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Off-diagonal elements of the DeWitt expansion from the quantum-mechanical path integral
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The DeWitt expansion of the matrix eIemeMi;(y=(x|exp{—[%(p—A)2+V]t} ly) (p=—1id), in powers of
t can be made in a number of ways. Fory (the case of interest when doing one-loop calculalions
numerous approaches have been employed to determine this expansion to very high order: wkehevant
for doing calculations beyond one lopghere appear to be but two examples of performing the DeWitt
expansion. In this paper we compute the off-diagonal elements of the DeWitt expansion coefficients using the
Fock-Schwinger gauge. Our technique is based on represevitipgpy a quantum-mechanical path integral.
We also generalize our method to the case of curved space, allowing us to determine the DeWitt expansion of
I\7Ixy= <x|exp{%[g’1’2(&#fiAM)g/“’\/E(a; iA,)]t}y) by use of normal coordinates. By comparison with results
for the DeWitt expansion of this matrix element obtained by the iterative solution of the diffusion equation, the
relative merits of the different approaches to the representatid,pfas a quantum-mechanical path integral
can be assessed. Furthermore, the exact dependeig, @in some geometric scalars can be determined. In
two appendices, we discuss boundary effects in the one-dimensional quantum-mechanical path integral, and the
curved space generalization of the Fock-Schwinger gauge.

PACS numbds): 04.62+v, 11.10.Jj, 11.15.Bt

I. INTRODUCTION ine a,(Xq,A) for A#0. Although our method is not identical
to that of{ 7], the two approaches are similar and both results
There is a long history of computing the elementsagree whem\=0.
an(Xo,A) in the expansion oM, in powers oft: The representation of

= _Triip_A)2 ~ 11 1
My=(xexp{—[3(p-A+VIly)  (1a Mxy:<x exp|ﬂ_§(%_mﬂ)gw A t} y>
e A¥2
=m20 an(Xo,A)t" (1) in terms of a quantum-mechanical path integral is not
=

uniquely specified17-19,31, as discussed ifiL4]. We use
one of the various forms of the QMPI to expaM,, and
compare our results with those [#]. Furthermore, a partial
summation of the DeWitt expansion to obtain the full depen-
dence ofM,, on R andR,zA*A# is possible[20].

(D =No. of dimensions,p=—id,
Xo=(X+Yy)/2, A=x-y),

in the limit A=0 [1]. This expansion, wherA =0, is ex-

tremely useful when examining certain properties of the gen- Il. EXPANDING My,
erating functional at one-loop order; in particular, the diver- ; ; ; )
gence structure of a theory at one-loop order can quzelé Ié&ﬁ?g? to represeM ., as an appropriately normal
discerned. Among the approaches used to evaladbe,,0) '

are the perturbative solution to the heat equafibj2], the X . t RO
use of pseudodifferential operatdi3], working in momen- Mxy_f DQ(T)?/)GXF{f dT( - +iq(7)-AQ(7))
tum space4], systematically rearranging a Schwinger ex- y 0
pansion of(1a) in powers ofA andV into an expression of

the form (1b) [5,6], and representingla) as a quantum- —V(Q(T)))
mechanical path integrdQMPI) and hence expanding it in

powers oft [7,8]. The only places of which the authors are
aware where,(xy,A) is considered foA #0 are in[2] and
[6]. These coefficients are useful in considering multiloop
processeg9|, which motivates us to pursue them further.
The quantum-mechanical path integral has proved useful i
computing Green'’s functions at one-loop orfi#6—13 and
beyond[14-16]; this suggests using this approach to exam- q(7)=xo+ 8(7), 3)

@

where path-ordered integration is implied over trajectories
with end pointsq(0)=y andq(t) =x.

We attempt to construct a power series about some point
Xo which we arbitrarily choose to be the midpoint between
X andy. Defining the relative coordinaté by

j and imposing the Fock-Schwinger gauge condifi@|
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TABLE |. Possible contributions to the various coefficients of the DeWitt expansion. All fields and
covariant derivatives are evaluatedxgt k,1=0,1,2,. ...

Coefficient Contributions

ay(Xg,A) 1

a;(Xg,A) (A-D)*V,(A-D)X(AD4FE),(A-D)X(A“APF,,,Fh)
ay(Xg,A) (A-D)XD?V),(A-D)*V(A-D)'V,

(A-D)*V(A-D)'(A“D4F%),(A-D)(A“D4FE)(A-D)'V,
(A-D)4A“APF,,FE)(A-D)'V,(A-D) V(A D) (AAPF,,F)),
(A-D)F*#(A-D)'F o,

(A-D)(A“F,,)(A-D)(D4FP¥),
(A-D)(DgFP#)(A-D)'(AF,,),

(A-D)X(AD4FE)(A-D) (AD4FE),

(A-D)XA“D4FE)(A-D) (A“APF, Fh),
(A-D)XA“APF,,F£)(A-D) (A“D4FE),

(A-D)X(AAPF, FE)(A-D) (A“APF,,F4)

etc.

one can expand the gauge field in powerssof applied here, we adopt the purely perturbative approach
which is algebraically simpler and more suitable for the pur-
1 pose of illustration; furthermore, we are free to consider a
A, (Xo+ 8(1))= f daad(7)F,,(Xo+ad(7)) (58  non-Abelian gauge group. .
0 The path integral in(7) can be evaluated by systematic
functional differentiation of the standard resi2tl,24,13:

[

= 2 NIINTZ) N+2)[6< ) D(Xo)]"

X M T)F) u(Xo). (5b) J_ASZDé(r)ex;{ foth( _ 5227) +y(7)- 5(7))
The scalar potential can be similarly expanded: o A% . 1
:WEXP{JdT(_§+ A-y(T)
V(xo+ 8(7))= E [5( 7)-D(x0)]"V(Xp).  (6) t
—%fodeT’G(T.T’)y(T%7(7’)], 8

Here, gauge-covariant differentiation>g has been denoted
by D(xg). Together,(5b) and(6) allow (1a) to be written as

A2 t 87
M, :J Dé(r)ex —f dr
Yo ) can 0 2

with respect to y,(7) and then settingy=0. [Here,
G(7,7)=37—7'|-3(r+7')+ 77/t is the Green’s func-
tion of a free particle on the world ling.For example, after
two such derivatives, it is easily shown that

- 1 1
X2 57 E N dr[am D(xo) I a2 (1)
f D 8(7) 6% 7,) 8P( ) ex fdr
8*(1) N 7)F \% L e duATAT2
N+2 (1) 8N (7)F u(X0) = V(X0) :WT —G(7y,7,)9%"
(@) "

In the above expansion we intend to treat all terms in the +| = E+ E)Aa( — £+ E)AB} (9)
expansions of the potentials as perturbations on the free-field 2t 2t

action 3ftdr6%(7). By contrast, the authors of Ref23]

have shown how, through the introduction of an appropriate in Appendix A we address some concerns about the validity of
tensor basis, one can include the lowest-order term of thenis Green’s function on the finite intervid,t]. The complications
derivative expansion of the electromagnetic field in a nonpresented there are not expected to contribute in this flat-space
perturbative fashion. Although the latter technique could beimit.
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From (8), it is easily seen that no term {i@) will involve
factors ofA2. From this observation, combined with simple

power counting arguments, it is straightforward to tabulate
the possible contributions to the various coefficients

an(xg,A) (see Table ). (When a temperature-dependent
QMPI is considered as irl2], then the temperature provides

a second dimensionful parameter which must be considered.
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~ X ) t
M= fqu“(TNQ(q(T))%eXD{—fodr[%gw(q(r))
><Q“(T)CI”(T)—iQ”(T)AM(Q(T))ﬁL%R(Q(T))]}-
(11

The coefficients of the various contributions can be easily

determined by appropriately choosihgand N in (7) and
then systematically applying(8). For example, if
L=n,N=0, then it is apparent that the contribution to
an(Xg,A) proportional toV"(xp) is (—V(Xg))"/n!. By set-
ting L=N=1 in (7), we find after a very short calculation
that the contribution t@;(xy,A) proportional toA“DBFf is
—iA“DgFA/12. With L=2N=0, the contribution taVl,,

is straightforwardly computed to be

—A%2t 2

e
(2,0 —
M 48

30 = |~ 22 B FauF— 2gF aa

giving a contribution to botfa,(xy,A) anda,(X,A). These
results are all consistent with the flat-space limit of the ex
pressions fol,(xy,A) given in[2].

Before concluding this section, we would like to point out
two things associated with the gauge choicé4)f First, the
off-diagonal matrix elementla) is not gauge invariant, and
need not be dependent solely én,, but it may, in fact,

depend oM, . Second, when this matrix element is used in

conjunction with calculations of higher-loop diagrams, it
may occur in such a way that the choice>gf used in the
gauge-fixing conditior(4) is not unique. For these two rea-

sons, it may not be appropriate, in certain situations, to fix
the gauge and employ a covariant expansion; instead, the

gauge potential should be expanded abotik, in the same
was asV(x) in Eq. (6). This latter approach is equivalent to
what was done if6].

Ill. EXPANDING M,

As has been noted in the introduction and[i4], there
are various representations of the matrix element

1
xy= | X[ exp 5

in terms of a QMPI. We adopt the approach 8] in which

M

1
\/_5(07#_|AM)9W\/§(3V_|AD)}I] y>

(10

the QMPI is computed using a normal coordinate expansion
of the coordinate being integrated over and the form of the

classical action is fixed by havind,, satisfy the appropriate
heat kernel equation{This representation does not coincide
with the expression given if25] for any value of the param-
eter p appearing therg.This representation gives a depen-
dence ofM,, on R that coincides with that 0f20,2], and
agrees, to all orders so far checked, with the resulte2pf
The full dependence d¥l,, on RQBA“AB can also be deter-
mined.

We are now faced with evaluating

The factoryg(q(7))=det’%g,,,(q(7)) in the measure also
occurs in the nonlineas- model[26], but there it is usually

discarded as it gives a contribution to the effective action that
is proportional tos(0) which, when regulated using dimen-
sional regularization27] or operator regularizatioh28],
goes to zero. We are dealing with a model in which no regu-
larization is required; indeed it turns out that divergent con-
tributions from\/§ are essential to render the path integral in
(11) well defined. It is most convenient to incorporate the
effects of\/§ by using ghosts as was done[itQ]. Perhaps
the simplest way to do this is to introduce a vector of real
Bosonic fields b,(7) which vanish at the end points
(7=0). (The structure of the ghost sector is not unique, and
the authors of19] opt, instead, to use either a pair of Fer-
_mionic scalars or a contravariant Bosonic ghio$tand two
contravariant Fermionic ghosts® andc®.) Then, Eq.(11)

can be reexpressed as

- X 0 . t 1 )
Mxy= J'y an(T)fo DbB(T)'%X;%_J’OdT[EgM bM(T)
Xb,(7)+39,,(a(7))a*(7)q"(7)

—iqa(T)Aa(Q(T))+%R(Q(T))]]- (12

A normal coordinate expansid29] is now made about a
point ¢(7) so that

q*(7)=¢*(7)+ 7 (&(7)). (13

Following the developments ¢27], we have

R(A(7))=R(#(1)+ 1R o(b(7))E%(7)

+ 7R ap((M))EN(NER(T)+- -+, (14a

3

9(A(1) =0, (1) + 3R uap,(D(1)EX (1) EP(7)
+ 5Rpuapu (1) EX(T) E8(7) €7(7)
+ (25 R paprys(B(T) + 5 Rpuapa( (7))
XR7,5, () E(T)EX(T)EN(NEAT)+ - -,
(14b)
g*"(@(1)=g""(¢(1)— 3R 5" ($(1)E* (1) EP(7)
— sR¥ g (B(1)EX(7) EP(7) (1)
+(— 2R ap" ys(B(7)) + 15R 4 5o (H( 7))

XR7,(p(1)))EXT)EP(T)E(T)EX(7) + - - -
(149
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and + 2iF 0o (D(T)IR 5, (H(7)))
gH(r)= ¢*(7)+D (7 X EN(T)EP(T)EY(7) + (35F s pye(P(7)
+ 3R (HTE(DEP () PY()+ - - + & F o SDIR 5 (b(7)
(DEH(T)=EX(1)+ T4 (H(1)EF(T) ¢7(7)). (140 +36F a0 A TR 5,,(6(7)))
As shown in Appendix I, by imposing a gauge condition XEN(T)ER(T)EN(T)E(T)+ -+ -, (149

analogous ta4), one finds that the corresponding normal

coordinate expansion for the gauge fieldBs) If we take ¢(7) to be the geodesic mid poing, between

AL(A(7) = 5F 0 (d(T)EX(T) + 3F 40 p(( 7)) EX(7) €R(7) x andy, then¢“(7) vanishes and the above expansions sim-
plify a bit. Letting A denote the difference between the nor-
+(5F ap g (H(7)) mal coordinates ok andy, Eq.(12) becomes

= [ Den(r) [ Dby(rrexp — [ drl 30, E4nE(r) + 2 b, ()b ()] e FiE
y 0 B 0 ® o

—AR2
) | |

XEO_!{ f A7 2 (3RuapsE (N E( D)+ Ry (DEF(NE (1) - ) E (D E(7)

+3(— IR GENT)EP(7) — ERM " EN D ER(D)EV (1) + - - )b (1)D (1) — 1 (BF 0 8%(7) + 3F . s (1) ER(7)

N
L) ERF F(R EX(T) 3R s (1) (1) + - - )]] (15

[All geometrical and gauge quantities (h5) and hereafter are evaluatedxat |
The standard results

A2
J, 5“(T)EXPUO|T 39,,64(1)E" (T)+§"(T))/M(T))]

e uAHAT2 t
G o 4

clary, (-1 fofdrdr'am')g#m(rm(rv} (163

and

fona(T)eXp{ fth(—%g’“’b”(r)bv(r)-i-b#(T)B'“(T))] =\/§eXW’ %fthdT'GghostT,T')gWB'“(T)B"(T’)]
0 0 0

B(0)=B(t)=0
(16b)

permit one to compute the functional integrals appearingl8). Equivalently, one can generate the necessary contractions
using the formalism of EqLA2). In either case, one should be careful to use the Green’s functions ofA&&)d.or in simple
cases, Eq9A8)] as discussed in Appendix A.

For example, if we restrict our attention to the termg16) which are linear irR,,,, 5, we have

R Al2
MR = J D&(r) f Dby()e” R"Bexp[ f dr[zgw«ssm)g”(mngbMu)bV(r)]]

t . . t
X[ —%RwﬁyfodTS“(T)Sﬁ(T)S’*(T)%”(T)Jr%R"ag”fodTS“(T)fﬁ(T)bM(T)bv(T)}
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e O AATT2 t . .
= Wz—efwgfodf{—%[g“vgaﬁG(T,T)G(T,TH(g““g”’3+g“’39”“)G2(T,T)

— A#A(3)29°PG (7, 7)
—AAPGRY(— 3+ 1)2G(7,7) — (A*AQ"P+ AVAPgHe+ AFAPG "+ AYA%gHP) L (— 3+ 1)G(7,7)

+ACAPARAY(— 3+ D212+ [~ G(7,1) g%+ (— 3+ 1) 2A“APIGI 7, 7) g} (ER ) -
(17

Here, a dot over an argument of the Green’s funct®indicates differentiation with respect to that argument. As explained
in Appendix A, these derivatives cannot always be obtained at the end pairt®t] by naive differentiation of
G(7,7")[cf. Eq. (A8c)]. When the explicit form of5(7,7') and its derivatives are substituted intl7), we are left with

2\ 1 1+T>2
t\ 2t

e Gu AL | .

~ t
R _ — o~ RU8 ap B

2T
1 7 2 1 7 2 g
+[8(27)+ 8(2t—27)] —>tt +R| -1 e R B +[8(27)+6(2t—27)] Tt
e O ARAY2L
= Wz—eiRvs[—%RaﬂAaAﬁ-F 21—4Rt], (18

whereR,s=R¥ 5, andR=R,zg#. [Notice that all depen- mode-expansion formalism of Appendix |. This may affect
dence 0065(0) i?] (“17) has cagceled out because of the com-c@lculations involving products of Green’s functions of an
pensating contributions from the ghost fieldk. is easily order beyond which we have considered in this paper.

seen that the entire dependence Bbf,, on R and IV. DISCUSSION
R,pA*AP is given by
In the preceding sections we have considered how the

. e UuAPATIE © o-RUB[ _ R AapAB R[N QMPI can be used to determine the elements of the DeWitt
(RA-R-A) ap g g
My = (27107 NI 12 + 52 expansion for the heat kernel both on and off the diagonal.
N=o T This technique is seen to be easier to use than the original
0, APATI Rt R AYAS approacr[G] in whlch the heat equation was solved pertur-
_ exd — ~_ Dap (19 banvely. By employing the off-diagonal elements, calcula-
(27rt)PR2 12 12 tions can be done to two-loop ordgd]. The method works

in both flat and curved spaces.

The dependence d\:/'xy on bothR and RQBAQAB in (19) Because of the simpligity of the' propgr-timer)(inte-
agrees with that 0f20,2,19 (once the different normaliza- g;acﬁﬁ;’t"r;]'_cr;]irr'ggr"‘égegr'_r;rﬂimeggg% ;2'% ??éhgg*c‘gﬁ] ext-_
tion of t is taken into accout grized usinIg resentl \ellvalilablexs? mblolic al L(;bra ackap:s
| Acomzlete(ljy ana(ljogous calculztizr;can be u?ed tg fix theI'his approgcﬁ has a>llready beenyemployedgin thep diagtg)nai
owest-order dependence @,z.,A“APAY; it is found to i ;

vanish. This also appears to be consistent with the results gasel7]. In the off-diagonal case, surface terfpsoportional

? A) introduce an additional combinatorical consideration
[2] (where the coefficierR 4., is evaluated at the end point )

. ; d : which should be tractable.
y, instead of at the mid-point). Further terms in the De-  Fipaly, it is worth noting, that although our treatment of

Witt expansion ofM,, can be similarly determined. this problem focused specifically on the case where the vec-
The techniques used in this section may be employed teor potentialA, was a gauge field, this is unnecessarily re-
find the effective action for a particle moving in a gravita- strictive and the methods presented here would work equally
tional field [30]. This involves takings“(7) to be arbitrary  well for a general vector coupling to a background field. For
in (13) rather than restricting it to bey. example, if one were interested in radiative corrections to
We finally note that a careful analysis of the path integralFermionic Green’s functions in flat-space QED, the follow-
in curved spac¢31] (using noncovariant time slicingnay  ing quantum-mechanical operator would be of intef88i:

lead to additional contributions to the action (ib2) which

depend on the affine connectidi,;. Such terms can be P?0,,—(1=Hpp, — (V" (¥y,)
treated using a normal coordinate expansion analogous to (y,1) 0 p—m
those of Eqs.(14); however, their inclusion is contingent =

upon assigning certain properties to the Green’s functions —(gy)T —(p—m)T 0

(u,v)
G(r,7') andG9"°%(7,7') which are not consistent with the g (20)
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By factoring in the constant supermatrix After completing the square @f (and noting thap"=—p in
the coordinate-space representatjdhe heat kernel of this
9 0 0 operator is easily shown to have the form of Etg) with a
0 0 (p+m)T vector potential
0 —(p+m) 0 —
() 0 W@y, —yup(@)’
and choosing thizl gauge, operatai20) becomes Ay(q)=% 0 0 0 ,
PO —(y)(bTm)  — ()T (p+m)T o o0 0 .
My
(ng) p*+m? 0 : (22
— ()T 0 p2+m? )
(21 and a scalar potential
|
0 @y )E5=—m) [(=50—m)y,p(@)]
Vg =| (ny(a) m? 0 : (23
LI 0 m?

(mN)

After the appropriate Taylor expansions of these potentials ito thank C. Wiesendanger for having pointed out R&f.
substituted into Eq(2), the method should proceed in the F.A.D. would like to thank D.J. O’Connor for providing ma-
obvious way. terials related to Appendix B and M. kaher for a commu-
nication regarding the results of R¢2].
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R \ —AKATG, 20| T cAp . 0
(F(£,b)),=(3,0 [F(¢,b)|—3,0)= “Za)P? f A/2D§ (T)fo Dbg(7)F(¢,b)

t . .
xexp{ - J (A7L30,,84(NE (1) +3gD(1b,(7)] (A1)

which satisfies the normalization conditioh), = 1. integral in field theory and so we only need to eval-
We eliminate the boundary parametérfrom the path uate the various two-point functions(b,(7)b,(7")),
integral by integrating over fluctuations about the classical &#(7)&"(7')), etc., and then apply the appropriate Wick
geodesicéy(7)=(—1/2+ 7/t)A. Letting é—&+ &y, it is  expansions.
easily shown that Jumping directly into the continuum limit, one would ob-
tain, using the standard techniqUéd®,24,

<F[§ab]>A:<F[§+§CI7b]>O- (AZ) <§/L(T)§V(T/)>=_G(TTI)9/,LV
Thus, for the purpose of evaluating any particular term in Eq. L - ,ooTT ,
(15), it will be sufficient for us to concentrate on evaluating =-|zlr=7l=3(rt 1)+ ——|g", (A33)

(F[£,b])g whereF is a monomial ing, ¢, andb. We can
follow the procedure usually used in applying the path (bﬂ(T)bv(T')>=Ggh°st7',7")g#,,= S(1—=7)0,,,
(A3b)
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(&"(m)b,(7"))=0. (A3c) tice, whenever the appropriate product of Green’s functions
is sufficiently well behaved a1 — o, we will sum them in
Upon close inspection of the above propagators, one findghat limit before substituting them into the Wick expansion.
that the method used for finding the explicit form of the This is most easily done by using the variabtes= 7+ 7.
Green’s functions is problematic, especially at the endThen, on the relevant intervats, [0,2], 7_ e[ —t,t], the

points. For example, the defining equation €y following limits are easily derived from elementary Fourier

2 theory:

FG(T,T)=5(T—7'), y -

> —2—zt cos = st=3|r |+ =72
and the corresponding boundary conditions =Nt t ot 2l T g T
(A7)
G(7,00=G(r,1)=0,

are contradictory at the’ =0 and7’ =t boundaries. Further- Mg nor_ M— 1

more, the explicit form of the ghost propagator of E43b) > ——sin r 3sgnr_— 27—+ (A7)
does not satisfy its homogeneous boundary condition at the
corners (0,0) andt(t).

In order to circumvent these difficulties, we adopt the Moq Cnwry Moo L1
approach of19] where the path integral is taken to be the 21 N sin t = 2T 5T (ATc)
limiting case of integration over a finite set of discrete Fou- "=
rier modes. The Fourier expansions
" " % 1 nmr M- 1
o nwT - nmwT — CoS — O(71_)— =, (A7d)
g4(1)= 2, €hsin——, b,(n)=2> b,sin—, =1t t ( 2t
A=1 t # =1 “ t
(A4)
Mo nwr, M- 1
automatically incorporate the necessary boundary conditions 2 n cos — (7t )+6(2t—7,)— e
in the A=0 path integral; furthermore, they ensure that the n=1 (A70)

path integral is over functions which are periodic, as required
in [10]. If the cutoff M is finite then the path integral over _ _ o
Fourier coefficients is well defined. Substituting these expanlt is thus found that in many cases the following prescription
sions into the action ofA1), we find that the propagators of is sufficient to recover those propagators which arise5x:

the Fourier modes are simp|{9]

ot ) (&4(n¢"(r")——G(7,1)
<§’#§rﬁq>: Wé\nmg'uvi <b,unbvm>: ?5nmg,uv )

1 ! 1 ’ TT, v
(A5) =- §|T—T|—5(T+7)+T9“,
which we take to be our fundamental propagators. Then us- (A8a)
ing (A4), the field propagators are found to be
. i 7.'
. . v % 1 nm(7—71") (Mg (7")——G(r1,7")=~— %SQF(T—T')—%‘FT}Q'Wa
(E4(n& (7)) =g""t 2, {7 7| Cos— (A8D)
na(r+7") - o .,
—cos————|, (A6a) (4(m)&"(7'))——G(7,7)
1
1 M na(r—1') E—{—5(T—7,)+?—5(2t—7'—7")
<b,u(7-)bv(7-,)>:gpdv?n§1 COSt—
nm(r+7') —8(r+7") g, (A8c)
—cosf , (A6b)
b.(Tb,(7))—Go%7,7')
(é"(n)b,(7"))=0. (A6C) oul >
=[8(r—7')—-612t—7—17")
These are the propagators which should be substituted into ,
any Wick expansion of F[£,b])q. In principle we should —8(r+7)19,,- (A8d)

attempt to approximate the continuum limit by letting

M —o only after the proper-time integrals have been per{We note here thafA8c) can be derived fron{A8a) by re-
formed. Unfortunately, these harmonic expressions for theuiring thatG be extended periodically outside of the do-
Green’s functions can be unnecessarily cumbersome; in pracain 0<r,7' <t, i.e.,, G(7+t,7' +t)=G(7,7"). This peri-
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odicity is akin to the definition of the Green’s function given trailing the semicolon. For example, one can show %hat
in [10] on a compact periodic surface. A discussion of this

point can be found if15].] D, por=Faorsy (B2a)
Of note is the limiting case where= 7" which appears in . 1 s
the calculation of(17); there the following considerations DBZDﬁlFBOV_ Fﬁov:ﬁlﬁz+3FBoﬁRﬁlﬁzV' (B2b)
apply. . 1 s
The term sgnf—7') in (A8b) is odd in7— 7’ so its Fou- D53,08,0 5, F 80y~ F5oy.8.8,8, 7 2F 5,5R 5,8, 7184
rier transform necessarily vanishes in the 7' limit. Thus +F R? (B20¢)
we should take sgn(30 [cf. (A7b)]. Bodi 81 "BaB3y?
In the 7= 7’ limit, the Fourier series of(7— 7') in (A8c) D.D.D.DaF
and (A8d) leads to a regulated representations¢®) given Ba= B3~ B2= B’ Bov

by t5(0)=M + 1/2 [cf. (A7d)].

Since the Fourier series of the termd&2t—27)+ §(27)
[which arise in(A8c) and(A8d)] is even about the respective
poles [cf. (A7e)], any integrated contribution from these
terms should be halved as a result of the poles coinciding +%|:B R 5 6RZ By (B2d)
with the end point of the integration region, i.e., o maren mena

- 3 5
- FBQ’Y?B132B3,B4+ 5 FﬁoﬁRﬁsz%ﬁdﬁ

) )
+ 2F1305?/31R/32ﬁ3“/?134+ 2 Fﬁo‘S?ﬁleRBsﬁw

where = indicates equality at the origin only after symme-
trization of theg; indices. Substitution of Eq$B2) into Eq.

fth[ S(2t—27)+ 8(27) (1) =3[f(t)+(0)]. (5b) yields the fully-covariant normal coordinate expansion
0 to fifth order in the normal coordinates:

AP+ 7(8)=3{Fp,} 6P+ 3{F ., €701
APPENDIX B: NORMAL COORDINATE EXPANSION
1 1 ) BoeB1eB
OF THE GAUGE FIELD + 1 {F syrisap,+ 3F ooR0 s, EP0EP1EP2

In this appendix we discuss the construction of a gauge- + ok F, 11, RO
covariant normal coordinate expansion for the gauge poten- 35U BoviB1boPs w27 Bod B1Br7ihy

tial. o\ gBoghighrhs
By analogy with the flat-space case discussed briefly in +F305?31R52337}§ grenee
Sec. Il and in Refs[11,7], the appropriate gauge condition L A(F L3F. RS
for this expansion is theynchronougyauge[33] (a curved- ABLT Boy:B1BaPaBs T 5T Bod " B1ByYiB3By
space generalization of the Fock-Schwinger gai4gd22]) 4 oF R? +oF R?
which fits very well in the normal coordinate construction. In BoS:B1 "BaB3viBy BodiB182 " BaBay
the basis of the normal coordinate system, the gauge condi- . s B0 £B1 £B £Ba B
tion is +5F 5ocRis 5,0R 5, €706 16726760
+0(£9). (B3)
AP+ m(£))=0. (B1)

All coefficients in curly brackets are evaluated at the ori-

gin, where the basis vectors for the normal coordinate system
Either by integrating along the geodesjagich is formally  coincide with those of the original system. Since the poten-
identical to Eq.(5a)] or by using differential form$33], one tial on the left-hand side of this equation is not a vector at the
can show, in the normal coordinate system, that the synchrarigin, its indices must refer to the normal coordinate basis.
nous gauge leads to a gauge-covariant expansion for the velcFhis is also true of Eq914b)—(14d)]. The results of B3)
tor potential which looks exactly like Eq(5b) with  agree with those of2] to orderO(&3).
the gauge-covariant normal coordinate derivative
D,=dld¢*+[A,, ...]. The latter derivative is not covari-
ant under reparametrization of the manifold, however using ?The authors suspect that the fourth derivative of a rank-two ten-
the methods of Ref.27], it is straightforward to write such sor implied in Ref[27] is not entirely correct. The corresponding
normal coordinate derivatives at the origin in terms of thecoefficients presented here for the field strength, @®d), have
corresponding fully-covariant derivatives, denoted by indiceseen verified independently.
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