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Tree-level string cosmology
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In this paper we examine the classical evolution of a cosmological model derived from the low-energy
tree-level limit of a generic string theory. The action contains the metric, dilaton, central charge and an
antisymmetric tensor field. We show that with a homogeneous and isotropic metric, allowing spatial curvature,
there is a formal equivalence between this system and a scalar field minimally coupled to Einstein gravity in
a spatially flat metric. We refer to this system as the shifted frame and using it we describe the full range of
cosmological evolution that this model can exhibit. We show that generic solutions begin~or end! with a
singularity. As the system approaches a singularity the dilaton becomes large and loop corrections will become
important.
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I. INTRODUCTION

String theory is the most promising candidate for the u
fication of gravity with the other fundamental forces of n
ture. However, string theory is most likely to cause sign
cant modifications to classical general relativity near t
Planck scale, which is far beyond the range of direct terr
trial experimentation. Since these energy scales are typic
associated with the big bang, it is natural to view cosmolo
as a laboratory for testing string theoretic modifications
gravity. Conversely, cosmologists can hope that if stri
theory does provide a deeper understanding of gravitatio
physics than general relativity, then some of the ‘‘standa
problems of conventional cosmology will be resolved
string theory. Consequently, the cosmological dynamics
superstring theories are the subject of intense scrutiny. T
cally, one proceeds by perturbatively expanding the full
perstring theory and extracting a ‘‘low-energy’’ Lagrangia
that contains Einstein gravity and the lowest-order corr
tions from string theory. For this approach to be valid w
need to restrict our attention to sub-Planckian scales wh
quantum effects can be ignored and the higher-order term
the perturbative expansion do not contribute significantly

We consider the tree-level action@1–3# which contains
contributions from the metric, the dilaton, the central char
and an antisymmetric tensor field. We assume that the b
ground spacetime is four dimensional and that it and
fields defined upon it are homogeneous and isotropic. F
ther, we assume that degrees of freedom associated with
compactified metric can be ignored. Such cosmologies h
received considerable study@4–21#, with particular attention
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being paid to the effect of the dilaton field and its self
interaction potential. However, the roles of the antisymmetr
tensor field and the spatial curvature of the metric have ofte
been neglected. Copeland, Lahiri, and Wands@22# give gen-
eral analytic solutions to the equations of motion for th
antisymmetric tensor field in a background with nonzero sp
tial curvature, for the case when the central charge is zero.
this paper we consider this system with a nonzero centr
charge. Previously, Tseytlin@23# has given several exact so-
lutions. Also Goldwirth and Perry@24# use a phase-plane
analysis to describe the cosmological properties of solutio
to the equations of motion of models with a nonzero centr
charge in a flat Friedmann-Lemaitre-Robertson-Walke
~FLRW! background.

Many previous authors have exploited the equivalence
the action written in terms of conformally related metrics. In
this paper we show that there is an additional, forma
equivalence between the equations of motion for our hom
geneous fields inspatially curvedFLRW metrics and those
of a scalar field minimally coupled to Einstein gravity in a
spatially flat FLRW metric. We refer to this system as the
shifted frame, and use it to succinctly describe the full rang
of cosmological evolution that is possible within this model
As the name suggests, it is based on the shifted dilaton fie
@12,13#. While we cannot give an analytic solution to the
equations of motion for the general case when the cent
charge is nonzero, we do find an exact result for a particul
choice of parameters.

II. TREE-LEVEL STRING EFFECTIVE ACTION

We take as our starting point the tree-level action@1–3#

S5
1

2kD
2 E dDxA2gDe

2fFRD1~¹f!22L2
1

12
H2G , ~1!

where gab is the graviton,f is the dilaton, andHabc
5]@aBbc] is the antisymmetric tensor field where lowercas
roman indices run from 0 toD21 and the central charge
deficit is denoted by2L. Henceforth we will assume that
this D-dimensional theory has undergone compactificatio
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leaving only four macroscopic dimensions, and that t
terms corresponding to degrees of freedom on the comp
metric are held fixed. The real world may be more comp
cated, but, in the absence of compelling reasons for choos
any particular compactification scheme, this simplificatio
will allow us to examine the dynamics due solely to th
degrees of freedom associated with the macroscopic dim
sions. This permits us to reduce the action to

S5
1

2k2E d4xA2ge2fFR1~¹f!22L2
1

12
H2G , ~2!

where the spacetime manifold is now four dimensional.
We want to consider a homogeneous and isotropic spa

time, and so the curvature scalar is that of an FLRW u
verse. The string frame line element is, thus,

ds25s~h!2S 2n~h!2dh21
1

12kr2
dr2

1r 2@du21sin2~u!df2# D , ~3!

whereh is the conformal time if we set the arbitrary laps
function n51. Open, flat, or closed spatial hypersurfac
correspond tok521, 0, or11, respectively. The antisym-
metric tensorH has only one degree of freedom, and can
written

Hmnl5efemnlk]kQ, ~4!

whereQ is a pseudoscalar field. Assuming that the dilato
and antisymmetric tensor field are homogeneous like o
metric,H256e2fQ82, where the prime denotes differentia
tion with respect toh. Furthermore, since the Lagrangia
does not depend onQ, the corresponding momentum

pQ5
]L

]Q8
52

efs2Q8

n
5q ~5!

is conserved andq is a constant. Finally, by adding the tota
derivative

26
d

dh S e2fs8s

n D ~6!

to the integrand, we obtain

S5
1

2k2E dhFne2fS 26
s82

n2
2

f82

n2
s216

f8s8s

n2
16ks2

2Ls42
q2

2s2D G . ~7!

The action now has a simpler form, but notice that
includes the crossed kinetic termf8s8. This term vanishes in
the Einstein frame, which is related to the string frame by t
conformal transformation

s~h!5ef/2a~h!, ~8!

wherea is the Einstein frame scale factor. In the Einste
frame the action takes the form
he
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S5
1

2k2E dte3aF26ȧ21
ḟ2

2
2U~a,f!G , ~9!

where for convenience we leta5ea, and choosen51/a so
thath coincides with the Einstein frame proper time,t.

The potential is a function ofa andf:

U5
q2

2
e22f26a1Lef26ke22a. ~10!

However, this potential is simpler when written in terms o
the original string frame scale factor, as it then is a separab
function of s andf:

U5efS L1
q2

s6
2
6k

s2 D . ~11!

In fact, the Einstein frame represents only one of infinitel
many different choices of variables which diagonalize th
kinetic terms in the Lagrangian for homogeneous fields. A
we shall now see, it is possible to further simplify the system
by choosing alternative variables which have orthogonal k
netic terms and respect the symmetry of the potential.

III. THE SHIFTED FRAME

While we can simplify the kinetic terms by converting to
the Einstein frame, we do so at the cost of introducing
more complicated potential. We now introduce a choice o
variables that combines the advantages both of the stri
frame ~separable potential! and the Einstein frame~no
crossed kinetic terms!. Transforma andf into a new pair of
variablesr andc,

S f

a D 5S 3 23

2
1

2

3

2
D S c

r D , ~12!

and choose the lapse function to be

n5
3

2
e2a2~f/2!5

3

2
e2c. ~13!

In terms of the transformed variables the action and p
tential are

S5
1

2k2E dte3r@26ṙ 212ċ22V~c!#, ~14!

V~c!5
3

4
q2e26c1

3

2
L29ke22c. ~15!

The potentialV(c) is plotted for a variety of different pa-
rameter values in Fig. 1.

Up to a rescaling of the field, this action is identical to
that of a scalar fieldc with potentialV, minimally coupled
to Einstein gravity in a spatially flat universe, with scale
factorR5er . The equations of motion are

26S drdTD
2

12S dc

dTD 21V~c!50, ~16!
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d2r

dT2
52S dc

dTD 2, ~17!

d2c

dT2
13

dr

dT

dc

dT
1
1

4

d

dc
V~c!50. ~18!

The timeT corresponding to our choice of lapse is propo
tional to the proper time in the original string frame. It i
related to the proper time in the Einstein frame,t, by

dT

dt
5
2

3
ef/2

⇒t5
3

2E e2f/2dT. ~19!

We will refer to this choice of variables as the shifte
frame because, apart from a numerical factor,r coincides
with the shifted dilaton previously used@12,23,17# to sim-
plify the equations of motion. Our scalar field is actually th
logarithm of scale factor in the string frame,c[ lns, and the
shifted scale factorR5er represents the variation of the
fields in the orthogonal direction. The shifted dilaton, o
equivalently r , reflects the symmetries of the underlyin
string theory better than the ‘‘renormalized’’ fieldf @12#. For
instance, it remains invariant under the scale-factor dua
transformations→s21. However, our action is only invari-
ant under this transformation ifdV/dc50, which requires
both the spatial curvature and antisymmetric tensor field
vanish.

This change of variables is not a conformal transform
tion, which is an identity between two actions for all fiel
configurations, as the shifted frame only exists for homog
neous fields. Also there is no equivalent choice of variables
we include loop corrections to the dilaton coupling. How
ever, if we are going to restrict our attention to the tree-lev
action which contains only the dilaton, antisymmetric tens
and central charge terms with a homogeneous and isotro
string metric, then working in the shifted frame allows us
write this system in a particularly simple form.

The practical advantage of working in this shifted fram
is that the spatial curvature of the string metric,k/s2, appears

FIG. 1. The potentialV(c) is shown for a variety of parameter
values. In ascending order, the plots correspond tok51,
L520.2, andq56, andL51, k51 with q56, 8, and 10.
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as a term in the potentialV(c), and the shifted FLRWmetric
is always spatially flat. The dynamical system in the shifte
frame is thus the basis of almost all inflationary models a
its properties are familiar and well understood. Moreover, w
will see in the next section that it is particularly simple to
identify the (1) or (2) branches of pre-big-bang string cos
mology @19,21# with the contracting or expanding scale fac
tor in the shifted frame.

The qualitative dynamics of our system are strongly influ
enced by whether or not the values ofq, L, andk permit the
inequalityV,0 to be satisfied. IfL,0, thenV,0 for suf-
ficiently large values ofc, but whenL.0, a negative po-
tential region can only exist ifk.0. Then~for k51) V(c)
has its minimum value whenc5 1

2ln(uqu/2), which is nega-
tive if Luqu,8 ~see Fig. 1!. Thus the negative potential re-
gion exists when one of the following is true:

Luqu,8 and k51,

L,0. ~20!

In the next section we use the formalism of the shifte
frame to discuss exact solutions to the equations of motio
Analytic solutions are known to exist when any one of th
three terms inV(c) is nonzero, and we show that these ca
be simply expressed in the shifted frame. Second, we emp
techniques developed for obtaining exact scalar field co
mologies to derive a new particular solution where all thre
terms in the potential are nonzero. In Sec. V we then utili
these exact solutions as limiting cases of the solutions to
equations of motion to catalog all the different possible typ
of cosmological behavior this model can produce.

IV. EXACT SOLUTIONS TO THE EQUATIONS
OF MOTION

Exact solutions to the system of equations~16!–~18! for
specific potentials have been analyzed by a number of
thors. Clearly, the only solutions of relevant to the syste
considered here are those where the potential takes the f
of Eq. ~15!. It is often useful to parametrize the motion by
the fieldc @25–28,30#. Settingdr/dT5H ~the ‘‘Hubble pa-
rameter’’ in the shifted metric!, Eq. ~17! gives
dH/dc52dc/dT, where the prime in Eqs.~21!–~23! de-
notes differentiation with respect toc. We derive the follow-
ing expressions for the potential, scale factorr , and time
T:

V~c!56H~c!222H~c!82, ~21!

r ~c!2r ~c0!52E
c0

c H

H8~c!
dc, ~22!

T~c!2T~c0!52E
c0

c 1

H8~c!
dc. ~23!

It is convenient to make the extra substitution@31,32,25#

x5A3c, ~24!

f ~x!5AuVu
6
, ~25!
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y2~x!512
V

6H2 . ~26!

There is a sign ambiguity ofH corresponding to a time re-
versal, which transforms an expanding solution in the shift
frame into a contracting one. In terms ofy, Eq.~21! becomes

yyx5~12y2!S y2
f x
f D , ~27!

whereyx denotesy differentiated with respect tox. When
f x / f is constant~or zero! this equation can be integrated
immediately. Fortunately these special cases correspond
potential that is either a constant or a single exponen
term, which is precisely what we need to discuss the asym
totic solutions in Sec. V.

A. Pure dilaton cosmology

First, note that in the absence of a central charge, antisy
metric tensor field, and spatial curvature in the string fram
then V50 and we have the standard result for a massle
scalar field in the shifted frame:

R5R0U TT0U
1/3

, ~28!

c2c056
1

A3
lnU TT0U. ~29!

In terms of the string frame scale factor and dilaton this is t
usual pure dilaton cosmology:

s5s0U TT0U
61/A3

, ~30!

f2f05~6A321!lnU TT0U. ~31!

The choice of signs in the above equations corresponds to
increasing or decreasing dilaton. In addition there are t
branches corresponding toT less than or greater than zero
denoted as the (1) and (2) branches by Brustein and Ven
eziano @19#. We see that in the shifted frame these tw
branches correspond simply to a contracting or expand
scale factorR, respectively.1 Here the (1) branch ap-
proaches a singularity atT50, while the (2) branch starts
from the singularity atT50.

B. Dilaton cosmology with a central charge

When c@0, V(c) is dominated by the central charg
termL and we approximate the potential byV53L/2. For
this case the solution is straightforward, sincef x50 and

y~x!5H tanh~x2x0! for L.0,

coth~x2x0! for L,0.
~32!

1This can seen from Eq.~4! of @19# where the choice of6 sign
coincides with the sign of2 ṙ .
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WhenL is positive, f5AL/2 and

R~c!5R0$sinh@A3~c2c0!#%
21/3, ~33!

T~c!2T057
2

3AL
lnH tanhFA32 ~c2c0!G J . ~34!

This is the general solution for a massless field plus cosm
logical constant in a flat FLRW metric@29#. The choice of
upper or lower sign reflects whether we choose the (1) or
(2) branch corresponding to the contracting or expandi
solutions, respectively, in the shifted frame. The string fram
scale factor and dilaton are@21#

s5s0F tanhS 3AL

2
uT2T0u D G61/A3

, ~35!

ef2f05

F tanhS 3AL

4
uT2T0u D G6A3

sinhS 3AL

2
uT2T0u D . ~36!

The corresponding solution withL,0 has f5AuLu/2
and

R~c!5R0$cosh@A3~c2c0!#%
21/3, ~37!

uT~c!2T0u5
4

3AL
tan21$exp@A3~c2c0!#%. ~38!

There is no choice of (1) or (2) branches, as every solution
for R(c) starts expanding@(2) branch#, turns around when
c5c0 , and recollapses@(1) branch#. Written in terms of
the string frame variables we have

s5s0F tanS 3AuLu
4

~T2T0! D G61/A3

, ~39!

ef2f05

F tanS 3AuLu
4

~T2T0! D G6A3

cosS 3AuLu
2

~T2T0! D . ~40!

Note that theL,0 solution has a finite lifetime, as
uT2T0u is bounded between 0 and 2p/3AuLu. The string
scale factor is monotonic, and increases if we takeT.T0
and decreases otherwise.

C. Dilaton and antisymmetric tensor field

When c!0, the potential has the form
V(c)53q2e26c/4, and sof x / f52A3. For this case we
give y parametrically as

c~y!2c052
1

4
lnF S 12y

11yD
1/A3 ~A31y!2

12y2 G , ~41!

R~y!5R0F S 12y

11yD
A3 ~A31y!2

12y2 G1/12. ~42!
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FIG. 2. This figure displays the exact solution to the string equations of motion given by Eqs.~47!–~50! for the parameter values
A51 (L54 andq252) andr 051. In the top left plot the motion in the shifted frame is shown. The path is reflected at the boundary o
negative potential region, which lies between the dashed horizontal lines. The evolution of the dilatonf is plotted at bottom left and the
Einstein frame scale factor is plotted at top right. The coordinate timet in the Einstein frame runs over a finite interval, but in the strin
frameT runs from2` to 1`. At the bottom right, we plot the string frame scale factors when it is near its minimum value.
q.

as

,

A scalar field with an exponential potential is the basis
power-law inflation@33,34# and is known to have an exac
solution@26#. The situation in the shifted frame is not analo
gous to power-law inflation, due to the steepness of the
tential. In particular, we find that the value ofc is always
bounded below, whereas the exponential potentials wh
drive power-law inflation admit solutions where the field is
monotonic function of the time. Foru f x / f u.1 the value of
c cannot decrease indefinitely, irrespective of the initial co
ditions. The minimum value occurs wheny50, while at
early or late times, asy→61, we havec→1`. Thus the
string frame scale factors5ec always has a minimum value
This behavior is also seen in the exact solution given,
rather different form, by Copeland, Lahiri, and Wands@22#
for this system withL50.

D. Special case: Particular solution withk511

We have found a new exact solution to the equations
motion, for a case where all the terms in the potential~15!
are nonzero. This is generated by choosing

H~c!56~A2Be22c!3/2, ~43!

whereA andB are both positive. The plus and minus sign
correspond to increasing and decreasingr , respectively, with
H50 when c5c0[(1/2)ln(B/A). It is straightforward to
write down the potential

V~c!56A3218A2Be22c112B3e26c. ~44!

If eitherA or B vanishes, then the potential reduces to one
the special cases we have already considered, and so
of
t
-
po-
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a

n-

.
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s
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assume that they are both nonzero. By comparison with E
~15!, we see that this provides us with a nontrivial solution to
the equations of motion whenL.0 and

A5S L

4 D 1/3, B5
1

2A2 ~45!

q2L2532. ~46!

Performing the integrals in Eqs.~22! and ~23! yields

r ~c!2r 05
1
3 ~c2c0!2 1

6 ~e2~c2c0!21!, ~47!

T~c!2T057
1

3AL
@ec2c0Ae2~c2c0!21

1 ln~ec2c01Ae2~c2c0!21!#. ~48!

This solution is displayed in Fig. 2. Notice thatc0 is the
minimum value attained byc, and quantities with the sub-
script 0 refer to their value atc5c0 . The maximum value
of r is r 0 . The upper sign in the expression forT corre-
sponds to the expanding phase (T,T0), and the lower sign
to the contracting phase (T.T0). This solution thus interpo-
lates between the (2) branch and the (1) branch.

The ambition of many studies in string cosmology has
been to show whether a nonsingular universe can be found
a solution to the equations of motion@19–21,35#. Because
the lifetime in the shifted frame, and thus in the string frame
for our solution is infinite, it might appear to be just such a
nonsingular cosmology. However, the dilaton
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f2f052~c2c0!1 1
2 ~e2~c2c0!21! ~49!

becomes arbitrarily large whenuTu→`. This is the strong
coupling limit of the string theory, and so the tree-level a
tion from which our solution is derived becomes unreliabl
This is a consequence of the change atT0 from the (2) to
(1) branches, rather than changing from (1) to (2), as
envisaged in the pre-big-bang scenario@19#.

The Einstein frame scale factora5ea is given by

a2a052 1
4 ~e2~c2c0!21!. ~50!

The time in this frame is given by Eq.~19!, and so

t~c!2t056
ea011/4

2A2
E
z

1 e21/z8

z83/2A12z8
dz8, ~51!

where we have made the additional substitutio
z5e22(c2c0). Evaluating this integral with the lower limit
z50 shows that the time between the ‘‘big bang,’’ whe
a50, and the timet0 when the universe attains its maximum
size is finite in the Einstein frame.

Finally, we remark that this particular solution is unstab
to small perturbations. In the shifted frame, our solution co
responds to the critical case where thec field reaches an
infinite value in an infinite time with vanishing velocity. If it
rolled more slowly, it would eventually be reflected bac
towards the minimum of the potential, whereas a faster e
lution would see it become infinite in a finite time.

E. Special case: Static solution withk511

Finally, there is a particular solution when thec sits in the
minimum of its potential, if this minimum value is nonnega
tive. We can therefore find the result, withċ50, first given
by Tseytlin @23#:

c5
1

2
ln

uqu
2
, ~52!

r ~T!2r ~0!56A 2

uqu
2

L

4
T, ~53!

when k511 andLuqu>8. Sinces5ec, the string frame
scale factors is a constant. The dilaton

f2f0573A 2

uqu
2

L

4
T ~54!

is linear with respect to the string frame time. The Einste
frame scale factora is monotonic and proportional to the
Einstein frame timet. Like our previous particular solution,
the lifetime in the string frame is infinite, but the dilato
becomes large at either early or late times, here depending
whether we are on the (1) or (2) branch, rendering the
tree-level action invalid. There is a corresponding singular
in the Einstein frame when the scale factor becomes zero

This (2) branch solution is stable at late times, as pertu
bations ofc about the minimum are damped by the expa
c-
e.

n

n

le
r-

k
vo-

-

in

n
on

ity
.
r-
n-

sion of the shifted frame. Conversely, the (1) branch solu-
tion is unstable at late times, but is the general solution
early times.

V. COSMOLOGICAL BEHAVIOR
FOR THE GENERAL CASE

The exact solutions examined in the previous section on
apply to a small portion of the full parameter space. How
ever, using the shifted frame we can give a qualitative a
count of the properties of the general solution to the equ
tions of motion.

For large negative and decreasingc with qÞ0, the sys-
tem must eventually evolve into a region where Eqs.~41!
and ~42! accurately describe the motion. This shows thatc
cannot decrease to arbitrarily large negative values. This im
mediately establishes that the string frame scale fact
s5ec always has a nonzero lower bound in the presence
an antisymmetric tensor field. Conversely, we will show tha
c always reaches arbitrarily large values at early and/or la
times, except in the particular static solution of Eq.~52!. The
evolution of the string frame scale factor can be quite com
plicated but in the shifted frame the evolution is straightfor
ward.

If the scale factor in the shifted frame is growing, the
energy density must decrease and the field will eventua
evolve towards the minimum of its potential. This naturally
splits the analysis into two subcases, depending on wheth
or not the values ofq, L, andk admit a negative potential
region, and we treat them separately.

A. Motion with a negative potential region

We showed in Sec. III that a negative potential regio
exists wheneverL,0 or k.0 andLuqu,8. By examining
the constraint, Eq.~16!, we can catalog the possible extrema
of r (T) andc(T).

ṙ50, ċÞ0. We see that forṙ50 we must have
V(c),0, and so branch changing between contracting a
expanding solutions can only occur in the negative potenti
region. In addition, Eq.~17! implies that all turning points of
r (T) are maxima, and so all branch changes must be fro
the (2) to the (1) branch. Thereforer has at most only one
turning point.

ċ50, ṙÞ0. Extrema ofc(T) can only occur outside the
negative potential region and reflectc back towards the
minimum of the potential.

ṙ5ċ50. This special case can only occur on the bound
ary of the negative potential region. Again, the value o
r (T) is a maximum, and the trajectory is reflected back to
wardsV,0. Our exact solution, Eqs.~47! and~48!, exhibits
this type of extremum.

When ṙ.0, even if the fieldc is evolving away from the
negative potential region, the frictional damping will force
c towards the minimum of the potential. Eventually the en
ergy density in the shifted frame~kinetic plus potential en-
ergy of c) reaches zero, leading to a turning point fo
r (T). In the contracting phase the energy density increase
The presence of the antisymmetric tensor field will ensu
that c is always reflected back from large negative value
towards the minimum of the potential. However, at largec
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FIG. 3. Numerical solution of the equations of motion withq51, L57, andk51 is plotted here for the initial datar51, c521,
ṙ510 with ċ chosen to satisfy the constraint. At the top left, the motion in the shifted frame is shown. The boundary of the negative p
region has also been plotted~the two horizontal lines! and the oscillations around it can be clearly seen. The evolution of the dilaton is sh
in the bottom left, while the right-hand plots depict the Einstein and string frame scale factors. Note that while this model is singular~when
a50), the Einstein frame scale factor can have several phases of expansion and contraction.
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the potential energy tends towards a finite value 3L/2. Once
the total energy density exceeds this value, it must contin
to increase ifṙ,0 andc will escape to infinity. Similarly,
extrapolating back in time, we find thatc must always origi-
nate at infinity.

For L.0 ~and thusk511) the fieldc may oscillate
about the minimum of the potential many times both durin
the expanding and contracting phases, as shown in Fig. 3
L<0, the energy density always exceeds 3L/2 and thus the
field escapes to infinity without passing through a loc
maximum.

Our particular solution, Eqs.~47! and~48!, corresponds to
the critical case where the asymptotic energy density is
actly 3L/2 andc reaches infinity with zero kinetic energy a
uTu→`. Such a late~or early! time solution exists for any
choice of parameters~whenL.0), but our exact solution
with q2L2532 is the special case where the turning poin
for r andc coincide and the evolution is symmetrical abou
T0 .

For k511 the Einstein frame scale factor may posse
both local maxima and local minima, which implies tha
string matter, after transformation to the Einstein frame, do
not satisfy the strong energy condition. This behavior can
seen both by numerically integrating the full equations
motion or by considering the equation of motion forä.
However, if a negative potential region exists, there is alwa
an upper bound on the Einstein frame scale factor. Co
versely, as we shall see in the next section, if the potentia
everywhere nonnegative, then the Einstein frame scale fa
is monotonic.
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B. Motion without a negative potential region

In this caseV>0 at all points. From the constraint equa
tion, Eq.~16!, ṙ50 requires bothV andċ to be zero, which
is a special case of the static solution given in Eqs.~52! and
~53!. Otherwise, without a negative potential regionr is
monotonic, and therefore there are no branch changing so
tions.

Turning points inc will still occur. However, fork<0 the
potential is a decreasing, monotonic function ofc and any
extremum will be a global minimum as there can be no fu
ther turning points. In this casec becomes infinitely large at
both early and late times, as illustrated by Fig. 4.

For k511, the potential has a minimum value a
c51/2 lnuqu/2. Whenr is increasing@(2) branch#, the field
oscillates with decreasing amplitude about this minimum
and the static solution given in Eqs.~52! and~53! is a stable
attractor at late times. Note that closed models therefore c
escape recollapse in the Einstein frame ifLuqu>8. This type
of motion is shown in Fig. 5. The (1) branch is simply the
time-reversed solution, and so is unstable at late times.

Whenk521 the behavior of this system at late times ca
be probed using the slow rolling approximation. The criter
for the validity of this approximation are that the potential b
much larger than its first and second derivatives, which hol
well when V'3L/2 and V8(c)'18ke22c. Dropping the
appropriate terms from Eqs.~16! and ~18!, we integrate the
approximate system to obtain the following asymptotic sol
tion for largec:

r→
AL

2
T, ~55!
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FIG. 4. The plot shows the solution withL59 andk521, and the other parameters are the same as for the plot in Fig. 3. Si
k521, the fieldc does not oscillate. At late timesr→` andc→2`. The dilaton~bottom left! decreases indefinitely, while the Einstein
frame scale factor~top right! expands without limit. The string frame scale factor~bottom right! is initially infinite, and is proportional to
T at late times.

FIG. 5. This figure shows the solution to the equations of motion when the parameter values are the same as those in Fig. 3, e
settingL59. In this case there is no negative potential region asLuqu.8. Sincek51, the fieldc oscillates about the valuee22c52/uqu and
at late times the solution tends towards that given by Eqs.~52! and~53!. This can be observed in the plots of the dilaton~bottom left! and
the Einstein frame scale factor~top right!, as well as the string frame scale factor~bottom right! which is asymptotically constant.
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c→
1

2
lnS 6

AL
TD . ~56!

At late times, therefore,r@c, and thus, from Eq.~12!,
f→2` and a→`. A similar analysis will show that the
late time behavior forL,uqu.0 andk50 is similar to that
for k521.

VI. CONCLUSIONS

We have succeeded in describing the full range of cosm
logical evolution that can be found for the string motivate
action, Eq.~2!, containing the dilaton, central charge, and a
tisymmetric tensor field with a homogeneous and isotrop
but spatially curved metric. We have done this by showi
that this system is formally equivalent to a self-interactin
scalar fieldc, minimally coupled to Einstein gravity in a
spatially flat FLRWmetric, and by using this shifted frame
understand the cosmological evolution. The parameters
the theory determine the form of the self-interaction potent
V(c).

If the potential for the scalar field in the shifted frame
positive definite, then the generic evolution of the shifte
frame scale factor is monotonic and with a semi-infinite life
time. Solutions either start or end at a singularity where t
scale factor vanishes. Monotonically contracting or expan
ing solutions correspond to the (1) or (2) branches, respec-
tively, of the pre-big-bang scenario@18–21#. If V,0, then a
turning point is possible, but this is always a maximum co
responding to a change from the (2) to (1) branch. These
general conclusions will remain valid for any potentia
V(c). Generic solutions to this system are singular. On
exceptional cases, for which we have analytic solutions, ha
an infinite lifetime in the string frame. However, the dilato
always diverges at early and/or late times, taking the solut
into the strong coupling regime.

In the string or Einstein frames the solutions exhibit
diverse range of behavior, depending on both the curvat
of the spatial hypersurfaces of the background spacetime~de-
scribed byk) and the other parameter valuesL andq. As
long as the antisymmetric tensor field is nonzero, the str
frame scale factor is always bounded from below@22#.

For all values ofk, including the case with positive cur-
o-
d
n-
ic
ng
g

to
of
ial

is
d
-
he
d-

r-

l
ly
ve
n
ion

a
ure

ing

vature whenL.8/uqu, there are choices of the paramete
values for which the Einstein frame scale factor expands i
definitely from an initial singularity. If k511 and
L,8/uqu, the Einstein frame scale factor can pass throug
several local maxima and minima, but the lifetime of the
universe is finite. IfL,0, then the Einstein frame scale fac-
tor always has a finite maximum value, irrespective of th
values ofk andq.

Each term in the action we have considered turns out
play an important role at different stages in the cosmologic
evolution. Consequently, we have found new types of beha
ior not seen in previous studies which omit one or more o
the terms. By the same token, our own conclusions may
sensitive to the inclusion of further terms in the action
Nonetheless, the absence of solutions which interpolate b
tween weak coupling regimes rules out the possibility o
successfully implementing the pre-big-bang scenario@18# in
our system. This complements the work of Kaloper, Madde
and Olive @21# who reach similar conclusions considering
the effect of an explicit potential for the dilaton and loop
corrections to the dilaton coupling, but without an antisym
metric tensor field or spatial curvature. All possible solution
to our equations of motion contain phases where the co
pling becomes strong. Therefore this tree-level limit of th
full string theory predicts its own downfall, where higher-
order corrections cannot be neglected.

Note added in proof.In a recent report Kaloper, Madden,
and Olive@36# have extended their earlier no-go theorem t
include the antisymmetric tensor field and an axion-dilato
potential in a spatially flat FLRW universe.
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