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Black holes and gravitational effects in two-dimensional dilaton gravity

M. A. Ahmed
Department of Physics, University of Qatar, Doha, Qatar
(Received 5 July 1995

We consider the model of two-dimensional dilaton gravity inspired by string theory modified by the inclu-
sion of an additional term. We solve the model exactly in a Schwarzschild-like gauge to obtain a black hole
solution. We also examine the post-Newtonian and the weak-field approximations as well as stellar structure in
the model.

PACS numbs(s): 04.70.Dy, 04.60.Kz

[. INTRODUCTION The above action is written in the conformal gauge
g.+=9__=0, g,_=—1%e?, where it assumes a local

In recent years there has been much study of relativistiform. The constank in front of the one-loop quantum cor-

theories of gravitation in two spacetime dimensions. Becauseection term has the value=N/12. The first quantum cor-
of their relative tractability, it is hoped that such investiga-rection term in(2) arises from the one-loop conformal
tions might shed light on thé€3+1)-dimensional theory. In  anomaly, and the second term is the covariant local counter-
particular two such theories, the so-called=T" theory of  term that defines the RST model. By performing suitable
Refs.[1,2] and the string-inspired dilaton gravity theory of field redefinitions RST were able to solve the field equations
Refs.[3,4], have attracted a lot of attention. This is mainly following from the model exactly. Subsequently the RST
due to the fact that their field equations admit black holemodel has been investigated extensively by a number of au-
solutions. In Ref. [5] Callan, Giddings, Harvey, and thors[10-14.
Strominger(CGHS included matter fields so that the classi-  In this work we study the model formed by adding the
cal action for dilaton gravity reads #R type of term considered by RST to the classical dilaton
gravity action. In fact, as is well known, actions based on
this type of term were proposed some time ago by Jackiw
dzx\/_[ e 2[R+ 4(V¢)*+4N7] and, independently, by Teitelboifl5] and have since been
investigated by several authdr$6]. In the model we con-
sider, the dilaton-Ricci scalar term is treated as part of the
-2 (Vfi)z}’ (1)  classical action and allowed to enter with an arbitrary cou-
=1 pling constantx that is not restricted to have the value
N/12 of the RST model. We demonstrate that this model can
be solved exactly in the Schwarzschild-like gauge. The solu-
tion describes a black hole the mass of which is found to
depend linearly onc. We also study some classical aspects
of the model. In particular we study the post-Newtonian and
weak-field approximations for the model. We also set up the
equation for stellar equilibrium in the model and solve it for
a given equation of state and for larpd.

This paper is organized as follows. In Sec. Il we set up the
odel, derive the field equations, and solve them in the
chwarzschild-like gauge. Properties of the black hole solu-

tion are described. In Sec. Il we describe the post-
Newtonian approximation while Sec. IV is devoted to the
atudy of the weak-field approximation. In Sec. V we consider
Stellar structure and in Sec. VI we offer some concluding
remarks.

whereg, ¢, andf; are the metric, dilation, and matter fields,
respectively, and ? is a cosmological constant. Furthermore,
CGHS added to the classical action a Liouville term which
accounts for the one-loop corrections due to Mhanatter
fields. The actior{l) gives rise to singular classical solutions
that describe the formation of a black hole by incoming mat-
ter and the conformal anomaly of the matter fields is used tg
demonstrate Hawking emissi®@] from this background ge-
ometry. Moreover, CGHS, by introducing anomaly-induced
terms into the equations of motion, proposed a semiclassic
description of the back reaction of the Hawking radiation on
the geometry.

A solution in closed form for the quantum-corrected equa-
tions had not been found. This led Russo, Susskind, an
Thorlacius(RST) [7], following previous work by Bilal and
Callan[8] and de Alwis[9], to propose a modification of the
CGHS model by adding a local covariant term to the action.

The one-loop effective action of the so-called RST model is II. DILATON GRAVITY MODEL
given by[7]

1
_ 2
SHfdx

1N
+ _Zl 3 fi0_fi— k(91 pd-p+pdid_p)|.

The classical action for our two-dimensional dilaton grav-
ity model is
e 2420, 9_p—40d, pi_p+\2%e®)

dzx\/_l e 2[R+ 4( V¢)2+J]——¢R+LM ,

2
2 3
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wherelJ is a source for the dilaton fiel¢ andL, is a matter
Lagrangian. The constamt that appears before the Jackiw-
Teitelboim term[15] is taken to be arbitrary. From E¢R)
follows the dilaton equation of motion

R—4(V$)?+4V2¢p+I=0 (4

K
+ —e?¢
(l 4e

and the metric equations of motion

K
—2¢ 4
e

K K
R, +2\e '+ 21V,.V,6-509,,Y%6

=8IIGT,,. (5
In Eqg. (5 the matter energy-momentum tensby, is
given by

(6)

where S, is the matter action and we have made explicit

Newton’s constanG. In a local neighborhood that excludes

the critical points of the dilaton, one can choose a gauge in
which the dilaton is proportional to one of the coordinates

[3]. Thus

1
¢=5Qx. (7
Then choosing the time coordinate orthogonaitthe met-
ric becomes

8

Now consider Eq.(5) in the absence of matter fields:
T,,=0. Upon using the fact tha ;= 30,4R identically in
two dimensions, taking the trace of B&), and feeding back
into the equation we obtain

ga’B: diag:gtt igXX]'

1
V,.V.b- 59,,%6=0. ©

Using Eq.(7) in Eq. (9) and by repeating the analysis of Ref.
[3] one can show that the metric can be written as

g,.,=diad —g(x),g"*(X)]. (10)

Next by taking thett or xx component of Eq(5) we readily
derive that

(eQX+ % (1)

K
g”—Q(eQX— Z)g’=o,

where the prime indicates differentiation with respecixto
Turning to the dilaton Eq(4) and takingJ=c, a constant,
we obtain a second equation for the metric functipn

9"+Q%*—2Qg' —c=0. (12)

K
—_ aQX
1+4e

Integrating Eq(12) yields
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Aex

g= +B, (13

K
Q 1+ZeQX

whereA,B are constants. Substituting E@.3) into Eq. (12
we determineB as

B= (14)

?.
The constanB can be set equal to unity by a suitable res-

caling of the coordinates. We then ha@8=c and writing
A/Q= —a we obtain

aelx

g=1— (15)

K
4 —eQx
1 4e

The scalar curvature corresponding to the met(i6) is
given by

aQZeQX( 1- %eQX

R=

p 3 (16)
1+ Z eQX)

where k— 0, the solution given in Eq(15) reduces to that
obtained in Refs[3] and[4] when the action does not in-
clude the Jackiw-Teitelboim term. For the sake of brevity
and when comparing our results to those of RES$and[4]
we shall refer to the case they considered asktbd case.
Below we shall list some properties of the solution given in
Eq. (15).

First we note that the equatid@®=c admits of the two
rootsQ= + \/c (note thatc=4\2 in the notation of CGHS
and hence there are two solutions that are related by a parity

transformation. Next we observe that for positive
a—«/4,9(x) has a zero at
K
a——|e¥-1=0. (17)
There is thus an event horizon at
—Lplat 18
Xp=— a nja-4| (18

The parametera and « are therefore related to the mass of
the black hole. The event horizon is thus shifted in position
in comparison with thex=0 case. Moreover, for<O0,
g(x) has a singularity when

K
1+ ZeQX:o. (19

We note that the Ricci scal& is finite at the position of the
event horizorx, but becomes infinite for

1 4
:_|n_

Q" x|

!

Xo
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when Eq.(19) holds. In thek=0 case the solution has a transformation. This is done in the usual manner by examin-
curvature singularity witHR| becoming infinite atx= + ing the null geodesics. For>Xx, one arrives at the Kruskal
for Q>0 and atx= — for Q<0. In contrast we see from coordinates

Eq. (16) that in our case

. K
|XllummR=o (20 . [ola-X
U=—[l— e

(t=x)

exp

K
2"z
for both signs ofQ. The inclusion of thex$R term in the
action has thus removed the curvature singularity at infinity,

but as noted above, for negatixea new curvature singular- —0ola- K (t4+%)
ity arises at finitex. _ K\ ox 2 4
Next we turn our attention to a determination of the mass v=—"|1—|a~ 7)€ exp 2a !
of the black hole. For this purpose we use a formula for the (25)
mass function given by Mani7]. Specifically for a general
two-dimensional dilaton gravity action expressed as and the metric reads
s =J d*>\—g[H(¢)g"'V ¢V ,é K
Q a—z X
+D(P)R+V(;¢hm) ], (21 g 1P
whereH and D are arbitrary functions of the dilaton field ds’=— K K o dudy. (26
¢ andV is a matter Lagrangian depending both@mand the Qla— 2 1+ Ze

matter field¢,, . The actionS’ generalizes one considered
by Banks and O’Loughlif18] in which H= 3 and there are
no matter fields. Fo8’' Mann obtains the following formula
for the mass function:

stDVexp{ Jdt;((tt))> "

) ¢ H(b) to obtain the more familiar form
—(VD) exp — dt D,—(t) .

In Eq. (22) the prime indicates differentiation with respect to
the functional argumenD’(¢)=dD/d¢. F, is a constant u=
defined through

F= F ds D’exp( fdtD—(t)) 23) «cos Q<a_z o

Alternatively one can use the combinations

-, v=5 D) @)

I\)IH

(22

12 -Q

expl ——=—X

eQx

K
a 7

and may be obtained by the requirement whBfdx— 1 for

large|x|. The quantityM is a generalization of a mass func-

tion considered in Refl19]. The notes thaiM is constant

when the equation of motion for the metfice., T,,,=0] is v=
satisfied. One also notes that H2) gives the expression

for the Arnowitt-Deser-MisnefADM) mass for the black

hole obtained in Ref4]. Using Eqs(22) and(23) we derive -Q
the following formula for the mass of the black hole in our X sinfl ———t|. (29)
model: 2a

M=—9( _5)_ (04 FOrx<xowe have
2 4

RequiringM to be positive we see that- x/4 must be posi-
tive for negativeQ and vice versa.

We now turn to a closer examination of the singularity
structure of the metric. For definiteness we shall take
a—«/4 to be positive andQ negative. The opposite case -Qla-—
would be similarly handled. The singularity at=x,, EQ. % sin t (29)
(18), is a coordinate one that can be removed by a coordinate 2a '
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AT X =iln a+M
‘“ ; M\ )
1«
‘ X0=|6||n 2 (33
N————
V Clearly fora>0 we havexy>xg and the singularity lies to

i i the left of the event horizon. li<0 anda+|«|/4>0, then
) ) _ ) we havexy<x, and the singularity lies to the right of the
FIG. 1. (i) Penrose diagram for the case=0 displaying the  eyent horizon. Thus for both cases the solution has two
event horizon#~. (ii) Penrose diagram for the cage0. A thick asymptotic regions: one with a naked singularity and the
curve is that of the singularity. A curve is determined by the Valueother with the singularity shielded by an event horizon. For
of the parameteC=ae®*?*%. Curves shown correspond 10 tWo  the values ofQ anda-|«|/4 under consideration, the mass
different values ofC>1. In the upper(lower) part of the diagram of the black hole, as given by E@24), is positive. For a

the higher(lower) curve corresponds to a large value@f Increas- black hole of negative mass, and withbeing negative, Eq
ing C pushes the curve towards the boundary of the diagram. Fo . . _ ! o
C=1 the curve becomes a straight line. For the@©<1 the curves (24) implies thata — «/4<0. We then note that for a negative

) . . value ofa— «/4, Eq.(17) has no solution for read. Thus for
in the upper part of the diagram arch downwards with the lowest black hole of i th . iated t
corresponding to the smallest value ©f The opposite behavior a _ac ole ot negalive ma_Lss e_re IS no "?‘Ssoc'a ed even
occurs in the lower part of the diagram. horizon and only a naked singularity can arise ker0. If
x>0, then the solution for a blackhole of negative mass is

regular everywhere.

—ola- K The singularity curve in the Penrose diagram is described
B k) ox_q 172 4 by the equation
v=||a- /€ exp a X o
KXo
K aeda
Q( a-7 u’'=_2arcta I (34)
X —t]. tan-v’
cos >a t ni

o ] ) It intersects they’ andv’ axes atx1l and is shown sche-
Thus for k=0 the metric given in Eq(26) is regular. One  matically in Fig. ii). Its precise shape, however, depends on

then carries out the transformation the values assigned to the parame®@r&,a.
Finally we note that fom= «/4 there is no event horizon,
u’'=2arctam, v'=2arctam (30)  the metric being regular fot=0 while for k<0 there arises

the singularityx; described above.

to arrive at the Penrose diagram shown in Fi@) Where the
line H* andH ™, represent the event horizons.

Next we turn to thec<0 case. As mentioned before, and | this section we describe the post-Newtonian approxi-

IIl. POST-NEWTONIAN CALCULATIONS

can be seen in Eq26), the metric has a singularity at mation[20] for our model. The aim of this approximation is
to supply higher order terms in the expansion of physical
1 4 guantities, the small quantity being the square of the speed
X6:6|” m) (31) v?. Such calculations have been carried out previously for

the R=T model by Sikkema and Manr2] and for the dila-
o ] ) ) ton gravity model without the Jackiw-Teitelboim term by
This is a true S|ngu|ar|ty as evident from the fact that theMann and ROS@Z].] We intend to examine in particu'ar the

curvature invariants diverge af. Thus, for example, effects arising from the presence of this term.
Following Weinberg 20] we write the metric as
2
K 2 4
24.20x| 1 _ _ a0Qx
a'Qe (1 € ) 900= — 1+ Joot Yoot - - -,
RaﬁyﬁRa,B'yﬁz K 6 (32)
K _ox 2 4
1+ 7€ ) 9ij=6ij + i+ gij -,
3 5
In fact, in two dimensions, both the Riemann and Ricci ten- Yio=GiotJioT -+, (39
sors are uniquely determinable in terms of the Ricci scalar N

and this is singular ax; as can be seen from E(Ll6). We  whereg,,, indicates the terms img,, of order oN. In the
recall that for definiteness we have chosgr0. Then for harmonic gauge defined by
x<0 we can write the position of the event horizegand \
the singularityx), respectively, as g*'T,,=0, (36)
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the components of the Ricci tensor are given by -12
2 1,2 911—4 1+4 é. (43
Roo= — 5 91900:
4 1 4 1 2 12 2 1 2 An examination of Eq(4) to order 2 gives
Roo=— 20"%900"‘ 2‘339004' 29110"%900_ (919007, 2 K\ 1
5 gu=41t35| B, (44)
Ro1=0,
2 1,2 where the field3 is defined by
R11=— 501011- (37)

1., 12
,B(X,t)=f dx’|x—x’|(2a’l§— Z‘])
In (37) 9, denotesd/dx. We also write

0o 2 1 , 2
Too=Toot Toot - -» Zf—szR|X—X|l (45)
1 3
Tor=Tort Tort - -, From (43) and (44) we then have that
B 2 4 2 K\ —1
Ty =T+ Tyt (39) b= ( 1+ 7) B. (46)
for the energy density, the momentum density, and momen- _
tum flux, respectively. We also have From (41) and(46) we obtain
2 K -2 K -1
p=¢t+o+t---, gOO:K(1+Z) B—4(1+Z) £ (47)
2 4
J=c+J+J+---. (39)

Next from the 01 component of E¢) we find that
Next we expand the field equations in powersvdf From 1
the 00 component of Eq5) we then readily obtain that 9931 B=411GTp;. (48

{ (1+ )goo+,<¢ 16116%00. (40)

3
In particulargg; is not constrained by this equation and in

Integrating(40) we obtain fact from the harmonic gauge conditi¢d6) we have that

3
2 2 2 —
(14 7] g0t wb=4, (41 #90:=0. (49

The solution 0f(49) that vanishes at infinity is
where

3
f(X,t):Z’JTGJ dx’|x—x'|'?’00(x’,t) (42) 901=0. (50

4
is the Newtonian potential. Similarly from the 11 componentFinally we computeyyg by considering the 00 component of
of Eq. (5) we derive that Eq. (5) to order 4. After some algebra we find that

4 P 2 K2 Al
Goo=|1+ 7 dx'|x—x'|] —8IIG Tt 20582056 — - | 1+ 7|  (318)?

-3

K )2 K| 2 L, 1 K ) o, K K k|73 2
-8 l+Z ((715) +4(K—l) 1+Z ﬁlﬂﬁlf—z 1+Z (K +4K+24)ﬁ071 g—z 1—7 1+Z BJ

K 2 12 12
1+ &a%6—5d]). (51

+2k

From the equations for the metric tensor components one ¢
proceed and compute the Christoffel symbols and the Ricc
tensor.

Our results show some differences from those of R&if]
which correspond to the limik—0 in our equations. The

3
most notable difference concerifi%; which these authors IV. WEAK-FIELD APPROXIMATION
claim to be different from zero and hence use it to generate a

a%I.]ults of Ref[20] that in two spacetime dlmensmﬁs,1 van-
Sshes identically even before the selection of the harmonic
gauge.

We now discuss the weak-field approximation in our
nonzero result fog3l In fact one easily finds from the re- model. In this section we denote the dilaton fielddy The
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metric is considered to be a perturbation on a MinkowskiTo the right-hand sidéRHS) of (57) we may add any solu-
background and the dilaton field to be a perturbation about #ion of the homogeneous equatigdh=0. Note thath de-

solution® of the vacuum equations

g,u.v: 77;/.V+h,u.vv (D:¢+(P- (52)
We also take the sourckto be
J=ce+ 7. (53

Two possible choices for the vacuum exist, nameély, =0

creases ax increases and thus the spacetime becomes in-
creasingly flat with increasing.

Consider now a system of oscillating matter such fhat
and 7 can be expressed as a sum over frequencies or as a
Fourier integral[20]. A single Fourier component is de-
scribed as

T(x,1)=H(x,w)e "+c.c. (59)

andJ=0 or T,,=0 andJ=c. These correspond, respec- The retarded potential solution is then

tively, to e=0 ore=1.
We first treat thee=0 case. We take the trace of E®)
and in the resulting equation, and in Eg) as well, we

substitute® = ¢+ ¢ andJ= 7. We then deduce from the

zeroth order equations that=0. For the linear order Ricci
scalarR™™) we obtain the equation

2

RY=16[IGT+ (54)

e

1+K
4

Now in two dimensions, as a consequence of the identity

R,.=39,,R, we have the relationship

1
9N, =5 1,,0°h.

5 (59

Hence we may choose coordinates so thgt= %mwh and
(54) becomes

1K22h—32HGT > = 56
+Z d w= 57 (56)

The solution of this wave equation is

K -2

h(x,t)=*16lIG 1+Z fdx’
t
xf dt’ #Z(x' t', ¥ |x—x'1|), (57
where

K

(1‘2)
H(x,1)=T(x,t)+ 161G T(X,1). (58

K A A ~
1+ Zez“’)vﬂvyezhgw

e 204 KR kT2 —srIGyT (66)
4 g Mt

With o=e"2® the weak-field approximation is now defined

by [21]

(67)

g,uV: 77MV+h,uV' 0-:0-0—"_()0'

K

h(x,t)==*=167G| 1+ 7

-2
fdx’

t H ’ !
XJ dt'H(x',w)e W' ~x=x1h L c ¢ (60)

For a point in space located in the wave zone outside the
source such that=|x|>R, whereR is the maximum exten-
sion of a finite source, we then have that

-2

. K .
h(x,t)=1611| 1+ 7 wlemiwt

xfdx’H(x',w)e—iW“"X’Mc.c., (61)

whereX=x/r. Aswr is assumed large this looks just like a
plane wave with

h(x,t)=e(x,w)e " +c.c. (62)
and where
K -2
e(x,w)=16iHG(l+Z W_]'J dx'H(x’,w),
ko=w, k;=wk. (63

Next we turn to the case of the dilaton vacuum where
e=1. The full system of equations has the solution given in
Egs.(7) and(15). It is convenient when discussing the weak-
field expansion to redefine variables. Thus we perform the
conformal transformation

9ur=""0ps (64)
in Egs.(5) and(4). This leads to the equations
- - - 1
V2e2‘1’+g[(V<IJ)2—V2<D]]=8HGTW+ EJ@’”’ (65)

From Eq.(65) we then derive at the zeroth level that

K K
( o5+ —UO> Poo— Z(&UO)Z= col, (68

4

whereg?= n*’d,4d,. We look for solutions of68) such that
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oo=00o(7), T=(X—Xp)% (69)
Using (69) in (68) yields
2 K ” ’ 12 2
4| o5+ ZUO)(TUO+ o)) — KTOy"=Coj, (70

where the prime denotes differentiation with respect.tdt
is difficult to solve Eq.(70) in a closed form. We can easily
obtain a series solution

0'022 a; 7, (71
=0

where the first few terms are given igssumingay# 0)

Cay
a; = )
1 4ao+K

4a,c
4a0 + kK

_ Ca
"~ 2(4ay+k)?

ao s (72)

as [c(a3+2aya,) —40aga a,— 485

- 9a0(4a0+ K)
—kaja,], etc.

The series solution is, however, only useful for smalnd

to gain insight into the nature of the closed form solutions of
Eqg. (70) we shall investigate two limits, namely, those of

small and large values ok|, respectively.
For small| x| we seek solutions of70) in the form

0'0250+K¢, (73)
whereoy is a solution of thex=0 equation21]:

_ C

To=7 T M, (74

with M being a constant. Usingy3) in (70) yields an equa-
tion for ¢ which is easily solved to give

aM
In| 7— —

1 J c
L
whereA,B are constants. The metri;,, is thus determined
to be

dr+Aln7+B, (75)

M K
9ur=g 1+ cr—4M,
ZT_MO
4M
In T—T
X fde—ﬁlAMT , (76)

where My=M — kB. The first term on the RHS of76) is
equivalent to the black hole solution of Ref8,4] under a
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change of coordinatd®1]. The « term then represents a first
order perturbation about the black hole solution.

Next we consider the largex| limit and approximate Eq.
(70) to read

(77

Note that we have kept the term on the RHS(60) but

dropped the term in the coefficient efrg+ o that does not
involve k. By making the transformation,=e€‘ it is pos-

sible to solve(77) and thereby obtain that

B

go0=— "
0 7@

koo(Tog+ah)— KTO'(’)ZZ C(Tg.

eTC/K, (78)

thereby leading to

e
—e 7Cl K

9uv= 8 (79

77,u.1/1

where«, 8 are constants.
We now go back to Eq:65) and seek an equation for the
dilaton perturbation using67). We derive that

1 “ J
4+ —
80'0

2Ce
T oy

2

40'0 (O]

K 2
1+ —) &Zgo—i— ¢

K 1.
— 27(2) 7*P,00050=8IIGT+ Ech+]. (80)

This equation is difficult so solve in a closed form and so
as an illustration we consider the larfye limit in which it
simplifies to become

0o+ @d’oy— Zn“'gﬁaooﬁﬁ(pzo. (81

To arrive at(81) we have retained only terms that are pro-
portional tox in (80). We now takep= ¢(7) and substitute
for o from (78) to obtain

7?¢"+(1+2a) ¢ — ap=0. (82
Using the substitutior=¢e" we can solvg82) to get
e=B,7M+B,7M2, (83
where
my = — a*(a?+a)2 (84)

To determineh we consider Eq(66) to first order and
thereby obtain

-1 t
h:izfdwdeNuzv:u—xw, (85

where

-1

N Y o2
N=|e +4 (1LEIIGT+2kV-®D). (86)

In the large| x| limit (85) simplifies to
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R to.
h=i4f dx’j dt' V2D (x',t' F|x—x'|). (87

Finally we note that including the first order perturbations

gives the metric as

1. ¢
1+ Eh—o_—o) 7]'[“,.

(88)

_ -1
g/.w_ Jp

We were able to obtain an explicit expressiondgr, only in

the large| x| limit. This is accomplished through the results

(78) and(73) which also determiné& via (87).

V. STELLAR STRUCTURE

M. A. AHMED

-1
¢'2=4HG(p—p)e2¢( 1- %ezﬂ5

|
Now we substitute from(92) for ¢” in the formula for
VZ¢,

+ 1+ 2e20| [1-Se2s _1—”+ J. (93
4 4 B '

4

!

2://B_I
V2=t o4, (94

and employ the resulting expression in the trace of &y.

. . ) This procedure gives
In this section we study the equations that govern the

existence of “stars” in this two-dimensional universe. To do B’ B”

that we consider a static metric of the form §¢, = 5§ + €, (95
ds’=—B2(x)dt>+dx>. (89
where
UsingR,,,= :—ZLgMR in Eqg. (5) and substitution foR from the
trace of Eq.(5) gives P -1
== 1+ —e2</’) ( 1- —e2</’) ,
g, K —2¢u2, K 2 2 4
2\ e +Z V#VV¢_9MVG \Y ¢_ ZgMV ¢
1 4HGe2¢< p— —pew)
=8HG(TW— 59T (90 €=— - (96)
(1+ —e2¢’) ( 1- ez‘/’>
We employ the energy-momentum tensor for a perfect fluid, 4

Tap=Pupt (P+p)U,Ug. (91))  The equation of hydrostatic equilibriufi20] reads in our
case
Using (89) and (92) in (90) then yields
, BI pl
K B —
e 24 2 ¢"—§¢')=4H6<p+p). (92 B pip ®7)

Next we take the trace of E¢) and substitute fo¥ 2 ¢ from
Eq. (4) into the resulting equation. This leads to

Using (97) in (95), squaring, and equating t®3) gives a
quadratic equation foB"/B which can be solved to give

n

) ’ 2
K K K p
— = 2¢ —_a2¢ - ¢ 2| —
g —8lIGe*| 1+ Ze ) (p 4pe2 +|1-7e p+p)
' 2 ' 2 1/2
K K p K p
+ = a2¢ _ 29| 2 —_a2¢ L
+ 1+4e ) 1 4e )pﬂ){lGHGe p+ 1+4e Do +J (98
|
Now differentiating(97) gives B” ke?® ([ p' \?
B2 lpre 0 (100

, B" P'(2p'+p")
=Pt o, (99
PTp Concentrating on the first case (@00 and for a general

With B”/B given by(98) we see that given an equation of equation of stat=(y—1)p, Eq. (99) then gives

statep=p(p), the solution of(98) will give p and hence the

metric. The resulting equation is, however, quite complicated

and difficult to solve in general. Once again we study the
large| x| limit in which (98) becomes where

pp"+ Bp'?=0, (101



K
— E(y— 1)e??+ 2vy—1

B= (102

Y
For constanty and by multiplying(101) by p#~! we can
solve and obtain

p=(B+1)METV(Fx+G)HATY, (103

whereF,G are constants. With this expression foEq. (95)
then gives

n g
B”+ mB—O, (104)
where
_ ke?(y—-1) 105
2y4(B+1)%
We solve(104) and finally obtain, for the metric,
B=C(Fx+G)"1+Cy(Fx+G)*2, (106)
where
11 4¢\12
V1’2=§ ii 1— a . (107)

We observe that fofx| — %, v; ,—1,0 and both the met-
ric and curvature remain finite.

Finally we note that in the Newtonian limip—0,
¢—0,J—0, (98) reduces to

B" 8IIGp
- . (108
5ok

4

Comparing this to the result of R¢R1] we see that it differs
by a factor (1 «/4)~* multiplying G. Now the Newtonian
equation for stellar structure is
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—p'=4TIGp?— pr. (109

Thus Eq.(99), in the Newtonian limit withB"/B given by
(108), will differ from Eq. (109 in thatG appears multiplied
by 2(1+ «/4)~ .

VI. CONCLUSIONS

In this work we considered the model of two-dimensional
dilaton gravity inspired by string theory modified by the in-
clusion of Jackiw-Teitelboim gravity with an arbitrary cou-
pling k. We solved the model exactly in the Schwarzschild-
like gauge, obtaining a black hole solution. This solution is a
generalization of the one found previously in dilaton gravity
and reduces to it when the coupling of the additional term is
made to vanish. Including an energy-momentum tensor for
matter we also examined the post-Newtonian and weak-field
approximation in the model as well as stellar structure. The
post-Newtonian approximation is fairly simple and similar to
that of general relativity. In the weak-field approximation the
situation was rather complicated and we could obtain some
explicit results only in limiting cases of small or large|.
Similar remarks apply to stellar structure where we could
compute the metric for the situation of largye only.

Our treatment in this work has been completely classical.
Now the great attention devoted in recent years to two-
dimensional gravity theories stems from the fact that they
provide an arena for the investigation of the dynamical pro-
cesses of black hole formation and evaporation and the at-
tendant issues of information loss. Most treatments of such
issues so far have been semiclassical. Attempts to go beyond
the semiclassical approximation and quantize two-
dimensional dilaton gravity have been made by several au-
thors and we cite in particular the work of Hirambal. [22]
and that of Louis-Martineet al.[23]. It would be interesting
to investigate the quantization of the model discussed in this
work. Moveover, one should examine how the spacetime ge-
ometry can be extracted from the quantitized mdad]. We
hope to return to these and other issues in the near future.
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