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Perturbations of an anisotropic spacetime: Dust filled medium

Hyerim Noh
Korea Astronomy Observatory, San 36-1, Whaam-dong, Yusung-gu, Daejon, Korea
(Received 21 November 1995

We investigate the evolution of a perturbed Bianchi type-I universe filled wititessurelesgdust medium.

The background model shows a smooth transition from the early shear-dominated anisotropic stage to the
dust-dominated isotropic stage. We have exact solutions describing the background evolution. We consider the
situations where the perturbation wave vector lies in a plane made of two principal axes of the background
anisotropy. We take the comoving gauge. We numerically investigate the behavior of perturbation as it goes
through the transition. The results show that in the shear-dominated stage the density perturbation shows the
coupling with the gravitational wave perturbations. Because of the coupling the density perturbation in the
small scale shows an oscillatory behavior with a decreasing amplitude.

PACS numbe(s): 98.80.Hw, 95.30.Sf

[. INTRODUCTION have one growing and one decaying modedpwhereas for
the tensor mode we have one constant mode and one decay-
We have been investigating the evolution of perturbationsng mode. Only the temporal evolution depends on the equa-
in a Bianchi type-l universe model. Ifl] we presented a tion of state. However, inside the visual horizon the behavior
formulation which can be applied to a general system madef the density perturbations is different considerably depend-
of fluids or fields. In[2] we considered the case where theing on the equation of state. For the dust fldidehaves in
energy-momentum content consists of an ideal fluid with ahe same way as the case where the perturbation scale is
vanishing entropic and anisotropic pressure. As a specififarger than the visual horizon scale. However, for a radiation
example of the ideal fluid situation, [8] we investigated the  medium & starts to oscillate with a constant amplitude. For
case with the radiation fluid where=p/n=3; pandu are s in the comoving gauge, the only scale appearing in the
the pressure and the energy density, respectively. We ha‘(ﬂf‘quation is the Jeans scale which is the sound velocity (

the radiation-dominated stage preceding the dust-dominat ﬂ'nes the gravitational time scale\i(B_,u. For the dust fluid

stage of the present universe. Fer= 3 the exact solutions we have a vanishing sound velocity. t 0 whereas for
for the evolution of the background anisotropic model are 9 Y '

known in analytic forms. These analytic solutions for thethe radiation fluidcs= c/\3, thus, comparable to the speed
background evolution are not necessary for a numerical in®f light. Meanwhile, for the gravitational wave only the vi-
vestigation, but provide the clearer interpretation of results.Sual horizon scale appears in the equation. Thus, for both
In this paper we investigate the case where the energyaquations of states, inside the visual horizon, the gravita-
momentum content consists of a pressureless dust. The ddinal wave shows the oscillation with a decaying amplitude.
fluid can be considered as a case of the ideal fluid with In the perturbed anisotropic universe the transition time
w=0. In this case we also have exact solutions for the backfrom shear to matter domination appears as an additional
ground evolution. The early shear-dominated anisotropiscale. In a shear-dominated medium the scalar mode couples
stage shows a smooth transition into the matfgust in this  with the tensor mode. Thus, inside the horizon and also in a
papej dominated isotropi¢Friedmann-Lemaitre-Robertson- shear-dominated era we expect the mixed tendency between
Walker (FLRW)] stage. The existence of the backgroundthe growing scalar mode and the oscillating tensor mode.
shear causes the mixing of the scaldensity, the vector Our result shows that the density perturbation inside the ho-
(rotation, and the tensofgravitational wavg perturbation rizon oscillates with a decreasing amplitude; see Fig).6
modes. Such a coupling smoothly disappears as the back- In this paper we numerically investigate the coupled evo-
ground evolution approaches an isotropic stage where thigtion of the density mode and the gravitational wave
background shear terms vanish. Thus, if we had an anisdghrough the anisotropic model. For the case of dust filled
tropic expansion stage preceding the isotropic stage, we exnedium, the perturbation on the Bianchi type-I model has
pect the generated tensor mode should be correlated with theen previously investigated; sek-6,8. In [4,7,8] the syn-
scalar mode. chronous gauge condition was used. As will be mentioned in
Let us briefly compare the behavior of the perturbationsSec. Il C, in a dust fluid the synchronous gauge coincides
between the radiation and the dust era in the FLRW stagevith the comoving gauge. If6] a covariant approach was
We consider the density perturbation in the comoving gaugeused which in fact corresponds to our comoving gauge
The comoving gauge completely fixes the temporal gauganalysis in this paper; see Appendix B.
transformation. Thus the resulting variables in the comoving In Sec. Il we present the background evolution. The per-
gauge are equivalently gauge invariant; see Sec. I[Il1§f  turbation equations and available exact solutions in the co-
On scales larger than the visual horizon size, the perturbanoving gauge are given. In Sec. lll we describe the asymp-
tions in both cases behave similarly. For the scalar mode witic solutions and the numerical method. The results in some
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parameter space are presented using the asymptotic so- § [ e
lutions in the shear-dominated era. Finally, in Sec. IV we i
give a brief discussion. As a unit we set1.

II. EQUATIONS

We follow the notation introduced in Sec. Il B §2]. In
[2] an ideal fluid case was considered. Also, the perturbed set
of equations without fixing the temporal gauge was pre-
sented in terms of nondimensionalized variables. The dust
medium is a pressureless limit of an ideal fluid, thus 0.
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The background equations dnee letw=0 in Egs.(2)- !
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A. Background evolution

4) of [2

(@) of [2]] FIG. 1. (a)—(c) represenes*S«(t) for S,=(—/3,0,/3). In the

] ] ) N Yy 811'G,u 1 early stage, the background evolves differently in different direc-
pu+3su=0, s,+3ss,=0, s°= 2 s, tion. But they evolve like the FLRW universe at largeThe tran-

sition occurs neary=>5.

wherew=p/u, s=s(t), s,=s,(t), anda=1,2,3. An over-

2
RO . t -3,
dot den_otes the derivative with respect to the background K2Kky= y22(Ky) 2= &~ 252(k,)? = (Ky)2,
proper timet. From Eq.(A6) of [2] we have t+ 2t
C[rr2tg]M |5 , , 38
| o3t ’ “ltratg) @ k*k3= —t+2ts) (ka). (5
where We introduce
[is <2 - - _ko =By 5.=y 3
(= 5245, _ S, B S, @ r= k—3, A=y (9aﬂB=V dy - (6)
S 4nGu ' B L _2_47TG,U,tS'
6213: Sp Thus, usingk= yk%k,, we have[see Eq(A2)]
‘ 2
We normalizea(t)=e%" so thata=0 att=0. We also set Ae — ( )
187G ue=t ;2 and, thus, normalize=1 attg. The tg as
indicates the transition time from the shear-dominated era )
into the dust-dominated era. In the limit of shear-dominated 9 3t22 3 t+ 2t -35s
era (SDE) and matter-(dust in this casedominated era =12 t+2ts — S 2 T
(MDE) we have s s s
2
-3,
SDE t<ts( noct2/3): esxt1/3oc 771/2, aocts /3 7] 2 t )
+ r @)
t+ 2t

MDE: t>ty(nxt¥®): eSxt?Pxqy?  eSemsl, (4 , , _
(7 ) K - @ The horizon crossing epoch of a given scélety(k), is

definedas
where dy=a'dt. We present a typical evolution of the

background model in Fig. 1.

1=V-Aly=—

as

(8)
B. Perturbation wave vector H

As in [2] and[3], we considerthe case where the pertur- From this relation we can exprekg in terms oft, andr as
bation wave vectok,, lies in a plane of two principal axes.

Thus we assume that a given scale is fixed by a wave vector of 322\~ /3 et i -3Ss
k,=(0k,,ks) which is time independent. We consider that 3= = S S

the index ofk® is raised byy®? which is the background 3\t+2t) 2t |t 28

three space metric subtracting the averaged background ex- _2g, 2

pansion; see Eq.l) in [1]. Because of the dependence on t 3

background anisotropy of,;, k* depends on time. We + TS re 9

have
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8 — 9A"? ;o KPkak3Kks| T AN
; E C=- ZA—W—6(SZ—S3) T 4+X oK
25 - 1
- . +16WG'u S+ s A 4G’ SA—,G
o —: 2 KT A
3 [ E Kk
2" r : +4(s)—s3) A2 G;. (12
i :
.(,5:_ 1 A prime denotes the derivative with respectso =d/4s.
- ‘ . The coefficients are determined by the background evolution
N and the wave vector. For convenience we present the evolu-
° * . * ° tion of these coefficients in Appendix A. The equation for the
decoupled gravitational wave will be considered in Sec. 11 D.
FIG. 2. The time evolution ok?k,k%k3/A? for r=100 (a), 10 For a dust medium without rotation, from E@.9) of [2]
(b), 1 (), and 0.1(d). We useS,=(0,—3,y3) ands,=19.2, we haveA=0 which coincides with the synchronous gauge
wheresy, is the value ofs at the horizon crossing. condition. Thus, in this case, the comoving gauge can be

considered as a case of the synchronous gauge with the
The wave vector of the perturbatidn, is characterized by 92uge mode completely fixed. The authors[4f and[8]
took the synchronous gauge condition to investigate the evo-

r andty ; r determines the direction of the perturbation, andI tion of th rturbation for a dust medium. In th nchr
ty determines the size of the perturbation using the horizon Hon OF the perturbation for:a dust medium. 'es.y iehro-
ous gauge, from Eq19) of [2] we have nonvanishin@

crossing epoch of the scale. We present a typical evolution df hich is th ‘ d
a combination of the wave vector in Fig. 2. which 1s the remhant gauge mode.

1. Perturbations along a principal axis

C. Perturbation equations in the comoving gauge Fork,=0 the perturbations are directed along one princi-

pal axis x®, of the background anisotropy. We may call it the
axially symmetric perturbations. We hade/A = —2s;; see
Egs.(Al) and(A2). Then, Eqs(10)—(12) become

In [3] a set of perturbation equations in the comoving
gauge is presented for a genevad const; see Eq914)—
(17) of [3]. The equations for a general=p/u without
fixing the temporal gaugéhus, in a gauge ready fodnare
presented in Eqg17)—(29) of [2]. For a dust filled medium,

. g__ ’ 4_1_ 12
we letw=0. We ignore the rotation mode, th@,=0. In 5"+ 2+%+4s§ 9£ il 47"?1“ 9A_+3S3
such a case we have=0 and K= §". The equations be- S 2A—s)? S sA-s)?
come —

5

. =(s;—S,)——(2G’' +3s,G), 13

5ol 0s 8 A’ 5 411'G,u5 5 2)§A—s§2( :©) 13
2 A s?

oA A $ — 1
$172A /|46 731 C G+ 3+§2)G'—AG=§(51—5§)5’. (14)
k?k,k3k

+4(Sé—8é)2%

These equations were first derived #]; see their Eqs(5.4)
9 A2 o 2k2k2k3k3 and(5.5). Comparing with the notation d#] we haveG=
_[§F+6(52_S3) T} ; (10 15, t.=1t,, and §2A=—FK2. If the background anisot-
ropy is symmetric with respect t&® axis, thuss;=s,, the
scalar mode decouples from the tensor mode. This situation

. 2 13 will be considered in the next subsection.
S — .o KKok'ks
G"+ 3+§2 G'— A_Z(SZ_S3) TG
2. Exact solutions in the axisymmetric situation
’ 2 3
=(s’— =2 5’+3(s’—s’)2k kok“ks (11) Consider an axisymmetric perturbation along a principal
1 4A 2 = A? ' axis of the background which is symmetric around it, thus

k,=(0,0k3) ands;=s,. Equationg13) and(14) show that
the scalar mode decouples from the tensor mode. In this case,
where Egs.(13) and(14) expressed in terms dfare
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e A — 35s,) . S k2k,
5+2 s+ss—2_3 5—4mwGu G"+|3+: 2+2( —8;)+2(s; 33)_ G'
e A— 283
_ k2 )
953 —A+A4(sp=s5)(s] S5
X 1+—9.2 6=0, (15
e A—3S K2k k3K
" 2 2 3 _:
+4(sy—83)*—;7—|G=0. (20)
G+35G—52AG=0. (16)

The coefficients based on the background and the wave vec-

An exact solution for the density perturbation was derivedtor evolution are presented in Appendix A.
in [4]. For S;=S, we have two cases wits;=*+2. For
S,=2 we have IIl. NUMERICAL INVESTIGATION

A. Initial conditions

3t 9 (t+2t)%%(\3t )"

S(x,t)= c(x) For a numerical study, we need initial conditions which

t+2ts 10 t : can be obtained from the asymptotic solutions in the early
3 ( \/_t )13 shear-dominated stage. These asymptotic solutions for a gen-
-3 Zd( X), eral constantv are derived in Sec. Il of2]. Forw=0, we
have

S(x,t)=ay(x)e 3+ a,(x)

C(X,t): mC(X). (17) + 3 A
+ 8(2 S)%(11-45y) Alas(x) +sAay(x),
For S;=—2 we have 21)
(xt)=|32 EW‘% c(x) Cxt)=—3(2-Saze *—| (2 Sg)(7-2Sy)
(\/_ 4/3 2 3 1
2 t+2t d( ): +4(2_53)A a3_§[11_483
+2(2—S3)(7—2S;)s]a,, (22
C(x,t)= 2 c( ), (19 1 3 s,
- _ _ —-3s
G(X,t) 6(81 Sz)ale + 2 S 52(2 83)
wherec(x) andd(x) are the integration constants. In Egs. 3
(17) and(18) the dominating decaying mode f@(x,t) has X(7—2S.)+ 8—7 4a
vanished. (1725 % g5 525, 07 T8
We note that from these solutions we can derive the solu- 1
tions for the rest of variables in the same gauge. Also, using Z A4(7—2S;)+ = Sy(— 61+ 20S,)
the gauge transformation, in principle, we can derive the so- 25— %)t 3% 055
lutions in other gauge conditions; see Appendix G Of
The equation for the gravitational wave in Ed6) can be —353(2—S3)(7—2S;)s|ay, (23
expressed in terms d&f; andt, in Egs.(2) and (7):

) wherea;(x), a,(x), az(x), anda,(x) are four integration
3(1-Sy) 5 constants. Tha;(x)s determine the initial amplitudes of four
93G=0. different modes. Fo€ andG, the dominania, modes have
(19) vanished. _
For the decoupled gravitational wa¥®, the asymptotic
solution is obtained from Eq20) as

t
t+ 2t

. t+tg - RS
_n23 s
G+ 2t(t+2tS)G 3 (t)

In FLRW limit, the exact solutions of Eq19) are given in

Appendix G4 off 1] G(x,t) =gr(x)e 2S5+ gy(x), (24)

D. Decoupled gravitational wave mode whereg;(x) andg,(x) are the constant coefficients.

One polarization state of the gravitational wave mode de-
couples from the coupled mode considered above. The equa-
tions are presented in Eq&7)—(29) of [2]. Ignoring the As explained i 2], the scale and the configuration of the
vector mode, thu§,=0, we have perturbation are specified by the following parameters.

B. Parameter space
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FIG. 3. (a) Iné(s) for r=0, 0.01, 0.1(d), 1 (c), 10 (b), and 100(a). We take one of the growing modg as an initial condition. We
considerS,= (0, v/3,v3). (b) C(s) in the unit of 10 °for r=0, 0.01(e), 0.1(d), 1 (c), 10(b), and 100(a), usingS,=(0,~ v3,V3). The
a; mode is consideredc) G(s) in the unit of 102 for r=0,0.01(e), 0.1 (d), 1 (c), 10 (b), and 100(a), usingS,=(0,— \/3,y3). The
a; mode is consideredd) The ratio of G(s) to C(s) for r=0, 0.01(e), 0.1 (d), 1 (c), 10 (b), and 100(a), using a; mode. We use

S.=(0,—3,\3).

(1) r(=k,/k3) determines the direction of the perturba- the initial condition, we usually considered tleg mode
tion wave vector with respect to the principal axes of thewhich is the growing mode. For initial amplitudes, we used
background anisotropy. a=101%i=1,2,3,4).

(2) mpy or sy determines the size of the perturbation for
givenkz andr. D. Results

(3) S, determines the rate of the background anisotropy. ) ) _

As shown in Sec. Il E of2], S, can be parametrized by We show the evolution ob for different values ofr in

usingu. Fig. 3@. o .
For details on this parameter space, see Sec. Il RJof As in the case of radiation-filled medium treated[8],
the growth rate ofd changes near the transition time
C. Numerical method Ss(=0) from the shear-dominated into the dust-dominated

era. In the shear-dominated e evolves likee*~2Sa(Kef)

The evolutions of5, G, andC were obtained by solving where S, (ko) indicates theS, in the direction K

the set of differential Eq$10)—(12). The evolution ofG was 5 . )
obtained by solving Eq20). As in the case of the radiation- = (0:Vkkz, Vk°ks) effectively. At large value 0§, 5 evolves
filled medium, we used the Runge-Kutta method to solve thdike the FLRW case in the dust-dominated eface®. We see
perturbation equations. For the integration, we fixed the valthat in the early shear-dominated stage, the background an-
ues ofr, sy, andu. We usually ses, =19, unless we con- iSOtropy strongly affects the evolution (_Jf the perturbation.
sider the small scale perturbations. Sincand u are the For large value of , another change in the growth rate of
important parameters which affect the results, we obtained appears between the shear-dominated era and FLRW era.
the results varying these values. We set 0, wheres, isthe ~ The effective wave vector of the perturbation
value ofs at the transition from the shear-dominated into thek = (0,Vk*kp, Vk°ks) changes from (0,G/k%kz) into
dust-dominated era. We usually took the 5000 grid pointg0,r vk>ks, Vk®k3). Therefore, forS;>S, and larger, K g
which are equally divided in time duration, and checkedeffectively changes fronx; into X,. We see that as in-
whether our results are sensitive to this resolution or not. Foereases, the growth rate changes at the earlier time. This can
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FIG. 4. In5(s) for three cases:(@ S,=(—2,11), (b) FIG. 5. The evolution of the decoupled gravitational w&vén
S,=(0,—+3,V/3), and(c) S,=(2,~1,—1). We consider =100 the unit of 10" *°for r =0 (d), 1 (c), 10(b), 100(a). We consider the
and thea; mode. constant mode as an initial condition and &e=(0,— \/§\/§)

be explained by the shift of the slope change intational wave perturbation. However, as shown in Fidp) 6
k2k,k3k4 /A2 into the earlier time(see Fig. 2 after the transition timesg, the perturbation approaches to

The other variable€ [Fig. 3b)] and G [Fig. 3(c)] also the FLRW universe wheré«es; in the FLRW limit the den-

show the change in growth rate near the transition taine sity perturbation will be decoupled from the gravitational
As in the case of, the changes in growth rate & and  Wave perturbation. o

G occur at earlier time as increases. As increasesC and For comparison, in the case of the radiation-filled me-
G approach the FLRW universe in which they remain con-dium, aftersg the density perturbation continues the oscilla-
stant. In Fig. &), we show the relation betwe&handG for t|or'16\|thh a cohnstant am;;lltudésliee F'?' %) in [ﬁ])'. di
different values of . As in the case of radiation, the value of S0, In the case of small scale perturbation and in
C turns out to be comparable to that®f Similar result can the shear dom'ﬂated era, we found that our nlumerlcal solu-
be found in[5] where the uniform-curvature gauge with the “0”(1"1‘%2325 W'thE thSeZa_naIZtlc solution derived (]
spatial C gauge was used. In the anisotropic universe thé®™! [see Eq(8.2) in [4]].

background anisotropy causes the correlation between the

tensor perturbation and the scalar perturbation. In an isotro- IV. DISCUSSION

pic universe they evolve independently. In this work, we studied the evolution of perturbations in
In Fig. 4, the evolutions of with different cases of the ' 5 gjanchi type-I universe filled with the dust. The perturba-
background models are presented. Figure 4 shows that in thg,, equations were obtained based on the “gauge ready”
garly_ shear—dc_)minated stage, the evoluti_on of the perturbgymulation presented if1]. We adopted the comoving
tion is determined by the background anisotropysAtss,  gauge which is suitable for investigating the density pertur-
the perturbations evolve like théxe* 2%, because the bation.
wave vector effectively lies ik® direction. But fors>s;, As in the case of the radiation-filled universe studied in
the perturbations evolve like in the FLRW universe. In the[3] the background shows a smooth transition from the
case of f) and (C) in which the background is axisymmet- shear-dominated ~anisotropic universe into the dust-
ric with respect tox" axis, the evolutions of the perturbed gominated isotropic one. The results show that the change in
variables are independent of ~growth rate occurs near the transition time. In the early time
In Fig. 5, the evolution of the decoupled gravitational i \which the shear dominates, the evolution of the perturba-
wave perturbatioits is shown for different values of. Asin  tion is governed by the anisotropy of the background. There-
the case of the coupled gravitational wave, the decouplegbre, the growth rate of the perturbation shows the effect of
gravitational wave changes its slope at earlier time with inthe directional dependence of the background expansion. In
creasingr. In the FLRW limit, G becomes constant. the case of an axisymmetric perturbation in a dust-filled an-
So far, we considered the perturbations in the large scalgotropic universe with the wave vectke=(0,0k3), the re-
in which the horizon crossing occurs much later than thesult can be compared with the previous worki4]. In [4],
transition times;. It may be interesting to see the behavior the synchronous gauge was adopted which is equivalent to
of the perturbations in a small scale. In Fig$a)6-6(d) we  the comoving gauge in a dust medium.
show the evolution of, C, andG in a small scale, respec- It may be interesting to compare the result of this work
tively. In this case, we assumed that the horizon crossingvith the case of the radiation obtained[B]. In an isotropic
occurs before the transition tingg. The perturbed variables universe, the evolution of density perturbation in a dust-filled
start oscillations near the horizon crossing. It is noticeablainiverse is independent of the horizon scale. This is because
that in an anisotropic universe, like the case of the radiationin the case of dust the sound velocity is negligible. There-
filled medium, § in the dust-filled universe oscillates with a fore, perturbations in the small scale behave similarly to the
decreasing amplitude because of the coupling with the graviease of large scale. No oscillation occurs inside the horizon.
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FIG. 6. (a) The evolution ofs in the unit of 10'° using the case where the horizon crossing occurs earlier than the transition time
ss. We set the horizon crossing epochsats —8.7. (b) The evolution of§ in the unit of 10 1° after the transition time,=0. The horizon
crossing occurs ay=—8.7. () C(s) in the unit of 10 1° using the case where the horizon crossing occusg at—8.7. (d) G(s) in the
unit of 10710 using the case where the horizon crossing occuss at—8.7.

While, in a radiation-dominated era, the density perturbation ) te S te 2

evolves differently depending on whether it is inside or out- 5a=3am, 272 1+(t+t ) }

side the visual horizon. When its wavelength is smaller than S S

the visual horizon, the density perturbation shows the oscil-

lation with a constant amplitude. In the anisotropic universe, 87Gu _ t(t+2ty) (A1)
the scalar mode perturbation couples with the tensor mode 3s? (t+ty)*

perturbation. Our numerical result shows that inside the ho-
rizon, the density perturbation shows the oscillation with aThe evolutions of the wave vector in Sec. |l B give
decreasing amplitude because of the coupling with the gravi-

i i 2
tational wave perturbation. — 43t 2t \ 3ty +t\ 2t -5S;
ty) \ty+2tg t+tg ) | t+2tg
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SRl T r
APPENDIX A: COEFFICIENTS P
t 3(53-S)
. . , S+ Sz( r2
In the following we present the behavior of background A ts t+ 2t
guantities and the wave vector. These terms appear as coef- A 2t+ts ; 25, s, d
ficients of the fundamental perturbation equations in Egs. +( ) r2
(10—(12), and(20). We have t+2tg
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k3kq 1 ferent from the covariant notation; see EF5) of [1] for the
A T correspondences between the fluid quantities, and we used a
1+ t )3 ;2 notation P, for the projection tensor. Thus, in the ADM
t+ 2t notation we haveu—E andq,—J,; see Eq.(E5 of [1].
The perturbative expansion of the fluid quantities can be
k?k, r2 found in Eqgs.(1) and(4) of [1]. Since in the ADM formula-
A ¢ 25,5y : (A2)  ion u, becomesn, with n,=0, in our general frame we
+r2 need to introduce a genenal,. We let
t+ 2t

u=e V¢, u,=e%B,+V,), u’=e S(1-A),

APPENDIX B: COVARIANT DENSITY GRADIENT
VARIABLE

In a perturbed FLRW model, the authors[6f introduced ~ WhereV* is based ony,z. U, in Eq. (B3) can be compared
a density gradient variable which is covariant and gauge inwith n, in Egs.(A2) and(3) of [1]; in the normal frame we
variant; an application to the anisotropic model was made irotice thatB,+V,=0. Thus, in combination with Eq$ES)
[6]. In the perturbation analysis the variable corresponds to and(4) of [1], Eq. (B3) becomes
combination of a scalar moda gauge invariant combination
of the density variable based on the comoving gawgel a
vector(rotationa) mode. The variable was generalized into a
frame invariant form if10]. In the following we present a
corresponding variable in the general background of Bianchf hus
type-l1 model. 1
In Sec. 2.1 off10] an observer-independent form of the D ==
four vector is introduced as “

Up=—e%1+A), (B3)

uf=eS B,+V,+ —— (B4)

ntp

Qa)_

Ba+va+&

mtp (BS)

8,a+1u‘,0

(D=0 becaus® ,ui=0.) Decomposing/,, into the scalar
(B1)  and the vector mode similarly as in EQL2) of [1], thus
VQEV,a+VEY”) , we finally have
The uf is frame independent in the sense that in the en-

q
uE=u,+ ——.
mtp

a

ergy frame we lej,=0 whereas in the normal frame we let 1 Q Mol v
u,=n, wheren,=0. The covariant formulations of the per- D“_; et ol BHVH ntp + M By V¢
turbed models in[9,6] are based on the energy frame, “

whereas the Arnowitt-Deser-MisnéADM) approach of the QY

slicing the spacetime is based on introducing the normal + wtpl (B6)

frame vector. Since we have a freedom in choosing the ve-
locity of the observer, any approach loses no generality. |n the normal frame, thug+V=0 andB{”)+Vv{)=0,
However, by usingus in Eq. (B1) we can have frame- the gauge transformation properties of the complete set of
invariant expressions; we put a superscpin a sense that variables are presented in E¢€2—(C17) of [1]. We notice
ug becomeau, in the energy frame. that onlyfor the vanishing background anisotropic pressure,
Now, we introduce a covariant density gradient variable thusIl,;=0, D, becomes gauge invariant; see E@310),
(C12, and(C13 of [1]. In this case we can write

1
Da=—h"up, (B2) 1 1
# D= (2lg) at QY. (B7)
where u is the density variable antf, is the projection 'M a
tensor based onf: hf, =g.,+uSup (see Sec. 2.1 df10]).  Thus the scalar part db, contains the information about
In [1] we derived the equations based on the ADM formula-density perturbation based on the comoving gauge; see Eq.
tion. The notation used in ADM formulation is slightly dif- (33) of [1].
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