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Black holes and gravitational effects in two-dimensional dilaton gravity
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We consider the model of two-dimensional dilaton gravity inspired by string theory modified by the inc
sion of an additional term. We solve the model exactly in a Schwarzschild-like gauge to obtain a black
solution. We also examine the post-Newtonian and the weak-field approximations as well as stellar struct
the model.

PACS number~s!: 04.70.Dy, 04.60.Kz
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I. INTRODUCTION

In recent years there has been much study of relativis
theories of gravitation in two spacetime dimensions. Becau
of their relative tractability, it is hoped that such investiga
tions might shed light on the~311!-dimensional theory. In
particular two such theories, the so-called ‘‘R5T’’ theory of
Refs. @1,2# and the string-inspired dilaton gravity theory o
Refs. @3,4#, have attracted a lot of attention. This is mainl
due to the fact that their field equations admit black ho
solutions. In Ref. @5# Callan, Giddings, Harvey, and
Strominger~CGHS! included matter fields so that the class
cal action for dilaton gravity reads

S5
1

2PE d2xA2gH e22f@R14~¹f!214l2#

2
1

2(i51

N

~¹ f i !
2J , ~1!

whereg, f, and f i are the metric, dilation, and matter fields
respectively, andl2 is a cosmological constant. Furthermore
CGHS added to the classical action a Liouville term whic
accounts for the one-loop corrections due to theN matter
fields. The action~1! gives rise to singular classical solution
that describe the formation of a black hole by incoming ma
ter and the conformal anomaly of the matter fields is used
demonstrate Hawking emission@6# from this background ge-
ometry. Moreover, CGHS, by introducing anomaly-induce
terms into the equations of motion, proposed a semiclass
description of the back reaction of the Hawking radiation o
the geometry.

A solution in closed form for the quantum-corrected equ
tions had not been found. This led Russo, Susskind, a
Thorlacius~RST! @7#, following previous work by Bilal and
Callan@8# and de Alwis@9#, to propose a modification of the
CGHS model by adding a local covariant term to the actio
The one-loop effective action of the so-called RST model
given by @7#

S5
1

PE d2xFe22f~2]1]2r24]1f]2f1l2e2r!

1
1

2(i51

N

]1 f i]2 f i2k~]1r]2r1f]1]2r!G . ~2!
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The above action is written in the conformal gaug
g115g2250, g1252 1

2e
2r, where it assumes a loca

form. The constantk in front of the one-loop quantum cor
rection term has the valuek5N/12. The first quantum cor-
rection term in ~2! arises from the one-loop conforma
anomaly, and the second term is the covariant local coun
term that defines the RST model. By performing suitab
field redefinitions RST were able to solve the field equatio
following from the model exactly. Subsequently the RS
model has been investigated extensively by a number of
thors @10–14#.

In this work we study the model formed by adding th
fR type of term considered by RST to the classical dilat
gravity action. In fact, as is well known, actions based
this type of term were proposed some time ago by Jac
and, independently, by Teitelboim@15# and have since been
investigated by several authors@16#. In the model we con-
sider, the dilaton-Ricci scalar term is treated as part of
classical action and allowed to enter with an arbitrary co
pling constantk that is not restricted to have the valu
N/12 of the RST model. We demonstrate that this model c
be solved exactly in the Schwarzschild-like gauge. The so
tion describes a black hole the mass of which is found
depend linearly onk. We also study some classical aspec
of the model. In particular we study the post-Newtonian a
weak-field approximations for the model. We also set up
equation for stellar equilibrium in the model and solve it f
a given equation of state and for largeuku.

This paper is organized as follows. In Sec. II we set up
model, derive the field equations, and solve them in
Schwarzschild-like gauge. Properties of the black hole so
tion are described. In Sec. III we describe the po
Newtonian approximation while Sec. IV is devoted to th
study of the weak-field approximation. In Sec. V we consid
stellar structure and in Sec. VI we offer some concludi
remarks.

II. DILATON GRAVITY MODEL

The classical action for our two-dimensional dilaton gra
ity model is

S5
1

2PE d2xA2gH e22f@R14~¹f!21J#2
k

2
fR1LMJ ,

~3!
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whereJ is a source for the dilaton fieldf andLM is a matter
Lagrangian. The constantk that appears before the Jackiw
Teitelboim term@15# is taken to be arbitrary. From Eq.~3!
follows the dilaton equation of motion

S 11
k

4
e2fDR24~¹f!214¹2f1J50 ~4!

and the metric equations of motion

S e22f1
k

4DRmn12S e22f1
k

4D¹m¹nf2
k

2
gmn¹2f

58PGTmn . ~5!

In Eq. ~5! the matter energy-momentum tensorTmn is
given by

2
2P

A2g

dSM
dgmn [8PGTmn , ~6!

whereSM is the matter action and we have made expli
Newton’s constantG. In a local neighborhood that exclude
the critical points of the dilaton, one can choose a gauge
which the dilaton is proportional to one of the coordinat
@3#. Thus

f5
1

2
Qx. ~7!

Then choosing the time coordinate orthogonal tof the met-
ric becomes

gab5diag@gtt ,gxx#. ~8!

Now consider Eq.~5! in the absence of matter fields
Tmn50. Upon using the fact thatRab5 1

2gabR identically in
two dimensions, taking the trace of Eq.~5!, and feeding back
into the equation we obtain

¹m¹nf2
1

2
gmn¹2f50. ~9!

Using Eq.~7! in Eq. ~9! and by repeating the analysis of Re
@3# one can show that the metric can be written as

gmn5diag@2g~x!,g21~x!#. ~10!

Next by taking thett or xx component of Eq.~5! we readily
derive that

S e2Qx1
k

4Dg92QS e2Qx2
k

4Dg850, ~11!

where the prime indicates differentiation with respect tox.
Turning to the dilaton Eq.~4! and takingJ5c, a constant,
we obtain a second equation for the metric functiong:

S 11
k

4
eQxDg91Q2g22Qg82c50. ~12!

Integrating Eq.~11! yields
-

cit
s
in

es

:

f.

g5
AeQx

QS 11
k

4
eQxD 1B, ~13!

whereA,B are constants. Substituting Eq.~13! into Eq. ~12!
we determineB as

B5
c

Q2 . ~14!

The constantB can be set equal to unity by a suitable res
caling of the coordinates. We then haveQ25c and writing
A/Q52a we obtain

g512
aeQx

11
k

4
eQx

. ~15!

The scalar curvature corresponding to the metric~15! is
given by

R52

aQ2eQxS 12
k

4
eQxD

S 11
k

4
eQxD 3 ; ~16!

wherek→0, the solution given in Eq.~15! reduces to that
obtained in Refs.@3# and @4# when the action does not in-
clude the Jackiw-Teitelboim term. For the sake of brevi
and when comparing our results to those of Refs.@3# and@4#
we shall refer to the case they considered as thek50 case.
Below we shall list some properties of the solution given
Eq. ~15!.

First we note that the equationQ25c admits of the two
rootsQ56Ac ~note thatc54l2 in the notation of CGHS!,
and hence there are two solutions that are related by a pa
transformation. Next we observe that for positiv
a2k/4,g(x) has a zero at

S a2
k

4DeQx2150. ~17!

There is thus an event horizon at

x052
1

Q
lnS a2

k

4D . ~18!

The parametersa andk are therefore related to the mass o
the black hole. The event horizon is thus shifted in positio
in comparison with thek50 case. Moreover, fork,0,
g(x) has a singularity when

11
k

4
eQx50. ~19!

We note that the Ricci scalarR is finite at the position of the
event horizonx0 but becomes infinite for

x085
1

Q
ln
4

uku
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when Eq.~19! holds. In thek50 case the solution has a
curvature singularity withuRu becoming infinite atx51`
for Q.0 and atx52` for Q,0. In contrast we see from
Eq. ~16! that in our case

lim
uxu→`

R50 ~20!

for both signs ofQ. The inclusion of thekfR term in the
action has thus removed the curvature singularity at infini
but as noted above, for negativek a new curvature singular-
ity arises at finitex.

Next we turn our attention to a determination of the ma
of the black hole. For this purpose we use a formula for t
mass function given by Mann@17#. Specifically for a general
two-dimensional dilaton gravity action expressed as

S85E d2xA2g@H~f!gmn¹mf¹nf

1D~f!R1V~f;cM !#, ~21!

whereH andD are arbitrary functions of the dilaton field
f andV is a matter Lagrangian depending both onf and the
matter fieldcM . The actionS8 generalizes one considere
by Banks and O’Loughlin@18# in whichH5 1

2 and there are
no matter fields. ForS8 Mann obtains the following formula
for the mass function:

M5
F0

2 F Ef

dsD8VexpS 2Es

dt
H~ t !

D8~ t ! D
2~¹D !2expS 2Ef

dt
H~ t !

D8~ t ! D G . ~22!

In Eq. ~22! the prime indicates differentiation with respect t
the functional argument:D8(f)5dD/df. F0 is a constant
defined through

F5F0Ef

ds D8expS 2Es

dt
H~ t !

D8~ t ! D ~23!

and may be obtained by the requirement thatdF/dx→1 for
largeuxu. The quantityM is a generalization of a mass func
tion considered in Ref.@19#. The notes thatM is constant
when the equation of motion for the metric@i.e.,Tmn50] is
satisfied. One also notes that Eq.~22! gives the expression
for the Arnowitt-Deser-Misner~ADM ! mass for the black
hole obtained in Ref.@4#. Using Eqs.~22! and~23! we derive
the following formula for the mass of the black hole in ou
model:

M52
Q

2 S a2
k

4D . ~24!

RequiringM to be positive we see thata2k/4 must be posi-
tive for negativeQ and vice versa.

We now turn to a closer examination of the singulari
structure of the metric. For definiteness we shall ta
a2k/4 to be positive andQ negative. The opposite cas
would be similarly handled. The singularity atx5x0 , Eq.
~18!, is a coordinate one that can be removed by a coordin
ty,
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transformation. This is done in the usual manner by exam
ing the null geodesics. Forx.x0 one arrives at the Kruskal
coordinates

ū52F12S a2
k

4D eQxG1/2expS QS a2
k

4D ~ t2x!

2a
D ,

v̄52F12S a2
k

4 DeQxG1/2expS 2QS a2
k

4D ~ t1x!

2a
D ,

~25!

and the metric reads

ds252F 2a

QS a2
k

4D G 2
exp

QS a2
k

4D x
a

11
k

4
eQx

dūdv̄. ~26!

Alternatively one can use the combinations

u5
1

2
~ v̄2ū!, v5

1

2
~ v̄1ū! ~27!

to obtain the more familiar form

u5F12S a2
k

4D eQxG1/2expS 2QS a2
k

4D
2a

xD
3coshFQS a2

k

4D
2a

tG ,
v5F12S a2

k

4D eQxG1/2expS 2QS a2
k

4D
2a

xD
3sinhF2QS a2

k

4D
2a

tG . ~28!

For x,x0 we have

u5F S a2
k

4DeQx21G1/2expS 2QS a2
k

4D
2a

xD
3sinhF2QS a2

k

4D
2a

tG , ~29!
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v5F S a2
k

4DeQx21G1/2expS 2QS a2
k

4D
2a

xD
3coshFQS a2

k

4D
2a

tG .
Thus fork>0 the metric given in Eq.~26! is regular. One
then carries out the transformation

u852arctanū, v852arctanv̄ ~30!

to arrive at the Penrose diagram shown in Fig. 1~i! where the
line H1 andH2 , represent the event horizons.

Next we turn to thek,0 case. As mentioned before, an
can be seen in Eq.~26!, the metric has a singularity at

x085
1

Q
lnS 4

uku D . ~31!

This is a true singularity as evident from the fact that th
curvature invariants diverge atx08 . Thus, for example,

RabgdRabgd5

a2Q4e2QxS 12
k

4
eQxD 2

S 11
k

4
eQxD 6 . ~32!

In fact, in two dimensions, both the Riemann and Ricci te
sors are uniquely determinable in terms of the Ricci sca
and this is singular atx08 as can be seen from Eq.~16!. We
recall that for definiteness we have chosenQ,0. Then for
k,0 we can write the position of the event horizonx0 and
the singularityx08 , respectively, as

FIG. 1. ~i! Penrose diagram for the casek>0 displaying the
event horizonsH6. ~ii ! Penrose diagram for the casek,0. A thick
curve is that of the singularity. A curve is determined by the val

of the parameterC5aeQk8x0/4a. Curves shown correspond to two
different values ofC.1. In the upper~lower! part of the diagram
the higher~lower! curve corresponds to a large value ofC. Increas-
ing C pushes the curve towards the boundary of the diagram.
C51 the curve becomes a straight line. For the 0,C,1 the curves
in the upper part of the diagram arch downwards with the lowe
corresponding to the smallest value ofC. The opposite behavior
occurs in the lower part of the diagram.
d

e

n-
lar

x05
1

uQu
lnS a1

uku
4 D ,

x085
1

uQu
lnS uku

4 D . ~33!

Clearly for a.0 we havex0.x08 and the singularity lies to
the left of the event horizon. Ifa,0 anda1uku/4.0, then
we havex0,x08 and the singularity lies to the right of the
event horizon. Thus for both cases the solution has tw
asymptotic regions: one with a naked singularity and th
other with the singularity shielded by an event horizon. F
the values ofQ anda1uku/4 under consideration, the mas
of the black hole, as given by Eq.~24!, is positive. For a
black hole of negative mass, and withQ being negative, Eq.
~24! implies thata2k/4,0. We then note that for a negative
value ofa2k/4, Eq.~17! has no solution for realx. Thus for
a black hole of negative mass there is no associated ev
horizon and only a naked singularity can arise fork,0. If
k.0, then the solution for a blackhole of negative mass
regular everywhere.

The singularity curve in the Penrose diagram is describ
by the equation

u852arctanS ae
Qkx08
4a

tan
1

2
v8
D . ~34!

It intersects theu8 andv8 axes at6P and is shown sche-
matically in Fig. 1~ii !. Its precise shape, however, depends o
the values assigned to the parametersQ,k,a.

Finally we note that fora5k/4 there is no event horizon,
the metric being regular fork>0 while fork,0 there arises
the singularityx08 described above.

III. POST-NEWTONIAN CALCULATIONS

In this section we describe the post-Newtonian approx
mation@20# for our model. The aim of this approximation is
to supply higher order terms in the expansion of physic
quantities, the small quantity being the square of the spe
v̄2. Such calculations have been carried out previously f
theR5T model by Sikkema and Mann@2# and for the dila-
ton gravity model without the Jackiw-Teitelboim term by
Mann and Ross@21#. We intend to examine in particular the
effects arising from the presence of this term.

Following Weinberg@20# we write the metric as

g005211g
2

001g
4

001•••,

gi j5d i j1g
2

i j1g
4

i j1•••,

gi05g
3

i01g
5

i01•••, ~35!

whereg
N

mn indicates the terms ingmn of order v̄N. In the
harmonic gauge defined by

gmnGmn
l 50, ~36!

ue

For

st
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the components of the Ricci tensor are given by

R
2

0052
1
2 ]1

2g
2

00,

R
4

0052
1
2 ]1

2g
4

001
1
2 ]0

2g
2

001
1
2g
2

11]1
2g
2

002
1
2~]1g

2

00!
2,

R
3

0150,

R
2

1152
1
2 ]1

2g
2

11. ~37!

In ~37! ]1 denotes]/]x. We also write

T005T
0

001T
2

001•••,

T015T
1

011T
3

011•••,

T115T
2

111T
4

111•••, ~38!

for the energy density, the momentum density, and mom
tum flux, respectively. We also have

f5f
2

1f
4

1•••,

J5c1J
2
1J

4
1•••. ~39!

Next we expand the field equations in powers ofv̄2. From
the 00 component of Eq.~5! we then readily obtain that

]1
2F2 S11

k
4 Dg2001kf

2 G516PGT
0

00. ~40!

Integrating~40! we obtain

2 S11
k
4 Dg2001kf

2
54j, ~41!

where

j~x,t !52pGE dx8ux2x8uT
0

00~x8,t ! ~42!

is the Newtonian potential. Similarly from the 11 compone
of Eq. ~5! we derive that
en-

nt

g
2

1154S11
k
4 D 21

f
2
. ~43!

An examination of Eq.~4! to order 2 gives

g
2

1154S11
k
2 D 21

b, ~44!

where the fieldb is defined by

b~x,t !5E dx8ux2x8u S12 ]81
2j2

1
4J
2 D

5j2
1
4E dx8ux2x8uJ

2
. ~45!

From ~43! and ~44! we then have that

f
2

5 S11
k
2 D 21

b. ~46!

From ~41! and ~46! we obtain

g
2

005k S11
k
4 D 22

b24S11
k
4 D 21

j. ~47!

Next from the 01 component of Eq.~5! we find that

]0]1b54PGT
1

01. ~48!

In particularg
3

01 is not constrained by this equation and in
fact from the harmonic gauge condition~36! we have that

]1
2g
3

0150. ~49!

The solution of~49! that vanishes at infinity is

g
3

0150. ~50!

Finally we computeg
4

00 by considering the 00 component of
Eq. ~5! to order 4. After some algebra we find that
g
4

005S 11
k
4D 21E dx8ux2x8u H 28PGT

2

0012]0
2b22]0

2j2
k2

2 S 11
k
4D 23

~]18b!2

28S 11
k
4D 21

~]18j!214~k21!S 11
k
4D 22

]18b]18j2
1
2 S 11

k
4D 23

~k214k124!b]18
2j2

k
2 S 12

k
2D S 11

k
4D 23

bJ
2

12kS 11
k
4D 22

jS ]18
2j2

1
2J
2 D J . ~51!
ic

r

From the equations for the metric tensor components one
proceed and compute the Christoffel symbols and the Ri
tensor.

Our results show some differences from those of Ref.@21#
which correspond to the limitk→0 in our equations. The

most notable difference concernsR
3

01 which these authors
claim to be different from zero and hence use it to generat

nonzero result forg
0

31. In fact one easily finds from the re-
can
cci

e a

sults of Ref.@20# that in two spacetime dimensionsR
3

01 van-
ishes identically even before the selection of the harmon
gauge.

IV. WEAK-FIELD APPROXIMATION

We now discuss the weak-field approximation in ou
model. In this section we denote the dilaton field byF. The
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metric is considered to be a perturbation on a Minkows
background and the dilaton field to be a perturbation abou
solutionF of the vacuum equations

gmn5hmn1hmn , F5f1w. ~52!

We also take the sourceJ to be

J5ce1J . ~53!

Two possible choices for the vacuum exist, namely,Tmn50
and J50 or Tmn50 and J5c. These correspond, respec
tively, to e50 or e51.

We first treat thee50 case. We take the trace of Eq.~5!
and in the resulting equation, and in Eq.~4! as well, we
substituteF5f1w and J5J . We then deduce from the
zeroth order equations thatf50. For the linear order Ricci
scalarR(1) we obtain the equation

S 11
k

4D 2R~1!516PGT1S 12
k

4DJ . ~54!

Now in two dimensions, as a consequence of the iden
Rmn5 1

2gmnR, we have the relationship

]2hmn5
1

2
hmn]2h. ~55!

Hence we may choose coordinates so thathmn5 1
2hmnh and

~54! becomes

S 11
k

4D 2]2hmn5232PGT2S 22
k

2DJ . ~56!

The solution of this wave equation is

h~x,t !5616PGS 11
k

4D 22E dx8

3E t

dt8H~x8,t8,7ux2x81u!, ~57!

where

H~x,t !5T~x,t !1

S 12
k

4D
16PG

J ~x,t !. ~58!
ki
t a

-

tity

To the right-hand side~RHS! of ~57! we may add any solu-
tion of the homogeneous equation]2h50. Note thath de-
creases ask increases and thus the spacetime becomes
creasingly flat with increasingk.

Consider now a system of oscillating matter such thatT
andJ can be expressed as a sum over frequencies or a
Fourier integral@20#. A single Fourier component is de-
scribed as

H~x,t !5H~x,w!e2 iwt1c.c. ~59!

The retarded potential solution is then

h~x,t !5616pGS 11
k

4D 22E dx8

3E t

dt8H~x8,w!e2 iw~ t82ux2x81u!1c.c. ~60!

For a point in space located in the wave zone outside t
source such thatr5uxu@R, whereR is the maximum exten-
sion of a finite source, we then have that

h~x,t !516iPS 11
k

4D 22

w21e2 iwt

3E dx8H~x8,w!e2 iw~r22x8x̂!1c.c., ~61!

wherex̂5x/r . As wr is assumed large this looks just like a
plane wave with

h~x,t !5e~x,w!eikmx
m
1c.c. ~62!

and where

e~x,w!516iPGS 11
k

4D 22

w21E dx8H~x8,w!,

k05w, k15wx̂. ~63!

Next we turn to the case of the dilaton vacuum wher
e51. The full system of equations has the solution given i
Eqs.~7! and~15!. It is convenient when discussing the weak
field expansion to redefine variables. Thus we perform th
conformal transformation

gmn5e2Fĝmn ~64!

in Eqs.~5! and ~4!. This leads to the equations
2S 11
k

4
e22FD ¹̂m¹̂ne

22F1ĝmnH ¹̂2e22F1
k

2
@~¹̂F!22¹̂2F#J 58PGTmn1

1

2
Jĝmn , ~65!
S e22F1
k

4D R̂2k¹̂2F58PGĝmnTmn . ~66!

With s[e22F the weak-field approximation is now define
by @21#

ĝmn5hmn1ĥmn , s5s01w. ~67!
d

From Eq.~65! we then derive at the zeroth level that

S s0
21

k

4
s0D ]2s02

k

4
~]s0!

25cs0
2 , ~68!

where]25hmn]m]n . We look for solutions of~68! such that



o

-

53 4409BLACK HOLES AND GRAVITATIONAL EFFECTS IN TWO- . . .
s05s0~t!, t5~x2x0!
2. ~69!

Using ~69! in ~68! yields

4S s0
21

k

4
s0D ~ts091s08!2kts08

25cs0
2 , ~70!

where the prime denotes differentiation with respect tot. It
is difficult to solve Eq.~70! in a closed form. We can easily
obtain a series solution

s05(
j50

`

ajt
j , ~71!

where the first few terms are given by~assuminga0Þ0)

a15
ca0

4a01k
,

a25
ca0

2~4a01k!2 S 12
4a0c

4a01k D , ~72!

a35
1

9a0~4a01k!
@c~a1

212a0a2!240a0a1a224a1
3

2ka1a2#, etc.

The series solution is, however, only useful for smallt and
to gain insight into the nature of the closed form solutions
Eq. ~70! we shall investigate two limits, namely, those o
small and large values ofuku, respectively.

For smalluku we seek solutions of~70! in the form

s05s̄01kc, ~73!

wheres̄0 is a solution of thek50 equation@21#:

s̄05
c

4
t2M , ~74!

with M being a constant. Using~73! in ~70! yields an equa-
tion for c which is easily solved to give

c52
1

4E
lnS t2

4M

c D
t

dt1Alnt1B, ~75!

whereA,B are constants. The metricgmn is thus determined
to be

gmn5
hmn

c

4
t2M0

H 11
k

ct24M0

3F E lnS t2
4M

c D
t

dt24AlntG J , ~76!

whereM05M2kB. The first term on the RHS of~76! is
equivalent to the black hole solution of Refs.@3,4# under a
of
f

change of coordinates@21#. Thek term then represents a first
order perturbation about the black hole solution.

Next we consider the largeuku limit and approximate Eq.
~70! to read

ks0~ts091s08!2kts08
25cs0

2 . ~77!

Note that we have kept the term on the RHS of~60! but
dropped the term in the coefficient ofts091s08 that does not
involve k. By making the transformations05ez it is pos-
sible to solve~77! and thereby obtain that

s05
b

ta e
tc/k, ~78!

thereby leading to

gmn5
ta

b
e2tc/khmn , ~79!

wherea,b are constants.
We now go back to Eq.~65! and seek an equation for the

dilaton perturbation using~67!. We derive that

S 11
k

4s0
D ]2w1

2w

s0
S 11

k

8s0
D ]2s02

2cw

s0

2
k

2s0
2hab]as0]bw58PGT1

1

2
cĥ1J . ~80!

This equation is difficult so solve in a closed form and s
as an illustration we consider the largeuku limit in which it
simplifies to become

s0]
2w1w]2s022hab]as0]bw.0. ~81!

To arrive at~81! we have retained only terms that are pro
portional tok in ~80!. We now takew5w(t) and substitute
for s0 from ~78! to obtain

t2w91~112a!tw82aw.0. ~82!

Using the substitutiont5eu we can solve~82! to get

w.B1t
m11B2t

m2, ~83!

where

m1,252a6~a21a!1/2. ~84!

To determineĥ we consider Eq.~66! to first order and
thereby obtain

ĥ56
1

2E dx8E t

dt8N~x8,t87ux2x8u!, ~85!

where

N[S e22F1
k

4D 21

~16PGT12k¹̂2F!. ~86!

In the largeuku limit ~85! simplifies to
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ĥ564E dx8E t

dt8¹̂2F~x8,t87ux2x8u!. ~87!

Finally we note that including the first order perturbation
gives the metric as

gmn5s0
21S 11

1

2
ĥ2

w

s0
Dhmn . ~88!

We were able to obtain an explicit expression forgmn only in
the largeuku limit. This is accomplished through the result
~78! and ~73! which also determineĥ via ~87!.

V. STELLAR STRUCTURE

In this section we study the equations that govern t
existence of ‘‘stars’’ in this two-dimensional universe. To d
that we consider a static metric of the form

ds252B2~x!dt21dx2. ~89!

UsingRmn5 1
2gmnR in Eq. ~5! and substitution forR from the

trace of Eq.~5! gives

2S e22f1
k

4D¹m¹nf2gmne
22f¹2f2

k

4
gmn¹2f

58PGS Tmn2
1

2
gmnTD . ~90!

We employ the energy-momentum tensor for a perfect flu

Tab5rgab1~p1r!UaUb . ~91!

Using ~89! and ~91! in ~90! then yields

S e22F1
k

4D S f92
B8

B
f8D54PG~p1r!. ~92!

Next we take the trace of Eq.~5! and substitute for¹2f from
Eq. ~4! into the resulting equation. This leads to
s

s

he
o

id,

f8254PG~p2r!e2fS 12
k

4
e2fD 21

1S 11
k

4
e2fD 2S 12

k

4
e2fD 21B9

B
1
1

4
J. ~93!

Now we substitute from~92! for f9 in the formula for
¹2f,

¹2f5f91
B8

B
f8, ~94!

and employ the resulting expression in the trace of Eq.~5!.
This procedure gives

B8

B
f85d

B9

B
1e, ~95!

where

d5
1

2 S 11
k

4
e2fD S 12

k

4
e2fD 21

,

e52

4PGe2fS r2
k

4
pe2fD

S 11
k

4
e2fD S 12

k

4
e2fD . ~96!

The equation of hydrostatic equilibrium@20# reads in our
case

B8

B
52

p8

p1r
. ~97!

Using ~97! in ~95!, squaring, and equating to~93! gives a
quadratic equation forB9/B which can be solved to give
B9

B
58PGe2fS 11

k

4
e2fD 22S r2

k

4
pe2fD1S 12

k

4
e2fD S p8

p1r D 2
6S 11

k

4
e2fD S 12

k

4
e2fD p8

p1r F16PGe2fp1S 11
k

4
e2fD 2S p8

p1r D 21JG1/2. ~98!
Now differentiating~97! gives

p952~p1r!
B9

B
1
p8~2p81r8!

p1r
. ~99!

With B9/B given by~98! we see that given an equation o
statep5p(r), the solution of~98! will give r and hence the
metric. The resulting equation is, however, quite complicat
and difficult to solve in general. Once again we study t
large uku limit in which ~98! becomes
f

ed
he

B9

B
.2

ke2f

2 S p8

p1r D 2 or 0. ~100!

Concentrating on the first case in~100! and for a general
equation of statep5(g21)r, Eq. ~99! then gives

rr91br8250, ~101!

where
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b5

2
k

2
~g21!e2f12g21

g
. ~102!

For constantf and by multiplying~101! by rb21 we can
solve and obtain

r5~b11!1/~b11!~Fx1G!1/~b11!, ~103!

whereF,G are constants. With this expression forr Eq. ~95!
then gives

B91
j

~Fx1G!2
B50, ~104!

where

j5
ke2f~g21!

2g2~b11!2
. ~105!

We solve~104! and finally obtain, for the metric,

B5C1~Fx1G!n11C2~Fx1G!n2, ~106!

where

n1,25
1

2
6
1

2 S 12
4j

F2D 1/2. ~107!

We observe that foruku→`, n1,2→1,0 and both the met-
ric and curvature remain finite.

Finally we note that in the Newtonian limitp→0,
f→0, J→0, ~98! reduces to

B9

B
5
8PGr

11
k

4

. ~108!

Comparing this to the result of Ref.@21# we see that it differs
by a factor (11k/4)21 multiplying G. Now the Newtonian
equation for stellar structure is
2p954PGr22
p8r8

r
. ~109!

Thus Eq.~99!, in the Newtonian limit withB9/B given by
~108!, will differ from Eq. ~109! in thatG appears multiplied
by 2(11k/4)21.

VI. CONCLUSIONS

In this work we considered the model of two-dimensiona
dilaton gravity inspired by string theory modified by the in-
clusion of Jackiw-Teitelboim gravity with an arbitrary cou-
pling k. We solved the model exactly in the Schwarzschild
like gauge, obtaining a black hole solution. This solution is
generalization of the one found previously in dilaton gravit
and reduces to it when the coupling of the additional term
made to vanish. Including an energy-momentum tensor f
matter we also examined the post-Newtonian and weak-fie
approximation in the model as well as stellar structure. Th
post-Newtonian approximation is fairly simple and similar to
that of general relativity. In the weak-field approximation th
situation was rather complicated and we could obtain som
explicit results only in limiting cases of small or largeuku.
Similar remarks apply to stellar structure where we coul
compute the metric for the situation of largeuku only.

Our treatment in this work has been completely classica
Now the great attention devoted in recent years to two
dimensional gravity theories stems from the fact that the
provide an arena for the investigation of the dynamical pro
cesses of black hole formation and evaporation and the
tendant issues of information loss. Most treatments of su
issues so far have been semiclassical. Attempts to go beyo
the semiclassical approximation and quantize two
dimensional dilaton gravity have been made by several a
thors and we cite in particular the work of Hiranoet al. @22#
and that of Louis-Martinezet al. @23#. It would be interesting
to investigate the quantization of the model discussed in th
work. Moveover, one should examine how the spacetime g
ometry can be extracted from the quantitized model@24#. We
hope to return to these and other issues in the near future
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