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Event horizons in numerical relativity: Methods and tests
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This is the first paper in a series on event horizons in numerical relativity. In this paper we present methods
for obtaining the location of an event horizon in a numerically generated spacetime. The location of an event
horizon is determined based on two key ideas:~1! integrating backward in time and~2! integrating the whole
horizon surface. The accuracy, efficiency and robustness of the methods are examined with various sampl
spacetimes, including both analytic~Schwarzschild and Kerr! and numerically generated black holes. The
numerically evolved spacetimes contain highly distorted black holes, rotating black holes, and colliding black
holes. In all cases studied, our methods can find event horizons to within a very small fraction of a grid zone.

PACS number~s!: 04.25.Dm, 04.70.2s, 97.60.Lf
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I. INTRODUCTION

Black holes are among the most fascinating predictions
the theory of general relativity. During the past 20 yea
there have been intense research efforts on black holes
their effect on the astrophysical environment. With the exc
ing possibility of detecting gravitational wave signals from
black holes by the gravitational wave observatories und
construction@the Laser Interferometric Gravitational Wav
Observatory~LIGO! and VIRGO@1##, we have seen an in-
creasing surge of interest. The black hole events likely to
observed by the gravitational wave observatories invol
highly dynamical black holes, e.g., two black holes in coll
sion. The most powerful tool in studying such highly dy
namical and intrinsically nonlinear events is probably n
merical treatment. In recent years, there has been signific
progress in numerical relativity in this direction~see, e.g.,
Refs.@2,3#!. In particular, long evolutions of highly dynami-
cal black hole spacetimes are now possible@4,5#, opening up
the opportunity of many interesting studies.

The defining character of a black hole is its event horiz
~EH!. The EH is defined as the boundary of the causal pas
the future null infinity~for a rigorous description, see, e.g
Ref. @6#!. Photons emitted inside this boundary surface ca
not escape to infinity while those emitted outside in a su
able direction can. It is the existence of such a bounda
surface that makes a black hole ‘‘black.’’ Only when a hor
zon surface is located can we know for sure that the spa
time that we are studying contains a black hole.

Locating such horizon surfaces is the subject of this fi
paper in our series studying event horizons in numerical re
tivity. Event horizons can now be found in numerically gen
erated spacetimes, and their dynamics can be traced out
ing methods we outlined in Ref.@7#. These methods were
also used to generate and study event horizons for two c
liding black hole spacetimes in Ref.@8#. In another example,
the first case of a toroidal black hole event horizon was d
cussed in Ref.@9#. The present paper provides details of th
methods needed to find the event horizon in numerically ge
erated spacetimes.
532821/96/53~8!/4335~16!/$10.00
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The study of the dynamics of this surface is crucial fo
understanding the dynamics of a black hole spacetime. In t
membrane paradigm of black holes@10#, black holes are
characterized by the properties of its EH, which is regarde
as a two-dimensional~2D! membrane living in a 3D space,
evolving in time and endowed with many everyday physica
properties like viscosity, conductivity, entropy, etc. We be
lieve this point of view is powerful in providing insight into
the numerical studies of black holes. In the second paper
this series@11#, we present methods and tools for studying
these properties of the horizon surface. In the third paper
the series@12#, we turn to the physics of black holes that can
be explored using these tools.

There are two properties of the EH that make its locatio
difficult to determine in numerical relativity: It is defined
nonlocally both in space and in time and, moreover, in a
acausal manner. Therefore its location, and even its exi
ence, at any time cannot be determined without knowled
of the complete four-geometry of the spacetime. We wi
demonstrate how to overcome these difficulties.

Consider a numerically constructed spacetime represen
by a set of data given on a 311 lattice. Suppose the numeri-
cal evolution has covered a region of spacetime so that at t
end of the evolution one can locate a spatial domain which
likely to contain the EH.~We show below how this can be
done.! On the one hand, as numerical evolution often doe
not cover null infinity@13#, generally one cannot give a pre-
cise location of the EH even on the final time slice. On th
other hand, the black hole events we are interested in oft
involve black holes eventually settling down to a stationar
state after going through violent processes, e.g., the coal
cence of two black holes. If the numerical evolution cover
late enough times, so that at the end of the evolution th
geometry returns approximately to stationarity, it is ofte
easy to have anapproximatelocation of the EH, as we shall
show below. We note that at late times, if the spacetime h
truly returned to stationarity, the difficulties of finding the
EH due to its acausal nature and nonlocality in time disa
pear, as the geometry is the same on each time slice hen
forth.
4335 © 1996 The American Physical Society
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Of course, true stationarity is probably impossible in n
merical evolution. One can aim at most at approximate s
tionarity. We note that such approximate stationarity is po
sible, as dynamical black hole spacetimes can now
evolved for a long time~commonly t'100M , and in some
cases to 1000M ) @14–16#. Therefore the first set of question
in the numerical study of black hole EH’s is the following.

Consider a numerically constructed spacetime, such t
one has an approximately stationary final configuration. A
sume that although the EH cannot be located exactly, it
known to exist in a certain spatial domain. Can one det
mine this horizon-containing domain in all the previous tim
slices during which the spacetime is highly dynamical, whi
is often the real epoch of interest? That is, how does t
horizon-containing domain evolve in a dynamical spac
time? We will show that in the language used here, even
the horizon-containing domain is fairly large at the fina
time, it can be narrowed down tremendously at earlier tim
This is true not only for analytic spacetimes, but also f
dynamical ones. If the EH can be approximately located
late times, after the black hole and surrounding spaceti
return to approximate stationarity, we show that the EH c
be accurately determined throughout the dynamical period
interest.

The present paper focuses on this set of problems of
cating the EH in a black hole spacetime. We have develop
two generations of ‘‘event horizon finders,’’ based on tw
basic ideas@7#: ~1! Integrate backward in time, and~2! inte-
grate the horizon surface instead of the individual geodes
We discuss these ideas in detail in Sec. II. In Sec. IV w
examine how much accuracy one can obtain in locating
EH throughout its history~i.e., how small the horizon-
containing domain can become! in various sample numeri-
cally constructed spacetimes, including distorted Schwar
child and Kerr black holes, and colliding black holes. W
also compare various methods for locating the EH, includi
our two generations of EH finders based on backward in
gration and another method recently proposed using forw
integration@9#.

A basic assumption in this paper is that one can locat
certain horizon-containing domain at the end of the nume
cal evolution. An interesting question is to what extent o
can use the techniques developed in this paper to impr
confidence that the domain truly contains an EH or to ru
out such a possibility. Although we shall not deal with th
question in this paper, it is easy to see that the techniq
developed can also be useful in this regard. In Sec. IV
shall see that one can easily narrow this domain on the fi
configuration to a large extent by examining trajectories
null surfaces.

II. METHODS

Suppose for the moment that the actual event horiz
~EH! is given on the final time slice of the numerical evolu
tion ~for simplicity of discussion, the evolution is assumed
be in the 311 slicing of spacetime; other schemes, such
212, could be treated as well!. How does one determine its
location at earlier times? One may consider integrating n
geodesics forward in time, selecting those that successf
arrive at the given EH at the final time. There are two co
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ditions that must be satisfied for success:~i! The geodesic
must land on the given EH, and~ii ! the tangent of the geo-
desics must be the outgoing normal to the EH. In principle
such stringent requirements could be satisfied and the histo
of the EH could be traced out with such an algorithm. How
ever, there is an intrinsic difficulty, making such an algorithm
very inefficient. By the definition of the EH, outgoing null
geodesics slightly inside the EH will fall into the singularity
after some short time, while outgoing null geodesics jus
slightly outside will escape to null infinity. Therefore, evolv-
ing null geodesics forward in time near the EH is a phys
cally unstable process.

In Fig. 1 the behavior of various outgoing null geodesic
in a spherical black hole spacetime is shown in terms
Eddington-Finkelstein coordinates@17#. The horizon is given
as a solid line while photons are given as dotted lines. Ou
going null geodesics starting out infinitesimally close to th
horizon spread out to cover a large region of the spacetim
They are ‘‘everywhere’’ on a late time slice. This physica
instability, coupled with the inevitable finite differencing er-
ror in a numerical calculation, ensures that null geodesi
will move away from the true position of the EH, even if
they are right on it initially. An accurate determination of the
history of the EH will not be possible unless~a! the space-
time data have a very high resolution, and~b! a very large
number of photons is followed, so that they are ‘‘dense
enough to have some of them stay near the EH througho
the evolution.

However, a moment’s reflection tells us that this impor
tant property of the EH can be used to our advantage; t
instability of integrating outgoing null geodesics forward in
time near the EH implies that when integrating these geod
sics backward in time near the EH, they will converge ont
the horizon. The backward direction is the stable direction o
integration. This is one of the two basic ingredients in build

FIG. 1. A spherical black hole spacetime is shown in Eddington
Finkelstein coordinates with several outgoing null rays trajectorie
plotted. The horizon is shown as a solid line, while various photo
paths are shown as dotted lines, with theirr /M location marked.
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53 4337EVENT HORIZONS IN NUMERICAL RELATIVITY: METHODS . . .
ing our EH finders. In our first generator EH finder@18,19#,
called the ‘‘backward photon’’ method, we trace the EH b
integrating null geodesics backward in time. The geode
equation is a second order differential equation,

d2xa

dl2 52Ga
bg

dxb

dl

dxg

dl
, ~1!

wherel is an affine parameter along the geodesic.
We note that this backward integration method requir

that one first complete the spacetime evolution and store
entire spacetime evolution metric, or at least a strip of
which safely contains the full history of the EH. However, i
all cases we studied, being able to integrate in the sta
direction is well worth the extra storage requirement. As t
null geodesics are ‘‘attracted’’ to the EH when integrate
backward, we found that the position of the EH can be d
termined to an accuracy of a small fraction of a grid zone,
shown in the next section.~Forward integration schemes
generally also require storing the entire spacetime evoluti
as many photons must be ‘‘shot’’ forward and then tested
see if they end up inside or outside the horizon at the fin
time @9#.!

Two comments regarding the ‘‘attraction’’ of the EH in
backward integration are in order. First, this ‘‘attraction’’ i
only in the global sense. Locally, the EH has no special pro
erty. That is, geometrically the EH is not distinct from othe
surfaces. As the geodesic deviation equation is governed
the Riemann curvature tensor, which has no special value
the horizon, the outgoing null geodesics are not attracted
the EH in any local sense. On the other hand, in a 311
numerical evolution, only those outgoing null geodesics th
are either very near or inside the EH at early times can
main in the finite range of the spacetime with a nonvanishi
lapse which is covered by the numerical evolution at la
enough times. In other words, when integrating backward
time, outgoing photons in this range approach the EH afte
sufficiently long integration. The EH is attractive only in thi
global sense in time. Note that this attractive property im
plies that our starting point in the backward integration ne
not be exactly on the EH. This is a key point that we wi
quantify below.

Second, this attractive property of the horizon is just f
outgoing photons. An ingoing photon when traced backwa
will not only leave the EH surface; it may even leave th
finite region of the spacetime. In the one-dimensional ca
inward and outward photons are clearly distinct~only outgo-
ing ones are displayed in Fig. 1!, but for the general 3D case
when the two tangential directions of the EH are also co
sidered, the situation becomes more complicated.~Here nor-
mal and tangential are meant in the 3D spatial, not spa
time, sense.! Whether or not a trajectory can eventually b
‘‘attracted’’ to the EH, and how long it takes for it to becom
‘‘attracted,’’ depends on the photon’s starting direction
motion. We note that even for a photon which is alrea
exactly on the EH at a certain instant, if its velocity at th
point has some component tangential to the EH surface~as
generated by, say, numerical inaccuracy in integration!, the
photon will move outside of the EH when traced backwa
in time. For a small tangential velocity, the photon will even
tually return to the EH. The duration and distance it mov
y
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outside the EH depend on its tangential velocity. Also, th
position to which it returns will not be the original position.

This kind of tangential drifting is undesirable not just be
cause it introduces inaccuracy in the location of the EH, b
more importantly, because it can lead to spurious dynami
of the ‘‘EH’’ thus found. Neighboring generators may cross
leading to numerically artificial caustic points~for an intro-
ductory discussion of caustics, see, e.g., Ref.@17#, Chap. 10!.

Unfortunately such tangential drifting is not easy to avoi
due to the nature of the geodesic equation~1! which we
integrate backward. The geodesic equation is not only se
ond order, but also requires derivatives of the numerical
generated metric data which are generally more inaccurat

Another consequence of the second order nature of t
geodesic equation is that not just the positions but also t
directions must be specified in starting the backward integr
tion. Neighboring photons must have their starting directio
well correlated in order to avoid tangential drifting acros
one another. We find it important to make explicit use of th
property that the surface we wish to trace is a closed 2
surface embedded in 3D space at the start of the backwa
integration. While the starting positions of the photons ar
taken to be on this surface, the starting directions are taken
be normals to this surface. Of course even if the geodes
have accurate starting values they may still drift due to ina
curacy in integration, as discussed above. We find that t
‘‘backward photon’’ method is still quite demanding in find-
ing an accurate history of the EH, although the difficultie
are much milder than those arising from the instability o
integrating forward in time.

In our second generation horizon finder, building on th
above idea of explicitly using the surface-forming propert
of the EH, we follow the entire horizon surface itself, rathe
than tracking individual photons independently. General
speaking, the EH can be considered as a 211 null surface,
except at special points where its normal cannot be define
Except for these special points, which we shall discuss lat
one can represent the 211 EH surface by a function

f ~ t,xi !50, ~2!

which satisfies the null condition

gmn]m f ]n f50. ~3!

Hence the evolution of the surface can be obtained by
simple integration:

] t f5
2gti] i f1A~gti] i f !

22gttgi j ] i f ] j f

gtt
. ~4!

In our second generation horizon finder, we integrate th
equation backwards in time. This is what we call our ‘‘back
ward surface’’ method. Notice that at the final time, the EH i
given as a closed 2D surface. Given this as the starting co
dition for the backward integration of Eq.~4!, there is no
other condition needed~e.g., there is no need to specify ei-
ther an initial direction or boundary conditions for the sur
face!. The reconstruction of the complete functionf (t,xi)
gives us the full history of the EH~in fact, much more than
this, as we will discuss below and detail in Ref.@11#!.
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Both the backward photon and backward surface meth
work very well as shown in Sec. III below. However, there
a number of advantages of using the backward surfa
method.

~i! Of primary importance is that the method is simple
and less susceptible to numerical error than the backw
photon method. Notice that Eq.~4! contains only derivatives
of the surface andnot of the metric components themselve
and is therefore less susceptible to the numerical inaccura
present in the metric data. The horizon is generally found
numerically evolved spacetimes in regions where met
functions contain rather steep gradients that are poorly
solved @20#, and hence their derivatives may not be acc
rately known there.

~ii ! Tangential drifting is not a source of error, because t
only direction that a surface can move is normal to itse
Once the surface becomes the EH, it cannot drift away fro
it. This is in contrast to integrating geodesics; even if th
geodesic is right on the horizon at some instant in time,
does not guarantee that it can stay on it all the time. See F
3 below.

~iii ! Unlike integrating null geodesics, the result of th
method is guaranteed to be surface forming, as we are
plicitly integrating surfaces. This is a nontrivial advantag
over integrating geodesics; in particular, the integrated g
desics can fail to be surface forming, either due to the n
merical error discussed above, or due to the existence
caustics on the horizon. At the caustics the geodesics le
the EH surface when integrated backward in time. If the
are geodesics leaving the EH through caustics, but this ca
tic point is not so recognized, and the EH is taken to be t
surface connecting all geodesics, the evolution history o
would be completely wrong. However, it is nontrivial to de
termine whether a caustic or numerical error causes geo
sics to become non surface forming. In both cases, we m
see null geodesics cross one another and move outward.
Fig. 3 below.

~iv! The surface method is naturally suitable for handlin
and studying caustic structures on the EH.~Here for simplic-
ity of discussion we indiscriminately refer to all classes
points at which horizon generators leave the EH when trac
backward in time as horizon caustics; see, e.g., Ref.@17#.! As
the normals of the EH are different when the caustic point
approached in different directions, strictly speaking the EH
not a null surface at such points, and Eq.~4! would seem to
be in difficulty. However, we note that in the generic case
an isolated caustic point, the EH surface surrounding
caustic point can be evolved using one-sided spatial deri
tives on the right-hand side~RHS! of Eq. ~4!. Despite the
fact that there is no well defined normal to the surface a
caustic, the motions of surface elements on different sides
the caustic must be continuous as determined by Eq.~4! with
appropriate one sided derivatives, as the EH is a continu
closed surface at each time slice. In the two-black-hole c
lision case studied below in Sec. IV D, Fig. 10, there
clearly a cusp in the EH along thez axis, so that the surface
is not smooth there, but it is continuous. This is obtain
with a one-sided treatment of the derivative there. This tre
ment requires knowledge of where caustics would be for
ing a priori. Sucha priori knowledge is often possible for
spacetimes with symmetry properties. In fact, all dynam
od
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black hole spacetimes evolved to date~of which we are
aware! have such properties. At those points where causti
may appear, suitable one-sided derivatives are used.

Alternatively, one can treat horizon caustics with the su
face methodwithout introducing a special treatment for pos-
sible caustic points, provided that we do not restrict Eq.~4!
to describeonly the EH, butalso the locus of the null gen-
erators which leave the EH through the caustic points bac
ward in time. That is, in tracing Eq.~4! backward, we allow
the closed surface to cross itself. The point of crossing is t
caustic. Although the normal of the surface is not continuou
going across the caustic on the EH, it is continuous goin
from the EH across the caustic point to the locus of gener
tors which has left the EH@21#. This is true provided a suit-
able identification of neighboring surface elements is use
namely, when the identification of two neighboring surfac
elements does not change in time. This issue is considered
this paper where we treat the collision of two black holes i
Sec. IV D, when caustics are important.

These backward surface and photon methods bring for t
first time the possibility of studying the properties of horizon
generators and caustics in numerical relativity, but the su
face method provides a particularly elegant, economical, a
accurate way of computing this structure.

Before we go on to the next subsections on the tests a
the accuracy of the methods, we comment on the fact that t
starting position of the EH in the backward integration i
often not known precisely. As pointed out earlier, as long a
the numerical evolution can be carried to a point that th
black hole returns to approximate stationarity, it is often pos
sible to locate a region which contains the EH. For exampl
the apparent horizon~AH! is always inside the event horizon
~provided quantum effects are ignored!. If an AH is found, it
can be taken to be the inner boundary of this horizon
containing region. The real task in locating the horizon is t
determine the evolution of this horizon-containing region
Because of the attractive nature of the null surfaces to t
EH, the horizon-containing region can be narrowed substa
tially in the backward integration. Indeed we shall see tha
using our methods, it is often easy to narrow this regio
down to much less than a grid separation used in the nume
cal construction of the spacetime. In some sense the locat
of the EH is determined to a precision higher than the res
lution of the background spacetime, something seeming
impossible at first sight. This is not paradoxical as in a
cases studied in this paper, the EH surface expressed a
function, Eq.~2!, is constructed using information and inter-
polations involving many data points, hence ‘‘washing out
some local fluctuations. However, if the horizon-containin
region were to just span a few angular grid points, the loca
ization of it to a small fraction of a grid separation would no
longer be meaningful.

Using our backward methods we are able to trace acc
rately the entire history of the EH, as we detail in the nex
section. However, there are cases in which a region of t
numerically constructed spacetime is badly resolved~e.g.,
the crotch region in the two black hole case study below!,
where the backward surface method method is capable
producing more reliable results. The basic difference in th
two methods is in their computational requirements and co
venience. A typical case studied here is that of a black ho
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interacting with a gravitational wave. Such a case is resol
on a grid of 200 radial by 53 angular zones, and evolved
t575M . To trace the EH to 1/10 of a grid separation for th
dynamical period of the evolution (0M,t,48M ) takes
only a few minutes on a computer workstation. For the ba
ward photon method to achieve the same accuracy, it ta
several times longer. For future applications with dynami
black hole spacetimes evolved to thousands ofM , we be-
lieve the backward surface method is most promising.

III. NUMERICAL TECHNIQUES AND TESTS OF
METHODS

In this section we discuss both the numerical impleme
tations of our surface methods and provide examples of t
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applications to dynamical spherical black holes, distor
axisymmetric black holes with and without rotation, and co
liding black holes.

A. Numerical implementations

In the surface method, the location of the surface is r
resented by a function. The use of a suitable parametriza
of the surface is important. For the axisymmetric cases d
cussed in this paper, a convenient choice is

f ~ t,r ,u!5r2s~u,t !50. ~5!

With this parametrization, Eq.~4! for the evolution of the
surface becomes
] ts52
2gtr1gtu]us1A~gtr2gtu]us!22gtt@grr22gru]us1guu~]us!2#

gtt
. ~6!
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We will use this as our definition off for almost every
case in this paper.

Next we discuss details of the numerical implementati
of these methods. For the backward photon method, we u
standard adaptive step size, fourth order in time Runge-Ku
method@22# to integrate the second order geodesic equat
~1!. For the surface method we have used a number of me
ods, including second order leapfrog, a second order M
Cormack predictor corrector method, and a fourth ord
Runge-Kutta method using the method of lines to integra
hyperbolic Eq.~4! in time as a set of coupled ordinary dif
ferential equations. All methods give similar results.

In following the horizon backward through the spacetim
we necessarily require a spacetime data at points that do
lie on the numerical grid. For this we must interpolate th
spacetime data to the actual location of the horizon at ea
time. For the backward photon method, we must interpola
both the metric and its derivatives to these locations. On t
other hand, for the surface method we needonly the metric
itself. For both methods, we find that second order interp
lation is adequate to determine these data values.

The angular derivatives of the functions(t,u) in Eq. ~4!
are computed using both second and fourth order finite d
ference methods, with similar results. Although this way
representing the surface works well for almost all cases d
cussed in this paper, as we show in Sec. IV D, other para
etrizations can be necessary at times.

B. Test beds

1. Spherical black holes

In this section we show how the methods detailed abo
can be applied to pure, spherical Schwarzschild black ho
We consider both the analytic Schwarzschild solution and
maximally sliced Schwarzschild black hole evolved with th
2D, axisymmetric black hole code described in Refs.@23,14#.
We use this important test bed case to show the accurac
which one can determine the location of the horizon in
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numerically evolved spacetime. Although the numeric
spacetime is geometrically the static Schwarzschild spa
time, it is evolved with a maximal slicing condition which
makes the metric functions change in time. As discussed
Ref. @20#, such a time dependence makes even the Schwa
child spacetime quite difficult to evolve numerically for long
periods of time~beyond aboutt5100M with reasonable grid
parameters!. As the coordinates fall in towards the hole th
horizon moves out in coordinate space, the lapse collaps
and large gradients develop in the metric function near t
horizon. ~For more details on these problems, see Re
@20,14#.! The advantage of using this as our first test bed ca
is that, on the one hand, the numerical spacetime construc
with this code has many of the properties and difficulties
a general numerically constructed black hole spacetime.
the other hand, the spacetime is really a Schwarzsch
spacetime for which we know where the EH should be for a
time. In particular, in the numerical case the apparent horiz
~AH! and EH coincide. We have accurate AH finders@24#
that can locate the AH and thus, in this case, the EH; on a
given single slice of the spacetime we know both horizo
without needing to know the future or past of that slice. I
the analytic spacetime, the horizon is atr52M . This pro-
vides us with important accuracy checks on our methods
locating the EH throughout the evolution.

In Figs. 2~a!–2~d! we show results for a spherical black
hole spacetime. For the numerical spacetime in Figs. 2~a!,
2~b!, and 2~d! we apply our horizon finder to the data ob
tained in the evolution assuming neither spherical symme
nor the fact that the spacetime geometry is really Schwar
child. At the final time slice, the horizon-containing region i
determined by examining the lapse function and the rad
metric function. For a spacetime evolved with maximal slic
ing, the event horizon resides in a region with a partial
collapsed lapse function. In Fig. 2~a!, we show the lapse
function a at the final time slicet5100M . We take the
horizon-containing region to extend froma50.1 to
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FIG. 2. ~a! We show the lapse att5100M for a single Schwarzschild black hole evolved with our 2D axisymmetric code using maxim
slicing. The horizon-containing region, determined by the condition 0.1,a,0.7, is marked by crosses. The outer edge of the region
marked (o) and the inner is marked (i ). ~b! We show the evolution of radial coordinate locationr of the apparent horizon~dotted line!, and
the location of horizon-containing region~solid lines! for the backward surface method applied to a Schwarzschild spacetime evolved w
our axisymmetric black hole code. The coordinater equals the isotropic Schwarzschild coordinate att50. As the evolution continues, the
relation betweenr and the isotropic coordinate becomes a function of the metric. Other test surfaces are shown as dashed lines. All s
converge rapidly towards the true event horizon location.~c! The proper distanceDs of an outgoing photon moving near the horizon is
plotted against the Killing timet in logarithmic scale. The thick dashed line gives the results obtained using the backward surface me
The solid line labeled ‘‘analytic’’ gives the result obtained by integrating Eqs.~7!–~9! in text. The dotted line labeled ‘‘linearized’’ shows the
trajectory given by Eq.~10!. We see that the solid line and the dashed line are right on top of each other, with the dotted line just b
distinguishable. The inset shows the slope of all the lines being nearly 1/4, as given by Eq.~10!. ~d! The coordinate location of the
horizon-containing region is shown as solid lines. A nonspherical initial trial surface is shown as a dashed line. The apparent hor
shown as a dotted line. The nonspherical initial trial surface converges to the EH, just as do the spherical trial surfaces. The final h
at t50, is shown as a thick line.~e! The evolution~at timest598.5M , t598.4M , t598.3M , andt598.2M from top to bottom, with the
line AH labeling the position of the true EH att598.5M ) of a very distorted trial surface is shown in coordinate space. The evolution brea
down, showing that a highly distorted trial surface can develop trouble if the parameterization of the surface is unsuitable. See discu
the text.
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a50.7, with (o) labeling the outer edge and (i ) the inner
edge of it. In Fig. 2~b!, the radial coordinater of the two
surfaces (o) and (i ) traced backwards in time is shown. A
t5100M , the two surfaces are separated in the radial co
dinate by 3.4M . By t585M , the two lines are separated b
just one grid zone, corresponding to a difference inr of
0.35M . By t570M , the two lines are no longer distinguish
able, with a separation down to 1/10th of a grid zone,
difference inr of 0.03M . The separation exponentially de
creases down to 131026 grid zones att50M . This rapid
shrinking of the horizon-containing region is a direct cons
quence of the divergence of null geodesics forward in tim
shown in Fig. 1. We conclude that if the aim is to locate th
horizon to one grid zone accuracy, we have succeeded
doing so for the timest50M to t580M . We emphasize that
no information about the apparent horizon is used in t
process.

For the purpose of comparison, in Fig. 2~b! we have also
shown the trajectory of surfaces extremely far outside and
inside the horizon-containing region. These surfaces
shown as dashed lines. We see that the outer one conve
quickly to the other test surfaces, while the inner one is in
tially trapped in a region of collapsed lapse. Att540M , all
the surfaces are practically indistinguishable.

In Fig. 2~c!, we show that the convergence is in fact e
ponential. Here we plot, in the logarithmic scale, the max
mum proper distance of a photon on the null surface (o)
from the horizon, as a function of the Killing timet/M . The
result is given by the thick dashed line. We get a straight li
in the logarithmic plot, with a slope approaching 0.25,
shown in the inset. This is, as expected, the analytic value
can be easily deduced in the following.

Consider a null trajectory in the Schwarzschild geomet
near the horizon. The equations of motion are given by@17#

S drdl D 25 1

b2
2

12
2M

r

r 2
, ~7!

FIG. 2 ~Continued!.
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df

dl
5

1

r 2
, ~8!

dt

dl
5

1

bS 12
2M

r D , ~9!

wherel is an affine parameter andb is an integration con-
stant. To leading order ine5r22M , Eqs. ~8! and ~9! can
easily be integrated to give

e5
1

b
e~ t/4M ! ~10!

for an outgoing photon. Its maximum distance from the ho
rizon is given by

Ds5A2M

b
e~ t/4M !, ~11!

showing that the exponent is 1/4 in units oft/M . The trajec-
tory given by Eq.~10! is plotted in Fig. 2~c! as the dotted
line. It is just barely distinguishable from the solid line la-
beled as ‘‘analytic’’ in Fig. 2~c!, which is the trajectory ob-
tained by integrating the full null geodesic equation, Eqs
~7!–~9!, without assumingr22M to be small. In turn the
solid line lies right on top of the thick dashed line represen
ing the numerical backwards surface method in the analy
spacetime, giving full support for the accuracy of the
method, at least in this simple case.

In Fig. 2~d!, we show the evolution of the coordinate lo-
cations of these surfaces in the first quadrant. The surfac
marked (i ), (o), and AH are the same surfaces as shown
Fig. 2~b!. Here, we have evolved an additional, nonspherica
surface. The location of this surface is given att5100M by
the formula

h5h01A coswu, ~12!

with h0 chosen to be the radial position of the apparent ho
rizon, withw54 andA50.2. We evolve this surface to dem-
onstrate that our initial trial surfaces need not have the sam
angular dependence as the EH~in this case, spherical!. In a
general dynamical black hole spacetime, it will not be pos
sible to pick trial surfaces having the same coordinate
geometrical angular dependence as the EH to be traced o
Such trial surfaces are not necessary, though. In the ca
shown in Fig. 2~d!, where the trial surface is quite nonspheri
cal, with part of the surface inside and part outside of the EH
we see that the trial surface quickly converges when trac
backwards in time. All of the surfaces are very close an
almost completely spherical byt570M . By t550M , all the
surfaces are within 1/10th of a grid zone. We note, howeve
that a sufficiently nonspherical surface may itself develo
caustics, particularly if it is initially far from the true EH. In
Fig. 2~e! we show the evolution~at times t598.5M ,
t598.4M , t598.3M , and t598.2M from top to bottom,
with the line marked AH labeling the position of the AH and
thus the true EH att598.5M ) of a highly distorted surface
with the angular dependence of Eq.~12! increased to
w516, the amplitude decreased toA50.1, and the center of
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the perturbation moved away from the apparent horizon. W
find that the surface method fails, with numerical noise d
veloping as the surface tries to cross itself. This crossing
itself is not fatal to the surface method, but the particul
parametrization~5! of the surface cannot describe this cros
ing. As we see below, the self-crossing of the surface can
handled with a proper parametrization, which is need
when true caustics develop, as in the collision of two blac
holes. We stress that when the black hole has returned
quasistationarity at late times, one does not expect the EH
have such a rapidly varying angular dependence and
would not pick such surfaces as the outer or inner bounda
of the horizon-containing region. We study such an extrem
contrived example only to explore the limits of our method

We note that at late times the data representing the spa
time itself as obtained in Refs.@20,14# become inaccurate
due to the large spikes developing in the metric functio
near the horizon@20#. As these spikes become ever steep
during the evolution, they become less and less well
solved, and therefore they are not accurately modeled on
numerical grid. This lack of accuracy in the spacetime its
is reflected in the calculation of the area of the appare

FIG. 3. To illustrate both the tangential drifting effect and i
what sense the EH is attractive, as discussed in the text, we s
the evolution of two photons launched att5100M right on the EH
but with initial direction not exactly normal to the EH. They have
small but nonzero value in the ratio of the initial angular to radi
coordinate velocities. The trajectories of the photons are represe
by dotted lines and the times at various points on the trajectories
shown in units ofM . The photons drift out from the horizon and
cross each other att598.0M , producing a false horizon caustic
point if these photons were taken as horizon generators. Trac
further backward in time, they turn around and asymptotically a
proach the correct radial location of the EH. The radial coordina
~vertical axis! is rescaled by the radial coordinate value of the EH
so that the EH is always at 1 on the vertical axis. The horizon
axis isu in radians. Although the photons remain rather close to t
correct EH location throughout the trajectory, they drift substa
tially in the tangential direction. For various implications of thi
behavior, see discussions in the text.
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horizon at late times, which increases rather than remaini
constant. Remarkably, this lack of accuracy at late time
when the EH finding algorithm is started, doesnot cause any
difficulty in finding the EH at earlier times, as seen in the
figures. Therefore, not only are our algorithms able to fin
accurately the true EH even with a poor initial guess for it
location, they are also insensitive to inaccuracies in th
spacetime data that inevitably occur at late times.

Finally, in Fig. 3, we show the tangential drifting that can
occur with the backward photon method, as discussed in S
II. Figure 3 also serves as an illustration to the other com
ment we made above concerning the ‘‘attractiveness’’ of th
EH to backward integrated photons, namely, the attraction
only in the global sense. In this example the tangential drif
ing is due to the choice of the initial direction of integration
Two photons are traced backward~shown as dotted lines!
beginning at the exact location of the EH att5100M , but
with a 3% error in the starting direction. That is, instead o
being normal to the EH (pu /pr50, in obvious notation!, we
usepu /pr560.03. In Fig. 3, the trajectories of these pho
tons are shown with the corresponding times marked. Th
radial coordinates are normalized by the position of the EH
so that the EH is at 1 on the vertical~radial coordinateh)
axis. We see that with the 3% error in the starting direction
of the photons, the photons move out of the EH when trac
backward in time. If these photons were taken as horizo
generators, this would introduce a small error~note the scale
of the h axis! in the location of the ‘‘EH’’ for a period of
time, as the photons are gradually ‘‘attracted’’ back to th
correct radial location after some integration. However, th
error in the tangential direction is substantial, as we can s
in Fig. 3, where the horizontal axis is given in terms ofu in
radians. In particular, the two photons cross each other, c
ating an artificial ‘‘caustic’’ att598.0M on their way out

FIG. 4. We show the maximum coordinate separation betwe
various trial surfaces and the exact horizon in the analytic Ke
spacetime with a rotation parametera/m50.68. The convergence
to the exact solution is exponential, even though for a Kerr blac
hole rotating this rapidly the horizon has a very nonspherical geom
etry.
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from the EH. Although they return to the correct radial E
location eventually, theiru values change dramatically, mak
ing the trajectories very different from those of the true h
rizon generators.

2. Kerr spacetime

We briefly consider the Kerr spacetime, which is know
analytically. In Ref.@15#, the Kerr spacetime is studied in a
coordinate system like that used for the studies of distor
Schwarzschild black holes discussed above. We have ta
the analytic Kerr metric in these coordinates, with a rotati
parametera/m50.68, to study our EH finders for rotating
spacetimes where the EH location is known analytically.
Fig. 4 we show the maximum coordinate separation betwe
three test surfaces and the analytically known horizon ver
time. Again, we see an exponential convergence of the s
faces to the exact location, as expected. This is a confirm
tion both of our numerical implementation and of the phys
cal convergence discussed above.

C. Numerical convergence

The final numerical issue to which we turn is that of con
vergence. Before beginning our discussion of numerical co
vergence we stress thatnumericalconvergence is a subjec
entirely different from thephysicalconvergence described in
Sec. II. In that section we described how in a spacetim
devoid of numerical error, the horizon-containing doma
will shrink to zero size in exponential time. This is a cons
quence of the physical properties of the spacetime, and
true in the continuum and discretized spacetimes. It is t
feature which allows us to locate accurately the EH in d
namical spacetimes.

Here we discuss the effect of resolution on our analysis
various spacetimes. This is a test of our numerical metho
in particular the interpolation and evolution schemes, not
the physical principles upon which our method is based. B
it is an important test we routinely carry out for all our nu
merical studies.

Since we are taking our background spacetime as giv
the numerical convergence of interest is the convergence
surfaces and surface quantities when the number of evol
points on the surface is changed. In essence, we are assu

TABLE I. For the case of the highly distorted nonrotating blac
hole, we find the normalized area of the EH att50. The normalized
area is defined byA5area/16p2MADM

2 . We find this quantity for a
surface evolved with 25, 50, and 100 angular zones on the surf
We show the convergence orders for the areas with varying num-
bers of angular zones. Thus we conclude that our method is sec
order convergent. We stress, however, that this numerical con
gence is different from the physical convergence described in S
III.

Angular zones Normalized mass

25 0.79612287
50 0.79572879
100 0.79563006
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the background spacetime to be given and interpolatable, a
are concerned only with the convergence of the implemen
tion of Eq. ~4!.

Thus, to test convergence we trial surface and integra
this surface backwards using 25, 50, and 100 angular poi
on the surface using a given background spacetime.
t50, we measure the normalized area of that surface~where
the normalized area is defined asA/16p2MADM). As shown
in Table I, this quantity is second order convergent with o
integrator. These data are for the high amplitude case
scribed below~the spacetime was computed on a 202355
grid!. This convergence is precisely what we would expec

IV. DYNAMICAL SPACETIMES

A. Spherical distortions

The spherical case just discussed above was a vacu
Schwarzschild black hole with no true physical dynamic
although the motion of the coordinates through the spaceti
makes both the black hole evolution and tracking of the E
nontrivial. In order to break the degeneracy between the A
and EH, we next consider a nonvacuum case. In this case
evolve a spherical black hole with a relativistic, massle
Klein-Gordon scalar field falling into it. The system is de
scribed by the Klein-Gordon equation

gmnf ;m;n50, ~13!

coupled to the Einstein equation through the energ
momentum tensor of the scalar field. This problem has be
studied previously in Ref.@20#.

With a gravitating scalar field falling into the black hole
the system has true physical dynamics. Not only does t

FIG. 5. The case of a spherical black hole with a massless sca
field falling in is shown. The dashed line represents the appar
horizon. The line marked ‘‘event horizon’’ is obtained by applying
the backward methods to a point initially on the apparent horizon
t560M . The dotted lines labeled ‘‘escaping photon’’ and ‘‘trappe
photon’’ represent photons integrated forward in time from just ou
side and just inside the ‘‘EH.’’
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4344 53LIBSON, MASSÓ, SEIDEL, SUEN, AND WALKER
horizon move out as coordinates fall into the hole, as abo
but now the horizon also expands in a geometric sense, a
area must increase to accommodate the infalling matter
particular test case is shown in Fig. 5. Here the scalar fi
was set up in a Gaussian shell surrounding the black hole.
the field propagates into the hole, the horizon expands
expected. The solid line labeled ‘‘event horizon’’ is obtaine
by integrating the surface backward in time from the A
location at timet560M . We refer to this line as the ‘‘EH’’
because as shown above it will converge rapidly to the tr
EH. The dashed line is the AH obtained by solving the A
equation@24# at each time slice. Note that the AH always lie
inside the EH, as expected, and that at early times the EH
quite a bit larger as it starts expanding before the incomi
matter arrives. The two solid lines labeled ‘‘escaping ph
ton’’ and ‘‘trapped photon’’ were obtained by integrating ra
dially outgoing null geodesicsforward in time from locations
1/10th of a grid zone inside and four grid zones outside t
EH at early times.

We note that even in this spherically symmetric case it
not possible to integrate accurately the path of the event
rizon forward in time. Even when photons were placed righ
on the known horizon position initially, due to the unstab
nature of the forward integration, the horizon could b
tracked for only a short while before it would diverge awa
from the true EH. If we want to track the horizon further i
time, one way is to ‘‘abandon’’ the original photons, and sta
new ones closer in to the horizon at the time when the ori
nal ones get too far apart, but the resulting horizon will co
sist of a discontinuous surface. A variation on this idea wou
be to use forward photons simply as a probe. If any phot
integrated forward in time from a given point is not within
the apparent horizon at late times, then that point may
considered outside the EH. By integrating many photons f
ward from many spacetime points, a horizon surface can
mapped out, as shown in Ref.@9#. This is an effective but
time-consuming procedure, and the trajectories traced do
give the trajectories of the generators of the horizon.

B. Distorted axisymmetric black holes

Next we present results for an axisymmetric black ho
that has been distorted by the presence of a gravitatio
wave. The initial data sets for these studies consist of
Einstein-Rosen bridge in the presence of a gravitatio
wave in the form originally considered by Brill, and hav
been described extensively in Ref.@25#. The gravitational
wave is set up as a torus surrounding the black hole, and
location, amplitude, and shape can be varied essentially
bitrarily. The code used to evolve these data sets numeric
has been discussed in Refs.@4,23,14#.

The first case we study here is that of a black hole with
narrow ring of weak gravitational waves isolated from th
hole initially. When this system is evolved, we expect th
hole to become distorted slightly as the waves impinge on
and then settle down to a Schwarzschild hole with a larg
mass afterwards. Such a case provides a strong test of
methods as we must be able to track a horizon that beg
essentially as a sphere, develops a distortion as it is hit b
nonspherical wave, and returns to a sphere after a long in
gration.
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In Fig. 6~a!, we demonstrate that we can locate the EH
high accuracy for such a spacetime. At timet575M , the
black hole has returned to approximately the Schwarzsch
geometry. The apparent horizon, represented as the s
dashed line in Fig. 6~a!, has returned to an almost exac
sphere. As the EH must lie outside the apparent horizon,
inner boundary of the horizon-containing region can be tak
to be the location of the apparent horizon on the last tim
slice, t575M . The outer boundary is taken to be the lin
marked (o) in Fig. 6~a!, representing a spherical surfac
some distance outside the apparent horizon. The fact that
line is safely the outer boundary can be seen, as the area
this spherical surface is shrinking backward in time. On th
other hand, the line marked (i ) starting from the AH at
t575M is expanding outwards. The two surfaces expone
tially approach each other, and this separation becomes
than a grid zone att562M . Note that at this time, this one-
grid-point-wide horizon-containing region is entirely outsid
the AH.

In Fig. 6~a!, we also show other test surfaces as lon
dashed lines which are well outside or inside the horizo
containing region. All these test surfaces coincide to mu
less than 1/10th of the grid separation~corresponding to typi-
cal proper distances between the surfaces of less th
0.01M ) for the ranget5~0–40! M . The inset shows an ex-
panded view of the early time. All surfaces computed a
shown, but they are completely indistinguishable in spite
their extremely different starting positions, clearly showin
the power and stability of this method. For all practical pu
poses, this surface can be regarded as the EH. Att50 the
AH and EH practically coincide with each other. Then th
EH foresees the coming of the wave and expands. As
wave is falling in, after aboutt515M , the AH starts to ex-
pand and catch up. The behavior of the AH and EH is exac
as expected.~We note that the area of the hole continues
drift up after 40M . This is a well-known numerical inaccu-
racy due to the development of a sharp peak in the rad
metric component. This effect is in the background spac
time and is unrelated to our schemes for locating the ho
zon.!

In Fig. 6~b!, we show the maximum separation over th
whole surface between the outer and inner boundaries of
horizon-containing region versus time~maximum among the
angular zones!. The vertical axis is in terms of grid separa
tion. As marked by squares, the maximum separation exp
nentially decreases down to 1, att560M , and then keeps
decreasing to 1/10, 1/100, 1/1000, 1/10 000, and 131025 of
a grid zone byt550M , 39M , 27M , 16M , and 0M , re-
spectively. Again, for all practical purposes the outer an
inner boundaries of the horizon-containing region coincid
and the region can be regarded simply as the location of
EH for earlier times. We also note that att50 for the present
case, the EH surface is found to be geometrically spheri
~using the tools described in the second paper in this seri!
to within 1 part in 106.

Finally, we also compare the result of our backward ph
ton method to our surface method in Fig. 6~c!. We show the
coordinate location of the surfaces integrated directly acco
ing to Eq.~4! at various times, and also the location of su
faces formed by integrating the geodesic equation@Eq. ~1!#
backward in time. For the latter integration, the initial loca
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FIG. 6. ~a! The area of various trial surfaces is shown for a slightly distorted Schwarzschild spacetime. The horizon-containing
@between the solid lines labeled (o) and (i )# is traced backward in time and compared to the area of the apparent horizon~short dashed line!.
Several other test surfaces are shown as long dashed lines. The attracting nature of the event horizon is dramatic, as all of the tria
integrations trace the same path after some integration, although they start from very different initial locations. The inset shows an e
view of the early time results.All surface integrations are shown, and are completely indistinguishable.~b! We show the maximum width
among the angular zones of the horizon-containing region in the slightly distorted Schwarzschild spacetime, integrated backward in t
note that the narrowing of the horizon-containing region is exponential.~c! We compare results obtained with the backward surface meth
to those obtained with the backward photon method for the perturbed Schwarzschild spacetime. The surface method results are
solid lines, while the surfaces formed by the backward integration of photons are shown as dashed lines. At all times, the results
within 0.05 grid zones, so that it is almost impossible to distinguish the results on this graph.
re,

-
e
e

tions of the photons were taken from the initial trial surfac
and their initial directions were taken to be normal to th
surface. In this figure the results are indistinguishable,
they coincide to within 0.05 grid zones throughout the ev
lution. We note that we have also compared the results of
forward integration technique described in Ref.@9# to our
backward methods. For this forward integration technique
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determine the EH to similar accuracy as we have done he
however, would take around 105 times more CPU time than
our backwards integration methods.

Next we briefly consider a more strongly distorted non
rotating black hole, providing a test of our methods in th
more nonspherical and highly dynamic regime. In this cas
we choose initial data parameters (Q0 ,h0 ,s,n) 5
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~1.0,0,1.5,2! in the language of Ref.@24#. This black hole is
significantly more distorted than the previous case~the ratio
of the polar to equatorial circumference of the apparent h
rizon is 4.26 at the initial time!. In Fig. 7 we show the maxi-
mum width of the horizon-containing region over all angula
zones. The initial width of the horizon-containing region
t560M , chosen in the same manner as above, is ten g
zones. We see that this highly nonspherical case is no dif
ent from the previous cases. The width of the horizo
containing region decreases exponentially as a function
time, being less than one grid zone att548M and being only
0.0001 att50. Again, we mark the points where the width o
the region is 1/10, 1/100, and 1/1000 of a zone in the figu

C. Distorted rotating black holes

The last single black hole cases we consider are rotat
black holes. Rotating black holes are expected to be the
point of all astrophysical black hole systems, and so they
essential cases to be considered. Rotation adds a new dim
sion to the problem, as new metric elements are involve
another polarization of the gravitational wave is present, a
horizon generators will now be dragged around the bla
hole due to its angular momentum. Furthermore, the horiz
of a Kerr black hole is not spherical, but is oblate, with th
oblateness related to the rotation parameter of the h
@26,27#. For these reasons the rotating case provides not o
an important test bed, but also a rich area for the study
horizon dynamics.

We consider a distorted, rotating black hole data s
evolved with a code described in Ref.@15#. In this case the
black hole has been distorted by an axisymmetric gravi
tional wave, similar in construction to the distorte
Schwarzschild black hole data sets described above. T
particular data set corresponds to a dynamic rotating h

FIG. 7. We again show the width of the horizon-containing d
main in terms of grid zones, here for the highly distorted sing
black hole. We note that the narrowing of this region is again e
ponential, diminishing by a factor of 105 from t560M to t50.
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that evolves to a Kerr spacetime with a large rotation param
eter ofa/m50.82. In Fig. 8~a!, we show the evolution of the
coordinate locations of various test surfaces at various time
At t560M , the line marked (o) represents a coordinate
sphere with an almost constanta50.7. The surface marked
( i ) is approximately the late time apparent horizon. Th
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le
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FIG. 8. ~a! We show the coordinate locations for several tria
surfaces for the distorted rotating black hole spacetime discussed
the text. The solid lines marked (i ) and (o) represent the inner and
outer edges of the horizon-containing region att560M . A distorted
trial surface and another trial surface initially inside the appare
horizon, shown as dashed and dotted lines, respectively, were a
evolved. All four surfaces converge quickly to the same location
By t543M all surfaces are very close to each other and b
t530M they are practically indistinguishable. The final location o
all surfaces, denoting the horizon location att50, is marked as a
thick line. ~b! We show the width of the horizon-containing region
in terms of grid zones. We note that the separation exhibits the sa
exponential convergence as in the nonrotating cases.
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horizon-containing region is bounded between these two s
faces marked (o) and (i ). Other test surfaces, shown as do
ted and dashed lines, are also evolved for comparison.
see that byt543M these surfaces have converged, and
t530M all the surfaces are essentially indistinguishable.
Fig. 8~b! we show the width of the horizon-containing regio
@maximum differences in grid zones between the two tr
surfaces, (o) and (i )# as it diminishes exponentially. It is less
than one grid separation byt550M . Again, 1/10, 1/100, and
1/1000 of a grid zone separation are marked on the figur

We note that although the coordinate shapes of these
tating black hole horizons are fairly spherical, their intrins
geometries are highly distorted. For an analytic Kerr spa
time, if the rotation parameter exceeds a critical value
a/m50.867, the horizon geometry becomes so distorted t
it cannot be embedded into a Euclidean space@26,15#. When
a gravitational wave is also present in the system, the horiz
geometry becomes more distorted and evolves in tim
Therefore, the cases presented here, with rotation parame
of a/m50.68 ~Fig. 3! anda/m50.82 @Figs. 8~a! and 8~b!#
have highly nontrivial horizon geometries, and our horizo
finder converges to the true horizons quickly and tracks th
very accurately. The geometry and physics of the EH will
analyzed in the third paper in this series@12#.

D. Colliding black holes

In this section we focus on extracting the event horizo
from data representing the collision of two equal-mass bla
holes. The discussion here considers the evolution of
Misner vacuum black hole spacetime@28#, but the methods
discussed apply equally well to black holes formed fro
matter collapse as discussed in Refs.@29,9,8#. The evolution
of the Misner spacetime itself has been treated extensivel
a series of papers@5,30,31#, and we will not go into the
details of those calculations here. As we discussed in Sec
above, both the backward surface and photon methods
be used to study horizons in the collision of two black hole
We use these techniques here to find the EH for the t
black hole spacetime parametrized by the quantitym52.2,
corresponding to two black holes separated initially by
proper distance ofL58.92M . We also note that due to the
nature of the Cadez coordinates in which the evolution tak
place, we can still use the parametrization described in E
~5!. ~See Ref.@31# for definitions of these parameters and th
Cadez coordinate system.!

In Figs. 9~a!–9~c! we show results of integrating the
boundary surfaces of the horizon-containing region bac
ward in time, starting at a late time (t575M ). At this time
the two holes have already coalesced, forming a sing
larger, almost stationary, black hole. As the AH is readi
found in this case, we can use it as the inner boundary of
horizon-containing region. In Fig. 9~a!, the lapse att575M
is shown in a 2Dr-z coordinate plot. The surface marke
( i ) coincides with the AH at final times. The lapse on the A
has a nearly constant valuea50.34. The distribution of the
lapse is basically spherical at this late time, signaling that
geometry is approaching that of Schwarzschild.~It is basi-
cally Schwarzschild except in the innermost part where t
lapse is practically zero. Notice that one of the throats, wh
the lapse is exactly zero, can be seen on thez axis.! Again,
ur-
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the outer boundary of the horizon-containing region, denot
(o), is taken to be a sphere of almost constanta50.7. In
Fig. 9~b!, the evolution of the surfaces at various times
shown. The (i ) and (o) surfaces are indistinguishable eve
at t550M . To show the convergent effect more clearly
again we show a highly nonspherical surface as a sh
dashed line. Fromt540M backwards, all lines are indistin-
guishable.

In Fig. 9~c!, the maximum width of the horizon-
containing region between surfaces (i ) and (o) in terms of
grid separation is plotted versus time, with the points of 1/1
1/100, 1/1000, 1/10 000, and 1/100 000 of a grid zone sep
ration marked. If the aim is to locate the EH to one gri
separation, we have achieved that in the ranget5~0–58!
M , fully covering the epoch of interesting dynamics of th
coalescence of the two black holes.~It also covers more than
thrice the dynamical time scale of the final system, as t
natural period of the final black hole is 16.8M ).

As discussed in Sec. II, some implementations of th
backward surface method may require special treatment
the axis of symmetry. There is a caustic point that must d
velop where the horizon surface intersects thez axis. At this
point a cusp develops in the horizon, causing its normal
become discontinuous. This means that the surface can
thez axis at an angle, as one can see clearly in Fig. 9~b! for
the surface markedt50 ~i.e., the EH is not perpendicular to
the axis on the line between the holes.! Because of the sym-
metry involved in this problem, we know in advance wher
this happens, and so it is easy to devise a numerical tre
ment to handle this special situation. In evolving Eq.~4! one
requires derivatives of the surface. These derivatives are w
defined everywhere except at the caustic point on thez axis,
where only one-sided derivatives are defined. In practice
find that in numerical evolution of the surface one can use
uniform treatment of one-sided derivatives all along th
boundary, including both the equator and thez axis where
the cusp develops.

In Fig. 10 we show a comparison of using backward
geodesic integration and the backwards surface method
scribed above. It is clear that the backwards surface meth
and backwards photon method give the same result, agree
to within 0.05 grid separations throughout the calculation. A
these methods are completely independent, sharing only
spacetime data to which they are applied, in each case t
confirm that the horizon has been accurately found, even
the caustic point.

As we discussed in Sec. II, by considering the entire set
null rays generating the horizon surface, including those th
have not yet joined the horizon, one can also treat this pro
lem using the backward surface method in a way that do
not require any special treatment at the cusp. We allow t
surface to pass through itself going backwards in time whe
the caustic line forms@21#. In this way we can trace out the
set of generators that will join onto the horizon in the future

However, when the locus of generators is included in th
evolution, the parametrization given by Eq.~5! is not suitable
as it may become multiply valued. The evolution equation
the surface method@Eq. ~4!# gives no restriction on the pa-
rametrization. We choose to integrate the surface in cylind
cal r-z coordinates in this case, choosing
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FIG. 9. ~a! We plot the lapse function at
t575M for the two-black-hole case with
m52.2. The boundaries of the horizon-
containing region for the final, coalesced hole ar
shown as thick lines. The inner edge of the re
gion, marked (i ), is chosen to be the apparen
horizon, and the outer edge, marked (o), is cho-
sen to be ata50.7. ~b! We show the coordinate
location of the horizon-containing region as solid
lines marked (o) and (i ), and a distorted trial
surface as a dotted line. We note that the surfac
bifurcate when traced backwards in time~thereby
coalescing forwards in time! as expected. The fi-
nal horizon att50 is marked as a thick line.~c!
We show the width of the horizon-containing re
gion in grid zones. Once again, we see expone
tial convergence.
us
stic

t.
e
sur-
or
ds
sic
f ~z,r,t !5r2s~z,t !, ~14!

as the surface is single valued inz.
In Fig. 11 we show the locus of generators as it is evolv

by the code. The locus of generators clearly passes the or
and continues smoothly across thez axis. As the surface
possesses a rotational symmetry about thez axis, it is self-
intersecting where it crossesr50. These self-intersection
ed
igin

points are physical caustic points. The horizon and loc
clearly show the cusplike nature of the horizon at the cau
point. With the parametrization described in Eq.~14!, no
special treatment is needed for handling the caustic poin

In Fig. 12 we show the initial horizons surrounding th
throats with their cusps facing each other, and the entire
face of all photons that will ever join the horizon surface f
the full evolution to the future. This remarkable picture ad
to our understanding of the location of the EH of this clas
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two-black-hole initial data set discovered by Misner@28#
over 30 years ago.

V. CONCLUSIONS

We have developed a powerful method for finding blac
hole event horizons in dynamic spacetimes based on
ideas of~i! backward integration and~ii ! integrating the en-
tire null surface. This opens up the possibility of studying th
dynamics of event horizons in numerical relativity.

Our methods allow the determination of the horizon loc
tion to exceptional accuracy, even in highly distorted d
namical black holes involving strong gravitational wave
rapidly rotating black holes, and colliding black holes. Be
cause of the convergence properties of null surfaces wh
integrated backwards, the horizon-containing region can
narrowed to resolutions far better than that of the numeri
simulation which created the background spacetimes. T
width of the horizon-containing region diminishes expone
tially in time. We showed that this empirical result is ex
pected by an analysis of static spacetimes. Thus, the ev
horizon can be located to a very small fraction of the gr
spacing.

We have shown that if the spacetime can be evolved t
point that the black hole has returned to approximate stati
arity, a horizon-containing region can be chosen. The prec
width of this region is unimportant, as it exponentially de
creases backwards in time. In particular, our methods do
require knowledge of the apparent horizon, and so th

FIG. 10. The event horizon for the collision of two black hole
is computed by two different methods. The solid lines show t
result of integrating a trial surface backward in time~starting at the
position of the apparent horizon!, and the dashed lines show th
surfaces obtained by directly integrating the geodesic equation fo
series of backward photons starting at the same location and ai
normal to the apparent horizon surface. Geodesics which leave
horizon through caustics are not displayed. The results agree
within 0.05 grid zones throughout, making it almost impossible
distinguish between the solid and dashed lines.
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FIG. 11. Here we show the evolution of the event horizon and
locus of generators of them52.2 two-black-hole collision. Only the
top half of the system, containing one hole, is shown. The firs
surface att53.3M shows a single, elongated black hole. The evo-
lution of the surface is displayed att52M , t51M , ending at
t50. By t52M , the surface has already crossed itself, showing
two separate holes and the locus of generators that have not y
joined the horizon. The cusp points where the surface intersec
itself are caustics of the horizon.

FIG. 12. The coordinate location of the event horizon~thick
line!, and the locus of generators~thin line! that have not yet joined
the horizon, is shown at timet50M for two black holes colliding
head on. Thez coordinate line marks the symmetry axis. This locus
of generators will join the horizon through the point where the
surface intersects itself.
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should be a useful tool for analyzing spacetimes even
cases where the apparent horizon cannot be found~e.g., if the
time slicing does not intersect the apparent horizon!. The
impact of this development on the numerical investigatio
of the cosmic censorship conjecture and the hoop conject
could prove interesting.

Our methods allow one to locate and trace the actual g
erators of the event horizon, as well as its location in spa
time. The methods are also able to handle caustic points
the horizon surface. The ability to find horizons and the
generators accurately and efficiently allows one to pro
geometrical and physical properties of the horizon, includi
horizon oscillations, generators, membrane-paradigm-ty
quantities, and other previously unattainable physical pro
erties. The methods for finding these quantities will be t
topic of the second paper@11# in this series. These tools will
be important for studying the structure of event horizons
dynamical black hole spacetimes, including colliding blac
holes, as we will present in the third paper in this series@12#.
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