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Tree-level string cosmology
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In this paper we examine the classical evolution of a cosmological model derived from the low-energy
tree-level limit of a generic string theory. The action contains the metric, dilaton, central charge and an
antisymmetric tensor field. We show that with a homogeneous and isotropic metric, allowing spatial curvature,
there is a formal equivalence between this system and a scalar field minimally coupled to Einstein gravity in
a spatially flat metric. We refer to this system as the shifted frame and using it we describe the full range of
cosmological evolution that this model can exhibit. We show that generic solutions fmgénd with a
singularity. As the system approaches a singularity the dilaton becomes large and loop corrections will become
important.

PACS numbes): 98.80.Cq, 04.50:h, 11.25-w

[. INTRODUCTION being paid to the effect of the dilaton field and its self-
interaction potential. However, the roles of the antisymmetric
String theory is the most promising candidate for the uni-tensor field and the spatial curvature of the metric have often
fication of gravity with the other fundamental forces of na- Peen neglected. Copeland, Lahiri, and Waf2# give gen-
ture. However, string theory is most likely to cause signifi-eral analytic solutions to the equations of motion for the

cant modifications to classical general relativity near the2ntisymmetric tensor field in a background with nonzero spa-

Planck scale, which is far beyond the range of direct terresial curvature, for the case when the central charge is zero. In

this paper we consider this system with a nonzero central

trial e>_<perime.ntation..Since th_es_,e energy sca_les are typicallé(harge. Previously, Tseytlif23] has given several exact so-
associated with the big bang, it is natural to view cosmolog utions. Also Goldwirth and Perry24] use a phase-plane

as a laboratory for testing string theoretic modifications toanalysis to describe the cosmological properties of solutions

gravity. Conversely, cosmologists can hope that if string the equations of motion of models with a nonzero central
theory does provide a deeper understanding of gravitationgharge in a flat Friedmann-Lemaitre-Robertson-Walker
physics than general relativity, then some of the “standard”(F|_ Rw) background.
problems of conventional cosmology will be resolved by Many previous authors have exploited the equivalence of
string theory. Consequently, the cosmological dynamics othe action written in terms of conformally related metrics. In
superstring theories are the subject of intense scrutiny. Typihis paper we show that there is an additional, formal,
cally, one proceeds by perturbatively expanding the full suequivalence between the equations of motion for our homo-
perstring theory and extracting a “low-energy” Lagrangian geneous fields irspatially curvedFLRW metrics and those
that contains Einstein gravity and the lowest-order correcof a scalar field minimally coupled to Einstein gravity in a
tions from string theory. For this approach to be valid wespatially flat FLRW metric. We refer to this system as the
need to restrict our attention to sub-Planckian scales wherghifted frame, and use it to succinctly describe the full range
qguantum effects can be ignored and the higher-order terms iof cosmological evolution that is possible within this model.
the perturbative expansion do not contribute significantly. As the name suggests, it is based on the shifted dilaton field
We consider the tree-level actida—3] which contains [12,13. While we cannot give an analytic solution to the
contributions from the metric, the dilaton, the central chargegquations of motion for the general case when the central
and an antisymmetric tensor field. We assume that the backharge is nonzero, we do find an exact result for a particular
ground spacetime is four dimensional and that it and thehoice of parameters.
fields defined upon it are homogeneous and isotropic. Fur-
ther, we assume that degrees of freedom associated with any  |I. TREE-LEVEL STRING EFFECTIVE ACTION
compactified metric can be ignored. Such cosmologies have

! ; . . : We take as our starting point the tree-level acfitr3
received considerable stu@#—21], with particular attention gp 163

1
Rp+(Vp)2—A— 1—2H2 . @

S= %Q—J dPxy—gpe ?
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terms corresponding to degrees of freedom on the compact S=-— % —6a’+ —=——U(a,¢)|, 9
) ; ) 2k 2

metric are held fixed. The real world may be more compli-

cated, but, in the absence of compelling reasons for choosinghere for convenience we lat= e, and choos@=1/a S0
any particular compactification scheme, this simplification;, o 7 coincides with the Einstein frame proper tinte,
will allow us to examine the dynamics due solely to the 14 potential is a function of and ¢:

degrees of freedom associated with the macroscopic dimen-

sions. This permits us to reduce the action to 2

U= OI?e—z'ﬁ—‘iu Ae?—6ke 22, (10)
1
S= sz d4x\/—ge_¢
. . . . . the original string frame scale factor, as it then is a separable
where the spacetime manifold is now four dimensional. : )
. . . function of s and ¢:
We want to consider a homogeneous and isotropic space-

leaving only four macroscopic dimensions, and that the 1 f .
dte

1
R+(V$)2—A— 1—2H2 , (2

However, this potential is simpler when written in terms of

time, and so the curvature scalar is that of an FLRW uni- 9?6k
verse. The string frame line element is, thus, U=e?| A+ I ?) (11
ds?=s( ,7)2< —n(7n)2dn?+ >dr? In fact, the Einstein frame represents only one of infinitely
1-kr many different choices of variables which diagonalize the

kinetic terms in the Lagrangian for homogeneous fields. As
+r2[d 6%+ siré( 0)d¢2]> , (3)  we shall now see, it is possible to further simplify the system
by choosing alternative variables which have orthogonal ki-

where 7 is the conformal time if we set the arbitrary lapse N€tiC terms and respect the symmetry of the potential.

function n=1. Open, flat, or closed spatial hypersurfaces
correspond tck=—1, 0, or +1, respectively. The antisym- IIl. THE SHIFTED FRAME
metric tensoH has only one degree of freedom, and can be \yile we can simplify the kinetic terms by converting to

written the Einstein frame, we do so at the cost of introducing a
HE = g elrhe g @) 4) more complicated p(_)tential. We now introduce a choice _of
e variables that combines the advantages both of the string
where® is a pseudoscalar field. Assuming that the dilatonffame (separable potentialand the Einstein frameno
and antisymmetric tensor field are homogeneous like oufrossed kinetic termsTransforma and¢ into a new pair of
metric, H2=6e2?@'2, where the prime denotes differentia- variablesr and,
tion with respect ton. Furthermore, since the Lagrangian

does not depend 0@, the corresponding momentum (d)) (,ﬂ)
= 1 3 , (12
9 efsfe’ 5 @ 5 3 |\
Po=3e7 =" n U ©

and choose the lapse function to be
is conserved and is a constant. Finally, by adding the total

derivati 3 3
erivative . Ee_a_(d)mzie_ " 13
d (e ?s's
_GE n © In terms of the transformed variables the action and po-
tential are
to the integrand, we obtain
1 _ .
1 s'2  @¢'? ¢'s's S= —2f dte¥[ —6r°+2y°—V(4)], (14)
= - _p — &2 2k
S 2K2f d77 ne ( 6]']2 n2 s°+6 n2 +6k32
q° V()= §q2e*6*”+ EA—9ke’2‘/’ (15
—As*— E) . (7) 4 2 '

The potentialV () is plotted for a variety of different pa-
rameter values in Fig. 1.

Up to a rescaling of the field, this action is identical to
at of a scalar fields with potentialV, minimally coupled
to Einstein gravity in a spatially flat universe, with scale

The action now has a simpler form, but notice that it
includes the crossed kinetic tergris’. This term vanishes in
the Einstein frame, which is related to the string frame by the{h
conformal transformation

s(7)=e*?a(7) (8) factorR=¢'. The equations of motion are
2 2
wherea is the Einstein frame scale factor. In the Einstein dr dy
frame the action takes the form 6( daT 2 daT V=0, (16
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as a term in the potenti&(¢), and the shifted FLRW metric

is always spatially flat. The dynamical system in the shifted
frame is thus the basis of almost all inflationary models and
its properties are familiar and well understood. Moreover, we
will see in the next section that it is particularly simple to
identify the (+) or (=) branches of pre-big-bang string cos-
mology[19,21] with the contracting or expanding scale fac-
tor in the shifted frame.

The qualitative dynamics of our system are strongly influ-
enced by whether or not the valuesqpfA, andk permit the
inequality V<0 to be satisfied. I\ <0, thenV<0 for suf-
ficiently large values off, but whenA >0, a negative po-
tential region can only exist ik>0. Then(for k=1) V(¢)
has its minimum value wheg= 3In(|g|/2), which is nega-

FIG. 1. The potentiaV/(y) is shown for a variety of parameter tive if A[q|<8 (see Fig. 1 Thus the negative potential re-
values. In ascending order, the plots correspond ktel,  gion exists when one of the following is true:

A=-0.2, andg=6, andA=1, k=1 with q=6, 8, and 10.

'S

w

Alg|<8 and k=1,

d?r dy\? A<O. (20
) "

972
dT In the next section we use the formalism of the shifted
42 dr d 1d frame to discuss exact solutions to the equations of motion.
_‘ﬁ ar _‘p - — Analytic solutions are known to exist when any one of the
7+ + 2 g V(=0 (18) tions
dT® dTdT 4dy three terms inV(¢) is nonzero, and we show that these can
) ] ) ) be simply expressed in the shifted frame. Second, we employ
The timeT corresponding to our choice of lapse is propor-techniques developed for obtaining exact scalar field cos-
tional to the proper time in the original string frame. It is mologies to derive a new particular solution where all three

related to the proper time in the Einstein frarhepy terms in the potential are nonzero. In Sec. V we then utilize
these exact solutions as limiting cases of the solutions to the
d_T - zeqS/Z equations of motion to catalog all the different possible types

dt 3 of cosmological behavior this model can produce.

3 ooy 1 IV. EXACT SOLUTIONS TO THE EQUATIONS
=t=5]e : (19 OF MOTION

Exact solutions to the system of equatidi$)—(18) for
specific potentials have been analyzed by a number of au-
thors. Clearly, the only solutions of relevant to the system
considered here are those where the potential takes the form
of Eq. (15). It is often useful to parametrize the motion by
the field s [25-28,3(Q. Settingdr/dT=H (the “Hubble pa-
rameter” in the shifted metric Eq. (17) gives
dH/dy¢=—dy/dT, where the prime in Eqg21)—(23) de-
notes differentiation with respect i We derive the follow-
ing expressions for the potential, scale factgrand time

We will refer to this choice of variables as the shifted
frame because, apart from a numerical factogoincides
with the shifted dilaton previously usdd2,23,17 to sim-
plify the equations of motion. Our scalar field is actually the
logarithm of scale factor in the string framg@=Ins, and the
shifted scale factolR=¢€" represents the variation of the
fields in the orthogonal direction. The shifted dilaton, or
equivalently r, reflects the symmetries of the underlying
string theory better than the “renormalized” fieltl[12]. For
instance, it remains invariant under the scale-factor dualit
transformations— s~ . However, our action is only invari-

ant under this transformation @V/d=0, which requires V() =6H ()%= 2H(¢)'?, (21)
both the spatial curvature and antisymmetric tensor field to
vanish. v H
This change of variables is not a conformal transforma- r(¢)—r(ygo)=— Jw mdgb, (22
0

tion, which is an identity between two actions for all field

configurations, as the shifted frame only exists for homoge- ’

neous fields. Also there is no equivalent choice of variables if T(H-T - d
. . . . ()= T(4o) o

we include loop corrections to the dilaton coupling. How- woH ()

ever, if we are going to restrict our attention to the tree-level ) )

action which contains only the dilaton, antisymmetric tensor/t is convenient to make the extra substituti@1,32,23

. (23)

and central charge terms with a homogeneous and isotropic
string metric, then working in the shifted frame allows us to X= \/59//, (24)
write this system in a particularly simple form.

The practical advantage of working in this shifted frame f(x)= /M (25)
is that the spatial curvature of the string metkits?, appears 6’
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When A is positive,f= VA/2 and

yA(x)=1- Bh2" (26) _
R(4)=Ro{sin{ V3(y— o)1}, (33
There is a sign ambiguity dfi corresponding to a time re- 5
versal, which transforms an expanding solution in the shifted R No
frame into a contracting one. In termsyafEq. (21) becomes ()= To= +3\/Kln[tanr{ 2 (Y= o) ] (34

This is the general solution for a massless field plus cosmo-
logical constant in a flat FLRW metri29]. The choice of
upper or lower sign reflects whether we choose ttg pr
wherey, denotesy differentiated with respect t&. When  (—) branch corresponding to the contracting or expanding
fy/f is constant(or zerg this equation can be integrated solutions, respectively, in the shifted frame. The string frame
immediately. Fortunately these special cases correspond tosgale factor and dilaton afé1]

potential that is either a constant or a single exponential _
term, which is precisely what we need to discuss the asymp- 3JA *1IN3

tan T|T—To| , (35
3VA =3
tan}‘( —\L{—|T—To|”

fy
yyx=(1—y2)( - ?), 27)

totic solutions in Sec. V. S$=$p

A. Pure dilaton cosmology

First, note that in the absence of a central charge, antisym-

metric tensor field, and spatial curvature in the string frame, e?” %o= 3VA (36)
then V=0 and we have the standard result for a massless sinr( —|T—To|>
scalar field in the shifted frame: 2
T3 The corresponding solution with <0 has f=/|A|/2
R=Ro/=| (28)  and
0
. R(#)=Rofcost v3(y— o) ]}, (37)
Y= ho= == —’ (29 4
J— T To|= —=tan™?! V3 38
I T(4)—Tol= \/—tan {exd V3(y—yo)]}. (38
In terms of the string frame scale factor and dilaton this is the
usual pure dilaton cosmology: There is no choice of{) or (—) branches, as every solution
13 for R(¢) starts expanding(—) branch, turns around when
s=s, l , (30) =iy, and recollapsef(+) branch. Written in terms of
To the string frame variables we have
T /_ +1/V3
é—do=(*3-1)In T (31 S=5sg tar( (T To)” , (39
0
The choice of signs in the above equations corresponds to an 3
increasing or decreasing dilaton. In addition there are two —(T To)
branches corresponding T less than or greater than zero, e?¢o= (40)
denoted as the+«) and (—) branches by Brustein and Ven- o 3v|A |(T—T )
eziano[19]. We see that in the shifted frame these two 2 0

branches correspond simply to a contracting or expandin%I _ o o

scale factorR, respectively. Here the ¢) branch ap- ote that the A<O solution has a finite lifetime, as

proaches a singularity &= 0, while the (-) branch starts |T—To| is bounded between 0 ands23\|A|. The string

from the singularity aff =0. scale factor is monotonic, and increases if we takeT,
and decreases otherwise.

B. Dilaton cosmology with a central charge

When >0, V(¢) is dominated by the central charge )
term A and we approximate the potential by=3A/2. For When <0, the potential has the form

this case the solution is straightforward, sirfge=0 and V( w):3q2e—6w/4, and sof,/f=—13. For this case we
give y parametrically as

C. Dilaton and antisymmetric tensor field

tani(x—xy) for A>0,

y(x)= (32) 1 V| YB3y
cothix—xq) for A<O. ‘ﬂ(Y)_lﬂO:_Zln 1+§ (\/1—_;2) , (42)
3 271/12
1This can seen from Eq4) of [19] where the choice of= sign R(y)=R 1-y (\/§+ y) 42)
coincides with the sign of-r. y 1+y 1-y?
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FIG. 2. This figure displays the exact solution to the string equations of motion given by(%&®s(50) for the parameter values
A=1 (A=4 andg?=2) andr,=1. In the top left plot the motion in the shifted frame is shown. The path is reflected at the boundary of the
negative potential region, which lies between the dashed horizontal lines. The evolution of the dilatqiotted at bottom left and the
Einstein frame scale factor is plotted at top right. The coordinate titnethe Einstein frame runs over a finite interval, but in the string
frameT runs from—o to +c0. At the bottom right, we plot the string frame scale factavhen it is near its minimum value.

A scalar field with an exponential potential is the basis ofassume that they are both nonzero. By comparison with Eq.
power-law inflation[33,34] and is known to have an exact (15), we see that this provides us with a nontrivial solution to
solution[26]. The situation in the shifted frame is not analo- the equations of motion whefd >0 and

gous to power-law inflation, due to the steepness of the po-

tential. In particular, we find that the value gf is always A3 1

bounded below, whereas the exponential potentials which A= Z) ' B:ﬁf (45)
drive power-law inflation admit solutions where the field is a

monotonic function of the time. Fdf,/f[>1 the value of qPA2=32. (46)
¢ cannot decrease indefinitely, irrespective of the initial con-

ditions. The minimum value occurs when=0, while at Performing the integrals in Eqé22) and (23) yields
early or late times, ag— * 1, we havey— +o. Thus the

string frame scale facta=e? always has a minimum value. F()—To=1 (= hg)— & (2 Y0 — 1), (47)

This behavior is also seen in the exact solution given, in
rather different form, by Copeland, Lahiri, and War@g]

: Cn 1
for this system withA =0. T()—To= Iﬁ[ew Yo, /e2(0— o) — 1

D. Special case: Particular solution withk=+1

+In(e? Yo+ g2V~ —1)], 48

We have found a new exact solution to the equations of ( )] 48

motion, for a Cﬁ.se. where all t:iterﬂ"ns in the poten®  thjg solution is displayed in Fig. 2. Notice thét, is the
are nonzero. This is generated by choosing minimum value attained by, and quantities with the sub-
H(y)==(A—Be 232 (43) script_ 0 refer to their val_ue axrz ¥o. The maximum value

of r is ry. The upper sign in the expression forcorre-
whereA andB are both positive. The plus and minus signssponds to the expanding phase<(T,), and the lower sign

correspond to increasing and decreasingespectively, with ~ to the contracting phas& ¢ Tp). This solution thus interpo-
H=0 when = ,=(1/2)In®/A). It is straightforward to lates between the<{) branch and the<) branch.

write down the potential The ambition of many studies in string cosmology has
been to show whether a nonsingular universe can be found as
V()=6A3—18A%Be ¥+ 12B3%e %, (44) a solution to the equations of motigd9-21,39. Because

the lifetime in the shifted frame, and thus in the string frame,
If either A or B vanishes, then the potential reduces to one ofor our solution is infinite, it might appear to be just such a
the special cases we have already considered, and so wensingular cosmology. However, the dilaton
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—bn=2(t— )+ L (20— 49 sion of the shifted frame. Conversely, the Y branch solu-
¢~ bo=2(4=do)* 2 ) 49 tion is unstable at late times, but is the general solution at

becomes arbitrarily large whefT|—c. This is the strong early times.

coupling limit of the string theory, and so the tree-level ac-
tion from which our solution is derived becomes unreliable. V. COSMOLOGICAL BEHAVIOR
This is a consequence of the changd gtfrom the (—) to FOR THE GENERAL CASE
(+) branches, rather than changing from )(to (=), as
envisaged in the pre-big-bang scendr®)].

The Einstein frame scale factar=e“* is given by

The exact solutions examined in the previous section only
apply to a small portion of the full parameter space. How-
ever, using the shifted frame we can give a qualitative ac-
count of the properties of the general solution to the equa-
tions of motion.

o o For large negative and decreasiigwith g+ 0, the sys-
The time in this frame is given by E¢19), and so tem must eventually evolve into a region where E@kl)
) and (42) accurately describe the motion. This shows titat
) — e +e“0*1’4 1 el cannot decrease to arbitrarily large negative values. This im-
(h)—to== 22 J2z321—7 mediately establishes that the string frame scale factor
s=e" always has a nonzero lower bound in the presence of
where we have made the additional substitution@n antisymmetric tensor field. Conversely, we will show that
z=e 2= Evaluating this integral with the lower limit zp always reac_hes arbitrt_’;\rily Iarge_values_ at early and/or late
z=0 shows that the time between the “big bang,” when times, except in the particular static solution of Esp). The

a=0. and the time~ when the universe attains its maximum €velution of the string frame scale factor can be quite com-
size ’is finite in theOEinstein frame. plicated but in the shifted frame the evolution is straightfor-

Finally, we remark that this particular solution is unstableWard- . . . .
to small perturbations. In the shifted frame, our solution cor- ! the scale factor in the shifted frame is growing, the
responds to the critical case where thefield reaches an EN€rgy density must decrease and the field will eventually
infinite value in an infinite time with vanishing velocity. If it €VOIVe towards the minimum of its potential. This naturally

rolled more slowly, it would eventually be reflected back SPIitS the analysis into two subcases, depending on whether

towards the minimum of the potential, whereas a faster evo®" NOt the values o, A, andk admit a negative potential

lution would see it become infinite in a finite time. region, and we treat them separately.

a—ap=— 5 (e?V " —1). (50)

dz', (51

E. Special case: Static solution witk= + 1 A. Motion with a negative potential region

Finally, there is a particular solution when tiesits in the We showed in Sec. Il that a negative potential region
minimum of its potential, if this minimum value is nonnega- €XISts wheneveA <0 or k>0 andA[q|<8. By examining
tive. We can therefore find the result, with=0, first given the constraint, Eq(16), we can catalog the possible extrema
by Tseytlin[23]: of r(T) and (T). _

r=0, ¢#0. We see that forr=0 we must have
lq] V(¢)<0, and so branch changing between contracting and
= Eln7, (52 expanding solutions can only occur in the negative potential
region. In addition, Eq(17) implies that all turning points of
5 A r(T) are maxima, and so all branch changes must be from
r(T)—r(0)=* [ (53  the (=) to the (+) branch. Therefore has at most only one
lal 4 turning point.
. . =0, r#0. Extrema ofy(T) can only occur outside the
whenk=+1 and A|q|>8. Sinces= e”, the string frame negative potential region and reflegt back towards the
scale factors is a constant. The dilaton minimum of the potential.

r=¢=0. This special case can only occur on the bound-
b— o= T3 /i_ﬁ.r (54) ary of the negative potential region. Again, the value of
0 g 4 r(T) is a maximum, and the trajectory is reflected back to-
wardsV<0. Our exact solution, Eq$47) and(48), exhibits
is linear with respect to the string frame time. The Einsteinthis type of extremum.
frame scale factom is monotonic and proportional to the ~ Whenr>0, even if the fieldy is evolving away from the
Einstein frame time. Like our previous particular solution, negative potential region, the frictional damping will force
the lifetime in the string frame is infinite, but the dilaton ¢ towards the minimum of the potential. Eventually the en-
becomes large at either early or late times, here depending @rgy density in the shifted framéinetic plus potential en-
whether we are on theH() or (=) branch, rendering the ergy of ) reaches zero, leading to a turning point for
tree-level action invalid. There is a corresponding singularityr (T). In the contracting phase the energy density increases.
in the Einstein frame when the scale factor becomes zero. The presence of the antisymmetric tensor field will ensure
This (—) branch solution is stable at late times, as perturthat ¢ is always reflected back from large negative values
bations ofy about the minimum are damped by the expan-towards the minimum of the potential. However, at lagge
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FIG. 3. .Numerical solution of the equations of motion wigk-1, A=7, andk=1 is plotted here for the initial date=1, ¢=—1,
r =10 with ¢ chosen to satisfy the constraint. At the top left, the motion in the shifted frame is shown. The boundary of the negative potential
region has also been plottéithe two horizontal lingsand the oscillations around it can be clearly seen. The evolution of the dilaton is shown
in the bottom left, while the right-hand plots depict the Einstein and string frame scale factors. Note that while this model is(sihgolar
a=0), the Einstein frame scale factor can have several phases of expansion and contraction.

the potential energy tends towards a finite valuga Once B. Motion without a negative potential region

the total energy density exceeds this value, it must continue | this casev=0 at all points. From the constraint equa-
to increase ifr <0 and ¢ will escape to infinity. Similarly,  ton, Eq.(16), r =0 requires bott/ and to be zero, which
extrapolating back in time, we find thgtmust always origi-  is a special case of the static solution given in H§8) and
nate at infinity. (53). Otherwise, without a negative potential regionis

For A>0 (and thusk=+1) the field ¥ may oscillate  monotonic, and therefore there are no branch changing solu-
about the minimum of the potential many times both duringtions.
the expanding and contracting phases, as shown in Fig. 3. If Turning points inys will still occur. However, fork<0 the
A<0, the energy density always exceeds/3 and thus the potential is a decreasing, monotonic functiongpofand any

field escapes to infinity without passing through a local®tremum will be a global minimum as there can be no fur-
maximum. ther turning points. In this casg becomes infinitely large at

Our particular solution, Eq$47) and(48), corresponds to bOtl? ealilz anld Iart1e times, a}slillﬁstrated by Fig. 4. I
the critical case where the asymptotic energy density is ex- _f/rz | N 72 ’Vvthe pptgntla 1as 3 rglnlmumthvaf.u? d at
actly 3A/2 andy reaches infinity with zero kinetic energy as '/’_. n " enr 1s mcreasmg[( ) rancli,_ ehe
: : . oscillates with decreasing amplitude about this minimum,
|T|—o. Such a latgor early time solution exists for any

. : and the static solution given in Eq&2) and(53) is a stable
ch0|ce2 sz parar_neteréwhen_A>0), but our exact s_olut|on attractor at late times. Note that closed models therefore can
with q°A“=32 is the special case where the turning point

- SO X Sescape recollapse in the Einstein framd jfj| =8. This type
for r and ¢ coincide and the evolution is symmetrical about ¢ \otion is shown in Fig. 5. The+) branch is simply the
To. ] . time-reversed solution, and so is unstable at late times.
For k=+1 the Einstein frame scale factor may possess \whenk=—1 the behavior of this system at late times can
both local maxima and local minima, which implies that pe probed using the slow rolling approximation. The criteria
string matter, after transformation to the Emstem frr?\me, doesor the validity of this approximation are that the potential be
not satisfy the strong energy condition. This behavior can benuch larger than its first and second derivatives, which holds
seen both by numerically integrating the full equations ofwell when V~3A/2 and V' (i)~18ke 2”. Dropping the
motion or by considering the equation of motion far appropriate terms from Eg$l6) and (18), we integrate the
However, if a negative potential region exists, there is alwayspproximate system to obtain the following asymptotic solu-
an upper bound on the Einstein frame scale factor. Contion for large:
versely, as we shall see in the next section, if the potential is
everywhere nonnegative, then the Einstein frame scale factor VA

’ (59

. . r———T,
IS monotonic. 2
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FIG. 4. The plot shows the solution with=9 andk=—1, and the other parameters are the same as for the plot in Fig. 3. Since
k=—1, the fieldy does not oscillate. At late times—o and ¢— —oo. The dilaton(bottom lef) decreases indefinitely, while the Einstein
frame scale factottop right expands without limit. The string frame scale factbottom righ} is initially infinite, and is proportional to

T at late times.
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FIG. 5. This figure shows the solution to the equations of motion when the parameter values are the same as those in Fig. 3, except for
settingA = 9. In this case there is no negative potential region g >8. Sincek=1, the fieldy oscillates about the value 2= 2/|q| and
at late times the solution tends towards that given by Esf.and(53). This can be observed in the plots of the dilatbottom lef) and
the Einstein frame scale fact¢op right), as well as the string frame scale factbottom righy which is asymptotically constant.



53 TREE-LEVEL STRING COSMOLOGY 4255

1 6 vature whenA>8/|q|, there are choices of the parameter
¢//—>§|n —T]. (56)  values for which the Einstein frame scale factor expands in-
VA definitely from an initial singularity. If k=+1 and

A <8l|qg|, the Einstein frame scale factor can pass through
several local maxima and minima, but the lifetime of the
universe is finite. IfA <0, then the Einstein frame scale fac-
tor always has a finite maximum value, irrespective of the
values ofk andg.

Each term in the action we have considered turns out to
play an important role at different stages in the cosmological

We have succeeded in describing the full range of cosmogvolution. Consequently, we have found new types of behav-
logical evolution that can be found for the string motivatedior Not seen in previous studies which omit one or more of
action, Eq(2), containing the dilaton, central charge, and an-the térms. By the same token, our own conclusions may be
tisymmetric tensor field with a homogeneous and isotropicSensitive to the inclusion of further terms in the action.
but spatially curved metric. We have done this by ShowingNonetheIess, the a_bsence_ of solutions which mterpo_lf_ite be-
that this system is formally equivalent to a self-interacting®een weak coupling regimes rules out the possibility of
scalar fieldy, minimally coupled to Einstein gravity in a successfully implementing the pre-big-bang scenkt&] in
spatially flat FLRW metric, and by using this shifted frame to OUr System. This complements the work of Kaloper, Madden,
understand the cosmological evolution. The parameters @"d Olive[21] who reach similar conclusions considering

the theory determine the form of the self-interaction potentiaFhe effect of an explicit potential for the dilaton and loop
V(). corrections to the dilaton coupling, but without an antisym-

If the potential for the scalar field in the shifted frame is metric tensor.field or spa_tial curvature. All possible solutions
positive definite, then the generic evolution of the shiftedl® OUr equations of motion contain phases where the cou-
frame scale factor is monotonic and with a semi-infinite life-Pling becomes strong. Therefore this tree-level limit of the
time. Solutions either start or end at a singularity where thdU!l String theory predicts its own downfall, where higher-
scale factor vanishes. Monotonically contracting or expand©rder corrections cannot be neglected.
ing solutions correspond to the-( or (—) branches, respec-  Note added in proofin a recent report Kaloper, Madden,
tively, of the pre-big-bang scenari@8-21]. If V<0, then a f’:\nd Olive[36] h_ave extended thelr_earller no-go theore_m to
turning point is possible, but this is always a maximum Cor_mcludg the antlsymmetrlc tensor fleld and an axion-dilaton
responding to a change from the ] to (+) branch. These Potential in a spatially flat FLRW universe.
general conclusions will remain valid for any potential
V(). Generic solutions to this system are singular. Only
exceptional cases, for which we have analytic solutions, have
an infinite lifetime in the string frame. However, the dilaton  K.M. acknowledges the British Council for a travel grant
always diverges at early and/or late times, taking the solutioto visit Sussex University, where this work was begun, and
into the strong coupling regime. R.E. would like to thank Sussex University for its hospitality

In the string or Einstein frames the solutions exhibit awhile this work was completed. R.E. was supported by the
diverse range of behavior, depending on both the curvaturdSPS, and Grant-in-Aid No. 0694194. D.W. was supported
of the spatial hypersurfaces of the background spacedtime by the PPARC. The authors would like to thank Ed Copeland
scribed byk) and the other parameter valuAsandq. As  and Juan GaratBellido for useful discussions. This work
long as the antisymmetric tensor field is nonzero, the stringvas partially supported by the Grant-in-Aid for Scientific
frame scale factor is always bounded from bel@&]. Research Fund of the Ministry of Education, Science and

For all values ofk, including the case with positive cur- Culture, JapariNos. 06302021 and 06640412

At late times, thereforer>, and thus, from Eq(12),
¢— —x anda—x. A similar analysis will show that the
late time behavior for\,|g|>0 andk=0 is similar to that
for k=—1.

VI. CONCLUSIONS
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