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Domain walls form naturally in the early Universe whenever a discrete symmetry is spontaneously broken
at some phase transition. When each vacuum is populated equally, it is well known that the domain wall
network comes to dominate the energy density of the Universe and causes excessive anisotropy in the cosmic
microwave background. We present results for the initial conditions and dynamical evolution of domain wall
networks in which one of the degenerate vacua has a population bias over the other. The initial distribution of
domain walls is well described by percolation theory. We find that such networks, although they show evidence
of a limited scaling regime for a range of biases, do not persist indefinitely. It follows that biased domain wall
networks avoid the energy density and anisotropy problems.

PACS numbds): 98.80.Cq, 11.27%d, 98.65.Dx

I. INTRODUCTION across the Universe whose surface area, and, hence energy
density, persisted for a long time. This persistence, or scaling
Topological defects provide cosmologists with a set ofbehavior, led both to the relatively rapid domination of the
intriguing mechanisms for structure formation which areenergy density of the universe by these walls and to large
quite different in nature to the standard inflationary paradigntdistortions in the cosmic microwave background. Both of
[1]. Defects form at spontaneous symmetry breaking phasthese results are incompatible with observations.
transitions in the early Universe, and their subsequent field It did appear therefore that domain walls could not have
ordering dynamics can perturb the matter and radiation corformed in the early Universe. However, these results were
tent of the Universe, leaving characteristic signals in both théyased on specific, and apparently reasonable, assumptions
present day matter distribution and the microwave backabout the initial conditions of the domain wall network. To
ground. be precise, these authors initialized their networks by allow-
The nature of the defect is determined by the topology ofng the computer to randomly choose, at any point on the
the vacuum manifold following the phase transition.Z& lattice, either one vacuum state or the otheith each

manifold with two disconnected vacua leads to domain walls,acyum weighted with equal probabilitFurthermore, the

A ; U 2 ; )
[2], an.” mamfoldrtg cosmic stringg3], an.”* manifold to  cpoice of the vacuum state was completely uncorrelated
monopoles, and af® manifold to cosmological texturgt]. from one lattice site to another.

Much recent attention has focused on the gauged cosmic As is well known, such an initial distribution on a lattice

string [5], and global texture scenarigs]. However, even can be described statistically using percolation thgds).

though discrete symmetrle_s arise na_tturally In many partmltbn a three-dimensional square lattice, there is a critical prob-
physics models, cosmological domain walls have long been

considered unworkable. Zel'dovich, Kobzarev, and Okun no—abi”ty’ P.=0.311, above which the associated vacuum wil

ticed in 1975 that the energy density of a domain wall netper_cql"’_‘te across the en_tire lattice. It Is easy o see that, by
work will eventually come to dominate that of matter or Initidlizing both vacua with a probabilitp=1/2, both vacua
radiation. More recent attempts to save domain wall sceMUst propagate across the lattice. Since domain walls lie on
narios, such as the the so-called *late-time” phase transition&he interface between the two different vacua, this means that
[7], are now known to be in conflict with observations of the €normous domain walls must form which extend across the
microwave backgrountB,g], and suffer other serious prob_ entire Universe. This gives a clear mathematical explanation
lems[11]. for the Press, Ryden, and Spergel result. However, if for
The most complete study of the dynamics of domain wallsome reason the two vacua were to be given different, or
networks was given by Press, Ryden, and Spd@jelThese  biased, probabilities, then these conclusions could be dra-
authors studied the time evolution, during the era of mattematically altered. For example, if one vacuum had p,.,
domination, of topological domain wall kinks in a scalar then that vacuum would form finite clusters in the percolat-
field with a potential energy possessing two minima, bothing sea of the other vacuum. The domain walls would then
degenerate in energy. They showed conclusively that suche small, finite bags whose dynamics would undoubtedly be
networks rapidly evolved into long domain walls stretchingvery different. In particular, such small domain walls would
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probably disappear relatively rapidly, thus avoiding the twogated, such as those occurring in very light scalar fields in
problems associated with infinitely long walls. deSitter spacg13,14. We will not pursue the theoretical
Furthermore, it has become clear in recent years that noraspects of these biased transitions in this work. Rather, we
equilibrium phase transitions, which can occur in realisticshall investigate the nature of the initial domain wall network
models of the early Universe, generically lead to a biasedormed during biased phase transitions, and then present a
choice of vacuum state. There seems to be every reason thggtailed study of its subsequent dynamical evolution.
to restudy the classic work of Press, Ryden, and Spergel with ¢ course, an arbitrary spatial superposition of domain
the modification that the domain wall network be initialized walls, such as that produced by the mechanism described
using biased vacuum probabilities. That is the main aim ofpgve, is not a solution of the equations of motion and can-
this paper. _ _ . not be stable. However, such a superposition represents
This paper is organized as follows. Section Il discussegpysical initial conditions, the subsequent evolution of which
the nature of the domain wall network immediately follow- js governed by the dynamics of the theory. Subject to this
ing a cosmological phase transition. We will use percolatiorjynamics, the initially static domain walls acquire nonzero
theory to explain the radically different topologies of the ye|ocities, oscillate under their surface tension, and interact
networks in two and three dimensions, and for small andyith one another.
large bias probabilitiesp. In Sec. Ill, the dynamical evolu- | the most authoritative study of domain wall network
tion of the domain wall networks is discussed. We present @yolution to date9], the authors concentrate exclusively on
semianalytic argument for the lack of persistence of any dothe example of the “equilibrium network,” with no bias of
main wall network in the casp# 1/2, and consider the de- one vacuum over the other. In their work, each lattice site
tails of numerically implementing the scalar field equation of\yas initialized with a random value of the field drawn from
motion. Results are given in Sec. IV for the two- and three-3 yniform distribution betweer- ¢o, the () vacuum, and
dimensional computer simulations, while in Sec. V we dis-_ éo, the (+) vacuum. However, after a short time, these

cuss these results and give concluding remarks. results become indistinguishable from randomly initializing
the scalar field to be only ¢ or + ¢, each with probabil-
Il INITIAL CONDITIONS ity p=1/2. These authors set the initial velocity of the do-
main walls to zero.
The initial conditions of the scalar field network immedi-  In this paper, we concentrate on the example of the “bi-

ately following a cosmological phase transition depend orased network.” We initialize the scalar field by randomly
the nature of the post-transition vacuum manifold. We will setting it equal to- ¢, or + ¢, at each lattice site, with bias
consider the case in which the scalar field potential has jugirobability p for + ¢, and 1—p for — ¢, with 0<p=<1/2.

two disconnected minima which we will refer to as the Thus, our lattice resolution corresponds to the initial field
(+) vacuum and the<) vacuum, respectively. At the phase correlation length, and on physical scales above the resolu-
transition, the field has some finite correlation lengtke  tion cutoff the field will have a white noise power spectrum;
the inverse Ginzburg temperature in case of a transition trigthat is, there are no field correlations from one lattice site to
gered by thermal fluctuationsver which the post-transition another. With this choice of initial conditions, the pattern of
vacuum is chosen coherently. We will denote this length byacua which appears on the lattice corresponds to that pre-
A. One can approximate the initial spatial structure of thedicted by percolation theoryWe discuss the generalization
vacuum produced during the transition by first dividing to more continuously distributed initial conditions belpw.
space into cells of voluma Y, whered is the dimension, and Percolation theory predicts statistical characteristics and
second, by assuming that choices of the new vacua are madspological properties of a “typical” vacuum pattern formed
independently in each cell, giving thet() vacuum with  on the lattice[12]. In the subsequent sections of this paper
probability p and the ) vacuum with probability * p, we will investigate the connection between the initial condi-
where O<p=<1/2. (Note, there is clearly a symmetry tions predicted by percolation theory and the behavior of the
p— 1—p. However, for clarity wedefinethe (+) vacuum to  dynamically evolving biased networks. To set the language
be that with a population bias 1/2.) Whenever the vacua in and to establish notational conventions we will first briefly
neighboring cells are different, a domain wall will form discuss some of the relevant results from percolation theory.
which interpolates between them, and so, typically, a com- Percolation theory tells us that for a given lattice there
plicated spatial network of domain walls will form. exists some critical probabilityp. . If the population prob-

If a phase transition is triggered by fluctuations in a sys-ability for a given vacuum exceeds this critical value, that
tem in thermal equilibrium, one expects the rapi{1—p) vacuum will percolate the lattice; that is, one can trace a path
to bep/(1—p)=exp(—E. /T)/lexp(—E_/T), whereE, _ are  from one face of the lattice to another without crossing a
the energies of the local vacua. Hence, if the vacua are trulgomain wall(a scalar field zero isosurfacéf the bias prob-
degenerate, then the probability must take the valuability of a vacuum is less than the critical value, however,
p=1/2. However, in this paper we will consider the case ofthat vacuum will not percolate, and domain wall “bags,” or
a more generic phase transition in which, although the twelusters, of this vacuum will form. Whether one, both, or
vacua are degenerate, the population probabilities of eacheither vacua percolate depends on the spatial dimension and
need not be equal. That is, in genepat 1/2. Clearly, such the relative values op, 1—p, andp..
transitions can only occur in a system that is too weakly It has been shown that.=0.311 is the critical probability
coupled to achieve thermal equilibrium. We will refer to for a cubic lattice in three dimensiongl5]. Thus, for
these as nonequilibrium or biased phase transitions. A nunp<p., the (+) vacua are in finite clusters while the-{
ber of such biased transitions have recently been investivacua sites lie predominantly in a large percolating cluster,
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FIG. 3. Initial distribution of domain walls in two dimensions
with bias probability,p=0.1. Here we show a (30)? grid.

FIG. 1. Initial distribution of domain walls in three dimensions lattice is p.=0.593. This substantially changes some fea-

with bias probabilityp=0.1. Here we show a (¥0)* grid. tures of the domain wall network. Fpr<1—p.=0.407, the
(+) vacua lie in finite clusters surrounded by a sea of pre-

since necessarily p>p.. It follows that the associated dominately percolating{) vacua. The associated domain
domain walls are relatively small, forming around the com-walls are, therefore, in the form of small compact bags. This
pact boundaries of the finite clusters. Figure 1 shows thibehavior is clearly seen in Fig. 3 where we choose
behavior in the case of a small bias probability, p=0.1<1—p.. Domain walls of this type also occurred in
p=0.1<p.. Note that there exist only finite, disconnected three dimensions, as we have seen. However, unlike the
domain wall bags, the number and size of which can béhree-dimensional case, there is now a rang@ @iven by
shown to grow ap approachep. from below. For the case 1—p.=0.407%<p=p.=0.593, where neither vacuum perco-
that bothp and 1—p exceedp., both vacua will percolate lates. The vacuum structure in this case is a complicated
the lattice, and infinitgthat is, lattice sizeddomain walls mesh of domain walls, similar to a fishing net. This netlike
separating the vacua will form. A small number of domainbehavior is clearly visible in Fig. 4 where we present the
wall bags, disconnected from the percolating cluster, alsp=0.5 case. As one can easily convince oneself, neither
form but their number decreasesmapproaches 0.5. Figure vacuum percolates. There are only finite clusters of each
2 shows this “infinite” domain wall structure in the limiting vacuum, surrounded by finite walls. It is impossible to go
case ofp=0.5. The crucial lesson to be learned from all thisfrom one edge of the figure to the opposite one remaining in
is that in three dimensions, when both vacua percolate, as ipne vacuum only.
the p=0.5 case discussed [13], the topology of the post- Finally, we note that, unlike the case in three dimensions,
transition vacuum is one of long, convoluted domain wallsit is never possible to have two simultaneously percolating
stretching across all space, whereas, wheap,, the Vvacua. It follows that long, convoluted domain walls stretch-
vacuum is composed of small, compact domain wall bags. ing across all space can never occur in two dimensions. The

In two dimensions, the critical probability for a square crucial lesson to be learned is that when neither vacua per-
colates, such as in the=0.5 case, a dense netlike structure
of domain walls form, whereas, when<0.407, the vacuum
is composed of small, compact domain wall bags. The criti-
cal threshold is visible as a growth of the number of bubbles

TS Y

FIG. 2. Initial distribution of domain walls in three dimensions
with bias probability,p=0.5. For clarity we show here only a FIG. 4. Initial distribution of domain walls in two dimensions
(5A)3 grid. with bias probability,p=0.5. Here we show here a (80? grid.
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of the less probable component@approaches % p. until, 20 — . - :
atp=1-p., these bubbles all touch and percolation ceases. )

Percolation theory allows one to give a reasonably accu- . g 2’
rate mathematical description of the number of firstelus- 15k
ters, their radius and the size of their boundary. Hede-
notes the number of neighboring lattice sites that are o
occupied by the same vacuum. lretbe the probability that $0l 0 2
a given lattice site is an element of ancluster. This is a 2 """"""""
fundamental quantity, given by the ratio of the total number ’
of s clusters over the total number of lattice sites. An ana- os b '
lytical expression for this quantity has been found in both
two and three dimensiord 3], using scaling arguments and
Monte Carlo simulations. For example, the resultin 3 is 00 o ) . . X
given by 0.00 0.10 0.20 030 0.40 0.50

4
_ P—Pc
ns=0.050k Texp[ _0-6295{ —) FIG. 5. The number of links across which a domain wall falls
¢ per lattice site. Pointsa) are the & percolative predictions in the
P—Pc regime 0.175p=<0.25, with their associated uncertainty
X s7 T s7+ 1.667‘3”, 1) (~10%). Line () shows the measured valuésveraged over 20

three-dimensional samplegor 0<p<0.5. Line ) shows the
where r=2.17 ando=0.48. Similarly, in three dimensions, analogous curve in two dimensions. Error bars on both curves are
the average radius of gyration for ancluster Ry(p), for 0 small to show.

p<p. ands>s;, is found to be

Furthermore, formulal) for ng is not very accurate for

_ 0.322:0.55
R(p)=0.702p,—p)°#5>%A, @ p<0.175. This puts a lower bound on the calculation. A very
where reasonable calculation can be performed in the range
0.175<p=0.25 but, even in this range, we estimate an error
0.311 |2 of about 10%. All of the information necessary to carry out
Se= (m) (3 this calculation can be found i3] and we will not repeat

this work here. Our results for the domain wall surface area
It can also be shown, fqu<p. ands=5, that everys clus-  are plotted, along with the 10% error bars, as curag i

ter has a boundary composed of Fig. 5.
These results can be checked, and extended to any values
1-p of p, simply by letting the computer evaluate wall surface
s™ T S (4) area. The solid linel{) in Fig. 5 represents the mean initial

surface area of ten three-dimensional realizations generated

sites. One can easily check using the formularfgthat, on  for 0=<p=<0.5. The initial area grows monotonically with
a given lattice, the number of clusters falls rather quickly p, approaching the maximal value of X% atp=0.5. Note
with growing s. Hence there is as,,, such that the total that in the region where we can compare the percolation
number ofsp,, clusters is 1. In other words, formation of prediction with the computer experiment, there is good
clusters withs much larger thars,,. is extremely improb- agreement. The growth of the area abgyedemonstrates
able. This means that on a given lattice there exists an uppéhat above the threshold the area is totally dominated by the
statistical cutoff on the size of observable clusters. Clearlyarea of the percolating cluster, which must be highly fracta-
the mathematical details of percolation theory lie outside thdized, since one can easily check that the surface of small
region of study in this paper. We refer the readefflt8], and  clusters tends to vanish with risirg The line €) in Fig. 5
particularly to its Appendix, for details. shows the initial surface area in two dimensions. Both

Using the above formulas, as well as other results foundurves, p) and (), are smooth in the vicinity of the perco-
in [13], it is possible, for a fixed lattice and a given value of lation thresholds. That is, there is no detectable change in the
p, to compute the surface area for the domain walls betweeaharacter of the curves at criticality. This is a surprising ob-
the (+) and the () vacua. In particular, we have attempted servation, as one would think naively that the percolation
to compute the domain wall surface area for the three dimerthreshold should be visible in important quantities, like the
sional cubic lattice case. However, this calculation is verysurface area. However, on a finite lattice, this is not too sur-
difficult when there are two percolating vacua and hence, werising. As mentioned above, gsapproachep. on a finite
are restricted to a calculation fgs<<p.. This difficulty lattice, a preincipient cluster begins to grow, starting out very
arises from the fact that the associated large domain walls asgmall but growing continuously until it becomes a percolat-
highly fractalized and hence their surface area is difficult toing cluster at the critical threshold. It follows that the surface
characterize. Also, the finite size of the lattice leads to thearea will grow continuously even when passing through the
phenomenon of a preincipient cluster, essentially two percop, threshold, as observed. The lesson we learn from this is
lating clusters, even fgp somewhat belowp.. We find that  that, even though the topology of the domain walls changes
we can perform a reasonable calculation only fez0.25.  from compact bags to long walls gsbecomes larger than
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p.. this is not seen as a discontinuous change in the wall LANL B L A R A L L

surface area when computed on a finite lattice. 2 i
In this section we have discussed the important features of

the initial conditions which we will use in our analysis of the

evolution of the biased domain wall networks in two and 1.5

three dimensions. The role of dynamics in propagating or

oy g v e b es by g gty

erasing these initial conditions is presented, in detail, in the 2
following section. > 1
lll. EVOLUTION
. . . . A 0.5
To investigate the dynamical evolution of the initial con-
ditions described above, we choose to follow Press, Ryden,
and Sperge(PRS [9]. The dynamics of the scalar fielg, 0
are determined by the equation of motion e S
-2 -1 0 1 2
#¢p 2dlnad Y ¢/¢
79, 2aa0d oy 2% (5) ’
dn® mndinydy do

) . ) ) FIG. 6. A comparison of the piecewise-quadrdttand quartic
where 7 is the conformal time coordinate is the scale (b) potentials, the exact expressions for which are given in Es.
factor of the Universe g~ in the radiation era, and and(6), respectively.

a~ 7? in the matter erg V is the scalar potential, and the
spatial gradients are with respect to comoving coordinatesvhere,=0, is particularly useful since the associated equa-
The scalar potential determines the topology of the vacuuniion of motion is linear. A comparison of this potential with

manifold. We choose a generig* potential the original potential given in Eq6) is shown in Fig. 6.
) ) Note that in the region of interest; po=< =< ¢, these po-
V(d)=V, ﬂz_l) 6) tentials are nea_rly equivalent. I—!enceforth, we _WiII _use_the
b5 guadratic potential9). Decomposing the scalar field into its

Fourier modesg,, we find that the equation of motion for

with the two degenerate vacug=* ¢,, separated by a eachk mode is independent, and is given by
potential barrieV.

Following PRS we can define a physical domain wall 524, 2 dIna d¢, oV V()
thicknesswg given by —+— — +Kp=—a’— | =—a? ,
dn”  mdiny iy I |y Iy
10
o (10
V2V where the final equivalence is valid for at most quadratic

potentials. Note that in such a case, the potential term for
The ratio of the wall thickness to the horizon size each mode has the same functional form.

(77~ *=[(/a)(daldn)]~") at the time of the phase transi-  As discussed above, the initial conditions of the scalar
tion field are described by percolation theory and correspond to a

white noise power spectrum. It follows that the Fourier
— = ®) modes are excited with equal power on all scélgsto some
a(ng) nodIny 7 cutoff, k=K, corresponding to the field correlation scale at
the phase transition)). Specifically, the Fourier modes, for

then setsy,, the conformal time of the phase transition andk# 0, can be written as
the time at which we begin the simulation. _

Before considering the numerical evolution of this equa- b 10)=A€, (13)
tion of motion, let us consider the nature of the solutions of
such a system. The choice of a quartic poterfalmeans where 6, is some weighted random phase. Since
the equation of motion of the scalar field is nonlinear, and
hence analytically quite intractable. However, the formation » 1
of domain walls is guaranteed whenever the vacuum mani- (%)= 7_/-fAdX $(X)$(x) (12)
fold has aZ, symmetry, so we can consider any potential
with two degenerate minima. The piecewise quadratic poten-

wo 1 dlina
Wo

. K
fal - [Cak s 9007 13
¢2
Vo(l_z(?o)y | Pl <ol2, = $2, (14)
Vie)={ (©
_g(|¢| —d0)?, B> do/2, where 7 is the spatial volume, we see that coefficiénts
&0 simply related to the initial mean square value of the scalar
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field distribution[for example, in the one-dimensiondlD) We now consider the somewhat problematic numerical
case A=/ ¢5/K]. The zero mode is determined by the biasimplementation of Eq(5). The physical thickness of a do-

probability p, main wall is constant, and so in comoving coordinates it
decreases ag~ 1. Thus on any reasonably sized comoving

b k=0)(10)=(P(10))=(2p—1) o, (15)  grid it proves impossible to ensure the walls remain resolved

through to the end of a calculatidgwhen the horizon size is
giving the variancel = ( $?) —($)? of the initial scalar field roughly the lattice size However, once formed and well
distribution as separated, the walls’ dynamics must be independent of their
physical thickness. So to avoid this numerical problem we
A(70)=4p(1—p) 3. (16)  consider a generalization of E() which forces the walls to
maintain a constant comoving thickness while otherwise not
F0||Owing the phase transition, each mode evolves acaltering their dynamiCS. This modified equation of motion
cording to Eq.(10). Eventually, the potential term of this becomes
equation will come to dominate the gradient term for lall 5
(<K), and each mode will be forced to a potential minimum ¢ L2 d Ina ﬁ_vz(ﬁ: —aﬁﬂ 21)
+ ¢, the sign of which will depend on the initial phase of an? pdingay ap’
the moded,.. Note, however, thaté?) will remain approxi- ] )
mately equal tap? for any value ofy. Similarly, if the zero ~ Here, @=p=2 which reproduces EGS5) will be replaced
mode is initially nonzero it will also roll to one or the other With @=3, B=0. We refer the reader to PRS for a full jus-
of the = ¢, minima of the potential, depending on its initial tification of thls change,_and below present two arguments in
value given in Eq(15). support of this a_ssumptlomn a_lte_matlve z_ilgonthrr_] for do-_
Let us first consider the special casepef 1/2. The initial main wall evolution, assuming infinitely thin domain walls is
zero mode is just discussed elsewhefé0].)
We evolve Eq(21) on a regular Cartesian grid with peri-
- — odic boundary conditions; simulations are performed in two
$uc=0)(70)=($(70)) =0. @ and three dimyensions. Our finite difference F;cheme is second
This is an unstable equilibrium point of the potential. Thus inOrder accurate in both space and time, with the lattice equa-

this special case, the zero mode will not be excited!Ons:
((¢)=0 for ally), and

1 Anpdilna
) o=-a— , (22
A(7)=dg (18) 2" 5 diny
for all values of . Hence, the network of domain walls (V2¢)i,j,k5¢i+1,j,k+ bi-1kkt Bijrakt i1kt bijkea
separating the two vacua will persist indefinitely. T —6d . 23
For p+1/2, the initial zero mode is nonvanishing at the Prik-176 1k @3
phase transitiong-o)(70) # 0. Thus, the evolution will Sy L2y 24n _ B n
force the average field value to ('b“ffl/Z:(l O ik T ANV i~ (Vo]
Ik 1+ '
(6)=b(=0—5I x=0)(70) b0, (19 (24)
and the variance will tend to zero: ¢.n,+|%= ¢in,j’k+A7]¢in’?—’&/2- (25
A0, (200  Here, subscripts refer to the spatial lattice coordinate, super-

scripts refer to the time coordinate, afpe= 9/ d 5. The spa-
In this case then, the scalar field will migrate to one of thetial grid size will be chosen to bax=1.
(degeneratevacua everywhere in space, and any initial net- In this paper, we will setpo=1. The scalar field initial
work of domain walls will necessarily have only a finite conditions are then chosen using the prescription described
effective lifetime. above for various bias probabilitigs, That is, in the follow-

So, we have seen that at least in the case of the analyting we will use percolation theory with allowed field values
cally tractable quadratic potential, the evolution of the do-of +1 at any lattice site. It is of interest to compare the
main wall network depends sensitively on the initial condi-evolution of the network initialized with two-point initial
tions. For the casp=0.5, we expect the network of domain conditions with those initialized with various continuous dis-
walls to persist indefinitely, while fop#0.5, one of the tributions. We have done this for a uniform distribution
degenerate vacua will always come to dominate the other. which gives probability +p of choosing¢ between—1

This analysis depends on the linearity of the equation ofind 0 and probabilityp of choosing between 0 and 1,
motion. For the case of the more generic quartic potentialand with a Gaussian distributionP(¢) such that
nonlinear effects also have to be taken into account, whiclfg “d#P(#)=p. In general, the surface area of the initial
we do in the numerical experiments described below. Hownetwork, measured ah= 7, is largest in the case of the
ever, the general feature of the domination of one vacuuntwo-point, percolative distribution. However, after a few
over the other in thep+# 1/2 cases is expected to follow, as steps of dynamical evolution the three networks stabilize,
indeed our results show. and important characteristics of the network, like surface en-
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o TABLE I. Fits to the plots ofA/V againsty for different initial
j ' bias probabilitiesp, in two dimensions, using the functional forms
(28) and(29) given in the text.
10" 4 — =
p v 7
R 0.5 —-0.88 -
0 3 0.495 ~0.82 227
2 0.475 -0.6 22.4
10’ b 4 0.45 —0.68 7.8
' 0.425 - 3.2
0.4 - 2.2
10" E
. established by a timey~2w, (that is, after the wall-wall
0, 0 100 1000 separation well exceeded the wall thicknesstting the scal-
n ing portion (16< <100) of the curve to the power law
FIG. 7. Evolution of the comoving areA, of domain walls per AlV= 7", (26)
volume,V, with conformal time,», in two dimensional runs. For
each biasp, we show the evolution of one realization. we find v=—0.88+0.04. This should be compared to the

value of »=—0.871+0.015 quoted in PRS for a matter
ergy or kinetic energy and their time evolution, become in-dominated universe. Since the physical dengityaries as
distinguishable for a fixed biap. Hence, the sharp initial pxa 'A/V, we find, from the runs witp=0.5,
conditions of percolation theory also give a good approxima-

tion to initial conditions softened by smooth distribution d Inp
functions. This justifies our use of pure two-point percolation dina_ _ 1-88:0.04. (27)
theory initial conditions in this paper. .

We will also choose the initial field “velocity’¢ to be Moving away from thep=0.5 case, one sees a dramatic

zero everywhere on the lattice. Again, it is of interest to askjeparture from self-similar scaling. In each case there is an

what would happen if we did not choose this condition andexponential cutoff in the ratic\/V at some characteristic

allowed nonvanishing initial field velocities. We were able totime, For the cases ofp close to 1/2, that is for

check that our results were insensitive to the choice of initialy — 9 495, 0.475, and 0.45, we find that the curves are well

velocity by repeating simulations wit# chosen from a uni-  fitted by a function of the form

form distribution of velocities between—1 and +1

[=0O(do/70)]- AV 5'e= 77, (29)
Simulations were run in the radiation dominated epoch,

with a= (/7o) and the initial time 7,=1. We chose awall However, for the cases gb near 1-p.=0.407, that is,

thicknesswo=>5, making the ratioW,=5. This value was —0.425 and 0.4, a simple exponential suffices:

used to ensure that the wall thickness was well above the

lattice resolution scalérecall Ax=1), while ensuring that A/Voce™ 77 (29)

for most of the dynamic range of the simulation, the wall-

wall separation exceeded the wall thickness. Values forv and 5, averaged over 5 runs for each value of

p, are given in Table |. The nonlinear fit to E@8) is made
IV. RESULTS using a least-squares routine with a modified Levenberg-
The focus here is to present the evolution of the energ 'V'aTq‘%afd‘ aIg_onthrrﬁlG]: Recall that in our convention for a
adiation dominated universey=a(#n)/a(ng). Thus,» has

density of the network of domain walls in the radiation a physical interpretation as a ratio of the cosmological scale
dominated epoch. As each simulation is evolved, the comov; phy P 9

ing wall area is determinethccording to the prescription of factor when the wall network begins its exponential decay to

PRS and a ot of s srea, per comoung voumey | "354° a0 o e e phace vanston
versus conformal time is produced. P ' PP

enter a quasi-scaling regime in whi&iV scalesx ", be-
fore eventually being exponentially cutoff at=7. In par-
ticular, for the biagp=0.495 we see the network scales ex-
Figure 7 shows the evolution o&/V as a function of actly as thep=0.5 case in the epochw< <60, before
elapsed conformal timey, for a number of initial bias prob- the exponential decay is established. gs:1—p.=0.407,
abilities betweerp=0.5 and 0.4. Each simulation ran on a however, 5 rapidly approaches the resolution size of the
1024x 1024 lattice until either no more domain walls were grid, and no evidence of early scaling is seen. This behavior
found in the box, orp exceeded 512L/2). continues a9 drops below the critical threshold, as indi-
For thep=0.5 case we recover the scaling properties recated in thep=0.4 example. We find that for the cases of
ported in PRS. In this case, a self-similar solution is wellp<0.4 the exponential cutoff oA/V becomes even more

A. Two-dimensional simulations
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TABLE II. Fits to the plots ofA/V againsty for different initial

— X bias probabilitiesp, in three dimensions using the functional form
—-— p=0.499 (29) given in the text. For the=0.499 case we report the best fit to
10" | B FO':: Eq. (29), although the late-time decay was found to be somewhat
__. 1;':3:47 steeper than an exponential.
10 | 1 — —
p v 7
s
210" 4 0.5 -0.89 -
< 0.499 —-0.43 38.7
10" 4 0.49 - 5.4
0.48 - 2.8
0 | ] 0.47 - 1.8
10 . " self-similar evolution seen in PRS for the=0.5 case is
1 lo 100 1000 reproduced well in the time rangevd< »<L/2. Measuring

the logarithmic slope oA/V versusn between these times
we find v=—0.89+0.06. This is to be compared with the
FIG. 8. Evolution of the comoving area, of domain walls per  value found in PRS ofv=—0.92+0.06 for their three-
volume,V, with conformal time,, in three-dimensional runs. For dimensional simulations in a matter-dominated epoch.
each biasp, we show the evolution of one realization. With p#0.5, we see qualitative features in the three-
dimensional runs similar to those of the two-dimensional
cases. The one major difference is that the turnover into an
@xponential decay is seen to occur much earlier, so much so
in fact that all but one of the cases considered here
(p=0.47,0.48,0.49) are well fitted by a simple exponential
curve with no initial pseudoscaling regime. Using a fitting
function of the form of Eq(29), the values of the; for each
p are given in Table II.
To demonstrate the presence of an early scaling regime in

affects the network evolution through two closely balanceothieée 4dg|9me_:_"|rs]|ons VIV(?[ alsof fﬁns'd(ﬁred fthe fme-tu_net(rj]_case of
effects. Increasing the height of the potential barrier betweeﬁ)ﬁ : th‘ t ? ter:/O u |o|r_1 0 _ggva sur ?Ce ?rea Itr: '5’ case
the two vacua makes transition from one vacuum to the otheflo ows that ot the scaling=0.5 case closely until a ime

energetically less favorable. But, this is compensated somd?=30. after which the area decays rapidly. In this case the

what by the increased domain wall surface tension. Howevef€Ca was found to be considerably steeper than the expo-

for a quartic potential, the value &f;, clearly does not scale nential tail of Eq_.(28) could ac_comrr!odate. .
out of the equations of motion, so this balance need not be To cor]clude, n 'ghe threg-dmensmnal case we see persis-
exact.(In the domain wall scenario, the scalar field is off thetenF SC?"”Q behawo_r precisely @t=0.5. A pseudoscaling
vacuum manifold at many points throughout space, makin egime IS seen for.b|ases closepe-0.5, but fo_rp§0.49,
the evolution more dependent on the relative value¥ of |tt|¢ or no scajmg IS observeq and the behavior 1S well de-
and ¢, than, say, a texture scenario, where the nonlinear scribed by a simple exponential for all conformal time.
model works wel[17], and evolution is effectively indepen-
dent of the potential barrier between vagua. C. Discussion of modifications to the equations of motion
To conclude, in the two-dimensional simulations we see Following PRS, we ran one simulation setting the values
persistent scaling behavior preciselypat 0.5. Forp below  of the parametera and to reproduce the original equation
0.5 but above the critical threshold—Ip.=0.407, we see of motion, Eq.(5). In this run, the domain walls maintained
scaling for a finite time which is then exponentially cutoff at 3 constant physical rather than comoving thickness, and so
some conformal timey. The value ofy, which becomes problems of available dynamic range become important. The
very large ap— 0.5, decreases rapidly @sapproaches the prescription used was as follows.
critical threshold. Neap=0.407, and below it, no scaling The simulation was run on a 5¥%12 lattice, with our
behavior is seen and the behavior is well described by &tandard field initial conditions and=0.5. Using a wall
simple exponential for all conformal time. thickness ofw,= 25, the initial conditions were evolved with
the standard parameter valuesaof 3 andB=0, until a time
when the wall-wall separation exceeded the wall thickness;
that is, a timeyp=2w,. The equation of motion was then
The three-dimensional simulations are run on &1@&l.  changed, to set= =2 until a time = 250. The comoving
They were run until a timey=128(=L), or until no more thickness of the walls at the end of the simulation was then
walls remained in the box. The domain wall thickness was lattice sites.
again set towg=>5, leaving us with only modest dynamic  To compare, the run was repeated, this time leaving the
range in which to follow the network evolution. standard parameter values fixed throughout the simulation.
A plot of A/V for these runs is shown in Fig. 8. Again, the The two plots of surface area versygsare shown in Fig. 9.

precipitous, with the characteristic scajarapidly approach-
ing the lattice grid size. We find all of these parameters to b
stable to finite grid and time resolution effects; thatAgy
againstz plots from runs o =512 andL =768 grids over-
lay those of Fig. 7 exactly, while halving and doubling
have no measurable effect on the parameters of Table I.
The values ofy and 7 were found to be only weakly
dependent of the value a@f,. Changing the wall thickness

B. Three-dimensional simulations
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“sea” of the other percolating vacuum. Once the horizon
becomes comparable to the typical size of one of these bags
they rapidly decay under their surface tension, and the net-
work energy density in these cases is seen to go rapidly to
zero. This underlies the exponential decay behavior observed
in the domain wall surface area. For 8:p>0.407 neither
vacuum percolates in two dimensions, and so a complicated
tangle of domain walls form. Fqu=0.5 no one vacuum can
dominate, and the delicate balance of the zero mode of the
scalar field akp—oy=0 leads to a long-term scaling. For the
cases 0.5p>0.407 the initial tangle of domain walls
1000 100 slowly breaks down into a collection of bags of the less
" dominant vacuum, and these eventualy a time 7= 7)
collapse under their surface tension.

FIG. 9. Comparison of the evolution of the domain wall network  |n three dimensions the nature of the initial conditions is
with equations of motion which preserve physical8=2) and  qualitatively different, although the evolution of these initial
comoving =3, B=0) wall thickness. The units of the surface \ya|| networks leads to very similar behavior. For the cases
area axis are arbitrary. with p<0.311, the critical threshold, only one vacuum per-
(éolates the lattice, and so, once more, isolated bags of one
vacuum are to be found in a percolating sea of the more

limit. However, Fig. 9 does clearly show that the evolution of doMinant vacuum. Again, these bags rapidly decay under

the walls of constant physical thickneébat is, those fol-  their surface tension. _
lowing the true scalar field equations of motiaioes match ~ For the cases gp>0.311, both vacua percolate in three
well that of the walls of constant comoving thickness. dimensions. We have seen that this leads to an initial network
We can further note that in the case of the piecewise quaPf infinite (lattice sized domain walls. Fop=0.5 there was
dratic potential, 9, the linear equations of motion can beong-term scaling behavior. However, we find that the decay
solved. In the oscillatory regime in whicth,~ = ¢, and  of the wall energy density for 035p>0.311 in three dimen-
V(#)~ (|| — ¢0)? one can show that the solutions fgg  sions is more acute than that in two dimensions. In these
with a=8=2 anda=3, 8=0 have the same form, with  cases the initial infinite domain walls are forced to rapidly
decompose into vacuum bags which then decay. Only in the
range 0.4 p=<0.5 is long-term scaling seen.

10000

Surface Area

As discussed in PRS, we do not have the dynamic rang
available to see clear self-similar scaling in this thick wall

— b))~
([ = 0)") 7" (30 We have shown that domain walls come to dominate the
energy density of the universe only in the casepef0.5.
V. DISCUSSION Domain walls formed in a biased phase transition will nec-

essarily have only a finite effective lifetime. This allows for
In our numerical experiments we have considered initiatthe possibility of cosmologically interesting domain wall
domain wall networks constructed from a scalar field set ascenarios which evade current observational restrictions,
each spatial point to one of two discrete values ofza  such as the tight limits on the anisotropy of the microwave
vacuum manifold. Such a distribution is described exactly bybackground. One such scenario is a network of domain walls
percolation theory, thus giving us analytical insight into theforming well before matter-radiation equality, with a bias
nature of these initial networks. We have shown that during:lose top=0.5, so that the network decays before photon
the dynamical evolution of such initial conditions, all inter- decoupling(at a redshifz=1000). Such walls would be suf-
esting quantities rapidly converge to those given by otheficiently massive to contribute significantly to large scale
continuous distributions. It follows that the time evolved re- structure formation on comoving scales less tha?0 Mpc
sults given in this paper are valid for a generic set of physicalthe horizon at decouplingbut would decay before photon
conditions which initialize the vacuum structure. last scattering, and hence not contribute to the large scale
By considering the exactly solvable case of a piecewise&osmic microwave background anisotroi8]. Such a sce-
quadratic potential we have seen that for the case of an inRario might be workable, for example, in a universe domi-
tially biased phase transitiop# 0.5, with degenerate vacua, nated by hot dark matter in conjunction with scale invariant
one vacuum will come to dominate all space. Our numericaprimordial perturbations induced by an earlier inflationary
results confirm this in the case of a more generic nonlineaepoch. In such a scenario, the early domain wall network
scalar field evolution. would add small scale power in the matter distribution, as
In the two-dimensional runs we found that fpe=0.5  required by current observations.
there was long-term scaling behavior. In the range Unfortunately, for much of the range of biases, we find
0.5>p>0.45 the energy density of the network entered arthat the domain wall networks are likely to be cosmologi-
early “pseudoscaling” regime, before cutting off exponen- cally innocuous. Their energy density exponentially decays
tially. For p<<0.45 only exponential decay was seen. with a characteristic time scale of only a few expansion
The topology of the initial domain wall network fell into times. In order to see any significant scaling of the network
two classes. For those cases with 0.407, the critical prob- before the ultimate exponential decay seems to require some
ability, one sees only isolated “bags” of one vacuum in adegree of fine tuning op close to 1/2.
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