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The @age interactions of any supersymmetric extension of the standard model involve new 
flavor mixing matrices. The assumptions involved in the construction of minimal supersymmetric 
models, both SU(3)xSU(Z) xU(1) and grand unified theories, force a large degree of triviality on 
these matrices. However, the requirement of realistic quark and lepton masses <n supersymmetric 
grand unified theories forces these matrices to be nontrivial. This leads to important new dominant 
contribu+ms to the neutron electric dipole moment and to the decay modep + K”p+, and suggests 
that there may be important weak scale radiative corrections to the Yukawa coupling matrix of the up 

~~ quarks. The lepton flavor-violating signal p + ey is studied in these theories when ta@ is sufficiently 
large that radiative effects of couplings other than Xt must be included. The naive expectation that 
large tanp will force sleptons to unacceptably large masses is not borne out: radiative suppressions to 
the leptonic llavor mixing angles allow regions where the sleptons are as light as 300 GeV, provided 
the top Yukawa coupling in the unified theory is near the minimal value consistent with mt. 

PACS number(s): 12.10.Dm, 12X0&, 13.35.Bv, 14.8O.Cy 
I. INTRODUCTION 

It has recently been demonstrated that flavor and CP 
violation provides an important new probe of supersym- 
metric grand unified theories [l-4]. These new signals, 
such as ~1 -i e7 and the electron electric dipole moment 

de, are complementary to the classic tests of proton de- 
cay, neutrino masses,~an& quark and charged lepton mars 
relations. The classic tests are very dependent on the 
flavor interactions and symmetry-breaking sector of the 
unified model: It is only too easy to construct models in 
which these signals are absent or unobservable. However, 
they are insensitive to the hardness scale AR of super- 
symmetry breaking.’ On the other hand, the new flavor- 
and CP-violating signals are relatively insensitive to the 
form of the flavor interactions and unified gauge symme- 
try breaking, but are absent if the hardness scale Ax falls 
beneath the unified scale MG. The signals are generated 
by the unified flavor interactions leaving an imprint on 
the form of the soft supersymmetry- (SUSY-)breaking 
operators [5], which is only possible if supersymmetry 
breaking is present in the unified theory at scales above 
MG. 

The flavor- and CP-violating signals have been com- 
puted in the minimal SU(5) and SOL models for lep- 
tonic [l-3] and hadronic processes [4] for moderate values 

of tan& the ratm of the two Higgs vacuum expectation 
values (VEV’s). While rare muon decays provide an im- 
portant probe of SU(5), it is the SO(10) theory which 

‘This is the highest scale at which supersymmetry-breaking 
squark and gluino masses appear in the theory as local 

interactions. 
/96/53(1)/413(24)/$06.M) z? 
is most powerfully tested. If the hardne+ scale for su- 
persymmetry breaking is large enough, as in the popular 
supergravity models, it may be possible for the minimal 
SO(10) theory to be probed throughout the interesting 
range of superpartner masses by searches for p + ey and 
d e. 

The flavor-changing and CP-violating probes of 

SO(10) are sufficiently powerful to warrant an explo- 
ration of consequences for nonminimal models, which is 
the subject of this paper. In particular, we study SO(10) 
theories in which the following conditions hold. 

(I) The Y&awa interactions ape nonminimal. In the 
minimal model the quarks and leptons lie in three 16’s 
and the two Higgs doublets Hu and HD lie in two lo- 
dimensional representations 10” and 10~. The quark 
and charged lepton masses are assumed to arise from the 
interactions 16XulB 10~ + 16X~16 10~. Tbis model 
is a useful fiction: It is very simple to work with, but 
leads to the mass relation me/n+ = md/mar which is in 
error by an order of magnitude. It is clearly necessary 

to introduce a mechanism to insert SO(10) breaking into 
the Yukawa interactions. The simplest way to achieve 
tbis is to assume that at the unification scale MG some 
of the Yukawa interactions arise &cm higher dimensional 
operators involving fields A which break the SO( 10) sym- 
metry group. This implies that X~,D --t XQD(A). Every 
realistic model of SO(10) which has been constructed has 
this form; hence, one should view this generalization of 
the minimal model as a necessity. 

(II) The ratio of electroweak VEV’s, tanP = V(IJVD, 
is allowed to be large, FZ mt/mb. This is certainly not a 

necessity; on the contrary, a simple extrapolation of the 
results of [2] to such large values of tan@ suggests that it 

is already excluded by the present limit on p + ey. The 
case of large tan@ in SO(10) has received much attention 

[6-91 partly because it has important ramifications for 
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the origin of m,/ma = (Xt/Xa)tanp. To what extent is 

this puzzling large ratio to be understood as a large hier- 
archy of Yulmva couplings and to what extent in terms 
of a lr&ge value for tan@? If the third generation masses 
arise from a single interaction of the form 16~16~10, it 

is possible to predict rn2 using mb and rn, as input [6], 
providing the theory is perturbative up to A&. The pm- 
diction is 175 + 10 GeV [7] and requires tan p rz: m&na. 
In this paper we investigate whether this intriguing pos- 
sibility is excluded by the p + ey signal, or, more cm- 

rectly, we determine whether it requires a soft origin for 
supersymmetry breaking, making it incompatible with 
the standard supergravity scenario [lo]. 

In the next section we show that SO(10) models with 

X + X(A) possess new gaugino mixing matrices in the 
up-quark sector, which did not arise in the minimal mod- 
els. In Sec. III we set OUT notation for the supersym- 
metric standard model with arbitrary gaugino mixing 
matrices and we show which mixing matrices are ex- 
pected from unified models according to the gauge group 
and the value of tan@. In Sec. IV we describe the new 
phenomenological signatures which are generated by the 
gaugino mixing matrices in the up sector; these signa- 
tures are generic to all models with Yukawa interactions 

generated from higher dimensional operators. The con- 
sequences of large tanp for the flavor and CP-violating 
signatures are analyzed analytically in Sec. V and numer- 
ically in Sec. VI. The analysis of the fist five sections ap- 
plies to a wide class of models. In Sec. VII we illustrate 
the results in the particular models introduced by An- 
derson et al. [9]. As well as providing illustrations, these 
models have features unique to themselves. Conclusions 
are drawn in Sec. VIII. 
II. NEW FLAVOR MIXING IN THE UP SECTOR 

In [l-4] flavor- and CP-violating signals are studied in 

minimal SU(5) and SO(10) models with moderate tan& 
In these models the radiative corrections to the scalar 
mass matrices are dominated by the top quark Yukawa 
coupling Xt of the unified theory, and so the scalar mass 
matrices tend to align with the up-type Yukawa cou- 
pling matrix and all nontrivial flavor mixing matrices tie 
simply related to the Kobay&i-Maskawa (KM) m&i+ 
However, as mentioned above, the minimal models do not 
give realistic fermion masses. One has to insert SO(10) 
breakipg into the Y&ma interactions. The simplest way 

to achieve tbis is to amune that the light fermion masses 
come from the nonrenormalizable operators 

where the 16;‘s contziin the three low energy families, 10 
contains the Higgs doublets, and A’s are adjoint fields 
with vacuum expectation values (VEV’s) which break the 
SO(10) gauge group. After substituting in the VEV’s 
of the adjoints, they become the usual Yukmva inter- 
actic& with different Clebsch factors associated with 

Y&am couplings of fields with different quantum mm- 
hers. For example, in the models introduced by Ander- 
son, Dimopoulos, Hall, Raby, and Starkman [9] (ADHRS 
models), 
where I, y, t are Clebsch factors arising from the VEV’s 
of the adjoint fields. Thus realistic fermion masses and 
mixing8 can be obtained. 

The radiative corrections to the soft SUSY-breaking 
operators above MG are now more complicated. From 
the interactions (2.1) the following soft supersymmetry- 
breaking operators are generated: 

x~~(A)m~l(A)X~(A)~f~j, (2.3) 

where r$;, & are scalar components of the superfields and 
&(A) are adjoint dependent couplings, 

x(A)=&..&. 
n 

After the adjoints take their VEV’s, the m&(A) become 
the usual soft scalar masses. If we ignore the wave func- 
tion renormalization of the adjoint fields (which is valid 
in the one-loop approximation), this is the same as if we 
had replaced the adjoints by their VEV’s all the way up 
to the ultraheavy scale, where the ultraheavy fields are 
integrated out, and treated these nomenormalisable op 
erators as the usual Yukawa interactions and scalar mass 
operators. Tbis is a convenient way of thinking, and we 
will use it in the rest of the paper. 

Above the grand unified theory (GUT) scale, in addi- 
tion to the Yukawa interactions which give the fermion 
maSses 

QXuU’Hu, QXnDcHo, Ec&LH~, (2.4) 

the operators (2.1) also lead to 

Q&q&% > ECLJJcHu;, N&,dD’Hus , 

Q$LHD,, Uc&dDcHD,,N&,~L&, (2.5) 
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where Hu,, HD, are the triplet partners of the two Higgs 
doublets H~J and HD. Each Yukawa matrix has different 
Clebsch factors associated with its elements, and so they 
cannot be diagonal&d in the same basis. The scalar 
mass matrices receive radiative corrections from Yukawa 
interactions of both (2.4) and (2.5), which, in the one- 
loop approximation, take the form 

In the minimal SO(10) model, scalar mass renormaliza- 
tions above MG arise from a single matrix Xu. It is 
therefore possible to choose a “U basis” in which the 
scalings are purely diagonal. This is clearly not possi- 
ble in the general models. All scalar mass matrices and 
Yukawa matrices are in general diagonal&d in different 

bases. Therefore, flavor mi?ing matrices should appear 
in all gaugino vertices, including in the up-quark sector 
(where they are trivial in the minimal models studied in 
[l-4]). The up-type quark-squmk-gaugino flavor mixing 
is a novel feature of the general models. Its consequences 
will be dmxssed in Sec. IV. Also, the flavor mixing ma- 
trices are no longer simply the KM matrix. They are 
model dependent and are d&rent for different types of 
quarks and charged leptons and are fully described in the 

next section. 

III. FLAVOR MIXING MATRICES IN GENERAL 
SUPERSYMMETRIC STANDARD MODELS 

In this section we set our notation for the gaugino fla- 
vor mixing matrices in the supersymmetric theory below 
MG, taken to have minimal field content. We also give 
general’expectations for these matrices in a wide variety 
of unified theories. 

The most general scalar masses are 6 x 6 matrices for 
squawks and charged sleptons and 3 x 3 matrix for sneu- 
trims: 
FIG. 1. Feynman diagrams contributing to p 7‘ ey. 

where rn;&, rn;‘, rn;,, rn&, rn&, rn& are 3x3 soft 
SUSY-breaking mass matrices for the left-handed and 
right-handed squawks and sleptons, and Cu, CD, CE are 
the trilinear soft SUSY-breaking terms. To calculate 
flavor-violating processes, such as /I + ey, one can diag- 
onalize the mass matrix rn& by the 6x6 unitary rotation 
matrix VE and rn: by the 3 x 3 unitary rotation V,: 

rn; = v&v~, rn; = v&ilfy,t, (3.2) 

where I& cz are diagonal. The amplitude for fi + ey 
is given by the digrams in Fig. 1, summing up all the 
internal scalar mass eigenstates. 

If the entries in the scalar mass matrices are arbitrary, 
they generally give unacceptably large rates for flavor- 
violating processes. From the experimental limits, one 
expects that the first two generation scalar masses should 
be approximately degenerate and the chirality-changing 
mass matrices Ca should be approximately proportional 

to the corresponding Yukawa coupling matrices Xa. In 
this paper we treat the chirality-conserving rnam matrices 
and chirality-changing mass matrices separately; i.e., the 
mass eigenstates are assumed to be purely left handed 
or right handed, and the chirality-changing mass terms 
are treated as a perturbation. This may not be a good 
approximation for the third generation where the Y&mm 
couplings are large; the correct treatment will be used 

in the numerical studies of Sec. VI. The superpotential 
contains 

W 3 QTX,UcH~ + QTX~DcHo + E==AELHD, (3.3) 

where XU,XD,XE are the Y&ma coupling matrices 
which are diagomlized by the left and right rotations: 

b = V&X&,, 

XE = v&&v&. 

The soft SUSY-breaking interactions contain 

(3.4) 
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TABLE I. Summary table for the flavor mixing matrices: 6m,, ’ impoitant effects due to some 
third generation scalars not degenerate with those of first two generations; &rn:, non-negligible 
effects due to nondegeneracy of the scalars, of the first two generations; W;, fermion i and scalar z 
are rotated differently to get to mass basis; J, present for any value of ta@; l , present only for large 
ta@; o, present for large tan& but model dependent for moderate tanp; -, not present; *, although 
present, its effect for moderate tanp on flavor violation is small due to the small nondegeneracy 
among different generation scalars. 

SU(5) SO(10) 
‘MSSM Minimal General Minimal General 

64 d J J J J 
sm; . . 0 . 0 

WV, 
WDL ; 

2 
; :: 

WUR . . 

WD, 
* 

WE‘ ;* 
; 

(3.10) 

‘Neutrino masses are not discussed here, and we choose the neutrino to be in the sneutrino mass eigenstate basis. 
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The lepton flavor-violating couplings are summarized in 
Fig. 2. 

In the rest of this section we discuss the flavor mixing 
matrices in the minimal supersymmetric standard model 

and miqimal and general SU(5) and SO(10) models, with 
moderate or large ta@. The results are summarized in 
Table I. 

For the minimal supersymmetric standard model 
(MSSM), the radiative corrections to the soft masses only 
come from the Yukawa interactions of the MSSM: 

Am:, cc xrJx~ + &x,x;, 

AI& o( 2X&,, 

Am; (x 2$,XD, 

Am; CC &XE, 

Am’& cx 2X&. (3.11) 

We have assumed a boundary condition on the scalar 

mass nx+trices rni x I at A&, and n # 1 represents the 
possibility that the proportionality constants are not uni- 
versal. For moderate tan@, Xt > Xs so that the radiative 
corrections are dominated by &. Thus one can neglect 
the XD contribution, and the only nontrivial mixing is 

W,, For large tan@, Xt and XJ, are comparable, and so 

rn& will lie between &XL and XDX~. Therefore both 
W,, and WD, we nontrivial. 

For the minimal SU(5) model, there are only two 
Yukawa matrices Au = Alo, XI, = XE = AS, and 

For moderate tanp, Xt >> X6, we have nontrivial mixings 
for W,, and WEn, as found in [1,2]. For large ta@, XD 
cannot be ignored, giving nontrivial mixings for W,, and 

WI,. 
For the minimal SO(10) model considered in [2,3], 

FIG. 2. Lepton flavor-violating couplings in general super- 
symmetric standard models. 
We have nontrivial mixings WD, , WD,, WB,, and WE= 
for moderate tanP and nontrivial mixings for all W’s for 
large tanp. 

For the general SU(5) or SO(l0) models, defined in 
the last section, we get nontrivial mixings for all mix- 

ing matrices in general. However, in SU(5) models with 
moderate tanfl, the splittings amopg rn& and rni are too 
small [because they are generated by the small &(A)] to 
give significant flavor-changing effects. 

One might exp~ect that the mixing8 in the WV’S are 
smaller than those in the WD’S because of the larger hi- 
erarchy in X0 compared with XD. However, a given W is 
the product of a i? (which diagonalizes the scalar mass 
matrix) and a V (which diagonalizes the Yukawa matrix). 

Even if the mixings in Vu’s are smaller than those in VD’S 
because of the larger hierarchies in X0, we do not have a 
general argument for the size of mixings in U matrices. 
This is because U diagonalize (appropriate combinations 
of) known Yukawa matrices and unknown Yukawa matri- 
ces appearing above the GUT scale, (2.5). The mixings 
in U+ and V can add up or cancel each other. Our only 
general expectation is that these new Yukawa matrices 
have similar hierarchical patterns as Xv or XD. Without 
a Specific model, one can at most say that all nontrivial 

W’s are expected to be comparable to VKM; the argu- 
ment that the mixings in Wu’s should be smaller than in 
WD’S is not valid. 

In the minimal models at moderate ta@, the lead- 
ing contributions to flavor-changing processes, such as 
p + ey, involve diagrams with a virtual scalar of the 
third generation. Although such contributions are highly 
suppressed by mixing angles, they dominate because they 
have large violations of the super-Glashow-Iliopoulos- 
Maiani (GIM) mechanism [ll]: The top Yukawa couIjling 

makes rni very different ftom mz,m~. At large tan& 
the strange/muon Yukawa couplings get enhanced, and 
so the splitting between me and mp increases, leading to 

potentially competitive contributions to flavor-changing 
processes which do not involve the third generation. The 
importance of these new diagrams can be estimated by 
comparing the contributions to Am& (in a basis where 
gaugino vertices are diagonal) when the super-GIM can- 
cellation is between scalars of the first two generations 
(2-l) and third generations (3-l): 

Arn;, K-s 
Am&(3-1) = V,dV,.xt 

(3.14) 

We can see that for large tanp [or any ta@ with small 
X, coming from the mixing of Higgs bosom at MG, i.e., 
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&(A&) = (tanfi/GO)Xz(Mc)], this could be compara- 
ble to the flavor-violating effects from the large splitting 
of the third generation scalar masses. However, for the 
p + ey in SO(10) models, it does not contribute to di- 

agrams which are proportional to rn, (because it does 
not involve the third generation scalars), the dominant 
contributions are still those diagrams considered in [2]. 
For flavor-changing processes which do not need chiral- 
ity flipping, such as K-K mixing and all flavor-changing 

processes in SU(5) models, this nondegeneracy between 
the first two generations is important. The above discus- 
sion is summarized in Table I. 

IV. PHENOMENOLOGY 
FROM UP-TYPE MIXING 

As discussed in the previous section, unlike the min- 
imal models with moderate ta@ studied in [l-4], in 

generic GUT’s (for any tan@ and even for minimal 
GUT’s (a,t large ta@), we expect mixing matrices in the 
up sector. Having motivated an origin for nontrivial up 
mixing matrices Wusta, # 1, we consider some effects 
they produce. In the following we simply assume some 
W Y‘~n) at the weak scale and consider their phenomeno- 

logical consequences. (See, however, Sec. V and the Ap 
pendix for a discussion of the scaling of mixing matrices 
from GUT to weak scales.) In particular, we discuss D-D 
mixing, corrections to up-type quark masses, contribu- 

tions to the neutron electric dipole moment (EDM), and 
the possibility of different dominant proton decay modes 
than those expected from minimal models. 

A. D-b mixing 

To get an idea for the contribution of up-type mixing 
matrices to D-6 mixing, we follow [12,13] and employ 
the mass insertion amxoximation. The bounds obtained . . 
from 0-D mixing on the 6 x 6 upsquark mass matrix 

(in the basis where gluino and Yukawa couplings are di- 
agonal) are summarized in [13]. For average upsquark 
mass of T?Z = 1 TeV, they are 

Consider first (4.1). In the last section we estimated 

that the contribution to rn& from the slight nondegener- 
acy between the first two generation scalars is generically 
at most comparable to that from the nondegeneracy be- 
tween the first two and third generation scalars. Thus, 
for our calculation, we only consider the contribution 

from the splitting between fist two and third generation 

scalars. Then, for A = L, R 
w 9 $L 

FIG. 3. Corrections to the up-type quark mass matrix, pro- 
portional to rn*. 

I IwLI*zsw&J (4.3) 

We see that for W’s of the same size as the corresponding 
KM matrix elements, the left-hand side (LHS) of (4.1) 
is of order 4 x 10d4 and the bound is easily satisfied. 
Turning to (4.2), note that if Cu = A&J, m$LRt2 = 0. 
However, we expect Co = AXo+A&,, with A& induced 
in running from MPL to MG having primarily a third 
generation component in the gauge eigenstate basis. If 
all relevant mixing matrix elements are of order the KM 
matrix elements, we expect 

Again, we see that the bound (4.2) is generically easily 
satisfied, and thus we do not in general expect significant 
contributions to D-D mixing. 

1 

1.11 I, 
0 2 4 6 8 

md% 

FIG. 4. Contours for Am,/n, in the mafM3-m;/mo 

plane, assuming rn< - m&B e rn<, rni,. = rni, z rnir 

WUL,, = Wun.l = Eijr f (A+@cotP)/mi=3. 
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B. Weak-scale corrections to up-type quark masses 

It is well known that there are important weak-scale 
radiative corrections to the down quark mass matrix pro- 
portional to tan@ [7,8,14-161. In general unified models 
with nonzero Wu, there are also important weak-scale 
corrections to the up quark mass matrix. 

From the diagram in Fig. 3, we have a contribution 
to up-type rnames proportional to mt. We find, again 
assuming degeneracy between the scalars of the tist two 

generations, 
where 

The largest fractional change in the mass occurs for the up quark. If WuL(njsl is comparable to the corresponding KM 

matrix element, the contribution to Am,/m, is not significant. However, if each of the WvLcR),, are a factor 3 larger 

than the corresponding KM elements, we can get sizable contributions. In Fig. 4, we plot Am,,/m, in rn~JMi-ry/ma 
space, where we have assumed mg, = rneR = n,j, mi, = mtR = mi, we have put IW,,,,I = IW,,,,I = l/30, 
(A-t ~cot@)/m~ = 3. Any deviations &mn these values can simply be multiplied in AmJm,. In some regions of the 
parameter space, it is possible to get the entire up quark mass as a radiative effect. 

C. Neutron EDM 

If we attach a photon in all possible ways to the diagram giving the contribution to u-quark mass, we get a 
contribution to the wquark EDM, which is proportional to mt for any value of ta@. Evaluating the diagram, we find 

d” = eJFJ sin&, (4.6) 

where 

&(+ y) = g(r) -dy) 
2-y ’ g@) = qz - 1)s l [22-1--2zlnz] 

and 

(4.9) 
In general, we expect a large nonzero sin&. If the com- 
bination of W’s appearing in the above is comparable to 
the combination giving a down quark EDM, the u-quark 

contribution will dominate over the &quark contribu- 
tion to the neutron EDM considered in [3] by a factor 
mt/4ms tanp (the factor 4 comes from the quark model 

result d, = 4/3dd-1/3d,,). Hence the neutron EDM may 
be competitive with p + ry and d, as the most promising 
flavor-changing signal for supersymmetric unification. 
D. Proton decay 

Finally, we turn briefly to the relevance of up-type mix- 

ing matrices for proton decay, in particular to the impor- 
tant question of the charge of the lepton in the final state. 
We know that upon integrating out the superheavy Higgs 

triplets we can generate the bmyon-number-violating 

operators (WVk)(QQ)(Q-L) and (l/&r)(EU)(DU) 
in the superpotential. These operators must subse- 
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quently be dressed at the weak scale in order to ob- 
tain four-fermion operators leading to proton decay. The 

dressing may be done with neutralinos, charginos, or 
gluinos where possible. Since the dressed operator grows 
with gauge couplings and vanishes for vanishing neu- 
tralino/chargino/gluino mass, one might naively expect 
gluino dressing to be most important. However, if the 
up-type mixing matrices are trivial, gluino dressed op- 
erators can only lead to proton decay with a neutrino 
in the final state. To see this, we examine each oper- 
ator separately: (eu,)(d&& (where a, b, c are color 
indices) must involve u’s from two different generations 

because of the &. One of them has to be a u, and 
so the other is a c or a t. If there is no up mixing, 
the up flavor does not change in the dressing process, 
and so the final state would have to contain a c or a t. 
Since rn*, rn, > mP, this cannot happen. Next, consider 
(QQ)(QL) = uzdb,(uLeL - div&a,. By exactly the 
same argument as the above, the u~d;zl&e,b, opera- 
tor cannot contribute to proton decay. Thus we see that 

in the absence of mixing in the up sector, gluino dress- 
ing can only give neutrinos in the final state. However, 
the above arguments break down if up-mixing matrices 
are nontrivial, since gluino dressed diagrams give a sig- 
nificant contribution to the branching ratio for charged 

lepton modes in proton decay. A detailed study of flavor 
mixing in the up sector [17] concludes that, whether the 
w-ino or gluino dressings are dominant, the muon final 
state in proton decay is of greatly enhanced importance. 

Without the mixings, one expects r(p + P@)/r(p + 
K+o) zs 10m3. The up mixing in general models increases 
this by - 100 making the mode p + K”p+ a favorable 
one for discovery of proton decay. 

V. LARGE tan& ANALYTIC TREATMENT 

The large tan/3 scenario is interesting for a number of 
reasons. For moderate tanp, the only way to understand 
mt > n%,nzr is to have Xt > X*,X, at the weak scale. 
This gives us little hope to attributing a common origin 
for third generation Yukawa couplings at a higher scale. 
However, for large ta@ N O(mJma), the weak scale 
Xt, Xa, X, are comparable and the above hope is restored. 
[In fact, it is realized in SO(10) models like the ADHRS 
example outlined in Sec., VII.] For us, this is sufficient 
motivation to study the large tan/3 case in more detail. 
Also, this case was not studied in [2]. We shall see that 
unexpected new features arise in the large tanP limit. 

The largest contribution to the p + ey amplitude 
comet from the diagram with L-R scalar mass insertion 

(Fig. 5). In the L-R insertion approximation, the ampli- 
tude for ML decay is 
where 

Gdm’) = c M, ~(H,A + cotBwH,,& 
n=1 

(5.1) 

Note, however, that for large tanP the L-R insertion 
approximation may be a bad one, since the chirality- 
changing mass for the third generation becomes com- 
parable to the chirality-conserving masses. A correct 

!a. N” ei 

FIG. 5. Diagram which gives the dominant contribution to 
,J + ey in the large tanp limit. A photon is understood to be 
attached to the diagram in all possible ways. 
treatment will be used for the numerical analysis in the 
next section. We still expect, however, the.amplitude 
to be proportional to WE~~W~~, because of the uni- 
tarity of the mixing matrices: The sum of contribu- 

tions from the first two generations is proportional to 
W,i W;3 + WZ; W$ = - W,i Wtj for i # j, and the contri- 
bution from the third generation is itself proportional to 
w,i w;, 

Two simplifications in the dependence of the p --t ey 
rate on parameter space occur for large tan& First, since 
the dominant diagram involves the L-R insertion (A + p 
ta$)mt and since tan/3 is large, the amplitude does not 

depend on the weak scale parameter A. Second, in the 

large ta@ limit, the chargino mass matrix is 

and the parameters Mz,p have a direct interpretation 

as the chargino masses. (Note that this assures us that 
pta@ will likely always be much bigger than A; for a 
tan/3 of 50, the lower bound at the CERN e+e- collider 



12 FLAVOR MIXING SIGNALS FOR REALISTIC. . 421 
LkP on chargino mass of 45 GeV tells us that p tan@ > 2 
TeV, and so for A to be comparable to /I tan@ we must 
have A > 2 TeV.) 

In considering /L + ey foi large ta@, two factors 
come immediately to mind which tend to (perhaps dan- 
gerously) enhance the rate over the case with moderate 
tanp. 

(i) As we have already mentioned, the dominant con- 
tribution to p + ey grows with ta@; the diagram in 
Fig. 5 is proportional to tanb, a factor of 900 in the rate 
for tanP = 60 compared to tanp = 2. 

(ii) For ltige tan& X, can be order 1 and we can- 
not neglect its contribution to the running of the slepton 
mass matrix from MG to Ms (soft SUSY-breaking scale). 
Tbis scaling generally splits the third generation slepton 
mass even further from the first two generatibns, mean- 
ing a less effective super-GIM mechanism and a larger 
amplitude for p + ey. 

While both of the above effects certainly exist, there 
are also two sources of suppression of the amplitude for 
large tan& which can together largely compensate for 
the above factors. 

(i’) Large tanp allows Xt to b? smaller than for mod- 
erate tanp. There are two reasons for this. First, large 
tan@ allows vu to be larger and so Xt can be smaller to 
reproduce the top mass. Second, br unification [18] is 
achieved with a smaller X, in the large tanp regime [7,8]. 

Since Xt is smaller, a smaller nondegeneracy between the 
third and first two generations is induced in running f?om 
Mpl to MG, suppressing the amplitude compared to the 
moderate tano case. 

(ii’) In comparing large and moderate ta@, we must 
know how the mixing matrices WL,R$+ (appearing at the 
vertices of the diagrams responsible for p+ er) compare 
in these two cases. In the moderate tano minimal models 
discussed in [2], WL,~+ were equal to the corresponding 
KM matrix elements V&i at MG, and this equality was 
approximately maintained in running from i& to Ms. 
As discussed in the previous sections, for more general 
models one expects that the W&(R).< at MG are equal to 
VKIKM~: at MG up to some combination of Clebsch coeffi- 
cients. One might then expect (as in the minimal models) 

that this relationship continues to approximately hold at 
lower scales. In fact, for large tan/? this expectation is 
false. We find that often the WL(B),< decrease from MC 
to Ms, overcompensating for the increased nondegener- 
acy between the third and tist two generation slepton 

masses induced by large X, [point (ii) above]. 
In the following, we examine the scaling of these mixing 

matrices’in detail. Consider first the lepton sector. The 
renormalization group equation (RGE) for XE (in the 
following t = lnp/16r2) is 

d&z 
- = XE[3X& + Tr(3XbXD + AgE) 
dt 

-39; - $73, (5.3) 

giving 
These in turn imply that the basis in which X~AE is diagonal and the (in general different) basis where xEAL is 
diagonal do not change with scale. Consider now the evolution of the left-handed slepton mass matrix rni. The RGE 
for rni is 

d 
In the basis where X& is diagonal, keeping only the 
X, contribution, the 3i entry (i # 3) becomes 

-$4sr = +%i +2(&C&i. (5.7) 

In this basis, we have rni = @ti$W~. (Here and in 
For now, we ignore the (dc,),i term in (5.8), yielding 
the solution 
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I; s 
J 

I+%/‘%) dt 
*w. (5.10) 

0 

Thus 

Similarly, we find 

(5.11) 

(5.12) 

Note that, generically, the quantities Arn&,( 
Arn&,) are smaller than 1, since the third gen- 

eration nxm gets split even farther from the first two 
generations in running from MC to Ms. Thus we find 

that the WLcRlsi get smaller in magnitude as we scale 
f&n MG to Ms, in contrast with the KM matrix ele- 
ments VKKMJi, which &ale as 

VKM~< (Ms) = e(L+rsh’~~si(M~). (5.13) 

Suppose that at &4~ the WL(R) are related to VK~(M 
through some combination of Clebsch coefficients deter- 

mined by the physics above the GUT scale: 

W&R.ssW~(~)si (MC) = u(~)Vmsi (MG). (5.14) 
I 
This 6 represents a possibly significant suppression of the 
rate for large ta+. 

At tbis point, the reader may object: It is true that the 
WL(B),i decrease ~Yom MC to Ms, but as already men- 
tioned, the nondegeneracy between the third and first 
two generations is increasing. Which effect wins? We 
argue that in general there is a net suppression. This is 
easiest to see if in computing the p + ey amplitude we 
use the mass insertion approxima+m rather than mixing 
matrices at the vertices (Fig. 6). Although this may be a 
poor approximation, it serves to illustrate on point. (Of 
course, no such approximation is made in our numerical 

work.) From the diagram it is clear that the amplitude is 
proportional to I&. rn&, (Ms). From (5.7), we see that 

the rate scales as 

(4, ~z~~,)~(M~) = ,-(ar~+4r~+4zb)(m~~~m~~~)(M~), 

(5.18) 
FIG. 6. Dominant diagram (for p --t er) in the mass inser- 
tion approximation. 

a net suppression. In the mass insertion approximation, 
then, the terms Am2(M~)/Am2(Ms) in (5.17) serve to 
exactly compensate for the increased nondegeneracy be- 

tween rn& and rn:&; what remains is still a suppression. 
This together with (i’) invalidates the naive expectation 
that the theory is ruled out in most regions of param- 
eter space due to the enhancing factors (i) and (ii) (al- 
though there are still stringent constraints on the param- 
e+r space). 
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The’ above analysis suggests that individual lepton 
number conservation is an infrared fixed point of the 
MSSM (whereas individual quark number conservation 
is an ultraviolet fixed point). A more complete analysis 

of scaling for the lepton sector and a discussion of scaling 
in the quark sector are presented in,the Appendix. 

VI. LARGE tanp: NUMERICAL RESULTS 

The amplitude for p 7‘ ey depends on the 6 x 6 slep- 
ton rnam matrix M’. In the basis where rn;,& are 
diagonal, we have 

M2 = ii&, + DL k 

k+ xi&,+D~ ’ > 
(64 

where in the large ta@ limit 0; = -(Tsi - 
&&&9w)M~ is the D-term contribution and kij = 
pn,tanflW~,, WQ. The amplitude from Fig. 1 for PL 
decay is 

where 

G2(M2) = G(M2h Gz(M’)m 
Gz(M~)RL Gz(@)RR > 

(6.3) 

In [2], M* was approximately diagonalized by the 

~m,tanp insertion approximation and Gz(M’) was cal- 
culated using this approximate diagonalization. Since 
here tanp is large, we wish to avoid making such an ap- 

proximation, and numerically diagonalize the full 6 x 6 
Ma. 

Faced with a rather large parameter space, we must de- 
cide which parameters to use in 0~1: numerical work. We 
have first decided to do OUT analysis only for large tan@, 
since the moderate tan@ scenario has been covered in [2]. 
Second, we choose to present ax results in a different 
way than in [2], where the rates for /I + ey were plotted 
against a combination of Planck-scale and weak-scale pa- 
rameters. In our work, we compute p + ey entirely in 
terms of weak-scale parameters. In particular, we assume 
that the necessary condition for a significant p + ey rate 
exists at the weak scale, namely, nontrivial mixing ma- 
trix WL,B~~ and nondegeneracy ‘between third and first 
two generation slepton masses. In the previous sections, 
we have shown a possible way in which these ingredients 
may be produced. Our plots for p + ey rates are made 
against low-energy parameters, and we separately plot 

the regions in low-energy parameter space predicted by 
our particular scenario for generating p + ey. This way 
our plotg are in terms of experimentally accessible quanti- 
ties and can be thought of as constraining the parameter 
space of the effective 3-2-l softly broken supersymmet- 
ric theory resulting timn the spontaneous breakdown of 
a GUT. (We use the GUT to relate weak-scale gaug- 
ino masses.) Our low-energy plots have no dependence 
on the physics above the GUT scale; all the model de- 
pendence comes into the predictions for the low-energy 
parameters the GUT makes. If the predicted region of 
low-energy parameters corresponds to a /I --t ey rate ex- 
ceeding experimental bounds, the theory is ruled out. 

There is a more practical reason for working directly 

with low-energy parameters specific to large tan@ the 
well-known difficulty in achieving electroweak symmetry 
breaking in this regime. Working with high-energy pa- 
rameters and imposing universal scalar masses necessi- 
.tates a fine-tune to achieve SU(2)xU(l) breaking. How- 
ever, we have nowhere in our analysis made the assump- 
tion of universal scalar masses; hence, the Higgs boson 
masses and squark and/or slepton rnames are indepen- 
dent in our analysis, and therefore the p parameter is not 

tightly constrained by, squark/skpton masses. Working 

A(3000ev) 

B (P-=-f) 

M* (GeV) 

FIG. 7. Contours for B(p --t er) in the A&A plane with 
map = 300 GeV, A = rn<,(,) - miLcR), WE‘.(~),, = 0.04, 

w%Rh = 0.01, for (a) p = 100 GeV, (b) P = 300 GeV. Con- 
tours for negative p are virtually identical. To get B(h -+ er) 
prediction from a GUT, multiply by appropriate Clebsch fac- 
tm, and e factor (Fig. 10). 
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with~weak-scale parameters allows us to assume that the 
desired breaking has occurred without having to know 
the details of the breaking. 

With the aforementioned assumption about the exis- 
tence of a GUT and assuming degeneracy between the 
first two generations, the rate for p --t Ed depends 
on the weak-scale par+net&rs /.J, tan@, i&, rn& ,‘m&, 

ma,, +, WL~<, and WR,<. We know that the am- 

plitude depends on WL(R)~& simply through the product 
WL,+ WR,~, and so for normalization in our plots we put 
W ~~~~~~ = VKM~~. Any deviation from this can be Simply 
multiplied into the rate. We’also~fix tanp = 60 and put 

m+‘(n) = -qn, -A+). Next, we use some high-energy 

bias to relate rn<‘ and rniR: We assume that their differ- 
ence is proportional to Mz (as would be the case if they 

B o.l->ey) 

M, (GeV 

II (GeV) 

FIG. 8. Contours for B(p + er) in the p-M* plane for (a) 
A = 0.25, (b) A = 0.5, with other parameters the same a$ 
in Fig. 7. The blacked out regions are ruled out by the LEP 
bound of,45 GeV on chargino masses. The thick dashed lines 
are contours for a 45 GeV LSP mass. 
started out degenerate and were split only through differ- 
ent gauge interactions), and so we put me, = nzdR -TM,. 
In all specific models we hace looked at, T is small (less 
than about 0.2). We find that as long as T is small, the 
rate has little dependence on its exact value, and so we 
put T = 0, md& = mER = rizB. We also found that as long 
as AL/AR is close to 1, there is little dependence on its 
actual value either, and so we put AL = AR = A. 

Now, the p -t,ey rate depends only on fi, M,, fig, and 
A, and we have the large tanp interpretation of @ and 
Mz as chargino masses. Fixing riz~g = 300 GeV, we make 
contour plots of B(p --f er). The rate scales roughly 
a tia4 and p2 for scalar masses heavy compared with 
gaugino masses. In Fig. 7, we fix @ and plot in M,-A 

space. In Fig. 8, we fix A and plot in p-M, space. In 
Fig. 9, we plot the values of A predicted by the GUT 

against Mz, for various values of &(MG) and A.(Ms) 
and for two valueS of bb, the gauge p function coefficient 
above the GUT scale. In Fig. 10, we plot the suppression 
factor e for the same parameter set as in Fig. 9. We see 

FIG. 9. Plots of the averaged difference between the 
thid and first two generations charged slepton masses 
A 5 (Ar. +AR)/~, AL(R) = mgL.(nj (at MS), against Mz, for 

f (4‘ + rn&) = (300 GeV)‘, Xt = Xg = X, (at MC) = 0.5, 
0.8, 1.1, A,(Ms)‘= 1, 0, -1, two values of the gauge 0 func- 
tion coefficient bg between MG and MPI (a) bs = 3 (asymptot- 
ically free), (b) b6 = -20. Scalar masses are assumed degen- 
erate at Mm = 2.4 x lOI GeV.‘& is taken to be 2.7 x 1018 
GeV. 
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FIG. 10. Plats of the suppression factor e against Mz, with 
the same parameters as in Fig. 9. 
that, over a significant region in parameter space, e is 
small, between 0.2 and 0.01. 

It is clear from Fig. 7 that, with no suppression, a 
typical value for A of 0.3 (x300 GeV) would give rise 
to rates above the current bound of B(p + er) < 4.9 x 
lo-” [19]. However, from Fig. 10, the suppression from 

e is seen to be typically 20, allowing A’s of up to 0.45 
(x300 GeV). We see that e is crucial in giving the GUT 
more breathing room, as A’s of less than 0.45 are more 
common. Prom Fig. 8 it is also clear that regions of small 
p and Mz (that is, light chargino masses) are preferred. 
Smaller p is preferred because it decreases the L-R mass 
pm,tanfi; small Mz is preferred because in the limit that 
the neutralino mass tends to zero the diagrams in Fig. 5 
vanish. We also note that smaller /I, MZ are preferred for 
electroweak symmetry breaking [7,8]. 

If p and Mz are both small, the lightest supersym- 
metric particle (LSP) can be quite light (but where it 
has significant Higgsino component, it must be heavier 
than 45 GeV in order to be consistent with the precise 
measurement of the 2 width), and it annihilates (primar- 
ily through its Higgsino components) through a Z into 
fermion antifermion pairs much like a heavy neutrino. 
The contribution of the LSP to the energy density of the 
universe, Qh’, then just depends on its mass and the size 

of its Higgsino components, both of which only depend 
on /I and Mz in the large tanP limit. In Fig. 11, we make 
a plot of ah2 in p--M, space. We see that it is possible 
to get n - 1 in some regions of the parameter space. 
-200 -100 0 100 20 

. 

P (GeV) 

FIG. 11. Contours for nha in the pMa plane in the large tanp limit. Dashed lines are LSP mass contours of 30, 45, and 60 
GeV. For alI regions of rn~s~ < 45 GeV in this plot, the Higgsino components of LSP are too big and therefore they are ruled 
out by the 2 width. 
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VII. EXAMPLE OF ADHRS MODELS 

In this section, we study the ADHRS models 191, which 
are known to give realistic fermion masses and mixing 
patterns. These models are specific enough for us to do 
calculations and make sxne real predictions. Although 
not necessarily correct, they are good representatives of 
general GUT models. We believe that by studying them 
one can see in detail the general features of generic real- 

istic GUT models and the differences between them and 

the minimal SU(5) or SO(10) models. 
As mentioned in Sec. II, in ADHRS models, the three 

families of quarks and leptons lie in three 16.dimensional 
representations of SO(10) and the two low-energy Higgs 
doublets lie in a single lo-dimensional representation. 
Only the third generation Yukawa couplings come i&m 
a renormalizable interaction 
X3316316310. (7.1) 

All other small Yukawa couplings come from nonrenor- 
malizable interactions after integrating out the heavy 
fields. These interactions can be written in general as 

16iXij(A,)16j10. (74 

The A,‘s are fields in the adjoint representation of 
SO(10) and their VEV’s break SO(10) down to the 
standard model gauge group. Therefore these Yukawa 
couplings can take different values for fern&ns of the 
same generation with different quantum numbers under 
SU(3)xSU(2) xv(l) and a realistic fermion mass pat- 
tern and a nontrivial KM matrix can be generated. In 
ADHRS models, the minimal number (4) of operators is 

assumed to generate the up-type and down-type quarks 
and charged lepton Yukawa coupling matrices Xu,Xo, 
and XE, and they take the form, at MG, 
where +, y, z are Clebsch factors arising !&a the VEV’s 
of the adjoint Higgs fields A,. This form is known to 

give the successful relations VJ,/V,~ = G and 

WV,. = J--;;i po], and so it is well motivated. 

Strictly speaking, the interaction (7.2) become the usual 
Yukawa form only after the adjoints A, take their VEV’s 
at the GUT scale. However, as we explained in Sec. II, 
they can be treated as the usual Yukawa interactions up 
to the ultraheavy scale (which we will assume to be Mp,) 
where the ultraheavy fields are integrated out if the wave 
function renormalizations of A,‘s ax ignored. In the 
one-loop approximation which we use later in calculat- 
ing radiative corrections from Mpl to MG, they give the 
same results, because the wave function renormalizations 
of the adjoints A, only contribute at the two-loop order. 
This makes our analysis much easier. Above the GUT 
scale, in addition to the Yukawa interactions (2.4) which 
give the fermion masses, we have the interactions (2.5) 
as well. Each Yukawa matrix has different Clebsch fac- 
tors I, y, z associated with its elements. All the Yukawa 
matrices have the ADHRS form 

XI= (~+ ;; x+7), I=qq,eu,ud,ql,nd,nl. 

(7.4) 

If each entry of the Yukawa matrices is generated domi- 
nantly by a single operator, like in the ADHRS models, 
then the phases of the same entries of all Yukawa matri- 
ces are identical. One can remove all but the Xzz phases 
by rephasing the operators. After phase redefinition only 
E is complex and is responsible for CP violation. In or- 
der to generate the realistic fermion mass and mixing 
pattern, one expects the hierarchies 

B 

A” 
Kb - E2> 

E ma a N - m,z, 
ma 

c 

E 
-sin& - L where E - 0.2. (7.5) 

The hierarchical Yukaawa matrices can be ciiagonalized 

approximately 1201; the unitary rotation matrices which 
diagonalize them at the GUT scale can be approximately 
written as 

( 

,ib Sp,e”+ 0 
VF - -SF, 1 SF, , 

1 

(7.7) 
SF,%, -s,, 1 

1 0 
v, N 

i 

-SB*e-i++ 
SB> 
e+ S&) , 

S*,SBz&+ -S&e-“” 1 
(7.8) 

where 
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XB dB 
SF, = A’ .s& = 7’ 

E’ = 1y.E - L&S& = ylEle”J - %I, 

$=arg(E), d,=q YE-~). 

The soft SUSY-breaking scalar masses for the three low- 
energy generations and trilinear A terms are assumed to 
be universal3 at Planck scale A& as in [Z]. Beneath Mp,, 

t
s
n
c
a
t

e
l
m
l
q
w

a
f
i
r

he radiative corrections f&n the Yukawa couplings de- 
troy the universalities and render the mixing matrices 
ontrivial. In the one-loop approximation, the radiative 
orrections to the soft SUSY-breaking parameters at MG 
re simply related to the Yukawa coupling matrices, and 
herefore the relations between general mixing matrix el- 

ments and KM matrix elements are also simple. This al- 
ows us to see the similar hierarchies in the general mixing 

atrices and KM matrix very clearly. Although the one- 
oop approximation may not be a good approximation for 
uantities involving third generation Yukawa couplings, 
e will be satisfied with it since it simplifies things a lot 

nd the uncertainties in other quantities such as Clebsch 
actors are probably much bigger than the errors made 
n the one-loop approximation. The RG ‘equations, for 
n% as an example, from Mp1 to MQ are 
I 

d,$ = 
dt 

+3(2A eu &,A!, + 2&,~n~,~~:, + Max,&, + X,,X~,m~ + 2C,,C:,) 

-gaugino mass contribution]. (7.9) 

In the one-loop approximation, the gaugino mass contributions are diagonal and the same for all three generations, 

and so they can be absorbed into the common scalar masses and do not affect the diagonalization. The corrections 
to scalar masses at MG have the following leading flavor dependence: 

2c2 
‘(- -- 

- 
GY,CE* Z&CB 

Ar& x 2X& + 3X,,&, = 5 &CE z;W2 + y,21E12 + zB2 y&EB + Z,BA , (7.10) 

&CB y&E*B + &BA PB2 + AZ e 

where the overline represents the weighted average of the Clebsch factors, 2 = g(2zt + 3&J and so on. Because 

Am& is hierarchical, assuming no big z,y Clebsch factors (ADHRS models have some big t Clebsch factors), the 
rotation matrix which diagonalizes it can be given approximately as 

where 

- 

SE, = - 
GY,CIEI .- E 

z;W2 fzIEj2 + (2 - zz)BZ’ 
e-‘” = m’ 

Similarly, for other scalar masses the leading flavor-dependent corrections at MG are 

‘If the nonrenormalizable operators already appear in the superpotential of the underlying supergravity theory, the A terms 
will be different for different dimensional operators, and will induce unacceptably large P --f ey rate because the triscalar 
interactions and the Yukawa interactions cannot be diagonal&d in the same basis for the first two generations. In theories 
where the nonrenormaliaable operators come from integrating out heavy fields at MW and all the relevmt interactions have 
the same A term, the resulting nonrenormalizable operators will also have the same A term. 
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and 

Note that 

If there is no very big or small Clebsch factor (FcM& involved and no accidental cancellation, SLY, SE, can be 
neglected in W’s. 

Compared with VK~(M, 

hvl(~G) = V&h 

1 sLhz - su,, .dQd-m”) -su,, (SD,, - .&)e.““” 

N SW,, - SD,l,-wd.) e--i(&-Qu) , (7.16) 

SD‘, (SDL1 - .%k2)e-“~d --(SD,, - su‘2)e-i~d 

(SD‘, - SU‘, )@” 
1 

where 

2°C 
SrJL~ = -7 

EL 
E;= y-E- -1, &=-g(y,&?$?), 

SD,, 
ZiC 

=F, Eh= ydE- 
d 

GB 
SW,, = A’ 

+dB 
sb,2 = 7’ 
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TABLE II. Clebsch factors for Yukawa coupling matrices in ADHRS model 6. 
we can see that the W’s and VKM do have similar hier- 

archical patterns, but have different Clebsch factors as- 
sociated with their entries. 

When a specific model is given, one can calculate all 
the Clebsch factors and make some definite predictions 
for that particular model. For example, the ADHRS 

model 6, which gives results in good agreement with the 
experimental data, has the four effective fermion mass 
operators 

AY AY 
023 =16~-10-16~, 

Ax Ax 

AX 
022 =lSzMIO 

-b-L 
~162 

-4-f 
or five other choices, 

.,,=,,,(~)3,1,(~)3,6,, (7.17) 

where Ax, Ay, AB-L are adjoints of SO(10) with VEV’s 
in the SU(5) singlet, hypercharge, and B-L directions. 

There are six choices of 022 operators which give the 
same predictions for the fermion masses and mixings, but 
different Clebsch cpefficients for other operators appear- 
ing above MG. Fortunately, they do not enter the lead- 
ing terms of the most important mixing matrix elements 

WE‘.,, , WE’D,, WEE,, , and WEE,, , which appear in the 
leading contributions to the amplitudes of LFV processes 
and the electric dipole moment. 

The magnitude of the mixing matrix elements VKM$~, 

VKM~> ; WE‘,, > WE=,, > WE,+, , and WE,&, , and the *de- 
vant Clebsch factors are listed in Tables II and 111: 

In ADHRS models tano ,is large. The @ --t ey rate 
for large tano has been calculated in Secs. V and VI for 
WE+ = WEE,, = v,. and &La, = WE.+, = hi. To 
obtam the predictions of ADHRS models, we only have 
to multiply the results ~by the suitable Clebsch factors. 
The relevant Clebsch factors for model 6 are listed in 
Table III. For a generic realistic GUT model with small 
tano, for example, the modified ADHRS models in which 
the down-type Higgs boson lies predominantly in some 
fields which do not interact with the three low-energy 
generations and contain only a small fraction of the dou- 
blets in the 10 which interact with the low-energy gener- 

ations [21], most of the analysis should still hold. In this 

case the leading contributions to p --f ey are the same 
ones as in the minimal SO(10) model of Ref. [2] (Fig. 10, 
b&q,+, c& of [2]). The diagrams CLR, cLR involve 
the corrections to the trilinear scalar couplings. 

In the one-loop approximation, the leading correc- 
tions to CE at MG contain pieces proportional to 

h,AE(&h + 3x&1 + &&I) and (2X& + 

3Xe&)X~, respectively. The piece proportional to XE 
can be absorbed into CE0 by a redefinition of AE; the 

other two pieces are proportional to the product of XE 
and the corrections to the scalar masses, 

ACE=ACE, +NE,, 

ACE, = ,XEA& (7.18) 
‘ 

where ~E~.,PE~ are prOpOrtiOnd COnStantS [/lEn = 
ME& = (srni + Ag)/3Ao in the one-loop approximation]. 
The LFV couplings in Fig. 2(e), .&!~U~AC,U~&?LVD, now 
can be written as 
TABLE III. Relevant Clebsch factors for fi -+ ey and d, in ADHRS model 6. 

ADHRS models Model 6 

lwE,2’/v,sl 
t’ -a, 
‘d-“” 1.26 

wE,~*lIlt~I 5.4 

IWEL,, lv,dl 0.42 

Relevant process 

@ + ey amplitude 

fi --f ey amplitude 
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1 -T T 1 -T T 
-----eRUEAm~X~U~Z~vD + GeRU,XEAm;U&, = +A~~I~W$,&W&B~Q, 
mn ‘ R 

(7.19) 
tihere the overline means that the matrix is diagonal. 
Again, the amplitudes are given by the same formu- 
las as in [2] [Eqs. (29), (30)], except that V’V&(V~~)2 
has to be replaced by WE‘$, WEE,, W,&, W&,, , and 

%nsl WE~,~ W&,, W&,, > ami $1;: by (l/m,)Afi&:ss 

and (~/PE,)A&~. The results in [2] are only modified 
by some multiplicative factors and therefore represent the 

central values for the LFV processes. 
It was pointed out in [2,3] that the electric dipole mo- 

ment of the electron (d,) constitutes an independent and 
equally important signature for the SO(10) unified the- 
ory as p + ry does. The diagrams which contribpte to 
the electrid dipole moment of the electron are the same 
as the ones which contribute to p + ey, with PL(&) 
replaced by Ed. Thus a simple relation between de 
and the p + ey rate was obtained in the minimal SO(10) 

model [2], 
: 

rycl-+ er) = ;m;lF& (7.20) 

(7.21) 

where 4 is an unknown new CP-violating phase defined 

by 

In a more generic SO(l0) model, such as the ADHRS 
model, we still have this simple relation, but the mixing 
matrix elements have to be replaced by the W’s: 
where 4’ is defined by 

In particular, in ADHRS models there is only one CP- 
violating phase, and so the phase 4’ can be related to 
the phase appearing in the KM matrix of the standard 
model. From E& (7.1_3), (7.14), (7.16), we can see that 

4’ = 4.t 4. = 4d M 4, 4% = 0 (because yu = 0). The 

rephrase invariant quantity J of the KM matrix is given 

by 

* l J = Imv,dv,,v,,V,, 

Therefore the CP-violating phase appeared in de related 
to the CP violation in the standard model by 

(7.24) 

Finally, as mentioned in Sec. III, we consider the,possi- 
bility that the slight nondegeneracy between the fist two 
generation scalar masses could give a significant contribu- 
tion to the flavor-changing processes because of the larger 
mixing matrix elements. We still use ADHRS niodels as 

an example to estimate this contribution to the LFV pro- 
cess p + ey. For an order of magnitude estimate, the 
mass insertion approximation in the super-KM basis em- 
ployed in [I] will serve as a convenient method. After 
rotating the Am& in Eq. (7.10) to the charged lepton 
mass eigenstate basis, the contribution from the fkst two 
generations to Am&, is 
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Compared with the result found in [l] for minimal SU(5), 

A&, (BH) = WLh& 

we can see that if the Clebsch factors are O(1); this con- 
tribution is comparable to that of the minimal SU(5) 
model. In order for tbis contribution to be competi- 
tive with the dominant diagrams (Fig. 10, bL,R, CL,R, C& 
of [2]) which are enhanced by mJmP, large Clebsch fac- 
tors are required. While it is possible to have large Cleb- 
sch factors, we consider them as model dependent, not 

generic to all realistic unified theories. 

VIII. CONCLUSIONS 

In supersymmtitric theories, the Yukawa ititeractions 
which violate flavor symmetries not only generate the 
quark and lepton mass matrices, but necessarily also lead 
to radiative breaking of flavor symmetries~ in the squark 

and slepton mass matrices, leading to a variety of flavor 
Signals. While such effects have been well studied in the 
MSSM and, more recently, in minimal unified models, 
the purpose of this paper has been to explore these phe- 
nomena in a wide class of grand unified models which 

have realistic fermion masses. 
We have argued that, if the hardness scale An is above 

MC, the expectation for all realistic grand unified super- 
symmetric models is that nontrivial flavor mixing matri- 
ces should occur at all neutral gaugino vertices. These 

additional, weak-scale, flavor violations are expected to 
have a form similar to the Kobayashi-Maskawa matrix. 
However, the precise values of the matrix elements are 
model dependent and have renormalization group scal- 
ings which differ from those of the Kobayashi-Maskawa 
matrix elements. 

It is the nontriviality of the flavor-mixing matrices of 
neutral gaugino couplings in the up quark sector which 
strongly distinguishes between the general and minimal 
unified models, as shown in Table I. Although the rni& 
imal unified models provide a simple approximation to 
flavor physics, they are not realistic, and so we stress 
the important new result that flavor mixing in the up 
sector couplings of neutral gauginos is a necessity in uni- 
fied models. This leads to four important phenomeno- 
logical consequences. While the DO-d” mixing induced 
by this new flavor mixing is generally not close to the 
present experimental limit, it could be much larger than 

that predicted in the standard model. 
The new mixing in the upquark sector implies that 

there may be significant radiative contributions to the 
up-quark mass matrix which arise when the superpart- 

ners are integrated out of the theory. Tbis is illustrated in 
Fig. 4, where the new mixing matrix elements have been 
taken to be a factor of 3 larger than the corresponding 
Kobayashi-Maskawa matrix elements. In this case the 
entire upquark mass could be generated by such a ra- 
diative mechanism: Above the weak scale the violation 
of u&quark flavor symmetries lies in the squark mass 

matrix. 
The electric dipole moment of the neutron, d,,, is a 

powerful probe of the neutral gaugino flavor mixing in- 

duced by unified theories. In the minimal SO(10) theory, 
d, arises from the flavor mixing in the down sector, which 
leads to a down-quark dipole moment, d,+ However, in 
realistic models the flavor mixing in the up-quark sec- 
tor leads to a d, which typically provides the dominant 

contribution to d,. Thus the neutron electric dipole mo- 
ment is a more powerful probe of unified supersymmetric 
theories than previously realized. 

The presence of flavor mixing in the up sector plays a 

very important role in determining the branching ratio 
for a proton to decay to K’@+. In the minimal models, 
without such mixings, this branching ratio is expected 
to be about lo@: The charged lepton mode will not 
be seen, and experimental efforts must concentrate on 
the mode containing a neutrino, K+v. However, includ- 
ing these mixings, the charged lepton branching ratio is 
greatly increased to about 0.1. While this number is 
very model dependent, we nevertheless think that this 
effect greatly changes the importance of searching for the 

charged lepton mode. 
These four phenomenological consequence are s&G 

ciently interesting that we stress once more that they 
appear as a necessity in a wide class of unified theories. 
The absence of mixing in the up sector is a special fea,- 

tare of the minimal models. Since the flavor sectors of 
the minimal models must be augmented to obtain realis- 
tic fermion masses, any conclusions based on the absence 
of flavor mixings in the up sector are specious. 

A second topic addressed in this paper is the effect 

of large tano on the lepton process /I + ey, which 
is expected in unified supersymmetric SO(l0) models. 
The amplitude for this process has i contribution pro- 
portional to ta@. In this paper, we have found that 
the naive expectation that large t&np in supersymmetric 
SO(10) is excluded by p -t ey is incorrect, at least for 
all values of, the superpartner masses of interest. Con- 
tour plots for the p + ey branching ratio are shown in 
Figs. 7 and 8. It depends sensitively on the parameter 
A, which is the mass splitting b&v&n the scalar elec- 
tron and scalar 7 and is plotted in Fig. 9. Lower values 
of the top quark Yukawa coupling, which for large tan/3 
still give allowed predictions for the b/r mass ratio, give a 
much reduced value for A, thereby reducing the fm --f ey 
rate and partially compensating the tan’@ enhancement. 
A further significant suppression of an order of magni- 
tude is induced ,by the renormalization group scaling of 
the leptonic flavor mixing angles and is shown in Fig. 10. 
The net effect is that while the case of tan@ % rn&n6 

is not excluded in SO(lO), the p -+ ey rate is still typi- 
cally larger than for moderate tan@, so that this process 
provides a more powerful probe of the theory as tan@ 

increases. 
For large tan@, p and J”& become the physical masses 

of the two charginos. The p + ey contours of Fig. 8 
show that p and Mz should not be too large, providing 
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an important limit to the chargino masses in the large 

tanD limit. Furthermore, this constrains the LSP mass 
to be quite small. We find that in this region it is still 
possible for the LSP to account for the observed dark 
matter and even to critically close the universe, as can 
be seen from Fig. 11. However, the requirement that the 

LSP mass be larger than 45 GeV suggests that the two 
light charginos will not be light enough to be discovered 
at LEP II. 

As an example of theories with both a realistic flavor 

sector and large tan@, we studied the models introduced 
by Anderson et al., The flavor sectors of ,these theories 
are economical: The free parameters can all be fixed from 
the known quark and lepton masses and mixings. Hence 
the flavor mixing matrices at all neutral gaugino vertices 

can be calculated. These are shown for the lepton sector 
of model 6 in Table III. The Clebsch factors enhance the 
p + ey amplitude by a factor of 2.3 and suppress d. by 
a factor of 3. Even taking the top quark Y&xwa cou- 

pling,to have its lowest value, the rate for p + ey in this 
theory is very large. Another interesting feature of these 
theories is that the flavor sectors contain just a single 
CP-violating phase. This means that the phase which 
appears in the result for d,, and d. can be computed: 

Since it is closely related to the phase of the Kobayashi- 
Maskawa matrix, it is not very small. That which ap- 
pears in de is given in Eq. (7.24) and is numerically about 
0.2. We have computed the radiative corrections to rn, in 
the ADHRS models and have found that the new mixing 
matrices in the up sector are not large enough to yield 
sizable contributions: Thus the ADHRS analysis of the 
quark mass matrices is not modified. Furthermore, be- 

cause of a cancellation special to these theories, there is 
no contribution to d, fxom the up quark at one loop. 

Note added: While finalizing this work, we received 
papers by Ciafaloni, Romanino, and Strumia 1221 and by 
de Carlos;Casas, and Moreno [23], where the large tanp 
scenario is also considered. In [22], unlike this work, they 
assume strict universality in soft scalar masses, such that 
imposing electroweak symmetry breaking leads them into 
a region of param.+ter space with a high mass (1 TeV) 

for the sleptons. In their discussion of general models, 
they do not include flavor-violating RG scaling of scalar 
masses above MG. In [23], the authors do not assume 
grand unification. Instead, they assume general scalar 
mass matrices at some high scale. Dangerous flavor- 
changing effects are suppressed through gaugino focusing 
in the running from high to low scales. 
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APPENDIX 

In this appendix, we first give a more complete treatment of mixing matrix scaling in the lepton sector and then 
give a treatment for the quark sector. 

Let us return to (5.7) and consider the effect of including the (CtCE)3; term. In general, the scaling from Mp, to 

MQ will generate a ckc, not diagonal in the same basis as XLXE, and So we expect some nonzero (CE&)3;. From 

the RGE for CE, neglecting gauge couplings, 

-;C, = Cfi[SX& + Tr(3$+, + A&)] + &[4&& + Tr(GC&, + 25&]. (AlI 

We have 

-$cdc,) = 51&&XE + ~++Lci + 2Tr(3$xD + XdE)cEcE 

+8&d& + (&w + &CE)~(‘&& + 74~44. (-42) 

Then, to first order in the off-diagonal parts of CL& and C&L and keeping only third generation Yukawa couplings, 
we have 

-$c&C,,si = (CkC.&i[l7Xf + 6x2 +611&J,], (A3) 

where 7 = CDsJ/CEss. Because of the large numerical coefficient in front of X:, Xi in the above equation, (CLCE)si 
is driven to zero more rapidly than W&si, after which it ceases to have any effect on the running of W,,;. More 
explicitly, from (5.7) we have that 

$ [~~,,(t)exp(~dt’~:(t’))] = -2(&C&i(t) exp (Jdt dt’X:(t’)) 
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’-‘) 
Solving (A3) for (Ck&)ai(t) and inserting into (A4), we get 

-2 [m~~,(t)exP(Jdldt)~l(t/))] = ~(&&(MG) exp 
( 

- Stdt’[16X: + 6x2 + G&(t’)) o 

Integrating (A5), we find 

(A5) 

rn&< (Ms)e’- - 
J 

wlas”) InWo/Ms) 
rn;,< (MG) = -2 dt exp - ‘dt’[l6Xf + 6X; +677X&]@‘) (f&)si(M~) 

= S(fkos&~Mc). 

(J 0 > 

w 

So we have 

We expect misi and (CLC,),; to be related by some combination of Clebsch factors + at MG a~ follows: 

(&E)Si = +:,<, (-48) 

where Ao,ni are the universal A parameter and scalar mass at Mpl, respectively. Then, we have iiwn (A7), 

Clearly if 6A~/m~x < 1, inclusion of the (CLCE)3; t erm in (5.7) does not change any of our results. If ~A@z$T - 1 
or > 1, we can still of course use (Ag), but the suppression effect may disappear. A simple estimate shows, however, 
that 6 itself is already small, N $ and so we are only in trouble if (Ag/m$)r is big. To see this, replace X,, Xa, and 

Q by some average values x,, %,, and +j in the expression (As) for 6. Then, 

J 
(l/lW In(Mc/Ms) 

6=-2 ,-t(lex:+sx~+6x,x,~) 

0 

1 

-[ ( 

1 
- In *(16x; + 6x; + 615x&) 

= -8X; +3(x; + fj&,X,) =’ - 16n2 Ms >I . (Al
so 

“’ < 8% + 3(x: + &ii ) 
(All) 

r b 7 

For the x’s between 0.5 and 1 and ij N 1, ISI ranges from 
g to &. 

How can we qualitatively understand the above results 
for the scaling of mixing matrices? The renormalization 
group equations try to align the soft supersymmetry- 
breaking &xx matrices with whatever combination of 
flavor matrices responsible for their renormalization. 
However, because a given coupling can only be renor- 
m&md by harder couplings, there is a hierarchy in which 

flavor matrices affect the running of others. The Yukawa 
matrices, being dimensionless, can only be affected by 
other Yukawa matrices. In the lepton sector, this is the 

reason that the basis in which, e.g., X&z is diagonal 
does not change. Next, the soft trilinear terms, having 
mass dimension 1, can only be affected by other trilinear 
terms and Yukawa couplings. Again, in the lepton sec- 
tor this mearm that, e.g., tECE tries to align itself with 

XL&. Finally, the scalar mass, having dimension 2, is 

affected by everything: rni tries to align with XEXE, but 

suffers interference from CLCE, unless <EC, is diagonal 

in the same basis as XLXE. Even if <LCB is not diagonal 

in the same basis as X&Q, it is trying to align itself with 

XL&, and so rn: will still tend to align with ALXE. 
From the above discussion, it is clear that the situation 

is slightly complicated in the quark sector. In the lepton 
sector, there was a fixed direction in flavor space given by 
XE, with which the soft matrices aligned. In the quark 

sector, we have both Xu and XD, and X&,X& are 
misaligned (I&M # 1). This complicates the analysis 

for w,, WD,, and so we discuss them last. Let us 
now examine the scaling of Wu,, WD,. (Throughout 
the following, we assume degeneracy between first two 
generation scalar masses, we neglect all Yukawa coupling 
matrix eigenvalues except those of the third generation, 
and we do not include the effect of trilinear soft terms in 
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the scaling. The last assumption is made for simplicity; 

we can make similar arguments about the importance of 
these neglected trilinear terms as we did above in the 
lepton se&r.) 

First, we show that the basis in which @,& is diago- 

nal remains fixed. The RGE for X& is 

Working in a basis where X& is diagonal, let us see 

if (d/dt)X$u has off-diagonal components. We have 
(recalling that in this basis X$D = l&X;&), 

= 2x, VKM<, i;, lQMlj &Jj 

=o fori,j#3, W3) 

since we neglect all Yukawa couplings except the third 

generation. Similarly, the basis in which X& is diago- 

nal does not change. Thus the discussion for the scaling 
of WuR, WD, is completely analogous to that in the lep 
ton sector, and we find 
(A14) 

(-415) 

We now turn to WV‘, WEE, Let VGL (t) be the matrix diagonalizing AuXL (t): 

x&(t) = v;,(t)X;(t)v;; (t). (fm 

In the superfield basis in which XuXd is diagonal, the *quark mass matrix is rC,$’ = VJLm$V”L. Note as before that 

Ii& = (w~‘~pJuL)si = wu‘si w&, Am& and so were are interested in (d/&)6&. Now, 

= 1 +v+ JLl”*vU,. 
uc dt Q W7) 

The second term is the analogue of what we have already seen in the lepton and right-handed quark sector; using the 
RGE for mg, we find, to leading order, 

vt d&‘V 

( ‘~ 
CJz,dt Q “.c 

1’ 
= -(AZ: + x;)Ii&. 

si 

Now, VJL (d/dt)Vv, is obtained from the RGE for &$,. Actually, note that 

(W 

so that only [V&(d/dt)Vu,,X;] d t 1s e ermined. (Tbis is a reflection of the fact that VuL is not unique: Let X(t) be 

any unitary transformation leaving m;(t) invariant: r%;(t) = X+(t)xBi(t)X(t). In our case, X(t) is most generally 

a U(2) matrix in the first two generation subspace. Then, if Vu5 diagonalizes mg, so does VU,X. Under this 

change, ViL(d/dt)VuL is not invariant, but [Vi,(d/dt)V~~,Xf,] zs mnvariant). Further, since we neglect the first 

two generation Yukawa eigenvalues, [VGL (d/dt)VLI,, xi];j = 0 f 

(r)X~V~L(dldt)V:‘j~~~~, 

or i,j = 1,2, and only [V~‘(d/dt)V~‘,X~]3i(i3) = 

is determined, and we can choose all other components of I$‘ (d/dt)Vuc to vanish. From the 

RGE for X&j,, 

-$(X,X:) = ~(XLA;)~ + 2(3TrA& - !$g; - 39; - $$A&+ {X&,,X,X~}, 642’3 
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we find 

and thus 

Thus to leading order 

1 = -Am* X2Vt Q b KMsiVKMssr 3i 

(A=) 

W4 

and, to a good approximation, given that WuLsi does not scale very significantly, we can replace 

(-427) 

So an approximate solution of the RGE for WuL, W,, is 

and similarly 

The above results are in agreement with qualitative expectations; the extra terms in the exponential of (A28) and 

(A29) are a reflection of the fact that the bases in which Xu$, and X&L are diagonal change with scale. For 

moderate tanp, however, we expect that the basis in which &XL is diagonal should not change with scale, and in 
this limit the extra term drops out of (A28). 
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