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Singularities in a scalar field quantum cosmology
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The quantum theory of a spatially flat Friedmann-Robertson-Walker universe with a massless scalar field as
the source is further investigated. The classical model is singular and in the framework of a genuine canonical
quantization~Arnowitt-Deser-Misner formalism! a discussion is made of the cosmic evolution, particularly of
the quantum gravitational collapse problem. It is shown that in a matter-time gauge such that time is identified
with the scalar field the classical model is singular either att52` or at t51`, but the quantum model is
nonsingular. The latter behavior disproves a conjecture according to which quantum cosmological singularities
are predetermined on the classical level by the choice of time.

PACS number~s!: 98.80.Hw, 04.20.Dw, 04.60.Gw
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I. INTRODUCTION

The problem of constructing a consistent quantum theo
of the gravitational field and its sources remains unsolved
spite of great efforts of several decades. Since the stand
perturbative techniques applied to quantum gravity appea
lead to a nonrenormalizable theory@1#, other lines of attack
have been attempted. It is true that there has been signific
progress on nonperturbative canonical quantization of
full gravitational field@2–5#, but the enormous complexity of
the problem calls for manageable approximation schem
one of the most attractive and fascinating of which is qua
tum cosmology, initiated by DeWitt@6# nearly 30 years ago.

The essential idea of quantum cosmology@7# is to freeze
out all but a finite number of degrees of freedom of th
system, the gravitational field plus its sources, and th
quantize the remaining ones. This procedure is known
‘‘minisuperspace quantization,’’ and although it cannot b
strictly valid and is open to criticism@8#, it is expected to
provide some general insights on what an acceptable qu
tum theory of gravity should be like. This method has be
put to work for quantizing Friedmann-Robertson-Walke
~FRW! universes with varying matter content such as a sca
field @9–11#, a spinor field@12#, dust @13–16#, or a Rarita-
Schwinger field@17#.

A fundamental issue of quantum cosmology is that
boundary or initial conditions on the wave function of th
universe@18#, a subject that will not be discussed here. An
other outstanding problem is that of gravitational collapse
quantum cosmological singularities. On the classical dom
the celebrated theorems of Hawking and Penrose assert
singularities inevitably occur in any spacetime obeying re
sonable conditions on the causal structure and matter c
tent. At the quantum level the situation is not so neat. T
canonical quantization method developed by Arnowitt, D
ser, and Misner@19# seems to provide suitable means fo
studying quantum cosmological singularities. This approa
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consists of performing quantization in a reduced phase sp
spanned by independent canonical variables, and deman
definite choice of time. Although often leading to comp
cated and time-dependent Hamiltonians, this formalism
the great advantage of reducing the problem to one of s
dard quantum mechanics, enabling one to make full use
the powerful theory of linear operators in Hilbert space. In
doing, at least for FRW models one can define a quant
cosmological singularity with mathematical precision a
analyze in a satisfactorily rigorous fashion the influence
quantum effects upon gravitational collapse.

It turns our that the issue of time in quantum cosmolo
~see@7# for references in this connection! is entangled with
the problem of quantum gravitational collapse. Within t
framework of the Arnowitt-Deser-Misner~ADM ! genuine
canonical quantization, Gotay and Demaret@13# made a
fairly general inquiry into quantum cosmological singular
ties. They classify the time variablet of a classically singular
model as either ‘‘slow,’’ if the classical singularity occurs
a finite value oft, or ‘‘fast,’’ if the classical singularity oc-
curs att56`. According to them, the existence of quantu
gravitational collapse is predetermined at the classical le
by the choice of time, the crucial distinction being betwe
times that give rise to complete or incomplete classical e
lution. Basing their contentions on their own findings co
cerning dust-filled FRW models and on the models enco
tered in the literature until that date, they summarized th
analysis by conjecturing that ‘‘self-adjoint quantum dynam
ics in a fast-time gauge is always singular.’’

The first part of the above conjecture was disproved a f
years ago by exhibiting singular unitary@15# and strictly self-
adjoint @16# quantum cosmological models in a slow-tim
gauge. At that time no evidence was known against the s
ond part of the conjecture.

In this paper we further study the quantum theory of
spatially flat FRW model with a massless scalar field
source, originally introduced by Blyth and Isham@9#. We
find that for the choice of timet5f, wheref is the scalar
field, the classical model is singular either att52` or at
t51`, but the quantized model is self-adjoint and nons
gular. Thus the second part of the conjecture is disprove
4275 © 1996 The American Physical Society
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This paper is organized as follows. In Sec. II the classic
model is specified and the solution to the equations of m
tion found originally in@9# is reviewed. In Sec. III the ADM
reduction of phase space is discussed for the choice of t
referred to in the previous paragraph. In Sec. IV the mode
quantized in the matter-time gauget5f and shown to be
self-adjoint and free of singularity. Section V is devoted
final remarks and a general conclusion.

II. DESCRIPTION OF THE CLASSICAL MODEL

We shall be interested in homogeneous and isotropic u
verses described by the FRW metrics

ds25gmndx
mdxn52N~ t !2dt21R~ t !2s i j dx

idxj , ~1!

wheres i j is the metric for a three-space of constant curv
ture k511, 0, or 21, corresponding to spherical, flat, o
hyperbolic spacelike sections, respectively.

The classical action~in units such thatc516pG51) is

S52E
M
d4xA2g~4!R22E

]M
d3xAhh

i j
Ki j

1
1

2EMd4xA2g]mf]mf, ~2!

wheref is a massless scalar field,(4)R is the scalar curva-
ture derived from the spacetime metricgmn , hi j is the metric
on the boundary]M , and Ki j is the second fundamenta
form of the boundary@20#. The surface term is necessary i
the path-integral formulation of quantum gravity in order t
rid the Einstein-Hilbert Lagrangian of second-order deriv
tives. Compatibility with the homogeneous spacetime met
requires a space-independent scalar field, that is,f5f(t).

In the geometry characterized by~1! the appropriate
boundary condition for the action principle is to fix the initia
and final hypersurfaces of constant time. The second fun
mental form of the boundary becomesKi j52ḣi j /2N. From
now on an overall factor of the spatial integral of (dets)1/2

will be discarded, since it has no effect on the equations
motion. Insertion of the metric~1! and of the homogeneous
scalar field into~2! yields the reduced action

S
r
5E dtL ~3!

with the Lagrangian

L5
6R

N
Ṙ226kNR2

1

2

R3

N
ḟ2. ~4!

The canonical momentum conjugate toR is

p
R
5

]L

]Ṙ
512

RṘ

N
, ~5!

whereas the momentum conjugate tof is

p
f

5
]L

]ḟ
52

R3

N
ḟ, ~6!
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so that the classical action can be recast in the Hamilton
form

S
r
5E dtH ṘpR1ḟp

f
2NS pR

2

24R
2

pf
2

2R3 16kRD J . ~7!

If one inserts the metric~1! and the homogeneous scala
fieldf(t) into the field equations derived from the full action
~2!, the resulting equations of motion are identical to thos
that follow from the reduced action~7! under variation of
R, f, andN. These classical equations of motion were e
plicitly solved in @9# for closed or open models. For the
purpose of quantization we shall direct our attention only
the simplest casek50, for which Einstein’s ‘‘G00 equation’’
is

3
Ṙ2

R2 5
1

4
ḟ2. ~8!

In the gauget5f the above equation is equivalent to

Ṙ5HR/A12 if Ṙ.0,

2R/A12 if Ṙ,0.
~9!

The field equations allow for expanding or contracting un
verses, that is,R(t)5R0exp(6t/A12), whereR0 is an arbi-
trary positive constant. These are mutually exclusive so
tions, depending on the initial conditions. The model
singular att52` in the expanding case or att51` in the
contracting case. As will be seen, although classically t
existence of one of these solutions automatically preclud
the existence of the other, at the quantum level they not on
coexist but also interfere with each other.

The form~7! of the reduced action shows clearly that th
lapse functionN plays the role of a Lagrange multiplier.
Variation with respect toN leads to the super-Hamiltonian
constraint

pR
2

24R
2

pf
2

2R3 16kR50, ~10!

which for k50 and with the use of~5! and~6! is easily seen
to be identical to Eq.~8!. This constraint reveals that the
phase space (R,f,pR ,pf) is too large, so that a bona fide
canonical quantization can only be performed after goin
over to a reduced phase space spanned by independen
nonical variables alone. This can be achieved by first maki
a choice of time and then solving the constraint equation~9!
for the canonical variable conjugate to the time chosen in t
first step. This ensures that the final action preserves its
nonical form, with a Hamiltonian identical to the variable
whose Poisson bracket is unity with whatever was chosen
time, but now expressed as a function of the remaining i
dependent canonical variables@19#. This is the essence of the
ADM formalism, which will be illustrated below for a spe-
cific choice of time.

III. MATTER-TIME GAUGE AND ADM REDUCTION

For the sake of simplicity, from now on our attention wil
be focused solely on the spatially flat case, that is,k50. Let
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us make the choice of timet5f, the matter field itself pro-
viding a clock by means of which the evolution of the syste
can be followed. According to the ADM prescription, th
Hamiltonian in the reduced phase space isH52pf . Now,
solving Eq.~10! for pf and picking up the negative squar
root gives rise to the reduced Hamiltonian

H52p
f

5
1

A12
Rup

R
u. ~11!

It is important to notice that in the gauget5f it follows
from Eq. ~6! thatpf,0 sinceR.0 andN.0 by definition.
This is the reason why the positive solution forpf was aban-
doned. One sees, therefore, that the Hamiltonian~11! is posi-
tive. Hamilton’s equation of motion forR in the reduced
phase space is

Ṙ5
]H

]pR
5H R/A12 if p

R
.0,

2R/A12 if p
R
,0.

~12!

BecauseR.0 andN.0 by definition, it is a consequence o
Eq. ~5! thatpR andṘ have the same sign, so that Eqs.~9! and
~12! are identical. This completes the verification that th
equations of motion generated by the reduced Hamilton
~11! are the same as those that arise from variation of
action ~7! in the extended phase space.

The reduced phase spaceP5(R,pR) is the union
P5P1øP2 of the two disjoint setsP15(0,̀ )3(0,`)
andP25(0,̀ )3(2`,0). From Eq.~8! in the gauget5f
it follows that Ṙ can never vanish, so that the linepR50
does not belong to the reduced phase space. The setsP1 and
P2 are disconnected in the sense that the dynamical tra
tories remain entirely confined to one of them, selected
cording to the initial conditions, and cannot cross the bord
pR50 between them.

As remarked previously, for the present choice of time t
scale factor vanishes and Riemann tensor invariants suc
(4)R become infinite either whent52` or when t51`.
Therefore the classical model is singular andt5f is a ‘‘fast’’
time in accordance with the terminology introduced in@13#.

IV. QUANTIZATION IN THE MATTER-TIME GAUGE

As discussed above, in the gauget5f the classical
Hamiltonian function is~11!. An operator corresponding to
RupRu can be naturally defined as the positive square root
an operator corresponding toR2pR

2 . Thus, we look for a
positive Hamiltonian operator whose square has as class
counterpart the square of the Hamiltonian function~11!. Fol-
lowing Blyth and Isham@9#, such a positive self-adjoint
Hamiltonian can be constructed as the square root of
positive self-adjoint operator

Ô52
1

12
Rn

d

dR
R222n

d

dR
Rn ~13!

with a suitable domain of definition, where the parametern
reflects factor-ordering ambiguities. In Ref.@9# the choice
n50 was made, but it turns out, as will be shown below, th
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there is a better choice of the parametern that makes easier
the analysis of the quantum dynamics. Therefore we take

Ĥ252
1

12
Rn

d

dR
R222n

d

dR
Rn52

1

12F ddRR2
d

dR
1n~12n!G

~14!

acting onL2(0,̀ ). A great deal of simplification is achieved
by means of the unitary mapping fromH5L2(0,`) onto
H̃5L2(2`,`) defined by@9#

c̃~y!5e2y/2c~e2y!, ~15!

which is tantamount to the change of variableR5e2y. In-
deed, the expectation value

^R̂&
c
5^cuR̂uc&5E

0

`

Ruc~R!u2dR ~16!

becomes

^R̂&
c
5E

2`

`

e2yuc~e2y!u2e2ydy

5E
2`

`

e2yuc̃~y!u2dy5^e2 ŷ&c̃ . ~17!

The transformed Hamiltonian squared is easily obtained b
demanding that its expectation value in a statec̃
PL2(2`,`) be equal to the expectation value of~14! cal-
culated in the statecPL2(0,`) with c andc̃ related by Eq.
~15!. The result is

H̃
ˆ 25

1

12F2
d2

dy2
1
1

4
1n~n21!G , ~18!

which, with the choicen51/2, reduces to the simple form

H̃
ˆ 252

1

12

d2

dy2
. ~19!

It is very convenient to investigate the quantum dynamic
in the momentum representation in the transformed Hilbe
spaceH̃. Then2 id/dy becomes the operator of multiplica-
tion by p and the positive square root of~19! is such that

~H̃
ˆ

c̃ !~p!5
1

A12
upuc̃~p! ~20!

on the dense domain

D5H c̃PL2~2`,`!u E
2`

`

p2uc̃~p!u2dp,`J . ~21!

Given an initial wave functionc̃0(p) at t5t0 , one finds that,
at time t,

c̃~p,t !5„exp@2 i ~ t2t
0
!H̃
ˆ

#c̃
0
…~p!5e2 i ~ t2t0!upu/A12c̃

0
~p!.

~22!
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The singularity criterion to be adopted here is the follow
ing @13,21#: the quantum system is singular at a certain i
stant if ^cu f̂ uc&50 for any quantum observablef̂ whose
classical counterpartf vanishes at the classical singularity
c being any state of the system at the instant under con
eration. For models of the FRW type the relevant quantu
observable isf̂5R̂, sinceR50 defines the classical singu
larity. This criterion is in agreement with the usage in qua
tum cosmology. Indeed, sinceR̂ is a positive operator on
L2(0,`), if ^R̂& t50 thenc(t) is sharply peaked atR50,
and a strong peak in the wave function at a certain class
configuration is regarded in quantum cosmology as a pred
tion of the occurrence of such a configuration@7#.

Accordingly, if ^c(t)uR̂uc(t)& never vanishes for some
evolving statec(t) then the model is nonsingular. Let u
take as the initial state the Gaussian wave packet

c̃
0
~p!5p21/4e2p2/2, ~23!

from which one finds

c̃~y,t !5
1

A2p
E

2`

`

c̃~p,t !eipydp

5
p21/4

A2p
E

2`

`

expF i

A12
~ t2t

0
!upu2

p2

2
1 ipyGdp.

~24!

In terms of the convenient quantities

j
6

~y,t !5y6
t2t0

A12
~25!

one can reexpress Eq.~24! as

c̃~y,t !5
p21/4

A2p
H E

0

`

cos@pj
1

~y,t !#e2p2/2dp

2 i E
0

`

sin@pj
1

~y,t !#e2p2/2dp

1E
0

`

cos@pj2~y,t !#e2p2/2dp

1 i E
0

`

sin @pj
2

~y,t !#e2p2/2dpJ . ~26!

These integrals can be explicitly evaluated to yield@22#

c̃~y,t !5
p21/4

A2p
H A2p

2
e2j1~y,t !2/2

2 i j
1

~y,t !
1
F
1S 1,32 ;2 j1~y,t !2

2 D 1~j
1
↔j

2
!* J ,
~27!
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where 1F1 denotes a degenerate~confluent! hypergeometric
function and the asterisk stands for complex conjugate. T
above wave function is the superposition of two wave pac
ets, one centered ony52(t2t0)A12 and the other on
y51(t2t0)/A12. The first packet corresponds to an ex
panding universe, while the second one describes a contra
ing universe.

The initial expectation value ofR̂ is finite and can be
computed oncec̃0(y) has been found. We have

c̃
0
~y!5

1

A2p
E

2`

`

c̃
0
~p!eipydy5p21/4e2y2/2; ~28!

hence,

^R̂&
t0

5E
2`

`

e2yp21/2e2y2dy5e1/4. ~29!

The general structure of Eq.~27! is

c̃~y,t !5c̃
1
~j

1
!2 i c̃

2
~j

1
!1c̃

1
~j

2
!1 i c̃

2
~j

2
! ~30!

with c̃1 ,c̃2 real functions, and, in particular,

c̃
1
~x!5

p21/4

2
e2x2/2. ~31!

Therefore, sincec̃1 is a positive function,

uc̃~y,t !u2>uc̃
1
~j

1
!1c̃

1
~j2!u2

>uc̃
1
~j

1
!u21uc̃

1
~j

2
!u2, ~32!

whence

^R̂&
t
>E

2`

`

e2yuc̃
1
„j

1
~y,t !…u2dy

1E
2`

`

e2yuc̃
1
„j

2
~y,t !…u2dy. ~33!

A straightforward evaluation of the above integrals with th
help of ~25! and ~31! furnishes

^R̂&
t
>

^R̂& t0
2

coshS t2t0

A12 D >
^R̂& t0
2

. ~34!

It is thus established that the expectation value^R̂& t never
vanishes, and, in particular,̂R̂& t tends to infinity as
t→6` ~classical singularity!. This constitutes an example
of a nonsingular self-adjoint quantum cosmological model i
a fast-time gauge, and allows us to conclude that the seco
part of the conjecture advanced by Gotay and Demaret@13#
is not true. We remark that the special choicen51/2 is not a
weak point of our argument. The conjecture asserts thatall
self-adjoint quantum cosmological models in a fast-tim
gauge are singular. Here a particular counterexample~with
n51/2) has been exhibited of a nonsingular self-adjoin
quantum cosmological model in a fast-time gauge.
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V. CONCLUSION

The main finding of this paper is that, contrary to a pla
sible belief, quantum cosmological models in fast-tim
gauges are not necessarily singular. Combined with the
sults obtained in@15,16#, our present investigation reveal
that the occurrence of gravitational collapse at the quant
level is not classically predetermined by the choice of
‘‘fast’’ or ‘‘slow’’ time, such a classification not being very
relevant to the problem of quantum gravitational collapse.
thus appears that the issue of time in quantum cosmolo
and quantum gravity is actually deeper and more comp
cated than was guessed hitherto. The apparent absence
intrinsic time variable in the general theory of relativity, an
u-
e
re-
s
um
a

It
gy
li-
of an
d

the physical inequivalence of different choices of time i
quantum cosmology remain as challenges to be met by a
candidate to a viable quantum theory of the gravitation
field.
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Cargèse, France, 1978, edited by M. Levy and S. Deser, NAT
ASI Series B: Physics Vol. 44~Plenum, New York, 1979!; G.
’t Hooft and M. Veltman, Ann. Inst. Henri Poincare´ 20, 69
~1974!; M. H. Goroff and A. Sagnotti, Nucl. Phys.B266, 709
~1986!.

@2# A. Ashtekar, Phys. Rev. Lett.57, 2244 ~1986!; Phys. Rev. D
36, 1587~1987!.

@3# T. Christodoulakis and J. Zanelli, Class. Quantum Grav.4, 851
~1987!.

@4# T. Jacobson and L. Smolin, Nucl. Phys.B299, 295 ~1988!.
@5# T. Fukuyama and K. Kamimura, Phys. Rev. D41, 1105~1988!.
@6# B. S. DeWitt, Phys. Rev.160, 1113~1967!.
@7# For a guide to the literature on quantum cosmology, see J.

Halliwell, in Quantum Cosmology and Baby Universes, Pro-
ceedings of the 7th JerusalemWinter School, Jerusalem, Isr
1990, edited by S. Coleman, J. B. Hartle, T. Piran, and
Weinberg~World Scientific, Singapore, 1991!.
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