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Lattice sum rules for the color fields
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We analyze the sum rules describing the action and energy in the color fields around glueballs, torelon
static potentials.

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

In lattice gauge theory, it is possible to derive sum rul
for the energy and action in the color fields around stat
The technique used in@1#, hereafter referred to as I, involve
evaluating derivatives with respect to a parameter (b for
example! of the formal expression for a correlation involvin
an observable of interest. For the Wilson gauge action, t
yields exact relations between theb dependence of observ
ables and the sum over a time slice of the plaquette exp
tation in the presence of that observable@for example, see
Eqs.~1! and~23!#. These identities can be used as checks
numerical results, see@2# for an application to the glue lump
state. They relate the variation withb to sums at one fixed
value ofb. They can also be used to investigate theb de-
pendence of lattice quantities: so leading to evaluation of
latticeb function.

A more powerful set of relations can be derived if theb
derivatives can be reexpressed using renormalization gr
invariance in terms of well-known quantities. For glueba
and potentials, these were also presented in I. The main c
clusion is that the combination of squared color fie
strengths corresponding to the action~electric plus magnetic!
is much larger than the combination corresponding to
energy~electric minus magnetic!. This implies that the elec-
tric and magnetic field strengths are comparable. This c
clusion has been a useful benchmark for models of nonp
turbative QCD. Although this general conclusion wa
correct, the explicit results in I were in error and the corre
expressions are given here.

The lattice analysis of the field strengths depends on
scale at which these fields are probed. The results can
calculated reliably by perturbation theory for very short di
tance scales. However, for scales appropriate for nonper
bative states, perturbation theory on the lattice in terms of
bare coupling is now known to be poorly convergent and it
worthwhile to reassess the assumptions leading to these
lations.

Recently there has been a reawakening of interest in
area—partly from new accurate lattice results@3# and partly
because of the realization@4,5# that the application@1# of the
sum rules to static potentials was wrong.

Here we summarize the derivation of I and confirm th
correction needed for the application to potentials. We exte
the discussion to apply the sum rules to torelons and to a
lyze the transverse and longitudinal color fields separat
This enables us to explore in detail the problem of the fie
energy in the potential between static sources.
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II. GLUEBALLS

As an example of the techniques to be used, we conside
first a glueball state. DefineM (b) as the lattice observable
glueball mass~in lattice units! which will depend onb the
bare lattice coupling parameter, withb52N/g2, for the
gauge sector of the SU(N) theory.

Then, for the Wilson action, the identity was derived in I
that

dM

db
5 K 1 U( hU 1L 2 K 0 U( hU 0L 5( h120 , ~1!

whereh is the plaquette action (1/N)Tr(12Uh) which is
summed over all (6L3) plaquettes in one time slice. The
subscript 120 refers to the difference of this plaquette sum
in a one glueball state~1! and in the vacuum~0!.

This identity can be used as it stands to check this ob
served plaquette difference with the left-hand side obtaine
as a finite difference from lattice calculations ofM (b) at two
nearby values ofb. A more powerful application comes
from using the renormalization group invariance to relate the
b dependence ofM to theb dependence of the lattice spac-
ing a. SinceM „b(a)…/a is the physical continuum massm
asa→0, it must be independent ofa. Hence

05
dM„b~a!…/a

da
52

M

a2
1
1

a

dM

db

db

da
. ~2!

Thus

M5
db

d lna ( h120 . ~3!

Note thatdb/dln a5211N2/(12p2) to lowest order in per-
turbation theory for an SU(N) gauge theory. Thus the
plaquette action isloweredin the glueball surroundings com-
pared to the vacuum.

This is one of the prototype lattice action sum rules. It
relates the plaquette action around a glueball to the mass
the glueball. It is exact provided that a nonperturbative de
termination of the latticeb function is used.

Further relations can be derived by splitting the lattice
Wilson action into several terms with different coefficients.
This analysis of asymmetric lattices was incorrect in I. In
order to establish clearly the correct expressions, here we u
a more direct method of derivation which also has the ad
vantage of being more general.

Consider the general case where there are different coe
ficients for all six orientations of plaquette:
4102 © 1996 The American Physical Society
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b (
i , j ,i, j

h i j→ (
i , j ,i, j

b i jh i j . ~4!

There will be four lattice spacingsai in general. We shall
need to evaluate the derivatives]b i j /]ak . At the symmetry
point whereai5a for all i51,4, these derivatives fall into
two classes:

]b i j

] ln ak
5S if k5 i or j and

]b i j

] ln ak
5U if kÞ i or j . ~5!

The generalization of the identities derived in I are al
needed:

]M

]b i j
5( ~h i j !120 , ~6!

where the sum is again over one time slice. Then the ren
malization group invariance of the result obtained on suc
lattice implies that

]

]ai

M „b jk~a0 ,a1 ,a2 ,a3!, . . . …

a0
50, ~7!

wherea0 enters because the glueball correlation is conve
tionally determined in the time direction. Because only th
time direction is privileged in this case, at the symmme
point, we have that

h0 j5h t and h jk5hs for j ,kÞ0, ~8!

where the subscript 120 is implied hereon.
Applying the renormalization group invariance condition

of Eq. ~7! for i50 and foriÞ0 gives

M5( ~3Sh t13Uhs!, ~9!

05( @~2U1S!h t1~U12S!hs#. ~10!

Then combining Eqs.~9! and ~10! yields

M5( 2~S1U !~3h t13hs!, ~11!

which is the the same as Eq.~3! provided we have the con-
sistency condition

2~S1U !5
db

d ln a
. ~12!

Subtracting Eqs.~9! and ~10! then gives

M5(
2

3
~S2U !~3h t23hs!. ~13!

This latter equation is appropriate to the energy in t
color field around a glueball. In order to make it more usef
we need to estimate the combination of derivativesS2U.

Consider the special case, as used by Karsch@6#, where
at5a0 ; a15a25a35as and b0i5b t ;b i j5bs where
i , j.0. The derivatives in this case can be related toS and
U, at the symmetry point:
so

or-
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]b t

] ln at
5S and

]b t

] ln as
5S12U, ~14!

]bs

] ln at
5U and

]bs

] ln as
52S1U. ~15!

The dependence ofbs andb t on at andas coming from
the weak coupling limit of the theory@6# is that, where
j5as /at ,

b t5j@b~as!12Ncs~j!1•••#,

bs5j21@b~as!12Nct~j!1•••#, ~16!

where atj51, cs5ct50 and Karsch obtainscs850.114 for
N52 andcs850.2016 forN53. Then substituting Eqs.~16!
into Eqs.~14! and ~15! gives the constraint

4N~ct81cs8!52
db

d ln a
. ~17!

This is the same constraint as found by Karsch from similar
consistency arguments.

Using these expressions gives

S52b12Ncs81
1

2

db

d ln a
, U5b22Ncs8 ~18!

and thus

S2U522b14Ncs81
1

2

db

d ln a
. ~19!

This implies that, asb→`, the energy sum rule@Eq. ~13!#
becomes

M5(
4

3
b~3hs23h t!. ~20!

The expression of Eq.~20! in I had a factor of 1 instead of
4/3, coming from an error in the evaluation of the weak
coupling result for the dependence of the asymmetricb ’s on
the a’s. Note that the naive continuum expression for the
energy in the color field would be obtained with a factor of 1.

In principleS2U can be determined nonperturbatively by
simulating a lattice with nonequalb ’s and determining the
ratio of the lattice spacings in the four directions from the
glueball correlations in those directions. Accurate data do no
exist at present, although an indirect method has been used
SU~2! and substantial corrections are found@7# to the weak
coupling results. This is not surprising since lattice perturba-
tion theory in the bare coupling is now known to be poorly
convergent. This nonperturbative evaluation@7# gives values
of (U2S)/(2b) of 0.66 atb52.4 and 0.77 atb52.8 com-
pared to the weak coupling values of 0.85 and 0.87, respec
tively. It is amusing that these nonperturbative estimates are
close to 0.75 which would give the naive energy relation

M5( b~3hs23h t!. ~21!

The gluonic vacuum in QCD is known to be polarizable.
It behaves like a medium and can be assigned an effectiv
dielectric constant. Thus it is not really surprising that the
naive sum of the energy in the color fields@i.e.,
(b(3hs23h t)# does not agree exactly with the mass. In-
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deed the result will depend in QCD on the scale at which t
field energy is evaluated. A sensible scale would be comm
surate with the glueball mass, where a nonperturbative de
mination ofS2U is needed and rough agreement is obtain
between the apparent field energy and the mass. The w
coupling calculation~which shows that only 3/4 of the mass
lies as apparent energy in the color fields! implies a very
short distance scale of energy determination, which w
probe the vacuum polarization in a different manner.

It is worth emphasizing the basic result, which was o
tained in I already, that the electric and magnetic fie
strengths are comparable. In detail, the departure from equ
ity is correctly given by

E

B
5

h t

hs
5

2U22S

2U1S
'12

3

2b

db

d ln a
'11

33N

12p

g2

4p
'1,

~22!

where the approximation used in estimatingS andU is valid
at largeb.

III. POTENTIALS AND TORELONS

Having calibrated the approach on the glueball, we co
sider string states. The potential between static quarks is
case of greatest practical interest. Another related situation
with a closed loop of color flux encircling the periodic
boundary condtions: the torelon. As discussed in I, there
some subtlety in principle in dealing with the self-energy o
the static quarks. For clarity of presentation, the torelon ca
is considered first since the derivation is more compact.

The torelon is a closed string of color flux in the funda
mental representation that encircles the periodic bound
conditions in thex direction where there areR lattice spac-
ings in this direction. Its energy is measured on a lattice
analyzing correlations of closed Polyakov line operators
t50 andt5T. The study of the largeT behavior then gives
the lattice observableE(R,b).

The analysis of I gives, whereR is kept constant,

]E~R!

]b
U
R

5( h120 , ~23!

where 1 now refers to the plaquette expectation value b
tween torelon states and the sum is again over all plaque
in a time slice. The renormalization group analysis no
needs to take account of the fact thatr5Ra must be kept
constant in taking the limita→0. So

05
dE„R,b~a!…/a

da
U
r

52
E

a2
2

R

a2
]E

]R
1
1

a

db

da

]E

]b
U
R

.

~24!

Thus,

E~R!1
]E

] ln R
5

db

d ln a ( h120 . ~25!

As pointed out by Doschet al. @4#, this expression differs
from that in I where the term with the derivative with respe
to R was omitted. The net effect of that term is, for a con
fining potential, to increase the effective left-hand side of th
action sum rule by a factor of 2.
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We now apply the general consideration of 6 coupling
b i j as above. The new feature is that the torelon correlator
extended in thex and t directions. Thus we need to distin-
guish thex ~longitudinal L) and y,z ~transverseP) spatial
directions. The four independent types of plaquette have o
entationstL, tP, LP, andPP: we label them asEL , EP ,
BP , BL , respectively, in a natural notation. Note thatE
here is related to the difference of the plaquette value in t
torelon state and in the vacuum and so is the difference
gauge invariant combinations of electric color fields square
Following the same steps as above we obtain three indep
dent constraints from the invariance with respect toa0 ,
aL , andaP of (1/a0)E„RaL ,b i j (ak)…:

E5( ~SEL12SEP12UBP1UBL!, ~26!

R
]E

]R
5( ~SEL12UEP12SBP1UBL!, ~27!

05( @UEL1~S1U !EP1~S1U !BP1SBL#, ~28!

where the sum is over one time slice.
Combining these equations we obtain

E1R
]E

]R
5( 2~S1U !~EL12EP12BP1BL!, ~29!

E1R
]E

]R
5( 2~S2U !~EL2BL!, ~30!

E2R
]E

]R
5( 2~S2U !~EP2BP!. ~31!

It is also convenient to write down the combination corre
sponding naively to the total energy in the fields:

E2
1

3

]E

] ln R
5(

2

3
~S2U !~EL12EP22BP2BL!. ~32!

Again the action sum rule@Eq. ~29!# agrees with the result
obtained from a symmetric lattice@Eq. ~25!# with the same
relationship ofS1U to theb function @Eq. ~12!# as for the
glueball case. Thus, apart from the term with a derivativ
with respect toR, the results for the total action@Eq. ~29!#
and total energy@Eq. ~32!# are similar in normalization to the
glueball case introduced above.

Consider, for orientation, the case where the torelon e
ergy is a sum of a string tension piece and a string fluctuati
piece:

E~R!5KR2 f /R, ~33!

where we expectf5p/3 ~this behavior of the torelon energy
has been checked numerically recently@8#!. Then the sum
rules become

2KR5( 2~S1U !~EL12EP12BP1BL!, ~34!

2KR5( 2~S2U !~EL2BL!, ~35!

22 f /R5( 2~S2U !~EP2BP!. ~36!
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This shows that the transverse energy in the fields~where
here we define energy asE2B) will be much smaller for
large R than the longitudinal energy. Moreover it has th
opposite sign. These sum rules provide an independent
to study the split of the total torelon energy into string te
sion and string fluctuation components.

Consider the sum rule for the longitudinal energy with th
weak coupling (b→`) value forS2U:

1
2 KR5( b~BL2EL!. ~37!

The right-hand side is just the naive expression for the
ergy in the longitudinal fields. Thus we obtain one-half of th
expected semiclassical result ofKR. This is somewhat sur-
prising since the longitudinal color flux is applied explicitl
and in the semiclassical limit the energy should remain re
tively unaffected by quantum corrections. However, t
vacuum polarization effects will be strong at the large ene
scale~corresponding tob→`) used to evaluate the expres
sion.

The application to the potential between static sourc
follows the same steps as for the torelon. The difference
thatR is now the spatial extent of a Wilson loop rather tha
the spatial extent of the lattice itself. The main new feature
that there will also be a self-enegry contribution in the latti
observable energyE(R). This self-energy was discussed in
As a→0 it becomes the dominant term in the energy but it
very localized spatially. Thus it is possible to separate it o
leaving just the same results as for the torelon discuss
above. One way to remove the self-energy contribution,
practice, is by taking the difference of expressions for tw
values ofR when it cancels.

The analogue of Eq.~33! for the potential energyE(R)
between static sources at separationR is a sum of self-
energy, Coulombic and string tension terms:

E~R!5V02e/R1KR. ~38!

After removing the self-energy part (V0), the sum rules then
become the same as Eqs.~34!–~36! with f changed toe.
Thus the same result applies that the transverse energy in
color fields will be much smaller for largeR than the longi-
tudinal energy~where here we define energy asE2B). This
is a new result.

IV. CONCLUSIONS

We have studied the energy and action distribution in t
color fields around nonperturbative states. We use the se
classical definition of these distributions and define the a
propriate difference of the plaquette combination evalua
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in the nonperturbative state and in the vacuum. The lattic
definition we use has energy and action determined by th
plaquette. In principle it should be possible to define a quan
tity which characterizes the energy and action in the colo
fields of a state and which has a continuum limit. Such
defintion could be based, for example, on using a squa
Wilson loop offixedphysical size asa→0. This would probe
the energy and action distributions at afixedphysical scale
and so would give a result free of lattice artefacts. But, o
course, such a definition would not satisfy the sum rules w
have derived.

The simplest result, which was obtained in I and which
has been checked in numerical studies, is that the action
the color fields is much larger than the energy. This follow
because the derivatives ofb i j with respect toak on an asym-
metric lattice can be expressed in terms of two independe
quantitiesS andU which can be estimated. The correct ex-
pression for the ratio, derived here, is

Energy

Action
5
3~S1U !

S2U
'

23

4b

db

d ln a
'

g2

4p

33N

24p
!1

for a glueball state~where the approximation used in estimat-
ing S andU is valid at largeb). For the interquark potential
or for a torelon this ratio is approximately 3 times smaller
still.

The naive expectation is that the spatial sum of the energ
density in the color field around a state should equal th
energy of the state itself. We correct the results given in
and find that, evaluated by the semiclassical expression, t
sum of the energy density in the color fields around a glue
ball ~and torelon! is given by 3/4~and 1/2, respectively! of
the energy of the state times 2b /(U2S). Thus no nonper-
turbative value forS2U can make both of these sums ex-
actly equal to the energy. Evaluating the energy density su
at a large energy scale, we can use perturbation theory
obtain a field energy around a glueball~and torelon! which is
3/4 ~and 1/2, respectively! of the energy of the state. These
fractions are closer to one when a nonperturbative estimate
a lower energy scale is used to determine the field sums. T
explanation for the departure of these relations from identit
is most easily achieved by invoking the vacuum polarizatio
effects as producing an effective dielectric constant. More
over this effective dielectric constant must be different in the
glueball ~spherical! and torelon~cylindrical! geometries.

We also present sum rules for the longitudinal and trans
verse field energy in a string state: torelon or interquark po
tential. For the potential between static quarks, this implie
that at largeR the transverse energy in the color fields will be
much smaller than the longitudinal energy. It will be inter-
esting to explore this in lattice studies.
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