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Off-diagonal elements of the DeWitt expansion from the quantum-mechanical path integral

F. A. Dilkes* and D. G. C. McKeon†

Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
~Received 1 September 1995!

The DeWitt expansion of the matrix elementMxy5^xuexp{2@
1
2(p2A)21V] t} uy& (p52 i ]), in powers of

t can be made in a number of ways. Forx5y ~the case of interest when doing one-loop calculations!,
numerous approaches have been employed to determine this expansion to very high order; whenxÞy ~relevant
for doing calculations beyond one loop!, there appear to be but two examples of performing the DeWitt
expansion. In this paper we compute the off-diagonal elements of the DeWitt expansion coefficients using the
Fock-Schwinger gauge. Our technique is based on representingMxy by a quantum-mechanical path integral.
We also generalize our method to the case of curved space, allowing us to determine the DeWitt expansion of

M̃xy5^xuexp$12@g21/2(]m2iAm)g
mnAg(]n2 iAn)#t%uy& by use of normal coordinates. By comparison with results

for the DeWitt expansion of this matrix element obtained by the iterative solution of the diffusion equation, the
relative merits of the different approaches to the representation ofM̃ xy as a quantum-mechanical path integral
can be assessed. Furthermore, the exact dependence ofM̃ xy on some geometric scalars can be determined. In
two appendices, we discuss boundary effects in the one-dimensional quantum-mechanical path integral, and the
curved space generalization of the Fock-Schwinger gauge.

PACS number~s!: 04.621v, 11.10.Jj, 11.15.Bt
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I. INTRODUCTION

There is a long history of computing the elemen
an(x0 ,D) in the expansion ofMxy in powers oft:

Mxy[^xuexp$2@ 1
2 ~p2A!21V#t%uy& ~1a!

5
e2D2/2t

~2pt !D/2(n50

`

an~x0 ,D!tn ~1b!

~D5No. of dimensions,p52 i ],

x05~x1y!/2, D5x2y),

in the limit D50 @1#. This expansion, whenD50, is ex-
tremely useful when examining certain properties of the ge
erating functional at one-loop order; in particular, the dive
gence structure of a theory at one-loop order can
discerned. Among the approaches used to evaluatean(x0,0)
are the perturbative solution to the heat equation@1,2#, the
use of pseudodifferential operators@3#, working in momen-
tum space@4#, systematically rearranging a Schwinger e
pansion of~1a! in powers ofA andV into an expression of
the form ~1b! @5,6#, and representing~1a! as a quantum-
mechanical path integral~QMPI! and hence expanding it in
powers oft @7,8#. The only places of which the authors ar
aware wherean(x0 ,D) is considered forDÞ0 are in@2# and
@6#. These coefficients are useful in considering multiloo
processes@9#, which motivates us to pursue them furthe
The quantum-mechanical path integral has proved usefu
computing Green’s functions at one-loop order@10–13# and
beyond@14–16#; this suggests using this approach to exam
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inean(x0 ,D) for DÞ0. Although our method is not identical
to that of@7#, the two approaches are similar and both resu
agree whenD50.

The representation of

M̃xy5K xUexpH 12F 1

Ag
~]m2 iAm!gmnAg~]n2 iAn!G tJ UyL

in terms of a quantum-mechanical path integral is n
uniquely specified@17–19,31#, as discussed in@14#. We use
one of the various forms of the QMPI to expandM̃ xy and
compare our results with those of@2#. Furthermore, a partial
summation of the DeWitt expansion to obtain the full depe
dence ofM̃xy on R andRabDaDb is possible@20#.

II. EXPANDING Mxy

It is possible to representMxy as an appropriately normal-
ized QMPI @21#:

Mxy5E
y

x

Dq~t!PexpF E
0

t

dtS 2
q̇2~t!

2
1 i q̇~t!•A„q~t!…

2V„q~t!…D G ~2!

where path-ordered integration is implied over trajectori
with end pointsq(0)5y andq(t)5x.

We attempt to construct a power series about some po
x0 which we arbitrarily choose to be the midpoint betwee
x andy. Defining the relative coordinated by

q~t!5x01d~t!, ~3!

and imposing the Fock-Schwinger gauge condition@22#

d~t!•A„x01d~t!…50, ~4!
4388 © 1996 The American Physical Society
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TABLE I. Possible contributions to the various coefficients of the DeWitt expansion. All fields an
covariant derivatives are evaluated atx0 . k,l50,1,2,. . . .

Coefficient Contributions

a0(x0 ,D) 1
a1(x0 ,D) (D•D)kV,(D•D)k(DaDbFa

b),(D•D)k(DaDbFamFb
m)

a2(x0 ,D) (D•D)k(D2V),(D•D)kV(D•D) lV,
(D•D)kV(D•D) l(DaDbFa

b),(D•D)k(DaDbFa
b)(D•D) lV,

(D•D)k(DaDbFamFb
m)(D•D) lV,(D•D)kV(D•D) l(DaDbFamFb

m),
(D•D)kFab(D•D) lFab ,
(D•D)k(DaFam)(D•D)

l(DbF
bm),

(D•D)k(DbF
bm)(D•D) l(DaFam),

(D•D)k(DaDbFa
b)(D•D) l(DaDbFa

b),
(D•D)k(DaDbFa

b)(D•D) l(DaDbFamFb
m),

(D•D)k(DaDbFamFb
m)(D•D) l(DaDbFa

b),
(D•D)k(DaDbFamFb

m)(D•D) l(DaDbFamFb
m)

A etc.
h

f

e

one can expand the gauge field in powers ofd:

Am„x01d~t!…5E
0

1

daadl~t!Flm„x01ad~t!… ~5a!

5 (
N50

`
1

N! ~N12!
@d~t!•D~x0!#

N

3dl~t!Flm~x0!. ~5b!

The scalar potential can be similarly expanded:

V„x01d~t!…5 (
N50

`
1

N!
@d~t!•D~x0!#

NV~x0!. ~6!

Here, gauge-covariant differentiation atx0 has been denoted
by D(x0). Together,~5b! and~6! allow ~1a! to be written as

Mxy5E
2D/2

D/2

Dd~t!expF2E
0

t

dt
ḋ2~t!

2 G
3 (

L50

`
1

L!
P H (

N50

`
1

N! E0
t

dt@d~t!•D~x0!#
N

3F i

N12
ḋm~t!dl~t!Flm~x0!2V~x0!G J L.

~7!

In the above expansion we intend to treat all terms in t
expansions of the potentials as perturbations on the free-fi
action 1

2*0
t dtḋ2(t). By contrast, the authors of Ref.@23#

have shown how, through the introduction of an appropria
tensor basis, one can include the lowest-order term of
derivative expansion of the electromagnetic field in a no
perturbative fashion. Although the latter technique could
he
eld

te
the
n-
be

applied here, we adopt the purely perturbative approac
which is algebraically simpler and more suitable for the pur-
pose of illustration; furthermore, we are free to consider a
non-Abelian gauge group.

The path integral in~7! can be evaluated by systematic
functional differentiation of the standard result@21,24,12#:

E
2D/2

D/2

Dd~t!expF E
0

t

dtS 2
ḋ2~t!

2
1g~t!•d~t! D G

5
e2D2/2t

~2pt !D/2
expH E

0

t

dtS 2
1

2
1

t

t DD•g~t!

2 1
2 E

0

t

dtdt8G~t,t8!g~t!•g~t8!J , ~8!

with respect to ga(t) and then settingg50. @Here,
G(t,t8)[ 1

2ut2t8u2 1
2(t1t8)1tt8/t is the Green’s func-

tion of a free particle on the world line.1# For example, after
two such derivatives, it is easily shown that

E
2D/2

D/2

Dd~t!da~ta!d
b~tb!expF2E

0

t

dt
ḋ2~t!

2 G
5
e2gmnDmDn/2t

~2pt !D/2 F2G~ta ,tb!g
ab

1S 2
1

2
1

ta
t DDaS 2

1

2
1

tb
t DDbG . ~9!

1In Appendix A we address some concerns about the validity o
this Green’s function on the finite interval@0,t#. The complications
presented there are not expected to contribute in this flat-spac
limit.
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From ~8!, it is easily seen that no term in~7! will involve
factors ofD2. From this observation, combined with simpl
power counting arguments, it is straightforward to tabula
the possible contributions to the various coefficien
an(x0 ,D) ~see Table I!. ~When a temperature-dependen
QMPI is considered as in@12#, then the temperature provide
a second dimensionful parameter which must be consider!
The coefficients of the various contributions can be eas
determined by appropriately choosingL andN in ~7! and
then systematically applying ~8!. For example, if
L5n,N50, then it is apparent that the contribution t
an(x0 ,D) proportional toV

n(x0) is „2V(x0)…
n/n!. By set-

ting L5N51 in ~7!, we find after a very short calculation
that the contribution toa1(x0 ,D) proportional toD

aDbFa
b is

2 iDaDbFa
b/12 . With L52,N50, the contribution toMxy

is straightforwardly computed to be

Mxy
~2,0!5

e2D2/2t

~2pt !D/2 S 2
t

24
DaDbFamFb

m2
t2

48
FabF

abD ,
giving a contribution to botha1(x0 ,D) anda2(x0 ,D). These
results are all consistent with the flat-space limit of the e
pressions foran(x0 ,D) given in @2#.

Before concluding this section, we would like to point ou
two things associated with the gauge choice of~4!. First, the
off-diagonal matrix element~1a! is not gauge invariant, and
need not be dependent solely onFmn but it may, in fact,
depend onAm . Second, when this matrix element is used
conjunction with calculations of higher-loop diagrams,
may occur in such a way that the choice ofx0 used in the
gauge-fixing condition~4! is not unique. For these two rea
sons, it may not be appropriate, in certain situations, to
the gauge and employ a covariant expansion; instead,
gauge potential should be expanded aboutx5x0 in the same
was asV(x) in Eq. ~6!. This latter approach is equivalent to
what was done in@6#.

III. EXPANDING M̃ xy

As has been noted in the introduction and in@14#, there
are various representations of the matrix element

M̃xy5K xUexpH 12F 1Ag~]m2 iAm!gmnAg~]n2 iAn!G tJ UyL
~10!

in terms of a QMPI. We adopt the approach of@19# in which
the QMPI is computed using a normal coordinate expans
of the coordinate being integrated over and the form of t
classical action is fixed by havingM̃ xy satisfy the appropriate
heat kernel equation.~This representation does not coincid
with the expression given in@25# for any value of the param-
eter p appearing there.! This representation gives a depen
dence ofM̃ xy on R that coincides with that of@20,2#, and
agrees, to all orders so far checked, with the results of@2#.
The full dependence ofM̃ xy onRabDaDb can also be deter-
mined.

We are now faced with evaluating
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M̃xy5E
y

x

Dqa~t!Ag„q~t!…PexpH 2E
0

t

dt@ 1
2gmn„q~t!…

3q̇m~t!q̇n~t!2 i q̇m~t!Am„q~t!…1 1
8R„q~t!…#J .

~11!

The factorAg„q(t)…5det1/2gmn„q(t)… in the measure also
occurs in the nonlinears model @26#, but there it is usually
discarded as it gives a contribution to the effective action t
is proportional tod(0) which, when regulated using dimen
sional regularization@27# or operator regularization@28#,
goes to zero. We are dealing with a model in which no reg
larization is required; indeed it turns out that divergent co
tributions fromAg are essential to render the path integral
~11! well defined. It is most convenient to incorporate th
effects ofAg by using ghosts as was done in@19#. Perhaps
the simplest way to do this is to introduce a vector of re
Bosonic fields ba(t) which vanish at the end points
(t50,t). ~The structure of the ghost sector is not unique, a
the authors of@19# opt, instead, to use either a pair of Fe
mionic scalars or a contravariant Bosonic ghostba and two
contravariant Fermionic ghostsca and c̄a.) Then, Eq.~11!
can be reexpressed as

M̃xy5E
y

x

Dqa~t!E
0

0

Dbb~t!PexpH 2E
0

t

dt@ 1
2g

mnbm~t!

3bn~t!1 1
2gmn„q~t!…q̇m~t!q̇n~t!

2 i q̇a~t!Aa„q~t!…1 1
8R„q~t!…#J . ~12!

A normal coordinate expansion@29# is now made about a
point f(t) so that

qa~t!5fa~t!1pa
„j~t!…. ~13!

Following the developments of@27#, we have

R„q~t!…5R„f~t!…1 1
1!R;a„f~t!…ja~t!

1 1
2!R;ab„f~t!…ja~t!jb~t!1•••, ~14a!

gmn„q~t!…5gmn„f~t!…1 1
3Rmabn„f~t!…ja~t!jb~t!

1 1
6Rmabn;g„f~t!…ja~t!jb~t!jg~t!

1~ 1
20Rmabn;gd„f~t!…1 2

45Rmabs„f~t!…

3Rs
gdn„f~t!…!ja~t!jb~t!jg~t!jd~t!1•••,

~14b!

gmn
„q~t!…5gmn

„f~t!…2 1
3R

m
ab

n
„f~t!…ja~t!jb~t!

2 1
6R

m
ab

n
;g„f~t!…ja~t!jb~t!jg~t!

1~2 1
20R

m
ab

n
;gd„f~t!…1 1

15R
m

abs„f~t!…

3Rs
gd

n
„f~t!…!ja~t!jb~t!jg~t!jd~t!1•••

~14c!
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and

q̇m~t!5ḟm~t!1Dtj
m~t!

1 1
3R

m
abg„f~t!…ja~t!jb~t!ḟg~t!1•••

~Dtj
m~t![j̇m~t!1Gbg

m
„f~t!…jb~t!ḟg~t!!. ~14d!

As shown in Appendix II, by imposing a gauge conditio
analogous to~4!, one finds that the corresponding norm
coordinate expansion for the gauge field is~B3!

Am~q~t!!5 1
2Fam„f~t!…ja~t!1 1

3Fam;b„f~t!…ja~t!jb~t!

1~ 1
8Fam;bg„f~t!…
n
al

1 1
24Fas„f~t!…Rs

bgm„f~t!…!

3ja~t!jb~t!jg~t!1~ 1
30Fam;bgd„f~t!…

1 1
60Fas~f~t!!Rs

bgm;d„f~t!…

1 1
30Fas;d„f~t!…Rs

bgm„f~t!…!

3ja~t!jb~t!jg~t!jd~t!1•••. ~14e!

If we takef(t) to be the geodesic mid pointx0 , between
x andy, thenḟa(t) vanishes and the above expansions sim
plify a bit. LettingD denote the difference between the no
mal coordinates ofx andy, Eq. ~12! becomes
ions
M̃ xy5E
2D/2

D/2

Dja~t!E
0

0

Dbb~t!expH 2E
0

t

dt@ 1
2gmnj̇m~t!j̇n~t!1 1

2g
mnbm~t!bn~t!#J e2Rt/8P

3 (
N50

`
1

N! H 2E
0

t

dt@ 1
2 ~ 1

3Rmabnja~t!jb~t!1 1
6Rmabn;gja~t!jb~t!jg~t!1••• !j̇m~t!j̇n~t!

1 1
2 ~2 1

3R
m

ab
nja~t!jb~t!2 1

6R
m

ab
n
;gja~t!jb~t!jg~t!1••• !bm~t!bn~t!2 i ~ 1

2Famja~t!1 1
3Fam;bja~t!jb~t!

1••• !j̇m1 1
8 ~R;aja~t!1 1

2R;abja~t!jb~t!1••• !#J N. ~15!

@All geometrical and gauge quantities in~15! and hereafter are evaluated atx0 .#
The standard results

E
2D/2

D/2

Dja~t!expH E
0

t

dt~2 1
2gmnj̇m~t!j̇n~t!1jm~t!gm~t!!J

5
e2gmnDmDn/2t

~2pt !D/2Ag
expH E

0

t

dtS 2 1
21

t

t DDmgm~t!2 1
2 E

0

t

dtdt8G~t,t8!gmngm~t!gn~t8!J ~16a!

and

E
0

0

Dba~t!expH E
0

t

dt~2 1
2g

mnbm~t!bn~t!1bm~t!Bm~t!!J 5AgexpH 1
2 E

0

t

dtdt8Gghost~t,t8!gmnB
m~t!Bn~t8!J

B~0!5B~ t !50
~16b!

permit one to compute the functional integrals appearing in~15!. Equivalently, one can generate the necessary contract
using the formalism of Eq.~A2!. In either case, one should be careful to use the Green’s functions of Eqs.~A6! @or in simple
cases, Eqs.~A8!# as discussed in Appendix A.

For example, if we restrict our attention to the terms in~15! which are linear inRmanb , we have

M̃ xy
R 5E

2D/2

D/2

Dja~t!E
0

0

Dbb~t!e2Rt/8expH 2E
0

t

dt@ 1
2gmnj̇m~t!j̇n~t!1 1

2g
mnbm~t!bn~t!#J

3H 2 1
6RmabnE

0

t

dtja~t!jb~t!j̇m~t!j̇n~t!1 1
6R

m
ab

nE
0

t

dtja~t!jb~t!bm~t!bn~t!J
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5
e2gmnDmDn/2t

~2pt !D/2
e2Rt/8E

0

t

dt$2 1
2 @gmngabG~ ṫ,ṫ !G~t,t!1~gmagnb1gmbgna!G2~t,ṫ !

2DmDn~ 1
t !2gabG~t,t!

2DaDbgmn~2 1
21 t

t !
2G~ ṫ,ṫ !2~DmDagnb1DnDbgma1DmDbgna1DnDagmb! 1t ~2 1

21 t
t !G~t,ṫ !

1DaDbDmDn~2 1
21 t

t !
2~ 1

t !2]1@2G~t,t!gab1~2 1
21 t

t !
2DaDb#Gghost~t,t!gmn%~ 1

6Rmabn!.
~17!

Here, a dot over an argument of the Green’s functionG indicates differentiation with respect to that argument. As explain
in Appendix A, these derivatives cannot always be obtained at the end points (t50,t) by naive differentiation of
G(t,t8)@cf. Eq. ~A8c!#. When the explicit form ofG(t,t8) and its derivatives are substituted into~17!, we are left with

M̃ xy
R 5

e2gmnDmDn/2t

~2pt !D/2
1

6
e2Rt/8E

0

t

dtHRabDaDbF 1
t2
S 2t1

t2

t
D 2

1

t
S 2

1

2
1

t

t
D 2

1@d~2t!1d~2t22t!#S 2
1

2
1

t

t
D 2 G1RF2 1

t S 2t1
t2

t
D 1S 2

1

2
1

t

t
D 21@d~2t!1d~2t22t!#S 2t1

t2

t D G J
5
e2gmnDmDn/2t

~2pt !D/2
e2Rt/8@2 1

12RabDaDb1 1
24Rt#, ~18!
e
tt
l.
al

-
t-
s.
al

c-

ly
r
o

whereRab5Rm
abm andR5Rabg

ab. @Notice that all depen-
dence ond(0) in ~17! has canceled out because of the com
pensating contributions from the ghost fields.# It is easily
seen that the entire dependence ofM̃xy on R and
RabDaDb is given by

M̃xy
~R,D•R•D!5

e2gmnDmDn/2t

~2pt !D/2 (
N50

`
e2Rt/8

N! F2RabDaDb

12
1
Rt

24G
N

5
e2gmnDmDn/2t

~2pt !D/2
expF2

Rt

12
2
RabDaDb

12 G . ~19!

The dependence ofM̃xy on bothR andRabDaDb in ~19!
agrees with that of@20,2,19# ~once the different normaliza-
tion of t is taken into account!.

A completely analogous calculation can be used to fix t
lowest-order dependence onRab;gDaDbDg; it is found to
vanish. This also appears to be consistent with the results
@2# ~where the coefficientRab;g is evaluated at the end poin
y, instead of at the mid-pointx0). Further terms in the De-
Witt expansion ofM̃xy can be similarly determined.

The techniques used in this section may be employed
find the effective action for a particle moving in a gravita
tional field @30#. This involves takingfa(t) to be arbitrary
in ~13! rather than restricting it to bex0 .

We finally note that a careful analysis of the path integr
in curved space@31# ~using noncovariant time slicing! may
lead to additional contributions to the action in~12! which
depend on the affine connectionGab

m . Such terms can be
treated using a normal coordinate expansion analogous
those of Eqs.~14!; however, their inclusion is contingen
upon assigning certain properties to the Green’s functio
G(t,t8) andGghost(t,t8) which are not consistent with the
-

he

of
t

to
-

al

to
t
ns

mode-expansion formalism of Appendix I. This may affect
calculations involving products of Green’s functions of an
order beyond which we have considered in this paper.

IV. DISCUSSION

In the preceding sections we have considered how th
QMPI can be used to determine the elements of the DeWi
expansion for the heat kernel both on and off the diagona
This technique is seen to be easier to use than the origin
approach@6# in which the heat equation was solved pertur-
batively. By employing the off-diagonal elements, calcula-
tions can be done to two-loop order@9#. The method works
in both flat and curved spaces.

Because of the simplicity of the proper-time (t) inte-
grands which arise when implementing this method, we ex
pect that high-order covariant expansions could be compu
erized using presently available symbolic algebra package
This approach has already been employed in the diagon
case@7#. In the off-diagonal case, surface terms~proportional
to D) introduce an additional combinatorical consideration
which should be tractable.

Finally, it is worth noting, that although our treatment of
this problem focused specifically on the case where the ve
tor potentialAm was a gauge field, this is unnecessarily re-
strictive and the methods presented here would work equal
well for a general vector coupling to a background field. Fo
example, if one were interested in radiative corrections t
Fermionic Green’s functions in flat-space QED, the follow-
ing quantum-mechanical operator would be of interest@32#:

S p2gmn2~12 1
a !pmpn 2~gmc!T ~cgm!

~gnc! 0 p”2m

2~cgn!T 2~p”2m!T 0
D

~m,n!

.

~20!
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By factoring in the constant supermatrix

S gnl 0 0

0 0 ~p”1m!T

0 2~p”1m! 0
D

~n,l!

,

and choosing thea51 gauge, operator~20! becomes

S p2gml 2~cgm!~p”1m! 2~gmc!T~p”1m!T

~glc! p21m2 0

2~cgl!T 0 p21m2
D

~m,l!

.

~21!
After completing the square ofp ~and noting thatpT52p in
the coordinate-space representation!, the heat kernel of this
operator is easily shown to have the form of Eq.~1a! with a
vector potential

An~q!5
1

2 S 0 c~q!gmgn 2„gngmc~q!…T

0 0 0

0 0 0
D

~m,l!

,

~22!

and a scalar potential
V~q!5S 0 „c~q!gm…~
i
2 ]”Q2m! @~2 i

2 ]”2m!gmc~q!#T

„glc~q!… m2 0

2„c~q!gl…
T 0 m2

D
~m,l!

. ~23!
e
h
a

After the appropriate Taylor expansions of these potential
substituted into Eq.~2!, the method should proceed in th
obvious way.
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APPENDIX A: EVALUATION OF THE PATH INTEGRAL

Here, we explicitly evaluate the path integrals used in th
previous sections. First, we define the type of integrals whic
need to be evaluated to obtain the expectation value of
functionF of dynamical variablesjm(t) andb

m(t):
^F~j,b!&D[^ D
2 ,0 uF~j,b!u2 D

2 ,0&5Fe2DmDngmn/2t

~2pt !D/2
G21E

2D/2

D/2

Dja~t!E
0

0

Dbb~t!F~j,b!

3expH 2E
0

t

dt@ 1
2gmnj̇m~t!j̇n~t!1 1

2g
mnbm~t!bn~t!#J ~A1!
-
which satisfies the normalization condition^1&D51.
We eliminate the boundary parameterD from the path

integral by integrating over fluctuations about the classic
geodesicjcl(t)5(21/21t/t)D. Letting j→j1jcl , it is
easily shown that

^F@j,b#&D5^F@j1jcl ,b#&0 . ~A2!

Thus, for the purpose of evaluating any particular term in E
~15!, it will be sufficient for us to concentrate on evaluatin
^F@j,b#&0 whereF is a monomial inj, j̇, andb. We can
follow the procedure usually used in applying the pa
al

q.
g

th

integral in field theory and so we only need to eval
uate the various two-point functions,̂bm(t)bn(t8)&,
^jm(t)jn(t8)&, etc., and then apply the appropriate Wick
expansions.

Jumping directly into the continuum limit, one would ob-
tain, using the standard techniques@12,24#,

^jm~t!jn~t8!&52G~t,t8!gmn

52F 1
2 ut2t8u2 1

2 ~t1t8!1
tt8

t Ggmn, ~A3a!

^bm~t!bn~t8!&5Gghost~t,t8!gmn5d~t2t8!gmn ,
~A3b!
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^jm~t!bn~t8!&50. ~A3c!

Upon close inspection of the above propagators, one fin
that the method used for finding the explicit form of th
Green’s functions is problematic, especially at the e
points. For example, the defining equation forG,

]2

]t2
G~t,t8!5d~t2t8!,

and the corresponding boundary conditions

G~t,0!5G~t,t !50,

are contradictory at thet850 andt85t boundaries. Further-
more, the explicit form of the ghost propagator of Eq.~A3b!
does not satisfy its homogeneous boundary condition at
corners (0,0) and (t,t).

In order to circumvent these difficulties, we adopt th
approach of@19# where the path integral is taken to be th
limiting case of integration over a finite set of discrete Fo
rier modes. The Fourier expansions

jm~t!5 (
n51

M

jn
msin

npt

t
, bm~t!5 (

n51

M

bmnsin
npt

t
,

~A4!

automatically incorporate the necessary boundary conditio
in theD50 path integral; furthermore, they ensure that th
path integral is over functions which are periodic, as requir
in @10#. If the cutoffM is finite then the path integral over
Fourier coefficients is well defined. Substituting these expa
sions into the action of~A1!, we find that the propagators o
the Fourier modes are simply@19#

^jn
mjm

n &5
2t

n2p2 dnmg
mn, ^bmnbnm&5

2

t
dnmgmn ,

~A5!

which we take to be our fundamental propagators. Then
ing ~A4!, the field propagators are found to be

^jm~t!jn~t8!&5gmnt(
n51

M
1

n2p2 Fcosnp~t2t8!

t

2cos
np~t1t8!

t G , ~A6a!

^bm~t!bn~t8!&5gmn

1

t (n51

M Fcosnp~t2t8!

t

2cos
np~t1t8!

t G , ~A6b!

^jm~t!bn~t8!&50. ~A6c!

These are the propagators which should be substituted
any Wick expansion of̂F@j,b#&0 . In principle we should
attempt to approximate the continuum limit by lettin
M→` only after the proper-time integrals have been pe
formed. Unfortunately, these harmonic expressions for t
Green’s functions can be unnecessarily cumbersome; in p
ds
e
nd

the

e
e
u-

ns
e
ed

n-
f

us-

into

g
r-
he
rac-

tice, whenever the appropriate product of Green’s functio
is sufficiently well behaved asM→`, we will sum them in
that limit before substituting them into the Wick expansion
This is most easily done by using the variablest65t6t8.
Then, on the relevant intervalst1P@0,2t#, t2P@2t,t#, the
following limits are easily derived from elementary Fourie
theory:

(
n51

M
t

n2p2 cos
npt6

t
→

M→`
1
6 t2

1
2 ut6u1

1

4t
t6
2 ,

~A7a!

(
n51

M
1

np
sin

npt2

t
→

M→`
1
2 sgnt22

1

2t
t2 , ~A7b!

(
n51

M
1

np
sin

npt1

t
→

M→`
1
22

1

2t
t1 , ~A7c!

(
n51

M
1

t
cos

npt2

t
→

M→`

d~t2!2
1

2t
, ~A7d!

(
n51

M
1

t
cos

npt1

t
→

M→`

d~t1!1d~2t2t1!2
1

2t
.

~A7e!

It is thus found that in many cases the following prescriptio
is sufficient to recover those propagators which arise in~15!:

^jm~t!jn~t8!&→2G~t,t8!

[2F 1
2 ut2t8u2 1

2 ~t1t8!1
tt8

t Ggmn,

~A8a!

^j̇m~t!jn~t8!&→2G~ ṫ,t8![2F 1
2 sgn~t2t8!2 1

21
t8

t Ggmn,

~A8b!

^j̇m~t!j̇n~t8!&→2G~ ṫ,ṫ8!

[2F2d~t2t8!1
1

t
2d~2t2t2t8!

2d~t1t8!Ggmn, ~A8c!

^bm~t!bn~t8!&→Gghost~t,t8!

[@d~t2t8!2d~2t2t2t8!

2d~t1t8!#gmn . ~A8d!

@We note here that~A8c! can be derived from~A8a! by re-
quiring thatG be extended periodically outside of the do
main 0<t,t8<t, i.e.,G(t1t,t81t)[G(t,t8). This peri-
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odicity is akin to the definition of the Green’s function give
in @10# on a compact periodic surface. A discussion of th
point can be found in@15#.#

Of note is the limiting case wheret5t8 which appears in
the calculation of~17!; there the following considerations
apply.

The term sgn(t2t8) in ~A8b! is odd int2t8 so its Fou-
rier transform necessarily vanishes in thet5t8 limit. Thus
we should take sgn(0)50 @cf. ~A7b!#.

In thet5t8 limit, the Fourier series ofd(t2t8) in ~A8c!
and ~A8d! leads to a regulated representation ofd(0) given
by td(0)5M11/2 @cf. ~A7d!#.

Since the Fourier series of the termsd(2t22t)1d(2t)
@which arise in~A8c! and~A8d!# is even about the respective
poles @cf. ~A7e!#, any integrated contribution from thes
terms should be halved as a result of the poles coincid
with the end point of the integration region, i.e.,

E
0

t

dt@d~2t22t!1d~2t!# f ~t!5 1
4 @ f ~ t !1 f ~0!#.

APPENDIX B: NORMAL COORDINATE EXPANSION
OF THE GAUGE FIELD

In this appendix we discuss the construction of a gaug
covariant normal coordinate expansion for the gauge pot
tial.

By analogy with the flat-space case discussed briefly
Sec. II and in Refs.@11,7#, the appropriate gauge condition
for this expansion is thesynchronousgauge@33# ~a curved-
space generalization of the Fock-Schwinger gauge~4! @22#!
which fits very well in the normal coordinate construction. I
the basis of the normal coordinate system, the gauge co
tion is

jaAa~f1p~j!!50. ~B1!

Either by integrating along the geodesics@which is formally
identical to Eq.~5a!# or by using differential forms@33#, one
can show, in the normal coordinate system, that the synch
nous gauge leads to a gauge-covariant expansion for the
tor potential which looks exactly like Eq.~5b! with
the gauge-covariant normal coordinate derivativ
Da5]/]ja1@Aa , . . . #. The latter derivative is not covari-
ant under reparametrization of the manifold, however usi
the methods of Ref.@27#, it is straightforward to write such
normal coordinate derivatives at the origin in terms of th
corresponding fully-covariant derivatives, denoted by indic
n
is

e
ing

e-
en-

in

n
ndi-

ro-
vec-

e

ng

e
es

trailing the semicolon. For example, one can show tha2

Db1
Fb0g5̇Fb0g;b1

, ~B2a!

Db2
Db1

Fb0g5̇Fb0g;b1b2
1 1

3Fb0dRb1b2g
d , ~B2b!

Db3
Db2

Db1
Fb0g5̇Fb0g;b1b2b3

1 1
2Fb0dRb1b2g;b3

d

1Fb0d;b1
Rb2b3g

d , ~B2c!

Db4
Db3

Db2
Db1

Fb0g

8Fb0g;b1b2b3b4
1 3

5Fb0dRb1b2g;b3b4
d

12Fb0d;b1
Rb2b3g;b4

d 12Fb0d;b1b2
Rb3b4g

d

1 1
5Fb0eRb1b2d

e Rb3b4g
d , ~B2d!

where5̇ indicates equality at the origin only after symme
trization of theb i indices. Substitution of Eqs.~B2! into Eq.
~5b! yields the fully-covariant normal coordinate expansio
to fifth order in the normal coordinates:

Ag~f1p~j!!5 1
2 $Fbg%jb1 1

3 $Fb0g;b1
%jb0jb1

1 1
2!4 $Fb0g;b1b2

1 1
3Fb0dRb1b2g

d %jb0jb1jb2

1 1
3!5 $Fb0g;b1b2b3

1 1
2Fb0dRb1b2g;b3

d

1Fb0d;b1
Rb2b3g

d %jb0jb1jb2jb3

1 1
4!6 $Fb0g;b1b2b3b4

1 3
5Fb0dRb1b2g;b3b4

d

12Fb0d;b1
Rb2b3g;b4

d 12Fb0d;b1b2
Rb3b4g

d

1 1
5Fb0eRb1b2d

e Rb3b4g
d %jb0jb1jb2jb3jb4

1O~j6!. ~B3!

All coefficients in curly brackets are evaluated at the or
gin, where the basis vectors for the normal coordinate syste
coincide with those of the original system. Since the poten
tial on the left-hand side of this equation is not a vector at th
origin, its indices must refer to the normal coordinate basi
@This is also true of Eqs.~14b!–~14d!#. The results of~B3!
agree with those of@2# to orderO(j3).

2The authors suspect that the fourth derivative of a rank-two te
sor implied in Ref.@27# is not entirely correct. The corresponding
coefficients presented here for the field strength, Eq.~B2d!, have
been verified independently.
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