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Quantization of the reduced phase space of two-dimensional diltaton gravity
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We study some two-dimensional dilaton gravity models using the formal theory of partial differential
equations. This allows us to prove that the reduced phase space is two dimensional without an explicit
construction. By using a conveniefstatio gauge we reduce the theory to coupled ordinary differential
equations and we are able to derive for some potentials of interest closed-form solutions. We use an effective
(particle Lagrangian for the reduced field equations in order to quantize the system in a finite-dimensional
setting leading to an exact partial differential Wheeler-DeWitt equation instead of a functional one. A WKB
approximation for some quantum states is computed and compared with the classical Hamilton-Jacobi theory.
The effect of minimally coupled matter is examined.

PACS numbsgs): 04.60.Kz, 02.30.Jr, 04.20.Fy

I. INTRODUCTION guantization of the reduced thedr®,10]. The quantum am-
plitudes are shown to satisfy a simple hyperbolic wave equa-
A tensor formulation of physical theories makes no overttion which is exactly soluble for appropriate boundary con-
reference to any particular frame of reference. To interpreglitions. Similar quantum theories were already obtained by
these theories it is often necessary to extract from thenflifferent authord11,12 in an approximate minisuperspace
coordinate-independent information. In particular in theoriesapproach. But here it is not necessary to make such an ap-
of classical gravitation, coordinate freedom is either explic-Proximation because of the finite-dimensional reduced phase
itly removed by working in a particular coordinate system orsSpace.
regarded as generating constraints for the subsequent analy-A straightforward semiclassical analysis of the exact
sis. For the classical theory it may simply be a matter of tastéluantum description yields a WKB phase that encodes all the
as to which procedure is adopted. However the discussion ¢flassical dilaton gravity solutions. We explicitly demonstrate
quantization is often acutely sensitive to the choice adoptedhat the integral curves that annihilate the gradient of the
Following Witten's observatiori1] that models of two- WKB phase form a family of exact classical vacuum solu-
dimensional dilaton graviw offer a means of Studying thetions. This suggests that such a quantization of dilaton grav-
Hawking effect with back reaction there has been an enority deserves further scrutiny.
mous interest in such models. They arise naturally from cer- This work is organized as follows. After a brief discussion
tain truncations of low energy string effective actigggand  ©Of the classical action and its field equations, we use in Sec.
symmetric configurations in higher dimensiof@]. Such Il a formal analysis to derive indirectly the dimension of the
models have been rendered completely integrable at the clagduced phase space. In Sec. IV we explicitly reduce the field
sical level by exploiting the local conformal flatness of all €quations by a gauge fixing to a system of ordinary differen-
two-dimensional manifolds and their quantization discussedial equations and construct its general solution. After con-
from several alternative viewpoinfg]. sidering some explicitly solvable models we proceed in Sec.
In this paper we reexamine the conditions that are responV! to the Hamilton-Jacobi analysis of the system. Its results
sible for this remarkable integrability and offer an alternativeare used in Sec. VIl for the quantization. Section VIII dis-
quantization. The basic observation is that a particular concusses the effect of minimally coupling a matter field. Fi-
formal gauge reduces the classical integrability to the probnally, some conclusions are given.
lem of solving a system obrdinary differential equations.
Methods from the formal theory of parti.al diffgrential equa- Il. CLASSICAL ACTION AND FIELD EQUATIONS
tions [5,6] allows us to compute the dimension of the re-
duced phase space without explicitly constructing it. This In two dimensions a general coordinate invariant La-
technique should also prove useful in more complicatedyrangian density containing the metdg,, a scalar dilaton
theories where explicit reduction is not possible. field @ and their derivatives up to second order is given by
Using methods from the Hamilton-Jacobi theory for sys-
tems with constraintf7,8] we construct local expressions for o 1o
the dynamical degrees of freedom for dilaton gravity on the * [9ur ®1= V=9(39#"9,89,0+V(®)+D(P)R),
line. This is in marked difference to other approaches to the @)

where R denotes the curvature scalar associated with the
* On leave from Institut fuAlgorithmen und Kognitive Systeme, metric andD is a scalar function.
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9uv=0%(P)g,,, 2

if () satisfies the differential equation
4D'(® diné) =1 3
() 4g = 3

If we additionally redefine the dilaton field_>=D(<I>), we
obtain the action

78y, ®]==G(V(P) +PR), @
where the new potentia_r(a) is given by
V(B = V(®(D)) 5)

QAP (D))

(One must be careful here, [ has critical point§13].)

Henceforth we will restrict our attention to this action and
drop the bar over the fields. Variation with respect to the

metric yields the “Einstein equations”
(6)

whereas variation with respect tb leads to the additional
equation

V.V, ®—g,[VV,®+V(P)]=0,

R+V'(®)=0 (7)

determining the curvature scalar.

Before we start a detailed analysis of these field equ
tions, we study briefly the relation between the potential
appearing in(1) and (4) for the most often considered case

D(®)=ad" for some constanta,n. If n#2 a solution of
(3) is given by

Q(q)):e—qnz—”mn(n—z)' (8)
while, for n=2,
Q(D)=PpLB, 9)
For n=1 we obtain, thus, fron(5),
V(®)=V(dla)e 2, (10
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A class of models which appeared first in effective string
actions and which has found considerable interest due to the
existence of black hole solutiori®,1] is described by the
action

L Guvr]= 5V—ge *[R+4(Ve)®+c], (12
wherec is a constant. Using field redefinitions one can trans-
form it to [15]

LG $1=V=0(2 09, 09,6+ L qdR+ gceqf/Q)(_ )
13

with an arbitrary constarg. Elimination of the kinetic term
leads then to a modification of the exponential. Note that this
simple Liouville form of the transformed action is due to the
factor 4 in (12). A different factor y leads to a modified
potential of the formu ¢!~ "4e?/a,

Ill. FORMAL ANALYSIS

The first step in a formal analysis is always to complete
the given system of partial differential equations to an invo-
lutive one[5,6]. This completion is closely related to the
Dirac formalism for systems with constraints. Actually, one
can interpret the Dirac algorithm as a completion procedure
for the Hamilton-Dirac equations of the syst¢®].

In our case the involution analysis is rather simple, as it is
straightforward to show that the combined field equati@s
and (7) are already in involution. An interesting fact hereby

%s that(6) entails(7), if we exclude the trivial case that is

constant. The integrability conditions ¢8) require that ei-
ther (7) holds or® must be constant. Similar effects are
known from other theories coupled to gravity.

The arbitrariness of the general solution of a system of
gth order partial differential equations mindependent vari-
ables can be determined from its Cartan charactef$,

k=1, ... n[17]. Asimple calculation for our system yields
a?'=2, aV=6. (14)

By a comparison with a Taylor expansion of the general
solution these characters can be interpreted in terms of num-
bers of arbitrary functions of different numbers of arguments.
Here we obtain that the general solution of our field equa-

This implies especially that for an exponential potentialtions can be written as an algebraic expression containing
V(®)~e"® the potential remains an exponential after thetwo arbitrary functions of two arguments and two arbitrary
transformation but with a modified coefficient functions of one argument.

v=(2av—1)/2a®. Note that this result also holds for  Another way to represent the arbitrariness of the general
v=0, i.e., if the potential consists just of a cosmologicalsolution is given by the Hilbert polynomi&l (r) of the field
constant. Conversely, the potential becomes constant, #quations. It denotes the number of Taylor coefficients of

a=1/2y.
Forn=2 the transformation reads
V(D) =V(=+ Jdla)(dla) Ve, (11)
Thus Lagrangian densities of the form=dR+AD" as
they are, e.g., considered [14] can be derived from a

model in the form(1) with D(®)=—®?/8n and a “cosmo-
logical constant” as potential (®)=A/(—8n)".

orderr which can be chosen arbitrarily. Frofh4) we obtain

[6,17] (note the slightly different notation used there
H(r)=2r+4. (15

It is important to note that(r) yields the correct values

only forr=2, as we are dealing with second-order equations.

On the other hand the number of arbitrary Taylor coefficients
of order less than or equal to 2 is determined by the dimen-
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sion of the submanifold described by the field equations in V. REDUCTION TO ORDINARY DIFFERENTIAL
the appropriate second-order jet bundle; thus in our case it is EQUATIONS
20.

We s, howeer,ajut for the covariance nder coor 11 SOULCH of eves Syste, of e e ca be ot
dinate transformations. Especially the two functions of two y g sy Y q

variables stem obviously from this gauge covariance. W(£21’22' The reduction is based on the theory OT complete
stems and can be performed in a purely algorithmic way.

have recently shown how such a correction can be performe . o )
owever, in our case it will not be necessary to follow this

as soon as the gauge group is kndiid,18. The key is the : X .
introduction of a gauge-corrected Hilbert polynomial which procedure W.h'Ch wguld Ieaq to a fairly compllcated system
in turn leads to gauge-corrected Cartan characters. of_ordmary differential equatlor‘{ss]. By choosmg an appro-
In our case we must subtract the invariance under thgrlate gauge the (educt|on can be obtained directly.
transformation ~We first exploit the well-known fact that every two-
dimensional metric iglocally) conformally flat[23] and set

g _(9_§P Eg (1669 g/“’: e)\(xyt)n,uv ' (18)
mv n v Idpo
oxE X where ,,,=diag(—1,1) is the Minkowski metric. The cur-
_ vature scalar of such a metric is given by
O=0, (16b
R:()\tt_)\xx)ei)\- (19

The transformation depends on two gauge functiofis o . : . .
L oo : .~ _Thus after some trivial manipulations the combined field
through their first derivatives. Thus if we expand again in a

power series, we can giv@(r) coefficients of order arbi- equations can be written in the form

trary values through gauge transformation whé&r is
Y oh gaug #) By— (DA DA+ 3V(D)=0, (208

given by
I Dyy— 3 (DA + D)~ FENV(D)=0,  (20b)
G(r)=2( +1)=2r+4. a7
' Byi— 3 (D A+ D=0, (209
By comparison with the Hilbert polynomial we see that M= At €V (9)=0, (200)

all the arbitrariness for=2 stems from this gauge covari-

ance. Hence the gauge-corrected Cartan characters vanishBanks and O’Loughlif13] showed that the field equa-
and the reduced phase space of this theory is finite dimenions imply the existence of a Killing vector

sional. UsuallyG(r) yields the correct values only from a

certain value ofr on. In our case, however, one can easily K,=€,,V'® (21)
see by writing out the first terms of the expansion that it is

correct for allr=0. Thus we can further conclude that 18 orthogonal to the gradient #. Thus we can always choose
Taylor coefficients of order up to 2 can be given arbitrarythe gauged;=0. Then(20¢ leads tox;=0, if we discard
values by gauge transformation. Since the general solution ¢he uninteresting casé =const. This means that it suffices
our field equations contains only 20 arbitrary coefficients at0 study static metrics.

these orders we obtain that the dimension of the reduced We will assume from now on that we are in a coordinate
solution space is two. This fact was also prover[18,9  System where\,=®;=0. The first two equations of20)

using an explicit reduction. yield &,,— ®,A,=0. This can be integrated once and yields
Actually, in this simple case it is not necessary to use the U
Cartan characters to prove the finiteness of the reduced phase P, =Ae (22)

Zzig%'o;]r hiﬁtreoilsllireg OQ; egitng;‘e?glﬂeglszt(r]er;%t;li chfsah(éllrfge.reAntlz%/I\{ith an integration constamt. Note th_at_ thi_s implies that_ the
straightforward computation shows that the field equati0n§Ign of (D.X never (;hz_inges and that it is fixed by the sign of
are absolutely compatible and have a vanishing strength, ﬁ‘ Substituting this in20b) leads to
one takes the gauge symmetry into account. But since we are AN, = V(D) 23)
dealing with a two-dimensional space-time, this implies im-
mediately that the gauge reduced solution space is finite dpjfterentiating (22) allows one to eliminaté. and arrive fi-
mensu_)nal. How_ever, the exact dimension can be compute,qlauy at the simple equation
only with the refined analysis used above.

We can understand this finiteness by considering the met- AdD,,—V(D)D,=0. (24)
ric as an external field. EquatidB) represents then a finite-
type system for the dilaton field, as each second-order There is no need to considé20d), as it is an integrability
derivative of® is determined by an equation. Thus the gen-condition and thus automatically satisfied.
eral solution of this system depends only on a finite number Rewriting the potential as a derivative(®)=W'(d),
of parameters. All arbitrary functions stem therefore from theone can easily obtain an implicit solution (4). Integrating
metric as solution of7). once yields the first integral
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Ad,—W(P)=B 25 k
W) @9 A(X)=—1In 2—B2sinh?[5(x—x0)] (31)
for some constanB. Separation of variables leads to
with two integration constantg, x,. Obviously,X, is with-
X(®)+C= ¢ Ade 26) out physical significance and can be set zero. The curvature
~Jo B+W(¢)" is constant
Once this expression is inverted to obtdiin explicit form, R=k. (32
A can be derived algebraically frof22): From (23) we obtain immediately
. B+W(d) ) A
B ) ol ®(x) =~ {200t fx—x0) =} (33

We have thus found a three-dimensional solution space. Next we consider potentials of the ford(®) = aef® as

This is no surprise, as the field equations together with th%ey occur in the effective string actioh#lere it is simpler
used gauge conditions describe a three-dimensional manifolg go back to Eqs(22) and (23) and to introduce new de-

in the second-order jet bundle. A similar construction in ; _ _ i
X , pendent variablesy, u by ¢=V(®) and u=Ae€". This
light-cone coordinates was presented 24]. transformation yields the system

To conclude this section we briefly discuss the three oc-

curring integration constant& can obviously be set to any = Br= LAy . (34)
value by changing the origin of the coordinate system. Thus

we can set it to zero without loss of generality. Similarly, Thus these new variables are related through

A can be adjusted to any value by a coordinate scaling

Xx—x/A, t—t/A, as under such a transformation P(x)=BALu(x)+d] (35
A—\+InAZ, _ _ , o
By contrast B has an invariant meaning. Since wlth an integration constariD. EI|rr_1|nat|ng ¢ leads to a
A=d,e, we obtain, from(25), simple Bernoulli equation fow which can be solved by
separation of variables. We must distinguish two cases: If
B=e‘”¢>)2(—W(<D). (29) D=0, we obtain
This expression can be expressed covariantly as w(x)= C—lﬂx (36)
B=g*"V,®V, o -W(®D). (29
and for the curvature scalar
One can show thaB corresponds to the Arnowitt-Deser- )
Misner (ADM) energy of the systerf25]. R= AB 37)
Thus only one of the three integration constants param- Bx—C

etrizing the general solution of the field equations has an

invariant meaning. The other two can be absorbed in coordiwith a further integration constad. Otherwise we find
nate transformation. This effect is extensively discussed in
[9].

This is exactly the result one would expect in ordinary
gravity from the Birkhoff theorem: Up to coordinate trans-
formations the static vacuum solutions form a one-parametend the curvature scalar
family. For this reason some authors speak of the generalized 5
Birkhoff theorem of dilaton gravity24]. _ ADCB

eBDX_ C . (39)

D
M(X)= Ce PDx_1 (38

V. SOME SOLVABLE MODELS By settingC=0 in (37) andC=1 in (39), respectively, we

We start by considering a linear potential of the formcan move the singularity of the curvaturexe 0.
V(®)=kd+m, ie., the so-called Jackiw-Teitelboim or  The third important model is provided by spherically
Liouville gravity [26,27] with a cosmological constark  Symmetric gravity in 3-1 dimensiong3]. It can be reduced
#0. In this case the field equations decouple and we obtaitP @ dilaton gravity action in two dimensions of the fot)

for the conformal factor the equation where the potential is given by(®)=1/y2d. As above
we must distinguish two cases in the integral (R6). If
M—ke=0 (30 B=0, the solution can be given in explicit form

which can be considered either as a special case of the

Poisson-Boltzmann equation or as describing stationary so-'As already mentioned in Sec. Il more generally one obtains a
lutions of the Liouville equation. Its general solution is given potential of the forma®*ef®. These models can still be solved
by [26] exactly[28]; however, many case distinctions arise.
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1 ) Ideally, one would like to find a complete integral
P(x)= 2z(x+C)%. (400 S(x,d,\,py,p,) of (46) such that it satisfies the constraint
(47) for p,=0. Such a complete integral generates a canoni-
Otherwise an inversion is not possible. The implicit solutionc@l transformation to new coordinates;(d2,p1,p2) via
is

IS aS
x+C=A[\2® - BIn(1+ 2d/B? )]. (42) To=5p: ™o\ (483

In any case the curvature scalar is given by S S
qQ'=-—, g’=-—. (48b

Ip1 P2

R=;® 32 (42)
In these coordinates the system decoup®d into an un-
VI. HAMILTON-JACOBI THEORY constrained one depending only on the canonical pair
. , ) (q%,p;) plus a trivial one containing the gauge degree of
After the gauge redqctlon we obtained in Sec. IV the f°'ffreedom 62.0,). p, is constrained to zero angf remains
lowing system of one first-order and two second-order Ord"completely arbitrary.
nary differential equations: Unfortunately, we have not been able to construct such a
complete integral. However, we found an incomplete integral

_eh —
P €V(P)=0, (433 [8] satisfying the full systent46) and(47):
Ax— €NV (P)=0, (43b) W(P)
SO(®,\,py)=pset+ ; (49
D\, —eNV(D)=0. (430 P1

Note that the first-order equation produces together with any/nere againV’ (@) =V(®). S can be extended to a com-

of the second-order ones the other second-order equations BI§te integral by making the ansatz

an integrability condition. The two second-order equations,

however, form a normal system and thus cannot generate thed(% @\, p1p2) =S (P N, py) + pz[A(q),?\,pl,pz)—X%b

first-order one. (50
We now try to find an effective Lagrangian for the gaugedy; j5 not gifficult to show that such a functiod always

equations of motior{43). A reasonable starting point is ob- exists. The special form of50) allows us to evaluate the

tained by applying our gauge conditions to the full Lagrang-canonical transformation48) on the constraint surface
ian density(4) and integrating once by parts p,=0. There we obtain

2 — A

The corresponding Euler-Lagrange equations are the two
second-order equations {#3). Thus this action yields a too
general dynamics, as it “loses” one condition. Performing
Legendre transformation ofé4) shows that the missing

equation demands the vanishing of the Hamiltonian of thé)urely gauge. . .
system(“zero-energy condition’: The new coordinatesgf,p;) are gauge-independent ob-

servables, as one can easily check that their Poisson brackets
T y=mom— V(D) =0, (45  Wwith the Hamiltonian vanisimodulo the constrait Fur-
thermore we can relate them with the integration constants
where the canonically conjugate momenta are given byA,B used in Sec. IV:
Te=N, and m, =D, , respectively.

qt=e*—W(®)/(py)?. (51b

aWe cannot computg?, but this does not matter, as it is

If we denote Hamilton’s principal function as usual by A=p;, B=(py?q_ (52
S, the Hamilton-Jacobi equation for thenconstrainedsys-
tem described by the Lagrangiaiﬁg is VIl. QUANTIZATION
S 9SS IS | Since we have related dilaton gravity to the zero-energy
5+§T@5_e V(®)=0. (46) sector of a finite-dimensional dynamical system, we can

quantize it in a simple way obtaining a standard Wheeler-
|mposing the constraint45) leads to a second equation for DeWitt equation instead of a functional equation. We choose

S: namely[7,8], the usual representation of the momenta in terms of partial
derivatives. The vanishing of the classical Hamilton{db)
IS S | yields the following hyperbolic equation for the wave func-
o an € V(®)=0. (47 tion W(®\):
. . . . (72
Obviously, we can now discar@6) by simply looking for a 52 +eMV(D)W=0. (53)

principal function independent of. ID I\
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The simple field redefinitiou=e¢*, p=W(®) where again VIII. MINIMALLY COUPLED MATTER
W’ (®)=V(®) transforms it into the Klein-Gordon equation
(in characteristic coordinatgs

P, L= rN=9(Vih)?
ap&,quq’:O' (54)

We now couple minimally a matter fielg by adding

(60)

ﬁZ
with a coupling constank to the action(4). Its energy-

. o momentum tensor is given in the conformal gaulf® b
In order to validate our quantization procedure we com- 9 gaug®) by

pute the semiclassical limit of this theory using the WKB

K
approach. Thus we make the following ansatz¥odepend- TOO:T”:Ee*ZX(([/er P2, (613
ing on two real fieldsS,. 7:
W(p,u)= A puw)exliliS(pv). (59 TV ke . (610

(54) yields the differential equation

2, ) ) ) _
i .,ﬁ,émm(.ﬁ,;s,m+.ﬂ4#sp+.ﬂ4psﬂ)—.,,aéspsﬂﬂffé—?s.@

Now we expand both functions in power series fin

A=A+ 5 7D+ ... and S=SO+#SD+.... In the
classical limit, i.e., forh — 0, this leads to

(0)(0) _

S,’S, =1. (57)

This is exactly the Hamilton-Jacobi equati@v) we ob-
tained in the last sectioftransformed to the new coordinates
p,u) and we can reuse the incomplete integé). In the
new coordinatep, u the A —® relation(27) derived in Sec.
IV reads

_p+B

A (58)

Ap

Identifying p; with A one can easily see that these classical
trajectories are orthogonal with respect to the Minkowski

metric to the curves described I8/”)=const. Thus we ob-
tain the correct classical limit.

For the next terms in the WKB approximation we obtain

the differential equations

sYsV+sPsP=o, (593
S 20+80 20 +89 79=0, (590
S 20+ 80 20+ 80 2D+ sV 29+ 80 2V

+S1.A0—0. (599

Adding again the gauge-fixing condition=0 it is easy
to show that we obtain exactly in the same way as before that
®,=0 and additionally that};=0. Thus we can still reduce
the field equations to ordinary differential equations. Note
that this stems from the fact that there is no coupling be-
tween the dilaton field and the matter.

The reduced field equations now have the form

D, —eNV(D)=0, (629
Ax— €V (9)=0, (62b)
$ux=0, (620)
D\ — V(D) + ky2=0. (62d)

Again we can identify the last equation with a zero-energy

condition for the unconstrained system defined by the La-

grangian

L@ N, Y] = DN+ ki +ENV(D). (63
Quantizing the Hamiltonian constraint we obtain again a

hyperbolic wave equation as Wheeler-DeWitt equation

+ e (9211’+ N(P)W=0
ax g SO0
In the absence of matteb and\ entered the equation on
equal footing. There was no way to decide whetiber A or
®—\ should be a timelike coordinate in the superspace.
Now the sign ofx induces a (2-1) split of the superspace.
However, in general it is not clear which part of the split is
timelike and which spacelike.

) A
D I\

(64)

They can be solved easily by introducing the new variables

20" =Ap* ulA:
S9¢*,e7)=0"+C, (590
SP(o*,07)=F(a7), (599
Aot ,07)=G(07), (59
Aot ,07)=H(07)+[G(a7)F"(a7)
+G' (07 )F'(07)]o" (599

with an arbitrary constan€ and three arbitrary functions
F,G,H.

IX. CONCLUSION

A similar reduction to ordinary differential equations was
used by Banks and O’Loughliri3]. We would like to point
out some differences in the obtain quantum theories. They do
not consider whether their quantum theory yields the correct
classical limit. Actually, it is easy to see that they would not
obtain their classical model. The latter one depends on three
fields, whereas their quantum theory knows only two degrees
of freedom. The fieldy used in their parametrization of the
metric simply disappears.

There exists an alternative way to endow the gauge-
reduced equations of motion with a Hamiltonian structure. In
Sec. VI we started with the second-order systd). Alter-
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natively one can use the first-order formulation obtained irtions (43) and the symmetry generated by the constraint

Sec. IV after one integration T 4=0. As mentioned in Sec. IV the integration constant
can be changed by a rescalingxofin the context of the field
Dy =Ag", (653 equations we consider this as a gauge transformation. For the

system described by the particle Lagrangiay this corre-

sponds to a reparametrization of the evolution parameter
nd is not contained in the gauge transformations generated
y #4. Under these transformatiods=p, remains invari-

AN = V(D). (650

These are the Euler-Lagrange equations for the first-ord
Lagrangian

ant.
B W(D) This connection can be made more transparent by using a
[P N]=DPN+AE - - (66)  reparametrization invariant action. To this end one introduces

a new evolution parameterand setx= X(). This leads to
It is well known that such a Lagrangian leads directly tothe action(the dot denotes derivatives with respectyjo
generalized Poisson bracké¢80)] which can also be consid-
ered as Dirac bracke{81]. Applying this formalism to%; N .
yields Lo\, ®,X]= < +Xe'V(D). (69

{\,®}=1. (67)

In this description we can thus interpret the dilaton and thel € original equations of motion are recovered, if one im-

conformal factor as canonically conjugate coordinates. HowP0Ses the gauge-fixing conditioh—y=0. Since this condi-

ever, we believe tha66) represents a dubious starting point ion depends  explicitly on the evolution parameter, the

for a quantization, aA is treated as a parameter. But we sawdauge-fixed Hamiltonian acquires a correction t¢88,34).

in Sec. VI that it can be identified with a dynamical variable. ONce this is taken into account, one obtains exactly the same
Since we have not been able to find a complete integral ofuantum theory as we did in Sec. VII. ,

the Hamilton-Jacobi equatio@6) we could not pursue this  Finally, we would like to stress again that applying meth-

argument until the end. We have not constructed the fulPds from the formal theory of partial differential equations

canonical transformation which leads to the decoupling oftllows us to compute the dimension of the fully reduced

the Hamiltonian. Otherwise we could have used its regularphase space without constructing it. This indicates that these

gauge-independent part for the quantization and thus qua,f,echniques should also be useful for more complicated mod-
tize the fully reduced phase space. els where this construction cannot be performed explicitly.

Instead we have used a finite-dimensional classical sys- 1his holds especially for systems where one can show
tem and imposed from the outside a gauge symmetry b a_t for a full gauge reduc'tl'on one must pose in addition
considering only its zero-energy sector. This symmetry corlnitial and/or boundary conditions. For instance in the case of
responds to the residual gauge freedom left after fixing thstandard four-dimensional general relativity it is easy to see
gauge with the condition,=0. Then we proceed in the that the gauge-corrected Cartan characters cannot be ob-
usual way following Dirad32] by requiring that the wave tained from any system of differential equations, as t.hey.do
function is annihilated by an operator version of ifiest- not s_apsfy all pro'pertles.of Cartan characters. This '|mpl|es
clas$ constraint. that it is not possible to fix the gauge completely by impos-

It appears natural to ask for the relationship between thd'd gauge conditions in the form of differentiar algebrai¢
quantum theory obtained this way and the one obtained bgquatlons. Nevertheless, one can determine the arbitrariness
following the above-mentioned Hamiltonian-Jacobi proce-Of the fully reduced phase spaf®18].
dure. One can expect that they are not equivalent. This situ-
atior_w is very similar to the quantization of the free relativistic ACKNOWLEDGMENTS
particle. The approach we took here corresponds to the co-
variant quantization. No gauge fixing is performed and we We are grateful to T. Strobl and T. Kdoh for pointing out
get a covariant wave functiofthe Klein-Gordon equation an error in an earlier draft of this article. W.M.S. is grateful
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