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This is the first paper in a series on event horizons in numerical relativity. In this paper we present methods
for obtaining the location of an event horizon in a numerically generated spacetime. The location of an event
horizon is determined based on two key idgd$:integrating backward in time an@) integrating the whole
horizon surface. The accuracy, efficiency and robustness of the methods are examined with various sample
spacetimes, including both analyti§chwarzschild and Kerrand numerically generated black holes. The
numerically evolved spacetimes contain highly distorted black holes, rotating black holes, and colliding black
holes. In all cases studied, our methods can find event horizons to within a very small fraction of a grid zone.

PACS numbse(s): 04.25.Dm, 04.70:s, 97.60.Lf

I. INTRODUCTION The study of the dynamics of this surface is crucial for
understanding the dynamics of a black hole spacetime. In the

Black holes are among the most fascinating predictions imembrane paradigm of black hol¢$0], black holes are
the theory of general relativity. During the past 20 yearscharacterized by the properties of its EH, which is regarded
there have been intense research efforts on black holes amad a two-dimensiong2D) membrane living in a 3D space,
their effect on the astrophysical environment. With the excit-evolving in time and endowed with many everyday physical
ing possibility of detecting gravitational wave signals from properties like viscosity, conductivity, entropy, etc. We be-
black holes by the gravitational wave observatories undelieve this point of view is powerful in providing insight into
construction[the Laser Interferometric Gravitational Wave the numerical studies of black holes. In the second paper in
Observatory(LIGO) and VIRGO[1]], we have seen an in- this serieg11], we present methods and tools for studying
creasing surge of interest. The black hole events likely to béhese properties of the horizon surface. In the third paper in
observed by the gravitational wave observatories involvehe serie§12], we turn to the physics of black holes that can
highly dynamical black holes, e.g., two black holes in colli- be explored using these tools.
sion. The most powerful tool in studying such highly dy- There are two properties of the EH that make its location
namical and intrinsically nonlinear events is probably nu-difficult to determine in numerical relativity: It is defined
merical treatment. In recent years, there has been significanbnlocally both in space and in time and, moreover, in an
progress in numerical relativity in this directidsee, e.g., acausal manner. Therefore its location, and even its exist-
Refs.[2,3]). In particular, long evolutions of highly dynami- ence, at any time cannot be determined without knowledge
cal black hole spacetimes are now possjdl®], opening up  of the complete four-geometry of the spacetime. We will
the opportunity of many interesting studies. demonstrate how to overcome these difficulties.

The defining character of a black hole is its event horizon Consider a numerically constructed spacetime represented
(EH). The EH is defined as the boundary of the causal past diy a set of data given on atd lattice. Suppose the numeri-
the future null infinity (for a rigorous description, see, e.g., cal evolution has covered a region of spacetime so that at the
Ref.[6]). Photons emitted inside this boundary surface canend of the evolution one can locate a spatial domain which is
not escape to infinity while those emitted outside in a suitdikely to contain the EH(We show below how this can be
able direction can. It is the existence of such a boundarglone) On the one hand, as numerical evolution often does
surface that makes a black hole “black.” Only when a hori- not cover null infinity[13], generally one cannot give a pre-
zon surface is located can we know for sure that the spaceise location of the EH even on the final time slice. On the
time that we are studying contains a black hole. other hand, the black hole events we are interested in often

Locating such horizon surfaces is the subject of this firsinvolve black holes eventually settling down to a stationary
paper in our series studying event horizons in numerical relastate after going through violent processes, e.g., the coales-
tivity. Event horizons can now be found in numerically gen-cence of two black holes. If the numerical evolution covers
erated spacetimes, and their dynamics can be traced out, Uate enough times, so that at the end of the evolution the
ing methods we outlined in Ref7]. These methods were geometry returns approximately to stationarity, it is often
also used to generate and study event horizons for two cokasy to have aapproximatelocation of the EH, as we shall
liding black hole spacetimes in R¢8]. In another example, show below. We note that at late times, if the spacetime has
the first case of a toroidal black hole event horizon was distruly returned to stationarity, the difficulties of finding the
cussed in Refl9]. The present paper provides details of theEH due to its acausal nature and nonlocality in time disap-
methods needed to find the event horizon in numerically genpear, as the geometry is the same on each time slice hence-
erated spacetimes. forth.
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Of course, true stationarity is probably impossible in nu- 25—
merical evolution. One can aim at most at approximate sta- I
tionarity. We note that such approximate stationarity is pos-
sible, as dynamical black hole spacetimes can now be
evolved for a long timgcommonlyt~100M, and in some
cases to 1004) [14-16. Therefore the first set of questions
in the numerical study of black hole EH's is the following.

Consider a numerically constructed spacetime, such that 15
one has an approximately stationary final configuration. As-
sume that although the EH cannot be located exactly, it is
known to exist in a certain spatial domain. Can one deter-
mine this horizon-containing domain in all the previous time
slices during which the spacetime is highly dynamical, which
is often the real epoch of interest? That is, how does this
horizon-containing domain evolve in a dynamical space-
time? We will show that in the language used here, even if
the horizon-containing domain is fairly large at the final
time, it can be narrowed down tremendously at earlier times. o
This is true not only for analytic spacetimes, but also for o 2 4 6 8 10
dynamical ones. If the EH can be approximately located at r/M
late times, after the black hole and surrounding spacetime
return to approximate stationarity, we show that the EH can FIG. 1. A spherical black hole spacetime is shown in Eddington-
be accurately determined throughout the dynamical period dfinkelstein coordinates with several outgoing null rays trajectories
interest. plotted. The horizon is shown as a solid line, while various photon

The present paper focuses on this set of problems of lopaths are shown as dotted lines, with thei location marked.
cating the EH in a black hole spacetime. We have developed

two generations of “event horizon finders,” based on two gjtions that must be satisfied for succe@$:The geodesic
basic ideag7]: (1) Integrate backward in time, ar@) inte- /st land on the given EH, ar(d) the tangent of the geo-

grate the horizon surface instead of the individual geodesic$yasics must be the outgoing normal to the EH. In principle

We discuss these ideas in detail in Sec. Il. In Sec. IV wey,qp, siringent requirements could be satisfied and the history
examine how much accuracy one can obtain in locating thgs e EH could be traced out with such an algorithm. How-

EH throughout its history(i.e., how small the horizon-  gyer there is an intrinsic difficulty, making such an algorithm
containing domain can becomi various sample numeri- very inefficient. By the definition of the EH, outgoing null

cally constructed spacetimes, including distorted SChwarzsg'eodesics sli o ; ; ; :
. L ghtly inside the EH will fall into the singularity
child and Kerr black holes, and colliding black holes. We 3¢ar some short time, while outgoing null geodesics just

also compare various methods for locating the EH, includingyjisiy outside will escape to null infinity. Therefore, evolv-
our two generations of EH finders based on backward |nte|-ng null geodesics forward in time near the EH is a physi-

gration and another method recently proposed using forwar[;ja”y unstable process.

integration[9]. In Fig. 1 the behavior of various outgoing null geodesics

A basic _assumptio_n _in this paper is that one can Iocate_ﬂ] a spherical black hole spacetime is shown in terms of
certain horizon-containing domain at the end of the NUMeriEqdington-Finkelstein coordinaté?]. The horizon is given

cal evolution. An interesting question is to what extent one,q 4 solid line while photons are given as dotted lines. Out-

can use the techniques developed in this paper to improvgsing ny|l geodesics starting out infinitesimally close to the
confidence that the domain truly contains an EH or to rulg,,i;0n spread out to cover a large region of the spacetime.
out SL_Jch a po_55|b|I|ty. A_Ithough we shall not deal with 'gh|s They are “everywhere” on a late time slice. This physical
question in this paper, it is easy to see that the techniqu&§giapility, coupled with the inevitable finite differencing er-
developed can also be useful in this regard. In Sec. IV Weq, in 4 numerical calculation, ensures that null geodesics
shall_ see t_hat one can easily narrow th|s_ d.omam. on the finalil move away from the true position of the EH, even if
configuration to a large extent by examining trajectories Ofey are right on it initially. An accurate determination of the
null surfaces. history of the EH will not be possible unle¢a) the space-
time data have a very high resolution, aff] a very large
number of photons is followed, so that they are “dense”
enough to have some of them stay near the EH throughout
Suppose for the moment that the actual event horizothe evolution.
(EH) is given on the final time slice of the numerical evolu- However, a moment’s reflection tells us that this impor-
tion (for simplicity of discussion, the evolution is assumed totant property of the EH can be used to our advantage; the
be in the 3+-1 slicing of spacetime; other schemes, such agnstability of integrating outgoing null geodesics forward in
242, could be treated as wglHow does one determine its time near the EH implies that when integrating these geode-
location at earlier times? One may consider integrating nulkics backward in time near the EH, they will converge onto
geodesics forward in time, selecting those that successfullthe horizon. The backward direction is the stable direction of
arrive at the given EH at the final time. There are two con-integration. This is one of the two basic ingredients in build-
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ing our EH finders. In our first generator EH findé8,19, outside the EH depend on its tangential velocity. Also, the
called the “backward photon” method, we trace the EH by position to which it returns will not be the original position.
integrating null geodesics backward in time. The geodesic This kind of tangential drifting is undesirable not just be-

equation is a second order differential equation, cause it introduces inaccuracy in the location of the EH, but
more importantly, because it can lead to spurious dynamics
d2x dx? dx” of the “EH” thus found. Neighboring generators may cross,
Tz _Faﬂyﬁ N’ (1) leading to numerically artificial caustic poin¢®r an intro-

ductory discussion of caustics, see, e.g., REf]|, Chap. 10.
Unfortunately such tangential drifting is not easy to avoid
; éjue to the nature of the geodesic equati@h which we

that one first complete the spacetime evolution and store thigtegrate backward. The geodesic equation is not only sec-

entire spacetime evolution metric, or at least a strip of jjond order, but also requires derivatives of the numerically

which safely contains the full history of the EH. However, in generated metric data which are generally more inaccurate.
all cases we studied, being able to integrate in the stable Another consequence of the second order nature of the

direction is well worth the extra storage requirement. As th 9odesic equation is that not just the positions but also the

null geodesics are “attracted” to the EH when integra’[edd.'reCtionS must be specified in starting th? backyvard _integra—
backward, we found that the position of the EH can be delion: Ne|ghbor|ng phatons must have thel_r starting direction
termined to an accuracy of a small fraction of a grid zone, agvell correlated n ord_e_r to avoid tangential d_nf_tmg across
shown in the next sectionForward integration schemes one another. We find it |mportan§ to make expllcn use of the
generally also require storing the entire spacetime evolutiorPOPe"y that the surface we wish to trace is a closed 2D

as many photons must be “shot” forward and then tested toé,urface embedded in 3D space at the start of the backward

see if they end up inside or outside the horizon at the ﬁna\ntegration. Wh”? the starting posit_ions_of the photons are
time [9].) taken to be on this surface, the starting directions are taken to
Two .comments regarding the “attraction” of the EH in be normals to this surface. Of course even if the geodesics

backward integration are in order. First, this “attraction” is have aceur atte statlrtlng vaI(ljJ_es they dmat))/ still ?/Uft gug tt?\ '?a:ﬁ'
only in the global sense. Locally, the EH has no special propStracy In integration, as discussed above. We find that the

erty. That is, geometrically the EH is not distinct from other _‘backward ph?toEi’ rtnetho;jtﬁ stllzlhquﬁtehdemha?ﬁlng_;fr_l f|r|1tq-
surfaces. As the geodesic deviation equation is governed g9 an accurate nustory ot tne EF, afthough the dificutties
the Riemann curvature tensor, which has no special value e much milder than those arising from the instability of

the horizon, the outgoing null geodesics are not attracted tg]t?gratlng forwgrd In tlmt(_a. hori finder. buildi th
the EH in any local sense. On the other hand, in-a13 N our second generation horizon finder, butiding on the

numerical evolution, only those outgoing null geodesics that"‘bove idea of explicitly using the surface-forming property

are either very near or inside the EH at early times can re(_)f the EH, we follow the entire horizon surface itself, rather

main in the finite range of the spacetime with a nonvanishin han t_racking individual photons independently. Generally
lapse which is covered by the numerical evolution at late peaking, the I.EH can be cons@ered astdl wll surface,_
enough times. In other words, when integrating backward i xcept at special points wh_ere its r}ormal cannot be defined.
time, outgoing photons in this range approach the EH after xcept for these special points, which we shall _dlscuss later,
sufficiently long integration. The EH is attractive only in this one can represent thetd EH surface by a function

global sense in time. Note that this attractive property im-
plies that our starting point in the backward integration need
not be exactly on the EH. This is a key point that we will
quantify below.

Second, this attractive property of the horizon is just for
outgoing photons. An ingoing photon when traced backward
will not only leave the EH surface; it may even leave the
finite region of the spacetime. In the one-dimensional cas
inward and outward photons are clearly distifmtly outgo-
ing ones are displayed in Fig),but for the general 3D case, :
when the two tangential directions of the EH are also con- gf= —g"aif+(g"af)*—g"g"0ifa;f @
sidered, the situation becomes more complicafidére nor- ! g" '
mal and tangential are meant in the 3D spatial, not space-
time, sense.Whether or not a trajectory can eventually be In our second generation horizon finder, we integrate this
“attracted” to the EH, and how long it takes for it to become equation backwards in time. This is what we call our “back-
“attracted,” depends on the photon’s starting direction ofward surface” method. Notice that at the final time, the EH is
motion. We note that even for a photon which is alreadygiven as a closed 2D surface. Given this as the starting con-
exactly on the EH at a certain instant, if its velocity at thatdition for the backward integration of Ed4), there is no
point has some component tangential to the EH surfase other condition needetk.g., there is no need to specify ei-
generated by, say, numerical inaccuracy in integrafitre  ther an initial direction or boundary conditions for the sur-
photon will move outside of the EH when traced backwardface. The reconstruction of the complete functid(t,x')
in time. For a small tangential velocity, the photon will even- gives us the full history of the EKin fact, much more than
tually return to the EH. The duration and distance it moveghis, as we will discuss below and detail in REEL]).

where\ is an affine parameter along the geodesic.

f(t,x)=0, (2
which satisfies the null condition
g*’d,fa,f=0. ©)

e Hence the evolution of the surface can be obtained by a
simple integration:
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Both the backward photon and backward surface methoblack hole spacetimes evolved to ddtf which we are
work very well as shown in Sec. Ill below. However, there isawarg have such properties. At those points where caustics
a number of advantages of using the backward surfaceay appear, suitable one-sided derivatives are used.
method. Alternatively, one can treat horizon caustics with the sur-

(i) Of primary importance is that the method is simpler face methodvithoutintroducing a special treatment for pos-
and less susceptible to numerical error than the backwarsible caustic points, provided that we do not restrict 9.
photon method. Notice that E¢4) contains only derivatives to describeonly the EH, butalso the locus of the null gen-
of the surface andot of the metric components themselves erators which leave the EH through the caustic points back-
and is therefore less susceptible to the numerical inaccuraciegard in time. That is, in tracing Eq4) backward, we allow
present in the metric data. The horizon is generally found irthe closed surface to cross itself. The point of crossing is the
numerically evolved spacetimes in regions where metriccaustic. Although the normal of the surface is not continuous
functions contain rather steep gradients that are poorly regoing across the caustic on the EH, it is continuous going
solved[20], and hence their derivatives may not be accu-from the EH across the caustic point to the locus of genera-
rately known there. tors which has left the EH21]. This is true provided a suit-

(ii) Tangential drifting is not a source of error, because theable identification of neighboring surface elements is used,
only direction that a surface can move is normal to itself.namely, when the identification of two neighboring surface
Once the surface becomes the EH, it cannot drift away fronelements does not change in time. This issue is considered in
it. This is in contrast to integrating geodesics; even if thethis paper where we treat the collision of two black holes in
geodesic is right on the horizon at some instant in time, itSec. IV D, when caustics are important.
does not guarantee that it can stay on it all the time. See Fig. These backward surface and photon methods bring for the
3 below. first time the possibility of studying the properties of horizon

(iii) Unlike integrating null geodesics, the result of this generators and caustics in numerical relativity, but the sur-
method is guaranteed to be surface forming, as we are eface method provides a particularly elegant, economical, and
plicitly integrating surfaces. This is a nontrivial advantageaccurate way of computing this structure.
over integrating geodesics; in particular, the integrated geo- Before we go on to the next subsections on the tests and
desics can fail to be surface forming, either due to the nuthe accuracy of the methods, we comment on the fact that the
merical error discussed above, or due to the existence aftarting position of the EH in the backward integration is
caustics on the horizon. At the caustics the geodesics leawdten not known precisely. As pointed out earlier, as long as
the EH surface when integrated backward in time. If therehe numerical evolution can be carried to a point that the
are geodesics leaving the EH through caustics, but this caublack hole returns to approximate stationarity, it is often pos-
tic point is not so recognized, and the EH is taken to be thaible to locate a region which contains the EH. For example,
surface connecting all geodesics, the evolution history of ithe apparent horizofAH) is always inside the event horizon
would be completely wrong. However, it is nontrivial to de- (provided quantum effects are ignojetf an AH is found, it
termine whether a caustic or numerical error causes geodean be taken to be the inner boundary of this horizon-
sics to become non surface forming. In both cases, we magontaining region. The real task in locating the horizon is to
see null geodesics cross one another and move outward. Sdetermine the evolution of this horizon-containing region.
Fig. 3 below. Because of the attractive nature of the null surfaces to the

(iv) The surface method is naturally suitable for handlingEH, the horizon-containing region can be narrowed substan-
and studying caustic structures on the EHere for simplic- tially in the backward integration. Indeed we shall see that,
ity of discussion we indiscriminately refer to all classes ofusing our methods, it is often easy to narrow this region
points at which horizon generators leave the EH when tracedown to much less than a grid separation used in the numeri-
backward in time as horizon caustics; see, e.g.,[R&1.) As  cal construction of the spacetime. In some sense the location
the normals of the EH are different when the caustic point iof the EH is determined to a precision higher than the reso-
approached in different directions, strictly speaking the EH idution of the background spacetime, something seemingly
not a null surface at such points, and E4). would seem to impossible at first sight. This is not paradoxical as in all
be in difficulty. However, we note that in the generic case ofcases studied in this paper, the EH surface expressed as a
an isolated caustic point, the EH surface surrounding théunction, Eq.(2), is constructed using information and inter-
caustic point can be evolved using one-sided spatial derivgolations involving many data points, hence “washing out”
tives on the right-hand sidéRHS) of Eq. (4). Despite the some local fluctuations. However, if the horizon-containing
fact that there is no well defined normal to the surface at aegion were to just span a few angular grid points, the local-
caustic, the motions of surface elements on different sides dtation of it to a small fraction of a grid separation would no
the caustic must be continuous as determined by(&qvith  longer be meaningful.
appropriate one sided derivatives, as the EH is a continuous Using our backward methods we are able to trace accu-
closed surface at each time slice. In the two-black-hole colrately the entire history of the EH, as we detail in the next
lision case studied below in Sec. IV D, Fig. 10, there issection. However, there are cases in which a region of the
clearly a cusp in the EH along ttzeaxis, so that the surface numerically constructed spacetime is badly resolved.,
is not smooth there, but it is continuous. This is obtainedthe crotch region in the two black hole case study bejow
with a one-sided treatment of the derivative there. This treatwhere the backward surface method method is capable of
ment requires knowledge of where caustics would be formproducing more reliable results. The basic difference in the
ing a priori. Sucha priori knowledge is often possible for two methods is in their computational requirements and con-
spacetimes with symmetry properties. In fact, all dynamicvenience. A typical case studied here is that of a black hole
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interacting with a gravitational wave. Such a case is resolvedpplications to dynamical spherical black holes, distorted
on a grid of 200 radial by 53 angular zones, and evolved t@axisymmetric black holes with and without rotation, and col-
t=75M. To trace the EH to 1/10 of a grid separation for theliding black holes.

dynamical period of the evolution (@<t<48M) takes
only a few minutes on a computer workstation. For the back-
ward photon method to achieve the same accuracy, it takes ) )
several times longer. For future applications with dynamical In the surface method, the location of the surface is rep-
black hole spacetimes evolved to thousandsviof we be- resented by a function. The use of a suitable parametrization

A. Numerical implementations

lieve the backward surface method is most promising. of the surface is important. For the axisymmetric cases dis-
cussed in this paper, a convenient choice is
[Il. NUMERICAL TECHNIQUES AND TESTS OF f(t,r,0)=r—s(6,t)=0. (5)
METHODS

In this section we discuss both the numerical implemen- With this parametrization, Ed4) for the evolution of the
tations of our surface methods and provide examples of thesurface becomes

— 9"+ 9"%9,5+ (9" —9'"%9,5)2—g"[ 9" — 299,45+ g%%(9,45)?]
(9tS: - gtt . (6)

We will use this as our definition of for almost every numerically evolved spacetime. Although the numerical
case in this paper. spacetime is geometrically the static Schwarzschild space-
Next we discuss details of the numerical implementationtime, it is evolved with a maximal slicing condition which
of these methods. For the backward photon method, we usergakes the metric functions change in time. As discussed in
standard adaptive step size, fourth order in time Runge-Kuttgef.[20], such a time dependence makes even the Schwarzs-

method[22] to integrate the second order geodesic equatioihild spacetime quite difficult to evolve numerically for long
2. For the_surface method we have used a number of me”beriods of time(beyond about=100M with reasonable grid
ods, including second order leapfrog, a second order Magyarameters As the coordinates fall in towards the hole the
Cormack predictor corrector method, and a fourth ordeqi;on moves out in coordinate space, the lapse collapses,

Runge-Kutta method using the method of lines to integrate, 4 |5rge gradients develop in the metric function near the
hyperbolic Eq.(4) in time as a set of coupled ordinary dif- horizon. (For more details on these problems, see Refs.

ferential equations. All methods give similar results. . : .
In following the horizon backward through the spacetime,.[zo’lzq') The advantage of using this as our first test bed case

we necessarily require a spacetime data at points that do ngtthat,.on the one hand, the numerical ;pacetlm(_e gongtructed
lie on the numerical grid. For this we must interpolate '[heWIth this code ha_s many of the properties and d'fﬂcu.lt'es of
spacetime data to the actual location of the horizon at eacfj 96neral numerically constructed black hole spacetime. On
time. For the backward photon method, we must interpolatd€ Other hand, the spacetime is really a Schwarzschild
boththe metric and its derivatives to these locations. On théPacetime for which we know where the EH should be for all
other hand, for the surface method we neety the metric  time. In particular, in the numerical case the apparent horizon
itself. For both methods, we find that second order interpo{AH) and EH coincide. We have accurate AH findg2d]
lation is adequate to determine these data values. that can locate the AH and thus, in this case, the EH; on any

The angular derivatives of the functiat,6) in Eq. (4)  given single slice of the spacetime we know both horizons
are computed using both second and fourth order finite difwithout needing to know the future or past of that slice. In
ference methods, with similar results. Although this way ofthe analytic spacetime, the horizon israt2M. This pro-
representing the surface works well for almost all cases disvides us with important accuracy checks on our methods of
cussed in this paper, as we show in Sec. IV D, other paramocating the EH throughout the evolution.

etrizations can be necessary at times. In Figs. 2a)—2(d) we show results for a spherical black
hole spacetime. For the numerical spacetime in Figa), 2
B. Test beds 2(b), and Zd) we apply our horizon finder to the data ob-

tained in the evolution assuming neither spherical symmetry
nor the fact that the spacetime geometry is really Schwarzs-
In this section we show how the methods detailed abovehild. At the final time slice, the horizon-containing region is
can be applied to pure, spherical Schwarzschild black holesletermined by examining the lapse function and the radial
We consider both the analytic Schwarzschild solution and anetric function. For a spacetime evolved with maximal slic-
maximally sliced Schwarzschild black hole evolved with theing, the event horizon resides in a region with a partially
2D, axisymmetric black hole code described in REZ8,14]. collapsed lapse function. In Fig.(&@, we show the lapse
We use this important test bed case to show the accuracy fanction « at the final time slicet=100M. We take the
which one can determine the location of the horizon in ahorizon-containing region to extend fromx=0.1 to

1. Spherical black holes
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FIG. 2. (a) We show the lapse at=100M for a single Schwarzschild black hole evolved with our 2D axisymmetric code using maximal
slicing. The horizon-containing region, determined by the conditior<@.4% 0.7, is marked by crosses. The outer edge of the region is
marked @) and the inner is marked . (b) We show the evolution of radial coordinate locationf the apparent horizo(dotted ling, and
the location of horizon-containing regidgeolid lineg for the backward surface method applied to a Schwarzschild spacetime evolved with
our axisymmetric black hole code. The coordinatequals the isotropic Schwarzschild coordinat¢=a0. As the evolution continues, the
relation betweem and the isotropic coordinate becomes a function of the metric. Other test surfaces are shown as dashed lines. All surfaces
converge rapidly towards the true event horizon locatigh.The proper distancAs of an outgoing photon moving near the horizon is
plotted against the Killing time in logarithmic scale. The thick dashed line gives the results obtained using the backward surface method.
The solid line labeled “analytic” gives the result obtained by integrating Efjs-(9) in text. The dotted line labeled “linearized” shows the
trajectory given by Eq(10). We see that the solid line and the dashed line are right on top of each other, with the dotted line just barely
distinguishable. The inset shows the slope of all the lines being nearly 1/4, as given §$0Eqd) The coordinate location of the
horizon-containing region is shown as solid lines. A nonspherical initial trial surface is shown as a dashed line. The apparent horizon is
shown as a dotted line. The nonspherical initial trial surface converges to the EH, just as do the spherical trial surfaces. The final horizon,
att=0, is shown as a thick linde) The evolution(at timest=98.9M, t=98.4M, t=98.3V, andt=98.2M from top to bottom, with the
line AH labeling the position of the true EH &t 98.9M) of a very distorted trial surface is shown in coordinate space. The evolution breaks
down, showing that a highly distorted trial surface can develop trouble if the parameterization of the surface is unsuitable. See discussion in
the text.
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where\ is an affine parameter artdis an integration con-
= stant. To leading order ikr=r—2M, Egs.(8) and (9) can
i easily be integrated to give
270+ 1
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b
r 1 for an outgoing photon. Its maximum distance from the ho-
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FIG. 2 (Continued. showing that the exponent is 1/4 in unitstofM. The trajec-

tory given by Eq.(10) is plotted in Fig. Zc) as the dotted
a=0.7, with (0) labeling the outer edge and)(the inner line. It is just barely distinguishable from the solid line la-
edge of it. In Fig. 2b), the radial coordinate of the two  Peled as “analytic” in Fig. 2c), which is the trajectory ob-
surfaces ¢) and () traced backwards in time is shown. At tained by integrating the full null geodesic equation, Egs.
t=100M, the two surfaces are separated in the radial coort?)—(9), without assuming —2M to be small. In turn the
dinate by 3.M. By t=85M, the two lines are separated by §ol|d line lies r_|ght on top of the thick dashed Ime represent-
just one grid zone, corresponding to a differencerimf NG the numerical backwards surface method in the analytic
0.35M. By t=70M, the two lines are no longer distinguish- SPacetime, giving full support for the accuracy of the
able, with a separation down to 1/10th of a grid zone, amethod, at least in this simple case. .
difference inr of 0.03M. The separation exponentially de- !N Fig. 2d), we show the evolution of the coordinate lo-
creases down to 108 grid zones at=0M. This rapid Ccations of these surfaces in the first quadrant. The surfa(_:es
shrinking of the horizon-containing region is a direct conse-marked (), (0), and AH are the same surfaces as shown in
quence of the divergence of null geodesics forward in time19- 2b). Here, we have evolved an additional, nonspherical,
shown in Fig. 1. We conclude that if the aim is to locate theSurface. The location of this surface is givertatl00M by
horizon to one grid zone accuracy, we have succeeded e formula
doing so for the times=0M to t=80M. We emphasize that
no information about the apparent horizon is used in the

Pprocess. _ o with 7, chosen to be the radial position of the apparent ho-
For the purpose of comparison, in Figbpwe have also j;on withw=4 andA=0.2. We evolve this surface to dem-

shown the trajectory of surfaces extremely far outside and fa5girate that our initial trial surfaces need not have the same
inside the horizon-containing region. These surfaces ar8ngular dependence as the EH this case, sphericalin a

shown as dashed lines. We see that the outer one converg&gnerm dynamical black hole spacetime, it will not be pos-

q_uickly to the _other te_st surfaces, while the inner one is i”i'sible to pick trial surfaces having the same coordinate or
tially trapped in a region of collapsed lapse. 4t 40M, all

) J LTI geometrical angular dependence as the EH to be traced out.

the surfaces are practically indistinguishable. Such trial surfaces are not necessary, though. In the case
In Fig. 2(c), we show that the convergence is in fact ex- ghown in Fig. 2d), where the trial surface is quite nonspheri-

ponential. Here we plot, in the logarithmic scale, the maxi-c5| with part of the surface inside and part outside of the EH,
mum proper distance of a photon on the null surface) ( \ye see that the trial surface quickly converges when traced
from the horizon, as a function of the Killing tintéM. The  packwards in time. All of the surfaces are very close and
result is given by the thick dashed line. We get a straight ling; st completely spherical y= 70M. By t=50M, all the
in the logarithmic plot, with a slope approaching 0.25, asgfaces are within 1/10th of a grid zone. We note, however,
shown in the inset. This is, as expected, the analytic value, 4g4t 4 sufficiently nonspherical surface may itself develop

can be easily deduced in the following. , caustics, particularly if it is initially far from the true EH. In
Consider a null trajectory in the Schwarzschild geometryFig_ 2Ae) we show the evolution(at times t=98.5V

near the horizon. The equations of motion are givenBl  (_“9g a1 t=98.3Vl. andt=98.2M from top to bottom
oM with the line marked AH labeling the position of the AH and
) 1—- —— thus the true EH at=98.9M) of a highly distorted surface
ﬂ :i_ r @) with the angular dependence of E@l2) increased to
dn/  b? re w= 16, the amplitude decreasedAe=0.1, and the center of

7= 70+ A coswé, (12
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FIG. 3. To illustrate both the tangential drifting effect and in ~ FIG. 4. We show the maximum coordinate separation between
what sense the EH is attractive, as discussed in the text, we showrious trial surfaces and the exact horizon in the analytic Kerr
the evolution of two photons launchedtat 100M right on the EH  Spacetime with a rotation parametim=0.68. The convergence
but with initial direction not exactly normal to the EH. They have a to the exact solution is exponential, even though for a Kerr black
small but nonzero value in the ratio of the initial angular to radial hole rotating this rapidly the horizon has a very nonspherical geom-
coordinate velocities. The trajectories of the photons are representédry.

by dotted lines and the times at various points on the trajectories are | ) L -
shown in units oM. The photons drift out from the horizon and horizon at late times, which increases rather than remaining

cross each other dt=98.0M, producing a false horizon caustic constant. Remarkably, this lack of accuracy at late times,
point if these photons were taken as horizon generators. Tracinghen the EH finding algorithm is started, doest cause any
further backward in time, they turn around and asymptotically ap-difficulty in finding the EH at earlier times, as seen in the
proach the correct radial location of the EH. The radial coordinatdigures. Therefore, not only are our algorithms able to find
(vertical axis is rescaled by the radial coordinate value of the EH, accurately the true EH even with a poor initial guess for its
so that the EH is always at 1 on the vertical axis. The horizontalocation, they are also insensitive to inaccuracies in the
axis is @ in radians. Although the photons remain rather close to thespacetime data that inevitably occur at late times.
correct EH location throughout the trajectory, they drift substan-  Finally, in Fig. 3, we show the tangential drifting that can
tially in the tangential direction. For various implications of this occur with the backward photon method, as discussed in Sec.
behavior, see discussions in the text. Il. Figure 3 also serves as an illustration to the other com-
ment we made above concerning the “attractiveness” of the
the perturbation moved away from the apparent horizon. Wé&H to backward integrated photons, namely, the attraction is
find that the surface method fails, with numerical noise de-only in the global sense. In this example the tangential drift-
veloping as the surface tries to cross itself. This crossing ifng is due to the choice of the initial direction of integration.
itself is not fatal to the surface method, but the particularTwo photons are traced backwafshown as dotted lings
parametrizatior{5) of the surface cannot describe this cross-beginning at the exact location of the EH tat 100M, but
ing. As we see below, the self-crossing of the surface can bwith a 3% error in the starting direction. That is, instead of
handled with a proper parametrization, which is neededeing normal to the EH,/p, =0, in obvious notatioy we
whentrue caustics develop, as in the collision of two black usep,/p,=*0.03. In Fig. 3, the trajectories of these pho-
holes. We stress that when the black hole has returned tons are shown with the corresponding times marked. The
guasistationarity at late times, one does not expect the EH tadial coordinates are normalized by the position of the EH,
have such a rapidly varying angular dependence and oneo that the EH is at 1 on the verticahdial coordinater)
would not pick such surfaces as the outer or inner boundarieaxis. We see that with the 3% error in the starting directions
of the horizon-containing region. We study such an extremeof the photons, the photons move out of the EH when traced
contrived example only to explore the limits of our methods.backward in time. If these photons were taken as horizon
We note that at late times the data representing the spacgenerators, this would introduce a small erfioote the scale
time itself as obtained in Ref$20,14 become inaccurate of the 5 axig) in the location of the “EH” for a period of
due to the large spikes developing in the metric functiongime, as the photons are gradually “attracted” back to the
near the horizorf20]. As these spikes become ever steepercorrect radial location after some integration. However, the
during the evolution, they become less and less well reerror in the tangential direction is substantial, as we can see
solved, and therefore they are not accurately modeled on tha Fig. 3, where the horizontal axis is given in termséoin
numerical grid. This lack of accuracy in the spacetime itselfradians. In particular, the two photons cross each other, cre-
is reflected in the calculation of the area of the apparenating an artificial “caustic” att=98.0M on their way out
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TABLE I. For the case of the highly distorted nonrotating black 4
hole, we find the normalized area of the EH &t0. The normalized
area is defined bA=area/16r’°M3p,, . We find this quantity for a
surface evolved with 25, 50, and 100 angular zones on the surface.
We show the convergence orderfor the areas with varying num-
bers of angular zones. Thus we conclude that our method is second
order convergent. We stress, however, that this numerical conver- [ Event Horizon
gence is different from the physical convergence described in Sec. '
Il

\\\\\\\\\\\\\\\\\\\\\\\\\\\ [BLALALAL L B I B

Escaping Photon ]

- "”é.:;ptured Photon

=]
Angular zones Normalized mass .
25 0.79612287
S0 0.79572879 -
100 0.79563006 1f ]
o 1.99 '/ /Apparent Horizon

from the EH. Although they return to the correct radial EH
location eventually, theig values change dramatically, mak- M
ing the trajectories very different from those of the true ho-

rizon generators. FIG. 5. The case of a spherical black hole with a massless scalar

field falling in is shown. The dashed line represents the apparent
2. Kerr spacetime horizon. The line marked “event horizon” is obtained by applying

We briefly consider the Kerr spacetime, which is knownthe backward methods to a point initially on the apparent horizon at
analytically. In Ref[15], the Kerr spacetime is studied in a 1= 80M. The dotted lines labeled "escaping photon” and “trapped
coordinate system like that used for the studies of distorte§"°0"" répresent photons integrated forward in time from just out-

Schwarzschild black holes discussed above. We have takesr'1de and just inside the “EH.

the analytic Kerr metric in these coordinates, with a rotationy,o background spacetime to be given and interpolatable, and

parametera/m=0.68, to study our EH finders for rotating 5re concerned only with the convergence of the implementa-
spacetimes where the EH location is known analytically. Inijon of Eq. (4).

Fig. 4 we show the maximum coordinate separation between Thus, to test convergence we trial surface and integrate

three test surfaces and the analytically known horizon versug,is surface backwards using 25, 50, and 100 angular points

time. Again, we see an exponential convergence of the sugy the surface using a given background spacetime. At
faces to the exact location, as expected. This is a confirmg—  \we measure the normalized area of that surfadere

tion both of our numerical implementation and of the physi-ine normalized area is defined AKL672M 5pp). As shown

cal convergence discussed above. in Table I, this quantity is second order convergent with our
integrator. These data are for the high amplitude case de-
C. Numerical convergence scribed below(the spacetime was computed on a 25

i inal i : . rid). This convergence is precisely what we would expect.
The final numerical issue to which we turn is that of con-2 ) 9 P y p

vergence. Before beginning our discussion of numerical con-
vergence we stress thatimericalconvergence is a subject

entirely different from thghysicalconvergence described in A. Spherical distortions
Sec. II. In that section we described how in a spacetime
devoid of numerical error, the horizon-containing domain
will shrink to zero slze in exponfentlal time. This IS a Conse'.although the motion of the coordinates through the spacetime
guence of the physical properties of the spacetime, and is

true in the continuum and discretized spacetimes. It is thismakes both the black hole evolution and tracking of the EH

feature which allows us to locate accurately the EH in d “hontrivial. In order to break the degeneracy between the AH
. . y Y-and EH, we next consider a nonvacuum case. In this case we
namical spacetimes.

g . . volve a spherical black hole with a relativistic, massless
Here we discuss the effect of resolution on our analysis o

various spacetimes. This is a test of our numerical methods lein-Gordon scalar field falling into it. The system is de-
. > SP S ) . fgcribed by the Klein-Gordon equation
in particular the interpolation and evolution schemes, not o

IV. DYNAMICAL SPACETIMES

The spherical case just discussed above was a vacuum
Schwarzschild black hole with no true physical dynamics,

the physical principles upon which our method is based. But g“’é.,.,=0, (13
it is an important test we routinely carry out for all our nu- o
merical studies. coupled to the Einstein equation through the energy-

Since we are taking our background spacetime as givemmomentum tensor of the scalar field. This problem has been
the numerical convergence of interest is the convergence aftudied previously in Ref.20].
surfaces and surface quantities when the number of evolved With a gravitating scalar field falling into the black hole,
points on the surface is changed. In essence, we are assumithg system has true physical dynamics. Not only does the
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horizon move out as coordinates fall into the hole, as above, In Fig. 6(@), we demonstrate that we can locate the EH to
but now the horizon also expands in a geometric sense, as itégh accuracy for such a spacetime. At time 75M, the

area must increase to accommodate the infalling matter. Alack hole has returned to approximately the Schwarzschild
particular test case is shown in Fig. 5. Here the scalar fielgieometry. The apparent horizon, represented as the short
was set up in a Gaussian shell surrounding the black hole. Agashed line in Fig. @), has returned to an almost exact
the field propagates into the hole, the horizon expands asphere. As the EH must lie outside the apparent horizon, the
expected. The solid line labeled “event horizon” is obtainedinner boundary of the horizon-containing region can be taken
by integrating the surface backward in time from the AHto be the location of the apparent horizon on the last time
location at timet=60M. We refer to this line as the “EH"  slice, t=75M. The outer boundary is taken to be the line
because as shown above it will converge rapidly to the trugnarked ) in Fig. 6@), representing a spherical surface
EH. The dashed line is the AH obtained by solving the AHsome distance outside the apparent horizon. The fact that this
equation{24] at each time slice. Note that the AH always lies |ine is safely the outer boundary can be seen, as the area of
inside the EH, as expected, and that at early times the EH igis spherical surface is shrinking backward in time. On the
quite a bit larger as it starts expanding before the incomingther hand, the line marked )( starting from the AH at
matter arrives. The two solid lines labeled “escaping phot=75M is expanding outwards. The two surfaces exponen-
ton” and “trapped photon” were obtained by integrating ra- tially approach each other, and this separation becomes less
dlally OUthing null geOdeSiC@rward in time from locations than a gr|d zone at=62M. Note that at this time, this one-
1/10th of a grid zone inside and four grid zones outside thgyrid-point-wide horizon-containing region is entirely outside
EH at early times. the AH.

We note that even in this spherically symmetric case itis |n Fig. 6(a), we also show other test surfaces as long
not possible to integrate accurately the path of the event hajashed lines which are well outside or inside the horizon-
rizon forward in time. Even when photons were placed right containing region. All these test surfaces coincide to much
on the known horizon position initially, due to the unstable|ess than 1/10th of the grid separati@orresponding to typi-
nature of the forward integration, the horizon could becal proper distances between the surfaces of less than
tracked for only a short while before it would diverge away 0.01M) for the ranget=(0-40 M. The inset shows an ex-
from the true EH. If we want to track the horizon further in panded view of the early time. All surfaces computed are
time, one way is to “abandon” the original photons, and startshown, but they are completely indistinguishable in spite of
new ones closer in to the horizon at the time when the origitheir extremely different starting positions, clearly showing
nal ones get too far apart, but the resulting horizon will con+he power and stability of this method. For all practical pur-
sist of a discontinuous surface. A variation on this idea woulthoses, this surface can be regarded as the EH=At the
be to use forward photons simply as a probe. If any photol\H and EH practically coincide with each other. Then the
integrated forward in time from a given point is not within EH foresees the coming of the wave and expands. As the
the apparent horizon at late times, then that point may bave is falling in, after about=15M, the AH starts to ex-
considered outside the EH. By integrating many photons forpand and catch up. The behavior of the AH and EH is exactly
ward from many spacetime points, a horizon surface can bgs expected(We note that the area of the hole continues to
mapped out, as shown in R¢B]. This is an effective but  grift up after 40M. This is a well-known numerical inaccu-
time-consuming procedure, and the trajectories traced do n@hcy due to the development of a sharp peak in the radial
give the trajectories of the generators of the horizon. metric component. This effect is in the background space-
time and is unrelated to our schemes for locating the hori-
zon)

In Fig. 6(b), we show the maximum separation over the

Next we present results for an axisymmetric black holewhole surface between the outer and inner boundaries of the
that has been distorted by the presence of a gravitationlorizon-containing region versus tinilgaximum among the
wave. The initial data sets for these studies consist of amngular zongs The vertical axis is in terms of grid separa-
Einstein-Rosen bridge in the presence of a gravitationalion. As marked by squares, the maximum separation expo-
wave in the form originally considered by Brill, and have nentially decreases down to 1, &t 60M, and then keeps
been described extensively in R¢R5]. The gravitational —decreasing to 1/10, 1/100, 1/1000, 1/10 000, and.0 > of
wave is set up as a torus surrounding the black hole, and i8 grid zone byt=50M, 39M, 27M, 16M, and M, re-
location, amplitude, and shape can be varied essentially aspectively. Again, for all practical purposes the outer and
bitrarily. The code used to evolve these data sets numericallyiner boundaries of the horizon-containing region coincide,
has been discussed in Reff4,23,14. and the region can be regarded simply as the location of the

The first case we study here is that of a black hole with a&EH for earlier times. We also note thattat O for the present
narrow ring of weak gravitational waves isolated from thecase, the EH surface is found to be geometrically spherical
hole initially. When this system is evolved, we expect the(using the tools described in the second paper in this geries
hole to become distorted slightly as the waves impinge on itto within 1 part in 16.
and then settle down to a Schwarzschild hole with a larger Finally, we also compare the result of our backward pho-
mass afterwards. Such a case provides a strong test of otan method to our surface method in Figcs We show the
methods as we must be able to track a horizon that beginsoordinate location of the surfaces integrated directly accord-
essentially as a sphere, develops a distortion as it is hit by g to Eq.(4) at various times, and also the location of sur-
nonspherical wave, and returns to a sphere after a long intdaces formed by integrating the geodesic equakibg. (1)]
gration. backward in time. For the latter integration, the initial loca-

B. Distorted axisymmetric black holes
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FIG. 6. (a) The area of various trial surfaces is shown for a slightly distorted Schwarzschild spacetime. The horizon-containing region
[between the solid lines labeled)(and ()] is traced backward in time and compared to the area of the apparent h@limshdashed line
Several other test surfaces are shown as long dashed lines. The attracting nature of the event horizon is dramatic, as all of the trial surface
integrations trace the same path after some integration, although they start from very different initial locations. The inset shows an expanded
view of the early time resultsAll surface integrations are shown, and are completely indistinguish@bl/e show the maximum width
among the angular zones of the horizon-containing region in the slightly distorted Schwarzschild spacetime, integrated backward in time. We
note that the narrowing of the horizon-containing region is exponefitja¥We compare results obtained with the backward surface method
to those obtained with the backward photon method for the perturbed Schwarzschild spacetime. The surface method results are shown as
solid lines, while the surfaces formed by the backward integration of photons are shown as dashed lines. At all times, the results agree to
within 0.05 grid zones, so that it is almost impossible to distinguish the results on this graph.

tions of the photons were taken from the initial trial surface,determine the EH to similar accuracy as we have done here,
and their initial directions were taken to be normal to thehowever, would take around 1@imes more CPU time than
surface. In this figure the results are indistinguishable, asur backwards integration methods.

they coincide to within 0.05 grid zones throughout the evo- Next we briefly consider a more strongly distorted non-
lution. We note that we have also compared the results of theotating black hole, providing a test of our methods in the
forward integration technique described in REJ] to our  more nonspherical and highly dynamic regime. In this case
backward methods. For this forward integration technique tave choose initial data parametersQ¢,7g,0,n) =
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FIG. 7. We again show the width of the horizon-containing do- i

main in terms of grid zones, here for the highly distorted single
black hole. We note that the narrowing of this region is again ex-
ponential, diminishing by a factor of ¥Grom t=60M to t=0.

1.000 |

(1.0,0,1.5,2 in the language of Ref24]. This black hole is
significantly more distorted than the previous cébe ratio
of the polar to equatorial circumference of the apparent ho- -
rizon is 4.26 at the initial time In Fig. 7 we show the maxi-

mum width of the horizon-containing region over all angular
zones. The initial width of the horizon-containing region at ¢
t=60M, chosen in the same manner as above, is ten grid®
zones. We see that this highly nonspherical case is no differ- 0.010:
ent from the previous cases. The width of the horizon- r
containing region decreases exponentially as a function of
time, being less than one grid zone &48M and being only -
0.0001 at=0. Again, we mark the points where the width of o001/ . . ., o . . o
the region is 1/10, 1/100, and 1/1000 of a zone in the figure. ) 0 20 40 60

T
[

0.100

fference in Grid Zones

1

t/M
C. Distorted rotating black holes . . .
FIG. 8. (a) We show the coordinate locations for several trial

The last single black hole cases we consider are rotatingurfaces for the distorted rotating black hole spacetime discussed in
black holes. Rotating black holes are expected to be the engle text. The solid lines marked)(and () represent the inner and
point of all astrophysical black hole systems, and so they areuter edges of the horizon-containing regionab0M. A distorted
essential cases to be considered. Rotation adds a new dimerial surface and another trial surface initially inside the apparent
sion to the problem, as new metric elements are involvedhorizon, shown as dashed and dotted lines, respectively, were also
another polarization of the gravitational wave is present, anévolved. All four surfaces converge quickly to the same location.
horizon generators will now be dragged around the blaclBy t=43M all surfaces are very close to each other and by
hole due to its angular momentum. Furthermore, the horizot=30M they are practically indistinguishable. The final location of
of a Kerr black hole is not spherical, but is oblate, with theall surfaces, denoting the horizon locationtat0, is marked as a
oblateness related to the rotation parameter of the ho@ick line. (b) We show the width of the horizon.-contail_wipg region
[26,27]. For these reasons the rotating case provides not onl{? terms qf grid zones. We not_e that the sepqratlon exhibits the same
an important test bed, but also a rich area for the study ofXPonential convergence as in the nonrotating cases.
horizon dynamics.

We consider a distorted, rotating black hole data sethat evolves to a Kerr spacetime with a large rotation param-
evolved with a code described in R¢L5]. In this case the eter ofa/m=0.82. In Fig. &), we show the evolution of the
black hole has been distorted by an axisymmetric gravitacoordinate locations of various test surfaces at various times.
tional wave, similar in construction to the distorted At t=60M, the line marked ¢) represents a coordinate
Schwarzschild black hole data sets described above. Thi&phere with an almost constamt=0.7. The surface marked
particular data set corresponds to a dynamic rotating holéi) is approximately the late time apparent horizon. The
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horizon-containing region is bounded between these two suthe outer boundary of the horizon-containing region, denoted
faces markedd) and (). Other test surfaces, shown as dot- (0), is taken to be a sphere of almost constant0.7. In
ted and dashed lines, are also evolved for comparison. WEig. 9b), the evolution of the surfaces at various times is
see that byt=43M these surfaces have converged, and byshown. The i) and (0) surfaces are indistinguishable even
t=30M all the surfaces are essentially indistinguishable. Inat t=50M. To show the convergent effect more clearly,
Fig. 8(b) we show the width of the horizon-containing region again we show a highly nonspherical surface as a short
[maximum differences in grid zones between the two trialdashed line. Fromi=40M backwards, all lines are indistin-
surfaces, @) and ()] as it diminishes exponentially. It is less guishable.
than one grid separation ly- 50M. Again, 1/10, 1/100, and In Fig. 9c), the maximum width of the horizon-
1/1000 of a grid zone separation are marked on the figure.containing region between surfaca$ @nd () in terms of

We note that although the coordinate shapes of these rayrid separation is plotted versus time, with the points of 1/10,
tating black hole horizons are fairly spherical, their intrinsic 1/100, 1/1000, 1/10 000, and 1/100 000 of a grid zone sepa-
geometries are highly distorted. For an analytic Kerr spaceration marked. If the aim is to locate the EH to one grid
time, if the rotation parameter exceeds a critical value ofseparation, we have achieved that in the rahg€0—58
a/m=0.867, the horizon geometry becomes so distorted tha¥l, fully covering the epoch of interesting dynamics of the
it cannot be embedded into a Euclidean sga&15. When  coalescence of the two black holék.also covers more than
a gravitational wave is also present in the system, the horizothrice the dynamical time scale of the final system, as the
geometry becomes more distorted and evolves in timenatural period of the final black hole is 1648.
Therefore, the cases presented here, with rotation parametersAs discussed in Sec. Il, some implementations of the
of a/m=0.68 (Fig. 3) anda/m=0.82[Figs. 8a) and 8b)]  packward surface method may require special treatment on
have highly nontrivial horizon geometries, and our horizonthe axis of symmetry. There is a caustic point that must de-
finder converges to the true horizons quickly and tracks themye|op where the horizon surface intersects zrexis. At this
very accurately. The geometry and physics of the EH will beygint 5 cusp develops in the horizon, causing its normal to
analyzed in the third paper in this serfd]. become discontinuous. This means that the surface can hit

o the z axis at an angle, as one can see clearly in Fig) for
D. Colliding black holes the surface market=0 (i.e., the EH is not perpendicular to

In this section we focus on extracting the event horizonthe axis on the line between the hojeBecause of the sym-
from data representing the collision of two equal-mass blacknetry involved in this problem, we know in advance where
holes. The discussion here considers the evolution of thehis happens, and so it is easy to devise a numerical treat-
Misner vacuum black hole spacetirfi28], but the methods ment to handle this special situation. In evolving E4).one
discussed apply equally well to black holes formed fromrequires derivatives of the surface. These derivatives are well
matter collapse as discussed in R¢29,9,8. The evolution  defined everywhere except at the caustic point orzthgis,
of the Misner spacetime itself has been treated extensively iwhere only one-sided derivatives are defined. In practice we
a series of paperg5,30,31, and we will not go into the find that in numerical evolution of the surface one can use a
details of those calculations here. As we discussed in Sec. Uniform treatment of one-sided derivatives all along the
above, both the backward surface and photon methods casoundary, including both the equator and thexis where
be used to study horizons in the collision of two black holesthe cusp develops.
We use these techniques here to find the EH for the two In Fig. 10 we show a comparison of using backwards
black hole spacetime parametrized by the quantity2.2,  geodesic integration and the backwards surface method de-
corresponding to two black holes separated initially by ascribed above. It is clear that the backwards surface method
proper distance oE =8.92M. We also note that due to the and backwards photon method give the same result, agreeing
nature of the Cadez coordinates in which the evolution takeso within 0.05 grid separations throughout the calculation. As
place, we can still use the parametrization described in Eq¢hese methods are completely independent, sharing only the
(5). (See Ref[31] for definitions of these parameters and thespacetime data to which they are applied, in each case they
Cadez coordinate system. confirm that the horizon has been accurately found, even at

In Figs. 9a)-9(c) we show results of integrating the the caustic point.
boundary surfaces of the horizon-containing region back- As we discussed in Sec. Il, by considering the entire set of
ward in time, starting at a late timé=75M). At this time  null rays generating the horizon surface, including those that
the two holes have already coalesced, forming a singlehave not yet joined the horizon, one can also treat this prob-
larger, almost stationary, black hole. As the AH is readilylem using the backward surface method in a way that does
found in this case, we can use it as the inner boundary of thaot require any special treatment at the cusp. We allow the
horizon-containing region. In Fig.(8), the lapse at=75M surface to pass through itself going backwards in time where
is shown in a 2Dp-z coordinate plot. The surface marked the caustic line form§21]. In this way we can trace out the
(i) coincides with the AH at final times. The lapse on the AH set of generators that will join onto the horizon in the future.
has a nearly constant value=0.34. The distribution of the However, when the locus of generators is included in the
lapse is basically spherical at this late time, signaling that thevolution, the parametrization given by E§) is not suitable
geometry is approaching that of Schwarzschilt.is basi- as it may become multiply valued. The evolution equation of
cally Schwarzschild except in the innermost part where thehe surface methofEq. (4)] gives no restriction on the pa-
lapse is practically zero. Notice that one of the throats, whereametrization. We choose to integrate the surface in cylindri-
the lapse is exactly zero, can be seen onzlais) Again, cal p-z coordinates in this case, choosing
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FIG. 9. (@) We plot the lapse function at
t=75M for the two-black-hole case with
u=2.2. The boundaries of the horizon-
containing region for the final, coalesced hole are
shown as thick lines. The inner edge of the re-
gion, marked i), is chosen to be the apparent
horizon, and the outer edge, markes) (is cho-
sen to be ar=0.7. (b) We show the coordinate
location of the horizon-containing region as solid
lines marked ¢) and (), and a distorted trial
7 surface as a dotted line. We note that the surfaces
1 bifurcate when traced backwards in tirtteereby
coalescing forwards in timeas expected. The fi-
nal horizon at=0 is marked as a thick linéc)

. We show the width of the horizon-containing re-
gion in grid zones. Once again, we see exponen-
tial convergence.
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f(z,p,t)=p—s(zt), (14) points are physical caustic points. The horizon and locus
clearly show the cusplike nature of the horizon at the caustic
o } point. With the parametrization described in E44), no
as the surface is single valuedan special treatment is needed for handling the caustic point.
In Fig. 11 we show the locus of generators as it is evolved ' |n Fig. 12 we show the initial horizons surrounding the
by the code. The locus of generators clearly passes the origifroats with their cusps facing each other, and the entire sur-
and continues smoothly across theaxis. As the surface face of all photons that will ever join the horizon surface for
possesses a rotational symmetry aboutzfeis, it is self-  the full evolution to the future. This remarkable picture adds
intersecting where it crossgs=0. These self-intersection to our understanding of the location of the EH of this classic
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FIG. 10. The event horizon for the collision of two black holes  FIG. 11. Here we show the evolution of the event horizon and
is computed by two different methods. The solid lines show thelocus of generators of the= 2.2 two-black-hole collision. Only the
result of integrating a trial surface backward in tits¢arting at the  top half of the system, containing one hole, is shown. The first
position of the apparent horizpnand the dashed lines show the surface at=3.3M shows a single, elongated black hole. The evo-
surfaces obtained by directly integrating the geodesic equation for lution of the surface is displayed &at=2M, t=1M, ending at
series of backward photons starting at the same location and aimed-0. By t=2M, the surface has already crossed itself, showing
normal to the apparent horizon surface. Geodesics which leave thevo separate holes and the locus of generators that have not yet
horizon through caustics are not displayed. The results agree foined the horizon. The cusp points where the surface intersects
within 0.05 grid zones throughout, making it almost impossible toitself are caustics of the horizon.
distinguish between the solid and dashed lines.

two-black-hole initial data set discovered by Misr@8]
over 30 years ago.

V. CONCLUSIONS

o- Event Horizon _|

.

We have developed a powerful method for finding black 1
hole event horizons in dynamic spacetimes based on the I 1
ideas of(i) backward integration an@i) integrating the en- i 1
tire null surface. This opens up the possibility of studying the 0.5
dynamics of event horizons in numerical relativity.

Our methods allow the determination of the horizon loca-
tion to exceptional accuracy, even in highly distorted dy- ~
namical black holes involving strong gravitational waves,
rapidly rotating black holes, and colliding black holes. Be- I
cause of the convergence properties of null surfaces when  -0:51
integrated backwards, the horizon-containing region can be
narrowed to resolutions far better than that of the numerical I ) ]
simulation which created the background spacetimes. The  -1.0f Event Horizon
width of the horizon-containing region diminishes exponen-
tially in time. We showed that this empirical result is ex- I ]

. . . -1.5 P PR Ll Ll
pected by an analysis of static spacetimes. Thus, the event 15 .10 .05 0.0 05 1.0 15
horizon can be located to a very small fraction of the grid P
spacing.

We have shown that if the spacetime can be evolved 1o @ g 12. The coordinate location of the event horizohick
point that the black hole has returned to approximate stationme), and the locus of generatofthin line) that have not yet joined
arity, a horizon-containing region can be chosen. The precisge horizon, is shown at time=0M for two black holes colliding
width of this region is unimportant, as it exponentially de- head on. The coordinate line marks the symmetry axis. This locus
creases backwards in time. In particular, our methods do naif generators will join the horizon through the point where the
require knowledge of the apparent horizon, and so thegurface intersects itself.

L Locus of _|
0.0 | Generators
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