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Quantum formation of black holes and wormholes in the gravitational collapse of a dust shell
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A guantum-mechanical model of a self-gravitating dust shell is considered. To clarify the relation between
classical and quantum spacetime which the shell collapse forms, we consider various time slicings on which
guantum mechanics is developed. By considering the static time slicing which corresponds to an observer at a
constant circumference radius, we obtain the wave functions of the shell motion and the discrete mass spectra
which specify the global structures of spherically symmetric spacetime formed by the shell collapse. It is found
that wormhole states are forbidden when the rest mass is comparable to the Planck mass scale due to the
zero-point quantum fluctuations.

PACS numbes): 04.60.Ds, 04.70.Dy

[. INTRODUCTION are also classically treated. Then, only the equation of mo-
tion of the shell which can be regarded as the energy equa-
Historically, many works have been devoted to constructtion is quantized by constructing the Hamiltonian operator.
ing quantum theories of gravitational collapse. One of theAlthough the Hamiltonian operator to be constructed is not
motivations is to resolve the problems concerning the finalinique, Bereziret al. investigated the Hamiltonian operator
fates of black hole evaporation due to Hawking radiafibp 5
which may lead to the paradox of information 1¢83. How- Ho= ucosH — 0P 2| _ K 1.1
ever, quantum gravity itself includes not only technical dif- BT H m JR) 2R’ '
ficulties but also conceptual ones such as the interpretation of
wave function, the nature of time, and the definition of ob-wherem=u/mp andm is the Planck masghroughout this
servables. Since any fully consistent theory is not yet estatpaper we denote the Planck constantisym3 and use units
lished, the present step would be to develop various usefiduch thatG=c=1) and the time coordinate describing the
toy models to shed a new light on some features of quanturahell dynamics is chosen to be the proper time of a comoving
effects of gravity. In particular, quantum gravitational col- observer. Then, they obtained the spectrum of the eigenval-
lapse of a spherically symmetric shell, on which we focusueskE of Hg,
our attention in this paper, has been studied as one of such
toy models[3-7]. E—1_ m
In this model, one considers the spherically symmetric 8(n+1)%’
spacetime which is in vacuum except thdunction distri-
bution of incoherent dust shell at a finite circumference raby using WKB approximation where is a non-negative
dius. By the virtue of the spherical symmetry, the inner sidenteger. From their analysis, it is unclear that the spectrum
of the shell may be a Minkowski spacetime and the outer onél.2) is also valid wherm?>>n. However, Hicek et al.
is the Schwarzschild spacetime which has a finite gravital7] gave a definite formula of the spectruin adapting a
tional mass parameteM. The vanishing divergence of the simpler equation for the wave function. They introduce the
energy-momentum tensor of the dust shell tells us only théuper-Hamiltonian on an extended minisuperspace which
fact that the matter energy of the shell is conserved and leads to the “Wheeler-DeWitt” equation
u can be regarded as the rest mass of the shell. The two 5
vacuum regions should be joined at the shell according to the ( —iﬁi— Ll
Einstein equations. This program can be accomplished by
using Israel’s junction conditiof8,9], which works as the ) ) . ) )
equation of motion of the dust shell, and the dynamical variwhereT is the Minkowskian time of the inner side of the
able is limited to the circumference radiBsof the shell and ~ Shell. Furthermore, they introduced “energy” and “charge”
the global structure of spacetime can be classified by th€urrents and by imposing the boundary condition fbr
value ofE=M/u. WhICh means tha}t “'e.nergy" and “c.harge" currents must van-
The original idea to quantize this dynamical system wadsSh atR=0 and infinity, they obtained the formula &f for
proposed by Bereziet al. [3,4]. If any quantum effect of the bound states defined byl <E<1:
incoherent dust shell is ignored, this matter shell can be char-
acterized byu. Both the vacuum regions in the spacetime E= 2(k+n) _ E+ E - (1.9

T k=
Vm*+4(k+n)? 2 2
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4
(1.2

¥+ W\P— w2 =0, (1.3
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this eigenvalue. Furthermore, it is shown that in the boundn spacetime. Although infinitely many observers or time
states only the black hole formation corresponding to theslicings can be assumed in general, we restrict our consider-
range 1/2E<1 is allowed, while the wormhole formation ation to a one-parameter family which contains two typical
corresponding to & E<1/2 is possible as classical solu- time slicings corresponding to the Gaussian normal coordi-
tions. nates of a comoving observer and the static Schwarzschild
Here, we must mention about the quantum effects in thigoordinates of an observer who stays at a finite circumfer-
system. Only quantum effect of gravity which can be consid-ence radius, and derive the possible spacetimes as the solu-
ered by this model is that of the shell motion. There arelions of the Einstein equations. In Sec. Ill, we introduce the
many gravitational effects in general relativity, and this She“Hamlltoman constraint W.h'Ch cor_responds to the time-time
motion is also one of them. In this model, the valuesEof compo_nem of the.Elnsteln equations and gives thg equation
determine not only the shell motion but also global structureOf motion in a similar manner to the Wheeler—DeW!tt proce-
of the spacetiméthe black hole formation or wormhole for- dl_”e' Followm_g the earlier works, we s_olve cla55|_cally the
mation. If the shell motion changes, this change affects toEinstein equations except the Hamiltonian constraint for the

the global structure of the spacetime. Then, nevertheless boﬁ?e" _mc?ltlon. Th'j .mea}_rll(s that the momentum const(;a||nt IS
vacuum regions of spacetime are treated classically, to corfzassically treated just like many minisuperspace models.
In Sec. IV, we consider the quantum mechanics of col-

sider the quantization of the shell motion also means th . hell b — familv of ti i
quantization of the spacetime through the quantized valuegPSNg shell, by using the one-parameter family of time slic-

of E. In this sense, the results obtained byjikek et al ings introduced in the previous sections and we also discuss
: ’ ) Jpe global structure of spacetime in which the dust shell col-

means that only black hole formation is possible as a resu X . . .
of the quantum collapse of the dust shell, while both blac apse forms. Our main result will be obtained under the static
' time slicing. Furthermore, our consideration is restricted to

hole and wormhole formation is possible as a classical solu

tion. Then, it is not clear whether one can consider the clasin® So-called bound states1<E<1, which have the dis-

sical limit of this quantum collapse of the shell. crete mass eigenvalues, and we must consider the cases

Our purpose in this paper is to clarify the relation betweerE ™ 1/2 andE< 1/2 separately in the static time slicing, these

quantum and classical spacetime of this system. For this pup_ases corresppnd to the black_ hole states an_d wormhole
states respectively. Then, we discuss the relation between

pose, we pay attention to the time slicing on which the quan= : . )
tum mechanics is developed. Note that the previous tregduantum and classical solutions of this system and show that

ments are essentially based on the comoving time slicing. {f1€7€ IS N0 quantum states whér<1/2 andu~mep. We

is also possible to construct quantum mechanics based on tASC consider the quantum mechanics on nonstatic time slic-
other time slicing, in which the dust shell is really moving. N9 t0 confirm that our arguments are natural extension of the
Since the canonical formalism is based on the decompositioffSUit obtained in the comoving frame. It can be shown by

of spacetime into space and time, a special attention must §8€ fact that the quantum version of the Hamiltonian con-
paid to the problem of time slicing which determines theStraint becomes identical with the radial equatior(lB) in

foliation of spacetime. Furthermore, it is well known in clas- the comoving limit. Finally, our consideration is summarized
sical relativity how a description of black hole spacetimeand we make some discussions in Sec. V. Although our

depends on the choice of time slicing: In the usual stati¢MPlé model is a preliminary approach to quantum gravity,
chart the Schwarzschild horizon plays a role of the infinite

it would give a useful clue when one investigates the prob-

redshift surface, while in the synchronous chart correspond®M ©f time slicing in a more complete theory.

ing to a freely falling observer it is not any special surface

[10]. This means that the horizon can be regarded as a sort of Il. CLASSICAL EQUATION OF MOTION

boundary of the foliated spacetime only for a static observer. |, ihis section, we derive the equation of motion for a

So the foliation of spacetime or the choice of observers in the )4 hsing dust shell, which is described by various time slic-
spacetime is more important when one consider a black holﬁ]g' Since the spacetime is spherically symmetric, one can

spacetime. . choose the metric of the form
To study the quantum mechanics of dust shell collapse,
we use various time slicings in hope that the physical es- ds’=g,,dx2dx°+R2dQ2 (a,b=0,1), (2.1

sence is independent of the time slicing. The black hole ho-

rizon is not a special surface for an observer who uses th@hereR is the circumference radius and)3 is the metric of
proper time along the shell history or the Minkowskian time. ynit two-sphere. For this metric, matter fields dependkén
However, a static observer outside the horizon will require aand x* which are time and radial coordinates. Furthermore,
different boundary condition for the wave function due to thethe spacetime is assumed to be in vacuum except the
existence of the horizon for him. By developing quantum s.function matter distribution at a finite circumference ra-
mechanics for a static observer, we can obtain the mass spegus. We denote the world volume of this spherically sym-
trum which corresponds ttl.2) and(1.4). Furthermore, we metric shell asS, which is a(1+2)-dimensional hypersur-

will show that wormhole states are also pOSSib|e for a StatiQace_ In a neighborhood cﬁ, one can choose the Gaussian
observer who stays inside the wormhole but wheis same  normal coordinatef9]

order ofmp Nno wormhole state is allowed owing to the zero-

point fluctuation of the shell motion. ds?=—d7r+d7?*+R2dO3, (2.2
This paper is organized as follows. In Sec. Il, we derive

the classical equation of motion of the shell in terms of vari-where r is the proper time which would be measured by an

ous observers who define time slicings on the shell trajectorgbserver comoving with the shell. The coordinages the
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proper distance fronk along the geodesics which are or- dx=&dR+ d 7, (2.7
thogonal to3, and2 is assigned to the world volume of
7=0. Imposing the spacetime to be orientable3gnve may  where ¢ and { are constant parameters at the outside the
regard one side aof as being the “outer side”§>0) and  shell. This form is useful because one can recover the static
the other side as being “inner side<0). and comoving time slicings by choosing the parameters to be
The whole spacetime is constructed by connecting th€=0, and £=0, respectively. Except the special cases the
Schwarzschild spacetimes of the outer side and théime slicing corresponds to an observer who is not comoving
Minkowski spacetime of the inner side. The Einstein equawith the shell but infalling toward the origiR=0. In the
tions give the “junction condition” for the neighborhood of following we will study the parameter dependence of the
3,, which is well known as Israel’s formul@,9]. In the case equation of the shell motion in both classical and quantum
of the Minkowski-Schwarzschild junction, the nontrivial levels.
conditions are given bj9] The first task is to rewrite the junction conditid@.3)
using the coordinates andt. The general coordinate trans-

formations from(2.2) into (2.6) should be
[a,R1=~", [2.A1=0, 23 (2210 (2.9
d7=Ncoshpdt+ Usinhadx, (2.8
where ¢ denotes the partial derivative with respect to its )
subscripted coordinate, addrepresents all the metric func- d7=Nsinh¢dt+Ucoshpdx. 29
tions on the spacetime. The square brackéty mean the . . )
difference ofA between the outer and inner sides: The boost angle is related to the velocity of the shell in the
(t,x) frame as
[A]= lim A— lim A. (2.9
7ot w0 tanh¢>=—E dx (2.10
N\ dt 7]’ ’

The first equation 0f2.3) contains the total energy of dust

shell defined by.=oR? whereo is the surface energy den- \yhere the subscripy means the derivative along a line of

sity of the dust shell. From the vanishing divergence c_)f theconstantn. In this frame the junction condition&.3) are
energy-momentum tensor of dust shell, one can easily segven py

that u is a constant of motion.

For our convention of calculation, let us introduce n uN
quasilocal mass defined by [(R)]=—gUcoshp,  [(aR),]=——sinhs,
R (2.11
M=—~(1-9g*"9,R3,R), 2. : . :
2( 9""9,RI.R) @9 wheret and x are treated as independent variables in the

calculation of the partial derivatives.

which is conserved in each vacuum region of the spherically On the other hand, because the quasilocal rvaskefined
symmetric spacetime. Of cours®l=0 in the Minkowski by (2.5 invariant under the coordinate transformati@eg)
side, andM (#0) in the Schwarzschild side represents theand (2.9), it must satisfy with the conditions
gravitational mass of the shell. The formy5) is useful to
estimate the derivatives &R in both sides, which are in- 2M (atR))z(+ (o7XR)t2+
volved in (2.3. R =N o (2.12

Now we discuss the time slicings to describe the shell
motion. “Time slicings” usually mean foliations of a whole jn the Schwarzschild side, and
spacetime. Foliations are spaces in a spacetime in which one
can set observers. In our model, however, the equation of (ORZ.  (3R)Z
motion for the collapsing shell can be reduced to a local —-1= NZ 07 (2.13
equation on3. Hence, the necessary procedure is to set a
radial direction of coordinate system néar which is called
“time slicing” in this paper. Let us denote the radial coordi-
nate byx and rewrite the metric into the form

in the Minkowski side. By the virtue of the time slicirg.7)
and the coordinate transformatiofzs8) and(2.9), we obtain
the relations

ds?= —N2dt?+ UZdx?+ R%d0S3. (2.6 dx
W
n

dR
We can refer to a local observer néamwhose world line is * n*
along a constant. There are two typical observers. One is a
comoving observer corresponding to the time slicikyg 7. dry  {[(dy| NSsi 51
The world line of this observer is embeddedin Another is dt) £ . £ sinhg, (219
a static observer who stays at a constant circumference ra- X X
diusx=R [dx=dRin (2.6)]. We call the above time slicings dR 1 ¢
“comoving slicing” and “static slicing,” respectively. Our ( ) _E_ E(

t+

1
d—) =—— chosh;S. (2.16
idea is to give a more general form of the time slicing as X & &
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It is worth noting that the metric componelf=g,, can-

coordinate systemt{x) are assumed to change continuouslynot be determined by the junction conditions. The reason can

at the shell. This continuous changeMf andU? is possible

be seen in the proof of Birkhoff’s theorefil]. When one

like a Gaussian normal coordinate and the radial coordinatehoosesR to be the radial coordinate, the vacuum Einstein

X can match continuously in the sen8é™ class at the shell
by this choice. Then the substitution @.15 and(2.16) into

equations for the spherically symmetric vacuum spacetime
give

(2.11) leads to

sz(l—ﬂ)f(t)z (2.29
mé R ’ :

(=5, [&=0. (217

wheref(t) is an arbitrary function of. The factorf(t) may
Note that the parametef={, at the outer side must be be eliminated by using the coordinate transformation
different from {=¢_ at the inner side. Since we are inter- d T=f(t)dt. However, one cannot determine this function by
ested in an observer located at the outer side of the shefin€ Einstein equations. Since the junction conditions are lo-
only 7, is treated as a parameter for specifying the timecal conditions, all the metric components on the shell depend

slicing. Then{_ becomes a function depending & Fur-

thermore,(2.12 and (2.13 for the quasilocal mass in both

sides are rewritten into the forms

(2.18

2M 1 , 2{.coshp
ROV YT

and

2{_coshp
g2 DT 2 T
g U g* UZ! (219
respectively. If{_ and ¢ are eliminated from Eqs2.17),
(2.18, and(2.19, we obtain the metric component

Mm

1 2M
02 52+§+§(——§), (220
M

, 2M
T

which shows thatg,,=1 in the comoving time slicing
(£=0,,,=1), while g.,=1/(1-2M/R) in the static time

slicing (¢€=1,,{, =0). The velocity of the shell motion mea-

sured by the time coordinaté should be defined by
(dR/dt),,. Then, by using2.10, (2.14), (2.18 and(2.20,
we arrive at the final form of the equation of motion

AR L Mo RI=0 22
W H 7]+ﬂ ( IMY ] )_ 3 ( . :D
where the potentiaV =V(M, u,\,R) is given by
Ve

V=V.| 1+ 5|, (2.22

P Y

K 2 R
voe1- Yoy &) 22
»=1-7 Rl (2.23

and A and E are constants defined byx=¢,/¢ and
E=M/pu, respectively. In the limi\—oc, the potentialV

only on the time coordinatg and the lapse functioN(t) is
treated as an arbitrary function by the virtue of the gauge
freedomf(t) of a choice oft by a local observer. In the next
section, we develop the canonical quantum theory using this
arbitrariness oiN.

Before discussing the quantization procedure, it is better
to give the brief derivation of the classical solution of this
system, since the vacuum spacetimes in the outer and inner
regions of the shell are classically treated. In the comoving
frame, the difference of the quasilocal mass between the
outer and inner sides & leads to the formula

M=§(RL+R;), (2.25

where prime denotes the derivative with respecttolhen
the junction conditions(2.3) allow us to write explicitly
R_. andR/ as

2+ £

R =1
-2 R

5 (2.2

2 R

1
, R;:—(ZE—ﬂ .

Because the classical motion for bound states is limited in
the range

_
2(1-E)"

0=R<

(2.27

the derivativeR, andR’ must satisfy the condition

"<2E-1, R.=1. (2.28

The equalities hold just at the turning poifR= w/[2(1
—E)] of the shell motion. Recall thak’, are proportional to

the components of the extrinsic curvatuieg, of 3 of the
outer and inner sides. Hen¢g,, is always positive, while
K,, becomes negative wheB<1/2. The signs oK, are
essential to the global structure of spacetime constructed by
the junction of the outer and inner spacetimes. In the range
of E given by 0<E<1/2 and 1/Z E<1, the junction clearly
shows a wormhole formation and a black hole formation,

coincide withV,, in the comoving system. This representsrespectively(see Fig. 1[9]. The gravitational masM can

the motion of the shell described by an observer correspondse also negative, even if the local energy condition
ing to the time slicing parameter\ who is accelerated u=0oR?>0 is imposed, and it does not contradict to the
against gravity produced by the shell. positive mass theorefl2] because it has no asymptotically
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@ the usual step of the canonical formalism leads to the canoni-
cal momentum conjugate g,

_p[dR
+ |:> P_N E y (3.2)
7

and the Hamiltonian

(b)

N
H=——(P?+V). (3.3
2u
> + > We wish to emphasize th&®2.21) is a result of the Hamil-
tonian constrainH =0 which is generated by the variation

with respect toN. Our model can keep the property of a
constrained system in a similar manner to the full canonical

© theory of general relativity.
The next step is to quantize the Hamiltonian constraint
given by
. = P2+ V=0, (3.4

If we use the usual commutation relatipR,P]=i#% and the
simplest factor ordering3.4) is reduced to the Schdinger
equation

FIG. 1. Penrose diagrams of possible spacetimes constructed by )
the Minkowski-Schwarzschild junction witB<1. The trajectories —ﬁzd—‘P+V\If=0 (3.5
of the dust shell in the Minkowski and Schwarzschild spacetimes dRrR? ! '
are drawn. The two spacetimes are glued at the shell boundary.
These figures showa) a black hole spacetime for ¥E<1 (in  where potentiaV is given by(2.22 and has the form
which the junction condition requires that boRl. and R” are
positive), (b) a wormhole spacetime for ©OE<1/2 (in which v ,u,z[)\z+ 1+2\E](1-E?)

R, <0 andR’>0), and(c) a negative mass spacetirfia which 2
; T . X (AN +E)
R <0 andR’) without any asymptotic flat region.
(R=Rp)(R=Ry)(R+R3) 3.6
flat region and has a timelike singularity at the Schwarzs- X R(R—R;)2 * (3.6

child side. Thus the relation between the valueecdnd the

global structure of spacetime is very clear, and we use thiand the constant®,, R;, R,, andR; are given by
relation also in quantum mechanics of the shell, in which the

motion is specified by a discrete eigenvalueEof m(2E+\)A 12 m# 2

Ro=\zr1vane’ 20— @7

Ill. CANONICAL QUANTIZATION

mﬁl/Z mhl/2
Now we give the Hamiltonian which generates the equa- Ry=ci——

l R3:—1
tion of motion given by(2.21). The procedure is to use the 2(1+E) 2(A+E)
gauge _freedom_prewously m_entmned. Although _the Ham”'wherem=,u/ﬁ1’2= ulmp . Let us explain some implications
tonian is not uniquely determined, we seek the simplest on

. X . Bt these radii. Because of the conditidf| < 1 of the bound
here. For this purpose, we consider the Lagrangiarid@) state, the classical motion of the shell has the maximum ra-

dius R; which corresponds to a turning point. In the time
w (dR\2 N slicing parameterized by, the classical motion has also the
L= m(a) - 3. minimum radiusR= R, where the infinite redshift occurs for
n the corresponding observer. Note thgf is equal to M in
) the static limith =0, which coincides with the true horizon
Because(3.1) does not includeN, there is a primary con- radius. From the potenti&B.6), R=R, is a turning point of
straint that is the canonical momentum conjugat®toust  the shell. Since the WKB feature, in general, breaks down at
weakly vanish. Furthermore, there is a secondary constrairitirning points, this means that the semiclassical description
which can be obtained by the variation @ 1) with respect become meaningless Bt= R, [13]. The potentiaV diverges
to N. It is easy to confirm that the secondary constraint co-at R=R3; where we obtain the regular singular point of the
incides with(2.21). The Euler-Lagrange equation which can differential equation(3.5). This radiusR; becomes smaller
be derived by the variation with respect B is the first  thanR,, if the inequalityE>1/2—\/2 holds. Then, we can
derivative of(2.21). Because we have the Lagrangi@l), consider the regioR;<R<R, in (3.5, which is classically

(3.9

2u
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forbidden and disappears only in the comoving limit since the wave function is defined in the regiRg< R<<oo.

(i.e., Rp—0). Only when\<3 there exist the additional As will be seen later, the eigenvalug is in the range

bound states wittE in the range—1<E<1/2—\/2, for = 1/2<E<1. Then, the factor

which we obtain the classically allowed regith<R<R;

and classically forbidden regions<R<R, and R;<R R, 3

<Rs. 1<a=1+ E<§’ (4.4
The Schrdinger equation(3.5 means that we have the

Hilbert spaces7, of ¥ which depends on the time slicing remains nearly constant id.1). Then, introducing the non-

parametei, in particular, as a consequence of the existenc&imensional variable,

of the classically forbidden regioR;<R<R, (or Ry<R

<R3 when —1<E<1/2—\/2 and\<3). Hence, for each 2mya(1—E?) R—R,
\, we can give a discrete set of the eigenvalueg ofvhich z= E pRrcal (4.5

is the unique observable in this quantum system. Because the
vacuum spacetimes outside and inside the shell are classhe approximate form of4.1) can be written as
cally treated, the global structure of the whole spacetime is

specified only byE. Then the Hilbert space can be regarded d?
as a set of spherically symmetric spacetini®sch as black E‘I’
holes, wormholeswhich the collapsing shell forms.

1
+ _Z+ =0, (4.6)

k p’-1/4
z 7

wherea is treated as a constant, and
IV. MASS EIGENVALUES 4 2
,_am (1-2E)“(1+2E)(1+E) 1
In this section, we study the quantum mechanics on vari- pe= = to (47
ous time slicings using the Schiinger equation3.5). We

mainly consider the static time slicing=0 and then the Y i
other time slicing is considered to confirm that our argument k= m(2E- D2 +E-2E7) A /(1+E)a (4.8
1-E ~ '

is the natural extension of that [i]. 4E?

o . The general solution is a superposition of the two Wittaker’s
A. Static time slicing functionM, ;(z) andM, _,(z), one of which is defined by

First, we consider the typical time slicing which corre- 1Dz
sponds to a static observer. Whan=0, the Schrdinger My p(2)=2""""7e
equation(3.5) can be written in the form

]

T(2p+1)T[p—k+n+(1/2)] 2"

2 201 _E2 _ _ -
_ﬁzd_ u (1-E%) (R=Ro)(R—Ry) R+R2\If:O ano F2p+n+1)I'[p—k+(1/2)] n!" .9
dR® E? (R—R3)? R ’
(4.1)  The boundary condition &—« selects the unique solution
W, x(2) which exponentially decrease asncreases and is
where written by the superposition
I'(—2p)
mﬁl/Z R S
Ro=2M=2mEn*%,  Ri=5 ey, Whn(2)= 172 p 1) Mke(2)
I'(2p)
mﬁl/Z mh”z F(l/2+p—k) Mk,—p(z)- (4-1@

R, 4.2

=, Ry=—/—.
2(1+E) ° 2E Now another boundary condition at the regular singular point

z=0 (R=R3) determines the eigenvalle. The behavior

As previously mentioned, for the bound states in the rangé, p(z)—z°*¥?in the limit z—0 means tha® can satisfy

1/2<E<1, only the bounded regioR,<R<R; is classi- the boundary condition only when

cally allowed. Though a guantum penetration of the wave

function is possible in the regioR<R;, it must stop at I'(1/2+p—k)=*x, (4.1)

R=R; owing to the infinite potential barrier. Therefore the

boundary conditions which we adopt here is that the wavéecause thd" function does not vanish on the real axis.

function vanishes aR=R3; andR—. Although it is diffi- ~ Since thel’ function has poles at nonpositive integers, this

cult to solve(4.1) exactly, an approximate calculation of the condition is reduced to

eigenvalueE is possible. Notice that the factor+IR,/R

satisfies the inequality n=k—p-—1/2, (4.12

wheren is a nonnegative integer. Fro.12 we can give
the limiting behavior of the mass eigenvalue: In the limit

R R, E
1<1— —2<1——2=1+-—— 43 e
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@) the constante=1 in (4.13 anda=4/3 in the case of4.14).
' ' Hence we can claim th&4.12) is useful to discuss the quali-
tative behavior of the spectruig=E(n).

The behaviors of the spectrum Bfwritten by (4.13 and
(4.14 are plausible as a quantum version of gravitational
collapse. Recall thamh is the quantum number of the shell
motion, and +E can be regarded as the gravitational bind-
097 | et — ] ing energy per unit rest mass energy. We can find that the
numerical resuls o gravitational binding energy remains small when the kinetic
096 | ; energy of the shell motion dominates the inertia of the shell
(n>m?), while the binding energy becomes large when the
095 ¢ 1 inertia dominates the kinetic energy. For the ground state
(n=0) we obtainE—1/2 in the limit m>1, which corre-

094 ° > 4 o s 10 sponds to the classical limit of black hole formation. The
quantum zero-point fluctuations generate the terrm{@¥®

®) in (4.14), wherea is taken to be equal to 4/3. The contribu-

' ' ' tion of these zero-point fluctuations can seriously affect the
motion of the shell, ifm is not so large.

Note that the restrictiom<1 which arise from the inner
boundary condition by Heek et al. [7] in the comoving
time slicing disappears in this static time slicing. jidak
et al. construct the quantum theory of this system by impos-

ing that “energy” and “charge” currents must vanish at the
el s | central singularity, while in this static time slicing, the sin-
gularity is hidden by the infinite redshift surface, and the
inner boundary condition is set up at a finle Hence we
can construct quantum mechanics of the collapsing dust shell
including the casen>1. This might means that their “en-
053 : ; ; ; y ergy” or “charge” current can not vanish at the central sin-

0 2 4 6 8 10 .
" gularity whenm> 1.

FIG. 2. The eigenvalues dE for the wave functions of black The eigenvalue$4.12 [pr (4'13_" (4.14] shows that the .
hole formation in a static time slicing. The validity of the approxi- global Struc.:tur.e f)f spacetime which correspond; to _these el
mate formula(4.12) checked by numerical calculations. The value genvalues IS “m'te.d to only a black hole formation, i.e., the
of mis chosen to béa) m=1.0000 andb) m=100.00. The spec- Wave functions which have a support onlyRg<<R< cor-
trum given by(4.12) is drawn by solid lines which corresponds to responds to the black hole stafgsg. 1(a)]. This does not

0.99 +

0.98

0.6

0.59

0.58 |

057 |

0.56 |

0.55

0.54

(@ a=1 and(b) a=4/3, respectively. mean that there is no wormhole state. Wiketi1/2, we can
also consider the wave function whose support exists only in
am? 0<R<R;. In this case, the classically allowed region also
E~1- ——. (4.13  exists in Ry<R<R; where the inequalites OR,<R;
8(n+1) <Rj3; holds due to the conditioE<1/2. In this case, one

cannot use the approximation that defined by (4.4) is
If =1, (4.13 corresponds to the spectruth2) obtained by nearly constant. So, we must numerically solve the Schro
Berezin[4] and(1.4) H&jiceket al.[7] in the limitn>>1 of  dinger equation(4.1) and the result is shown in Fig. 3: For
highly excited states. On the other hand, in the opposite limifixed m, the eigenvalue oE monotonically decreases in the
n<<m?, the quantum effect becomes more important, andange 6<E< 1/2 asn increases. These eigenvalues plotted in

we have Fig. 3 corresponds to the global structure of a wormhole
formation, i.e., the wave functions whose support exist only
1 in 0<R<Rj3 correspond to the wormhole stafdsg. 1(b)].
1 on+1\3 Whenm>>1, there are many bound states whose eigenval-
E~§+(m (4.14  ues of E satisfy the inequalityE<1/2. Together with the

caseE>1/2, we can take the limit to the positive mass clas-
sical solutions of bound state in whidh takes an arbitrary
Although the spectrum oE obtained here is consistent value in 0<E<1. Note that there is no bound state in
with the assumption 1RE<1, the validity can be also u<m*~2.dmp. This means wormhole spacetimes are not
checked by numerical calculation @f.1), which is based on
the standard shooting method of solving two-point boundary-
value problem$14]. In Fig. 2 the eigenvalues d& are plot- la=4/3 can be easily obtained by the estimation as follows.
ted form=1 andm=100, which corresponds to the quan- WhenE— 1/2, the classically allowed region becomes narrow due
tum numbers oh which runs from 0 to 10. We note that the to theR,—R,— 0. Since the eigenvalues &fis determined by the
approximate spectrun¥.12) coincides with the numerical behavior of the wave function in the classically allowed region,
results within the accuracy of our numerical code if choosinga~1+ R, /Ry~ 1+ R,/R;~4/3 whenE— 1/2.
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0.25 n=2 o 4
n=3 x R
°
°
0 ° 09 F
0.2 R ]
©
°
° ° w 0.85 A=0 o
w 0.15 o A=l o+
o A=5 &
g AZ3o -
; = a
o° 7 o8F i Rt
M ’ . i L e
°° + ! spectrum given by Hajicek et.al -
° +
S + a 0.75 |
0.05 | B . N
+ a
: ++ a ° x L X
0.7 ' L
0 1 L § L + o x o s . . . -
] 1 2 3 4 5 6 n

FIG. 4. The N dependence of the spectrurg(n) for
FIG. 3. The eigenvalues d for the wave functions of worm- m=1.0000. The time slicing parameter is chosen to be

hole formation in a static time slicing. Tha dependence oE is A=0.0000, 1.0000, 5.0000, 10.000, 50.000, and 100.00\ As
shown for the quantum numbens=0, 1, 2, and 3. The solid line creases, the spectrum Bfapproaches t6l.4) drawn by the dashed
given by Rg>m/\— Vi, means a rough upper boundary of the line.

allowed range oE.

am*(1+\)?

ermissible in the case <m*, and this might be due to the -
p se g B(n+1)2 (4.16

zero point fluctuations of the shell motion.

We must also note that the state Bf 1/2 is forbidden
like th? caseE<1/2._ It can be also seen from the NECESSaIY, the limit n>>m?2. This shows that tha dependence of
condition for the existence of bound states. Let us denote th

- . . . . 2
minimum value of the potentidl by V,i,(E) <0 which de- 1S nqt S0 ds$n3|t|ve " tﬂe I|m|n>.>m .llé-|oweg/er, the
pends onE. Since we impose the boundary condition approximated fornt4.18 will not remain valid as\ become

_ - : infinitely large. To clarify the behavior ot for the ground
¥|r-0="¥|r-r,=0. all eigenvalues of bound states must states in the limit\>>1, we must solve numerically the

satisfy the condition Schralinger equatior(3.5). By varying the parametex, we

can consider the extrapolation from the static time slicing to

the comoving one. In particular, fan<1, we can compare
— (4.15  the spectrum ofE with (1.4) in the comoving limit. The
V= Vqin(E) numerical results fom=1 are plotted in Fig. 4, which con-

firm that the mass spectrum convergesl@) as\ increases
When E=1/2-6 (6<<1), we obtain V. (E) and E remains larger than 1/2. On the. other hand, as an
~—m28%(1+45). Then the inequality is reduced to example of the spectrum fan> 1_, the eigenvalueg for
m2> 7/ 8, which cannot be satisfied whef—~0 even if m=10 are plotted in Fig. 5. We find the common tendency

wu=>m*. Furthermore we can give a physical interpretation

Rs(E)>

of E#1/2. The classically allowed region Ry<R<R, 09
andR;—Ry;—0 asE—1/2, so the shell is confined in this o8| e et °
narrow region. However, it is impossible due to the uncer- ork o °
tainty relationAP-AR~#, thusE=1/2 is forbidden due to sk S
the quantum effect of the shell motion. This interpretation is R
also valid whenE>1/2. Since(4.14) tells usE+ 1/2 when oo r L . v
1/2<E<1 (even if u>mp due to the zero point fluctuations , *| * s
as mentioned beford& # 1/2 is valid in the static time slice. 03} oo° N
oz . a1
B. Nonstatic time slicing “r

Based on the result obtained in the static time slicing, we °

consider the Schringer equation(3.5) in the case\ #0 oty

except that there is no bound state in the regienR3<R; 02 g 2 4 s p 10
whenA>3. Any essential property df3.5 is not so much "

different from the cas@ =0, and we also impose the bound-  FiG, 5. The A dependence of the spectrurE(n) for

ary condition; the wave function must vanish at the regulain=10.000. The time slicing parameter is chosen to be
singular pointsR=m#"4[2(\+E)] and R=c. Then, we  \=0.0000, 1.0000, and 2.0000. It is shown in this figure that the
can derive the eigenvaluds in a similar manner. The ap- spectrum does not remain in the range-B>1/2 and even the
proximation thate=1—R,/R is constant in(3.5) leads to negative mass states are allowed.
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that the energy level at the ground state decreasesias  black hole and wormhole states correspond to the complete
creases. The remarkable point for-1 (i.e., u>mp) isthat  set of mode functions in whole Minkowski spacetime, the
the mass spectrum does not keep the conditiofenfl/2  mode functions in left- and right-handed wedge, respectively.
nevertheless the wave function has its support only inmThen, the complete set of classical solutions can be con-
R3;<R<w. As was suggested ifi7], even the states of structed by the both sets of the wave functions which have its
E<O0 are allowed, if\ is sufficiently large.[This might support in left- and right-handed wedge together.
means thaHg in (1.1) cannot be positive self-adjoint opera-  Furthermore, we showed that the wormhole states cannot
tor in generall Then observable states exist in the rangeexist whenu<m* ~2.4mp. Although we couldn’t discuss
—1<E<1 wheny is sufficiently larger tham,, and these  gpout the factom*/mp in detail, the necessary condition
correspond to the global structure of black hole and wormq4 15 for the existence of bound states tells us the tendency
hole_ formations(see .F'g' L . . of wormhole suppression and this condition is closely related
F'..na.”y’ we cor_15|der t_he wave f“’?C“O” given by the y, e ser0 point fluctuations of the shell motion. So this may

Schrcdmger equatior(3.5) in the comoving frameX—<), g gye to the result of this zero point fluctuations. For a
which has the form comoving time slicing also, we can see the same quantum

effect. Moreover, for noncomoving and nonstatic time slic-
V=0. (417 ings which are charactorized by finite nonvanishingone

can also see the same quantum effect at leastl. Al-
. though it is unclear whethdéf <0 is permissible or not, ob-
Note that this Schminger equation corre_sponds to the gervable states exist in the rangd <E<1 whenu>mp,
Wheeler-DeWitt equatiori1.3), and our Schrdinger equa-  while only black hole states are possible wher<me.
tion may be regarded as a natural extensiold). Interms  Thys our conclusion is that the wormhole formation with
of the requirement of unitarity and of positivity of energy, small mass is efficiently suppressed in the quantum collapse
Hajicek et al. [7] gave the boundary condition that for the of gyst shell due to the quantum fluctuations of the dust shell
bound statéE <1 the wave function must vanish at the origin yotion.
and at infinity. Then the discrete spectrumtoivas shown to Although our model is concerned about the local geom-
be (1.4) which becomes meaningless whem>1. As dis-  etries of the dust shell and both vacuum regions of spacetime
cussed by Hacek etal, this means that whem>1 one  gre treated classically, one might be able to consider the
cannot impose the positivity o or the regularity of the guantization of both vacuum region. Recently, Kucpao-
wave function atR=0. In our approach the regularity of pose the definitive treatment of the spherically-symmetric
wave function aR= R; are set up in any time slicing param- quantum problenfi16]. When one considers the quantization
eter\, even ifm>1. Therefore, we can discuss the CoOmovVv-of the vacuum region, one might use Kuchdreatment. In
ing limit through the extrapolation of the results to the rangethis case, the world volume of the dust shell will be treated
A>1. In this sense, as previously mentioned, observablgs a boundary of a spacetime manifold and one must con-
states exist in the range 1<E<1 whenu is sufficiently  sider the boundary term of the Einstein Hilbert action of
larger thanmp, there is no essential difference in a set of spherically symmetric spacetime at the world volume of the
observable states. On the other hand, there are no wormhodgell. Since, in his treatment, the boundary term of the action
states 6<E<1/2 whenu<mp. These states are suppressedand the foliations of spacetime near the boundary play essen-

2
_ %2 2
f d_RZ\II—'—M

2

1 M
1—Z(ZE+§

by the zero point fluctuations of the shell motion. tial roles, one must consider the foliation of spacetime near
the world volume of the shell. Various foliations of space-
V. SUMMARY AND DISCUSSION time near the shell are possible and our foliations which

. . characterized by the parameterare examples of that. Then

In summary, by studying this model of dust shell collapse,gne might be able to consider the foliation of the vacuum
we obtained the wave functions for the bound states withegions of spacetime from near the shell to asymptotic flat
positive eigenvalues d& under the static 'Flme shcmg. When region using our foliation parametkr The parametex will
u=>>mp, these can recover the classical solutions whichyecome more important in this case. It might be interesting
describe wormhole or black hole formatl'on. Th|s also meang, clarify that the mass eigenvalues are also obtained or not
that “energy” or “charge” current which discussed by \yhen one consider the wave functional of the vacuum region
Hajicek et al. must not vanish whem>>mp . In the static  anq together with the wave function of the dust shell motion.
time slicing, wave functions which has its support only inf these considerations were done, the difference of the
0<R<Rj3 correspond to the wormhole states, and waveyormhole states and black hole states become more mean-
functions which has its support only iRg<<R< corre-  jngfyl. Because “wormhole” in our dust shell collapse
spond to the black hole states. _ _means that there is a wormhole in the space which is a fo-

This situation is analogous to the quantum field theory injation of the Schwarzschild spacetime beyond the black hole

Rindler space[15]. In this theory, nevertheless the set of horizon and connect the untrapped Minkowski region to un-
mode functions in the left- and right-handed wedge of theyapped region of Schwarzshild space.

Rindler space separately is not complete on the whole

Minkowski space, both sets together are so complete. Let us

suppose that the regions<R<Rj; and R3<R<x corre- ACKNOWLEDGMENTS

sponds to the left- and right-handed wedge of Rindler space-

time, respectively. And suppose that one may regard that the We would like to thank H. Ishihara, J. Soda, T. Tanaka,
set of states with positive eigenvalues Bfin our model, and M. Hotta for valuable discussions.
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