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Domain walls form naturally in the early Universe whenever a discrete symmetry is spontaneously brok
at some phase transition. When each vacuum is populated equally, it is well known that the domain w
network comes to dominate the energy density of the Universe and causes excessive anisotropy in the co
microwave background. We present results for the initial conditions and dynamical evolution of domain w
networks in which one of the degenerate vacua has a population bias over the other. The initial distributio
domain walls is well described by percolation theory. We find that such networks, although they show evide
of a limited scaling regime for a range of biases, do not persist indefinitely. It follows that biased domain w
networks avoid the energy density and anisotropy problems.

PACS number~s!: 98.80.Cq, 11.27.1d, 98.65.Dx
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I. INTRODUCTION

Topological defects provide cosmologists with a set
intriguing mechanisms for structure formation which a
quite different in nature to the standard inflationary paradig
@1#. Defects form at spontaneous symmetry breaking ph
transitions in the early Universe, and their subsequent fi
ordering dynamics can perturb the matter and radiation c
tent of the Universe, leaving characteristic signals in both
present day matter distribution and the microwave ba
ground.

The nature of the defect is determined by the topology
the vacuum manifold following the phase transition. AZ2
manifold with two disconnected vacua leads to domain wa
@2#, anS 1 manifold to cosmic strings@3#, anS 2 manifold to
monopoles, and anS 3 manifold to cosmological texture@4#.
Much recent attention has focused on the gauged cos
string @5#, and global texture scenarios@6#. However, even
though discrete symmetries arise naturally in many parti
physics models, cosmological domain walls have long be
considered unworkable. Zel’dovich, Kobzarev, and Okun n
ticed in 1975 that the energy density of a domain wall n
work will eventually come to dominate that of matter o
radiation. More recent attempts to save domain wall s
narios, such as the the so-called ‘‘late-time’’ phase transitio
@7#, are now known to be in conflict with observations of th
microwave background@8,9#, and suffer other serious prob
lems @11#.

The most complete study of the dynamics of domain w
networks was given by Press, Ryden, and Spergel@9#. These
authors studied the time evolution, during the era of mat
domination, of topological domain wall kinks in a scala
field with a potential energy possessing two minima, bo
degenerate in energy. They showed conclusively that s
networks rapidly evolved into long domain walls stretchin
53-2821/96/53~8!/4237~10!/$10.00
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across the Universe whose surface area, and, hence ene
density, persisted for a long time. This persistence, or scalin
behavior, led both to the relatively rapid domination of the
energy density of the universe by these walls and to larg
distortions in the cosmic microwave background. Both o
these results are incompatible with observations.

It did appear therefore that domain walls could not hav
formed in the early Universe. However, these results we
based on specific, and apparently reasonable, assumpti
about the initial conditions of the domain wall network. To
be precise, these authors initialized their networks by allow
ing the computer to randomly choose, at any point on th
lattice, either one vacuum state or the otherwith each
vacuum weighted with equal probability. Furthermore, the
choice of the vacuum state was completely uncorrelate
from one lattice site to another.

As is well known, such an initial distribution on a lattice
can be described statistically using percolation theory@12#.
On a three-dimensional square lattice, there is a critical pro
ability, pc50.311, above which the associated vacuum wi
percolate across the entire lattice. It is easy to see that,
initializing both vacua with a probabilityp51/2, both vacua
must propagate across the lattice. Since domain walls lie
the interface between the two different vacua, this means th
enormous domain walls must form which extend across th
entire Universe. This gives a clear mathematical explanatio
for the Press, Ryden, and Spergel result. However, if fo
some reason the two vacua were to be given different,
biased, probabilities, then these conclusions could be dr
matically altered. For example, if one vacuum hadp,pc ,
then that vacuum would form finite clusters in the percolat
ing sea of the other vacuum. The domain walls would the
be small, finite bags whose dynamics would undoubtedly b
very different. In particular, such small domain walls would
4237 © 1996 The American Physical Society
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4238 53D. COULSON, Z. LALAK, AND B. OVRUT
probably disappear relatively rapidly, thus avoiding the tw
problems associated with infinitely long walls.

Furthermore, it has become clear in recent years that n
equilibrium phase transitions, which can occur in realis
models of the early Universe, generically lead to a bias
choice of vacuum state. There seems to be every reason
to restudy the classic work of Press, Ryden, and Spergel w
the modification that the domain wall network be initialize
using biased vacuum probabilities. That is the main aim
this paper.

This paper is organized as follows. Section II discuss
the nature of the domain wall network immediately follow
ing a cosmological phase transition. We will use percolati
theory to explain the radically different topologies of th
networks in two and three dimensions, and for small a
large bias probabilities,p. In Sec. III, the dynamical evolu-
tion of the domain wall networks is discussed. We presen
semianalytic argument for the lack of persistence of any d
main wall network in the casepÞ1/2, and consider the de-
tails of numerically implementing the scalar field equation
motion. Results are given in Sec. IV for the two- and thre
dimensional computer simulations, while in Sec. V we di
cuss these results and give concluding remarks.

II. INITIAL CONDITIONS

The initial conditions of the scalar field network immed
ately following a cosmological phase transition depend
the nature of the post-transition vacuum manifold. We w
consider the case in which the scalar field potential has j
two disconnected minima which we will refer to as th
(1) vacuum and the (2) vacuum, respectively. At the phas
transition, the field has some finite correlation length~like
the inverse Ginzburg temperature in case of a transition tr
gered by thermal fluctuations! over which the post-transition
vacuum is chosen coherently. We will denote this length
L. One can approximate the initial spatial structure of t
vacuum produced during the transition by first dividin
space into cells of volumeLd, whered is the dimension, and
second, by assuming that choices of the new vacua are m
independently in each cell, giving the (1) vacuum with
probability p and the (2) vacuum with probability 12p,
where 0<p<1/2. ~Note, there is clearly a symmetry
p→12p. However, for clarity wedefinethe (1) vacuum to
be that with a population bias<1/2.) Whenever the vacua in
neighboring cells are different, a domain wall will form
which interpolates between them, and so, typically, a co
plicated spatial network of domain walls will form.

If a phase transition is triggered by fluctuations in a sy
tem in thermal equilibrium, one expects the ratiop/(12p)
to bep/(12p)5exp(2E1 /T)/exp(2E2 /T), whereE1,2 are
the energies of the local vacua. Hence, if the vacua are tr
degenerate, then the probability must take the va
p51/2. However, in this paper we will consider the case
a more generic phase transition in which, although the t
vacua are degenerate, the population probabilities of e
need not be equal. That is, in generalpÞ1/2. Clearly, such
transitions can only occur in a system that is too weak
coupled to achieve thermal equilibrium. We will refer t
these as nonequilibrium or biased phase transitions. A nu
ber of such biased transitions have recently been inve
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gated, such as those occurring in very light scalar fields
deSitter space@13,14#. We will not pursue the theoretical
aspects of these biased transitions in this work. Rather,
shall investigate the nature of the initial domain wall networ
formed during biased phase transitions, and then presen
detailed study of its subsequent dynamical evolution.

Of course, an arbitrary spatial superposition of doma
walls, such as that produced by the mechanism describ
above, is not a solution of the equations of motion and ca
not be stable. However, such a superposition represe
physical initial conditions, the subsequent evolution of whic
is governed by the dynamics of the theory. Subject to th
dynamics, the initially static domain walls acquire nonzer
velocities, oscillate under their surface tension, and intera
with one another.

In the most authoritative study of domain wall networ
evolution to date@9#, the authors concentrate exclusively o
the example of the ‘‘equilibrium network,’’ with no bias of
one vacuum over the other. In their work, each lattice s
was initialized with a random value of the field drawn from
a uniform distribution between2f0 , the (2) vacuum, and
1f0 , the ~1! vacuum. However, after a short time, thes
results become indistinguishable from randomly initializin
the scalar field to be only2f0 or 1f0 , each with probabil-
ity p51/2. These authors set the initial velocity of the do
main walls to zero.

In this paper, we concentrate on the example of the ‘‘b
ased network.’’ We initialize the scalar field by randoml
setting it equal to2f0 or 1f0 at each lattice site, with bias
probability p for 1f0 and 12p for 2f0 with 0<p<1/2.
Thus, our lattice resolution corresponds to the initial fie
correlation length, and on physical scales above the reso
tion cutoff the field will have a white noise power spectrum
that is, there are no field correlations from one lattice site
another. With this choice of initial conditions, the pattern o
vacua which appears on the lattice corresponds to that p
dicted by percolation theory.~We discuss the generalization
to more continuously distributed initial conditions below.!

Percolation theory predicts statistical characteristics a
topological properties of a ‘‘typical’’ vacuum pattern formed
on the lattice@12#. In the subsequent sections of this pape
we will investigate the connection between the initial cond
tions predicted by percolation theory and the behavior of t
dynamically evolving biased networks. To set the langua
and to establish notational conventions we will first briefl
discuss some of the relevant results from percolation theo

Percolation theory tells us that for a given lattice the
exists some critical probability,pc . If the population prob-
ability for a given vacuum exceeds this critical value, tha
vacuum will percolate the lattice; that is, one can trace a pa
from one face of the lattice to another without crossing
domain wall~a scalar field zero isosurface!. If the bias prob-
ability of a vacuum is less than the critical value, howeve
that vacuum will not percolate, and domain wall ‘‘bags,’’ o
clusters, of this vacuum will form. Whether one, both, o
neither vacua percolate depends on the spatial dimension
the relative values ofp, 12p, andpc .

It has been shown thatpc50.311 is the critical probability
for a cubic lattice in three dimensions@15#. Thus, for
p,pc , the (1) vacua are in finite clusters while the (2)
vacua sites lie predominantly in a large percolating clust
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53 4239BIASED DOMAIN WALLS
since necessarily 12p.pc . It follows that the associated
domain walls are relatively small, forming around the com
pact boundaries of the finite clusters. Figure 1 shows t
behavior in the case of a small bias probabilit
p50.1,pc . Note that there exist only finite, disconnecte
domain wall bags, the number and size of which can
shown to grow asp approachespc from below. For the case
that bothp and 12p exceedpc , both vacua will percolate
the lattice, and infinite~that is, lattice sized! domain walls
separating the vacua will form. A small number of doma
wall bags, disconnected from the percolating cluster, a
form but their number decreases asp approaches 0.5. Figure
2 shows this ‘‘infinite’’ domain wall structure in the limiting
case ofp50.5. The crucial lesson to be learned from all th
is that in three dimensions, when both vacua percolate, a
the p50.5 case discussed in@3#, the topology of the post-
transition vacuum is one of long, convoluted domain wa
stretching across all space, whereas, whenp,pc , the
vacuum is composed of small, compact domain wall bags

In two dimensions, the critical probability for a squar

FIG. 1. Initial distribution of domain walls in three dimension
with bias probability,p50.1. Here we show a (10L)3 grid.

FIG. 2. Initial distribution of domain walls in three dimension
with bias probability,p50.5. For clarity we show here only a
(5L)3 grid.
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lattice is pc50.593. This substantially changes some fea
tures of the domain wall network. Forp,12pc50.407, the
~1! vacua lie in finite clusters surrounded by a sea of pre
dominately percolating (2) vacua. The associated domain
walls are, therefore, in the form of small compact bags. Th
behavior is clearly seen in Fig. 3 where we choos
p50.1,12pc . Domain walls of this type also occurred in
three dimensions, as we have seen. However, unlike t
three-dimensional case, there is now a range ofp given by
12pc50.407<p<pc50.593, where neither vacuum perco-
lates. The vacuum structure in this case is a complicat
mesh of domain walls, similar to a fishing net. This netlike
behavior is clearly visible in Fig. 4 where we present th
p50.5 case. As one can easily convince oneself, neith
vacuum percolates. There are only finite clusters of ea
vacuum, surrounded by finite walls. It is impossible to g
from one edge of the figure to the opposite one remaining
one vacuum only.

Finally, we note that, unlike the case in three dimension
it is never possible to have two simultaneously percolatin
vacua. It follows that long, convoluted domain walls stretch
ing across all space can never occur in two dimensions. T
crucial lesson to be learned is that when neither vacua p
colates, such as in thep50.5 case, a dense netlike structure
of domain walls form, whereas, whenp,0.407, the vacuum
is composed of small, compact domain wall bags. The crit
cal threshold is visible as a growth of the number of bubble

s

s

FIG. 3. Initial distribution of domain walls in two dimensions
with bias probability,p50.1. Here we show a (50L)2 grid.

FIG. 4. Initial distribution of domain walls in two dimensions
with bias probability,p50.5. Here we show here a (50L)2 grid.
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of the less probable component asp approaches 12pc until,
at p512pc , these bubbles all touch and percolation ceas

Percolation theory allows one to give a reasonably acc
rate mathematical description of the number of finites clus-
ters, their radius and the size of their boundary. Heres de-
notes the number of neighboring lattice sites that a
occupied by the same vacuum. Letns be the probability that
a given lattice site is an element of ans cluster. This is a
fundamental quantity, given by the ratio of the total numb
of s clusters over the total number of lattice sites. An an
lytical expression for this quantity has been found in bo
two and three dimensions@13#, using scaling arguments and
Monte Carlo simulations. For example, the result ind53 is
given by

ns50.0501s2texpH 20.6299S p2pc
pc

D
3ssF S p2pc

p D ss11.6679G J , ~1!

wheret52.17 ands50.48. Similarly, in three dimensions
the average radius of gyration for ans clusterRs(p), for
p,pc ands.sj , is found to be

Rs~p!50.702~pc2p!0.322s0.55L, ~2!

where

sj5S 0.311

up20.311u D
2.08

. ~3!

It can also be shown, forp,pc ands*5, that everys clus-
ter has a boundary composed of

ts5S 12p

p D s ~4!

sites. One can easily check using the formula forns that, on
a given lattice, the number ofs clusters falls rather quickly
with growing s. Hence there is ansmax such that the total
number ofsmax clusters is 1. In other words, formation o
clusters withs much larger thansmax is extremely improb-
able. This means that on a given lattice there exists an up
statistical cutoff on the size of observable clusters. Clea
the mathematical details of percolation theory lie outside t
region of study in this paper. We refer the reader to@13#, and
particularly to its Appendix, for details.

Using the above formulas, as well as other results fou
in @13#, it is possible, for a fixed lattice and a given value o
p, to compute the surface area for the domain walls betwe
the (1) and the (2) vacua. In particular, we have attempte
to compute the domain wall surface area for the three dim
sional cubic lattice case. However, this calculation is ve
difficult when there are two percolating vacua and hence,
are restricted to a calculation forp,pc . This difficulty
arises from the fact that the associated large domain walls
highly fractalized and hence their surface area is difficult
characterize. Also, the finite size of the lattice leads to t
phenomenon of a preincipient cluster, essentially two per
lating clusters, even forp somewhat belowpc . We find that
we can perform a reasonable calculation only forp&0.25.
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Furthermore, formula~1! for ns is not very accurate for
p,0.175. This puts a lower bound on the calculation. A ver
reasonable calculation can be performed in the ran
0.175<p<0.25 but, even in this range, we estimate an erro
of about 10%. All of the information necessary to carry ou
this calculation can be found in@13# and we will not repeat
this work here. Our results for the domain wall surface are
are plotted, along with the 10% error bars, as curve (a) in
Fig. 5.

These results can be checked, and extended to any val
of p, simply by letting the computer evaluate wall surface
area. The solid line (b) in Fig. 5 represents the mean initial
surface area of ten three-dimensional realizations genera
for 0<p<0.5. The initial area grows monotonically with
p, approaching the maximal value of 1.53V at p50.5. Note
that in the region where we can compare the percolatio
prediction with the computer experiment, there is goo
agreement. The growth of the area abovepc demonstrates
that above the threshold the area is totally dominated by t
area of the percolating cluster, which must be highly fracta
lized, since one can easily check that the surface of sm
clusters tends to vanish with risingp. The line (c) in Fig. 5
shows the initial surface area in two dimensions. Bot
curves, (b) and (c), are smooth in the vicinity of the perco-
lation thresholds. That is, there is no detectable change in t
character of the curves at criticality. This is a surprising ob
servation, as one would think naively that the percolatio
threshold should be visible in important quantities, like th
surface area. However, on a finite lattice, this is not too su
prising. As mentioned above, asp approachespc on a finite
lattice, a preincipient cluster begins to grow, starting out ver
small but growing continuously until it becomes a percola
ing cluster at the critical threshold. It follows that the surfac
area will grow continuously even when passing through th
pc threshold, as observed. The lesson we learn from this
that, even though the topology of the domain walls chang
from compact bags to long walls asp becomes larger than

FIG. 5. The number of links across which a domain wall falls
per lattice site. Points (a) are the 3d percolative predictions in the
regime 0.175<p<0.25, with their associated uncertainty
(;10%). Line (b) shows the measured values~averaged over 20
three-dimensional samples! for 0<p<0.5. Line (c) shows the
analogous curve in two dimensions. Error bars on both curves a
too small to show.
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53 4241BIASED DOMAIN WALLS
pc , this is not seen as a discontinuous change in the w
surface area when computed on a finite lattice.

In this section we have discussed the important features
the initial conditions which we will use in our analysis of th
evolution of the biased domain wall networks in two an
three dimensions. The role of dynamics in propagating
erasing these initial conditions is presented, in detail, in t
following section.

III. EVOLUTION

To investigate the dynamical evolution of the initial con
ditions described above, we choose to follow Press, Ryd
and Spergel~PRS! @9#. The dynamics of the scalar field,f,
are determined by the equation of motion

]2f

]h2 1
2

h

d lna

d lnh

]f

]h
2¹2f52a2

]V

]f
, ~5!

where h is the conformal time coordinate,a is the scale
factor of the Universe (a;h in the radiation era, and
a;h2 in the matter era!, V is the scalar potential, and the
spatial gradients are with respect to comoving coordinat
The scalar potential determines the topology of the vacu
manifold. We choose a genericf4 potential

V~f!5V0S f2

f0
2 21D 2 ~6!

with the two degenerate vacua,f56f0 , separated by a
potential barrierV0 .

Following PRS we can define a physical domain wa
thicknessw0 given by

w0[p
f0

A2V0

. ~7!

The ratio of the wall thickness to the horizon siz
(H215@(1/a)(]a/]h)#21) at the time of the phase transi
tion

W0[
w0

a~h0!

1

h0

d lna

d lnh
U
h0

~8!

then setsh0 , the conformal time of the phase transition an
the time at which we begin the simulation.

Before considering the numerical evolution of this equ
tion of motion, let us consider the nature of the solutions
such a system. The choice of a quartic potential~6! means
the equation of motion of the scalar field is nonlinear, a
hence analytically quite intractable. However, the formatio
of domain walls is guaranteed whenever the vacuum ma
fold has aZ2 symmetry, so we can consider any potenti
with two degenerate minima. The piecewise quadratic pot
tial

V~f!55 V0S 122
f2

f0
2D , ufu,f0/2,

2
V0

f0
2 ~ ufu2f0!

2, ufu.f0/2,

~9!
all
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wheref0>0, is particularly useful since the associated equa
tion of motion is linear. A comparison of this potential with
the original potential given in Eq.~6! is shown in Fig. 6.
Note that in the region of interest,2f0<f<f0 , these po-
tentials are nearly equivalent. Henceforth, we will use th
quadratic potential~9!. Decomposing the scalar field into its
Fourier modes,fk , we find that the equation of motion for
eachk mode is independent, and is given by

]2fk

]h2 1
2

h

d lna

d lnh

]fk

]h
1k2fk52a2

]V

]f
U
k

[2a2
]V~fk!

]fk
,

~10!

where the final equivalence is valid for at most quadrat
potentials. Note that in such a case, the potential term f
each mode has the same functional form.

As discussed above, the initial conditions of the scala
field are described by percolation theory and correspond to
white noise power spectrum. It follows that the Fourie
modes are excited with equal power on all scales~up to some
cutoff, k5K, corresponding to the field correlation scale a
the phase transition,L). Specifically, the Fourier modes, for
kÞ0, can be written as

fk~h0!5Aeiuk, ~11!

whereuk is some weighted random phase. Since

^f2&5
1

V
E

L
dx f~x!f~x! ~12!

5EK

dk f~k!f~k!* ~13!

5f0
2 , ~14!

whereV is the spatial volume, we see that coefficientA is
simply related to the initial mean square value of the scal

FIG. 6. A comparison of the piecewise-quadratic~a! and quartic
~b! potentials, the exact expressions for which are given in Eqs.~9!
and ~6!, respectively.
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field distribution@for example, in the one-dimensional~1D!
case,A5Af0

2/K#. The zero mode is determined by the bia
probability p,

f~k50!~h0!5^f~h0!&5~2p21!f0 , ~15!

giving the varianceD5^f2&2^f&2 of the initial scalar field
distribution as

D~h0!54p~12p!f0
2 . ~16!

Following the phase transition, each mode evolves a
cording to Eq.~10!. Eventually, the potential term of this
equation will come to dominate the gradient term for allk
(,K), and each mode will be forced to a potential minimu
6f0 , the sign of which will depend on the initial phase o
the modeuk . Note, however, that̂f

2& will remain approxi-
mately equal tof0

2 for any value ofh. Similarly, if the zero
mode is initially nonzero it will also roll to one or the othe
of the6f0 minima of the potential, depending on its initia
value given in Eq.~15!.

Let us first consider the special case ofp51/2. The initial
zero mode is just

f~k50!~h0!5^f~h0!&50. ~17!

This is an unstable equilibrium point of the potential. Thus
this special case, the zero mode will not be excit
(^f&50 for allh), and

D~h!.f0
2 ~18!

for all values ofh. Hence, the network of domain walls
separating the two vacua will persist indefinitely.

For pÞ1/2, the initial zero mode is nonvanishing at th
phase transition,f (k50)(h0)Þ0. Thus, the evolution will
force the average field value to

^f&5f~k50!→sgn@f~k50!~h0!#f0 , ~19!

and the variance will tend to zero:

D→0. ~20!

In this case then, the scalar field will migrate to one of th
~degenerate! vacua everywhere in space, and any initial ne
work of domain walls will necessarily have only a finite
effective lifetime.

So, we have seen that at least in the case of the ana
cally tractable quadratic potential, the evolution of the d
main wall network depends sensitively on the initial cond
tions. For the casep50.5, we expect the network of domain
walls to persist indefinitely, while forpÞ0.5, one of the
degenerate vacua will always come to dominate the othe

This analysis depends on the linearity of the equation
motion. For the case of the more generic quartic potent
nonlinear effects also have to be taken into account, wh
we do in the numerical experiments described below. Ho
ever, the general feature of the domination of one vacu
over the other in thepÞ1/2 cases is expected to follow, a
indeed our results show.
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We now consider the somewhat problematic numerica
implementation of Eq.~5!. The physical thickness of a do-
main wall is constant, and so in comoving coordinates it
decreases asa21. Thus on any reasonably sized comoving
grid it proves impossible to ensure the walls remain resolved
through to the end of a calculation~when the horizon size is
roughly the lattice size!. However, once formed and well
separated, the walls’ dynamics must be independent of the
physical thickness. So to avoid this numerical problem we
consider a generalization of Eq.~5! which forces the walls to
maintain a constant comoving thickness while otherwise no
altering their dynamics. This modified equation of motion
becomes

]2f

]h2 1
a

h

d lna

d lnh

]f

]h
2¹2f52ab

]V

]f
. ~21!

Here,a5b52 which reproduces Eq.~5! will be replaced
with a53, b50. We refer the reader to PRS for a full jus-
tification of this change, and below present two arguments in
support of this assumption.~An alternative algorithm for do-
main wall evolution, assuming infinitely thin domain walls is
discussed elsewhere@10#.!

We evolve Eq.~21! on a regular Cartesian grid with peri-
odic boundary conditions; simulations are performed in two
and three dimensions. Our finite difference scheme is secon
order accurate in both space and time, with the lattice equa
tions:

d[
1

2
a

Dh

h

d lna

d lnh
, ~22!

~¹2f! i , j ,k[f i11,j ,k1f i21,k,k1f i , j11,k1f i , j21,k1f i , j ,k11

1f i , j ,k2126f i , j ,k , ~23!

ḟ i , j ,k
n11/25

~12d!ḟ i , j ,k
n21/21Dh@¹2f i jk

n 2ab~]V/]f i jk
n !#

11d
,

~24!

f i , j ,k
n115f i , j ,k

n 1Dhḟ i , j ,k
n11/2. ~25!

Here, subscripts refer to the spatial lattice coordinate, supe
scripts refer to the time coordinate, andḟ[]f/]h. The spa-
tial grid size will be chosen to beDx51.

In this paper, we will setf051. The scalar field initial
conditions are then chosen using the prescription describe
above for various bias probabilities,p. That is, in the follow-
ing we will use percolation theory with allowed field values
of 61 at any lattice site. It is of interest to compare the
evolution of the network initialized with two-point initial
conditions with those initialized with various continuous dis-
tributions. We have done this for a uniform distribution
which gives probability 12p of choosingf between21
and 0 and probabilityp of choosing between 0 and 1,
and with a Gaussian distributionP(f) such that
*0

1`dfP(f)5p. In general, the surface area of the initial
network, measured ath5h0 , is largest in the case of the
two-point, percolative distribution. However, after a few
steps of dynamical evolution the three networks stabilize
and important characteristics of the network, like surface en
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ergy or kinetic energy and their time evolution, become i
distinguishable for a fixed biasp. Hence, the sharp initial
conditions of percolation theory also give a good approxim
tion to initial conditions softened by smooth distributio
functions. This justifies our use of pure two-point percolatio
theory initial conditions in this paper.

We will also choose the initial field ‘‘velocity’’ḟ to be
zero everywhere on the lattice. Again, it is of interest to a
what would happen if we did not choose this condition an
allowed nonvanishing initial field velocities. We were able
check that our results were insensitive to the choice of init
velocity by repeating simulations withḟ chosen from a uni-
form distribution of velocities between21 and 11
@5O(f0 /h0)#.

Simulations were run in the radiation dominated epoc
with a5(h/h0) and the initial time,h051. We chose a wall
thicknessw055, making the ratioW055. This value was
used to ensure that the wall thickness was well above
lattice resolution scale~recall Dx51), while ensuring that
for most of the dynamic range of the simulation, the wa
wall separation exceeded the wall thickness.

IV. RESULTS

The focus here is to present the evolution of the ener
density of the network of domain walls in the radiatio
dominated epoch. As each simulation is evolved, the com
ing wall area is determined~according to the prescription of
PRS! and a plot of this area,A, per comoving volumeV
versus conformal time is produced.

A. Two-dimensional simulations

Figure 7 shows the evolution ofA/V as a function of
elapsed conformal time,h, for a number of initial bias prob-
abilities betweenp50.5 and 0.4. Each simulation ran on
102431024 lattice until either no more domain walls wer
found in the box, orh exceeded 512 (5L/2).

For thep50.5 case we recover the scaling properties r
ported in PRS. In this case, a self-similar solution is we

FIG. 7. Evolution of the comoving area,A, of domain walls per
volume,V, with conformal time,h, in two dimensional runs. For
each bias,p, we show the evolution of one realization.
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established by a timeh;2w0 ~that is, after the wall-wall
separation well exceeded the wall thickness!. Fitting the scal-
ing portion (10,h,100) of the curve to the power law

A/V}hn̄, ~26!

we find n̄520.8860.04. This should be compared to the
value of n̄520.87160.015 quoted in PRS for a matter
dominated universe. Since the physical densityr varies as
r}a21A/V, we find, from the runs withp50.5,

d lnr

d lna
521.8860.04. ~27!

Moving away from thep50.5 case, one sees a dramatic
departure from self-similar scaling. In each case there is a
exponential cutoff in the ratioA/V at some characteristic
time. For the cases ofp close to 1/2, that is for
p50.495, 0.475, and 0.45, we find that the curves are wel
fitted by a function of the form

A/V}hn̄e2h/h̄. ~28!

However, for the cases ofp near 12pc50.407, that is,
p50.425 and 0.4, a simple exponential suffices:

A/V}e2h/h̄. ~29!

Values forn̄ and h̄, averaged over 5 runs for each value of
p, are given in Table I. The nonlinear fit to Eq.~28! is made
using a least-squares routine with a modified Levenberg
Marquardt algorithm@16#. Recall that in our convention for a
radiation dominated universe,h̄5a(h̄)/a(h0). Thus,h̄ has
a physical interpretation as a ratio of the cosmological scal
factor when the wall network begins its exponential decay to
the scale factor of the initial phase transition.

For p close to 0.5 the domain wall network appears to
enter a quasi-scaling regime in whichA/V scales}hn̄, be-
fore eventually being exponentially cutoff ath5h̄. In par-
ticular, for the biasp50.495 we see the network scales ex-
actly as thep50.5 case in the epoch 2w0<h<60, before
the exponential decay is established. Asp→12pc50.407,
however, h̄ rapidly approaches the resolution size of the
grid, and no evidence of early scaling is seen. This behavio
continues asp drops below the critical threshold, as indi-
cated in thep50.4 example. We find that for the cases of
p,0.4 the exponential cutoff ofA/V becomes even more

TABLE I. Fits to the plots ofA/V againsth for different initial
bias probabilities,p, in two dimensions, using the functional forms
~28! and ~29! given in the text.

p n̄ h̄

0.5 20.88 –
0.495 20.82 227
0.475 20.6 22.4
0.45 20.68 7.8
0.425 – 3.2
0.4 – 2.2
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precipitous, with the characteristic scaleh̄ rapidly approach-
ing the lattice grid size. We find all of these parameters to
stable to finite grid and time resolution effects; that is,A/V
againsth plots from runs onL5512 andL5768 grids over-
lay those of Fig. 7 exactly, while halving and doublingDh
have no measurable effect on the parameters of Table I.

The values ofn̄ and h̄ were found to be only weakly
dependent of the value ofw0 . Changing the wall thickness
affects the network evolution through two closely balanc
effects. Increasing the height of the potential barrier betwe
the two vacua makes transition from one vacuum to the ot
energetically less favorable. But, this is compensated som
what by the increased domain wall surface tension. Howev
for a quartic potential, the value ofV0 clearly does not scale
out of the equations of motion, so this balance need not
exact.~In the domain wall scenario, the scalar field is off th
vacuum manifold at many points throughout space, mak
the evolution more dependent on the relative values ofV0
andf0 than, say, a texture scenario, where the nonlinears
model works well@17#, and evolution is effectively indepen-
dent of the potential barrier between vacua.!

To conclude, in the two-dimensional simulations we s
persistent scaling behavior precisely atp50.5. Forp below
0.5 but above the critical threshold 12pc50.407, we see
scaling for a finite time which is then exponentially cutoff a
some conformal timeh̄. The value ofh̄, which becomes
very large asp→0.5, decreases rapidly asp approaches the
critical threshold. Nearp50.407, and below it, no scaling
behavior is seen and the behavior is well described by
simple exponential for all conformal time.

B. Three-dimensional simulations

The three-dimensional simulations are run on a 1283 grid.
They were run until a timeh5128(5L), or until no more
walls remained in the box. The domain wall thickness w
again set tow055, leaving us with only modest dynamic
range in which to follow the network evolution.

A plot of A/V for these runs is shown in Fig. 8. Again, th

FIG. 8. Evolution of the comoving area,A, of domain walls per
volume,V, with conformal time,h, in three-dimensional runs. For
each bias,p, we show the evolution of one realization.
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self-similar evolution seen in PRS for thep50.5 case is
reproduced well in the time range 2w0,h,L/2. Measuring
the logarithmic slope ofA/V versush between these times
we find n̄520.8960.06. This is to be compared with the
value found in PRS ofn̄520.9260.06 for their three-
dimensional simulations in a matter-dominated epoch.

With pÞ0.5, we see qualitative features in the three
dimensional runs similar to those of the two-dimensiona
cases. The one major difference is that the turnover into
exponential decay is seen to occur much earlier, so much
in fact that all but one of the cases considered he
(p50.47,0.48,0.49) are well fitted by a simple exponentia
curve with no initial pseudoscaling regime. Using a fitting
function of the form of Eq.~29!, the values of theh̄ for each
p are given in Table II.

To demonstrate the presence of an early scaling regime
three dimensions we also considered the fine-tuned case
p50.499. The evolution of the wall surface area in this cas
follows that of the scalingp50.5 case closely until a time
h.30, after which the area decays rapidly. In this case th
decay was found to be considerably steeper than the exp
nential tail of Eq.~28! could accommodate.

To conclude, in the three-dimensional case we see pers
tent scaling behavior precisely atp50.5. A pseudoscaling
regime is seen for biases close top50.5, but forp<0.49,
little or no scaling is observed and the behavior is well de
scribed by a simple exponential for all conformal time.

C. Discussion of modifications to the equations of motion

Following PRS, we ran one simulation setting the value
of the parametersa andb to reproduce the original equation
of motion, Eq.~5!. In this run, the domain walls maintained
a constant physical rather than comoving thickness, and
problems of available dynamic range become important. T
prescription used was as follows.

The simulation was run on a 5123512 lattice, with our
standard field initial conditions andp50.5. Using a wall
thickness ofw0525, the initial conditions were evolved with
the standard parameter values ofa53 andb50, until a time
when the wall-wall separation exceeded the wall thicknes
that is, a timeh52w0 . The equation of motion was then
changed, to seta5b52 until a timeh5250. The comoving
thickness of the walls at the end of the simulation was the
5 lattice sites.

To compare, the run was repeated, this time leaving th
standard parameter values fixed throughout the simulatio
The two plots of surface area versush are shown in Fig. 9.

TABLE II. Fits to the plots ofA/V againsth for different initial
bias probabilities,p, in three dimensions using the functional form
~29! given in the text. For thep50.499 case we report the best fit to
Eq. ~29!, although the late-time decay was found to be somewh
steeper than an exponential.

p n̄ h̄

0.5 20.89 –
0.499 20.43 38.7
0.49 – 5.4
0.48 – 2.8
0.47 – 1.8
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53 4245BIASED DOMAIN WALLS
As discussed in PRS, we do not have the dynamic ran
available to see clear self-similar scaling in this thick wa
limit. However, Fig. 9 does clearly show that the evolution
the walls of constant physical thickness~that is, those fol-
lowing the true scalar field equations of motion! does match
well that of the walls of constant comoving thickness.

We can further note that in the case of the piecewise q
dratic potential, 9, the linear equations of motion can
solved. In the oscillatory regime in whichfk;6f0 , and
V(f);(ufu2f0)

2 one can show that the solutions forfk
with a5b52 anda53, b50 have the same form, with

^~ ufku2f0!
2&;

1

h3 . ~30!

V. DISCUSSION

In our numerical experiments we have considered init
domain wall networks constructed from a scalar field set
each spatial point to one of two discrete values of aZ2
vacuum manifold. Such a distribution is described exactly
percolation theory, thus giving us analytical insight into th
nature of these initial networks. We have shown that duri
the dynamical evolution of such initial conditions, all inter
esting quantities rapidly converge to those given by oth
continuous distributions. It follows that the time evolved re
sults given in this paper are valid for a generic set of physic
conditions which initialize the vacuum structure.

By considering the exactly solvable case of a piecew
quadratic potential we have seen that for the case of an
tially biased phase transition,pÞ0.5, with degenerate vacua
one vacuum will come to dominate all space. Our numeric
results confirm this in the case of a more generic nonline
scalar field evolution.

In the two-dimensional runs we found that forp50.5
there was long-term scaling behavior. In the ran
0.5.p.0.45 the energy density of the network entered
early ‘‘pseudoscaling’’ regime, before cutting off exponen
tially. For p,0.45 only exponential decay was seen.

The topology of the initial domain wall network fell into
two classes. For those cases withp,0.407, the critical prob-
ability, one sees only isolated ‘‘bags’’ of one vacuum in

FIG. 9. Comparison of the evolution of the domain wall netwo
with equations of motion which preserve physical (a5b52) and
comoving (a53, b50) wall thickness. The units of the surface
area axis are arbitrary.
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‘‘sea’’ of the other percolating vacuum. Once the horizo
becomes comparable to the typical size of one of these b
they rapidly decay under their surface tension, and the n
work energy density in these cases is seen to go rapidly
zero. This underlies the exponential decay behavior observ
in the domain wall surface area. For 0.5>p.0.407 neither
vacuum percolates in two dimensions, and so a complica
tangle of domain walls form. Forp50.5 no one vacuum can
dominate, and the delicate balance of the zero mode of
scalar field atf (k50)50 leads to a long-term scaling. For the
cases 0.5.p.0.407 the initial tangle of domain walls
slowly breaks down into a collection of bags of the les
dominant vacuum, and these eventually~at a timeh.h̄)
collapse under their surface tension.

In three dimensions the nature of the initial conditions
qualitatively different, although the evolution of these initia
wall networks leads to very similar behavior. For the cas
with p,0.311, the critical threshold, only one vacuum pe
colates the lattice, and so, once more, isolated bags of o
vacuum are to be found in a percolating sea of the mo
dominant vacuum. Again, these bags rapidly decay und
their surface tension.

For the cases ofp.0.311, both vacua percolate in thre
dimensions. We have seen that this leads to an initial netwo
of infinite ~lattice sized! domain walls. Forp50.5 there was
long-term scaling behavior. However, we find that the dec
of the wall energy density for 0.5.p.0.311 in three dimen-
sions is more acute than that in two dimensions. In the
cases the initial infinite domain walls are forced to rapid
decompose into vacuum bags which then decay. Only in t
range 0.49<p<0.5 is long-term scaling seen.

We have shown that domain walls come to dominate t
energy density of the universe only in the case ofp50.5.
Domain walls formed in a biased phase transition will ne
essarily have only a finite effective lifetime. This allows fo
the possibility of cosmologically interesting domain wal
scenarios which evade current observational restrictio
such as the tight limits on the anisotropy of the microwav
background. One such scenario is a network of domain wa
forming well before matter-radiation equality, with a bia
close top50.5, so that the network decays before photo
decoupling~at a redshiftz.1000). Such walls would be suf-
ficiently massive to contribute significantly to large sca
structure formation on comoving scales less than;20 Mpc
~the horizon at decoupling!, but would decay before photon
last scattering, and hence not contribute to the large sc
cosmic microwave background anisotropy@18#. Such a sce-
nario might be workable, for example, in a universe dom
nated by hot dark matter in conjunction with scale invaria
primordial perturbations induced by an earlier inflationar
epoch. In such a scenario, the early domain wall netwo
would add small scale power in the matter distribution, a
required by current observations.

Unfortunately, for much of the range of biases, we fin
that the domain wall networks are likely to be cosmolog
cally innocuous. Their energy density exponentially deca
with a characteristic time scale of only a few expansio
times. In order to see any significant scaling of the netwo
before the ultimate exponential decay seems to require so
degree of fine tuning ofp close to 1/2.
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