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Singularities in a scalar field quantum cosmology
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The quantum theory of a spatially flat Friedmann-Robertson-Walker universe with a massless scalar field as
the source is further investigated. The classical model is singular and in the framework of a genuine canonical
guantization(Arnowitt-Deser-Misner formalispna discussion is made of the cosmic evolution, particularly of
the quantum gravitational collapse problem. It is shown that in a matter-time gauge such that time is identified
with the scalar field the classical model is singular either=at- or att= +«, but the quantum model is
nonsingular. The latter behavior disproves a conjecture according to which quantum cosmological singularities
are predetermined on the classical level by the choice of time.

PACS numbsg(s): 98.80.Hw, 04.20.Dw, 04.60.Gw

[. INTRODUCTION consists of performing quantization in a reduced phase space
spanned by independent canonical variables, and demands a
The problem of constructing a consistent quantum theorylefinite choice of time. Although often leading to compli-
of the gravitational field and its sources remains unsolved, irtated and time-dependent Hamiltonians, this formalism has
spite of great efforts of several decades. Since the standathe great advantage of reducing the problem to one of stan-
perturbative techniques applied to quantum gravity appear tdard quantum mechanics, enabling one to make full use of
lead to a nonrenormalizable thedrd], other lines of attack the powerful theory of linear operators in Hilbert space. In so
have been attempted. It is true that there has been Significaﬂbing’ at least for FRW models one can define a quantum
progress on nonperturbative canonical quantization of theosmological singularity with mathematical precision and
full gravitational field[2—-5], but the enormous complexity of analyze in a satisfactorily rigorous fashion the influence of
the problem calls for manageable approximation schemegyantum effects upon gravitational collapse.
?unri 8;;2190{2;’3[ iititir:tcetlc;/% ;g(?e\csisé'gl]nﬁggﬁyogc\)lvgclacahrslsaggén_ It turns our that the issue of time in quantum cosmology
Y U - (see[7] for references in this connectipis entangled with
The essential idea of quantum cosmol@yis to freeze  yho roplem of quantum gravitational collapse. Within the
out all but a finite number of degrees of freedom of theframework of the Arnowitt-Deser-MisnefADM) genuine

system, the graV|t§1t_|onaI field plys Its sources, and the anonical quantization, Gotay and Demafé8] made a
quantize the remaining ones. This procedure is known @Rirly general inquiry into quantum cosmological singulari-
“minisuperspace quantization,” and although it cannot be y 9 quiry d 9 Y

strictly valid and is open to criticisnigl, it is expected to ties. They classify the time variableof a classically singular

provide some general insights on what an acceptable quaﬁr-]o_df':'l as either “SIOVX'” i tP? classical .singullarity oceurs at
tum theory of gravity should be like. This method has beerf finite value oft, or *fast,” if the classical singularity oc-
put to work for quantizing Friedmann-Robertson-Walker Curs att==c. According to them, the existence of quantum
(FRVV) universes Wlth Varying matter content SUCh as a ScalagraVitational Collapse is predetermined at the classical level
field [9—11], a spinor field[12], dust[13—16, or a Rarita- Py the choice of time, the crucial distinction being between
Schwinger field 17]. times that give rise to complete or incomplete classical evo-
A fundamental issue of quantum cosmology is that oflution. Basing their contentions on their own findings con-
boundary or initial conditions on the wave function of the cerning dust-filled FRW models and on the models encoun-
universe[18], a subject that will not be discussed here. An-tered in the literature until that date, they summarized their
other outstanding problem is that of gravitational collapse omanalysis by conjecturing that “self-adjoint quantum dynam-
guantum cosmological singularities. On the classical domaiiics in a fast-time gauge is always singular.”
the celebrated theorems of Hawking and Penrose assert that The first part of the above conjecture was disproved a few
singularities inevitably occur in any spacetime obeying reayears ago by exhibiting singular unitdri/s] and strictly self-
sonable conditions on the causal structure and matter comdjoint [16] quantum cosmological models in a slow-time
tent. At the quantum level the situation is not so neat. Thegauge. At that time no evidence was known against the sec-
canonical quantization method developed by Arnowitt, De-ond part of the conjecture.
ser, and Misnef19] seems to provide suitable means for In this paper we further study the quantum theory of a
studying quantum cosmological singularities. This approactspatially flat FRW model with a massless scalar field as
source, originally introduced by Blyth and Isha]. We
find that for the choice of timé= ¢, where¢ is the scalar
*On leave of absence from Departamento deda, Universidade field, the classical model is singular eithertat —o or at
Federal Fluminense, Outeiro dé d3dom Batista s/n, 24020-005 t= +<o, but the quantized model is self-adjoint and nonsin-
Centro, Niterq RJ, Brazil. gular. Thus the second part of the conjecture is disproved.
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This paper is organized as follows. In Sec. Il the classicabko that the classical action can be recast in the Hamiltonian
model is specified and the solution to the equations of moform
tion found originally in[9] is reviewed. In Sec. Ill the ADM
reduction of phase space is discussed for the choice of time
referred to in the previous paragraph. In Sec. IV the model is S :J dt
guantized in the matter-time gauge ¢ and shown to be
self-adjoint and free of singularity. Section V is devoted to If one inserts the metri€l) and the homogeneous scalar

PR P

RpR+ ¢p¢_ N

final remarks and a general conclusion. field ¢(t) into the field equations derived from the full action
(2), the resulting equations of motion are identical to those
Il. DESCRIPTION OF THE CLASSICAL MODEL that follow from the reduced actiofv) under variation of

) . . ) R, ¢, andN. These classical equations of motion were ex-
We shall be interested in homogeneous and isotropic uniplicitly solved in [9] for closed or open models. For the
verses described by the FRW metrics purpose of quantization we shall direct our attention only to
C the simplest cask= 0, for which Einstein’s ‘G, equation”
ds=g,,dx“dx’= —N(1)’d+R() 20 dxidx), (1) o " 00 €4
where o is the metric for a three-space of constant curva- RZ 1
ture k=+1, 0, or —1, corresponding to spherical, flat, or — = _¢2_ (8)
hyperbolic spacelike sections, respectively. R 4

The classical actiofin units such that=167G=1) is L .
L ) In the gauge = ¢ the above equation is equivalent to

s=—f d"'x\/—g(‘”R—Zf d*vhh, Kij . [RIV12 if R>0,
M M =

R= . 9
-R/Y12 if R<O. ©
+E d*x\—ga, P 2
2w XV—0d, "o, 2 The field equations allow for expanding or contracting uni-

verses, that isR(t) = Ryexp(xt/\/12), whereR, is an arbi-

where ¢ is a massless scalar field)R is the scalar curva- trary positive constant. These are mutually exclusive solu-
ture derived from the spacetime metgg, , h;; is the metric tipns, depending on the initia! conditions. The _model is
on the boundaryyM, and Kl is the second fundamental Singular att=—c in the expanding case or &t + in the
form of the boundary20]. The surface term is necessary in contracting case. As will be seen, although classically the
the path-integral formulation of quantum gravity in order to €xistence of one of these solutions automatically precludes
rid the Einstein-Hilbert Lagrangian of second-order deriva-the existence of the other, at the quantum level they not only
tives. Compatibility with the homogeneous spacetime metricoexist but also interfere with each other.
requires a Space-independent scalar field, tha;b:rs‘ﬁ(t) The form(7) of the reduced action shows cIearIy that the

In the geometry characterized hbil) the appropriate lapse functionN plays the role of a Lagrange multiplier.
boundary condition for the action principle is to fix the initial Variation with respect tdN leads to the super-Hamiltonian
and final hypersurfaces of constant time. The second fund&onstraint
mental form of the boundary becomiég = —h;; /2N. From

now on an overall factor of the spatial integral of (ag¥? p_ﬁ_ p—‘2ﬁ+6kR=0 (10)

will be discarded, since it has no effect on the equations of 24R 2R® '

motion. Insertion of the metri¢l) and of the homogeneous

scalar field |ntd2) y|e|ds the reduced action which for k=0 and with the use (XE) and (6) is eaSi|y seen
to be identical to Eq(8). This constraint reveals that the
phase spaceR,#,pr,p,) is too large, so that a bona fide

SrZJ dtL ©) canonical quantization can only be performed after going

over to a reduced phase space spanned by independent ca-

with the Lagrangian nonical variables alone. This can be achieved by first making

a choice of time and then solving the constraint equaté®n

L 6R R2_ 6KNR 1R for the canonical variable conjugate to the time chosen in the
TN ) Wd’ : @ first step. This ensures that the final action preserves its ca-
nonical form, with a Hamiltonian identical to the variable
The canonical momentum conjugateRais whose Poisson bracket is unity with whatever was chosen as
) time, but now expressed as a function of the remaining in-
JL RR dependent canonical variableglg]. This is the essence of the
Pr= £= 12ﬁ- ©) ADM formalism, which will be illustrated below for a spe-

cific choice of time.
whereas the momentum conjugatedds
ll. MATTER-TIME GAUGE AND ADM REDUCTION

3
L — R_ ) (6) For the sake of simplicity, from now on our attention will

Py™ ﬁ_ N ™ be focused solely on the spatially flat case, thakis(. Let
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us make the choice of time= ¢, the matter field itself pro- there is a better choice of the parametethat makes easier
viding a clock by means of which the evolution of the systemthe analysis of the quantum dynamics. Therefore we take
can be followed. According to the ADM prescription, the

iltonian i s — - 1 d d 1{d d
Ham”toman in the reduced phqse spacélis Py Now, f2-— —Rpopgrolge = S
solving Eq.(10) for p, and picking up the negative square 12 dR drR 12|dR dR
root gives rise to the reduced Hamiltonian (14)

1 acting onL?(0,%). A great deal of simplification is achieved
H=-p,= \/TZR|PR|- (1) by means of the unitary mapping from¥'=L%(0,%) onto
T=L2(—o,%) defined by[9]

It is important to notice that in the gaude ¢ it follows
from Eq. (6) thatp,<0 sinceR>0 andN>0 by definition
This is the reason why the positive solution fioy was aban-
doned. One sees, therefore, that the Hamiltofddhis posi-
tive. Hamilton’s equation of motion foR in the reduced

Wy)=e"Y2y(e7Y), (15)

which is tantamount to the change of variaBRe-e Y. In-
deed, the expectation value

phase space is - - o
(R),~(wRln= [ RuRER (9
R/V12 if p_>0 0
R M " 12
R | ~RII2 if p <O. becomes
BecauseR>0 andN>0 by definition, it is a consequence of ('A?)Lﬁ f_xe_y|¢(e_y)|29_ydy
Eq. (5) thatpg andR have the same sign, so that E(®.and
(12) are identical. This completes the verification that the T2 4
equations of motion generated by the reduced Hamiltonian = f_xe ly(y)|*dy=(e )i (17

(11) are the same as those that arise from variation of the

act1i_ohn () "; thedextehnded phazg) S?SC&) < _ The transformed Hamiltonian squared is easily obtained by
e reduced phase space=(r,pg) IS e union — qemanging that its expectation value in a stafe
5%:{f+u‘5%* of the two disjoint sets7”, =(02)x(0,2) L2(—o,) be equal to the expectation value (#) cal-
gnd,/_—(o,oo)_x (—,0). From _Eq.(8) in the gauget— ¢ culated in the statey e L2(0,%) with ¢ and ¢ related by Eq.

it follows that R can never vanish, so that the lipg=0 (15). The result is

does not belong to the reduced phase space. The/setnd '

Z_ are disconnected in the sense that the dynamical trajec- - 1 d2
tories remain entirely confined to one of them, selected ac- H2= 1~ Wz-’- 2=, (18)

cording to the initial conditions, and cannot cross the border
pr=0 between them.

As remarked previously, for the present choice of time th
scale factor vanishes and Riemann tensor invariants such as -~ 1 g2
(YR become infinite either whet=—o or whent=+. H2=— Iz (19
Therefore the classical model is singular ardg is a “fast” y

time in accordance with the terminology introduced 113].

ewhich, with the choicev=1/2, reduces to the simple form

It is very convenient to investigate the quantum dynamics
in the momentum representation in the transformed Hilbert
IV. QUANTIZATION IN THE MATTER-TIME GAUGE space. Then—id/dy becomes the operator of multiplica-

As discussed above, in the gauge ¢ the classical tion by p and the positive square root (9) is such that

Hamiltonian function is(11). An operator corresponding to
R|pgl| can be naturally defined as the positive square root of (ﬁzj/;)(p): i

an operator corresponding l@zpé. Thus, we look for a J12 [pl#(p) 20

positive Hamiltonian operator whose square has as classical

counterpart the square of the Hamiltonian functigh). Fol-  on the dense domain

lowing Blyth and Isham[9], such a positive self-adjoint

Hamiltonian can be constructed as the square root of the P B NPT T

positive self-adjoint operator I=1¢el (_°°,°°)|fiwp [p(p)|*dp<e=y. (2D
N 1 d_, . d . - .~ _ _
f=_ _RV—R22"__RY (13) Given an initial wave functionyy(p) att=tq, one finds that,

12" dR dR at timet,

with a suitable domain of definition, where the parameter ~ _ , 2o~ it ty)|plIVT2
reflects factor-ordering ambiguities. In Ré8] the choice ~ #(P.)=(EXH —i(t=t)H]y )(p)=e" """ P2y (p).
v=0 was made, but it turns out, as will be shown below, that (22
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The singularity criterion to be adopted here is the follow-where ;F; denotes a degenerateonfluenj hypergeometric
ing [13,21]: the quantum system is singular at a certain in-function and the asterisk stands for complex conjugate. The

stant if (|f|¢)=0 for any quantum observable whose

above wave function is the superposition of two wave pack-

classical counterpart vanishes at the classical singularity, ets, one centered og=—(t—ty)\12 and the other on
i being any state of the system at the instant under considr= + (t—t,)//12. The first packet corresponds to an ex-
eration. For models of the FRW type the relevant quantunpanding universe, while the second one describes a contract-

observable i =R, sinceR=0 defines the classical singu-
larity. This criterion is in agreement with the usage in quan-

ing universe.
The initial expectation value oR is finite and can be

tum cosmology. Indeed, sind® is a positive operator on computed oncel,(y) has been found. We have

L2(0,%), if (R),=0 theny(t) is sharply peaked aR=0,

and a strong peak in the wave function at a certain classical ~
configuration is regarded in quantum cosmology as a predic-

tion of the occurrence of such a configuratiaf.

1 (=~
Yo(¥)= Ner f _Wy(p)ePrdy= m Ve V2 (29)

Accordingly, if (¢(t)|R| #(t)) never vanishes for some hence,

evolving statey(t) then the model is nonsingular. Let us

take as the initial state the Gaussian wave packet
dy(p)=m Ve P2, (23

from which one finds

- 1 © )
h(y,t)= \/T_’JT f_xlﬂ(p,t)e PYdp

—-1/4 ﬁ{ p2
(t=to)lpl= = +ipy|dp.
“E
(24)
In terms of the convenient quantities
E.(yt)= b (25)
y - \/_2

one can reexpress E(4) as

—1/4

Iy == U cogpé_(y,t)Je *"2dp
2w

~i f:sir{pa(y,t)]e—f’z’zdp
" f:cos{ps_(y,tﬂe—pz’zdp

+i fmsin[pgi(y,t)]e‘pz’zd p]. (26)
0

These integrals can be explicitly evaluated to yigld]

_ V4 27 ,
= S e éy2
) ﬂ[ .
3
—i§+<y.t>1Fl<1,§; §+(;) H(E, o) ]

(27)

(Ii)tO:f e Vr Ve Ydy=el (29)

The general structure of ER7) is

Wy =0, ()= (£ )+ (£ )+ig(£) (30

with f//l,;bz real functions, and, in particular,

—1/4
ar
e X2, (31)

Therefore, sincelfl is a positive function,
[y DI2=] 0, (£,)+ 0, (£2)]2
=1, (£ )12+ (6 )2, (32)

whence
R= [ e, vy

+ Jle*yl&l(f_w,t))lzdy. (33

A straightforward evaluation of the above integrals with the
help of (25) and(31) furnishes

. Ry, [t—to) (R,
(R),= 5 COS N = (34)

It is thus established that the expectation val&®; never
vanishes, and, in particulaKR), tends to infinity as
t— *oo (classical singularity This constitutes an example
of a nonsingular self-adjoint quantum cosmological model in
a fast-time gauge, and allows us to conclude that the second
part of the conjecture advanced by Gotay and Den{dr&it

is not true. We remark that the special choice1/2 is not a
weak point of our argument. The conjecture asserts dhat
self-adjoint quantum cosmological models in a fast-time
gauge are singular. Here a particular counterexarplth
v=1/2) has been exhibited of a nonsingular self-adjoint
quantum cosmological model in a fast-time gauge.




53 SINGULARITIES IN A SCALAR FIELD QUANTUM COSMOLOGY 4279

V. CONCLUSION the physical inequivalence of different choices of time in
guantum cosmology remain as challenges to be met by any

. The main finding of this paper IS that, contrary o a pl.au'candidate to a viable quantum theory of the gravitational
sible belief, quantum cosmological models in fast—tlmeﬁeId

gauges are not necessarily singular. Combined with the re-
sults obtained 15,16, our present investigation reveals
that the occurrence of gravitational collapse at the quantum
level is not classically predetermined by the choice of a
“fast” or “slow” time, such a classification not being very The author is grateful to J. A. S. Lima for useful sugges-
relevant to the problem of quantum gravitational collapse. Itions and for reading the manuscript. This work was sup-
thus appears that the issue of time in quantum cosmologgorted in part by funds provided by the U.S. Department of
and quantum gravity is actually deeper and more compliEnergy(D.O.E) under Contract No. DE-FC02-94ER40818.
cated than was guessed hitherto. The apparent absence of Hnis work was supported by Conselho Nacional de Desen-
intrinsic time variable in the general theory of relativity, and volvimento Cientico e Tecnolgico (CNPg, Brazil.
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