limit will be a function of th
retarded coordinatex2 and will depend on the value of the
parametera that characterizes the asymptotic behavior of t
spacetime. For21,a,1 we have

^T11
f &→0, ^T12

f &→0, ~5.9!

^T22
f &→

N

24
$F,x2%. ~5.10!

For a51 the spacetime is asymptotically anti–de Sitter a
^T11

f &→A, with A constant. The constant term in the a
ymptotic expression for̂T11

f & and^T22
f & can be eliminated

with an appropriate choice of the functionst6 appearing in
~5.3!. Setting t1(x

1)5(12/N)Au(x12x0
1) and t2(x

2)
5(12/N)Au(x22x0

1) we obtain also fora51 the same re-
sults ~5.9!, ~5.10!. On the other hand we still have
^T12

f &→const. This constant term can be interpreted as
quantum correction to the vacuum energy of the anti–de S
ter background. It is important to note that the asympto
behavior~3.1! of the potentialV is crucial for having a well
behaved expression for̂Tmn

f &. For example ifV behaves
asymptotically as in~3.1! but witha.1, ^Tmn

f & will diverge
asF→`. Thus Eq.~3.1! not only assures the existence o
black holes, but also assures that a semiclassical descrip
of them is possible.

The limiting value^T22
f &as in ~5.10! is the flux of f par-

ticle energy across future infinity. However insertion ofF
given by ~4.5! in ~5.10! shows that̂ T22

f &as diverges as the
horizon is approached. This is due to the bad behavior of
coordinate system on the horizon. The divergence can
easily eliminated by defining the new light-cone coordina
x̂25F(x2), with F given by Eq.~4.5!. Because in~5.3! we
have sett250, ^T22

f & transforms anomalously under con
formal coordinate transformations. Using the anomalo
transformation law of̂T22

f & ~see for example@8#!, one finds

^T̂22
f &as5

N

24

1

~F8!2
$F,x2%. ~5.11!
sor

y-
l
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-
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This expression is well behaved on the horizon. Inserting E
~4.5! into ~5.11! we find that as the horizonF5F0 is ap-
proached the Hawking flux reaches the constant~thermal!
value

^T̂22
f &as

h 5
N

12

l2

16
@V~F0!#

2. ~5.12!

This is the main result of this paper and is consistent wi
naive thermodynamical arguments based on the form
~2.13! for the temperature of the black hole. In fact, usin
~2.13! one can express the magnitude of the Hawking effe
~5.12! as a function of the temperature,

^T̂22
f &as

h 5
Np2

12
T2.

VI. SPECIAL CASES

The general model~2.3! with the potentialV satisfying
the conditions discussed in Sec. III contains, as particu
cases, models that have already been investigated in the
erature both classically and semiclassically. In this secti
we will show how previous results on the Hawking effec
can be obtained as particular cases of Eq.~5.12!. Also we
will work out an example of a model that admits black-hol
solutions with multiple horizons.

A. String inspired dilaton gravity

This is the most popular 2D dilaton gravity model. In it
original derivation@5#, due to CGHS, the action has the form
~2.1!. The Weyl-rescaled model is of the form~2.3! with
V(F)51. The model admits asymptotically flat black-hol
solutions@12#. Using Eqs.~2.13! and ~5.12! we find for the
temperature and magnitude of the Hawking effect

T5
1

4p
l, ^T̂22

f &as
h 5

N

12

l2

16
. ~6.1!

This result coincides, after the redefinitionl→2l needed to
match the conventions of Refs.@5,12#, both with the CGHS
results @5# and with the result of Ref.@12# for the Weyl-
rescaled model.

B. Spherically symmetric gravity

This model is obtained by retaining only the radial mode
of 4D Einstein gravity. It is characterized by
V(F)51/A2F @4#. According to our classification of Sec.
III we havea521/2; therefore the model admits asymptoti
cally flat black-hole solutions with an event horizon a
F052M2/l2. The corresponding Penrose diagram is th
shown in Fig. 3. Using Eqs.~2.13! and ~5.12! we obtain

T5
1

8p

l2

M
, ^T̂22

f &as
h 5

N

12

l4

64M2 . ~6.2!

The black holes of this model have negative specific heat
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C. The Jackiw-Teitelboim theory

The JT theory is obtained from the action~2.3! by taking
V(F)52F ~we use the conventions of Ref.@7#!. Being char-
acterized bya51 the model admits black holes with anti–d
Sitter behavior. More precisely, as shown in@7#, the black-
hole spacetime is obtained from a particular parametrizat
of 2D anti–de Sitter spacetime endowed with a bounda
The black-hole horizon is atF05A2M /l and Eqs.~2.13!
and ~5.12! give now

T5
1

2p
A2Ml, ^T̂22

f &as
h 5

N

24
Ml. ~6.3!

The same result for the Hawking radiation rate has be
obtained in Ref.@7# performing the canonical quantization o
the scalar fieldsf in the anti–de Sitter background geometr
Note that the black holes have positive specific heat, indic
ing the emergence of a stable state as the mass of the
goes to zero.

D. 2D black holes in anti–de Sitter spacetime

The models discussed in Refs.@8,9#, characterized by the
action

S@ ĝmn ,f#5
1

2pE d2xA2ĝe22fF R̂1
8k

k21
~¹̂f!21l2G ,

~6.4!

with 21,k<0, admit black-hole solutions in anti–de Sitte
spacetime. The CGHS and the JT models appear as limi
cases of this general class of dilaton gravity models f
k521,0 respectively. The action~6.4! can be mapped by a
Weyl rescaling of the metric of the form~2.2! into action
~2.3! with

V~F!5F~k11!/~12k!. ~6.5!

For 21,k<0 the parametera characterizing the asymp-
totic behavior of the black-hole solutions verifies 0,a<1.
The black-hole solutions of these models give evidence
the peculiar asymptotic behavior in Sec. III. The Penro
diagram relative to them is represented in Fig. 4. The ev
horizon of the black hole is at
F5F05@4M /((12k)l)# (12k)/2. The temperature and the
flux of Hawking radiation are

T5
1

2p S 2M12kD ~k11!/2S l

2D ~12k!/2

,

^T̂22
f &as

h 5
N

48S 2M12kD ~k11!S l

2D ~12k!

. ~6.6!

The result~6.6! coincides with that found in Ref.@8# for the
model ~6.4!, after the redefinitionl→A2/(12k)l, needed
to match the conventions of@8#.

E. 2D black holes with multiple horizons

We conclude this section with a model that admits
black-hole solution with two event horizons. Let us consid
the action~2.3! with
e

ion
ry.

en
f
y.
at-
hole

r
ting
or

of
se
ent

a
er

V~F!512~C/F!2, ~6.7!

whereC is an arbitrary positive constant. According to ou
general classification of Sec. III we will have asymptotically
flat black-hole solutions. The solutions~2.6!, ~2.7! become
now

ds252S lr1
C2

lr
2
2M

l Ddt21S lr1
C2

lr
2
2M

l D 21

dr2,

F5lr . ~6.8!

For M.lC the solution~6.8! describes black holes with a
singularity at r50 and two horizons at
r5r65l22@M6AM22(Cl)2#. The black hole becomes
extremal forM5lC. The potentialV evaluated on the outer
horizon is

V~F0
out!512S Cl

M1AM22~Cl!2
D 2. ~6.9!

Both the temperature and the Hawking radiation rate d
crease with the mass of the hole and become zero in t
extremal case.

VII. CONCLUSIONS

We have been able to give a unified description at both th
classical and semiclassical level of the black-hole solution
of a general 2D dilaton gravity theory. A criterion for the
existence of black holes has been formulated and the re
tionship between the conformal anomaly and Hawking radi
tion has been extended to a broad class of 2D dilaton grav
models. In particular we could write down a very simple an
general formula relating the magnitude of the Hawking effec
to the dilaton potential evaluated on the horizon. The pric
that we had to pay for achieving this general description is
strong constraint on the functional form of the potential, i
particular on its asymptotic behavior. The conditions dis
cussed in Sec. III rely very heavily on the form of the action
~2.3!, and they are sensitive to the Weyl rescaling~2.2! that
brings the action into the form~2.1!. Though the global
structure of the solutions does not change under this tran
formation, local quantities such as the Ricci curvature d
change so that some conditions of Sec. III should be refo
mulated when one considers the Weyl-rescaled model. It m
therefore be possible that a more general description exi
that takes full account of the equivalence of models und
Weyl rescalings of the metric. It may also be possible that
such general framework the existence of black-hole solutio
could be derived imposing weaker restrictions to the form o
the potential. At the semiclassical level a description tha
takes full account of the equivalence of models under We
rescalings would be even more opportune. In Sec. VI we sa
that the Hawking radiation rate for string-inspired gravity
and for the models~6.4! does not change under a Weyl res
caling of the form~2.2!. It would be very interesting to see if
this fact is a peculiarity of these models or a general featu
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of 2D dilaton gravity. On the other hand our discussion om
ted the backreaction of the geometry on the radiation, a
quantum gravity effects. Both are expected to be crucial
order to understand the end point of the evaporation proce
The inclusion of the backreaction makes the theory very ha
to solve at least in its general form. Up to now an exa
it-
nd
in
ss.
rd
ct

solution could be found only for a modified version of the
CGHS model~the Russo-Susskind-Thorlacius model@15#!.
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