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Quantum formation of black holes and wormholes in the gravitational collapse of a dust shell

Kouji Nakamura,* Yoshimi Oshiro,† and Akira Tomimatsu‡

Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
~Received 12 June 1995!

A quantum-mechanical model of a self-gravitating dust shell is considered. To clarify the relation between
classical and quantum spacetime which the shell collapse forms, we consider various time slicings on which
quantum mechanics is developed. By considering the static time slicing which corresponds to an observer at a
constant circumference radius, we obtain the wave functions of the shell motion and the discrete mass spectra
which specify the global structures of spherically symmetric spacetime formed by the shell collapse. It is found
that wormhole states are forbidden when the rest mass is comparable to the Planck mass scale due to the
zero-point quantum fluctuations.

PACS number~s!: 04.60.Ds, 04.70.Dy
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I. INTRODUCTION

Historically, many works have been devoted to constru
ing quantum theories of gravitational collapse. One of
motivations is to resolve the problems concerning the fi
fates of black hole evaporation due to Hawking radiation@1#,
which may lead to the paradox of information loss@2#. How-
ever, quantum gravity itself includes not only technical d
ficulties but also conceptual ones such as the interpretatio
wave function, the nature of time, and the definition of o
servables. Since any fully consistent theory is not yet es
lished, the present step would be to develop various us
toy models to shed a new light on some features of quan
effects of gravity. In particular, quantum gravitational co
lapse of a spherically symmetric shell, on which we foc
our attention in this paper, has been studied as one of s
toy models@3–7#.

In this model, one considers the spherically symmet
spacetime which is in vacuum except thed-function distri-
bution of incoherent dust shell at a finite circumference
dius. By the virtue of the spherical symmetry, the inner s
of the shell may be a Minkowski spacetime and the outer o
is the Schwarzschild spacetime which has a finite grav
tional mass parameterM . The vanishing divergence of th
energy-momentum tensor of the dust shell tells us only
fact that the matter energym of the shell is conserved an
m can be regarded as the rest mass of the shell. The
vacuum regions should be joined at the shell according to
Einstein equations. This program can be accomplished
using Israel’s junction condition@8,9#, which works as the
equation of motion of the dust shell, and the dynamical va
able is limited to the circumference radiusR of the shell and
the global structure of spacetime can be classified by
value ofE[M /m.

The original idea to quantize this dynamical system w
proposed by Berezinet al. @3,4#. If any quantum effect of
incoherent dust shell is ignored, this matter shell can be c
acterized bym. Both the vacuum regions in the spacetim
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are also classically treated. Then, only the equation of m
tion of the shell which can be regarded as the energy equ
tion is quantized by constructing the Hamiltonian operato
Although the Hamiltonian operator to be constructed is no
unique, Berezinet al. investigated the Hamiltonian operator

HB5mcoshS 2
imP

m

]

]RD2
m2

2R
, ~1.1!

wherem5m/mP andmP is the Planck mass~throughout this
paper we denote the Planck constant by\5mP

2 and use units
such thatG5c51) and the time coordinate describing the
shell dynamics is chosen to be the proper time of a comovin
observer. Then, they obtained the spectrum of the eigenv
uesE of HB ,

E512
m4

8~n11!2
, ~1.2!

by using WKB approximation wheren is a non-negative
integer. From their analysis, it is unclear that the spectru
~1.2! is also valid whenm2..n. However, Ha´jı́ček et al.
@7# gave a definite formula of the spectrumE adapting a
simpler equation for the wave function. They introduce th
super-Hamiltonian on an extended minisuperspace whi
leads to the ‘‘Wheeler-DeWitt’’ equation

S 2 i\
]

]T
2

m2

2RD 2C1
]2

]R2C2m2C50, ~1.3!

whereT is the Minkowskian time of the inner side of the
shell. Furthermore, they introduced ‘‘energy’’ and ‘‘charge’
currents and by imposing the boundary condition forC
which means that ‘‘energy’’ and ‘‘charge’’ currents must van
ish atR50 and infinity, they obtained the formula ofE for
the bound states defined by21,E,1:

E5
2~k1n!

Am414~k1n!2
, k5

1

2
1
1

2
A12m4. ~1.4!

Nevertheless the two quantum treatments arrive at the sa
conclusion whenm2,,n, ~1.4! becomes meaningless when
m.mP which means classical limit cannot be obtained from
4356 © 1996 The American Physical Society
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53 4357QUANTUM FORMATION OF BLACK HOLES AND WORMHOLES . . .
this eigenvalue. Furthermore, it is shown that in the bou
states only the black hole formation corresponding to t
range 1/2,E,1 is allowed, while the wormhole formation
corresponding to 0,E,1/2 is possible as classical solu
tions.

Here, we must mention about the quantum effects in t
system. Only quantum effect of gravity which can be cons
ered by this model is that of the shell motion. There a
many gravitational effects in general relativity, and this sh
motion is also one of them. In this model, the values ofE
determine not only the shell motion but also global structu
of the spacetime~the black hole formation or wormhole for-
mation!. If the shell motion changes, this change affects
the global structure of the spacetime. Then, nevertheless b
vacuum regions of spacetime are treated classically, to c
sider the quantization of the shell motion also means t
quantization of the spacetime through the quantized valu
of E. In this sense, the results obtained by Ha´jı́ček et al.
means that only black hole formation is possible as a res
of the quantum collapse of the dust shell, while both bla
hole and wormhole formation is possible as a classical so
tion. Then, it is not clear whether one can consider the cl
sical limit of this quantum collapse of the shell.

Our purpose in this paper is to clarify the relation betwe
quantum and classical spacetime of this system. For this p
pose, we pay attention to the time slicing on which the qua
tum mechanics is developed. Note that the previous tre
ments are essentially based on the comoving time slicing
is also possible to construct quantum mechanics based on
other time slicing, in which the dust shell is really moving
Since the canonical formalism is based on the decomposit
of spacetime into space and time, a special attention mus
paid to the problem of time slicing which determines th
foliation of spacetime. Furthermore, it is well known in clas
sical relativity how a description of black hole spacetim
depends on the choice of time slicing: In the usual sta
chart the Schwarzschild horizon plays a role of the infini
redshift surface, while in the synchronous chart correspo
ing to a freely falling observer it is not any special surfac
@10#. This means that the horizon can be regarded as a so
boundary of the foliated spacetime only for a static observ
So the foliation of spacetime or the choice of observers in t
spacetime is more important when one consider a black h
spacetime.

To study the quantum mechanics of dust shell collap
we use various time slicings in hope that the physical e
sence is independent of the time slicing. The black hole h
rizon is not a special surface for an observer who uses
proper time along the shell history or the Minkowskian tim
However, a static observer outside the horizon will require
different boundary condition for the wave function due to th
existence of the horizon for him. By developing quantu
mechanics for a static observer, we can obtain the mass s
trum which corresponds to~1.2! and ~1.4!. Furthermore, we
will show that wormhole states are also possible for a sta
observer who stays inside the wormhole but whenm is same
order ofmP no wormhole state is allowed owing to the zero
point fluctuation of the shell motion.

This paper is organized as follows. In Sec. II, we deriv
the classical equation of motion of the shell in terms of va
ous observers who define time slicings on the shell traject
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in spacetime. Although infinitely many observers or time
slicings can be assumed in general, we restrict our conside
ation to a one-parameter family which contains two typica
time slicings corresponding to the Gaussian normal coord
nates of a comoving observer and the static Schwarzschi
coordinates of an observer who stays at a finite circumfe
ence radius, and derive the possible spacetimes as the so
tions of the Einstein equations. In Sec. III, we introduce the
Hamiltonian constraint which corresponds to the time-time
component of the Einstein equations and gives the equatio
of motion in a similar manner to the Wheeler-DeWitt proce-
dure. Following the earlier works, we solve classically the
Einstein equations except the Hamiltonian constraint for th
shell motion. This means that the momentum constraint i
classically treated just like many minisuperspace models.

In Sec. IV, we consider the quantum mechanics of col
lapsing shell, by using the one-parameter family of time slic
ings introduced in the previous sections and we also discu
the global structure of spacetime in which the dust shell co
lapse forms. Our main result will be obtained under the stati
time slicing. Furthermore, our consideration is restricted to
the so-called bound states21,E,1, which have the dis-
crete mass eigenvalues, and we must consider the cas
E.1/2 andE,1/2 separately in the static time slicing, these
cases correspond to the black hole states and wormho
states respectively. Then, we discuss the relation betwe
quantum and classical solutions of this system and show th
there is no quantum states whenE,1/2 andm;mP . We
also consider the quantum mechanics on nonstatic time sli
ing to confirm that our arguments are natural extension of th
result obtained in the comoving frame. It can be shown b
the fact that the quantum version of the Hamiltonian con
straint becomes identical with the radial equation of~1.3! in
the comoving limit. Finally, our consideration is summarized
and we make some discussions in Sec. V. Although ou
simple model is a preliminary approach to quantum gravity
it would give a useful clue when one investigates the prob
lem of time slicing in a more complete theory.

II. CLASSICAL EQUATION OF MOTION

In this section, we derive the equation of motion for a
collapsing dust shell, which is described by various time slic
ing. Since the spacetime is spherically symmetric, one ca
choose the metric of the form

ds25gabdx
adxb1R2dV2

2 ~a,b50,1!, ~2.1!

whereR is the circumference radius anddV2
2 is the metric of

unit two-sphere. For this metric, matter fields depend onx0

andx1 which are time and radial coordinates. Furthermore
the spacetime is assumed to be in vacuum except th
d-function matter distribution at a finite circumference ra-
dius. We denote the world volume of this spherically sym-
metric shell asS which is a ~112!-dimensional hypersur-
face. In a neighborhood ofS, one can choose the Gaussian
normal coordinates@9#

ds252dt21dh21R2dV2
2 , ~2.2!

wheret is the proper time which would be measured by an
observer comoving with the shell. The coordinateh is the
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proper distance fromS along the geodesics which are or
thogonal toS, andS is assigned to the world volume o
h50. Imposing the spacetime to be orientable onS, we may
regard one side ofS as being the ‘‘outer side’’ (h.0) and
the other side as being ‘‘inner side’’ (h,0).

The whole spacetime is constructed by connecting t
Schwarzschild spacetimes of the outer side and
Minkowski spacetime of the inner side. The Einstein equ
tions give the ‘‘junction condition’’ for the neighborhood o
S, which is well known as Israel’s formula@8,9#. In the case
of the Minkowski-Schwarzschild junction, the nontrivia
conditions are given by@9#

@]hR#52
m

R
, @]tA#50, ~2.3!

where ] denotes the partial derivative with respect to i
subscripted coordinate, andA represents all the metric func-
tions on the spacetime. The square brackets@A# mean the
difference ofA between the outer and inner sides:

@A#5 lim
h→10

A2 lim
h→20

A. ~2.4!

The first equation of~2.3! contains the total energy of dus
shell defined bym5sR2 wheres is the surface energy den
sity of the dust shell. From the vanishing divergence of t
energy-momentum tensor of dust shell, one can easily
thatm is a constant of motion.

For our convention of calculation, let us introduc
quasilocal mass defined by

M5
R

2
~12gmn]mR]nR!, ~2.5!

which is conserved in each vacuum region of the spherica
symmetric spacetime. Of course,M50 in the Minkowski
side, andM (Þ0) in the Schwarzschild side represents th
gravitational mass of the shell. The formula~2.5! is useful to
estimate the derivatives ofR in both sides, which are in-
volved in ~2.3!.

Now we discuss the time slicings to describe the sh
motion. ‘‘Time slicings’’ usually mean foliations of a whole
spacetime. Foliations are spaces in a spacetime in which
can set observers. In our model, however, the equation
motion for the collapsing shell can be reduced to a loc
equation onS. Hence, the necessary procedure is to se
radial direction of coordinate system nearS, which is called
‘‘time slicing’’ in this paper. Let us denote the radial coord
nate byx and rewrite the metric into the form

ds252N2dt21U2dx21R2dV2
2 . ~2.6!

We can refer to a local observer nearS whose world line is
along a constantx. There are two typical observers. One is
comoving observer corresponding to the time slicingx5h.
The world line of this observer is embedded inS. Another is
a static observer who stays at a constant circumference
diusx5R @dx5dR in ~2.6!#. We call the above time slicings
‘‘comoving slicing’’ and ‘‘static slicing,’’ respectively. Our
idea is to give a more general form of the time slicing as
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dx5jdR1zdh, ~2.7!

where j and z are constant parameters at the outside th
shell. This form is useful because one can recover the stat
and comoving time slicings by choosing the parameters to b
z50, and j50, respectively. Except the special cases the
time slicing corresponds to an observer who is not comovin
with the shell but infalling toward the originR50. In the
following we will study the parameter dependence of the
equation of the shell motion in both classical and quantum
levels.

The first task is to rewrite the junction condition~2.3!
using the coordinatesx and t. The general coordinate trans-
formations from~2.2! into ~2.6! should be

dt5Ncoshfdt1Usinhfdx, ~2.8!

dh5Nsinhfdt1Ucoshfdx. ~2.9!

The boost anglef is related to the velocity of the shell in the
(t,x) frame as

tanhf52
U

N S dxdt D
h

, ~2.10!

where the subscripth means the derivative along a line of
constanth. In this frame the junction conditions~2.3! are
given by

@~]xR! t#52
m

R
Ucoshf, @~] tR!x#52

mN

R
sinhf,

~2.11!

where t and x are treated as independent variables in th
calculation of the partial derivatives.

On the other hand, because the quasilocal massM defined
by ~2.5! invariant under the coordinate transformation~2.8!
and ~2.9!, it must satisfy with the conditions

2M

R
215

~] tR!x1
2

N2 2
~]xR! t1

2

U2 , ~2.12!

in the Schwarzschild side, and

215
~] tR!x2

2

N2 2
~]xR! t2

2

U2 , ~2.13!

in the Minkowski side. By the virtue of the time slicing~2.7!
and the coordinate transformations~2.8! and~2.9!, we obtain
the relations

S dxdt D
h6

5jS dRdt D
h6

, ~2.14!

S dRdt D
x6

52
z

j S dh

dt D
x6

52
z

j
Nsinhf, ~2.15!

S dRdxD
t6

5
1

j
2

z

j S dh

dxD
t6

5
1

j
2

z

j
Ucoshf. ~2.16!
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Here we choose the metric componentsN2 andU2 in the
coordinate system (t,x) are assumed to change continuous
at the shell. This continuous change ofN2 andU2 is possible
like a Gaussian normal coordinate and the radial coordin
x can match continuously in the senseC12 class at the shell
by this choice. Then the substitution of~2.15! and~2.16! into
~2.11! leads to

@z#5
mj

R
, @j#50. ~2.17!

Note that the parameterz5z1 at the outer side must be
different from z5z2 at the inner side. Since we are inter
ested in an observer located at the outer side of the sh
only z1 is treated as a parameter for specifying the tim
slicing. Thenz2 becomes a function depending onR. Fur-
thermore,~2.12! and ~2.13! for the quasilocal mass in both
sides are rewritten into the forms

S 2MR 21D j25
2z1coshf

U
2z1

2 2
1

U2 , ~2.18!

and

2j25
2z2coshf

U
2z2

2 2
1

U2 , ~2.19!

respectively. Ifz2 andf are eliminated from Eqs.~2.17!,
~2.18!, and~2.19!, we obtain the metric component

1

U2 5z1
2 1S 12

2M

R D j21z1jS 2Mm 2
m

RD , ~2.20!

which shows thatgxx51 in the comoving time slicing
(j50,z151), while gxx51/(122M /R) in the static time
slicing (j51,z150). The velocity of the shell motion mea
sured by the time coordinatet should be defined by
(dR/dt)h . Then, by using~2.10!, ~2.14!, ~2.18! and ~2.20!,
we arrive at the final form of the equation of motion

m

2N2 S dRdt D
h

2

1
1

2m
V~M ,m,l,R!50, ~2.21!

where the potentialV5V(M ,m,l,R) is given by

V5V`S 11
V`

m2Fl1
1

2 S 2E2
m

RD G2D , ~2.22!

V`512
1

4 S 2E1
m

RD 2, ~2.23!

and l and E are constants defined byl5z1 /j and
E5M /m, respectively. In the limitl→`, the potentialV
coincide withV` in the comoving system. This represen
the motion of the shell described by an observer correspo
ing to the time slicing parameter ‘‘l ’’ who is accelerated
against gravity produced by the shell.
ly

ate

-
ell,
e

-

ts
nd-

It is worth noting that the metric componentN25gtt can-
not be determined by the junction conditions. The reason ca
be seen in the proof of Birkhoff’s theorem@11#. When one
choosesR to be the radial coordinate, the vacuum Einstein
equations for the spherically symmetric vacuum spacetim
give

N25S 12
2M

R D f ~ t !2, ~2.24!

wheref (t) is an arbitrary function oft. The factorf (t) may
be eliminated by using the coordinate transformation
dT5 f (t)dt. However, one cannot determine this function by
the Einstein equations. Since the junction conditions are lo
cal conditions, all the metric components on the shell depen
only on the time coordinatet, and the lapse functionN(t) is
treated as an arbitrary function by the virtue of the gaug
freedomf (t) of a choice oft by a local observer. In the next
section, we develop the canonical quantum theory using th
arbitrariness ofN.

Before discussing the quantization procedure, it is bette
to give the brief derivation of the classical solution of this
system, since the vacuum spacetimes in the outer and inn
regions of the shell are classically treated. In the comovin
frame, the difference of the quasilocal mass between th
outer and inner sides ofS leads to the formula

M5
m

2
~R28 1R18 !, ~2.25!

where prime denotes the derivative with respect toh. Then
the junction conditions~2.3! allow us to write explicitly
R28 andR18 as

R28 5
1

2 S 2E1
m

RD , R18 5
1

2 S 2E2
m

RD . ~2.26!

Because the classical motion for bound states is limited i
the range

0<R<
m

2~12E!
, ~2.27!

the derivativesR18 andR28 must satisfy the condition

R18 <2E21, R28 >1. ~2.28!

The equalities hold just at the turning pointR5m/@2(1
2E)] of the shell motion. Recall thatR68 are proportional to
the components of the extrinsic curvaturesKuu

6 of S of the
outer and inner sides. HenceKuu

2 is always positive, while
Kuu

1 becomes negative whenE,1/2. The signs ofKuu
6 are

essential to the global structure of spacetime constructed b
the junction of the outer and inner spacetimes. In the rang
of E given by 0,E,1/2 and 1/2,E,1, the junction clearly
shows a wormhole formation and a black hole formation
respectively~see Fig. 1! @9#. The gravitational massM can
be also negative, even if the local energy condition
m5sR2.0 is imposed, and it does not contradict to the
positive mass theorem@12# because it has no asymptotically
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flat region and has a timelike singularity at the Schwarz
child side. Thus the relation between the value ofE and the
global structure of spacetime is very clear, and we use t
relation also in quantum mechanics of the shell, in which t
motion is specified by a discrete eigenvalue ofE.

III. CANONICAL QUANTIZATION

Now we give the Hamiltonian which generates the equ
tion of motion given by~2.21!. The procedure is to use the
gauge freedom previously mentioned. Although the Ham
tonian is not uniquely determined, we seek the simplest o
here. For this purpose, we consider the Lagrangian for~2.21!

L5
m

2N S dRdt D
h

2

2
N

2m
V. ~3.1!

Because~3.1! does not includeṄ, there is a primary con-
straint that is the canonical momentum conjugate toN must
weakly vanish. Furthermore, there is a secondary constra
which can be obtained by the variation of~3.1! with respect
to N. It is easy to confirm that the secondary constraint c
incides with~2.21!. The Euler-Lagrange equation which ca
be derived by the variation with respect toR is the first
derivative of~2.21!. Because we have the Lagrangian~3.1!,

FIG. 1. Penrose diagrams of possible spacetimes constructe
the Minkowski-Schwarzschild junction withE,1. The trajectories
of the dust shell in the Minkowski and Schwarzschild spacetim
are drawn. The two spacetimes are glued at the shell bound
These figures show~a! a black hole spacetime for 1/2,E,1 ~in
which the junction condition requires that bothR18 and R28 are
positive!, ~b! a wormhole spacetime for 0,E,1/2 ~in which
R18 ,0 andR28 .0), and~c! a negative mass spacetime~in which
R18 ,0 andR28 ) without any asymptotic flat region.
s-

his
he

a-

il-
ne

int

o-
n

the usual step of the canonical formalism leads to the cano
cal momentum conjugate toR,

P5
m

N S dRdt D
h

, ~3.2!

and the Hamiltonian

H5
N

2m
~P21V!. ~3.3!

We wish to emphasize that~2.21! is a result of the Hamil-
tonian constraintH50 which is generated by the variation
with respect toN. Our model can keep the property of a
constrained system in a similar manner to the full canonic
theory of general relativity.

The next step is to quantize the Hamiltonian constrain
given by

P21V50. ~3.4!

If we use the usual commutation relation@R,P#5 i\ and the
simplest factor ordering,~3.4! is reduced to the Schro¨dinger
equation

2\2
d2

dR2
C1VC50, ~3.5!

where potentialV is given by~2.22! and has the form

V5
m2@l21112lE#~12E2!

~l1E!2

3
~R2R0!~R2R1!~R1R2!

R~R2R3!
2 , ~3.6!

and the constantsR0 , R1 , R2 , andR3 are given by

R05
m~2E1l!\1/2

l21112lE
, R15

m\1/2

2~12E!
, ~3.7!

R25
m\1/2

2~11E!
, R35

m\1/2

2~l1E!
, ~3.8!

wherem5m/\1/25m/mP . Let us explain some implications
of these radii. Because of the conditionuEu,1 of the bound
state, the classical motion of the shell has the maximum r
dius R1 which corresponds to a turning point. In the time
slicing parameterized byl, the classical motion has also the
minimum radiusR5R0 where the infinite redshift occurs for
the corresponding observer. Note thatR0 is equal to 2M in
the static limitl50, which coincides with the true horizon
radius. From the potential~3.6!, R5R0 is a turning point of
the shell. Since the WKB feature, in general, breaks down
turning points, this means that the semiclassical descripti
become meaningless atR5R0 @13#. The potentialV diverges
at R5R3 where we obtain the regular singular point of the
differential equation~3.5!. This radiusR3 becomes smaller
thanR0 , if the inequalityE.1/22l/2 holds. Then, we can
consider the regionR3,R,R0 in ~3.5!, which is classically

d by

es
ary.
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forbidden and disappears only in the comoving limitl→`
~i.e., R0→0). Only whenl,3 there exist the additional
bound states withE in the range21,E,1/22l/2, for
which we obtain the classically allowed regionR0,R,R1
and classically forbidden regions 0,R,R0 and R1,R
,R3 .

The Schro¨dinger equation~3.5! means that we have the
Hilbert spacesHl of C which depends on the time slicing
parameterl, in particular, as a consequence of the existen
of the classically forbidden regionR3,R,R0 ~or R0,R
,R3 when21,E,1/22l/2 andl,3). Hence, for each
l, we can give a discrete set of the eigenvalues ofE, which
is the unique observable in this quantum system. Because
vacuum spacetimes outside and inside the shell are cla
cally treated, the global structure of the whole spacetime
specified only byE. Then the Hilbert space can be regarde
as a set of spherically symmetric spacetimes~such as black
holes, wormholes! which the collapsing shell forms.

IV. MASS EIGENVALUES

In this section, we study the quantum mechanics on va
ous time slicings using the Schro¨dinger equation~3.5!. We
mainly consider the static time slicingl50 and then the
other time slicing is considered to confirm that our argume
is the natural extension of that in@7#.

A. Static time slicing

First, we consider the typical time slicing which corre
sponds to a static observer. Whenl50, the Schro¨dinger
equation~3.5! can be written in the form

2\2
d2

dR2
C1

m2~12E2!

E2

~R2R0!~R2R1!

~R2R3!
2

R1R2

R
C50,

~4.1!

where

R052M52mE\1/2, R15
m\1/2

2~12E!
,

R25
m\1/2

2~11E!
, R35

m\1/2

2E
. ~4.2!

As previously mentioned, for the bound states in the ran
1/2,E,1, only the bounded regionR0<R<R1 is classi-
cally allowed. Though a quantum penetration of the wa
function is possible in the regionR,R0 , it must stop at
R5R3 owing to the infinite potential barrier. Therefore th
boundary conditions which we adopt here is that the wa
function vanishes atR5R3 andR→`. Although it is diffi-
cult to solve~4.1! exactly, an approximate calculation of th
eigenvalueE is possible. Notice that the factor 11R2 /R
satisfies the inequality

1,12
R2

R
,12

R2

R3
511

E

11E
, ~4.3!
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since the wave function is defined in the regionR3,R,`.
As will be seen later, the eigenvalueE is in the range
1/2,E,1. Then, the factor

1,a[11
R2

R
,
3

2
, ~4.4!

remains nearly constant in~4.1!. Then, introducing the non-
dimensional variablez,

z5
2mAa~12E2!

E

R2R3

\1/2 , ~4.5!

the approximate form of~4.1! can be written as

d2

dz2
C1S 2

1

4
1
k

z
2
p221/4

z2 DC50, ~4.6!

wherea is treated as a constant, and

p25
am4~122E!2~112E!~11E!

4E4 1
1

4
, ~4.7!

k5
m2~2E21!~21E22E3!

4E2 A~11E!a

12E
. ~4.8!

The general solution is a superposition of the two Wittaker’s
functionMk,p(z) andMk,2p(z), one of which is defined by

Mk,P~z!5zp1~1/2!e2z

3 (
n50

`
G~2p11!G@p2k1n1~1/2!#

G~2p1n11!G@p2k1~1/2!#

zn

n!
. ~4.9!

The boundary condition atz→` selects the unique solution
Wk,p(z) which exponentially decrease asz increases and is
written by the superposition

Wk,p~z!5
G~22p!

G~1/22p2k!
Mk,p~z!

1
G~2p!

G~1/21p2k!
Mk,2p~z!. ~4.10!

Now another boundary condition at the regular singular poin
z50 (R5R3) determines the eigenvalueE. The behavior
Mk,P(z)→zp11/2 in the limit z→0 means thatC can satisfy
the boundary condition only when

G~1/21p2k!56`, ~4.11!

because theG function does not vanish on the real axis.
Since theG function has poles at nonpositive integers, this
condition is reduced to

n5k2p21/2, ~4.12!

wheren is a nonnegative integer. From~4.12! we can give
the limiting behavior of the mass eigenvalue: In the limit
n@m2,
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E;12
am4

8~n11!2
. ~4.13!

If a51, ~4.13! corresponds to the spectrum~1.2! obtained by
Berezin@4# and~1.4! Hájı́čeket al. @7# in the limit n..1 of
highly excited states. On the other hand, in the opposite lim
n,,m2, the quantum effect becomes more important, a
we have

E;
1

2
1S 2n11

A3am2D
1
3

. ~4.14!

Although the spectrum ofE obtained here is consisten
with the assumption 1/2,E,1, the validity can be also
checked by numerical calculation of~4.1!, which is based on
the standard shooting method of solving two-point bounda
value problems@14#. In Fig. 2 the eigenvalues ofE are plot-
ted form51 andm5100, which corresponds to the quan
tum numbers ofn which runs from 0 to 10. We note that the
approximate spectrum~4.12! coincides with the numerical
results within the accuracy of our numerical code if choosi

FIG. 2. The eigenvalues ofE for the wave functions of black
hole formation in a static time slicing. The validity of the approx
mate formula~4.12! checked by numerical calculations. The valu
of m is chosen to be~a! m51.0000 and~b! m5100.00. The spec-
trum given by~4.12! is drawn by solid lines which corresponds t
~a! a51 and~b! a54/3, respectively.
it
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the constanta51 in ~4.13! anda54/3 in the case of~4.14!.1

Hence we can claim that~4.12! is useful to discuss the quali-
tative behavior of the spectrumE5E(n).

The behaviors of the spectrum ofE written by ~4.13! and
~4.14! are plausible as a quantum version of gravitationa
collapse. Recall thatn is the quantum number of the shell
motion, and 12E can be regarded as the gravitational bind-
ing energy per unit rest mass energy. We can find that th
gravitational binding energy remains small when the kinetic
energy of the shell motion dominates the inertia of the she
(n@m2), while the binding energy becomes large when the
inertia dominates the kinetic energy. For the ground stat
(n50) we obtainE→1/2 in the limit m@1, which corre-
sponds to the classical limit of black hole formation. The
quantum zero-point fluctuations generate the term (2/m2)1/3

in ~4.14!, wherea is taken to be equal to 4/3. The contribu-
tion of these zero-point fluctuations can seriously affect th
motion of the shell, ifm is not so large.

Note that the restrictionm,1 which arise from the inner
boundary condition by Ha´jı́ček et al. @7# in the comoving
time slicing disappears in this static time slicing. Ha´jı́ček
et al. construct the quantum theory of this system by impos
ing that ‘‘energy’’ and ‘‘charge’’ currents must vanish at the
central singularity, while in this static time slicing, the sin-
gularity is hidden by the infinite redshift surface, and the
inner boundary condition is set up at a finiteR. Hence we
can construct quantum mechanics of the collapsing dust sh
including the casem.1. This might means that their ‘‘en-
ergy’’ or ‘‘charge’’ current can not vanish at the central sin-
gularity whenm.1.

The eigenvalues~4.12! @or ~4.13!, ~4.14!# shows that the
global structure of spacetime which corresponds to these e
genvalues is limited to only a black hole formation, i.e., the
wave functions which have a support only inR3,R,` cor-
responds to the black hole states@Fig. 1~a!#. This does not
mean that there is no wormhole state. WhenE,1/2, we can
also consider the wave function whose support exists only i
0,R,R3 . In this case, the classically allowed region also
exists in R0,R,R1 where the inequalities 0,R0,R1
,R3 holds due to the conditionE,1/2. In this case, one
cannot use the approximation thata defined by ~4.4! is
nearly constant. So, we must numerically solve the Schro¨-
dinger equation~4.1! and the result is shown in Fig. 3: For
fixedm, the eigenvalue ofE monotonically decreases in the
range 0,E,1/2 asn increases. These eigenvalues plotted in
Fig. 3 corresponds to the global structure of a wormhole
formation, i.e., the wave functions whose support exist onl
in 0,R,R3 correspond to the wormhole states@Fig. 1~b!#.
Whenm..1, there are many bound states whose eigenva
ues ofE satisfy the inequalityE,1/2. Together with the
caseE.1/2, we can take the limit to the positive mass clas
sical solutions of bound state in whichE takes an arbitrary
value in 0,E,1. Note that there is no bound state in
m,m*;2.4mP . This means wormhole spacetimes are no

1a54/3 can be easily obtained by the estimation as follows
WhenE→1/2, the classically allowed region becomes narrow due
to theR12R0→0. Since the eigenvalues ofE is determined by the
behavior of the wave function in the classically allowed region,
a;11R2 /R0;11R2 /R1;4/3 whenE→1/2.
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permissible in the casem,m* , and this might be due to the
zero point fluctuations of the shell motion.

We must also note that the state ofE51/2 is forbidden
like the caseE,1/2. It can be also seen from the necessa
condition for the existence of bound states. Let us denote
minimum value of the potentialV by Vmin(E),0 which de-
pends onE. Since we impose the boundary conditio
CuR505CuR5R3

50, all eigenvaluesE of bound states must
satisfy the condition

R3~E!.
p

A2Vmin~E!
. ~4.15!

When E51/22d (d,,1), we obtain Vmin(E)
;2m2d2(11d). Then the inequality is reduced to
m2.p/d, which cannot be satisfied whend→0 even if
m@m* . Furthermore we can give a physical interpretatio
of EÞ1/2. The classically allowed region isR0,R,R1 ,
andR12R0→0 asE→1/2, so the shell is confined in this
narrow region. However, it is impossible due to the unce
tainty relationDP•DR;\, thusE51/2 is forbidden due to
the quantum effect of the shell motion. This interpretation
also valid whenE.1/2. Since~4.14! tells usEÞ1/2 when
1/2,E,1 ~even ifm@mP due to the zero point fluctuations
as mentioned before,EÞ1/2 is valid in the static time slice.

B. Nonstatic time slicing

Based on the result obtained in the static time slicing, w
consider the Schro¨dinger equation~3.5! in the caselÞ0
except that there is no bound state in the region 0,R,R3
whenl.3. Any essential property of~3.5! is not so much
different from the casel50, and we also impose the bound
ary condition; the wave function must vanish at the regu
singular pointsR5m\1/2/@2(l1E)# andR5`. Then, we
can derive the eigenvaluesE in a similar manner. The ap-
proximation thata512R2 /R is constant in~3.5! leads to

FIG. 3. The eigenvalues ofE for the wave functions of worm-
hole formation in a static time slicing. Them dependence ofE is
shown for the quantum numbersn50, 1, 2, and 3. The solid line
given by R3.p/A2Vmin means a rough upper boundary of th
allowed range ofE.
ry
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E;12
am4~11l!2

8~n11!2
~4.16!

in the limit n..m2. This shows that thel dependence of
E is not so sensitive in the limitn..m2. However, the
approximated form~4.16! will not remain valid asl become
infinitely large. To clarify the behavior ofE for the ground
states in the limitl..1, we must solve numerically the
Schrödinger equation~3.5!. By varying the parameterl, we
can consider the extrapolation from the static time slicing
the comoving one. In particular, form<1, we can compare
the spectrum ofE with ~1.4! in the comoving limit. The
numerical results form51 are plotted in Fig. 4, which con-
firm that the mass spectrum converges to~1.4! asl increases
and E remains larger than 1/2. On the other hand, as
example of the spectrum form.1, the eigenvaluesE for
m510 are plotted in Fig. 5. We find the common tendenc

e

FIG. 4. The l dependence of the spectrumE(n) for
m51.0000. The time slicing parameter is chosen to b
l50.0000, 1.0000, 5.0000, 10.000, 50.000, and 100.00. Asl in-
creases, the spectrum ofE approaches to~1.4! drawn by the dashed
line.

FIG. 5. The l dependence of the spectrumE(n) for
m510.000. The time slicing parameter is chosen to b
l50.0000, 1.0000, and 2.0000. It is shown in this figure that th
spectrum does not remain in the range 1.E.1/2 and even the
negative mass states are allowed.
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that the energy level at the ground state decreases asl in-
creases. The remarkable point form.1 ~i.e.,m.mP) is that
the mass spectrum does not keep the condition ofE.1/2
nevertheless the wave function has its support only
R3,R,`. As was suggested in@7#, even the states of
E,0 are allowed, ifl is sufficiently large.@This might
means thatHB in ~1.1! cannot be positive self-adjoint opera
tor in general.# Then observable states exist in the rang
21,E,1 whenm is sufficiently larger thanmP , and these
correspond to the global structure of black hole and wor
hole formations~see Fig. 1!.

Finally, we consider the wave function given by th
Schrödinger equation~3.5! in the comoving frame (l→`),
which has the form

2\2
d2

dR2
C1m2F12

1

4 S 2E1
m

RD 2GC50. ~4.17!

Note that this Schro¨dinger equation corresponds to th
Wheeler-DeWitt equation~1.3!, and our Schro¨dinger equa-
tion may be regarded as a natural extension of~1.3!. In terms
of the requirement of unitarity and of positivity of energy
Hájı́ček et al. @7# gave the boundary condition that for th
bound stateE,1 the wave function must vanish at the origi
and at infinity. Then the discrete spectrum ofE was shown to
be ~1.4! which becomes meaningless whenm.1. As dis-
cussed by Ha´jı́ček et al., this means that whenm.1 one
cannot impose the positivity ofE or the regularity of the
wave function atR50. In our approach the regularity o
wave function atR5R3 are set up in any time slicing param
eterl, even ifm.1. Therefore, we can discuss the como
ing limit through the extrapolation of the results to the rang
l@1. In this sense, as previously mentioned, observa
states exist in the range21,E,1 whenm is sufficiently
larger thanmP , there is no essential difference in a set
observable states. On the other hand, there are no worm
states 0,E,1/2 whenm,mP . These states are suppresse
by the zero point fluctuations of the shell motion.

V. SUMMARY AND DISCUSSION

In summary, by studying this model of dust shell collaps
we obtained the wave functions for the bound states w
positive eigenvalues ofE under the static time slicing. When
m..mP , these can recover the classical solutions whi
describe wormhole or black hole formation. This also mea
that ‘‘energy’’ or ‘‘charge’’ current which discussed by
Hájı́ček et al.must not vanish whenm..mP . In the static
time slicing, wave functions which has its support only
0,R,R3 correspond to the wormhole states, and wa
functions which has its support only inR3,R,` corre-
spond to the black hole states.

This situation is analogous to the quantum field theory
Rindler space@15#. In this theory, nevertheless the set o
mode functions in the left- and right-handed wedge of t
Rindler space separately is not complete on the wh
Minkowski space, both sets together are so complete. Le
suppose that the regions 0,R,R3 and R3,R,` corre-
sponds to the left- and right-handed wedge of Rindler spa
time, respectively. And suppose that one may regard that
set of states with positive eigenvalues ofE in our model,
in
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black hole and wormhole states correspond to the comple
set of mode functions in whole Minkowski spacetime, th
mode functions in left- and right-handed wedge, respective
Then, the complete set of classical solutions can be co
structed by the both sets of the wave functions which have
support in left- and right-handed wedge together.

Furthermore, we showed that the wormhole states cann
exist whenm,m*;2.4mP . Although we couldn’t discuss
about the factorm* /mP in detail, the necessary condition
~4.15! for the existence of bound states tells us the tenden
of wormhole suppression and this condition is closely relate
to the zero point fluctuations of the shell motion. So this ma
be due to the result of this zero point fluctuations. For
comoving time slicing also, we can see the same quantu
effect. Moreover, for noncomoving and nonstatic time slic
ings which are charactorized by finite nonvanishingl, one
can also see the same quantum effect at leastm,1. Al-
though it is unclear whetherE,0 is permissible or not, ob-
servable states exist in the range21,E,1 whenm.mP ,
while only black hole states are possible whenm,mP .
Thus, our conclusion is that the wormhole formation with
small mass is efficiently suppressed in the quantum collap
of dust shell due to the quantum fluctuations of the dust sh
motion.

Although our model is concerned about the local geom
etries of the dust shell and both vacuum regions of spacetim
are treated classically, one might be able to consider t
quantization of both vacuum region. Recently, Kucharˇ pro-
pose the definitive treatment of the spherically-symmetr
quantum problem@16#. When one considers the quantization
of the vacuum region, one might use Kucharˇ’s treatment. In
this case, the world volume of the dust shell will be treate
as a boundary of a spacetime manifold and one must co
sider the boundary term of the Einstein Hilbert action o
spherically symmetric spacetime at the world volume of th
shell. Since, in his treatment, the boundary term of the actio
and the foliations of spacetime near the boundary play esse
tial roles, one must consider the foliation of spacetime ne
the world volume of the shell. Various foliations of space
time near the shell are possible and our foliations whic
characterized by the parameterl are examples of that. Then
one might be able to consider the foliation of the vacuum
regions of spacetime from near the shell to asymptotic fl
region using our foliation parameterl. The parameterl will
become more important in this case. It might be interestin
to clarify that the mass eigenvalues are also obtained or n
when one consider the wave functional of the vacuum regio
and together with the wave function of the dust shell motion
If these considerations were done, the difference of th
wormhole states and black hole states become more me
ingful. Because ‘‘wormhole’’ in our dust shell collapse
means that there is a wormhole in the space which is a f
liation of the Schwarzschild spacetime beyond the black ho
horizon and connect the untrapped Minkowski region to un
trapped region of Schwarzshild space.
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