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The perturbation of the lunar motion caused by a hypothetical violation of the equivalence principle is
analytically worked out in terms of power series in the manner of Hill and Brown. The interaction with the
quadrupolar tide is found to amplify the leading order term in the synodic range oscillation by more than 62%.
Confirming a recent finding of Nordtvedt, we show that this amplification has a pole singularity for an orbit
beyond the lunar orbit. This singularity is shown to correspond to the critical prograde orbit beyond which, as
found by Hénon, Hill’s periodic orbit becomes exponentially unstable. It is suggested that ranging between
prograde and retrograde orbits around outer planets might provide future high precision orbital tests of the
equivalence principle. It is argued that, within the context of string-derived non-Einsteinian theories, the
theoretical significance of orbital tests of the universality of free fall is to measure the basic coupling strength
of some scalar field primarily through composition-dependent effects. Present Lunar Laser Ranging data yield,
within such models, the valueḡ5(20.961.3)31027 for the effective Eddington parameterḡ[g21 mea-
suring this coupling strength.

PACS number~s!: 04.80.Cc, 95.30.Sf, 96.20.2n
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I. INTRODUCTION

Gravity seems to enjoy a remarkable universality pro
erty: all bodies are experimentally found to fall with th
same acceleration in an external gravitational field, indep
dently of their mass and composition. Although Galileo@1#
was the first@2# to suggest in a clear and general way th
this property of universality of free fall might hold true, i
was left to Newton@3# to realize the remarkable conceptua
status of this universality: exact proportionality between
particular force~the weight! and the general dynamical mea
sure of inertia~the mass!. Newton went further in performing
the first precise laboratory tests of the universality of free f
~pendulum experiments; precision;1023). It is less well
known that Newton went even further and suggested to t
the universality of free fall of celestial bodies by looking fo
a possible miscentering of the orbits of satellites around
piter, Saturn, and the Earth@4#. More precisely, Newton con-
siders a possible violation of the ratio weight (w) over mass
(m), i.e.,

d̄12[
~w/m!1
~w/m!2

21Þ0 , ~1.1!

where 1 labels a satellite and 2 a planet, the weig
w1 ,w2 being the gravitational forces exerted by the Sun~la-
bel 3). He says, without giving any details, that he has fou
‘‘by some computations’’ that the centerxc of the orbit of the
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satellite 1 around the planet 2 will be displaced~in the Sun-
planet direction and away from the Sun ifd̄12.0) by the
amount

duxc2x3u51
1

2
d̄12a8, ~1.2!

where a8 denotes the radius of the orbit of the planet
around the Sun. In modern phraseology, one can say t
Newton predicted a ‘‘polarization’’ of the satellite’s orbit in
the Sun-planet direction~away from the Sun ifd̄12.0).
Then Newton used his theoretical estimate~1.2! to conclude
from the observed good centering of the orbits of the sat
lites of Jupiter thatud̄12u,1023, a number comparable to the
result of his pendulum experiments. Actually, this upper lim
obtained from Jovian satellites is wrong, as Newton’s the
retical estimate~1.2! is incorrect both in magnitude~being a
gross overestimate in general! and in sign~see below!. We
could not find any information about Newton’s original cal
culations in his published papers. It is surprising that Newto
did not remark that, as a consequence of his estimate~1.2!, a
value ud̄12u51023 would also entail an unacceptably larg
polarization~one-fifth! of the Moon’s orbit.

As far as we are aware, Laplace was the first to reali
that the best celestial system to test a possible violation
the universality of free fall~1.1! is the Earth-Moon system
(15Moon, 25Earth). In@5# he derived a rough estimate o
the main observable effect ofd̄12 on the angular motion of
the Moon. Then, he noticed that even a very smalld̄12Þ0
would spoil the agreement linking his theoretical derivatio
of the solar perturbation term called ‘‘parallactic inequality
of the Moon, the set of observations of the lunar motion, a
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the direct measurements of the solar parallax. He conclu
that an upper bound to the fractional difference in accele
tion of the Moon and the Earth toward the Sun is

ud̄12u,
1

3 410 000
.2.931027. ~1.3!

It is remarkable that the limit~1.3! is much better than the
limit ( ud̄ABu,231025) obtained some years later by Bess
through improved pendulum experiments@6#, and has been
superseded~though not by much! only by the work of Eo¨tvös
in 1890 (ud̄ABu,531028) @7#. ~The later results of Eo¨tvös,
Pekár, and Fekete improved the bound to 331029 @8#.! As
we discuss in Appendix D, in spite of some obscurities in
reasonings and the lack of a fully accurate calculation of
effect of d̄12 in longitude, Laplace’s final bound~1.3! turns
out to be a conservative upper limit, given the information
had.

In 1907, Einstein@9# deepened the conceptual implica
tions of the property of universality of free fall by raising
to the level of a ‘‘hypothesis of complete physical equiv
lence’’ between a gravitational field and an accelerated s
tem of reference. This heuristic hypothesis was used v
successfully by Einstein in his construction of the theory
general relativity, and later became enshrined in the na
‘‘principle of equivalence.’’

Within the context of relativistic gravitational theories, th
use of the Moon as a sensitive probe of a possible violat
of the equivalence principle for massive bodies has been
discovered by Nordtvedt in 1968@10#. His idea was that
self-gravitational energies might couple nonuniversally to
external gravitational field in theories having a differe
structure than that in general relativity@11,12#. ~Let us note
that though Dicke had mentioned this possibility earlier@13–
15#, he had not explored its consequences in detail.! Anyway,
Nordtvedt, unaware both of the old ideas of Newton a
Laplace, and of the more recent ones of Dicke, realized
the planned Lunar Laser Ranging~LLR! experiment was
providing an exquisitely sensitive tool for testing the unive
sality of free fall of massive bodies@10#. Performing afirst-
orderperturbation analysis of the lunar orbit~assumed circu-
lar and planar! in presence of a violation of the equivalenc
principle, d̄12Þ0 @see Eq.~1.1! with the labels 1 and 2 de
noting the Moon and the Earth, respectively#, he provided
the first analytical estimate of the corresponding range os
lation:

~dr !~1!5C~1!d̄12a8cos@~n2n8!t1t0#, ~1.4!

with

C~1!5
112n/~n2n8!

n22~n2n8!2
n82. ~1.5!

Here,n denotes the~mean! sidereal angular velocity of the
Moon around the Earth,n8 the ~mean! sidereal angular ve-
locity of the Earth around the Sun, anda8 denotes the radius
of the orbit of the Earth around the Sun~assumed circular!.
The anglet[(n2n8)t1t0 is equal to the difference be
tween the mean longitude of the Moon and the mean lon
tude of the Sun~as seen from the Earth!. For completeness
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we derive Eqs.~1.4! and ~1.5! in Appendix A ~see also Ref.
@16# which gives an alternative derivation!.

Let us note in passing that the cost dependence of the
range oscillation~1.4! is equivalent~when disregarding the
perturbations of the motion in longitude! to displacing the
centerxc of a circular lunar orbit in the Earth-Sun direction
~toward the Sun ifd̄12.0) by the amount

duxc2x3u52C~1!d̄12a8. ~1.6!

The result~1.2! of Newton can therefore be viewed a
implying a range oscillation of the type~1.4! with
CNewton52 1/2 , independently ofn andn8. By contrast, the
first order estimate~1.5! contains the small dimensionless
parameter1

m5
n8

n2n8
, ~1.7!

which ism.1/12.3687 for the Moon and much smaller fo
the ~Galilean! satellites of Jupiter~e.g.,m.3.8631023 for
Jupiter IV!. More precisely, Eq.~1.5! can be rewritten as

C~1!5
3

2
m
11 2

3 m

11 1
2 m

5
3

2
mF11

1

6
m2

1

12
m21••• G . ~1.8!

In 1973, Nordtvedt@17# suggested that a more accurat
value of the coefficientC in the cost ~or ‘‘synodic’’ ! range
oscillation ~1.4! would be obtained by replacing, in the de
nominator ofC(1), Eq. ~1.5!, the first termn2 by nrad

2 where
nrad denotes the frequency of radial perturbation
nrad5 l̇5 c̄n. The perturbation series giving cr̄eads~see, e.g.,
@18,19#!

c̄512
Ã̇

n
512

3

4
m22

177

32
m32•••. ~1.9!

@In the case of the Moon, the series~1.9! is very slowly
convergent. The full value of 12 c̄.0.008 572 573@18# is
more than twice the lowest-order correction34 m

2.# The cor-
rection of Ref.@17# amounts numerically to increasing the
first-order result~1.5! by about 13%.

In 1981, Will @20# tried, more systematically, to estimate
the higher-order corrections in the coefficientC due to the
mixing between the perturbation~1.4! at frequencyn2n8
and the tidal perturbations at frequencies 0 and 2(n2n8).
He suggested that the first-order result should be multipli
by a factor 112n8/n5112m1O(m2), i.e., amplified by
about 15%. As a result of these~coincidentally equivalent!
prescriptions, the literature on the ‘‘Nordtvedt effect
@21,22,20,23,24# has, for many years, used as a standard e
timate for the range oscillationdr5Cd̄12a8cost a value
C.1.14C(1) ~corresponding to about 9.3h cost meters in
metrically-coupled theories; see below!.

1This is the version of the small parameter which is appropriate
our Hill-Brown treatment. Beware of the fact that the more trad
tional perturbation approaches denoted by the letterm the quantity
m̄[n8/n.
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Actually, as recently found by Nordtvedt@25# and studied
in fuller detail in the present paper, both modifications~sug-
gested in@17# and @20#! of the first-order result fall short of
giving an accurate estimate of the effects due to higher p
ers ofm. In fact, they do not even give correctly the seco
order inm. For completeness, we compute in Appendix
by the standard perturbation theory of de Ponte´coulant@26#,
the contribution at orderO(m2) and find that it amounts to

multiplying the first-order result by 11 9
2 m1O(m2), i.e.,2

C~1!1C~2!5F11
9

2
m1O~m2!GC~1!

5
3

2
mF11

14

3
m1O~m2!G . ~1.10!

In his recent work@25# Nordtvedt showed, by studying
what is essentially a truncated version of Hill’s perturbati
equation~discussed in Appendix C below!, that the interac-
tion with the orbit’s tidal deformation causes a rather lar
numerical amplification of the synodic oscillation~1.4!. The
numerical result he got for the synodic oscillation sensitiv
of the lunar orbit isdr.2.931012d̄12cost cm and agrees
well ~within the quoted precision! with our result, Eq.~1.11!
below. However, his treatment gives only an incomple
theoretical analysis of this amplification. The only explic
literal result he quotes@his Eq. ~2.33!# matches the second
order result~1.10! and captures the important feature of th
existence of a simple pole inm, but does not accurately
determine the location of the pole.

The aim of the present paper is to provide, for the fi
time, a full-fledged Hill-Brown analytical treatment of th
orbital perturbations caused by a violation of the equivalen
principle. Our results will notably allow us to give a precis
numerical value for the full range oscillation in the case
the actual Moon.3 Namely, we obtain below

dr52.942731012d̄12cost cm, ~1.11!

corresponding to a full coefficientC5 3
2 m31.622 01 which

is larger than the first-order value~1.8! by more than 60%.
More generally, we shall be able to discuss in detail
dependence onm of the range oscillation: see Eqs.~2.60!–
~2.62!, Eq. ~3.2!, and Appendix B. These results are summ
rized in Fig. 1 below. Our results confirm the prediction
Ref. @25# that whenm increases~corresponding to prograde
orbits beyond the actual lunar orbit! the cost range oscilla-
tion eventually becomes resonant and is~formally! infinitely
amplified. We have some doubts, however, about the pra

2By contrast,@17# and@20# give 11/12 and 13/6 , respectively, fo
the coefficient ofm in the correcting factor within square bracke
in the second equation~1.10!. Note that 143 m537.7% for the
Moon.
3Note, however, that we consider only the Main Lunar Proble

i.e., that we neglect the terms proportional to the squares of
lunar and solar eccentricities, and to the square of the lunar in
nation, which are expected to modify our numerical estimates
&1%.
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cal utility of such a resonant orbit, notably because we sho
that it occurs precisely at the value

m5mcr50.195 103 996 6 . . . ~1.12!

@corresponding to a sidereal periodTcr5mcr /
(11m cr) yr51.959 03 month] where the orbit become
exponentially unstable. Armed with our theoretical unde
standing of them dependence of the cost oscillation, we
suggest other orbits that might be practically interesting~ret-
rograde orbits and orbits around outer planets!. Finally, we
emphasize that within the context of modern unified theorie
the most probable theoretical significance oforbital tests of
the universality of free fall is the same as that oflaboratory
tests, namely, to measure, through composition-depend
effects, the strength of the coupling to matter of some lon
range scalar field~s!. The basic measure of this coupling
strength is embodied in an effective Eddington parame
ḡ[g21 which governs both the standard post-Newtonia
effects ~including the violation of the strong equivalence
principle}h[4b̄2ḡ) and the composition-dependent cou
plings ~violation of the weak equivalence principle!. Actu-
ally, string theory suggests that the former contribution~pro-
portional to the gravitational binding energy! is, in the Earth-
Moon case~but not necessarily in other cases!, negligible
compared to the one due to a violation of the weak equiv
lence principle. Interpreting the latest LLR observational r
sults@27,16# within a recently studied class of string-derive
theoretical models, we conclude that present orbital te
give the excellent constraintḡ5(20.961.3)31027. @This
limit is comparable to the~similarly interpreted! constraint
coming from laboratory tests@28# of the weak equivalence
principle: ḡ5(20.861.0)31027.#

The plan of this paper is as follows. Section II presen
our Hill-Brown approach and gives the analytical results o
tained with it. Section III discusses the physical cons
quences of our results. Many technical details are relega
to appendices: Appendix A presents the standard de Pon´-
coulant treatment of lunar theory and uses it to derive t
second-order result~1.10!, Appendix B gives some details of
our Hill-Brown treatment, Appendix C treats the link be
tween certain commensurabilities of frequencies, linear i
stability, and the presence of pole singularities in perturb
motions, and finally Appendix D discusses Laplace’s deriv
tion of the remarkably good limit~1.3! on d̄12.

II. HILL-BROWN TREATMENT OF EQUIVALENCE-
PRINCIPLE-VIOLATION EFFECTS

A. Introduction

Relativistic effects in the lunar motion have been inves
gated by many authors. The pioneers in this field are de Sit
@29# ~who computed the general relativistic contributions t
the secular motions of the lunar perigee and node as
served in a global, barycentric frame! and Brumberg@30#
~who gave a comprehensive Hill-Brown treatment of th
post-Newtonian three-body problem!. Later works studied
non-Einsteinian effects, notably those associated with t
Eddington post-Newtonian parametersb and g. The most
comprehensive and accurate analytical study of po
Newtonian effects in the lunar motion~described in a bary-
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centric frame! is due to Brumberg and Ivanova@19#. For
general accounts and more references see the books@31,32#.
Let us also mention the semianalytical treatment of the ge
eral relativistic perturbations of the Moon by Lestrade an
Chapront-Touze´ @33#.

However, apart from the work of Nordtvedt@10,17,25#,
the studies of non-Einsteinian effects in the lunar motio
have not considered the effect of a violation of the equiv
lence principle. The results of the present paper can there
be considered as a completion of Ref.@19# which gave an
accurate Hill-Brown theory of all the other Einsteinian an
non-Einsteinian effects. In fact, as pointed out long ago
Nordtvedt, the effects of a violation of the universality o
free fall are the most prominent non-Einsteinian effects
the lunar orbit, and therefore deserve an accurate study.
deed, most of the non-Einsteinian effects arenon-null ef-
fects, i.e., correspond to modifications proportional
b̄[b21 or ḡ[g21 of observable relativistic effects~as
seen in a local, geocentric frame! predicted by Einstein’s
theory. As the latter are at the few cm level@34,31,35,25#,
which is the precision of the LLR data, they can be of no u
for measuringb̄ or ḡ at an interesting level~say,1022). An
exception must be made for secular effects and for the
rameters describing the temporal and spatial transformat
linking a local, geocentric frame to a global, barycentric on
e.g., the parameters entering the de Sitter-Fokker~‘‘geo-
detic’’! precession.~Recent work@16# concludes that geo-
detic precession alone constraintsḡ at the 1% level.!

In addition to the ‘‘Nordtvedt effect’’ proper~i.e., the ef-
fect of d̄12Þ0), that we discuss here, there are some oth
null effects which are more sensitive tob̄ and ḡ than the
non-Einsteinian modifications of non-null general relativist
effects. A subdominant null effect comes from the violatio
of the equivalence principle associated with the gravitation
binding energy of the Earth-Moon system. In lowest appro
mation~linear inm), it is equivalent@see, e.g., Eq.~3.14b! of
Ref. @36## to replacingd̄12 by

d̃125 d̄122
1

3
hS nac D 2, ~2.1!

wherea denotes the semi-major axis of the lunar orbit an
whereh denotes, as usual, the combination

h[4b̄2ḡ54b2g23. ~2.2!

In general,d̄12 is the sum of two physically independen
contributions

d̄125~ d̂12 d̂2!1hS E1
grav

m1c
2 2

E2
grav

m2c
2D . ~2.3!

The first contributiond̂12[d̂12 d̂2 is generically expected to
be present because the best motivated modified theorie
gravity violate the ‘‘weak equivalence principle,’’ i.e., con
tain, in addition to Einstein’s universal tensor interactio
some composition-dependent couplings that make labora
bodies fall in a nonuniversal way~see, e.g.,@37,38#!. The
second contribution on the right-hand side of Eq.~2.3! @pro-
portional toh such as the correction in Eq.~2.1!# contains
the gravitational self-energy of the bodies (A51,2),
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EA
grav52~G/2!E

A
E
A
d3xd3x8r~x!r~x8!/ux2x8u, ~2.4!

and is the one first pointed out by Nordtvedt@11,12#. As
indicated by Dicke@13,14#, it is present in all gravity theo-
ries where the effective, locally measured gravitational ‘‘con
stant’’ may vary from place to place~see, e.g., Sec. V B of
@37#!. We shall take as nominal values for the gravitation
self-energies of the Moon~label 1) and the Earth~label 2)
the values adopted by Williams, Newhall, and Dickey@16#,
namely, E1

grav/m1c
2520.19310210, E2

grav/m2c
2524.64

310210, so that

E1
grav

m1c
2 2

E2
grav

m2c
2 54.45310210. ~2.5!

We then find numerically that the modification due to th
gravitational binding energy of the Earth-Moon system

2 1
3hn2a2/c252 1

3hG(m11m2)/ac
2 in Eq. ~2.1!, is ~to

first-order! equivalent to decreasing the nominal value~2.5!
by 20.039310210. This represents a fractional change o
~2.5! by 20.87% which is probably smaller than the unce
tainty in the estimate~2.5! associated with our imperfect
knowledge of the internal structures of the Earth and t
Moon. These orders of magnitude illustrate the fact that t
overwhelmingly dominant sensitivity of the lunar motion to
non-Einsteinian effects comes from the terms proportional
d̄12 that we concentrate upon in the following.

B. Three-body Lagrangian

The Lagrangian describing theN-body problem in the
currently best-motivated relativistic theories of gravity, i.e
those where gravity is mediated both by a tensor field and
scalar field with, generically, composition-dependent co
plings ~see, e.g.,@37,38#!, can be written as

L b̄,ḡ,d̄5LGR1L b̄1L ḡ1L d̄ , ~2.6!

whereLGR denotes the general relativistic contribution~in
which one should use an effective value of the gravitation
coupling constantG which incorporates the composition-
independent part of the interaction mediated by the sca
field!,

L ḡ5
1

2c2
ḡ (
AÞB

GmAmB

rAB
~vA2vB!2 ~2.7!

denotes the~nontensor-like! velocity-dependent part of the
two-body scalar interaction~one-scalaron exchange level!,

L b̄52
1

c2
b̄ (
BÞAÞC

G2mAmBmC

rABr AC
~2.8!

denotes the modification of the nonlinear, three-body gene
relativistic interaction due to the scalar interaction, and

L d̄5
1

2(
AÞB

~ d̄A1 d̄B!
GmAmB

rAB
, ~2.9!

with
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d̄A5 d̂A1h
EA
grav

mAc
2 , ~2.10!

represents~to lowest order! the combined effect of the
composition-dependent couplings (d̂AÞ0; violation of the
‘‘weak equivalence principle’’! and of the Dicke-Nordtvedt
contribution due to the spatial variability of the effectiv
gravitational coupling constant (h54b̄2ḡÞ0; violation of
the ‘‘strong equivalence principle’’!. For a direct, field-theory
derivation ofL ḡ andL b̄ and the expression of the phenom
enological Eddington parametersḡ5g21 andb̄5b21 in
terms of the basic coupling parameters of the scalar field~as
well as the generalization of these results to the case
strongly self-gravitating bodies! see Ref.@39#.

We assume here that all the general relativistic contrib
tions to the lunar motion~and to its observation through lase
ranging! are separately worked out with sufficient accurac
using, for instance, the new, complete framework for relat
istic celestial mechanics of Ref.@40# ~which provides the first
consistent relativistic description of the multipole momen
of extended bodies!. Following the discussion above, we
henceforth discard the subdominant contributions comi
from L b̄ andL ḡ to concentrate upon the effects due toL d̄ .
~The barycentric frame contributions ofL b̄ andL ḡ have been
accurately computed by Brumberg and Ivanova@19# and can
be linearly superposed with the ones ofL d̄ .) Finally, it is
enough to consider the sum of the lowest-order approxim
tion to LGR and ofL d̄ , namely,

L~xA ,vA!5(
A

1

2
mAvA

21
1

2(
AÞB

GABmAmB

rAB
, ~2.11!

where

GAB5G@11 d̄A1 d̄B#, ~2.12!

with d̄A of the form given in~2.10!, represents the effective
composition-dependent gravitational coupling between t
massive bodiesA andB. In Eq. ~2.11! vA5dxA /dt denotes
the ~barycentric! velocity of bodyA, mA the ~inertial! mass
of A, andr AB5uxA2xBu the distance betweenA andB. We
consider a three-body problem, and, more particularly, t
Moon-Earth-Sun system (15Moon, 25 Earth, 35Sun).
Evidently, all our analytical results will apply if 2 denote
another planet, and 1 one of its natural or artificial satellite
~Note, however, that the relative orders of magnitude of t
non-Einsteinian effects is different for low-orbit artificia
Earth satellites. See@36# for a recent discussion.!

Starting from Eq.~2.11!, we first separate the variable
describing the motion of the center of mass of the Ear
Moon system,

m0x0[m1x11m2x2 , ~2.13!

m0[m11m2 , ~2.14!

and v0[dx0 /dt, from those describing the relative luna
motion,

x12[x12x2 , ~2.15!
e
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m12[
m1m2

m11m2
, ~2.16!

andv12[dx12/dt. This yields

L~x0 ,x12,x3 ;v0 ,v12,v3!5
1

2
m0v0

21
1

2
m12v12

2 1
1

2
m3v3

2

1G12

m1m2

r 12
1G13

m1m3

r 13

1G23

m2m3

r 23
, ~2.17!

where

r 135ux32x02X2x12u, ~2.18a!

r 235ux32x01X1x12u, ~2.18b!

X1[m1 /m0 , X2[m2 /m0512X1 . ~2.18c!

Expandingr 13
21 andr 23

21 in powers ofr 12/r 30 (r 305ux30u with
x305x32x0) leads to

L5L03~x0 ,x3 ,v0 ,v3!1m12L̂12~x12,v12,x30!, ~2.19!

L035
1

2
m0v0

21
1

2
m3v3

21~X1G131X2G23!
m0m3

r 03
, ~2.20!

L̂125
1

2
v12
2 1G12

m0

r 12
1R11R21R31•••, ~2.21!

and

R15m3~2G131G23!x12
i ] i

~3!
1

r 30
, ~2.22a!

R25
1

2!
m3~G13X21G23X1!x12

i x12
j ] i j

~3!
1

r 30
, ~2.22b!

R35
1

3!
m3~2G13X2

21G23X1
2!x12

i x12
j x12

k ] i jk
~3!

1

r 30
, ~2.22c!

where ] i
(3)[]/]x3

i , ] i j
(3)[]2/]x3

i ]x3
j , . . . . Note that the

suffices 1,2,3, . . . inRn’s have nothing to do with the body
labelsA,B51,2,3, but keep track of the successive powe
of x12.

To a very good approximation we can consider that, in th
~normalized! Earth-Moon Lagrangian~2.21!, the motion of
the Sun with respect to the Earth-Moon barycenter,x30(t), is
obtained by solving the two-body Lagrangian~2.20!. After
separating in Eq.~2.20! the motion of the center of mass of
the Earth-Moon-Sun system, the reduced Lagrangian d
scribing the dynamics of the relative motionx30 is

L̂03
relative5

1

2
v03
2 1G03

m01m3

r 03
, ~2.23!

where we introduced

G03[X1G131X2G23. ~2.24!
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Therefore, seen from the Earth-Moon barycenter, the S
undergoes a Keplerian, elliptic motion corresponding to
total effective gravitational mass G03(m01m3)
5G03(m11m21m3). If we denote~as is traditional in lunar
theory! the mean angular velocity and the semimajor axis
this elliptic motion asn8 anda8, respectively, we can write

n82a835G03~m01m3!5G03~m11m21m3!. ~2.25!

For simplicity’s sake, we shall, in fact, consider the ‘‘Mai
Problem’’ of lunar theory in which the Sun is considered a
moving in a circle of radiusa8 with the constant angular
velocity n8.

Evaluating the derivatives with respect tox3 in Eqs.
~2.22!, and using Eq.~2.12!, yields

R15m3
gravd̄12

N–r

r 82
, ~2.26a!

R25m3
grav@11~X22X1!d̄12#

3~N•r !22r2

2r 83
, ~2.26b!

R3.m3
grav~X22X1!

5~N•r !323~N•r !r2

2r 84
. ~2.26c!

To simplify the notation, we have writtenr[x125x12x2 ,
N[x30/r 30 ~directed toward the Sun!, r 8[r 30, m3

grav

[G03m3 , where we recall thatG03 is the weighted average
~2.24!, and

d̄12[d̄12 d̄2 , ~2.27!

which agrees with our previous expressions~1.1! or ~2.3!. In
the ~much smaller! termR3 we have neglected thed̄-modi-
fications.

C. Hill’s equations of motion

Following Euler’s second lunar theory and Hill@41,42#, it
is convenient to refer the motion of the Moon to axes rota
ing with the mean angular velocity of the Sun. For simplicit
we shall consider the main lunar problem in which~i! the
Sun is considered as moving in a circle of radiusa8 with the
uniform angular velocityn8, ~ii ! the Moon moves in the
same plane as the Sun, and~iii ! one looks for a periodic
motion of the Moon in the frame rotating with the angula
velocity n8. Taking into account the lunar and solar ecce
tricities e ande8, and the lunar inclinationI , is expected to
modify the results for the terms discussed in this paper
contributions of orderO(e2,e82,sin2I)&1%.

With respect to the rotating frame„eX(t),eY(t)…, with
eX5N directed toward the Sun, the position and veloci
vectors of the Moon read r5x125XeX1YeY ,
v5v125(Ẋ2n8Y)eX1(Ẏ1n8X)eY ~the overdot denoting
d/dt). When expanding the kinetic terms in the reduce

relative Lagrangian ~2.21!, i.e., 1
2v

25 1
2 (Ẋ2n8Y)2

1 1
2 (Ẏ1n8X)2, one recognizes the usual Coriolis~terms lin-

ear in Ẋ and Ẏ) and centrifugal~terms quadratic inX and
Y) effects. The centrifugal terms can be gathered with t
contributionR2 , Eq. ~2.26b!, which is also quadratic inX
un
a

of

n
s

t-
y,

r
n-

by

ty

d,

he

andY. The resulting Lagrangian describing the dynamics i
the rotating frame reads

L̂12~X,Y,Ẋ,Ẏ!5
1

2
~Ẋ21Ẏ2!1n8~XẎ2YẊ!1F~X,Y!.

~2.28!

Here, F(X,Y)5G12m0 /r1R11@R211/2n82(X21Y2)#
1R31•••5F01F11F21F31••• is a time-independent
potential with

F05
G12m0

AX21Y2
, ~2.29a!

F15
n82a8

11m0 /m3
d̄12X, ~2.29b!

F25
1

2

n82

11m0 /m3
H @11~X22X1!d̄12#~3X

2!

1Fm0

m3
2~X22X1!d̄12G~X21Y2!J , ~2.29c!

F3.
1

2

n82

a8
~X22X1!@5X

323X~X21Y2!#. ~2.29d!

In writing out Eqs. ~2.29! we have replaced
m3
grav5G03m3 by the expression m3

grav5n82a83/
(11m0 /m3) obtained from Eq.~2.25!. The equations of mo-
tion corresponding to the Lagrangian~2.28! read

d2X

dt2
22n8

dY

dt
5

]F

]X
, ~2.30a!

d2Y

dt2
12n8

dX

dt
5

]F

]Y
. ~2.30b!

We see from Eqs.~2.29! that a violation of the equiva-
lence principle has several consequences in the lunar theo
~i! the effective gravitational constant appearing in front o
the Earth-Moon total massm05m11m2 , namely
G125G(11 d̄11 d̄2), differs from the one appearing in the
theory of the Earth orbital motion,G03, defined in Eq.
~2.24!, ~ii ! there is a new term, linear inX, in the Lagrang-
ian, F1 , Eq. ~2.29b!, ~iii ! the usual tidal plus centrifugal
potentialF2 ~as well as the higher-order tidal potentials! is
fractionally modified byd̄12Þ0. The effect~i! has practically
no observational consequences as, for instance, the ‘‘GM’’
the Earth is measured much more accurately from Earth s
ellites ~artificial or natural! than from the correction it brings
in the Earth-Sun interaction. The effect~ii ! is the one dis-
cussed by Newton, Laplace, and Nordtvedt, that we sha
study in detail below. As for the effects~iii ! it will be clear
from the following that they are numerically negligible com-
pared to the effects ofF1 because the corresponding sourc
terms in the equations of motion are smaller by a facto
r /a8.1/400, and, moreover, the corresponding solution
not amplified ~as the F1 effects! by a small divisor
1/m.12 because they correspond to the driving frequenc
2(n2n8) ~instead ofn2n8 for F1). Finally, as we can also
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neglect the fractional correction (11m0 /m3)
21 to d̄12 in

~2.29b! (m0 /m3.1/328900), we shall keep Eqs.~2.29a! and
~2.29d! and replace~2.29b! and ~2.29c!, respectively, by

F1.n82a8d̄12X, ~2.31a!

F2.
3

2
n82X2. ~2.31b!

The contributionF3 to the potentialF ~octupolar tide!
generates the so-called ‘‘parallactic’’ terms in the lunar m
tion. Compared to the usual~quadrupolar! tidal contribution,
they contain the small parameterr /a8.1/400. Hill’s ap-
proach consists of solving first exactly~in the sense of infi-
nite power series! the dynamics defined by the truncated po

tential FHill5F01F25G12m0 /r1 3
2n82X2. ~The parallactic

terms are obtained later by perturbing Hill’s main problem!
In presence of a violation of the equivalence problem w
have to add the termF1 , Eq. ~2.31a! ~‘‘dipolar tide’’ !, to
F Hill . The resulting equations of motion~2.30! read explic-
itly

d2X

dt2
22n8

dY

dt
52

G12m0

r 3
X13n82X1n82a8d̄12, ~2.32a!

d2Y

dt2
12n8

dX

dt
52

G12m0

r 3
Y. ~2.32b!

They admit~in the general case of a time-independent pote
tial F) the Jacobi energy integral

1

2
~Ẋ21Ẏ2!2F~X,Y!5C5 const . ~2.33!

D. Iterative solution of Hill’s equations

In spite of the apparent simplicity of Eqs.~2.32! and of
the existence of the first integral~2.33!, the corresponding
dynamics contains all the richness and complexity of t
circular, planar, restricted, three-body problem. Hill’s ide
was first to find an exactperiodic solution of Eqs.~2.32!
~with d̄1250). The existence~in a mathematical sense! of
Hill’s periodic solution, and the convergence of the pow
series@in the parameterm[n8/(n2n8)# giving its explicit
form, have been proven by Poincare´ @43# using an analytic-
continuation argument, and by Wintner@44# using majorant
series~see@45# for more references!. The existence of such a
one-parameter family of coplanar, periodic solutions, and t
convergence of the associated perturbation series inm, are
stable under the addition of the full series of higher-ord
tidal terms @46#. Poincare´’s analytic-continuation method
shows that it will still exist when one adds the ‘‘dipole tidal
termF1 , if m and d̄12 are small enough.

To construct explicitly the perturbation series inm giving
the periodic solutions of Eqs.~2.32!, it is convenient to re-
write them in terms of new variables. Following a standa
notation @18# ~except that we do not introduce a separa
letter for the complex conjugate ofu), we define
o-

-

.
e

n-

he
a

er

he

er

’’

rd
te

u5X1 iY, ~2.34a!

ū5X2 iY, ~2.34b!

t5~n2n8!t1t0 , ~2.34c!

z5ei t, ~2.34d!

D5
1

i

d

dt
5z

d

dz
. ~2.34e!

Here, n denotes the mean sidereal orbital velocity of t
periodic solution one is looking for~in other words, the ro-
tating frame quantitiesX,Y,u,ū are supposed to be periodi
functions of t with period 2p). The parameter
m5n8/(n2n8) is the remaining free parameter of the pro
lem. It takes positive values for prograde orbits~going in the
same sense as the Sun4: 0,n8,n), and negative values for
retrograde orbitsn,0. With this notation the general equa
tions of motion~2.30! read

D2u12mDu522
]F̂

]ū
~2.35!

~and its complex conjugate:u→ū, D→D̄52D), where
F̂[(n2n8)22F5m2n822F. For small values ofm ~i.e., or-
bits of small radius around the Earth! the periodic solution of
Eq. ~2.35! is of the form u.(const)z, ū.(const)z̄
5(const)z21. It is convenient to replaceu by a variablew
which tends to zero withm. Following Liapunov@47# and
Brumberg and Ivanova@19#, one defines first a fiducial luna
semimajor axisã by writing

G12m0

~n2n8!2ã3
5k~m!, ~2.36!

where

k~m![112m1
3

2
m2. ~2.37!

With this definition ofã one introduces the variablew by

u5ãz~11w!, ~2.38a!

ū5ãz21~11w̄!. ~2.38b!

The LagrangianL522ã22(n2n8)22L̂12 can be written
as

L~w,w̄,Dw,Dw̄!5DwDw̄12~m11!wDw̄2G~w,w̄!

1~ total derivative!, ~2.39!

whereG[2ã22F̂1(112m)(11w)(11w̄), and the asso-
ciated equations of motion read

4We shall not consider the prograde orbits with 0,n,n8 which
are highly unstable; see below.
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D2w12~m11!Dw52
]G

]w̄
. ~2.40!

The explicit form of the potentialG(w,w̄) in our problem
@i.e., when (n2n8)2F̂[F5F01F11F2# reads

G~w,w̄!5k~m!@2~11w!21/2~11w̄!21/21~11w!~11w̄!#

1l̂@z~11w!1z21~11w̄!#

1
3

4
m2@z2~11w!21z22~11w̄!2#, ~2.41!

where we have introduced, instead ofd̄12, the small dimen-
sionless parameter

l̂[m2d̄12
a8

ã
. ~2.42!

The corresponding equations of motion read

D2w12~m11!Dw1k@11w2~11w!21/2~11w̄!23/2#

1l̂z211
3

2
m2z22~11w̄!50. ~2.43!

A last transformation@47,19# consists of separating off the
square bracket multiplied byk in ~2.43!, its nonlinear piece,
namely,

Q~w,w̄![~11w!21/2~11w̄!23/2211
1

2
w1

3

2
w̄

5
3

8
w21

15

8
w̄21

3

4
ww̄1O~w3,w2w̄,ww̄2,w̄3!.

~2.44!

We can now define alinear operator acting on (w,w̄),

L~w,w̄![D2w12~m11!Dw1
3

2
k~m!~w1w̄!, ~2.45!

and an effective source term~containing source terms and
nonlinearities!

W~w,w̄![2l̂z212
3

2
m2z22~11w̄!1k~m!Q~w,w̄!.

~2.46!

In terms of these definitions, the equations of motion rea

L~w,w̄!5W~w,w̄!, ~2.47!

and its complex conjugate equation. This is the form used
Brumberg and Ivanova@19# in their study of relativistic ef-
fects in the lunar motion.

Note that the source of all equivalence-principle-violatio
effects is the contribution2l̂z21 on the right-hand side of
Eq. ~2.46!, with l̂ defined by Eq.~2.42!. Even when restrict-
ing oneself~as we shall! to the effects linear inl̂, the corre-
sponding contributions in the solution are quite complicat
because of the interplay with the quadrupole tidal effec
d

by

n

ed
ts

~from F2), i.e., mathematically, because of the mixed ter
2 3

2m
2z22w̄ and the nonlinear term}Q(w,w̄) in W(w,w̄).

When putting back the octupole tidal effects@F3 , Eq.
~2.29d!#, they add to the effective source term~2.46! the
contribution

W3~w,w̄!52
3

8
p̂@z~11w!212z21~11w!~11w̄!

15z23~11w̄!2#, ~2.48!

where

p̂[m2~X22X1!
ã

a8
5m2

m22m1

m21m1

ã

a8
. ~2.49!

The Eq.~2.47! can be solved by iteration: first, one keep
only the linear source terms which exist whenw50, namely,
W(1)(z,z21)5W(0,0)52l̂z212 3

2m
2z22 @with the addition

of W3(0,0)52 3
8p̂(z12z2115z23) when including paral-

lactic terms#. Second, one solves the linear equation
L(w,w̄)5W(1)(z,z21) to get the corresponding first-orde
solution:w(1)5l̂wl

(1)1m2wm2
(1)

1p̂wp
(1) , which is valid up to

terms of higher order in the formal expansion paramete
l̂, m2, andp̂. The next step is to insert the first-order solu
tion w(1) in the full source termW(w,ŵ) and to collect the
second-order source termW(2)(z,z21) of formal order
(l̂1m21p̂)2. The corresponding second-order solutio
w(2) is obtained by solving the linear equation
L(w(2),w̄(2))5W(2)(z,z21), etc. At each stage of the itera-
tion, one deals with a source term which is a linear comb
nation ~with real coefficients5! of a finite number of integer
powers ofz andz21, say

W!5W01W1z1W21z
211W2z

21W22z
221•••1Wkz

k

1W2kz
2k. ~2.50!

It is easy to check that there is a unique solution of the line
systemL(w,w̄)5W! , L̄(w,w̄)5W̄! and that it is given by

w!5w01w1z1w21z
211w2z

21w22z
221•••1wkz

k

1w2kz
2k, ~2.51!

with @19#

w05
1

3k~m!
W0 , ~2.52a!

wk5
1

Dk
F S k222~m11!k1

3

2
k DWk2

3

2
kW2kG , ~2.52b!

w2k5
1

Dk
F S k212~m11!k1

3

2
k DW2k2

3

2
kWkG , ~2.52c!

5The reality of all coefficientsWk in Eq. ~2.50! andwk in Eq.
~2.51! is easily proven by induction, given the reality of the coeffi
cients in the exact definition ofW(w,w̄) and in the iterative solu-
tion equation~2.52!.
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Here,Dk(5D2k) denotes the determinant of the 232 sys-
tem of equations satisfied bywk andw2k ~whenkÞ0). Its
value is

Dk5k2@k213k24~m11!2#5k2@k22122m1 1
2m

2#.

~2.53!

This determinant never vanishes (kÞ0), but it takes a small
value of orderm whenk561. This small divisor is one of
the origins of the peculiar amplification which affects bot
equivalence-principle-violation effects@W(1)(F1)52l̂z21#
and a part of the octupolar-tide effects@W(1)(F3)
52 3

8p̂(z12z211•••)#. A consequence of the small divi-
sorD1522m1 1

2m
2 is that, when collecting from the itera-

tive solution the contributions proportional tol̂z61 and
p̂z61, they are found to proceed according to the powers
m2/D15O(m) instead of the powers ofm2 as formally ex-
pected from the structure~2.46!.6

The first steps of the iteration can be done by hand. Fr
Eqs.~2.52! the linearized solution~without parallactic terms!
has the form

w~1!5w1
~1!z1w21

~1! z211w2
~1!z21w22

~1! z22, ~2.54!

with

w1
~1!51

3

2

k

D1
l̂, ~2.55a!

w21
~1!52

112~m11!1 3
2k

D1
l̂, ~2.55b!

w2
~1!51

9

4

k

D2
m2, ~2.55c!

w22
~1!52

3

2

414~m11!1 3
2k

D2
m2. ~2.55d!

Here, as defined above,k[112m1 3
2m

2, D1522m
1 1

2m
2, andD254(322m1 1

2m
2). The insertion of the lin-

earized solutionw(1), Eqs.~2.55!, intoW(w,w̄), Eq. ~2.46!,
generates a second-order source term with the follow
structure: W(2);l̂m2(z611z63)1m4(z01z621z64)
1O(l̂2). Let us focus on the terms in the solution which a
linear in l̂ and contain the ‘‘resonant’’ frequenciesz61.

Their source terms are found to beW1
(2)5 99

64ml̂@11O(m)#

andW21
(2)52 207

64 ml̂@11O(m)#. From Eqs.~2.52! the corre-
sponding solutions can be written a

w1
(2)52 45

16 l̂@11O(m)#, w21
(2)523w1

(2)@11O(m)#. At this
approximation we have, when expandingw61

(1) in powers of
m,

6Following Poincare´ @48# ~see also Ref.@18#!, one can clarify the
iterative process by giving a new name to the parameterm appear-
ing in the second term ofW, Eq. ~2.46!, leaving unchanged the
other occurrences ofm in L andk(m).
h
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s

w1
~1!1w1

~2!5F11
15

4
m1O~m2!Gw1

~1!

52
3

4

l̂

m
@116m1O~m2!#, ~2.56a!

w21
~1!1w21

~2!5F11
15

4
m1O~m2!Gw21

~1!

5
9

4

l̂

m F11
46

9
m1O~m2!G . ~2.56b!

E. Radial and angular perturbations due to a violation
of the equivalence principle

Let us relate the results~2.56! to the radial and angular
perturbations of the lunar motion associated with the para
eterl̂}d̄12. The radius vectorr5(X21Y2)1/2 and longitude
u of the Moon ~with respect to the rotating vectoreX5N,
i.e., with respect to the Sun! are such that
u5reiu5ãz(11w), where we recall thatz5ei t. Hence,

r 25uū5ã2~11w!~11w̄!, ~2.57a!

e2iu5
u

ū
5e2i t

11w

11w̄
. ~2.57b!

Working linearly in l̂, we get the following radial and
longitudinal equivalence-principle-violation perturbations

dlr

ã
5ReF S 11w̄

11wD 1/2dlwG , ~2.58a!

dlu5ImF dlw

11wG . ~2.58b!

At the approximation ~2.56! we can write dlr /ã
.(w11w21)cost1(w31w23)cos3t, and dlu.(w12w21)
3sint1(w32w23)sin3t. In the approximation, the observ-
able synodic effects are entirely described byw16w21 .
However, in higher approximations,w63 ,w65 , etc., feed
down to the synodic effects inr and u. @Let us note in
passing that, when averaging over time, the mean shift of
Cartesian componentsu5X1 iY5ãz(11w) is given, to all
orders, byw21 alone:^X&5ãw21 , ^Y&50.#

Focusing on the contributions at the synodic frequen
n2n8, we get, at this stage~in agreement with Appendix A!,

S dlr

ã D
synodic

5
3

2

l̂

m F11
14

3
m1O~m2!Gcost,

~2.59a!

~dlu!synodic523
l̂

m F11
16

3
m1O~m2!Gsint. ~2.59b!

A straightforward, though slightly more involved, calcu
lation allowed us to compute by hand theO(m2) contribu-
tions to the square brackets on the right-hand sides of E
~2.59!. In particular, we found that the square bracket in th

range perturbation, Eq.~2.59a!, reads 11 14
3 m1 1061

48 m
2
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1O(m3). In view of the large coefficients appearing in thi
expansion, which create large corrections to the lowest-or
effect~for the Moon,143 m50.3773 and106148 m

250.1445), we
have decided to take the bull by the horns and to solve ite
tively the equations of motion~2.47! to a very high order by
using the dedicated computer manipulation programMINIMS

written by M. Moons~see@49#!. Some details on the appli-
cation of this program to our problem are given in Append
B. Let us quote here the form of the results. Replacingl̂ by
its definition~2.42!, we see thatã drops out when writing the
range perturbationdlr . Finally, we can write

~dlr !synodic5C~m!d̄12a8cost, ~2.60a!

~dlu!synodic52C8~m!d̄12
a8

ã
sint, ~2.60b!

where

C~m!5
3

2
mS 11 (

k>1
ckm

kD[
3

2
mS~m!, ~2.61a!

C8~m!53mS 11 (
k>1

ck8m
kD[3mS8~m!. ~2.61b!

The beginning of the power seriesS(m) entering the syn-
odic range perturbation is

S~m!511
14

3
m1

1061

48
m21

2665

24
m31

145 683

256
m4

1
6 729 119

2304
m51

1 656 286 531

110 592
m61•••.

~2.62!

The coefficients of the seriesS(m) andS8(m) are given in
Appendix B up to the powerm17 included. They are found to
grow fast. The ratio between two successive coefficie
ck /ck21 or ck8/ck218 is found, numerically, to converge
rapidly to the value 5.125 471 7 . . . , thereby mimicking
a geometric series in m/mcr with mcr
5(5.125 471 7 . . . )21.0.195 103 996 . . . . In the case of
the Moon, withm50.080 848 937 5 . . .@50#, this means that
the seriesS(m) andS8(m) converge rather slowly, as geo
metric series of ratiom/mcr.0.4144. The truncation to order
m17 is just enough to estimate the values of the series to
1025 accuracy. As discussed below, the method of Pade´ ap-
proximants allows us to improve this precision. We find, fo
the Moon,

S51.622 01 . . . , S851.723 48 . . . , ~2.63!

so that the full coefficients appearing in the synodic effec
~2.60! are, respectively, C50.196 707 . . . ,
C850.418 025 . . . . Finally, using the recommended valu
of the semimajor axis of the Earth orbit
a85aEarthA51.495 980 22131013cm @51# ~where A de-
notes the astronomical unit!, the amplitude of the range os
cillation of the Moon, due to an equivalence principle viola
tion, is numerically found to be
s
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Ca8d̄1252.942731012d̄12 cm. ~2.64!

In the case where one assumes the absence of violation of
weak equivalence principle, i.e.,d̂A[0 in Eq. ~2.10!, the
result ~2.64! gives

~dlr !synodic513.10h cost m, ~2.65!

if we use Eq.~2.5! @16# as nominal value for the difference of
gravitational binding energies. Our final result is approxi
mately 60% larger than the lowest-order estimate first d
rived by Nordtvedt in 1968@10# and recalled in Eqs.~1.4!,
~1.5!, and ~1.8! above. On the other hand, it confirms the
recent finding of Nordtvedt@25#7 that the interaction with the
orbit’s tidal deformation significantly amplifies the synodic
range oscillation and substantiates it by providing a mo
complete analytical treatment of this effect.

III. PHYSICAL DISCUSSION

A. Resonances and instability

We have seen in the previous section that the series
powers ofm giving the amplitudes of synodic perturbations
~2.60! appear to be close to geometric series inm/mcr with
mcr.0.195 104. This suggests the existence of pole sing
larities}(mcr2m)21 atm5mcr.0.195 104 in those series.
Nordtvedt@25# predicted the presence of such a pole singu
larity atm.0.2 ~i.e., for a sidereal period of about 2 months!
on the basis that for such a high orbit a determinant appe
ing in his study as denominator of the synodic perturbatio
vanishes. He also mentioned that for this orbit the drivin
frequency (n8 in a nonrotating frame! becomes equal, in his
truncated model, to the rate of perigee advance (dÃ/dt). We
have substantiated these predictions, as well as obtained
several independent approaches a much more precise va
for mcr , namely,

mcr50.195 103 996 6 . . . ~3.1!

by making use, notably, of the work of He´non @52# on the
three-body problem. To relieve the tedium, the details of ou
arguments are relegated to Appendix C. Let us summari
our approach and our results.

Our approach consists of putting together the~numerical!
results of He´non @52# on the stability of the periodic orbits in
Hill’s problem, with some knowledge of the general structur
of Hamiltonian perturbations, and a more specific use of th
analytical structure of the solutions of Hill’s variational
equations in presence of ‘‘forcing’’ terms, such as the one
coming from the potentialsF1 , Eq. ~2.29b!, and F3 , Eq.
~2.29d!, which are neglected in Hill’s main problem. Our
conclusions are that whenm increases up tomcr , Eq. ~3.1!,
there is a confluence of correlated singularities: on the o
hand, as found by He´non, the free perturbations of Hill’s
orbit ~those not driven by any additional force! lose their
stability, and on the other hand, all perturbations driven b
perturbing potentials of any odd frequency in the rotatin

7This reference quotes 2.931012 for the numerical coefficient in
Eq. ~2.64!.
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frame @i.e., containing terms}exp@6(2k11)it## develop
pole singularities}(mcr2m)21. Note that, reasoning con-
versely, it is the existence of such a pole singularity, locat
at a rather small value ofmcr , which ‘‘explains’’ the slow
convergence of the perturbation series inm giving the am-
plitudes of the various synodic effects.@See also the footnote
19 of Appendix C for the link with the bad convergence o
the perturbation series giving the perigee precession.#

As indicated by Nordtvedt, the valuem5mcr does corre-
spond to a simple 1:1 commensurabilitydÃ/dt5n8 or ~in
terms of rotating-frame variables! c[dl/dt51 ~where
l5nt1e2Ã is the mean anomaly!. Note, however, that,
contrary to what happens in the familiar case of a harmo
oscillator, the basic frequency of the driving force does n
need to have a 1:1 resonance with the natural frequency
the orbit ~perigee precession! to generate poles
}(mcr2m)21; the odd commensurabilities 3:1, 5:1, etc
generate similar poles. Therefore, both the~hypothetical!
equivalence-principle-violation effects~potential F1), and
many of the~really existing! parallactic effects~potentials
F3 ,F5 , . . . ) will have pole singularities}(mcr2m)21.
Moreover, these poles are present not only in the syno
terms ~that we concentrate upon here! but in the terms at
frequencies 3(n2n8), 5(n2n8), . . . . Theconsequences of
this situation are explored in the following subsections.

B. Padéapproximant of equivalence-principle-violation effects

The analysis of Appendix C shows that the amplitudes
the synodic perturbations~2.60! considered as functions of
m have a simple pole~but no branch point! on the positive
real axis atm5mcr , Eq. ~3.1!, and have no singularities on
the negative real axis down tom521 ~because of the sta-
bility of the retrograde orbits@52#!.8 This simple analytical
behavior suggests that the numerical validity of the pow
series representation~2.61! can be efficiently extended by
using Pade´ approximants, i.e., by rewriting the power serie
S(m), S8(m) truncated at orderm17 as quotients
N(m)/D(m), N8(m)/D8(m) of two power series truncated
at order m8. The explicit coefficients of the Pade´
approximants9 are given in Appendix B. We have done sev
eral checks of the conjecture that these Pade´ approximants
provide a numerically accurate representation of the ex
solution S(m) on the entire interval (21,mcr). First, the
real zeros of smallest absolute value of the denominat
D(m) and D8(m) are, respectively, found to be
0.195 103 996 68. . . and 0.195 103 996 60 . . . in excellent
agreement with He´non’s value~3.1!. Second, we found that
the Pade´ approximants truncated to orderm7 numerically
agree all over the interval (21,mcr) with those at order
m8 within better than 1%.@Actually, the difference is much

8The valuem521 corresponds to very wide retrograde orbi
0,2n!n8.
9It is to be noted that, thanks to the nearly geometric progress

of the coefficients in many of the power series of Appendix B,
simpler ~though less general! alternative to Pade´ approximants
would be simply to factorize (12m/mcr)
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smaller than 1023 except very nearm521.# We plot in Fig.
1 the Pade´ approximant of the coefficientC(m) of the radial
synodic effect,

CPadé~m!5
3

2
m
N8~m!

D8~m!
, ~3.2!

over the interval (21,mcr). Let us note the two numerical
values~usingmMoon50.080 848 937 5 . . . ; @50#!

CPadé~mMoon!50.196 707, ~3.3a!

CPadé~21!520.267 706. ~3.3b!

In Fig. 1 the lunar value~3.3a! is indicated by a dot. The
difference between the linearized approximation3

2m ~dashed
line in Fig. 1! and the exact value ofC(m) ~solid line! illus-
trates the importance of nonlinear effects in the radial sy
odic perturbation.

C. Better orbital tests of the equivalence principle?

Nordtvedt @25# has suggested that the resonance
m5mcr could perhaps be useful to improve the precision o
equivalence-principle tests. The idea would be to put an a
tificial satellite in an orbit close to the resonant orbi
(m5mcr). From our numerical estimates, the resonant orb
has a sidereal periodTcr5mcr(11mcr)

21T8 ~where
T852p/n851 yr), i.e., Tcr51.959 03 month. The corre-
sponding ‘‘bare’’ semimajor axisa0[(Gm0 /n

2)1/3 is
1.682 55a0(Moon). Though interesting, this suggestion is
not without difficulties. First, our results suggest that on
must be careful to use asubcriticalorbit (m,mcr) as super-
critical orbits are exponentially unstable~real characteristic
multiplier .1) and one needs many orbits to decorrelate th
externally-driven synodic effect from the~nearly degenerate!
natural orbital frequency for radial perturbations. Second, th
fact that all the parallactic perturbations@proportional to
m3
grav/a8k with k>4, i.e., tom2(ã/a8)k23# develop also pole

singularities atm5mcr , probably implies that the orbit be-

ts

ion
a

FIG. 1. CoefficientC(m) of the synodic range oscillation@de-
fined in Eq.~2.60a!# as a function ofm5n8/(n2n8). The solid line
represents the Pade´ approximant ofC(m), while the dashed line
represents the linearized approximation32m. The dot indicates the
actual lunar value.
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4188 53THIBAULT DAMOUR AND DAVID VOKROUHLICKY´
comes unstable slightly below the ideal Hill value~3.1!.10

Moreover, the blow up of the parallactic perturbations am
plify already large synodic effects which are known on
with finite accuracy. One might worry that the finite accurac
with which Newtonian parallactic perturbations can be a
counted for could limit the precision of an improve
equivalence-principle test based on ranging to a ne
resonant satellite. To investigate this point we have includ
the octupole-tide perturbationF3 , Eq.~2.29d!, i.e., we added
the contributionW3 , Eqs.~2.48!, in our Hill-Brown iteration
program. Our explicit results are given in Appendix B. Th
form of the radial perturbation is

~dpr !synodic5
15

16

m22m1

m21m1
S m11m2

m11m21m3
D 2/3a8P~m!cost,

~3.4a!

P~m!5m7/3@k~m!#22/3Q~m!, ~3.4b!

Q~m!511
22

5
m1

215

16
m21

57 599

960
m31

917 401

2880
m4

1
230 247 737

138 240
m51

14 206 254 151

1 658 880
m61•••.

~3.4c!

The numerical value of the coefficient giving the scale
dpr in Eq. ~3.4a! is dpr.28 716.38P(m)cost km. The Pade´
approximant of the seriesQ(m) is given in Appendix B. For
rough orders of magnitude estimates we can approxim
~when 0,m,mcr) P(m) by P(m).m7/3(12m/mcr)

21. By
comparison, the coefficient entering the Nordtvedt effe
~2.60a! can be roughly approximated byC(m)
. 3

2m(12m/mcr)
21. Let us define theamplification factorof

the Nordtvedt effect as the ratioA(m)[C(m)/C(mMoon)
whereC(m) is the coefficient in Eq.~2.60a!. The amplifica-
tion factor in the synodic parallactic oscillation~3.4a! will be
B(m)[P(m)/P(mMoon).(m/mcr)

4/3A(m). For an artificial
satellite (m1!m2), one expects from Eq.~3.4a! that the main
uncertainty in the theoretical value ofdpr will come from
the Earth/Sun mass ratio:m2 /m3 . The current fractional un-
certainty on this ratio ise931029 with e9.2 according to
the results of Ref.@53# onm2 ~LLR data alone givee9.10
@27#!. The corresponding uncertainty indpr is
0.0073e9B(m) cm. Therefore, the use of a higher orbit, am
plifying the Nordtvedt effect by a factorA(m), will entail a
correspondingly increased uncertainty on the synodic pa
lactic radial oscillation:

dpr.0.0073e9~m/mMoon!
4/3A~m!cost cm. ~3.5!

10Unpublished calculations of He´non ~private communication! for
a small but nonzero mass ratiom5m0 /(m01m3)51026 show that
the topology of the loss of stability of Hill’s prograde orbits i
different from the ideal Hill case (m50) and the same as for ge
neric values ofmÞ0. The difference takes place in a region o
fractional size 1023 (;m1/2?) which suggests that the actualmcr is
roughly 0.1% smaller than the value~3.1!.
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For moderately large amplification factorsA(m), this may
be small enough not to limit the accuracy of an improve
equivalence-principle test. On the other hand, the proble
might cure itself by the fact that the cos3t parallactic effects
will also be amplified, thereby allowing the ratiom2 /m3

which enters their coefficients to become measurable wi
increased precision. But things might get complicated b
cause, as one approaches the resonance, several frequen
become close to one another and one needs long data spa
resolve the various frequencies and measure separately th
Fourier coefficients. Moreover, the real motion of an artifi
cial satellite beyond the Moon’s orbit will be very complex
because of the combined gravitational effects of the Ear
and the Moon. Finally, such a satellite would need to b
endowed with a very high-performance, drag-free system
compete with the Moon which is, naturally, drag free to
high precision.

In view of the difficulties associated with near-resonan
lunar-type orbits, it is worth thinking about other
possibilities.11 Let us list some possibilities: artificial~drag-
free! satellites around outer planets would be interesting
that the basic dimensionful scale factor in the synodic effe
~2.60a! is a8, the semimajor axis of the considered plane
around the Sun. That would give a factor 5 for Jupiter and
factor 10 for Saturn. In either case, one would need fa
enough satellites~i.e., m big enough! to have a coefficient
C(m) at least comparable to the lunar value~3.3!. A second
possibility is to use retrograde orbits which are always stab
~in the Hill approximation!. However, Fig. 1 shows that they
give, at best, a factor C(21)520.267 706. An
equivalence-principle mission consisting of a pair of artificia
satellites around an outer planet~one prograde, one retro-
grade!, with a laser link between the satellites, could improv
by a significant factor upon the LLR experiment. In addition
to an improved scale factora8, the advantage of being
around an outer planet is that the radiation pressure from t
Sun is much smaller, so that the requirements on the dra
free system are much less stringent. Other advantages c
cern the theoretical value of the parameterd̄12, Eq. ~2.3!: on
the one hand, the composition-dependent contributio
d̂12 d̂2 can be expected@according to Eq.~3.7! below# to be
appreciably increased if one uses proof masses of highZ
material orbiting around a~low-Z) outer planet, and, on the
other hand, as emphasized by J. G. Williams~private com-
munication!, the h-dependent contribution tod̄12 will be
greatly increased in view of the much larger gravitationa
self-energies of the outer planets.

Finally, let us note that, for simplicity, we have restricted
our attention to circular, coplanar orbits. If one consider
satellite orbits with arbitrary inclinations and eccentricities
they will exhibit a rich spectrum of resonances to externa
equivalence-principle-violating perturbations. For instanc

s
-
f

11Let us note in passing that, because of tidal dissipation, th
Moon itself is, kindly, slowly receding toward higher orbits. How-
ever, even under the overoptimistic assumption that the present r
of energy dissipation continues to apply in the future, the increa
in the semimajor axis of the Moon will be only.23% in 6 billion
yr ~which is the expected lifetime of the Sun! @54#.
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53 4189EQUIVALENCE PRINCIPLE AND THE MOON
Ref. @36# has discussed the resonances~‘‘small divisors’’!
exhibited by ~circular! low-orbit artificial Earth satellites
with arbitrary inclinations.@The location in the (a,I ) plane
of these families of resonances will be found in Fig. 3 of Re
@55#.# We think that the circular, coplanar, high-orbit reso
nances discussed here are the most promising ones for
proved tests of the equivalence principle.

D. Theoretical significance of orbital tests of the universality
of free fall

As we mentioned above, the Lunar Laser Ranging expe
ment is sensitive, through the synodic effect~2.60!, to the
sum of two physically independent contributions

d̄125 d̂12 d̂21hS E1
grav

m1c
2 2

E2
grav

m2c
2D 5 d̂1214.45h10210.

~3.6!

The first contribution,d̂12[d̂12 d̂2 , is essentially equivalent
to what Newton and Laplace had in mind when they pr
posed orbital tests of the universality of free fall: bodies
different internal compositions could fall differently. The
second contribution, proportional toh54b̄2ḡ, was discov-
ered by Nordtvedt who was considering deviations fro
Einstein’s theory within the class of metrically-coupled the
ries of gravity ~see, e.g.,@20# for a review!. Actually, from
the perspective of modern unified theories, the class
metrically-coupled theories of gravity seems quitead hoc.
For instance, string theory does suggest the possibility t
there exist long-range scalar fields contributing to the int
action between macroscopic bodies and thereby modify
the standard predictions of general relativity. However,
the scalar fields present in string theory have compositio
dependent couplings for very basic reasons~for a discussion
of general theoretical alternatives to Einstein’s theory and
types of composition-dependent couplings they might exhi
see@37#!.

Recently, a mechanism has been proposed by which so
of the scalar fields of string theory might survive in the ma
roscopic world as very weakly coupled, long-range fiel
@38# ~see also@56#!. In the model of Ref.@38#, the surviving
scalar field~s! modify the observational consequences of ge
eral relativity in several ways:~i! they violate the ‘‘weak
equivalence principle’’ (d̂AÞ0) because of the composition
dependence of their couplings to matter,~ii ! they modify the
post-Newtonian@O(1/c2)# effects in essentially the way
which is parametrized by the Eddington parameters12 b̄ and
ḡ, and ~iii ! they induce a slow time variability of all the
coupling constants of nature:G,a,aweak, . . . . Thepoint we
want to emphasize here, because we think it is generic
that all those modifications of general relativity are relate
because they derive ultimately from the couplings of th
same field. In particular, the first term on the right-hand si
of Eq. ~3.6! is related to the second. The results of Ref.@39#
about metrically-coupled tensor-scalar theories show tha

12This comes from a feature of their couplings which is deep
rooted into the structure of QCD and the consequences it has for
mass of atoms; see pp. 550–553 of@38#.
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convenient measure of the basic coupling strength of th
scalar fields to matter is the Eddington parameterḡ. In more
generic tensor-scalar theories, which~slightly! violate the
weak equivalence principle, one can define aneffectiveEd-
dington parameterḡ by neglecting the fractionally small
composition dependence of the body-dependent quant
ḡAB measuring the scalar coupling between bodiesA andB
@38#. In the model of the latter reference, the effectiveḡ can
be defined as the~universal! scalar coupling strength be-
tween ideal bodies whose masses are purely of QCD orig
@Let us recall that, in the real world, the masses of atoms a
predominantly of QCD origin, with small additional contri-
butions due to lepton masses and electroweak interaction#

More precisely, in the model of Ref.@38#, we have, for an
individual atom labeled byA, the link

d̂A.20.94331025ḡ~E/M !A , ~3.7!

whereE[Z(Z21)/(N1Z)1/3 is associated to the electro-
static interaction energy of the nucleus of the atom, an
whereM denotes the mass ofA in atomic mass units. We
believe that the structure of this link betweend̂A and
ḡ(E/M )A

13 is generic in string-derived models, because
follows from a basic physical feature of the massless sca
fields ~‘‘moduli’’ ! present in string theory, namely, that they
define the values of the gauge coupling constants. Even t
magnitude of the numerical coefficient should be somewh

generic. Indeed, its analytical expression2 1
2a3ala /lu3

~in
the notation of@38#! shows that it is determined by basic
physical facts or assumptions: fractional smallness of ele
trostatic nuclear contributions (a3a.0.77031023), unifica-
tion of gauge coupling constants (la.1), and QCD confine-
ment$lu3

. ln@Lstring/(a.m.u.)#.40.8%.

We have also the model-dependent linkb̄.210.2kḡ,
where the dimensionless theory parameterk is expected to
be of order unity.@k.0 denotes here the curvature of a
coupling function around a minimum and should not be con
fused with the notationk(m) used above.# These links indi-
cate that, in the Earth-Moon case~but not necessarily in
other cases involving bodies with stronger self-energies!, the
gravitational binding contribution tod̄12 is numerically neg-
ligible compared to the composition-dependent termd̂12. In-
deed, using Eq.~3.7! and the compositional difference be-
tween the Earth and the Moon~i.e., the difference between
an Earth iron core of mass 0.32m2 and a silica-dominated
Moon @57,28#!, we find d̂12.0.32(d̂silica2 d̂Fe)
.3.6731026ḡ, while the gravitational binding energy con-
tribution is 4.45h310210524.45(40.8k11)310210ḡ.
From the point of view advocated here, the conclusion is th
LLR data give us a very precise test of theweakequivalence
principle. The loss of a Nordtvedt-type direct test of the com
binationh54b̄2ḡ is compensated by the theoretically ex
pected link d̄12. d̂12.3.6731026ḡ which gives an ex-
tremely good limit on the effective Eddington parameter o
the considered scalar model. More precisely, the observ

ly
the

13We neglect here contributions proportional to the ratios~baryon
number!/~mass! and ~neutron excess!/~mass! which tend to be sub-
dominant, even for moderateZ differences@38#.
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4190 53THIBAULT DAMOUR AND DAVID VOKROUHLICKY´
tional limit14 d̄125(23.264.6)310213, recently derived
from LLR data@27,16#, translates into the following obser
vational constraint15 on ḡ:

ḡ5~20.961.3!31027. ~3.8!

The recent laboratory tests of the weak equivalence princi
give comparable results. Using the experimental lim
d̂Be Cu5(21.962.5)310212 @28# and the theoretical for-
mula ~3.7! ~which yieldsd̂Be Cu52.4131025ḡ), we find

ḡ5~20.861.0!31027. ~3.9!

Impressive as these limits may seem, Ref.@38# gives a mo-
tivation for pushing equivalence-principle tests further b
cause this reference estimates that a natural range for
coupling parameterḡ is 10219&2ḡ&10210. @Note, how-
ever, that if the theory parameterk is of order 1/40~which
corresponds, in the notation of@56#, to k;1) larger values
of 2ḡ, of order 1027, are expected, in agreement with@56#.#
In this connection, let us mention that the LLR CERGA tea
plans to improve the precision of the ranging down to th
2–3 mm level for normal points@C. Veillet ~private commu-
nication!#. Extractingd̄12 at this level will necessitate to im-
prove the modeling of the solar radiation pressure effe
which are currently believed to contribute a synodic ran
oscillations of approximately 0.3 cm@25#. If this can be
done, the LLR experiment will reach the leve
d̄12;5310214, corresponding to the levelḡ;1028. It
seems that significant progress in testing the equivale
principle will require space missions: either a low Earth o
biting artificial satellite dedicated to testing the weak equiv
lence principle, as the STEP~Satellite Test of the Equiva-
lence Principle! mission, or, possibly, some type of orbita
test such as the one suggested in Ref.@25# and the ones
suggested above.
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14This was obtained from partial derivatives of the numerical
integrated equations of motion, and therefore independently
theoretical estimates of the value of the coefficientC(m) in Eq.
~2.60a!.
15We do not take into account here the theoretical constraint t

ḡ,0 in all scalar models.
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APPENDIX A: TRADITIONAL LUNAR
PERTURBATION THEORY

As a check on the lowest orders of the Hill-Brown calcu
lations presented in the text, we have also investigated
mixing between equivalence-principle-violation effects an
tidal effects by means of the traditional lunar perturbatio
theory of de Ponte´coulant@26,42#. The equations of motion
corresponding to the LagrangianL̂5 1

2v
21m/r1R read

d2r

dt2
1m

r

r 3
5

]R

]r
. ~A1!

Here,r[x12[x12x2 is the position vector of the Moon with
respect to the Earth~in an inertial, nonrotating, coordinate
system!, m[G12(m11m2), and R5R11R21R31••• is
the total potential perturbing the Keplerian motion of th
Moon around the Earth.@This corresponds to Eqs.~2.21! and
~2.22!.# We consider the coplanar problem for which it i
enough to solve for the radiusr[ur u and the longitudev
~polar angle!. Decomposing the acceleration into radial an
longitudinal components leads to

r̈2r v̇252mr221]R/]r , ~A2a!

d~r 2v̇ !/dt5]R/]v. ~A2b!

de Ponte´coulant’s method uses the longitudinal equatio
~A2b! but replaces the radial one~A2a! by the ‘‘virial’’ equa-
tion dealing with the second time derivative ofr 2. The basic
equations are then written as

1

2

d2

dt2
~r 2!2

m

r
1

m

ac
5P, ~A3a!

v̇2
hc
r 2

5
1

r 2E dt
]R

]v
, ~A3b!

whereac and hc are some integration constants and whe
the transformed source term in the radial equation is

P[r
]R

]r
12E dtS ddtD

1

R5r
]R

]r
12R12n8E dt

]R

]v
.

~A4!

In the first form of P, (d/dt)1 denotes a time derivative
taking into account only the variability due to the time
dependence of the coordinates of the Moo
(d/dt)15 ṙ ]/]r1 v̇]/]v. The second form ofP is obtained
by taking into account the time dependence ofR upon the
Sun’s coordinates, and assumes that the Sun moves o
circular orbit (ṙ 850, v̇85n8). It is very useful to notice that
if R5(pRp , where each contributionRp(r ,v2v8) has a
radial dependence}r p, thenP5(pPp with

Pp5~p12!Rp12n8E dt
]Rp

]v
. ~A5!

Note that the use of the suffixp is consistent with the nota-
tion R1 ,R2 ,R3 of Eqs.~2.22!.

First-order perturbation theory is very easy. Let us co
sider a general termRp

(q)5Arpcosq(v2v8), perturbing the

ly
of

hat
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zeroth-order ~circular! solution r5a, v05nt1« ~with
zeroth-order integration constantsac5a, hc5na2, and the
link n2a35m). Inserting the perturbed solutionr5a1dr ,
v5v01dv into Eqs.~A3! ~with perturbed integration con-
stantsac5a1da, hc5h1dh) yields

d2

dt2
~dr !1n2dr5 p̃Aap21cos@q~n2n8!~ t2t0!#1n2da,

~A6a!

d

dt
~dv !12

n

a
dr5

1

~n2n8!
Aap22cos@q~n2n8!~ t2t0!#

1a22dh, ~A6b!

where

p̃[p1212
n8

n2n8
5p1212m. ~A7!

Here, as in the text, we usem[n8/(n2n8) as the small
expansion parameter of perturbation theory. The solution
Eqs.~A6! is @with t[v02v085(n2n8)(t2t0)#

dr5
p̃

n22q2~n2n8!2
Aap21cosqt1da, ~A8a!

dv52
1

q~n2n8! F 2p̃n

n22q2~n2n8!2
2

1

n2n8GAap22sinqt

1~dn!t1de, ~A8b!

where dn522na21da1a22dh. Equations ~A6!–~A8!
have been written assumingqÞ0. They take a different form
whenq50. It is traditional@42# to keepn fixed throughout
the approximation process~and therefore numerically equa
to the observed mean motion!, and to define a by
n2a3[m. Then dh is computed in terms ofda so that
dn50. Finally, one must make use of the original radi
equation~A2a! to determineda.

We are especially interested in the case where the pertu
ing potentialR is the sum of the quadrupole tideR2 , Eq.
~2.26b!, and of a term with frequencyq51:

R5R21Rp5n82r 2F141
3

4
cos2~v2v8!G1Arpcos~v2v8!.

~A9!

In the case of the equivalence-principle-violating ter
~2.26a!, the perturbing term in cos(v2v8) has p51, while
the octupolar tide~2.26c!, for which p53, contains a per-
turbing term in cos(v2v8) ~that we focus on! and a term in
cos3(v2v8). At the fractional orderO(m2) beyond the first-
order solution~A8!, the cos3(v2v8) term mixes with the
quadrupole tides}cos2(v2v8) to generate the frequency
q51. As we work here only at the fractional orderO(m)
beyond the first-order solution, we do not need to study t
effect of the cos3(v2v8) term. The first-order solution corre-
sponding to Eq.~A9! reads
of

l

al

rb-

m

he

r5a1d0r1d2r1d1r , ~A10a!

v5nt1e1d2v1d1v, ~A10b!

where the superscripts ond indicate the values of the fre-
quencyq. To sufficient accuracy for our purpose we have
from Eqs.~A8!,

d0r1d2r52m2aS 161cos2t D1O~m3!, ~A11a!

d2v5
11

8
m2sin2t1O~m3!, ~A11b!

d1r5Cr
first order A

~n2n8!2
ap21cost, ~A11c!

d1v5Cv
first order A

~n2n8!2
ap22sint, ~A11d!

with

Cr
first order5

p1212m

2m1m2 5
p12

2m F11
22p

2~21p!
m1O~m2!G ,

~A12a!

Cv
first order522

~p1212m!~11m!

2m1m2 11

522
p12

2m F11
41p

2~21p!
m1O~m2!G .

~A12b!

Note that the constant term2m2a/6 in Eq. ~A11a! depends
on da5ac2a and must be determined by having recourse t
Eq. ~A2a!. Note also that the small denominator presen
when q51, n22(n2n8)25(n2n8)2@(11m)221#
5(n2n8)2@2m1m2#, causes the synodic effects to be o
orderO(m21A) instead of the usual orderO(A) valid when
qÞ1. One of the effects of this small denominator is to
have a simple, approximate link between the radial an
longitudinal synodic oscillations:Cv

first order522Cr
first order

3@11O(m)#. Another effect is that only theleading terms
in Eqs. ~A12! are correct. TheO(m) fractional corrections
are modified by higher iterations as we are going to see.

When proceeding to the next iteration, several effec
must be taken into account. On the left-hand side of E
~A3a! one must keep the terms of order (dr )2, while on the
right-hand side one must include the changedP of the
source termP(r ,v2v8) induced by the first-order solution
~A11!. This leads to the following equation fordr5r2a:

aS d2dt2 1n2D dr5P~r 0 ,v02v08!1dPeff , ~A13a!

dPeff5dP1S n22 1

2

d2

dt2D ~dr !2. ~A13b!

When computing the synodic effects with fractional accu
racy 11O(m), the computation ofdP is simplified by sev-
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eral circumstances. Because of the amplificationO(m21A)
of the first-order synodic effects, one finds that it is enou
to compute in Eq.~A5! the change of the first contribution
(p12)Rp , for p52 and under the synodic variationsd1r ,
d1v. This yields

~dP!synodic54~dR2!synodic

5H S d1r
]

]r
1d1v

]

]v D
3n82r 2@113cos2~v2v8!#J

synodic

511n82a2Bcost@11O~m!#, ~A14!

whereB[(2m)21(p12)(n2n8)22Aap22 denotes the lead-
ing value of the fractional synodic range oscillatio
(d1r /a.Bcost, d1v.22Bsint). We need also to extract the
synodic piece of (dr )25(d0r1d1r1d2r )2 coming from the
mixing between d0r1d2r.2m2a( 161cos2t) and
d1r.aBcost : (dr )synodic

2 .2 4
3a

2m2Bcost@11O(m)#. Fi-
nally, the synodic piece of the second-order effective sou
term for de Ponte´coulant’s radial equations~A13! is obtained
as

d1Peff5~dP!synodic1Fn21 1

2
~n2n8!2G~dr 2!synodic

59n82a2Bcost@11O~m!#. ~A15!

The corresponding solution reads

S d1r

a D second order.9
n82

n22~n2n8!2
Bcost.

9

2
mBcost.

~A16!

When turning to the longitude equation~A3b!, one finds
also some simplifications: the change of the source te
}*dt]R/]v is of orderm23m21A5O(mA). The corre-
sponding term in the solution is not amplified by a sma
denominator and is therefore negligible compared to the p
cision m3m21A5O(A) we are aiming for. It is,
therefore, sufficient to integrate the equatio
d/dt(d1v)second order.22na21(d1r )second order. The final re-
sult can be very simply expressed by saying that the sec
iteration leads to multiplying the first-order synodic pertu

bations ~A11c! and ~A11d! by the common factor 11 9
2m

1O(m2).
In conclusion, the mixing between the quadrupole tid

R2 and some synodic-frequency perturbation potential~in
which we factorize an effective gravitational mass of th
Sun,Gm8[n82a83),

~Rp!synodic5b
Gm8

a8 S ra8D
p

cos~v2v8!, ~A17!

leads, when neglecting nonlinearities in the dimensionle
parameterb ~which should not be confused with its post
Newtonian homonym!, to the synodic oscillations
gh
,

n

rce

rm

ll
re-

n

ond
r-

e

e

ss
-

d1r

a
5Crbm

2S aa8D
p22

cost, ~A18a!

d1v5Cvbm
2S aa8D

p22

sint, ~A18b!

where

Cr5F11
9

2
m1O~m2!GCr

first order

5
21p

2m F11
1014p

21p
m1O~m2!G , ~A19a!

Cv5F11
9

2
m1O~m2!GCv

first order

522
21p

2m F11
1115p

21p
m1O~m2!G . ~A19b!

The two cases of interest are:~i! a hypothetical violation
of the equivalence principle in which@comparing Eq.~A17!
with Eq. ~2.26a!#

p51 , bep5 d̄12, ~A20!

and, ~ii ! the octupolar tide~‘‘parallactic effects’’!, Eq.
~2.26c!, with

R3.
1

8
~X22X1!

Gm8

a8 S ra8D
3

3@3cos~v2v8!15cos3~v2v8!#, ~A21!

whose synodic piece has

p53 , bpar5
3

8
~X22X1!. ~A22!

The results~A18!–~A22! agree with the~much more ac-
curate! Hill-Brown-type results given in the text and in Ap-
pendix B.

APPENDIX B: HILL’S EQUATIONS—MORE ON
THE ITERATIVE SCHEME OF SOLUTION

AND NUMERICAL RESULTS

In this appendix, we explain in detail the iterative scheme
we employed for solving Hill’s equations~2.47! with the
source terms~2.46!, and also with the parallactic perturba-
tion ~2.48!. We also give tables of the obtained solution for
several physically interesting quantities. Obviously, one ca
envisage several iterative methods for solving the considere
equations. We do not claim that the scheme we adopted is t
optimal one, but we found it suitable from the point of view
of memory and computing time requests. Thanks to our us
of the dedicated algebraic manipulatorMINIMS, we could ob-
tain the solution to a very high order in the formally small
parameters. In what follows, we shall present the solution fo
the perturbation of Hill’s variational orbit related to the
equivalence principle violation. Exactly the same scheme ap
plies in the case of the parallactic perturbations.
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Keeping the notation of Sec. II D, notablyL(w,w̄) for the
linear operator~2.46!, we have to solve

L~w,w̄!52l̂z212
3

2
m2z222

3

2
m2w̄z221k~m!Q~w,w̄!,

~B1!

where

Q~w,w̄!5~11w!21/2~11w̄!23/2211
1

2
w1

3

2
w̄. ~B2!

The nonlinear functionQ can be written as

Q~w,w̄!5 (
k>2

xk@w
k1~2k11!w̄k#

1 (
j ,k>1

~2k11!x jxkw
jw̄k. ~B3!

Here,

xk[S 21/2

k D
and

~2k11!xk5S 23/2

k D
are binomial coefficients.

As in Sec. II D, we look for a formal power series solu
tion of Eq. ~B1!,

w5w~1!1w~2!1w~3!1•••, ~B4!

and similarly for the complex conjugate. The superscripts
the consecutive terms in~B4! refer to corresponding orders
in the combined formal small parameter (l̂1m2). Keeping
track of the orders in this formal small parameter, we deco
pose the nonlinear sourceQ as

Q~w,w̄!5Q~2!1Q~3!1•••, ~B5!

where the individual terms include symbolically

Q~ i !5 (
ja1kb5 i

~coefficient!~w~a!! j~w̄~b!!k. ~B6!

For any particular value ofi in ~B6!, Q( i ) is given by a finite
number of terms which depend only on the knowledge
w(a) for a, i . Although the procedure of breakingQ(w,w̄)
into a sum of equal-order termsQ( i ) might seem laborious, it
is relatively easy to be programed using a well suited alg
braic manipulator such asMINIMS. One can introduce a for-
mal index which conserves the order of a particular term a
manipulate it as any other variable.

The heart of our iteration scheme consists of the follow
ing infinite system of differential equations
-

on

m-

of

e-

nd

-

L~w~1!,w̄~1!!52l̂z212
3

2
m2z22, ~B7!

L~w~2!,w̄~2!!52
3

2
m2w̄~1!z221kQ~2!~w~1!!,

L~w~3!,w̄~3!!52
3

2
m2w̄~2!z221kQ~3!~w~1!,w~2!!,

. . .5 . . . ,

L~w~k!,w̄~k!!52
3

2
m2w̄~k21!z22

1kQ~k!~w~1!,w~2!, . . . ,w~k21!!,

. . .5 . . . .

It is easy to verify that the generic form of the terms in the
right-hand sides of Eqs.~B7! readsWkz

k1W2kz
2k as pre-

sented in~2.50!. The unique inversion of the linear operator
L on the left-hand sides of Eqs.~B7! is given by formulas
~2.51! and ~2.52!. Notice also that suppressing the
equivalence-principle-violation term@ l̂50 in ~B7!#, one re-
covers a system of equations for constructing the usual vari
tional periodic orbit.

In the preceding scheme, we considerl̂ andm2 as two
comparable ‘‘small’’ parameters. However, in practice, the
order of thel̂ parameter associated with the studied violation
of the equivalence principle is numerically much smaller
than m2 ~which can be as large as one!. As a result, we
restrict the generality of our solution by keeping onlythe
first order in the parameterl̂. This truncation allows a clear
separation in the interpretation of the odd- and even-powe
terms in thez variable of the final solution forw ~andw̄): ~i!
the even-power terms (}z2i) never contain the perturbation
parameterl̂ and fully reconstruct Hill’s variational solution,
~ii ! the odd-power terms (}z2i11) are all of the first order in
l̂ ~but they are coupled to the ‘‘background’’ variational
terms through an infinite series of powers ofm2). We thus
simultaneouslyobtain Hill’s variational solution and itsl̂
perturbation by filtering the various powers ofz. This is a
particularly important circumstance, because the series gi
ing the variational solution enters the definition of severa
studied quantities such as the radial or longitudinal perturba
tions of the lunar orbit by the equivalence-principle-violation
terms@see Eqs.~2.58!#.

Once the iterative scheme is set up and the numeric
program debugged, we can obtain the solution of our prob
lem up to an arbitrary order. The limits of the solution are
then given mainly by the computer power. A minor limit
comes from the fact that theMINIMS algebraic manipulator
works with double precision real coefficients (16 digits! @49#.
During the manipulation of the series, one thereby accumu
lates round-off errors. However, we have checked that th
restriction is not significant for our work.16

16We have performed a lower order solution in using the modified
version of the distributedMINIMS manipulator which accepts the
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TABLE I. Coefficientswjk of the double series giving Hill’s variational curve:w5(wjkz
jmk; j labels the rows andk the columns.

2 3 4 5 6

26 – – – – 0.005208333333333333
24 – – 0.0000000000000000 0.03593750000000000 0.12458333333333
22 21.187500000000000 21.666666666666667 21.194444444444444 20.5185185185185185 20.8265365788966050
0 – – 0.6210937500000000 20.6770833333333333 20.6892361111111111
2 0.1875000000000000 0.5000000000000000 0.5833333333333333 0.305555555555555620.1615849247685185
4 – – 0.0976562500000000 0.4182291666666667 0.84847222222222
6 – – – – 0.06778971354166667
ady
n-

f

s
-

-

te

e

In the rest of this appendix we shall present tables of t
numerical coefficients achieved by the previous algorith
for different series introduced in the main text of the pap
and related to physical quantities.

Let us start with our solution for the variational curv
(l̂50). Tables I and II give the coefficientswi j of the
double series expansion ofw: w5(wjkz

jmk, where
j50,62,64, . . . , k52,3,4,. . . , and u j u<k ( j labels the
rows andk the columns!. Contrary to the method of Ref.
@18#, the z-independent term is not fixed to unity. Howeve
because of the choice of the fiducial semimajor axisã, de-
fined in Eq.~2.36!, it starts only at the powerm4.

We then give the lunar orbit perturbations due to a hyp
thetical equivalence-principle violation~terms linear inl̂!.

Table III gives the coefficientsck of the series in powers
of m giving w21 , i.e., the coefficient ofz21 in the Laurent
expansion ofdlw(z), after factorization of the leading term
9
4(l̂/m) @see Eq.~2.56b!#. The second column,pk , gives the
numerical value of ckm

k ~in %! for the lunar orbit
(m5mMoon50.080 848 937 5 . . . ). The last column, r k ,
gives the ratiock21 /ck of the successive coefficients of th
series~the same structure is conserved also for Tables IV–
and VIII–IX!.

Table IV gives the coefficientsck of the series in powers
of m giving w1 , i.e., the coefficient ofz in the Laurent
expansion ofdlw, after factorization of the leading term
2 3

4(l̂/m) @see Eq.~2.56a!#.

quadruple precision~32 digits! for the coefficients of the series and
compared it with the double precision one.
he
m
er

e

r,

o-

e
VI

Some general properties of the presented results, alre
commented upon in the main text of the paper and in Appe
dix C, are~i! a fast~‘‘geometriclike’’! growth of the coeffi-
cientsck of the series with a surprisingly rapid approach o
the r k(5ck21 /ck) ratio to the mcr value of about
0.195 103 996 6 . . . , and~ii ! a very substantial contribution
of the nonlinear terms (k>1) in the series for the lunar value
of Hill’s parametermMoon.

Tables V and VI give the coefficients of the power serie
S(m) andS8(m) related, respectively, to the radial and lon
gitudinal perturbations~with synodic periodicity! of the lunar
orbit due to a hypothetical violation of the equivalence prin
ciple. The coefficients of the Pade´ approximants of those
series are given in Table VII. More precisely, we deno
N8(m)[(0

8akm
k and D8(m)[(0

8bkm
k, the Pade´ approxi-

mants for the S(m) series @see Eq. ~3.2!#, and
N88(m)[(0

8ak8m
k andD88(m)[(0

8bk8m
k, the Pade´ approxi-

mants for theS8(m) series. The denominator polynomials
D8(m) and D88(m) have 0.195 103 996 7 . . . and
0.195 103 996 6 . . . , respectively, as real roots.

Table VIII gives the coefficients of theS9(m) series yield-
ing the equivalence-principle-violation perturbation of th
lunar orbit with one-third of the synodic period~‘‘3 t ’’ !. This
series is defined by

~dlr ! third synodic5C9~m!d̄12a8cos3t, ~B8!

with

C9~m!5
51

32
m3S 11 (

k>1
ck9m

kD[
51

32
m3S9~m!. ~B9!
2
5399
95372

5882
965

7343
965
4

TABLE II. Continuation of Table I.

7 8 9 10 11

210 – – – 0.002728271484375000 0.0231483058815419
28 – 0.003743489583333333 0.02753602458235899 0.09640929637552359 0.213812080882
26 0.03477027529761905 0.1040162627551020 0.1880280591858106 0.2403927412241086 0.24161312341
24 0.1956215277777778 0.2153863326461227 0.2955465183221726 0.376904302665973820.1199168976723571
22 1.205252137988683 7.122740269204389 15.70605739258259 19.78110897697562 14.6601828721
0 21.605902777777778 20.5700574333285108 0.3975170245386445 1.670582431118184 7.457045029767
2 21.034723427854938 23.070661490483539 26.516200630679869 29.530344734021654 27.910677339637028
4 1.038887731481481 0.704109760199652320.5710030937052194 24.063905605879704 211.57027457856626
6 0.3898297991071429 1.087330552012472 1.926893073875549 2.301395728392179 1.14929795647
8 – 0.05397033691406250 0.3869401996638499 1.360005033209030 3.095895579274
10 – – – 0.04656556447347005 0.398893260844407
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Note that the third-synodic effect~2.8! isO(m2) smaller than
the synodic effect~2.60!. For instance, if we assume
d̂1250, the result ~2.9! gives numerically
(dlr ) third synodic.6.62h cos3t cm for the lunar orbit. Al-
though there is probably no practical use of this higher fr
quency excitation~and of the others with frequencies 5t,
7t, . . . ), twopoints are to be mentioned:~i! a significantly
smaller amplitude of the effect, and~ii ! the persistence of the
pole singularity atm5mcr for these odd multiples of the
basic synodic frequency as discussed in Appendix C.

Table IX lists the coefficients of theQ(m) series giving
the radial parallactic inequality of the lunar motio

TABLE III. Coefficients ofmk in the lunar orbit perturbation
w21 . The mark, signifies that the value is smaller than 0.001%

k ck pk r k

0 1.000000000000000 – –
1 5.111111111111111 41.323 0.1956521739
2 25.52777777777778 16.686 0.2002176279
3 129.5277777777778 6.845 0.1970834227
4 663.1076388888889 2.833 0.1953344679
5 3400.509837962963 1.175 0.1950024174
6 17434.56978202160 0.487 0.1950440923
7 89366.97811374742 0.202 0.1950896198
8 458049.7173103071 0.084 0.1951032273
9 2347711.432406117 0.035 0.1951047778
10 12033105.92287766 0.014 0.1951043602
11 61675313.45886662 0.006 0.1951040902
12 316115045.4115870 0.002 0.1951040115
13 1620238694.871019 0.001 0.1951039970
14 8304487501.579596 , 0.1951039958
15 42564415192.16274 , 0.1951039962
16 218162702733.8958 , 0.1951039965
17 1118186744062.939 , 0.1951039966

TABLE IV. Coefficients ofmk in the lunar orbit perturbation
w1 . Notation as in Table III.

k ck pk r k

0 1.000000000000000 – –
1 6.000000000000000 48.509 0.1666666667
2 29.62500000000000 19.365 0.2025316456
3 147.5000000000000 7.795 0.2008474576
4 749.9427083333333 3.204 0.1966816910
5 3843.245659722222 1.328 0.1951326495
6 19711.47459129051 0.551 0.1949750457
7 101057.1821729118 0.228 0.1950526837
8 517989.9317152261 0.095 0.1950948773
9 2654938.425605692 0.039 0.1951043108
10 13607759.81112155 0.016 0.1951047389
11 69746091.35545381 0.007 0.1951042639
12 357481499.9590677 0.003 0.1951040581
13 1832261194.517921 0.001 0.1951040065
14 9391202741.857013 , 0.1951039973
15 48134343317.40093 , 0.1951039963
16 246711211454.4727 , 0.1951039964
17 1264511316090.325 , 0.1951039966
e-

n

@Q(m)[11(k>1qkm
k# as defined in Eqs.~3.4! of the text.

Similarly to the treatment of the equivalence-principle
violation lunar perturbation, we improved on our solution by
using Pade´ approximants. Table X yields the coefficients o
the corresponding polynomials. We also computed the corr
sponding lunar parallactic inequality in longitude. As a par
tial check on our results we have compared the latter with th
result by Deprit, Henrard, and Rom@58#. When substituting
the current recommended values of the mass constants

.
TABLE V. Coefficients of theS(m) series yielding the radial

perturbation, with synodic~‘‘ t’’ ! period, of the variational curve
due to an equivalence principle violation.

k ck pk r k

0 1.000000000000000 – –
1 4.666666666666667 37.730 0.21428571429
2 22.10416666666667 14.449 0.21112158341
3 111.0416666666667 5.868 0.19906191370
4 569.0742187500000 2.431 0.19512686221
5 2920.624565972222 1.001 0.19484675483
6 14976.54921694155 0.418 0.19501318519
7 76767.66017493731 0.173 0.19508930170
8 393469.7706768071 0.072 0.19510434065
9 2016707.919972300 0.030 0.19510498609
10 10336561.13767503 0.012 0.19510433819
11 52979731.33709500 0.005 0.19510406861
12 271546096.6185635 0.002 0.19510400627
13 1391801807.779853 0.001 0.19510399764
14 7133640668.991231 , 0.19510399701
15 36563272849.28028 , 0.19510399680
16 187404017729.6833 , 0.19510399666
17 960533976540.2227 , 0.19510399664

TABLE VI. Coefficients of theS8(m) series yielding the longi-
tudinal perturbation, with synodic~‘‘ t ’’ ! period, of the variational
curve due to an equivalence principle violation.

k ck pk r k

0 1.000000000000000 – –
1 5.333333333333333 43.119 0.18750000000
2 26.39583333333333 17.254 0.20205209155
3 132.9166666666667 7.024 0.19858934169
4 678.3172743055553 2.898 0.19595058493
5 3478.588686342593 1.202 0.19499783834
6 17838.85192117573 0.498 0.19500070418
7 91447.83453394253 0.206 0.19507134326
8 468721.9555645895 0.086 0.19510038616
9 2402405.984973695 0.035 0.19510522305
10 12313419.50072995 0.015 0.19510469735
11 63112018.54675127 0.006 0.19510419385
12 323478806.4318246 0.003 0.19510402936
13 1657981435.159388 0.001 0.19510399789
14 8497936880.202027 , 0.19510399507
15 43555934597.05303 , 0.19510399579
16 223244707500.3778 , 0.19510399635
17 1144234415604.679 , 0.19510399657
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TABLE VII. Coefficients of the Pade´ approximants of order eight of the radial and longitudinal pertu
bation series, with synodic~‘‘ t’’ ! period, of the variational curve due to an equivalence principle violatio

k ak bk ak8 bk8

0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000
1 24.679659654425508 29.346326321092175 22.948114664716526 28.281447998049859
2 9.706375765630793 31.21839859739427 2.472472675594219 20.24436199852
3 212.09649460259615 262.2312666679611620.035120215085467699222.32599642537073
4 9.264485113438459 78.3778103886318320.8074761600241968 6.322888291078106
5 20.8206525542778040259.42770492795888 1.129701196880901 4.76834231607609
6 24.562346877625465 5.529574170471975 1.916287015273362 13.88318783117
7 0.6450458113816286 30.28114298289518 23.678767273115525 238.01361281338056
8 0.9269455883562498 230.33613801897244 23.906968891383218 34.97077854522613
in

ce

d
it.

e

t

-

the Earth semimajor axis, we obtain 125%438 for the ampli-
tude, in the main lunar problem, of the parallactic inequali
in longitude when truncating our series to the powerm7.
This value is to be compared with 125%4201 reported in Ref.
@58#. We believe that the origin of the minor discrepanc
between those results lays in the slightly different values
the astronomical constants employed by Deprit, Henrard, a
Rom at the end of the 1960s.17

APPENDIX C: CHARACTERISTIC MULTIPLIERS,
COMMENSURABILITIES, AND INSTABILITY

Let us first recall the basic concept of characteristic mu
tipliers. The small perturbations around a periodic orbit
the restricted three-body problem can be described in te

TABLE VIII. Coefficients of theS9(m) series yielding the ra-
dial perturbation, with third-synodic~‘‘3 t ’’ ! period, of the varia-
tional curve due to an equivalence principle violation.

k ck9 pk r k

1 1.000000000000000 – –
2 6.450980392156863 52.155 0.15501519757
3 32.60457516339869 21.312 0.19785506665
4 163.0646514161220 8.618 0.19994876192
5 828.6388478122731 3.540 0.19678615340
6 4240.758469846889 1.465 0.19539873674
7 21736.94075865620 0.607 0.19509454053
8 111428.4766430605 0.252 0.19507527531
9 571159.5105168029 0.104 0.19509169434
10 2927510.871437882 0.043 0.19510073083
11 15004916.03283528 0.018 0.19510344910
12 76907280.99332377 0.007 0.19510397246
13 394186033.1895487 0.003 0.19510402327
14 2020389145.708269 0.001 0.19510401450
15 10355446785.91400 , 0.19510400541
16 53076547791.36041 , 0.19510400011
17 272042338525.2278 , 0.19510399771

17For completeness, let us mention that, when including the
fects of e, e8, and I , the amplitude of the parallactic inequality
becomes 124%98812@59#.
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of a two-dimensional Poincare´ map: this is the application
connecting two successive intersections of the trajectory
phase space with a two-plane transversal to the orbit.~One
works, say, in the three-dimensional reduced phase spa
corresponding to a fixed value of the Jacobi integral; see@60#
for a catalog of such Poincare´ maps in the case of the Hill
problem.! For infinitesimal perturbations, the Poincare´ map
reduces to a linear transformation of the plane, leaving fixe
the origin which corresponds to the reference periodic orb
The two eigenvalues (l1 ,l2) of the infinitesimal Poincare´
map~a 232 matrix! are the characteristic multipliers. From
the Hamiltonian nature of the dynamics, it follows that thes
multipliers are either of the form (eia,e2 ia) or
(«eb,«e2b) with «561 @61#. The first case means gener-
ally ~apart from the exceptional cases wherea52p/3, or
wherea52p/4 and some inequality is not satisfied! that the
periodic orbit is~quasi-!stable. The second case means tha
the periodic orbit is unstable. A useful quantity for studying
the possible loss of stability is half the sum of the multipli
ers: a[ 1

2(l11l2), which is either cosa ~in which case
uau<1) or « coshb ~in which caseuau>1). The loss of sta-

ef-

TABLE IX. Radial perturbation of the variational curve due to
parallactic terms with synodic~‘‘ t’’ ! period.

k qk pk r k

0 1.000000000000000 – –
1 4.400000000000000 35.574 0.2272727273
2 13.43750000000000 8.783 0.3274418605
3 59.99895833333333 3.171 0.2239622216
4 318.5420138888889 1.361 0.1883549288
5 1665.565227141204 0.575 0.1912515996
6 8563.762388478974 0.239 0.1944898926
7 43904.44785527987 0.099 0.1950545516
8 225048.4315368017 0.041 0.1950888862
9 1153503.664577334 0.017 0.1950998843
10 5912167.013677382 0.007 0.1951067454
11 30302311.46598434 0.003 0.1951061397
12 155313062.3650712 0.001 0.1951047195
13 796051992.0171008 , 0.1951041690
14 4080141094.383684 , 0.1951040353
15 20912646936.88289 , 0.1951040013
16 107187180609.8796 , 0.1951039930
17 549384862217.9330 , 0.1951039935
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TABLE X. Coefficients of the Pade´ approximants of order eight of the radial and longitudinal perturba
tions of the variational curve due to the parallactic terms with synodic~‘‘ t’’ ! period.

k ak9 bk9 ak- bk-

0 1.000000000000000 1.000000000000000 1.000000000000000 1.0000000000000
1 23.053328223352915 27.453328223352915 22.946473061279729 28.146473061279729
2 23.844661609919813 15.5124825728330124.603878697382873 20.29528122127172
3 5.918301506191725 222.18148214630207 7.845106685708085230.39194483230758
4 3.507936007628144 21.30738850763350 1.021511391279373 33.435409487353
5 13.74620469848220 24.042478627609922 15.68678071178852219.25251169116597
6 2.377354880592943 226.42346152043986 0.230401974593673210.98565280233657
7 225.90435993273240 19.02504889156572227.85325375859802 18.16643796715844
8 240.39610428715375 228.47566056885599 236.65716185443595 210.99350748347175
c
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bility can occur~apart from the above-mentioned exception
cases! only whena crosses the values61. The stability of
all the periodic orbits in Hill’s problem has been studied b
Hénon @52#. We are interested here in the families ‘‘g’’ and
‘‘ f ’’ of periodic orbits which correspond, respectively, to pro
grade and retrograde lunar-type orbits. He´non found that ret-
rograde orbits are stable for all values of the Jacobi integ
~i.e., 21,m,0), while prograde orbits are stable only fo
close enough orbits, 0,m,mcr with

18

mcr50.195 103 996 6 . . . . ~C1!

For this valuea crosses the value11.
Let us translate this result in terms of the perigee prec

sion of a perturbed Hill orbit. Perturbations of Hill’s orbi
can be described in terms of the~isoenergetic! normal dis-
placementq5(ẊdY2ẎdX)/(Ẋ21Ẏ2)1/2. This variable sat-
isfies ‘‘Hill’s equation’’

d2q~t!

dt2
1Q~t!q~t!5s~t!, ~C2!

whereQ(t)5u012(1
`u jcos2jt is periodic with periodp.

The source terms(t) on the right-hand side of Eq.~C2! is
zero for free perturbations~i.e., corresponding to adding
some ‘‘eccentricity’’ to Hill’s ‘‘circularlike’’ variational or-
bit!, and nonzero when one perturbs Hill’s Hamiltonia
HHill5(kinetic terms)1F01F2 ~e.g., by adding theF1 per-
turbation we are mainly concerned with, or the parallac
termsF31•••). Perigee precession is described by the ge
eral homogeneous solution of Eq.~C2! ~s50!. The latter
general homogeneous solution can be written as a lin
combination of complex solutions of the form
q(t)5zc( jbjz

2 j and of their complex conjugates~we recall
that z5ei t). On the one hand, the quantity c is linked to th
usual rate of perigee advancedÃ/dt ~in the nonrotating
frame! by @18#

18In Hénon’s fourth paper @52#, he gives the value
pmcr5T/250.612 94. The more precise value~C1! was privately
communicated to us by He´non, and also follows independently
from our results in Appendix B~study of the geometriclike growth
of variousm series and of the zeros of Pade´ denominators!.
al
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c5
dl

dt
5~11m!S 12

1

n

dÃ

dt D ~C3!

~wherel5nt1e2Ã is the ‘‘mean anomaly’’!. On the other
hand, the quantity c is directly linked to the characteristi
multipliers. Indeed, whent→t12p, q(t) gets multiplied
by e2p ic, while q̄(t) gets multiplied bye22p ic. Therefore,
the half-sum of the multipliers is simply

a5cos~2pc!. ~C4!

By using the perturbative series giving the perigee prece

sion, n21(dÃ/dt)5 3
4m

21 177
32 m

31••• ~which has been
computed to high accuracy in Ref.@58#; see also@19#!, one
can check that the crossing ofa511, found by He´non, cor-
responds, whenm increases from 0 tomcr , to c increasing
from one to a slightly higher value (.1.1) and then decreas-
ing to reach the value of one atm5mcr . From the smooth-
ness of the variation of the characteristic multipliers, an
therefore ofa, with m we deduce that, beyondm5mcr ,
c~m! goes through a quadratic branch poin
c(m)21;(mcr2m)1/2 and becomes complex.19

Finally, the important information for our purpose is tha
when m increases up tomcr , the quantity c(m)
21;(mcr2m)1/2 is such that both functions cos2pc(m)
3(5a) and cospc(m) cross smoothly~without branch
points or discontinuities of derivatives! their corresponding
limiting values cos2p511 and cosp521.

Let us now consider Hill’s way of solving Eq.~C2!. By
insertingq(t)5zc( jbjz

2 j into ~C2!, one gets an infinite sys-
tem of linear equations for the coefficientsbj . When written
in a suitably normalized way, the determinant of this infinite
system~which depends on c!, say D~c!, is a well-defined
quantity ~Hill’s determinant!. A homogeneous solution
~s50! exists only for the values of c for whichD~c!50. On
the other hand, if we consider the case where there is

19The combined facts thatmcr is rather small and that c(m) has a
quadratic branch point atm5mcr ‘‘explains’’ the notoriously bad
convergence of the perturbation series givingdÃ/dt. Rewriting
this series in terms of better-behaved quantities, such as cos(2pc) or
cos(pc), improves more its convergence than that by the ‘‘Eule
transformations,’’m→m/(11am), which have been traditionally
used@62#.
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source term on the right-hand side of Eq.~C2! of the form
s(t)5zcs( js jz

2 j , the corresponding inhomogeneous sol
tion qinhom(t) will have the same form ass(t), but will
contain, as for usual finite determinants, a factor 1/D(cs).
This factor will become infinite when cs tends to one of the
free perigee precession values for whichD~c!50. The analy-
sis of the determinantD~c!50 @42,18# shows that, as a func-
tion of c, it is a linear function of cospc. We conclude that
the forced perturbationqinhom(t) will contain the factor
@cospcs2cospc(m)#21, where c(m) denotes the free peri-
gee precession value. From our analysis above, we know
whenm crossesmcr , cospc crosses smoothly21. The final
conclusion is that the source terms for which cospcs521,
i.e., cs561,63,65, . . . , generates normal displacemen
of Hill’s orbit which have pole singularities}(m2mcr)

21 as
m crosses the value~C1! found in linear stability analyses.
Moreover, it is easily checked that the addition of a pertur
ing potential, sayFp , to Hill’s potentialF01F2 , generates a
source terms(t) in Hill’s variational equation~C2! which is
a linear combination ofFp and Re@Du(]Fp /]u)# with real
coefficients of the formk012( j kjcos2jt. More precisely

s~t!522w$w2FFp1Re@Du~]Fp /]u!#%, ~C5!

where

w22~u,ū!52DuDū, ~C6a!

F~u,ū!5mDuDū22Re@Du~]FHill /]u!#, ~C6b!

with FHill[F01F2 .
Therefore, ifFp5Re@zcp( j f jz

2 j #, s will have the form
s(t)5Re@zcp( js jz

2 j #. In other words, cs56cp , so that
the perturbing potentialsF1 ,F3 ,F5 , . . . generate source
terms with cs561, cs563, cs565, . . . , respectively.

APPENDIX D: LAPLACE ON
THE EQUIVALENCE PRINCIPLE

In the first volume of hisTraité de Mécanique Ce´leste
@63# ~presented to the French Academy of Sciences in 179!,
Laplace lists a series of facts suggesting that gravity is p
portional to the masses. This list~which is probably inspired
by a corresponding list in thePrincipia, although Laplace
does not mention Newton here! contains Newton’s argument
that the motion of satellites would be very sensitive to
violation of the universality of free fall, but does not quantif
it. As far as we are aware, the only quantitative work
Laplace on this idea@5# is contained in the last book of the
last volume of theTraité de Mécanique Ce´lestewhich was
presented to the Acade´mie des Sciences on 16 August 182
@64#.

The fact that Laplace was then 76 year old~he died a year
and a half later on 5 March 1827! may explain why this work
of Laplace contains some strange leaps of reasoning.20 It

20Basically, he mentions that his lunar theory and combined~se-
lected! lunar and solar parallax data agree to about 1.2% and th
goes on to admit 1/8512.5% as fractional upper limit on the
u-
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seems plausible to us that Laplace, when writing this chapt
was using previous notes of his which contained more d
tailed calculations and more consistent reasonings. Anywa
the aim of this appendix is to show that the final limit he
quotes on a possible violation of the equivalence principle

ud̄12u,
1

3 410 000
.2.931027, ~D1!

is a very reasonable~and slightly pessimistic! bound, which
can be derived in a logically clear way using only the infor
mation Laplace had in hand.

Laplace’s new idea~compared to Newton! was to use the
‘‘parallactic inequality’’ in the longitude of the Moon as a
sensitive test of the equivalence principle.21 ‘‘Parallactic in-
equality’’ means the coefficient of the synodic term, sint in
the expression of the lunar longitudev as a function of
time.22 We have computed this coefficient, sayA, in Appen-
dices A and B for the Main Problem~i.e., neglecting eccen-
tricities and inclinations!. Its theoretical expression reads

Ath5Apar1Aep, ~D2!

where the normal ‘‘parallactic’’ contribution reads

Apar5
15

8
~X22X1!m

ã

a8
Spar~m!, ~D3!

while the ‘‘equivalence principle’’ contribution reads

Aep53md̄12
a8

ã
Sep~m!. ~D4!

Here, Spar(m)511 26
5 m1•••, Sep(m)511 16

3 m1•••, are
slowly converging series in powers ofm5n8/(n2n8). In
the third volume of hisTraité de Mécanique Ce´leste, Laplace
computesAparwith particular care, pushing the calculation to
fifth order in m inclusively.23 He was therefore entitled to
considering that the theoretical error onApar was negligible
compared to the observational uncertainties inAobs. Note
that Apar is proportional to the inverse distance to the Sun
i.e., to the ‘‘solar parallax’’pS[RE /a8, whereRE is the
equatorial radius of the Earth~hence the name ‘‘parallactic
inequality’’!. The result of Laplace can be expressed as

Apar.14.3pS , ~D5!

where bothApar andpS are expressed in sec of arc.24

en

theory-observation agreement.
21Note that as early as 1753, T. Mayer had used the theory of t

parallactic inequality to infer the value of the solar parallax@65#.
22Beware that Laplace was actually working with the invers

function: t5t(v).
23We have checked the first orders of his result and found them

agree with ours. Note that Laplace includes the effect of eccentric
ties and inclinations that we neglect.
24Beware that Laplace, in his volume III, uses~Révolution oblige!

‘‘decimal seconds,’’ i.e., 1026 of a right angle.
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On the observational side, Laplace had in hand both lu
data and data on the solar parallax. The two phenomenolo
cal ‘‘lunar tables’’ he was using~one by Mason and one by
Burg! gave for the ‘‘observed’’ value of the synodic inequa
ity in longitude,AMason

obs 5116%68 andABurg
obs 5122%38 @66#. As

for the solar parallax, many scientific expeditions had tak
advantage of the passages of Venus in front of the Sun
1761 and, especially, in 1769 to measurepS ~see@67# for a
detailed text by a contemporary of Laplace, or@68# for a
more exhaustive historical treatment!. The published results
ranged betweenpS

obs58%43 ~Planman! andpS
obs58%80 ~Pin-

gré! @65,68#. The comparison between the theoretical resu
~D2! and ~D5! and the observational results onA and pS
gives a value for a possible equivalence-principle-violatio
contribution

Aep5Aobs214.3pS
obs. ~D6!

Worst-case limits onAep are obtained by taking the ex-
treme values on the right-hand side of~D6! ~e.g.,
Aep
max5ABurg

obs 214.3pS
Planman).25 This yields

29%2,Aep,1%8. ~D7!

On the other hand, the theoretical result~D4! @using
a8/ã.391 and Sep(m).1.72 ~see Appendix B!# reads
Aep.163d̄12.3.36d̄123107 in sec of arc, so that we get the
following worst-case bounds ond̄12:

22.731027, d̄12,0.5431027. ~D8!

From this point of view, the final bound quoted by Laplac
Eq. ~D1!, seems very reasonable and consistent with the
servational uncertainties in his time. Note, however, th
Laplace never quotes a precise theoretical formula forAep.
He only says~and uses! the fact that the synodic amplitude
A is proportional to its source term in the perturbing fun
tion. This neglects the leading ‘‘p dependence’’ ofCv
}21p in Eq. ~A19b! which says that Aep/Apar
}3/53Sep(m)/Spar(m). In Laplace’s published analysis the
lacking ~unfavorable! factor 3/5 is effectively compensated
by his overpessimistic estimate of the fractional uncertain

25Such a worst-case approach seems appropriate to a pre-le
squares-law period. Before Gauss’ theory of measurement err
scientists quoted only ‘‘central values’’ for measured quantities.
nar
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on A: 1/8512.5%.26

Let us end this section by raising a historical question
Though Laplace was fully aware of the scientific interest o
the bound~D1!, and of the fact that it was~at the time! more
precise than the bounds obtained from ground tests of t
universality of free fall, his successors in celestial mechani
seem~as far as we know! to have lost interest in the issue.
However, near the end of the nineteenth century, especia
after the theoretical work of Hansen, Delaunay, Hill, an
Brown ~who improved the computation ofApar

th ), and after
many improvements on the observational side, it should ha
been possible to obtain more stringent limits ond̄12. For
instance, Delaunay computedApar

th to m7 which corresponds
to a truncature error of 0%3366/125%4201.2.731023 @58#
~for the principal part ofA; see also Appendix B!. This is
negligible ~when added in quadrature! compared to the ob-
servational error onpS at the time. For instance, the labora-
tory measurements of the velocity of light by Foucault an
Cornu gave values ranging betweenpS58%834 and
pS58%881, the passage of Venus across the solar disk
1874 gave a range 8%7628%88, @65# and the recommended
value starting in 1896 was 8%80. This suggests that a reason
able upper bound on the uncertainty ofpS at that time was
0%08 ~i.e., 0.9%!. ~By comparison, the modern value is
pS58%794148 @51#.! On the other hand, the observationa
error onAobs at the time was, 1

2(125%462124%70)50%38,
i.e.,,0.3%~see@65#, p. 533!. This has a negligible effect on
the derivation of a bound ond̄12.

27 Using Eq. ~D6! with
Aep.3.36d̄123107 sec of arc, this leads to the bound
ud̄12u,14.3dpS

obs/(3.363107).3.431028, which is slightly
better than the value obtained by Eo¨tvös in 1890
(ud̄ABu,531028 @7#!. We do not wish to take too seriously
sucha posterioriderivations of limits ond̄12, but we con-
sider this as an interesting example of historical eclipse of
deep concept, which has been rejuvenated, within a ne
theoretical and observational context, only in the las
decades.28

ast-
ors,

26As for the subleading dependence onp, i.e., the ratio
Sep(m)/Spar(m).1.72/1.60.1.08, Laplace’s experience with simi-
lar factors in many terms of lunar theory might have suggested
him that he did not need to worry about it.
27Let us note for completeness that the determinations of the ma

of the Moon at the time were accurate enough to estimate wi
negligible error the mass ratio factorX22X1 enteringApar.
28For completeness, let us note that Poincare´ kept alive this con-

cept by mentioning Laplace’s result in one of his popular book
@69#.
@1# G. Galilei,Discorsi e dimostrazioni matematiche intorno a` due
nuove scienze~Elzevir, Leiden, 1638!; French translation by
M. Clavelin,Discours concernant deux sciences nouvelles~A.
Colin, Paris, 1970!; see p. 61: ‘‘ . . . itcame to my mind that, if
the resistance from the medium were totally suppressed, a
bodies would go down with the same speed.’’; see also p. 7
where Galilei claims to have verified the universality of free
fall, to better than 0.1%, by pendulum experiments. The page
ll
0

s

quoted above~61,70! correspond, respectively, to p. 116 and p.
129 of the Edizione nazionale, and to p. 72 and p. 85 of the
English translation by H. Crew and A. de Salvio,Dialogues
concerning two new sciences~Dover, New York, 1954!.

@2# Though this issue has a long prehistory~starting, say, with J.
Philoponos, 5th Century A.D.!, even G.B. Benedetti who came
closest to stating clearly the universality of free fall~in his
Resolutioof 1553, and hisDemonstratioof 1554! did not quite
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succeed in doing so. SeeMechanics in Sixteenth-Century Italy
Selections from Tartaglia, Benedetti, Guido Ubaldo and Ga
leo, translated and annotated by S. Drake and I.E. Drab
~University of Wisconsin Press, Madison, 1969!.

@3# I. Newton, Philosophiae Naturalis Principia Mathematica
~London, 1687!; English translation by F. Cajori,Newton’s
Principia ~University of California Press, Berkeley, 1934!.

@4# See Book III, Proposition VI, Theorem VI of thePrincipia
Mathematica, pp. 411–413 of Cajori’s edition; see also th
discussion by T. Damour, in300 years of gravitation, edited by
S.W. Hawking and W. Israel~Cambridge University Press,
Cambridge, England, 1987!, Chap. 6, pp. 128–198, notably
the Sec. 6.6, pp. 141–144.

@5# P.S. Laplace,Traité de Mécanique Ce´leste ~Bachelier, Paris,
1825!, Vol. V. Laplace’s work is contained in Book XVI,
Chapter IV. Reprinted inOeuvres de Laplace, Tome Cin-
quième ~Gauthier-Villars, Paris, 1882!, pp. 445–452.

@6# F.W. Bessel, Ann. Phys. Chem.~Poggendorff! 25, 401 ~1832!.
@7# R. v. Eötvös, Math. Naturw. Ber. Ungarn8, 65 ~1890!.
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