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Perturbations of an anisotropic spacetime: Dust filled medium
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We investigate the evolution of a perturbed Bianchi type-I universe filled with a~pressureless! dust medium.
The background model shows a smooth transition from the early shear-dominated anisotropic stage
dust-dominated isotropic stage. We have exact solutions describing the background evolution. We consid
situations where the perturbation wave vector lies in a plane made of two principal axes of the backgr
anisotropy. We take the comoving gauge. We numerically investigate the behavior of perturbation as it
through the transition. The results show that in the shear-dominated stage the density perturbation sho
coupling with the gravitational wave perturbations. Because of the coupling the density perturbation in
small scale shows an oscillatory behavior with a decreasing amplitude.

PACS number~s!: 98.80.Hw, 95.30.Sf
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I. INTRODUCTION

We have been investigating the evolution of perturbatio
in a Bianchi type-I universe model. In@1# we presented a
formulation which can be applied to a general system ma
of fluids or fields. In@2# we considered the case where th
energy-momentum content consists of an ideal fluid with
vanishing entropic and anisotropic pressure. As a spec
example of the ideal fluid situation, in@3# we investigated the
case with the radiation fluid wherew[p/m5 1

3; p andm are
the pressure and the energy density, respectively. We h
the radiation-dominated stage preceding the dust-domina
stage of the present universe. Forw5 1

3 the exact solutions
for the evolution of the background anisotropic model a
known in analytic forms. These analytic solutions for th
background evolution are not necessary for a numerical
vestigation, but provide the clearer interpretation of result

In this paper we investigate the case where the ener
momentum content consists of a pressureless dust. The
fluid can be considered as a case of the ideal fluid w
w50. In this case we also have exact solutions for the ba
ground evolution. The early shear-dominated anisotro
stage shows a smooth transition into the matter-~dust in this
paper! dominated isotropic@Friedmann-Lemaitre-Robertson
Walker ~FLRW!# stage. The existence of the backgroun
shear causes the mixing of the scalar~density!, the vector
~rotation!, and the tensor~gravitational wave! perturbation
modes. Such a coupling smoothly disappears as the ba
ground evolution approaches an isotropic stage where
background shear terms vanish. Thus, if we had an ani
tropic expansion stage preceding the isotropic stage, we
pect the generated tensor mode should be correlated with
scalar mode.

Let us briefly compare the behavior of the perturbatio
between the radiation and the dust era in the FLRW sta
We consider the density perturbation in the comoving gau
The comoving gauge completely fixes the temporal gau
transformation. Thus the resulting variables in the comovi
gauge are equivalently gauge invariant; see Sec. III of@1#.
On scales larger than the visual horizon size, the pertur
tions in both cases behave similarly. For the scalar mode
531/96/53~8!/4311~8!/$10.00
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have one growing and one decaying mode ford, whereas for
the tensor mode we have one constant mode and one de
ing mode. Only the temporal evolution depends on the equ
tion of state. However, inside the visual horizon the behavi
of the density perturbations is different considerably depen
ing on the equation of state. For the dust fluidd behaves in
the same way as the case where the perturbation scal
larger than the visual horizon scale. However, for a radiati
mediumd starts to oscillate with a constant amplitude. Fo
d in the comoving gauge, the only scale appearing in t
equation is the Jeans scale which is the sound velocity (cs)
times the gravitational time scale 1/AGm. For the dust fluid
we have a vanishing sound velocity, thuscs50, whereas for
the radiation fluidcs5c/A3, thus, comparable to the spee
of light. Meanwhile, for the gravitational wave only the vi-
sual horizon scale appears in the equation. Thus, for b
equations of states, inside the visual horizon, the gravi
tional wave shows the oscillation with a decaying amplitud

In the perturbed anisotropic universe the transition tim
from shear to matter domination appears as an additio
scale. In a shear-dominated medium the scalar mode coup
with the tensor mode. Thus, inside the horizon and also in
shear-dominated era we expect the mixed tendency betw
the growing scalar mode and the oscillating tensor mod
Our result shows that the density perturbation inside the h
rizon oscillates with a decreasing amplitude; see Fig. 6~a!.

In this paper we numerically investigate the coupled ev
lution of the density mode and the gravitational wav
through the anisotropic model. For the case of dust fille
medium, the perturbation on the Bianchi type-I model ha
been previously investigated; see@4–6,8#. In @4,7,8# the syn-
chronous gauge condition was used. As will be mentioned
Sec. II C, in a dust fluid the synchronous gauge coincid
with the comoving gauge. In@6# a covariant approach was
used which in fact corresponds to our comoving gau
analysis in this paper; see Appendix B.

In Sec. II we present the background evolution. The pe
turbation equations and available exact solutions in the c
moving gauge are given. In Sec. III we describe the asym
totic solutions and the numerical method. The results in som
4311 © 1996 The American Physical Society
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parameter space are presented using the asymptotic
lutions in the shear-dominated era. Finally, in Sec. IV w
give a brief discussion. As a unit we setc[1.

II. EQUATIONS

We follow the notation introduced in Sec. II B of@2#. In
@2# an ideal fluid case was considered. Also, the perturbed
of equations without fixing the temporal gauge was pr
sented in terms of nondimensionalized variables. The d
medium is a pressureless limit of an ideal fluid, thusw50.

A. Background evolution

The background equations are@we letw50 in Eqs.~2!–
~4! of @2# #

ṁ13ṡm50, s̈a13ṡṡa50, ṡ25
8pGm

3
1
1

6(a ṡa
2 , ~1!

wherew[p/m, s[s(t), sa[sa(t), anda51,2,3. An over-
dot denotes the derivative with respect to the backgrou
proper timet. From Eq.~A6! of @2# we have

es5F t~ t12ts!

3ts
2 G1/3, esa5S t

t12ts
D Sa/3

, ~2!

where

ts[
A 1

6 (aṡa
2

4pGm
, Sa[

ṡa

A 1
6(

b
ṡb
2

5
ṡa

4pGmts
. ~3!

We normalizea(t)[es(t) so thata50 at t50. We also set
18pGme3s[ts

22 and, thus, normalizea51 at ts . The ts
indicates the transition time from the shear-dominated e
into the dust-dominated era. In the limit of shear-dominat
era ~SDE! and matter-~dust in this case! dominated era
~MDE! we have

SDE: t!ts~h}t2/3!: es}t1/3}h1/2, esa}tSa/3}hSa/2,

MDE: t@ts~h}t1/3!: es}t2/3}h2, esa→1, ~4!

where dh[a21dt. We present a typical evolution of the
background model in Fig. 1.

B. Perturbation wave vector

As in @2# and@3#, we considerthe case where the pertur
bation wave vectorka lies in a plane of two principal axes
Thus we assume that a given scale is fixed by a wave ve
ka5(0,k2 ,k3) which is time independent. We consider tha
the index ofka is raised bygab which is the background
three space metric subtracting the averaged background
pansion; see Eq.~1! in @1#. Because of the dependence o
background anisotropy ofgab , ka depends on time. We
have
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k2k25g22~k2!
25e22s2~k2!

25S t

t12ts
D 2

2
3S2

~k2!
2,

k3k35S t

t12ts
D 2

2
3S3

~k3!
2. ~5!

We introduce

r[
k2
k3
, D[gab]a]b[¹~3!a]a . ~6!

Thus, usingk[Akaka, we have@see Eq.~A2!#

D̄[2S k

aṡ
D 2

52
9

4
S 3t2ts2
t12ts

D 2/3S t12ts
t1ts

D 2~k3!2F S t

t12ts
D 2

2
3S3

1S t

t12ts
D 2

2
3S2

r 2G . ~7!

The horizon crossing epoch of a given scalek, tH(k), is
definedas

1[A2D̄uH5
k

aṡ
U
H

. ~8!

From this relation we can expressk3 in terms oftH andr as

k35
2

3
S 3t2ts2
t12ts

D 21/3
t1ts
t12ts

F S t

t12ts
D 2

2
3S3

1S t

t12ts
D 2

2
3S2

r 2G21/2

U
t5tH

. ~9!

FIG. 1. ~a!–~c! representes1sa(t) for Sa5(2A3,0,A3). In the
early stage, the background evolves differently in different direc
tion. But they evolve like the FLRW universe at larget. The tran-
sition occurs nearts55.



n
-

e
e

-

n

l

e,

53 4313PERTURBATIONS OF AN ANISOTROPIC SPACETIME: DUST . . .
The wave vector of the perturbationka is characterized by
r andtH ; r determines the direction of the perturbation, an
tH determines the size of the perturbation using the horiz
crossing epoch of the scale. We present a typical evolution
a combination of the wave vector in Fig. 2.

C. Perturbation equations in the comoving gauge

In @3# a set of perturbation equations in the comovin
gauge is presented for a generalw5const; see Eqs.~14!–
~17! of @3#. The equations for a generalw5p/m without
fixing the temporal gauge~thus, in a gauge ready form! are
presented in Eqs.~17!–~29! of @2#. For a dust filled medium,
we let w50. We ignore the rotation mode, thusQv50. In
such a case we haveA50 anddK̄5d8. The equations be-
come

d91S 21
s̈

ṡ2
2

D8

D D d82
4pGm

ṡ2
d

5S s182
D8

4D D S 4G823
D8

D
GD

14~s282s38!2
k2k2k

3k3
D2 G

2F98 D82

D2 16~s282s38!2
k2k2k

3k3
D2 GC, ~10!

G91S 31
s̈

ṡ2DG82F D̄22~s282s38!2
k2k2k

3k3
D2 GG

5S s182
D8

4D D d813~s282s38!2
k2k2k

3k3
D2 C, ~11!

where

FIG. 2. The time evolution ofk2k2k
3k3 /D

2 for r5100 ~a!, 10
~b!, 1 ~c!, and 0.1~d!. We useSa5(0,2A3,A3) and sH519.2,
wheresH is the value ofs at the horizon crossing.
d
on
of

g

C52F2D̄2
9D82

8D2 26~s282s38!2
k2k2k

3k3
D2 G21H S 41

D8

D D dK̄

1
16pGm

ṡ2
d 1Ss182 D8

4DDS4G823
D8

D
GD

14~s282s38!
2
k2k2k

3k3
D2 GJ. ~12!

A prime denotes the derivative with respect tos;8[]/]s.
The coefficients are determined by the background evolutio
and the wave vector. For convenience we present the evolu
tion of these coefficients in Appendix A. The equation for the
decoupled gravitational wave will be considered in Sec. II D.

For a dust medium without rotation, from Eq.~19! of @2#
we haveA50 which coincides with the synchronous gauge
condition. Thus, in this case, the comoving gauge can b
considered as a case of the synchronous gauge with th
gauge mode completely fixed. The authors of@4# and @8#
took the synchronous gauge condition to investigate the evo
lution of the perturbation for a dust medium. In the synchro-
nous gauge, from Eq.~19! of @2# we have nonvanishingQ̄
which is the remnant gauge mode.

1. Perturbations along a principal axis

For k250 the perturbations are directed along one princi-
pal axis,x̂3, of the background anisotropy. We may call it the
axially symmetric perturbations. We haveD8/D522s38; see
Eqs.~A1! and ~A2!. Then, Eqs.~10!–~12! become

d91S 21
s̈

ṡ2
14s38

2
9 D̄2s38
4
9 D̄2s38

2D d82
4pGm

ṡ2

4
9 D̄13s38

2

4
9 D̄2s38

2
d

5~s182s28!

4
9 D̄

4
9 D̄2s38

2
~2G813s38G!, ~13!

G91S 31
s̈

ṡ2DG82D̄G5
1

2
~s182s28!d8. ~14!

These equations were first derived in@4#; see their Eqs.~5.4!
and ~5.5!. Comparing with the notation of@4# we haveG5
1
2h, ts5

1
2tb , and ṡ

2D̄52FK2. If the background anisot-
ropy is symmetric with respect tox̂3 axis, thuss15s2 , the
scalar mode decouples from the tensor mode. This situatio
will be considered in the next subsection.

2. Exact solutions in the axisymmetric situation

Consider an axisymmetric perturbation along a principa
axis of the background which is symmetric around it, thus
ka5(0,0,k3) ands15s2 . Equations~13! and~14! show that
the scalar mode decouples from the tensor mode. In this cas
Eqs.~13! and ~14! expressed in terms oft are
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d̈12S ṡ1 ṡ3
e22sD2 3

2 ṡṡ3

e22sD2 9
4 ṡ3

2 D ḋ24pGm

3S 11
9ṡ3

2

e22sD2 9
4 ṡ3

2D d50, ~15!

G̈13ṡĠ2 ṡ2D̄G50. ~16!

An exact solution for the density perturbation was derive
in @4#. For S15S2 we have two cases withS3562. For
S352 we have

d~x,t !5F 3ts
t12ts

2
9

10

~ t12ts!
5/3~A3ts!4/3

t
]3
2Gc~x!

2
3

2

~A3ts!4/3

t
]3
2d~x!,

C~x,t !5
2t

t12ts
c~x!. ~17!

For S3522 we have

d~x,t !5F3tst 2
9

10

t5/3~A3ts!4/3

t12ts
]3
2Gc~x!

2
3

2

~A3ts!4/3

t12ts
]3
2d~x!,

C~x,t !52
t12ts
t

c~x!, ~18!

wherec(x) and d(x) are the integration constants. In Eqs
~17! and ~18! the dominating decaying mode forC(x,t) has
vanished.

We note that from these solutions we can derive the so
tions for the rest of variables in the same gauge. Also, us
the gauge transformation, in principle, we can derive the s
lutions in other gauge conditions; see Appendix C of@1#.

The equation for the gravitational wave in Eq.~16! can be
expressed in terms ofk3 and ts in Eqs.~2! and ~7!:

G̈12
t1ts

t~ t12ts!
Ġ232/3S tst D

4/3S t

t12ts
D 2
3 ~12S3!

]3
2G50.

~19!

In FLRW limit, the exact solutions of Eq.~19! are given in
Appendix G4 of@1#.

D. Decoupled gravitational wave mode

One polarization state of the gravitational wave mode d
couples from the coupled mode considered above. The eq
tions are presented in Eqs.~27!–~29! of @2#. Ignoring the
vector mode, thusQ̄v50, we have
d

.
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Ḡ91F31
s̈

ṡ2
12~s182s28!12~s282s38!

k2k2
D GḠ8

1F2D̄14~s282s38!~s182s28!
k2k2
D

14~s282s38!2
k2k2k

3k3
D2 GḠ50. ~20!

The coefficients based on the background and the wave v
tor evolution are presented in Appendix A.

III. NUMERICAL INVESTIGATION

A. Initial conditions

For a numerical study, we need initial conditions which
can be obtained from the asymptotic solutions in the ear
shear-dominated stage. These asymptotic solutions for a g
eral constantw are derived in Sec. III of@2#. Forw50, we
have

d~x,t ![a1~x!e23s1a2~x!

1D̄F11
3

8~22S3!
2~1124S3!

D̄Ga3~x!1sD̄a4~x!,

~21!

C~x,t !52
1

3
~22S3!a1e

23s2F ~22S3!~722S3!

1
3

4~22S3!
D̄Ga32 1

2
@1124S3

12~22S3!~722S3!s#a4 , ~22!

G~x,t !52
1

6
~S12S2!a1e

23s1F2
3

2

S3
S12S2

~22S3!

3~722S3!1
3

8~S12S2!~22S3!
~827S3!D̄Ga3

1
1

2

1

S12S2
F4~722S3!1

1

2
S3~261120S3!

23S3~22S3!~722S3!sGa4 , ~23!

wherea1(x), a2(x), a3(x), anda4(x) are four integration
constants. Theai(x)s determine the initial amplitudes of four
different modes. ForC andG, the dominanta2 modes have
vanished.

For the decoupled gravitational waveḠ, the asymptotic
solution is obtained from Eq.~20! as

Ḡ~x,t !5g1~x!e22~S12S2!s1g2~x!, ~24!

whereg1(x) andg2(x) are the constant coefficients.

B. Parameter space

As explained in@2#, the scale and the configuration of the
perturbation are specified by the following parameters.
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FIG. 3. ~a! lnd(s) for r50, 0.01, 0.1~d!, 1 ~c!, 10 ~b!, and 100~a!. We take one of the growing modea3 as an initial condition. We
considerSa5(0,2A3,A3). ~b! C(s) in the unit of 10210 for r50, 0.01~e!, 0.1~d!, 1 ~c!, 10 ~b!, and 100~a!, usingSa5(0,2A3,A3). The
a3 mode is considered.~c! G(s) in the unit of 10210 for r50,0.01~e!, 0.1 ~d!, 1 ~c!, 10 ~b!, and 100~a!, usingSa5(0,2A3,A3). The
a3 mode is considered.~d! The ratio ofG(s) to C(s) for r50, 0.01 ~e!, 0.1 ~d!, 1 ~c!, 10 ~b!, and 100~a!, using a3 mode. We use
Sa5(0,2A3,A3).
d

d

n-

ra.

an
~1! r ([k2 /k3) determines the direction of the perturba
tion wave vector with respect to the principal axes of th
background anisotropy.

~2! hH or sH determines the size of the perturbation fo
given k3 and r .

~3! Sa determines the rate of the background anisotrop
As shown in Sec. II E of@2#, Sa can be parametrized by
usingu.

For details on this parameter space, see Sec. II E of@2#.

C. Numerical method

The evolutions ofd, G, andC were obtained by solving
the set of differential Eqs.~10!–~12!. The evolution ofḠ was
obtained by solving Eq.~20!. As in the case of the radiation-
filled medium, we used the Runge-Kutta method to solve t
perturbation equations. For the integration, we fixed the v
ues ofr , sH , andu. We usually setsH519, unless we con-
sider the small scale perturbations. Sincer and u are the
important parameters which affect the results, we obtain
the results varying these values. We setss50, wheress is the
value ofs at the transition from the shear-dominated into th
dust-dominated era. We usually took the 5000 grid poin
which are equally divided in time duration, and checke
whether our results are sensitive to this resolution or not. F
-
e

r

y.

he
al-

ed

e
ts
d
or

the initial condition, we usually considered thea3 mode
which is the growing mode. For initial amplitudes, we use
ai510210( i51,2,3,4).

D. Results

We show the evolution ofd for different values ofr in
Fig. 3~a!.

As in the case of radiation-filled medium treated in@3#,
the growth rate ofd changes near the transition time
ss(50) from the shear-dominated into the dust-dominate
era. In the shear-dominated era,d evolves likee422Sa(keff),
where Sa(keff) indicates the Sa in the direction keff
5(0,Ak2k2,Ak3k3) effectively. At large value ofs,d evolves
like the FLRW case in the dust-dominated era:d}es. We see
that in the early shear-dominated stage, the background a
isotropy strongly affects the evolution of the perturbation.

For large value ofr , another change in the growth rate of
d appears between the shear-dominated era and FLRW e
The effective wave vector of the perturbation
k eff5(0,Ak2k2,Ak3k3) changes from (0,0,Ak3k3) into
(0,rAk3k3,Ak3k3). Therefore, forS3.S2 and larger , k̂ eff
effectively changes fromx̂3 into x̂2 . We see that asr in-
creases, the growth rate changes at the earlier time. This c
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4316 53HYERIM NOH
be explained by the shift of the slope change
k2k2k

3k3 /D
2 into the earlier time~see Fig. 2!.

The other variablesC @Fig. 3~b!# andG @Fig. 3~c!# also
show the change in growth rate near the transition timess .
As in the case ofd, the changes in growth rate ofC and
G occur at earlier time asr increases. Ass increases,C and
G approach the FLRW universe in which they remain co
stant. In Fig. 3~d!, we show the relation betweenC andG for
different values ofr . As in the case of radiation, the value o
C turns out to be comparable to that ofG. Similar result can
be found in@5# where the uniform-curvature gauge with th
spatialC gauge was used. In the anisotropic universe
background anisotropy causes the correlation between
tensor perturbation and the scalar perturbation. In an iso
pic universe they evolve independently.

In Fig. 4, the evolutions ofd with different cases of the
background models are presented. Figure 4 shows that in
early shear-dominated stage, the evolution of the pertu
tion is determined by the background anisotropy. Ats!ss ,
the perturbations evolve like thed}e422S3, because the
wave vector effectively lies inx̂3 direction. But fors@ss ,
the perturbations evolve like in the FLRW universe. In t
case of (A) and (C) in which the background is axisymme
ric with respect tox̂1 axis, the evolutions of the perturbe
variables are independent ofr .

In Fig. 5, the evolution of the decoupled gravitation
wave perturbationḠ is shown for different values ofr . As in
the case of the coupled gravitational wave, the decoup
gravitational wave changes its slope at earlier time with
creasingr . In the FLRW limit, Ḡ becomes constant.

So far, we considered the perturbations in the large sc
in which the horizon crossing occurs much later than
transition timess . It may be interesting to see the behavi
of the perturbations in a small scale. In Figs. 6~a!–6~d! we
show the evolution ofd, C, andG in a small scale, respec
tively. In this case, we assumed that the horizon cross
occurs before the transition timess . The perturbed variables
start oscillations near the horizon crossing. It is noticea
that in an anisotropic universe, like the case of the radiati
filled medium,d in the dust-filled universe oscillates with
decreasing amplitude because of the coupling with the gr

FIG. 4. lnd(s) for three cases:~a! Sa5(22,1,1), ~b!
Sa5(0,2A3,A3), and ~c! Sa5(2,21,21). We considerr5100
and thea3 mode.
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tational wave perturbation. However, as shown in Fig. 6~b!,
after the transition timess , the perturbation approaches to
the FLRW universe whered}es; in the FLRW limit the den-
sity perturbation will be decoupled from the gravitationa
wave perturbation.

For comparison, in the case of the radiation-filled me
dium, afterss the density perturbation continues the oscilla
tion with a constant amplitude~see Fig. 9~a! in @3#!.

Also, in the case of small scale perturbation and
the shear dominated era, we found that our numerical so
tion agrees with the analytic solution derived in@4#:
d}t (122s3)/3 @see Eq.~8.2! in @4# #.

IV. DISCUSSION

In this work, we studied the evolution of perturbations i
a Bianchi type-I universe filled with the dust. The perturba
tion equations were obtained based on the ‘‘gauge read
formulation presented in@1#. We adopted the comoving
gauge which is suitable for investigating the density pertu
bation.

As in the case of the radiation-filled universe studied
@3# the background shows a smooth transition from th
shear-dominated anisotropic universe into the du
dominated isotropic one. The results show that the change
growth rate occurs near the transition time. In the early tim
in which the shear dominates, the evolution of the perturb
tion is governed by the anisotropy of the background. Ther
fore, the growth rate of the perturbation shows the effect
the directional dependence of the background expansion
the case of an axisymmetric perturbation in a dust-filled a
isotropic universe with the wave vectork5(0,0,k3), the re-
sult can be compared with the previous work in@4#. In @4#,
the synchronous gauge was adopted which is equivalen
the comoving gauge in a dust medium.

It may be interesting to compare the result of this wor
with the case of the radiation obtained in@3#. In an isotropic
universe, the evolution of density perturbation in a dust-fille
universe is independent of the horizon scale. This is beca
in the case of dust the sound velocity is negligible. Ther
fore, perturbations in the small scale behave similarly to t
case of large scale. No oscillation occurs inside the horizo

FIG. 5. The evolution of the decoupled gravitational waveḠ in
the unit of 10210 for r50 ~d!, 1 ~c!, 10 ~b!, 100~a!. We consider the
constant mode as an initial condition and useSa5(0,2A3,A3).
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FIG. 6. ~a! The evolution ofd in the unit of 10210 using the case where the horizon crossing occurs earlier than the transition
ss . We set the horizon crossing epoch atsH528.7. ~b! The evolution ofd in the unit of 10210 after the transition timess50. The horizon
crossing occurs atsH528.7. ~c! C(s) in the unit of 10210 using the case where the horizon crossing occurs atsH528.7. ~d! G(s) in the
unit of 10210 using the case where the horizon crossing occurs atsH528.7.
While, in a radiation-dominated era, the density perturbati
evolves differently depending on whether it is inside or ou
side the visual horizon. When its wavelength is smaller th
the visual horizon, the density perturbation shows the os
lation with a constant amplitude. In the anisotropic univers
the scalar mode perturbation couples with the tensor mo
perturbation. Our numerical result shows that inside the h
rizon, the density perturbation shows the oscillation with
decreasing amplitude because of the coupling with the gra
tational wave perturbation.
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APPENDIX A: COEFFICIENTS

In the following we present the behavior of backgroun
quantities and the wave vector. These terms appear as c
ficients of the fundamental perturbation equations in Eq
~10!–~12!, and~20!. We have
on
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The evolutions of the wave vector in Sec. II B give
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APPENDIX B: COVARIANT DENSITY GRADIENT
VARIABLE

In a perturbed FLRW model, the authors of@9# introduced
a density gradient variable which is covariant and gauge
variant; an application to the anisotropic model was made
@6#. In the perturbation analysis the variable corresponds t
combination of a scalar mode~a gauge invariant combination
of the density variable based on the comoving gauge! and a
vector~rotational! mode. The variable was generalized into
frame invariant form in@10#. In the following we present a
corresponding variable in the general background of Bian
type-I model.

In Sec. 2.1 of@10# an observer-independent form of th
four vector is introduced as

ua
E[ua1

qa
m1p

. ~B1!

The ua
E is frame independent in the sense that in the e

ergy frame we letqa[0 whereas in the normal frame we le
ua[na wherena[0. The covariant formulations of the per
turbed models in@9,6# are based on the energy frame
whereas the Arnowitt-Deser-Misner~ADM ! approach of the
slicing the spacetime is based on introducing the norm
frame vector. Since we have a freedom in choosing the
locity of the observer, any approach loses no general
However, by usingua

E in Eq. ~B1! we can have frame-
invariant expressions; we put a superscriptE in a sense that
ua
E becomesua in the energy frame.
Now, we introduce a covariant density gradient variabl

Da[
1

m
hEbam ,b , ~B2!

wherem is the density variable andhab
E is the projection

tensor based onua
E : hab

E [gab1ua
Eub

E ~see Sec. 2.1 of@10#!.
In @1# we derived the equations based on the ADM formul
tion. The notation used in ADM formulation is slightly dif-
n-
in
a

a

hi

n-

,

al
e-
ty.

-

ferent from the covariant notation; see Eq.~E5! of @1# for the
correspondences between the fluid quantities, and we used
notation Pab for the projection tensor. Thus, in the ADM
notation we havem→E and qa→Ja ; see Eq.~E5! of @1#.
The perturbative expansion of the fluid quantities can b
found in Eqs.~1! and~4! of @1#. Since in the ADM formula-
tion ua becomesna with na50, in our general frame we
need to introduce a generalua . We let

ua[e2sVa, ua5es~Ba1Va!, u05e2s~12A!,

u052es~11A!, ~B3!

whereVa is based ongab . ua in Eq. ~B3! can be compared
with na in Eqs.~A2! and~3! of @1#; in the normal frame we
notice thatBa1Va50. Thus, in combination with Eqs.~E5!
and ~4! of @1#, Eq. ~B3! becomes

ua
E5esSBa1Va1

Qa

m1pD . ~B4!

Thus

Da5
1

m F« ,a1m ,0SBa1Va1
Qa

m1pD G . ~B5!

(D050 becauseDauE
a50.) DecomposingVa into the scalar

and the vector mode similarly as in Eq.~12! of @1#, thus
Va[V,a1Va

(v) , we finally have

Da5
1

m F«1m ,0SB1V1
Q

m1pD G
,a

1
m ,0

m SBa
~v !1Va

~v !

1
Qa

~v !

m1pD . ~B6!

In the normal frame, thusB1V50 andBa
(v)1Va

(v)50,
the gauge transformation properties of the complete set
variables are presented in Eqs.~C2!–~C17! of @1#. We notice
that only for the vanishing background anisotropic pressure
thusPab50, Da becomes gauge invariant; see Eqs.~C10!,
~C12!, and~C13! of @1#. In this case we can write

Da5
1

m
~«uQ! ,a1

1

m
Qa

~v ! . ~B7!

Thus the scalar part ofDa contains the information about
density perturbation based on the comoving gauge; see E
~33! of @1#.
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