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The perturbation of the lunar motion caused by a hypothetical violation of the equivalence principle is
analytically worked out in terms of power series in the manner of Hill and Brown. The interaction with the
quadrupolar tide is found to amplify the leading order term in the synodic range oscillation by more than 62%.
Confirming a recent finding of Nordtvedt, we show that this amplification has a pole singularity for an orbit
beyond the lunar orbit. This singularity is shown to correspond to the critical prograde orbit beyond which, as
found by Heon, Hill's periodic orbit becomes exponentially unstable. It is suggested that ranging between
prograde and retrograde orbits around outer planets might provide future high precision orbital tests of the
equivalence principle. It is argued that, within the context of string-derived non-Einsteinian theories, the
theoretical significance of orbital tests of the universality of free fall is to measure the basic coupling strength
of some scalar field primarily through composition-dependent effects. Present Lunar Laser Ranging data yield,
within such models, the valug=(—0.9+1.3)x 10’ for the effective Eddington parametgey—1 mea-
suring this coupling strength.

PACS numbds): 04.80.Cc, 95.30.Sf, 96.26n

I. INTRODUCTION satellite 1 around the planet 2 will be displagéuthe Sun-
planet direction and away from the Sundf,>0) by the
Gravity seems to enjoy a remarkable universality prop-amount

erty: all bodies are experimentally found to fall with the
same acceleration in an external gravitational field, indepen- 1_
dently of their mass and composition. Although Galiég S| Xe—X3| =+ 551213', 1.2
was the firs{2] to suggest in a clear and general way that
this property of universality of free fall might hold true, it , . .
was left to Newtor[3] to realize the remarkable conceptual Where @' denotes the radius of the orbit of the planet 2
status of this universality: exact proportionality between a2round the Sun. In modern phraseology, one can say that
particular force(the weight and the general dynamical mea- Newton pred|cted.a polarlzatlon of the satellllte_s orbit in
sure of inertiathe mass Newton went further in performing the Sun-planet directiotaway from the Sun if6;,>0).
the first precise laboratory tests of the universality of free fallThen Newton used his theoretical estiméte) to conclude
(pendulum experiments; precision1073). It is less well from the observed good centering of the orbits of the satel-
known that Newton went even further and suggested to tedites of Jupiter thats;,| <1072, a number comparable to the
the universality of free fall of celestial bodies by looking for result of his pendulum experiments. Actually, this upper limit
a possible miscentering of the orbits of satellites around Juobtained from Jovian satellites is wrong, as Newton's theo-
piter, Saturn, and the Earf#]. More precisely, Newton con- retical estimatél.2) is incorrect both in magnitudéeing a
siders a possible violation of the ratio weight)(over mass gross overestimate in generand in sign(see below. We

(m), i.e., could not find any information about Newton’s original cal-
culations in his published papers. It is surprising that Newton
- (w/m); did not remark that, as a consequence of his estitiiage a
617= (w/m), —1#0, (1.9 value | 5,5 =102 would also entail an unacceptably large

polarization(one-fifth) of the Moon’s orbit.
where 1 labels a satellite and 2 a planet, the weights As far as we are aware, Laplace was the first to realize
w,,W, being the gravitational forces exerted by the $lan  that the best celestial system to test a possible violation of
bel 3). He says, without giving any details, that he has foundhe universality of free fal(1.1) is the Earth-Moon system
“by some computations” that the centgy of the orbit of the ~ (1=Moon, 2=Earth). In[5] he derived a rough estimate of
the main observable effect @, on the angular motion of
the Moon. Then, he noticed that even a very snéall# 0
*On leave from the Institute of Astronomy, Charles University, would spoil the agreement linking his theoretical derivation
Svédska 8, 15000 Prague 5, Czech Republic. Electronic addressof the solar perturbation term called “parallactic inequality”
vokrouhl@earn.cvut.cz of the Moon, the set of observations of the lunar motion, and
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the direct measurements of the solar parallax. He concludede derive Eqs(1.4) and(1.5) in Appendix A(see also Ref.
that an upper bound to the fractional difference in acceleraf16] which gives an alternative derivatipn

tion of the Moon and the Earth toward the Sun is Let us note in passing that the eodependence of the
range oscillation(1.4) is equivalent(when disregarding the
perturbations of the motion in longitugéo displacing the
centerx. of a circular lunar orbit in the Earth-Sun direction
(toward the Sun if§;,>0) by the amount

_ 1
- - —7
|81 <3715 006 2-9< 10" (1.3

It is remarkable that the limitl.3) is much better than the

limit (| Sag|<2X 10 °) obtained some years later by Bessel 8|X.— x| = —CV 58" (1.6)
through improved pendulum experimef&, and has been _
supersede¢though not by muchonly by the work of Etvos The result(1.2) of Newton can therefore be viewed as

in 1890 (Jap|<5x1078) [7]. (The later results of Buwos, implying a range oscillation of the typgl.4) with
Peka, and Fekete improved the bound tx307° [8].) As ~ C"®"*=— 1/2, independently af andn’. By contrast, the
we discuss in Appendix D, in spite of some obscurities in higfirst order estimatg1.5) contains the small dimensionless
reasonings and the lack of a fully accurate calculation of thgparameter
effect of §;, in longitude, Laplace’s final boun@l.3) turns
out to be a conservative upper limit, given the information he m=
had. n—n

In 1907, Einstein[9] deepened the conceptual implica-
tions of the property of universality of free fall by raising it Which is m=1/12.3687 for the Moon and much smaller for
to the level of a “hypothesis of complete physical equiva-the (Galilean satellites of Jupitefe.g.,m=3.86x 10"° for
lence” between a gravitational field and an accelerated syslupiter IV). More precisely, Eq(1.5) can be rewritten as
tem of reference. This heuristic hypothesis was used very
successfully by Einstein in his construction of the theory of
general relativity, and later became enshrined in the nam
“principle of equivalence.”

Within the context of relayylsnc gravitational theorle.s, th'e In 1973, Nordtved{17] suggested that a more accurate
use of the Moon as a sensitive probe of a possible violation

value of the coefficien€ in the cos (or “synodic”) range

of the equivalence principle for massive bodies has been rSscillati : o

) ) e scillation (1.4) would be obtained by replacing, in the de-
discovered by Nordtvedt in 196BL0]. His idea was that nominator(ofc)(l) Eq. (1.5, the first tirmr?z by 22 where
self-gravitational energies might couple nonuniversally to an R rad

external gravitational field in theories having a differentrad denotes the frequency of radial ~perturbations:
structure than that in general relativiig1,12. (Let us note Mrad=!=cn. The perturbation series givingreads(see, e.g.,
that though Dicke had mentioned this possibility earl3— (18,19)
15], he had not explored its consequences in dggailyway, .
Nordtvedt, unaware both of the old ideas of Newton and c=1— E—l— Tm2— T m3—. .. (1.9
Laplace, and of the more recent ones of Dicke, realized that n 4 32 ’ '

the planned Lunar Laser RangingLR) experiment was ) _

providing an exquisitely sensitive tool for testing the univer-[In the case of the Moon, the seri¢s.9) is very slowly
sality of free fall of massive bodig40]. Performing afirst- ~ convergent. The full value of +¢=0.008 572 57318] is
order perturbation analysis of the lunar orléitssumed circu- More than twice the lowest-order correctipm?.] The cor-
lar and planarin presence of a violation of the equivalence rection of Ref.[17] amounts numerically to increasing the
principle, 5,,# 0 [see Eq(1.1) with the labels 1 and 2 de- first-order resul{1.5) by about 13%.

T .7

1+%m—3 1+1 ! 2+ 1.8

3
®H=>m

noting the Moon and the Earth, respectivielfie provided In 1981, Will [20] tried, more systematically, to estimate
the first analytical estimate of the corresponding range oscilth® higher-order corrections in the coefficiéttdue to the
lation: mixing between the perturbatiofi.4) at frequencyn—n’
and the tidal perturbations at frequencies 0 and-24’).
(5r)(1)=C(1)512a’cos{(n—n’)t+ 7ol (1.4y  He suggested that the first-order result should be multiplied
by a factor 1+ 2n’/n=1+2m+0(m?), i.e., amplified by
with about 15%. As a result of thedeoincidentally equivalent

prescriptions, the literature on the “Nordtvedt effect”
1+2n/(n—n") ) [21,22,20,23,28has, for many years, used as a standard es-
n’—(n—n’)? n=. (1.5 timate for the range oscillatiodr=Cé;,a'cosr a value
C=1.14Cc" (corresponding to about %3cosr meters in
Here,n denotes thémear) sidereal angular velocity of the metrically-coupled theories; see belpow
Moon around the Eartm’ the (mean sidereal angular ve-
locity of the Earth around the Sun, aad denotes the radius
of the orbit of the Earth around the Sgassumed circular 1This is the version of the small parameter which is appropriate to
The angler=(n—n')t+ 7y is equal to the difference be- our Hill-Brown treatment. Beware of the fact that the more tradi-
tween the mean longitude of the Moon and the mean longitional perturbation approaches denoted by the letteéhe quantity
tude of the Sur(as seen from the EafthFor completeness m=n’/n.

cl=
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Actually, as recently found by Nordtvef25] and studied cal utility of such a resonant orbit, notably because we show
in fuller detail in the present paper, both modificatigeag-  that it occurs precisely at the value
gested i 17] and[20]) of the first-order result fall short of
giving an accurate estimate of the effects due to higher pow- m=m,=0.195103986. .. (112
ers ofm. In fact, they do not even give correctly the second
order inm. For completeness, we compute in Appendix A, [corresponding to a  sidereal  period T¢=mg/
by the standard perturbation theory of de Pontgant[26],  (1+m¢) yr=1.959 03 month] where the orbit becomes
the contribution at orde®(m?) and find that it amounts to €xponentially unstable. Armed with our theoretical under-
multiplying the first-order result by + § m+0O(m?), i.e.? standing of them.dependelnce of the (.:ﬁS)SC.'”atmn’. we
suggest other orbits that might be practically interestiegr
9 rograde orbits and orbits around outer plapeBnally, we
1+ —m+ O(mz)}c(l) emphasize that within the context of modern unified theories,
2 the most probable theoretical significanceoobital tests of

chic@=

14 the universality of free fall is the same as thatiaboratory
1+ —m+ o(mZ)}_ (1.10  tests, namely, to measure, through composition-dependent
3 effects, the strength of the coupling to matter of some long
) ) range scalar fiel@). The basic measure of this coupling
In his recent work{25] Nordtvedt showed, by studying strength is embodied in an effective Eddington parameter
what is essentially a truncated version of Hill's perturbationy,=y—1 which governs both the standard post-Newtonian
equation(discussed in Appendix C belgwthat the interac-  effects (including the violation of the strong equivalence
tion with the orbit’s tidal deformation causes a rather 'argeprinciple «p=4B—7) and the composition-dependent cou-
numer!cal amplification of the synodic oscillati¢h.4). The plings (violation of the weak equivalence principleActu-
numerical result he got for the synodic oscillation sensitivitya”y string theory suggests that the former contributipro-
of the lunar orbit isér=2.9x 10*%5;,cosr cm and agrees portional to the gravitational binding enejgs, in the Earth-
well (within the quoted precisigrwith our result, Eq(1.1) ~ Moon case(but not necessarily in other casesegligible
below. However, his treatment gives only an incompletecompared to the one due to a violation of the weak equiva-
theoretical analysis of this amplification. The only explicit |ence principle. Interpreting the latest LLR observational re-
literal result he quoteghis Eq.(2.33] matches the second- syits[27,16] within a recently studied class of string-derived
order result(1.10 and captures the important feature of thetheoretical models, we conclude that present orbital tests
existence of a simple pole im, but does not accurately give the excellent constraing=(—0.9+1.3)x10 7. [This
determine the location of the pole. . ~ limit is comparable to thdsimilarly interpretedl constraint
~ The aim of the present paper is to provide, for the firstcoming from laboratory test28] of the weak equivalence
time, a full-fledged Hill-Brown analytical treatment of the principle: 3= (—0.8+1.0)x 10 ".]
orbital perturbations caused by a violation of the equivalence The plan of this paper is as follows. Section Il presents
principle. Our results will notably allow us to give a precise oyr Hill-Brown approach and gives the analytical results ob-
numerical value for the full range oscillation in the case ofizined with it. Section Ill discusses the physical conse-

the actual Moor?.Namely, we obtain below guences of our results. Many technical details are relegated
_ to appendices: Appendix A presents the standard de’Ponte
81 =2.9427< 10'25, ,cosr cm, (1.1)  coulant treatment of lunar theory and uses it to derive the

second-order resu(lL.10, Appendix B gives some details of
corresponding to a full coefficie@= 3 mx 1.622 01 which  our Hill-Brown treatment, Appendix C treats the link be-
is larger than the first-order valué.8) by more than 60%. tween certain commensurabilities of frequg_nue's, linear in-
More generally, we shall be able to discuss in detail theStability, and the presence of pole singularities in perturbed
dependence om of the range oscillation: see E¢.60— motions, and finally Appendix D discusses Laplace’s deriva-
(2.62, Eq.(3.2), and Appendix B. These results are summa-tion of the remarkably good limit1.3) on &;,.
rized in Fig. 1 below. Our results confirm the prediction of
Ref. [25] that whenm increasegcorresponding to prograde Il. HILL-BROWN TREATMENT OF EQUIVALENCE-
orbits beyond the actual lunar orbthe cos range oscilla- PRINCIPLE-VIOLATION EFFECTS
tion eventually becomes resonant andf@mally) infinitely ,
amplified. We have some doubts, however, about the practi- A. Introduction
Relativistic effects in the lunar motion have been investi-
gated by many authors. The pioneers in this field are de Sitter
2By contrast[17] and[20] give 11/12 and 13/6, respectively, for [29] (who computed the general relativistic contributions to
the coefficient ofm in the correcting factor within square brackets the secular motions of the lunar perigee and node as ob-
in the second equationl.10. Note thatym=37.7% for the served in a global, barycentric frajnand Brumberg30]
Moon. (who gave a comprehensive Hill-Brown treatment of the
3Note, however, that we consider only the Main Lunar Problem,post-Newtonian three-body probleéml_ater works studied
i.e., that we neglect the terms proportional to the squares of th@on-Einsteinian effects, notably those associated with the
lunar and solar eccentricities, and to the square of the lunar incliEddington post-Newtonian parametggsand y. The most
nation, which are expected to modify our numerical estimates bycomprehensive and accurate analytical study of post-
<1%. Newtonian effects in the lunar motididescribed in a bary-
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centric frame is due to Brumberg and Ivanod9]. For . o G

general accounts and more references see the §h8ak3J. EX%'=—(G/2) fAJ'Ad XX p(X)p(X)[x=X'[, (2.4

Let us also mention the semianalytical treatment of the gen-

eral relativistic perturbations of the Moon by Lestrade and;ng is the one first pointed out by Nordtveldtl,17. As

Chapront-Touz¢33]. indicated by Dickg 13,14, it is present in all gravity theo-
However, apart from the work of Nordtvefit0,17,23,  (jes where the effective, locally measured gravitational “con-

the studies of non-Einsteinian effects in the lunar motiongiyn¢ may vary from place to placesee, e.g., Sec. V B of

have not considered the effect of a violation of the equivarz7)) \we shall take as nominal values for the gravitational

lence principle. The results of the present paper can therefo%‘elf-energies of the Mooflabel 1) and the Eartiabel 2)

be considered as a completion of REF9] which gave an  he yajues adopted by Williams, Newhall, and DicKag],
accurate Hill-Brown theory of all the other Einsteinian and namely, EY®/m,c?=—0.19x10 %, EY¥m,c2=—4.64

non-Einsteinian effects. In fact, as pointed out long ago by, 10~ 50 that

Nordtvedt, the effects of a violation of the universality of '

free fall are the most prominent non-Einsteinian effects in Eg gV

the lunar orbit, and therefore deserve an accurate study. In- >— ——=4.45x10" 10, (2.5
deed, most of the non-Einsteinian effects a@n-null ef- m e MyC

fects, i.e., Eorrespond to modlflcatlon_s_ p.roportlonal ©we then find numerically that the modification due to the
B=pB—1 or y=y—1 of observable relativistic effect®s grayitational binding energy of the Earth-Moon system,
seen in a local, geocentric franeredicted by Einstein’s 1 o9, 0 1 5 . .

theory. As the latter are at the few cm leé#,31,35,25 _ 3772 /c®= =3 7G(my + mp)/ac® in Eq. (2.1, is (to
which is the precision of the LLR data, they can be of no us{rst-ordeb equivalent to decreasing the nominal valiae)

. — . . -, y —0.039x 10 1% This represents a fractional change of
for measurings or y at an interesting levabay <10 ). An (2.5 by —0.87% which is probably smaller than the uncer-

rameters describing the temporal and spatial transiomatcfgMy 11 the estimatd2.9 associated with our imperfect
9 P P nowledge of the internal structures of the Earth and the

linking a local, geocentric frame to a global, barycentric 9"€Moon. These orders of magnitude illustrate the fact that the

e.g., the parameters entering the de Sitter-FokRgeo- overwhelmingly dominant sensitivity of the lunar motion to
detic”) precession(Recent work[16] concludes that geo- . Ingly y X
non-Einsteinian effects comes from the terms proportional to

detic precession alone constraintsat the 1% leve). . .

In addition to the “Nordtvedt effect” propefi.e., the ef- 912 that we concentrate upon in the following.
fect of §,,#0), that we discuss here, there are some other
null effects which are more sensitive ® and y than the
non-Einsteinian modifications of non-null general relativistic  The Lagrangian describing thi-body problem in the
effects. A subdominant null effect comes from the violationcurrently best-motivated relativistic theories of gravity, i.e.,
of the equivalence principle associated with the gravitationathose where gravity is mediated both by a tensor field and a
binding energy of the Earth-Moon system. In lowest approxi-scalar field with, generically, composition-dependent cou-
mation(linear inm), it is equivalen{see, e.g., Eq3.14b of  plings (see, e.9.[37,38), can be written as
Ref.[36]] to replacingd;, by

B. Three-body Lagrangian

, Lgys=LertLgtLy+L5, (2.6)
; (2.1))  wherelLgg denotes the general relativistic contributi@n
which one should use an effective value of the gravitational

wherea denotes the semi-major axis of the lunar orbit andC0UPling constaniG which incorporates the composition-

~ — 1
010= 010~ § n

na

c

where 7 denotes, as usual, the combination independent part of the interaction mediated by the scalar
’ ’ field),
=48—y=48—y—3. 2.2
n=4B-y=4B—vy (2.2 1 _ < Grme
5 callv i Ly=52 72— (Va— V)’ 27
In general, 81, is the sum of two physically independent Y 2c°'AFB  TaB

contributions
denotes thgnontensor-like velocity-dependent part of the

— . oa EY&  EgV two-body scalar interactiofone-scalaron exchange leyel
012=(0,=82)+ 7 mc2 il (2.3
1 2 1- G2mamgme
Lpg=— =B > —— (2.9

The first contributions;,= 6, — &, is generically expected to

be present because the best motivated modified theories of
gravity violate the “weak equivalence principle,” i.e., con- denotes the modification of the nonlinear, three-body general
tain, in addition to Einstein’s universal tensor interaction,relativistic interaction due to the scalar interaction, and
some composition-dependent couplings that make laboratory

bodies fall in a nonuniversal wagsee, e.g.[37,38). The L,ZEE (3at B )GmAmB 2.9
second contribution on the right-hand side of E}3) [pro- O 28 AT TR rag '
portional to » such as the correction in E¢R.1)] contains

the gravitational self-energy of the bodie&=1,2), with

C” B#A#c TIaglac
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rav
EJ m;m,

- g _ mm,
Op=0Opt+ ﬁ_mAcz, (2.10 M2 M+ m,’ (2.19

represents(to lowest order the combined effect of the andvy,=dxy,/dt. This yields
composition-dependent coupling®,# 0; violation of the 1

“Wea!( equivalence principle)’.and Of th'e_ Dicke-Nordtvedt L(Xg,X12,X3;Vg,V12,V3) = %movg—k %Mleiz‘F Emsvg
contribution due to the spatial variability of the effective
gravitational coupling constanty= 48— y+0; violation of m;m, m;m;
the “strong equivalence principle.’ For a direct, field-theory +Gyp, ; +Gy3 ;
derivation ofL; andL z and the expression of the phenom- 12 13
enological Eddington parameteys=y—1 andB=8-1 in m,m;
terms of the basic coupling parameters of the scalar fasd + G, (2.17)
well as the generalization of these results to the case of 23
strongly self-gravitating bodigsee Ref[39]. where

We assume here that all the general relativistic contribu-
tions to the lunar motiogand to its observation through laser r13= |X3—Xo— XoX12l, (2.183
ranging are separately worked out with sufficient accuracy,
using, for instance, the new, complete framework for relativ- F23=|Xa—Xo+ X1X12], (2.18h

istic celestial mechanics of R¢#0] (which provides the first
consistent relativistic description of the multipole moments
of extended bodigs Following the discussion above, we
henceforth discard the subdominant contributions comin
from Lz andL;, to concentrate upon the effects dueltp.
(The barycentric frame contributions bf; andL ;, have been
accurately computed by Brumberg and lvang¥/@] and can
be linearly superposed with the oneslof.) Finally, it is 1 1 MoM3

enough to consider the sum of the lowest-order approxima- L03=§m0v(2)+ §m3v§+(X1Gl3+ X5Gy9) P (2.20
tion to Lgg and ofL, namely, 03

Xlzmllmo, XZEmzlmO:l_Xl. (218O

Expanding ;3 andr 3" in powers off 1,/1 30 (F 30= | Xgg| With
g(goz X3_ Xo) |eadS to

L= Los(Xg,X3,V0,V3) + s1al 12(X12,V12,X30), (2.19

1 1& Gagmam L = ov2 G 4 Ry Ryt Ryt (2.21)
AsMaMp =—vV — e .
Lxa va) =2 smava+ 5> ———, (2.1 1275 V12T By TR R TR
A A¥B laB
and
where
. 1
= .= — Ml — i (3)
Gag=G[1+ da+ Sg], (2.12 Ry=ms( = Gagt Goa)aadi™ s (2.22a

with 8, of the form given in(2.10, represents the effective, 1 o a3) 1
composition-dependent gravitational coupling between the Ry =57 Ma(GaaXat G2aX1) X12X120)) [ (2.229
massive bodies\ andB. In Eq. (2.11) vo=dx,/dt denotes
the (barycentri¢ velocity of bodyA, m, the (inertial) mass 1 o 1
of A, andr g=|x,— Xg| the distance betweeh andB. We R3:§m3(—Gl3X§+ GZ3X§)XI12XJ12X§2‘7i(jEIS<)r_! (2.229
consider a three-body problem, and, more particularly, the ' 30
Moon-Earth-Sun system EMoon, 2= Earth, 3=Sun). \here (953)5(9/(9)(5, ai(s)zﬁzlaxgaxj, .. Note that the
Evidently, all our analytical results will apply if 2 denotes g ffices 1,23, ... irR:{s have nothing to do with the body
another planet, and 1 one of its natural or artificial satellites|abe|sA,B:1’2,3, but keep track of the successive powers
(Note, however, that the relative orders of magnitude of they X1s.
non-Einsteinian effects is different for low-orbit artificial To a very good approximation we can consider that, in the
Earth satellites. Sef86] for a recent discussion. , (normalized Earth-Moon Lagrangiari2.21), the motion of
Starting from Eq.(2.11), we first separate the variables o sun with respect to the Earth-Moon barycentgyt), is
describing the motion of the center of mass of the Earthypiained by solving the two-body Lagrangié®20). After
Moon system, separating in Eq(2.20 the motion of the center of mass of
the Earth-Moon-Sun system, the reduced Lagrangian de-

MoXo= M4 Xy +MpX3, (213 scribing the dynamics of the relative motiag, is
Me=m;+m,, (2.149 P | Mg+ m
LBee!atNEZEVgg_{_ 6030[‘—33 , (2.23
and vo=dxy/dt, from those describing the relative lunar 0
motion, where we introduced

XlZEXl_XZY (215) G03EX1G13+ X2Gz3. (224)
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Therefore, seen from the Earth-Moon barycenter, the SuandY. The resulting Lagrangian describing the dynamics in
undergoes a Keplerian, elliptic motion corresponding to ahe rotating frame reads

total  effective  gravitational mass Ggz(my+mg) 1
=Ggz(my+my+mg). If we denote(as is traditional in lunar r VY w22 PRV

theory) the mean angular velocity and the semimajor axis of L%, Y, XY) 2 (XEEYH (XY =Y +FXY).
this elliptic motion asn’ anda’, respectively, we can write (2.28

n'2a'3=Goy Mo+ M3) =Gog( My +My+my). (229  Here,  F(X,Y)=Gpmg/r +Ry+[Ry+1/2n"3(X?+Y?)]
+R3+---=Fg+F;+F,+F3+--- is a time-independent
For simplicity’s sake, we shall, in fact, consider the “Main potential with
Problem” of lunar theory in which the Sun is considered as

moving in a circle of radius’ with the constant angular F_ G12Mo 299
Velocityn’. O_\/W’ ( . 3
Evaluating the derivatives with respect tq@ in Egs.
(2.22), and using Eq(2.12), yields n'2a’  _
N F1:—1+m0/m3 512)(, (229b
R]_: mgravélzr_,z, (226a )
1 n’ _
- _ 2
 aryer? Fo=3 Tomarms |L1T (X2~ X0 012l(3X%)
Rzzmgra\{l"l‘(Xz_Xl)(slil 2["3 y (226[) m _
+ HO—(XZ—Xl)élz}(szLYZ) . (2299
3
5(N-r)3—3(N-r)r2
R3=m3®(X,—Xy) TR (2.269 1n2

Fa=>3 ?(xz—xl)[5x3—3X(x2+ Y?)]. (2.299
To simplify the notation, we have written=X;,=X;—X,,

N=Xg0/r3, (directed toward the SOn r’'=rg,, mj? In writing out Egs. (229 we have replaced
=Gy3m3, where we recall thaBg; is the weighted average m§®=Gggm; by the expression md?®=n’2a’3/
(2.29), and (1+ mg/mjg) obtained from Eq(2.25. The equations of mo-
_ tion corresponding to the Lagrangi&®.28 read
617= 061~ 63, (2.27)
d’X _ dY JF
which agrees with our previous expressighgl) or (2.3). In a2 —2n dt - ox’ (2.308
the (much smaller term R; we have neglected th&modi-
fications. d2y dX oF
W'ﬁ‘zn'azw. (2.30b

C. Hill's equations of motion
We see from Egs(2.29 that a violation of the equiva-

Following Euler’s second lunar theory and H#l1,42, it D : .
is convenient to refer the motion of the Moon to axes rotat€NCe Principle has several consequences in the lunar theory:

ing with the mean angular velocity of the Sun. For simplicity, (i) the effective gravitational constant appearing in front of
we shall consider the main lunar problem in whighthe e Earth-Moon total massme=m;+m,, namely
Sun is considered as moving in a circle of radiswith the ~ G12=G(1+ 61+ 55), differs from the one appearing in the
uniform angular velocityn’, (ii) the Moon moves in the theory of the Earth orbital motionGos, defined in Eq.
same plane as the Sun, afid) one looks for a periodic (2:24, (i) there is a new term, linear iX, in the Lagrang-
motion of the Moon in the frame rotating with the angular i@n, F1, Eq. (2.29, (iii) the usual tidal plus centrifugal
velocity n’. Taking into account the lunar and solar eccen-PotentialF, (as well as the higher-order tidal potentjais
tricities e ande’, and the lunar inclinatiom, is expected to fractionally modified bys,,# 0. The effect(i) has practically
modify the results for the terms discussed in this paper by10 observational consequences as, for instance, the “GM” of
contributions of ordeO(e?,e’2,sirfl)<1%. the Earth is measured much more accurately from Earth sat-
With respect to the rotating framéey(t),e (t)), with ellites (artificial or natural than from the correction it brings
ex=N directed toward the Sun, the position and velocityin the Earth-Sun interaction. The effe@t) is the one dis-
vectors of the Moon read r=x;,=Xex+Yey, cusseq by Newton, Laplace, and No_rgitv_edt,. that we shall
v=v,=(X—n'Y)ex+(Y+n'X)e, (the overdot denoting Study in detail below. As for the effectdi) it will be clear

d/dt). When expanding the kinetic terms in the reduced,from the following that they are numerically negligible com-
. . . 1.9 1,8 T2 pared to the effects df; because the corresponding source

reIaU_ve Lagrangian (2.2, iLe., v'=3z(X-n"Y) terms in the equations of motion are smaller by a factor

+3(Y+n'X)?, one recognizes the usual Coriolterms lin-  r/a’~1/400, and, moreover, the corresponding solution is

ear inX andY) and centrifugal(terms quadratic il and  not amplified (as the F; effecty by a small divisor

Y) effects. The centrifugal terms can be gathered with thel/m=12 because they correspond to the driving frequency

contributionR,, Eq. (2.260, which is also quadratic X 2(n—n’) (instead ofn—n’ for F;). Finally, as we can also
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neglect the fractional correction ¢imy/mg) 1 to 312 in u=X+iY, (2.34a
(2.29H (my/m3;=1/328900), we shall keep Eq®.293 and
(2.290 and replacd2.29h and(2.299, respectively, by u=X-iY, (2.34b
F,=n'2a’ 6., (2.313 r=(N—n")t+7g, (2.340
3 (=€, (2.349
Fo= En'2x2. (2.31b
1d d
D=+5-={q; (2.340

The contributionF5 to the potentialF (octupolar tide
generates the so-called “parallactic” terms in the lunar mo-
tion. Compared to the usu&juadrupolartidal contribution,
they contain the small parametefa’=1/400. Hill's ap-

Here, n denotes the mean sidereal orbital velocity of the
periodic solution one is looking fofin other words, the ro-

h ists of solving first in th £ ini tating frame quantitieX,Y,u,u are supposed to be periodic
proach consists of solving first exaciin the sense of infi- functions of = with period 27). The parameter

nite power serigsthe dynamics defined by the truncated po'mzn’/(n—n’) is the remaining free parameter of the prob-

tential Fyy =Fo+ F,=G,Mo/r +3n'2X?. (The parallactic |em. It takes positive values for prograde orkigsing in the
terms are obtained later by perturbing Hill's main problem. same sense as the $uA<n’<n), and negative values for
In presence of a violation of the equivalence problem weretrograde orbits1<0. With this notation the general equa-
have to add the ternfr,, Eq. (2.319 (“dipolar tide”), to  tions of motion(2.30 read

F win - The resulting equations of motid@.30 read explic-

itly dF
D2u+2mDu=—2a—J (2.39
KPR Cidloy s an2x+n'2a’s 2.32 —
T T n na'dy,  (2.323 (and its complex conjugates—u, D—D=—D), where
F=(n—n')"2F=m?n’"2F. For small values o (i.e., or-
d2y dX G1,Mo bits of small radius around the Eayttie periodic solution of
FTRE LT S (2320 Eq. (2.39 is of the form u=(consty, u=(consty

=(consty . It is convenient to replace by a variablew
- Lo which tends to zero wittm. Following Liapunov[47] and
They admit(in thg general case of a time-independent pOter]Brumberg and Ivanovgl9], one defines first a fiducial lunar
tial F) the Jacobi energy integral

semimajor axisa by writing

1 . .
5(X2+Y?) ~F(X,Y)=C= const . (2.33 Gumo (2.36

D. Iterative solution of Hill's equations where

In spite of the apparent simplicity of Eq&.32 and of 3
the existence of the first integré2.33, the corresponding k(M)=1+2m+ Emz. (2.37
dynamics contains all the richness and complexity of the
circular, planar, restricted, three-body problem. Hill's idea

was first to find an exacperiodic solution of Eqs.(2.32 With this definition ofa one introduces the variable by

(with 8;,=0). The existencdin a mathematical sens®f u=as(1+w) (2.383
Hill's periodic solution, and the convergence of the power '
series[in the parametem=n’/(n—n’)] giving its explicit U=a7"1(1+w) (2.38H

form, have been proven by Poincd#s8] using an analytic-
continuation argument, and by Wintngt4] using majorant
series(seg[45] for more referencgsThe existence of such a
one-parameter family of coplanar, periodic solutions, and the

The Lagrangian”Z= — 23~ 2(n—n’) ~2L,, can be written

convergence of the associated perturbation serigs, ilmre o CTTRYY ) — - il v
stable under the addition of the full series of higher-order Z(w,w,Dw,Dw)=DwDw+2(m+1)wDw—G(w.w)
tidal terms [46]. Poincarés analytic-continuation method + (total derivative, (2.39
shows that it will still exist when one adds the “dipole tidal” R

termF,, if m and §,, are small enough. where G=2a"2F+ (1+2m)(1+w)(1+w), and the asso-

To construct explicitly the perturbation seriesningiving  ciated equations of motion read
the periodic solutions of Eq$2.32), it is convenient to re-
write them in terms of new variables. Following a standard—
notation [18] (except that we do not introduce a separate “we shall not consider the prograde orbits witktB<n’ which
letter for the complex conjugate of), we define are highly unstable; see below.
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G
D?w+2(m+1)Dw=— —. (2.40
ow
The explicit form of the potentiaB (w,w) in our problem
[i.e., when 0—n')°’F=F=Fy+F,+F,] reads
G(w,w)=xk(M[2(1+w) YA 1+w) Y2+ (1+w)(1+w)]

FN(L+wW)+ ¢ H1+w)]

+Zmz[§2(1+w)2+§’2(1+v_\/)2],

(2.4))

where we have introduced, insteado_iiﬁ, the small dimen-
sionless parameter

(2.42

The corresponding equations of motion read

D2w+2(m+1)Dw+ «[1+w—(1+w) YA 1+w) 32

(2.43

. 3 _
+>\§*1+§m2(2(1+w)=0.

A last transformatiorf47,19 consists of separating off the
square bracket multiplied by in (2.43, its nonlinear piece,
namely,

_ _ 1 3_
Q(W,W)E(1+W)*1’2(1+W)*3’2—1+§W+§W
3 15, 3 _ - .
=§W2+?W2+ZWW+O(W3,W2W,WW2,W3).
(2.44

We can now define &inear operator acting onvg,w),

L(w,w)=D?w+ 2(m+ 1)Dw+gx(m)(w+vT/), (2.45

and an effective source terfeontaining source terms and
nonlinearitie$

W(W,W)=—r"1— ;m2§‘2(1+v_v) + k(M)Q(w,w).
(2.46

In terms of these definitions, the equations of motion read

L(w,w)=W(w,w), (2.47
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(from F5), i.e., mathematically, because of the mixed term
—3m?{ 2w and the nonlinear term Q(w,w) in W(w,w).

When putting back the octupole tidal effedts;, Eq.
(2.299], they add to the effective source ter{d.46 the
contribution

W,(w,w)= —g%[§(1+w)2+ 207 (1+w)(1+w)

+5¢73(1+w)?], (2.48

where

m,—m; a
m,+m; a’’

2

T=m2(X,— xl)g =m (2.49
The Eq.(2.47) can be solved by iteration: first, one keeps
only the linear source terms which exist wher- 0, namely,
WOz, e~ =W(0,0)= —r¢™1—3m?¢ 2 [with the addition
of W53(0,0)=—32m({+2¢ 1+5¢7 %) when including paral-
lactic termg. Second, one solves the linear equations
L(w,w)=WI(£,71) to get the corresponding first-order
solution:w®=w{M+m?wY+ 7wY which is valid up to
terms of higher order in the formal expansion parameters
N, m?, and 7. The next step is to insert the first-order solu-
tion w in the full source termW(w,W) and to collect the
second-order source terr?)({,{~*) of formal order
(A+m?+ )2, The corresponding second-order solution
w® is obtained by solving the linear equation
L(w® wYy=W®)(¢, 71, etc. At each stage of the itera-
tion, one deals with a source term which is a linear combi-
nation (with real coefficienty of a finite number of integer
powers ofZ and/ ™1, say

W,(:W0+W1§+W_1§71+W2§2+W_2§72+ tee +Wk§k
(2.50

It is easy to check that there is a unique solution of the linear
systemL (w,w)=W,, L(w,w)=W, and that it is given by

+W_ 7K

W*:W0+W1§+W_1§_1+W2§2+W_2§_2+ cee +Wk§k
+w_ 7K (2.51)
with [19]

1

WOZWWO, (2.52a

W, —

3
—Kwk}, (2.52b

1 ) 3
Wk:A_ k —2(m+1)k+ EK 2

k

and its complex conjugate equation. This is the form used by

Brumberg and Ivanov@l9] in their study of relativistic ef-
fects in the lunar motion.

Note that the source of all equivalence-principle-violation

effects is the contribution- Xg‘l on the right-hand side of
Eq. (2.46, with \ defined by Eq(2.42. Even when restrict-
ing oneself(as we shajlto the effects linear in, the corre-

3
W—k_ EKWK

2 3
k?+2(m+1k+ 5

, (2,529

1
W_k:A_k

5The reality of all coefficientdV, in Eq. (2.50 and wy in Eq.
(2.5)) is easily proven by induction, given the reality of the coeffi-

sponding contributions in the solution are quite complicatectients in the exact definition aV(w,w) and in the iterative solu-
because of the interplay with the quadrupole tidal effectsion equation(2.52.
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Here, A (=A_,) denotes the determinant of thex2 sys-
tem of equations satisfied by, andw_, (whenk#0). Its
value is

A=K K2+ 3x—4(m+1)2]=k[k2—1—2m+ im?].
(2.53

This determinant never vanishds#0), but it takes a small
value of orderm whenk= 1. This small divisor is one of

the origins of the peculiar amplification which affects both

equivalence-principle-violation effecfaV®(F)=—xz "]
and a part of the octupolar-tide effecttWM)(Fj)
=—37(+2¢" 1+ ---)]. A consequence of the small divi-
sorA;=—2m+ im? is that, when collecting from the itera-
tive solution the contributions proportional te** and
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15
wi+w@ =1+ Zm+0(m2)}w(ll)
__3) 1+6m+0(m? 2.56
(1) £ W 15 2y
witwi =1+ Zm+0(m ) (wig

L 46
9

m+ O(mz)}. (2.56b

3| >>

9
4

E. Radial and angular perturbations due to a violation
of the equivalence principle

w{*1, they are found to proceed according to the powers of Let us relate the result®.56) to the radial and angular

m?/A,=0(m) instead of the powers ofi’ as formally ex-
pected from the structur@.46).°

perturbations of the lunar motion associated with the param-
eter\x 8;,. The radius vector=(X?+ Y?)¥? and longitude

The first steps of the iteration can be done by hand. Frony of the Moon (with respect to the rotating vectas= N,

Egs.(2.52 the linearized solutiofwithout parallactic terms
has the form

wh=wiPz+wh w2+ we 2 (2,54
with
Wiy 35 (2.553
1 24,7 '
1+2(m+1)+3« .
wil)=— X iy (2.550
1
9 «
Wy 20 2
W=+ g ome (2.550
34+4(m+1)+3k
wl=—2 m% (2,550

2 A,
Here, as defined abovex=1+2m+3m?, A;=-2m
+3m?, andA,=4(3—2m+;m?). The insertion of the lin-
earized solutiow™®), Egs.(2.59, into W(w,w), Eq.(2.46),

i.e., with respect to the Sun are such that
u=re'’=az(1+w), where we recall that=e'". Hence,

r?=uu=2a2(1+w)(1+w), (2.573
u S 1+w
eif—_ —g2ir_ (2.57bh
u 1+w

Working linearly in X, we get the following radial and
longitudinal equivalence-principle-violation perturbations

1/2

6,0=1Im e 2.58
A L+w| (2.580

At the approximation (2.56 we can write &,r/a
= (W, +W_,)cosr+(Ws+W_3)cos3r, and &, 0=(w;—W_,)
X sinT+(ws—Ww_3)sin3r. In the approximation, the observ-
able synodic effects are entirely described Wy+w_.
However, in higher approximationsy.;,w.s, etc., feed
down to the synodic effects in and #. [Let us note in
passing that, when averaging over time, the mean shift of the

generates a second-order source term with the followingartesian components=X+iY =a¢(1+w) is given, to all

structure: W~ Am2(F 24 753 + mA(0+ 2+ 159

+ O(XZ). Let us focus on the terms in the solution which are

linear in A and contain the “resonant” frequencies™?.
Their source terms are found to kl\'é(f)= g—j’lmf\[1+0(m)]
andW®) = —Z7m\[1+0(m)]. From Eqs(2.52 the corre-
sponding solutions can be written
wP=—2x[1+0(m)], w?)=—3w{P[1+0(m)]. At this
approximation we have, when expandiw@% in powers of
m,

as

SFollowing Poincard48] (see also Ref18]), one can clarify the
iterative process by giving a new name to the parammateppear-
ing in the second term o#V, Eg. (2.46), leaving unchanged the
other occurrences af in L and «(m).

orders, byw_, alone:(X)=aw_q, (Y)=0.]
Focusing on the contributions at the synodic frequency
n—n’, we get, at this stagén agreement with Appendix A

S\r 3N 14
— =— —|1+ =m+0(m?) |cosr,
a . 2m 3
synodic
(2.593
16 ,
(8)6) synodic= — 3 1+ m+ o(m?) [sinr. (2.590H

A straightforward, though slightly more involved, calcu-
lation allowed us to compute by hand tl§m?) contribu-
tions to the square brackets on the right-hand sides of Egs.
(2.59. In particular, we found that the square bracket in the

range perturbation, Eq(2.593, reads H ¥m+ 28m?
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+0(m?3). In view of the large coefficients appearing in this Ca' 5,,=2.9427 10125, cm. (2.64)
expansion, which create large corrections to the lowest-order

effect(for the Moon,5'm=0.3773 and'3$*m?=0.1445), we  |n the case where one assumes the absence of violation of the
have decided to take the bull by the horns and to solve iterageak equivalence principle, i.ed,=0 in Eq. (2.10), the
tively the equations of motiof2.47) to a very high order by  regyit(2.64 gives

using the dedicated computer manipulation progranms

written by M. Moons(see[49]). Some details on the appli- (8\1) synodic= 13.10 cosr m, (2.69
cation of this program to our problem are given in Appendix

B. Let us quote here the form of the results. Repladifyy  if we use Eq(2.5) [16] as nominal value for the difference of

its definition(2.42), we see thad drops out when writing the  gravitational binding energies. Our final result is approxi-

range perturbatiod,r. Finally, we can write mately 60% larger than the lowest-order estimate first de-
_ rived by Nordtvedt in 196810] and recalled in Eq9.1.4),
(O\I)synodic= C(M) 81,8 cosr, (2.608 (1.5, and(1.8) above. On the other hand, it confirms the

recent finding of Nordtved25]’ that the interaction with the
. . orbit's tidal deformation significantly amplifies the synodic
(01 0)synodic= — C' (M) 8y =sinr, (260D range oscillation and substantiates it by providing a more
complete analytical treatment of this effect.

4

where
I1l. PHYSICAL DISCUSSION

3
1+ k§:1 Ckmk> = zmam), (2.613 A. Resonances and instability

We have seen in the previous section that the series in
powers ofm giving the amplitudes of synodic perturbations
1+k21 C&mk> =3mS(m). (2.610  (2.60 appear to be close to geometric seriesrifm,, with
B m¢=0.195 104. This suggests the existence of pole singu-
larities o (m,—m) ! at m=m=0.195 104 in those series.
Nordtvedt[25] predicted the presence of such a pole singu-
larity atm=0.2(i.e., for a sidereal period of about 2 months

3
C(m)zzm

C’'(m)=3m

The beginning of the power seri€&m) entering the syn-
odic range perturbation is

14 1061 2665 145 683 on the basis that for such a high orbit a determinant appear-
S(m)=1+Zm+—2 m?+ o4 m3+ 2E6 m* ing in his study as denominator of the synodic perturbation
vanishes. He also mentioned that for this orbit the driving
6729119 1 656 286 531 frequency (' in a nonrotating framebecomes equal, in his
5304 m°+ 110592 me+- ... truncated model, to the rate of perigee advante (dt). We

have substantiated these predictions, as well as obtained by
(2.62  several independent approaches a much more precise value

. ) . ) for m,, namely,
The coefficients of the serie8(m) andS'(m) are given in

Appendix B up to the powem!’ included. They are found to m,=0.195103966 . . . 3.1
grow fast. The ratio between two successive coefficients
ce/c_q or cplc,_, is found, numerically, to converge by making use, notably, of the work of Hen [52] on the
rapidly to the value 5.125477 ..., thereby mimicking three-body problem. To relieve the tedium, the details of our
a geometric series in - m/mg with Mg arguments are relegated to Appendix C. Let us summarize
=(5.125417...) '=0.19510398.... In thecase of our approach and our results.
the Moon, withm=0.080 848 93 5 . . .[50], this means that Our approach consists of putting together themerica)
the seriesS(m) and S’ (m) converge rather slowly, as geo- results of Haon[52] on the stability of the periodic orbits in
metric series of ration/m,=0.4144. The truncation to order Hill's problem, with some knowledge of the general structure
m’ is just enough to estimate the values of the series to thef Hamiltonian perturbations, and a more specific use of the
1075 accuracy. As discussed bEIOW, the method Of’ij.e analytical structure of the solutions of Hill's variational
proximants allows us to improve this precision. We find, forequations in presence of “forcing” terms, such as the ones
the Moon, coming from the potential§,, Eq. (2.29h, and F;, Eq.
(2.299, which are neglected in Hill's main problem. Our
S=1.622A..., S=17238..., (2.63 conclusions are that whem increases up to,, Eqg. (3.2,
there is a confluence of correlated singularities: on the one
so that the full coefficients appearing in the synodic effecthand, as found by Hen, the free perturbations of Hill's
(2.60 are, respectively, C=0.196 70 ..., orbit (those not driven by any additional fojctose their
C'=0.41805. ... Finally, using the recommended value stability, and on the other hand, all perturbations driven by
of the semimajor axis of the Earth orbit, perturbing potentials of any odd frequency in the rotating
a' =agn A=1.495 980 22X 10%m [51] (where A de-
notes the astronomical upithe amplitude of the range os-
cillation of the Moon, due to an equivalence principle viola- This reference quotes 2@10' for the numerical coefficient in
tion, is numerically found to be Eq. (2.64.
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frame [i.e., containing termsxexd*=(2k+1)i7]] develop
pole singularities<(mg,—m) 1. Note that, reasoning con-
versely, it is the existence of such a pole singularity, located retrograde
at a rather small value ah.,, which “explains” the slow
convergence of the perturbation seriesningiving the am-
plitudes of the various synodic effeciSee also the footnote 05
19 of Appendix C for the link with the bad convergence of
the perturbation series giving the perigee preceskion.

As indicated by Nordtvedt, the value=m, does corre-
spond to a simple 1:1 commensurabildys/dt=n’ or (in
terms of rotating-frame variablesc=dl/dr=1 (where o
|=nt+e—w is the mean anomaly Note, however, that,
contrary to what happens in the familiar case of a harmonic ,
oscillator, the basic frequency of the driving force does not -1 RS " Tz o o2
need to have a 1:1 resonance with the natural frequency of

the Orblt_l(perlgee precession to __generate poles FIG. 1. CoefficientC(m) of the synodic range oscillatiofde-

o(Mg—m) . ;_the odd commensurabilities 3:1, 5:1_’ etc"fined in Eq.(2.603] as a function om=n’/(n—n’). The solid line

generate similar poles. Therefore, both tfigpothetical  epresents the Padepproximant ofC(m), while the dashed line
equivalence-principle-violation effect§potential F;), and  represents the linearized approximatigm. The dot indicates the
many of the(really existing parallactic effectgpotentials actual lunar value.

F3,Fs,...) will have pole singularitieso(mg—m) 2.

Moreover, these poles are present not only in the synodismaller than 10% except very neam= — 1.] We plot in Fig.

terms (that we concentrate upon hereut in the terms at 1 the Padepproximant of the coefficier@(m) of the radial

frequencies 3{—n’), 5(n—n’), . ... Theconsequences of synodic effect,
this situation are explored in the following subsections.

1 T T v T v T T

3 Ng(m)
CPadém): EmDZ(m) ’

(3.2

B. Padeapproximant of equivalence-principle-violation effects . .
over the interval ¢ 1, m.). Let us note the two numerical

The analysis of Appendix C shows that the amplitudes of,ajues(using my,y.,,=0.080 848 93 5 . . . ; [50])
the synodic perturbation®.60 considered as functions of

m have a simple polé¢but no branch pointon the positive Cpadé Myoon) =0.196 707, (3.33
real axis aim=m,, Eqg.(3.1), and have no singularities on
the negative real axis down to=—1 (because of the sta- Cpadé —1)=—0.267 706. (3.3b

bility of the retrograde orbit§52]).8 This simple analytical

s . . In Fig. 1 the lunar valug€3.33 is indicated by a dot. The
behavior suggests that the numerical validity of the POWEI e o ce between the linearized approximatjon (dashed

s reprseniaioft. G can be efieny extende by (10 SPRET E ECned AT RS
, o 17 i trates the importance of nonlinear effects in the radial syn-
S(m), S'(m) truncated at orderm-’ as quotients odic perturbation.
N(m)/D(m), N’(m)/D’(m) of two power series truncated
at order m®. The explicit coefficients of the Pade
approximantSare given in Appendix B. We have done sev-
eral checks of the conjecture that these Papproximants Nordtvedt [25] has suggested that the resonance at
provide a numerically accurate representation of the exadh=m, could perhaps be useful to improve the precision of
solution S(m) on the entire interval £ 1,m,,). First, the equivalence-principle tests. The idea would be to put an ar-
real zeros of smallest absolute value of the denominatortficial satellite in an orbit close to the resonant orbit
D(m) and D’(m) are, respectively, found to be (m=mg). From our numerical estimates, the resonant orbit
0.195 103996 68. .. and 0.195 103 996.6. in excellent has a sidereal periodTo=m(1+m) *T' (where
agreement with Heon’s value(3.1). Second, we found that T'=2#@/n"=1yr), ie., T,=1.959 03 month. The corre-
the Padeapproximants truncated to orden’ numerically — sponding “bare” semimajor axisa,=(Gmy/n?)? is
agree all over the interval{1, m.) with those at order 1.6825%,(Moon). Though interesting, this suggestion is
m® within better than 1%[Actually, the difference is much not without difficulties. First, our results suggest that one
must be careful to use subcritical orbit (m<m,,) as super-
critical orbits are exponentially unstab{esal characteristic
®The valuem=—1 corresponds to very wide retrograde orbits Multiplier >1) and one needs many orbits to decorrelate the
0<—-n<n’. externally-driven synodic effect from tieearly degenerate
9t is to be noted that, thanks to the nearly geometric progressiofiatural orbital frequency for radial perturbations. Second, the
of the coefficients in many of the power series of Appendix B, afact that all the parallactic perturbatiofgroportional to
simpler (though less generalalternative to Padeapproximants m3®7a’k with k=4, i.e., tom?(a/a’)* 3] develop also pole
would be simply to factorize (£m/mg) 1. singularities atm=m,,, probably implies that the orbit be-

C. Better orbital tests of the equivalence principle?



4188 THIBAULT DAMOUR AND DAVID VOKROUHLICKY 53

comes unstable slightly below the ideal Hill val@®1).)°  For moderately large amplification factofg{m), this may
Moreover, the blow up of the parallactic perturbations am-be small enough not to limit the accuracy of an improved
plify already large synodic effects which are known only equivalence-principle test. On the other hand, the problem
with finite accuracy. One might worry that the finite accuracymight cure itself by the fact that the casparallactic effects

with which Newtonian parallactic perturbations can be ac+ill also be amplified, thereby allowing the ratim,/m;
counted for could limit the precision of an improved \hich enters their coefficients to become measurable with
equivalence-principle test based on ranging t0 a Neakncreased precision. But things might get complicated be-
resonant sate_lllte. To mves_tlgate this point we have '”C|“de‘3ause, as one approaches the resonance, several frequencies
the octupole-tide perturbatidfs, Eq.(2.29d, i.e., we added  ocome close to one another and one needs long data span to

the contributionWs;, Egs.(2.48), in our Hill-Brown iteration
program. Our explicit results are given in Appendix B. The
form of the radial perturbation is

2/3
a’'P(m)cosr,

(3.48

15 mz_ ml

m1+ m,
(01 )synodicz 1A
16 my+my

m;+my,+mg

P(m)=m" «(m)]~?"Q(m), (3.4b

215 ,
6™

230247737
138240 "

57599 _ 917401
960 M " 2880 M

14 206 254 151
1658880 M

22
Q(m)=1+ §m+

(3.40

resolve the various frequencies and measure separately their
Fourier coefficients. Moreover, the real motion of an artifi-
cial satellite beyond the Moon’s orbit will be very complex
because of the combined gravitational effects of the Earth
and the Moon. Finally, such a satellite would need to be
endowed with a very high-performance, drag-free system to
compete with the Moon which is, naturally, drag free to a
high precision.

In view of the difficulties associated with near-resonant,
lunar-type orbits, it is worth thinking about other
possibilities' Let us list some possibilities: artificidtirag-
free) satellites around outer planets would be interesting in
that the basic dimensionful scale factor in the synodic effect
(2.609 is a’, the semimajor axis of the considered planet
around the Sun. That would give a factor 5 for Jupiter and a
factor 10 for Saturn. In either case, one would need far
enough satellitegi.e., m big enough to have a coefficient
C(m) at least comparable to the lunar val@3). A second

The numerical value of the coefficient giving the scale ofpossibility is to use retrograde orbits which are always stable

S,r in EqQ.(3.49 is 6,r=28 716.3®(m)cosr km. The Pade
approximant of the serig®(m) is given in Appendix B. For

(in the Hill approximation. However, Fig. 1 shows that they
give, at best, a factor C(—1)=-0.267706. An

rough orders of magnitude estimates we can approximatequivalence-principle mission consisting of a pair of artificial

(when 0<m<m,,) P(m) by P(m)=m”3(1—m/m,) . By

satellites around an outer plan@ne prograde, one retro-

comparison, the coefficient entering the Nordtvedt effecigrade, with a laser link between the satellites, could improve

(2603 can be roughly approximated byC(m)
=3m(1—m/my) L. Let us define thamplification factorof
the Nordtvedt effect as the ratid(m)=C(m)/C(Myoon
whereC(m) is the coefficient in Eq(2.609. The amplifica-
tion factor in the synodic parallactic oscillatié®.43 will be
B(m)=P(m)/P(Myqon) = (M/m,)¥3A(m). For an artificial
satellite (n;<<m,), one expects from E¢3.43 that the main
uncertainty in the theoretical value &f.r will come from
the Earth/Sun mass ratiol, /ms. The current fractional un-
certainty on this ratio isgx 10 ° with eg=2 according to
the results of Ref[53] on m, (LLR data alone givesg=10
[27]). The corresponding uncertainty inés,r is
0.0073F¢B(m) cm. Therefore, the use of a higher orbit, am-
plifying the Nordtvedt effect by a factok(m), will entail a

by a significant factor upon the LLR experiment. In addition
to an improved scale factoa’, the advantage of being
around an outer planet is that the radiation pressure from the
Sun is much smaller, so that the requirements on the drag-
free system are much less stringent. Other advantages con-
cern the theoretical value of the parametgy, Eq.(2.3): on

the one hand, the composition-dependent contribution
61— 8, can be expectefhccording to Eq(3.7) below] to be
appreciably increased if one uses proof masses of Aigh-
material orbiting around dow-Z) outer planet, and, on the
other hand, as emphasized by J. G. Williafpsvate com-
munication, the z-dependent contribution t&;, will be
greatly increased in view of the much larger gravitational
self-energies of the outer planets.

correspondingly increased uncertainty on the synodic paral- Finally, let us note that, for simplicity, we have restricted

lactic radial oscillation:

8,1=0.0073(M/ Myoen) *>A(m)cosr cm.

3.9

0Unpublished calculations of Hen (private communicationfor
a small but nonzero mass rafio=mg/(my+m;)=10"° show that
the topology of the loss of stability of Hill's prograde orbits is
different from the ideal Hill case/=0) and the same as for ge-
neric values ofu+0. The difference takes place in a region of
fractional size 10° (~ 1*2?) which suggests that the actum), is
roughly 0.1% smaller than the val(8.1).

our attention to circular, coplanar orbits. If one considers
satellite orbits with arbitrary inclinations and eccentricities,
they will exhibit a rich spectrum of resonances to external
equivalence-principle-violating perturbations. For instance,

1 et us note in passing that, because of tidal dissipation, the
Moon itself is, kindly, slowly receding toward higher orbits. How-
ever, even under the overoptimistic assumption that the present rate
of energy dissipation continues to apply in the future, the increase
in the semimajor axis of the Moon will be onk23% in 6 billion
yr (which is the expected lifetime of the Sufb4].
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Ref. [36] has discussed the resonandésmall divisors”)  convenient measure of the basic coupling strength of the
exhibited by (circulan low-orbit artificial Earth satellites scalar fields to matter is the Eddington parameten more
with arbitrary inclinations[The location in the ,1) plane  generic tensor-scalar theories, whi¢lightly) violate the
of these families of resonances will be found in Fig. 3 of Ref.weak equivalence principle, one can defineediectiveEd-
[55].] We think that the circular, coplanar, high-orbit reso- dington parametery by neglecting the fractionally small
nances discussed here are the most promising ones for imemposition dependence of the body-dependent quantity
proved tests of the equivalence principle. Yag Measuring the scalar coupling between bodiesnd B
[38]. In the model of the latter reference, the effectivean
D. Theoretical significance of orbital tests of the universality ~ P€ defined as théuniversal scalar coupling strength be-
of free fall tween ideal bodies whose masses are purely of QCD origin.

) . [Let us recall that, in the real world, the masses of atoms are
As we mentioned above, the Lunar Laser Ranging experipredominantly of QCD origin, with small additional contri-
ment is sensitive, through the synodic eff¢2t60, to the  pytions due to lepton masses and electroweak interactions.
sum of two physically independent contributions More precisely, in the model of RdE38], we have, for an
Eg gAY, individual atom labeled by, the link
et @z) = §;,+4.45710 10,

(3.6

010= 01— 62+ 7

Sa=—0.943< 10" 5y(E/M),, (3.7

where E=Z(Z—1)/(N+2)¥? is associated to the electro-

The first contribution,,= 8,— &, is essentially equivalent Static interaction energy of the nucleus of the atom, and
to what Newton and Laplace had in mind when they pro.whereM denotes the mass @f in atomic mass units. We
posed orbital tests of the universality of free fall: bodies ofbelieve that the structure of this link betweef) and
different internal compositions could fall differently. The Y(EIM) A is generic in string-derived models, because it
second contribution, proportional 1@24[}_ ¥, was discov- follows from a basic physical feature of the massless scalar
ered by Nordtvedt who was considering deviations fromfields (“moduli” ) present in string theory, namely, that they
Einstein’s theory within the class of metrically-coupled theo-define the values of the gauge coupling constants. Even the
ries of gravity (see, e.q.[20] for a review. Actually, from  magnitude of the numerical coefficient should be somewhat
the perspective of modern unified theories, the class ofjeneric. Indeed, its analytical expressiﬁr%ag,a)\a/)\u3 (in
metrically-coupled theories of gravity seems quétet hoc  the notation of[38]) shows that it is determined by basic
For instance, string theory does suggest the possibility thg§pysical facts or assumptions: fractional smaliness of elec-
there exist long-range scalar fields contributing to the interyrgstatic nuclear contributiong§a~0.770< 10~ 3), unifica-

action between macroscopic bodies and thereby modifyingg, of gauge coupling constants (~1), and QCD confine-
the standard predictions of general relativity. However, a"ment{)\u :In[Ast,ing/(a.m.u.)]:40.8}.
3

the scalar fields present in string theory have composition-
dependent couplings for very basic reasfios a discussion . . :
of general theoretical alternatives to Einstein’s theory and thi¥/nére the dimensionless theory parameteis expected to
types of composition-dependent couplings they might exhibiP€ ©f order unity.[ x>0 denotes here the curvature of a
see[37)). couplmg function ar(_)und a minimum and should_ not _be con-
Recently, a mechanism has been proposed by which sonfésed with Fhe notatio(m) used abové.These links !nd|.—
of the scalar fields of string theory might survive in the mac-caté that, in the Earth-Moon casbut not necessarily in
roscopic world as very weakly coupled, long-range fielgsother cases involving bodies with stronger self-enejgibe
[38] (see alsd56]). In the model of Ref[38], the surviving gravitational binding contribution té;, is numerically neg-
scalar fields) modify the observational consequences of gendigible compared to the composition-dependent té In-
eral relativity in several ways(i) they violate the “weak deed, using Eq(3.7) and the compositional difference be-
equiva'ence princip'e“ 6A¢ O) because of the Composition_ tween the Earth and the MOC(he., the difference between
dependence of their couplings to mati@ they modify the ~ an Earth iron core of mass 082 and a silica-dominated
post-Newtonian[ O(1/c?)] effects in essentially the way Moon  [57,28), we find  8;,=0.32(Jsiica™ Ord)
which is parametrized by the Eddington paraméfegsand ~ =3.67xX10 "y, while the gravitational binding energy con-

y, and (i) they induce a slow time variability of all the tribution is 4.45x10 %= —4.45(40.8&+1)x 10 ‘%.
coupling constants of natur&, &, ayyeaw - - - - Thepoint we From the point of view advocated here, the conclysmn is that
want to emphasize here, because we think it is generic, isLR data give us a very precise test of theakequivalence
that all those modifications of general relativity are relatedprinciple. The loss of a Nordtvedt-type direct test of the com-
because they derive ultimately from the couplings of thebination »=48—y is compensated by the theoretically ex-
same field. In particular, the first term on the right-hand sidepected link §;,= 8,,=3.67x10 ®y which gives an ex-

of Eq. (3.6) is related to the second. The results of R88]  tremely good limit on the effective Eddington parameter of
about metrically-coupled tensor-scalar theories show that the considered scalar model. More precisely, the observa-

We have also the model-dependent Iiﬁkz—lO.Z;&,

12This comes from a feature of their couplings which is deeply e neglect here contributions proportional to the rattesryon
rooted into the structure of QCD and the consequences it has for theumbej/(mas$ and (neutron exceg&mass$ which tend to be sub-
mass of atoms; see pp. 550—-55388]. dominant, even for moderate differenceq 38|.



4190 THIBAULT DAMOUR AND DAVID VOKROUHLICKY 53

tional limit!* &= (—3.2+4.6)x10 3, recently derived APPENDIX A: TRADITIONAL LUNAR
from LLR data[27,16), translates into the following obser- PERTURBATION THEORY

vational constrairt on Y As a check on the lowest orders of the Hill-Brown calcu-

lations presented in the text, we have also investigated the
y=(—-0.9+1.3x10 7. (3.9 mixing between equivalence—princ!ple—violation effects a}nd
tidal effects by means of the traditional lunar perturbation
theory of de Pon'tEDuIant[26,42A. The equations of motion
The recent laboratory tests of the weak equivalence principleorresponding to the Lagrangin= 3v?+ u/r + R read
give comparable results. Using the experimental limit

2
Sge cu=(—1.922.5)x10 2 [28] and the theoretical for- d—;+,u—rg= ﬁ. (AD)
mula (3.7) (which yields 6ge ¢, =2.41x 10 °y), we find dt r= or

Here,r=x,,=X;—X, is the position vector of the Moon with
y=(—0.8=1.00x10". (3.9 respect to the Eartin an inertial, nonrotating, coordinate

system, u=G(m;+m,), and R=R;+R,+Rs+--- is

the total potential perturbing the Keplerian motion of the
Impressive as these limits may seem, R88] gives a mo-  Moon around the EartliThis corresponds to Eq&.21) and
tivation for pushing equivalence-principle tests further be-(2.22.] We consider the coplanar problem for which it is
cause this reference estimates that a natural range for thgough to solve for the radius=|r| and the longitudey
coupling parametery is 10 < —y=<10°. [Note, how- (polar angl¢. Decomposing the acceleration into radial and
ever, that if the theory parameteris of order 1/40(which  longitudinal components leads to
corresponds, in the notation gB6], to xk~1) larger values

of — 7, of order 107, are expected, in agreement wi6].] F—ro®=—pur 2+ 4Rlor, (A23q)
In this connection, let us mention that the LLR CERGA team 5.
plans to improve the precision of the ranging down to the d(rv)/dt=dR/dv. (A2b)

2—3 mm level for normal pointgC. Veillet (private commu-

nication]. Extracting ;, at this level will necessitate to im- . PR ]
prove the modeling of the solar radiation pressure effect A2b) but replaces the radial 0r6.2a) by the ‘virial" equa

which are currently believed to contribute a synodic rangeIon dealing with the second time derivativerdt The basic

oscillations of approximately 0.3 chR5]. If this can be equations are then written as

done, the LLR experiment will reach the Ilevel 1 g2 4 ou

51,~5%10"%* corresponding to the level~1078. It EW(rZ)—T+a—=P, (A33)
seems that significant progress in testing the equivalence ¢

principle will require space missions: either a low Earth or- h 1 IR

biting artificial satellite dedicated to testing the weak equiva- v — _g = _zf dt—, (A3b)
lence principle, as the STESatellite Test of the Equiva- - r dv

lence Principlé mission, or, possibly, some type of orbital
test such as the one suggested in R2b] and the ones
suggested above.

de Ponteoulant's method uses the longitudinal equation

wherea, and h, are some integration constants and where
the transformed source term in the radial equation is

P= aR+2f dt d R= 8R+2R+2 ’fdtaR
= dt/, = n v’
(A4)
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, p
+ + —. A
YThis was obtained from partial derivatives of the numerically Pp (p Z)Rp 2n J dt dv (A5)

integrated equations of motion, and therefore independently of
theoretical estimates of the value of the coeffici@{m) in Eq.  Note that the use of the suffix is consistent with the nota-
(2.603. tion R;,R,,R5 of Egs.(2.22.

e do not take into account here the theoretical constraint that First-order perturbation theory is very easy. Let us con-
<0 in all scalar models. sider a general ternRéq)=Arpcosq(v—v’), perturbing the
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zeroth-order (circulan solution r=a, vgo=nt+e (with r=a+ 8% + &%r + o'r, (A10a)
zeroth-order integration constaras=a, h,=na?, and the
link na®=pu). Inserting the perturbed solution=a+ ér, v=nt+e+ %0+ 6, (A10b)
v=uvg+ v into Egs.(A3) (with perturbed integration con-
stantsa,=a+ da, h,=h+ &h) yields where the superscripts ofi indicate the values of the fre-
quencyq. To sufficient accuracy for our purpose we have,
T ffici f h
d? . from Egs.(A8),
W(&r)Jrn25r=pAapflcos{q(n—n’)(t—to)]Jrn25a, .
(A6a) O+ 8%r=—m?a g T cos2r +0(m®), (Alla
d o) 2 o= _ag? ' 11
qr(0v)+ 25 0=y Adt Feoga(n—n)(t-to)] o= mPsin2r+0(m), (Al1b)
+a~26h, (A6b)
1, _ ~firstorder p—1
where or=C, (n—n’)za cosr, (Allo
, , A
~ 1., _ ~firstord —2qj
p=p+2+2-——=p+2+2m. (A7) §lv=C,~" ermap sinr, (A11d)
i — ! 1 W|th
Here, as in the text, we us@=n’/(n—n’) as the small
expansioq parameter of p(’erturbation theory. The solution of ietorder PH2T2M  p+2 2-p ,
Egs.(A6) is [with 7==vg—vo=(n—n")(t—tg)] C, “omimZ - 2m + 22+ p) m+0(m?)|,
or= %Aa‘)*lcosqﬂr da, (A8a) Az
n“—q<(n—n’) Cfirstorder__2(p+2+2m)(1+m)
v B 2m+m?
1 2pn 1
= — — P~2gj +2 4+
ov g(n—n’)|n°-g’(n—n’)> n—n’ Aar “singr S p2m +2(2+pp)m+0(m2)}.
+(8n)t+ e, (A8Db) (A12b)

where sn=—2na sa+a 26h. Equations (A6)—(A8)  Note that the constant termm?2a/6 in Eq.(Alla depends
have been written assumimng# 0. They take a different form on Sa=a.—a and must be determined by having recourse to
whenq=0. It is traditional[42] to keepn fixed throughout Eq. (A2a). Note also that the small denominator present
the approximation procesand therefore numerically equal when  g=1, n2—(n—-n")2=(n—-n")q(1+m)2—1]
to the observed mean motipnand to definea by =(n—n’)?[2m+m?], causes the synodic effects to be of
na®*=y. Then 6h is computed in terms oa so that orderO(m~'A) instead of the usual ord€(A) valid when
6n=0. Finally, one must make use of the original radialq# 1. One of the effects of this small denominator is to
equation(A2a) to determinesda. have a simple, approximate link between the radial and
We are especially interested in the case where the perturliengitudinal synodic ~oscillations:C'st °"d¢'= — pCfirst order
ing potentialR is the sum of the quadrupole tid®,, Eq.  x[1+0O(m)]. Another effect is that only thizadingterms
(2.26b, and of a term with frequency=1: in Egs. (A12) are correct. Thed(m) fractional corrections
are modified by higher iterations as we are going to see.
When proceeding to the next iteration, several effects
must be taken into account. On the left-hand side of Eq.
(A9)  (A3a) one must keep the terms of ordefrj?, while on the
right-hand side one must include the change of the
In the case of the equivalence-principle-violating termsource termP(r,v —v’) induced by the first-order solution
(22631 the perturbing term in COS&U’) has p=1, while (All) This leads to the fOIIOWing equation fdir=r—a:
the octupolar tidg2.269, for which p=3, contains a per-

1 3
R=R,+R,=n"?r? Z+Zcost—v’) +ArPcogv—v’).

. . 12 . 2
turbing term in cosz(—v_) (that we focuzs onand a term in al =5 +n?|6r=P(rg,vo—vp)+ 6Pes, (A13d)
cos3¢—v'). At the fractional orde©(m-) beyond the first- dt
order solution(A8), the cos3{—v’') term mixes with the )
qguadrupole tidesccos2¢—v') to generate the frequency _ 2 1d 2
q=1. As we work here only at the fractional ordé{(m) OPe= P+ n 2 dt? (). (A13b)

beyond the first-order solution, we do not need to study the
effect of the cos3(—v') term. The first-order solution corre- When computing the synodic effects with fractional accu-
sponding to Eq(A9) reads racy 1+ O(m), the computation obP is simplified by sev-
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eral circumstances. Because of the amplificatim*A) Sr ,[ @ p-2
of the first-order synodic effects, one finds that it is enough — ~CiBm| 7| cosr, (A183
to compute in Eq(A5) the change of the first contribution,
(p+2)R,, for p=2 and under the synodic variatiossr, a\P-2
&%v. This yields stv=C,Bm? = sinr, (A18b)
(5P)synodic: 4( 5R2)synodic where
J J
_ 1, 1. 7 9 )
o rar+5 U(?v) Cr: 1+§m+o(m2)}crrstorder
><n’2r2[1+3c032{v—v’)]] _2+p 10+4p 5
synodic T 2m 2+p m+O0(m*) |, (A19q)
=11n'2a’Bcosr 1+ 0(m)], (A14)
C =1+ gm+ O(mZ)}Cfirst order
whereB=(2m) Y(p+2)(n—n’) "2AaP~2 denotes the lead- ’ 2 ’

ing value of the fractional synodic range oscillation
(8*r/a=Bcosr, 6*v = — 2Bsin7). We need also to extract the —_
synodic piece of §r)?= (5% + 6 + 6°r)? coming from the 2m

mixing  between &%+ 4% =-m’a(z+cos2)  and The two cases of interest arg@) a hypothetical violation

1, . 2 ~ 453272 i-
or=aBcosr: (1) 5ynoqic~ — 3a” M Beost1+O(m)]. ~ Fi of the equivalence principle in whidltomparing Eq(A17)
nally, the synodic piece of the second-order effective SOUrcEith Eq. (2.263]

term for de Ponteoulant’s radial equation@13) is obtained

2+p 11+5p

2+p

m+0(m?)|. (A19b)

as p=1, Bey=0u2, (A20)
1 . and, (ii) the octupolar tide(“parallactic effects”, Eq.
51Peﬁ:(5p)synodic+ n2+§(n_n )2 (5r2)synodic (2.2609, with
=9n'2a’Bcos 1+ 0(m)]. (A15) Gm' [ r)\3

1
Ra= g(xz_ Xl)_a/ ¥
The corresponding solution reads
X[3cogv—v')+5cos3v—v')], (A21)
second order n’'?2 9 . .
»—————Bcosr= - mBcosr. whose synodic piece has
n“—(n—n') 2

Str

a

(A16) 3

p=3, ﬁparzg(XZ_xl)- (A22)
When turning to the longitude equatigA3b), one finds

also some simplifications: the change of the source term The results(A18)—(A22) agree with thgmuch more ac-

«[dtdR/dv is of orderm®>xm~IA=0(mA). The corre- curat® Hill-Brown-type results given in the text and in Ap-

sponding term in the solution is not amplified by a smallpendix B.

denominator and is therefore negligible compared to the pre-

cision mxm~'A=O(A) we are aiming for. It is, APPENDIX B: HILL'S EQUATIONS—MORE ON
therefore, sufficient to integrate the equation THE ITERATIVE SCHEME OF SOLUTION
d/dt(sty)secondordel —ong1( strysecond order The final re- AND NUMERICAL RESULTS

sult can be very simply expressed by saying that the second _ _ o _ _ .

iteration leads to multiplying the first-order synodic pertur-  In this appendix, we explain in detail the iterative scheme
bations (A11c) and (A11d) by the common factor 4 ¢m we employed for solving Hill's equation&.47) with the
+0(m?) source termg2.46), and also with the parallactic perturba-

In conclusion, the mixing between the quadrupole tidet'on (2.48. We also give tables of the obtained solution for

: . ) several physically interesting quantities. Obviously, one can
R, and some synodic-frequency perturbation poten(ial : . : ) ;

: d : o envisage several iterative methods for solving the considered
which we factorize an effective gravitational mass of the . . :
Sun,Gm' =n'2a’3) equ_atlons. We do not cla|m_that_the scheme we aglopted_|s the

' k optimal one, but we found it suitable from the point of view
b of memory and computing time requests. Thanks to our use
—| cogv—v") (A17) of the dedicated algebraic manipulatanivs, we could ob-
a’' ’ tain the solution to a very high order in the formally small

parameters. In what follows, we shall present the solution for

leads, when neglecting nonlinearities in the dimensionlesthe perturbation of Hill's variational orbit related to the
parameterB (which should not be confused with its post- equivalence principle violation. Exactly the same scheme ap-
Newtonian homonym to the synodic oscillations plies in the case of the parallactic perturbations.

Gm'

( Rp)synodic: B “a
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Keeping the notation of Sec. Il D, notaklyfw,w) for the
linear operatorf2.46), we have to solve

_ ~ 3 3 ._ _
L(w,w)=—N\{ - Eng‘z— §m2W§‘2+ xk(M)Q(w,w),
(B1)
where
_ _ 1 3_
Q(w,w)=(1+w) YA1+w) 32—1+ SWFSW. (B2)
The nonlinear functior can be written as
Q(w,W) = X xi[ e+ (2k+1)WH]
k=2
+ 2 (2k+ 1) xxw'wk. (B3)

ik=1

—-1/2
Xk= k

—-3/2
(2k+ 1)Xk:( k )

are binomial coefficients.

Here,

and

As in Sec. Il D, we look for a formal power series solu-

tion of Eq.(B1),

w=wD+w@ W@ 4. .. (B4)
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L(wD,wh)y=— )A\g”l— Emzé«—z’

> (B7)

LW, w?2)=— gmz\,—v<1>§—2+ KQ2 (WD),

L(W(3),VTI(3>) — ngV_V(2)§*2+ KQ(?’)(W(l),W(z)),

Lw® W)= — ngVTﬂk*l)g*Z

+KQ(k)(W(l),W(2), o ,W(kfl)),

It is easy to verify that the generic form of the terms in the
right-hand sides of EqgB7) readsW, K+ W_, ¥ as pre-
sented in(2.50. The unique inversion of the linear operator
L on the left-hand sides of Eq8B7) is given by formulas
(25) and (2.52. Notice also that suppressing the
equivalence-principle-violation terfr\=0 in (B7)], one re-
covers a system of equations for constructing the usual varia-
tional periodic orbit. )

In the preceding scheme, we consideand m? as two
comparable “small” parameters. However, in practice, the
order of thex parameter associated with the studied violation
of the equivalence principle is numerically much smaller
than m? (which can be as large as oné\s a result, we
restrict the generality of our solution by keeping orhe
first orderin the parametek. This truncation allows a clear
separation in the interpretation of the odd- and even-power
terms in thel variable of the final solution fow (andw): (i)
the even-power terms<(¢?') never contain the perturbation
parametei and fully reconstruct Hill's variational solution,

and similarly for the complex conjugate. The superscripts onii) the odd-power terms(¢% 1) are all of the first order in
the consecutive terms ifB4) refer to corresponding orders \ (but they are coupled to the “background” variational

in the combined formal small parametex+ m?). Keeping

terms through an infinite series of powersrof). We thus

track of the orders in this formal small parameter, we decomsimultaneouslyobtain Hill's variational solution and its.

pose the nonlinear sour€g as

Q(w,w)=Q@+Q®+..., (B5)
where the individual terms include symbolically
QW= > (coefficieny(w@)i(wPhk, — (B6)

ja+kb=i

For any particular value dfin (B6), Q) is given by a finite

perturbation by filtering the various powers of This is a
particularly important circumstance, because the series giv-
ing the variational solution enters the definition of several
studied quantities such as the radial or longitudinal perturba-
tions of the lunar orbit by the equivalence-principle-violation
terms[see Egs(2.58)].

Once the iterative scheme is set up and the numerical
program debugged, we can obtain the solution of our prob-
lem up to an arbitrary order. The limits of the solution are
then given mainly by the computer power. A minor limit

number of terms which depend only on the knowledge ofcomes from the fact that theiNniMs algebraic manipulator
w® for a<i. Although the procedure of breakir@(w,w)  works with double precision real coefficients (16 dig[49].
into a sum of equal-order tern@@") might seem laborious, it During the manipulation of the series, one thereby accumu-
is relatively easy to be programed using a well suited algelates round-off errors. However, we have checked that this
braic manipulator such asiniMs. One can introduce a for-  restriction is not significant for our wor.
mal index which conserves the order of a particular term and
manipulate it as any other variable.

The heart of our iteration scheme consists of the follow- 8e have performed a lower order solution in using the modified
ing infinite system of differential equations version of the distributedaniMvs manipulator which accepts the
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; j labels the rows and the columns.

2 3 4 5 6

-6 - - - - 0.005208333333333333
-4 - - 0.0000000000000000 0.03593750000000000 0.1245833333333333
—2 —1.187500000000000 —1.666666666666667 —1.194444444444444 —0.5185185185185185 —0.8265365788966050

0 - - 0.6210937500000000 —0.6770833333333333 —0.689234111111111

2 0.1875000000000000 0.5000000000000000 0.5833333333333333 0.30555555555555961615849247685185

4 - - 0.0976562500000000 0.4182291666666667 0.8484722222222222

6 - - 0.06778971354166667

In the rest of this appendix we shall present tables of the Some general properties of the presented results, already
numerical coefficients achieved by the previous algorithmcommented upon in the main text of the paper and in Appen-
for different series introduced in the main text of the paperdix C, are(i) a fast(“geometriclike”) growth of the coeffi-

and related to physical quantities.

Let us start with our solution for the variational curve the r, (=cy_;/cy)

()\ 0). Tables | and Il give the coefﬁuenlw,, of the
double series expansion oW: w=ZZwj,’ mK, where
j=0,£2,%4,...,k=234,..., and|j|<k (] Iabels the
rows andk the columng Contrary to the method of Ref.

[18], the {-independent term is not fixed to unity. However,

because of the choice of the fiducial semimajor axigle-
fined in Eq.(2.36), it starts only at the powen®.

cientsc, of the series with a surprisingly rapid approach of
ratio to the m, value of about
0.195103986..., and(ii) a very substantial contribution
of the nonlinear termsk=1) in the series for the lunar value
of Hill's parametermy;oon-

Tables V and VI give the coefficients of the power series
S(m) andS’(m) related, respectively, to the radial and lon-
gitudinal perturbationgwith synodic periodicity of the lunar
orbit due to a hypothetical violation of the equivalence prin-

We then give the lunar orbit perturbations due to a hypo-CIp|e The coefficients of the Pad#pproximants of those
thetical equivalence-principle violatiofterms linear in). series are given in Table VII. More precisely, we denote
Table Il gives the coefficients, of the series in powers Ng(m)=35am* and Dg(m)=3=5b,m¥, the Padeapproxi-

of m giving w_, i.e., the coefficient ot " in the Laurent mants for the S(m) series [see Eg. (3.2], and

expansion ofs,w({), after factorization of the leading term Ng(m)= >8a;m* and D4(m)==8b,m¥, the Padeapproxi-

2(Mm) [see Eq(2.56D]. The second colummy,, gives the mants for theS’(m) series. The denominator polynomials

numerical value ofcm* (in %) for the lunar orbit Dg(m) and Dg(m) have 0.1951039967... and

(M=mypon=0.080848935...). Thelast column,r,, 0.19510398 6. . ., respectively, as real roots.

gives the ratioc,_, /c, of the successive coefficients of the  Table VIII gives the coefficients of thg'(m) series yield-

series(the same structure is conserved also for Tables IV-Ving the equivalence-principle-violation perturbation of the

and VIII-IX). lunar orbit with one-third of the synodic peridtB ). This
Table 1V gives the coefficients, of the series in powers series is defined by

of m giving w,, i.e., the coefficient of in the Laurent

expansion ofs,w, after factorization of the leading term (611 ) third synodic= C"(mM) 81,2 cOs3r, (B8)
—3(\m) [see Eq(2.563].
with
51
quadruple precisiof32 digits for the coefficients of the series and C’"(m)= —m3 1+ > cf ) =_—m3S’(m). (B9)
compared it with the double precision one. k=1 32
TABLE Il. Continuation of Table I.
7 8 9 10 11
—-10 - - - 0.002728271484375000 0.02314830588154192
-8 - 0.003743489583333333  0.02753602458235899 0.09640929637552359 0.2138120808825399
—6 0.03477027529761905 0.1040162627551020 0.1880280591858106 0.2403927412241086 0.2416131234195372
—4  0.1956215277777778 0.2153863326461227 0.2955465183221726 0.3769043026659733199168976723571
-2 1.205252137988683 7.122740269204389 15.70605739258259 19.78110897697562 14.66018287215882
0 —1.605902777777778 —0.5700574333285108 0.3975170245386445 1.670582431118184 7.457045029767965
2 —1.034723427854938 —3.070661490483539 —6.516200630679869 —9.530344734021654 —7.910677339637028
4 1.038887731481481 0.7041097601996523—0.5710030937052194 —4.063905605879704 —11.57027457856626
6 0.3898297991071429 1.087330552012472 1.926893073875549 2.301395728392179 1.149297956477343
8 - 0.05397033691406250 0.3869401996638499 1.360005033209030 3.095895579274965
10 - - - 0.04656556447347005 0.3988932608444074
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TABLE IlI. Coefficients of m¥ in the lunar orbit perturbation
w_ ;. The mark< signifies that the value is smaller than 0.001%. perturbation, with synodi¢" 7) period, of the variational curve
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TABLE V. Coefficients of theS(m) series yielding the radial

due to an equivalence principle violation.

k Ck Pk Mk
K Ck Pk Mk

0 1.000000000000000 - -

1 5.111111111111111 41.323 0.1956521739 0 1.000000000000000 - —

2 25.52777777777778 16.686 0.2002176279 1 4.666666666666667 37.730 0.21428571429

3 129.5277777777778 6.845 0.1970834227 2 22.10416666666667 14.449 0.21112158341

4 663.1076388888889 2.833 0.1953344679 3 111.0416666666667 5.868 0.19906191370

5 3400.509837962963 1.175 0.1950024174 4 569.0742187500000 2.431 0.19512686221

6 17434.56978202160 0.487 0.1950440923 5 2920.624565972222 1.001 0.19484675483

7 89366.97811374742 0.202 0.1950896198 6 14976.54921694155 0.418 0.19501318519

8 458049.7173103071 0.084 0.1951032273 7 76767.66017493731 0.173 0.19508930170

9 2347711.432406117 0.035 0.1951047778 8 393469.7706768071 0.072 0.19510434065
10 12033105.92287766 0.014 0.1951043602 9 2016707.919972300 0.030 0.19510498609
11 61675313.45886662 0.006 0.1951040902 10 10336561.13767503 0.012 0.19510433819
12 316115045.4115870 0.002 0.1951040115 11 52979731.33709500 0.005 0.19510406861
13 1620238694.871019 0.001 0.1951039970 12 271546096.6185635 0.002 0.19510400627
14 8304487501.579596 < 0.1951039958 13 1391801807.779853 0.001 0.19510399764
15 42564415192.16274 < 0.1951039962 14 7133640668.991231 < 0.19510399701
16 218162702733.8958 < 0.1951039965 15 36563272849.28028 < 0.19510399680
17 1118186744062.939 < 0.1951039966 16 187404017729.6833 < 0.19510399666

17 960533976540.2227 < 0.19510399664

Note that the third-synodic effe¢2.8) is O(m?) smaller than
the synodic effect(2.60. For instance, if we assume
61,=0, the result (2.9 gives numerically
(6\T) third synodic=6.627 cos3r cm for the lunar orbit. Al-
though there is probably no practical use of this higher fre
guency excitation(and of the others with frequenciesr5
77, ...), twopoints are to be mentioned) a significantly
smaller amplitude of the effect, artii) the persistence of the
pole singularity atm=m,, for these odd multiples of the
basic synodic frequency as discussed in Appendix C.
Table IX lists the coefficients of th@(m) series giving
the radial parallactic inequality of the Iunar motion

[Q(M)=1+3,-,q,mK] as defined in Eq93.4) of the text.
Similarly to the treatment of the equivalence-principle-
violation lunar perturbation, we improved on our solution by
‘using Padeapproximants. Table X yields the coefficients of
the corresponding polynomials. We also computed the corre-
sponding lunar parallactic inequality in longitude. As a par-
tial check on our results we have compared the latter with the
result by Deprit, Henrard, and Rofb8]. When substituting

the current recommended values of the mass constants and

TABLE VI. Coefficients of theS’ (m) series yielding the longi-
tudinal perturbation, with synodi¢* 7" ) period, of the variational
curve due to an equivalence principle violation.

TABLE IV. Coefficients of m* in the lunar orbit perturbation
w; . Notation as in Table IlI.

K Ck Pk % K Ck Pk Mk
0 1.000000000000000 - - 0 1.000000000000000 - -
1 6.000000000000000 48.509 0.1666666667 1 5.333333333333333 43.119 0.18750000000
2 29.62500000000000 19.365 0.2025316456 2 26.39583333333333 17.254 0.20205209155
3 147.5000000000000 7.795 0.2008474576 3 132.9166666666667 7.024 0.19858934169
4 749.9427083333333 3.204 0.1966816910 4 678.3172743055553 2.898 0.19595058493
5 3843.245659722222 1.328 0.1951326495 5 3478.588686342593 1.202 0.19499783834
6 19711.47459129051 0.551 0.1949750457 6 17838.85192117573 0.498 0.19500070418
7 101057.1821729118 0.228 0.1950526837 7 91447.83453394253 0.206 0.19507134326
8 517989.9317152261 0.095 0.1950948773 8 468721.9555645895 0.086 0.19510038616
9 2654938.425605692 0.039 0.1951043108 9 2402405.984973695 0.035 0.19510522305
10 13607759.81112155 0.016 0.1951047389 10 12313419.50072995 0.015 0.19510469735
11 69746091.35545381 0.007 0.1951042639 11 63112018.54675127 0.006 0.19510419385
12 357481499.9590677 0.003 0.1951040581 12 323478806.4318246 0.003 0.19510402936
13 1832261194.517921 0.001 0.1951040065 13 1657981435.159388 0.001 0.19510399789
14 9391202741.857013 < 0.1951039973 14 8497936880.202027 < 0.19510399507
15 48134343317.40093 < 0.1951039963 15 43555934597.05303 < 0.19510399579
16 246711211454.4727 < 0.1951039964 16 223244707500.3778 < 0.19510399635
17 1264511316090.325 < 0.1951039966 17 1144234415604.679 < 0.19510399657
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TABLE VII. Coefficients of the Padapproximants of order eight of the radial and longitudinal pertur-
bation series, with synodi¢ 7" ) period, of the variational curve due to an equivalence principle violation.

k ay b, ay by

0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 —4.679659654425508 —9.346326321092175 —2.948114664716526 —8.281447998049859

2 9.706375765630793 31.21839859739427 2.472472675594219 20.24436199852680
3 —12.09649460259615 —62.23126666796116— 0.035120215085467699— 22.32599642537073

4 9.264485113438459 78.37781038863183—0.8074761600241968 6.322888291078106

5 —0.8206525542778040—59.42770492795888 1.129701196880901 4.768342316076093

6 —4.562346877625465 5.529574170471975 1.916287015273362 13.88318783117331
7 0.6450458113816286 30.28114298289518 — 3.678767273115525 —38.01361281338056

8 0.9269455883562498 —30.33613801897244 —3.906968891383218 34.97077854522613

the Earth semimajor axis, we obtain 1238 for the ampli-

of a two-dimensional Poincammap: this is the application

tude, in the main lunar problem, of the parallactic inequalityconnecting two successive intersections of the trajectory in

in longitude when truncating our series to the powef.
This value is to be compared with 12201 reported in Ref.

phase space with a two-plane transversal to the of®ite
works, say, in the three-dimensional reduced phase space

[58]. We believe that the origin of the minor discrepancy corresponding to a fixed valye of the Jacobi integral; 66¢
between those results lays in the slightly different values ofor a catalog of such Poincaraaps in the case of’the Hill
the astronomical constants employed by Deprit, Henrard, angroblem) For infinitesimal perturbations, the Poincarap

Rom at the end of the 19605.

APPENDIX C: CHARACTERISTIC MULTIPLIERS,
COMMENSURABILITIES, AND INSTABILITY

Let us first recall the basic concept of characteristic mul-multipliers are either

reduces to a linear transformation of the plane, leaving fixed
the origin which corresponds to the reference periodic orbit.
The two eigenvalues)\(,\,) of the infinitesimal Poincare
map (a 2X 2 matriX are the characteristic multipliers. From
the Hamiltonian nature of the dynamics, it follows that these
of the form e*,e™'*) or

tipliers. The small perturbations around a periodic orbit in(ee® ee”#) with e=*1 [61]. The first case means gener-
the restricted three-body problem can be described in termally (apart from the exceptional cases where27/3, or

TABLE VIII. Coefficients of theS’(m) series yielding the ra-
dial perturbation, with third-synodi¢‘3 ") period, of the varia-
tional curve due to an equivalence principle violation.

k Ci Pk I
1 1.000000000000000 - -
2 6.450980392156863 52.155 0.15501519757
3 32.60457516339869 21.312 0.19785506665
4 163.0646514161220 8.618 0.19994876192
5 828.6388478122731 3.540 0.19678615340
6 4240.758469846889 1.465 0.19539873674
7 21736.94075865620 0.607 0.19509454053
8 111428.4766430605 0.252 0.19507527531
9 571159.5105168029 0.104 0.19509169434
10 2927510.871437882 0.043 0.19510073083
11 15004916.03283528 0.018 0.19510344910
12 76907280.99332377 0.007 0.19510397246
13 394186033.1895487 0.003 0.19510402327
14 2020389145.708269 0.001 0.19510401450
15 10355446785.91400 < 0.19510400541
16 53076547791.36041 < 0.19510400011
17 272042338525.2278 < 0.19510399771

TEor completeness, let us mention that, when including the ef-

fects ofe, e’, andl, the amplitude of the parallactic inequality
becomes 1248812[59].

wherea=27/4 and some inequality is not satisfjettiat the
periodic orbit is(quasijstable. The second case means that
the periodic orbit is unstable. A useful quantity for studying
the possible loss of stability is half the sum of the multipli-
ers: a=3(\;+)\,), which is either cos (in which case
|a|]<1) ore coshB (in which casgal=1). The loss of sta-

TABLE IX. Radial perturbation of the variational curve due to
parallactic terms with synodi¢' 7" ) period.

k Ok Pk Mk
0 1.000000000000000 - -
1 4.400000000000000 35.574 0.2272727273
2 13.43750000000000 8.783 0.3274418605
3 59.99895833333333 3.171 0.2239622216
4 318.5420138888889 1.361 0.1883549288
5 1665.565227141204 0.575 0.1912515996
6 8563.762388478974 0.239 0.1944898926
7 43904.44785527987 0.099 0.1950545516
8 225048.4315368017 0.041 0.1950888862
9 1153503.664577334 0.017 0.1950998843
10 5912167.013677382 0.007 0.1951067454
11 30302311.46598434 0.003 0.1951061397
12 155313062.3650712 0.001 0.1951047195
13 796051992.0171008 < 0.1951041690
14 4080141094.383684 < 0.1951040353
15 20912646936.88289 < 0.1951040013
16 107187180609.8796 < 0.1951039930
17 549384862217.9330 < 0.1951039935
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TABLE X. Coefficients of the Padapproximants of order eight of the radial and longitudinal perturba-
tions of the variational curve due to the parallactic terms with syn@dit) period.
k ay by ay by
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 —3.053328223352915 —7.453328223352915 —2.946473061279729 —8.146473061279729
2 —3.844661609919813 15.51248257283301—-4.603878697382873  20.29528122127172
3 5.918301506191725 —22.18148214630207  7.845106685708085—30.39194483230758
4 3.507936007628144 21.30738850763350 1.021511391279373 33.43540948735330
5 13.74620469848220 —4.042478627609922 15.68678071178852—19.25251169116597
6 2.377354880592943 —26.42346152043986  0.230401974593673—10.98565280233657
7 —25.90435993273240 19.02504889156572—27.85325375859802  18.16643796715844
8 —40.39610428715375 —28.47566056885599 —36.65716185443595 —10.99350748347175
bility can occur(apart from the above-mentioned exceptional dl dw
case¥ only whena crosses the values 1. The stability of c=g, - (1+m{l-——— (C3

all the periodic orbits in Hill's problem has been studied by

Henon [52]. We are interested here in the familieg”“and

“f" of periodic orbits which correspond, respectively, to pro-

grade and retrograde lunar-type orbits.nide found that ret-

rograde orbits are stable for all values of the Jacobi integrat!)y g2mic

(wherel =nt+ e—w is the “mean anomaly}. On the other
hand, the quantity c is directly linked to the characteristic
multipliers. Indeed, whemr— 7+ 27, q(7) gets multiplied
, while q(7) gets multiplied bye 2™¢. Therefore,

(i.e., =1<m<0), while prograde orbits are stable only for {na half-sum of the multipliers is simply

close enough orbits, @m<m,, with*®
Me=0.195 103 966 . . .. (C1)

For this valuea crosses the value- 1.

a=cog27cC). (CH

By using the perturbative series giving the perigee preces-

sion, n Y(dw/dt)=32m?+3Im3+... (which has been

Let us translate this result in terms of the perigee precessomputed to high accuracy in R¢b8]; see alsd19]), one

sion of a perturbed Hill orbit. Perturbations of Hill's orbit
can be described in terms of tlisoenergetig normal dis-
placemenig= (X38Y — Y 6X)/(X2+ Y2)Y2. This variable sat-
isfies “Hill's equation”

d?q(7)

VH@(T)Q(T):U(T), (C2

where © (1) = 6y+ 227 6;cos] is periodic with periodr.
The source termar(7) on the right-hand side of EqC2) is
zero for free perturbationsi.e., corresponding to adding
some “eccentricity” to Hill's “circularlike” variational or-

can check that the crossing af + 1, found by Heaon, cor-
responds, whem increases from O ton,, to c increasing
from one to a slightly higher value{1.1) and then decreas-
ing to reach the value of one at=m,. From the smooth-
ness of the variation of the characteristic multipliers, and
therefore ofa, with m we deduce that, beyonth=m,,,
c(m) goes through a quadratic branch point
c(m) — 1~ (mg—m)*2 and becomes compléx.

Finally, the important information for our purpose is that
when m increases up tomg, the quantity cfn)
—1~(my—m)¥2 is such that both functions cos2(m)
X(=a) and cosrc(m) cross smoothly(without branch
points or discontinuities of derivativesheir corresponding

bit), and nonzero when one perturbs Hill's Hamiltonian limiting values cosz=+1 and cosr=—1.

H i = (kinetic terms} Fo+ F, (e.g., by adding thé&, per-

Let us now consider Hill's way of solving EqC2). By

turbation we are mainly concerned with, or the parallacticinsertingq(r):gczjbjgzl' into (C2), one gets an infinite sys-
termsF3+ - - -). Perigee precession is described by the gentem of linear equations for the coefficierits. When written

eral homogeneous solution of EC2) (o=0). The latter

in a suitably normalized way, the determinant of this infinite

general homogeneous solution can be written as a lineaystem (which depends on)¢ say A(c), is a well-defined

combination of complex solutions of the form
a(7)=¢Zb; £ and of their complex conjugatéwe recall

quantity (Hill's determinanj. A homogeneous solution
(o=0) exists only for the values of ¢ for which(c)=0. On

that{=¢€'"). On the one hand, the quantity c is linked to thethe other hand, if we consider the case where there is a

usual rate of perigee advancbw/dt (in the nonrotating
frame by [18]

¥In  Henon's fourth paper [52], he gives the value

7m,=T/2=0.612 94. The more precise val(€l) was privately
communicated to us by Hen, and also follows independently
from our results in Appendix Bstudy of the geometriclike growth
of variousm series and of the zeros of Padenominators

1%The combined facts than,, is rather small and that of) has a
quadratic branch point an=m,, “explains” the notoriously bad
convergence of the perturbation series givithgr/dt. Rewriting
this series in terms of better-behaved quantities, such asegs(@
cos(@rc), improves more its convergence than that by the “Euler
transformations,’m—m/(1+ am), which have been traditionally
used[62].
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source term on the right-hand side of EG2) of the form  seems plausible to us that Laplace, when writing this chapter,
o(7)={%30; [, the corresponding inhomogeneous solu-was using previous notes of his which contained more de-
tion Qinnon(7) Will have the same form as(7), but will  tailed calculations and more consistent reasonings. Anyway,
contain, as for usual finite determinants, a factak(t/). the aim of this appendix is to show that the final limit he
This factor will become infinite when,ctends to one of the quotes on a possible violation of the equivalence principle,
free perigee precession values for whikft)=0. The analy-

sis of the determinani(c)=0 [42,18§ shows that, as a func- _
tion of c, it is a linear function of casc. We conclude that | 519 <
the forced perturbatiorgi,non{7) Will contain the factor
[cosmc,— cosmc(m)] ™1, where cfn) denotes the free peri-
gee precession value. From our analysis above, we know th
whenm crossesan,,, cosrc crosses smoothly-1. The final
conclusion is that the source terms for which €gs= —1,
ie., g,=*1,+3,£5, ..., generates normal displacements

Bt . . . .y _ 71 . ) N ” ) A
of Hill's orbit which have pole singularities (m—mc,) "~ as  gensitive test of the equivalence principletParallactic in-
m crosses the valu€Cl) found in linear stability analyses. o ajity” means the coefficient of the synodic term, ssin
Moreover, it is easily checked that the addition of a perturby,o expression of the Iunar longitude as a function of

ing potential, say,, to Hill's potentialFo+F, generates a jme 22 \we have computed this coefficient, say in Appen-
source termy(7) in Hill's variational equation(C2) which is  ices A and B for the Main Probleti.e., neglecting eccen-

a linear combination oF , and RgDu(JF,/du)] with real  yicities and inclinations Its theoretical expression reads
coefficients of the fornk,+ 22 k;cosgd 7. More precisely

1
- — 7
3410 005-2-9<10 7, (D1)

is a very reasonabl@nd slightly pessimistjcbound, which
2hn be derived in a logically clear way using only the infor-
mation Laplace had in hand.

Laplace’s new idegcompared to Newtgrnwas to use the
parallactic inequality” in the longitude of the Moon as a

A=At Ay, (D2)
=—2¢{p*®F,+RgDu(dF,/du)]}, (C5 _ I
o(7) ele p RADU(IF, /ou)]} €9 where the normal “parallactic” contribution reads
where 15 2
Aparzg(xz_xl)mgspar(m)v (D3)

¢ 2(u,u)=—DuDu, (Céa
while the “equivalence principle” contribution reads
®(u,u)=mDuDu—2RgDu(dFy /du)], (C6b)
—a’
with FHiIIEFO+ FZ- ) Aep:3m512€ Sep( m) (D4)
Therefore, ipr=_Re[§°p2jfj§2'], o will have the form
o(7)=Re {%Z;0{%]. In other words, g==*c,, so that
the perturbing potentialé,,F;,F5, ... generate source
terms with ¢==*1, ¢,=*3, ¢,==*5, ..., respectively.

Here, Spp(m)=1+2m+- .-, Sym)=1+2m+---, are
slowly converging series in powers ofi=n’/(n—n"). In
the third volume of higraite de Meanique Cteste Laplace
computesA,,, with particular care, pushing the calculation to
APPENDIX D: LAPLACE ON fifth order in m inclusively?® He was therefore entitled to
THE EQUIVALENCE PRINCIPLE considering that the theoretical error 8, was negligible
In the first volume of hisTraite de Mecanique Cteste ~compared to the observational uncertaintiesAfifS Note

[63] (presented to the French Academy of Sciences in )1799f[hat Apar is proportional to the inverse distance to_the Sun,
Laplace lists a series of facts suggesting that gravity is prol€-, to the “solar parallax’ms=Rg/a’, whereRg is the
portional to the masses. This ligvhich is probably inspired €duatorial radius of the Eartfhence the name “parallactic
by a corresponding list in th@rincipia, although Laplace inequality”). The result of Laplace can be expressed as
does not mention Newton hgreontains Newton’s argument
that the motion of satellites would be very sensitive to a Apa=14.3ms, (D5)
violation of the universality of free fall, but does not quantify
it. As far as we are aware, the only quantitative work ofwhere bothA,, and 75 are expressed in sec of aft.
Laplace on this ide@5] is contained in the last book of the
last volume of theTraite de Meanique Ceestewhich was
presented to the Acadee des Sciences on 16 August 1825 theory-observation agreement.
[64]. 2INote that as early as 1753, T. Mayer had used the theory of the
The fact that Laplace was then 76 year @ie died a year parallactic inequality to infer the value of the solar parall6%].
and a half later on 5 March 18pay explain why this work  ??Beware that Laplace was actually working with the inverse
of Laplace contains some strange leaps of reasdfliry. function:t=t(v).
Z3We have checked the first orders of his result and found them to
agree with ours. Note that Laplace includes the effect of eccentrici-
20Basically, he mentions that his lunar theory and combifsed  ties and inclinations that we neglect.

lected lunar and solar parallax data agree to about 1.2% and then?’Beware that Laplace, in his volume Ill, us@@avolution oblige
goes on to admit 1/812.5% as fractional upper limit on the “decimal seconds,” i.e., 10° of a right angle.
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On the observational side, Laplace had in hand both lunaon A: 1/8=12.5%2%
data and data on the solar parallax. The two phenomenologi- Let us end this section by raising a historical question.
cal “lunar tables” he was usingone by Mason and one by Though Laplace was fully aware of the scientific interest of

Burg) gave for the “observed” value of the synodic inequal- the boundD1), and of the fact that it waat the tim¢ more
ity in longitude, A% =116/68 andA% =12238[66]. As  Precise than the bounds obtained from ground tests of the

Mason Burg K . K . . .
for the solar parallax, many scientific expeditions had takertniversality of free fall, his successors in celestial mechanics

advantage of the passages of Venus in front of the Sun j§€€M(@s far as we knoto have lost interest in the issue.
1761 and, especially, in 1769 to measure (see[67] for a However, near the end of the nineteenth century, especially
detailed téxt by a céntemporary of Laplace, [68] for a after the theoretical work of Hansen, Delaunay, Hill, and

. . Ih
more exhaustive historical treatmgnthe published results rirgr\:vnirg]wtlgv'er&pégéegnt?ﬁe%%rggruvt:;'g:aﬂ?gf)e’ sgﬂoﬁltg;\ave
ranged betweemr2’=843 (Planmai and 72**= 8:80 (Pin- yimp s

gre) [65,68. The comparison between the theoretical resultéjeen poslebIIe fo obtain moreh strngenth_Ilr;]nts o FO&
(D2) and (D5) and the observational results @nand 7g Instance, Delaunay corpput@c},ar tom w~|c C°”?§p°” S
gives a value for a possible equivalence-principle-violationt0 a truncature error o '6366/1254201_2'7?< 10 .[58]
contribution (for fch_e principal part of/—\, see also Appendix B This is
negligible (when added in quadratyreompared to the ob-
A = A0S 14 3,;0bs (D6) servational error onrg at the time. For instance, the labora-
ep s tory measurements of the velocity of light by Foucault and
. . . Cornu gave values ranging betweens=8'834 and
Worst-case limits oA, are obtained by taking the ex- - —g'881, the passage of Venus across the solar disk in
treme values on the right-hand side dD6) (e.g., 1874 gave a range’B6—8:88, [65] and the recommended

A= Agorg— 14.3752"™) 25 This yields value starting in 1896 was'80. This suggests that a reason-
able upper bound on the uncertainty @§ at that time was
—92<A,<178. (D7) 0708 (i.e., 0.9%. (By comparison, the modern value is

7ms=87794148[51].) On the other hand, the observational
On the other hand, the theoretical resub4) [using ©rTor OnA® at the time was< 3(12546—124:70)= 038,
a'/a~391 and S,{m)=1.72 (see Appendix B reads |.e.,<O..3%'(see[65], p. 533. This 217615 a'negllglble effegt on
A= 1635,,~3.365; % 107 in sec of arc, so that we get the the derivation 01; a bound od,,. _ Using Eg.(D6) with
following worst-case bounds of,: Agp=3.360,,X 10" sec of arc, this 7Ieads_ to .the. bound
| 812 <14.35729(3.36x 107)=3.4x 10" &, which is slightly
better than the value obtained by 't#os in 1890
(|5asl<5% 1078 [7]). We do not wish to take too seriously
) i i i sucha posterioriderivations of limits oné;,, but we con-
From this point of view, the final bound quoted by Laplace,sjder this as an interesting example of historical eclipse of a
Eqg. (D1), seems very reasonable and consistent with the oljeep concept, which has been rejuvenated, within a new
servational uncertainties in his time. Note, however, thatheoreticaj and observational context, 0n|y in the last
Laplace never quotes a precise theoretical formulaAfgy. decadeg®
He only saysgand usesthe fact that the synodic amplitude
A is proportional to its source term in the perturbing func-
tion. This neglects the leadingp* dependence” ofC, %As for the subleading dependence qn i.e., the ratio
x2+p in Eq. (A19b) which says that Aep/Apar S, m)/S,a(m)=1.72/1.66=1.08, Laplace’s experience with simi-
% 3/5X Sef(M)/Spa{m). In Laplace’s published analysis the Jar factors in many terms of lunar theory might have suggested to
lacking (unfavorabl¢ factor 3/5 is effectively compensated him that he did not need to worry about it.
by his overpessimistic estimate of the fractional uncertainty ?Let us note for completeness that the determinations of the mass
of the Moon at the time were accurate enough to estimate with
negligible error the mass ratio facté,—X; enteringAp,;.
253uch a worst-case approach seems appropriate to a pre-least®For completeness, let us note that Poindeept alive this con-
squares-law period. Before Gauss’ theory of measurement errorsept by mentioning Laplace’s result in one of his popular books
scientists quoted only “central values” for measured quantities. [69].

—2.7X1077< 5,,<0.54x 10", (D8)
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see Book Ill, Chap. lll, Sec. lll. After having written the ap-
pendix, we became aware of a posthumous work of Poincare
[Bull. Astron, Tome XVII (1953, Fasc. 2, pp. 121-269n
which he discusses, among several other possible deviations
from Newton’s gravity, various bounds afyg. In particular,

on pp. 181-184, he updates the “parallactic” Laplace limit by
admitting an uncertainty otrg of 0704. However, he wrongly
follows Laplace in not taking into account the factor
3/5X Sg M)/ Spa(m). Moreover, he makes a numerical mis-
take in computing the limit od,;,. Because of a compensation
between his errors, the final value he quotes,
|61 <2%x 1078, is not very far from the one he should have
quoted, namely (see end of Appendix D |d]
<(0.04/0.08)x3.4x10 8=1.7x 108,



