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Lattice sum rules for the color fields
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We analyze the sum rules describing the action and energy in the color fields around glueballs, torelons, and
static potentials.

PACS numbss): 12.38.Gc, 11.15.Ha

I. INTRODUCTION Il. GLUEBALLS

: o . ) As an example of the techniques to be used, we consider
In lattice gauge theory, it is possible to derive sum rulest 5 glueball state. Definbl(8) as the lattice observable

for the energy and action in the color fields arou_nd State%Iueball massin lattice unit3 which will depend ong the
The technique used iri], hereafter referred to as I, involves bare lattice coupling parameter, with=2N/g?, for the

evaluating derivatives with respect to a paramet@rfor gauge sector of the S theory.

example of the formal expression for a correlation involving Then, for the Wilson action, the identity was derived in |
an observable of interest. For the Wilson gauge action, thig,

yields exact relations between tifedependence of observ-
ables and the sum over a time slice of the plaquette expec- dM
tation in the presence of that observafier example, see a8 12 0/1)-{0]2 0/0)=2 00, @)
Egs.(1) and(23)]. These identities can be used as checks of
numerical results, s€&] for an application to the glue lump Wwhere[ is the plaquette action (W) Tr(1—Up) which is
state. They relate the variation wifh to sums at one fixed summed over all (B%) plaquettes in one time slice. The
value of 8. They can also be used to investigate thele-  subscript -0 refers to the difference of this plaquette sum
pendence of lattice quantities: so leading to evaluation of thé a one glueball statél) and in the vacuuntO).
lattice 8 function. This identity can be used as it stands to check this ob-
A more powerful set of relations can be derived if the served plaquette difference with the left-hand side obtained
derivatives can be reexpressed using renormalization grougs a finite difference from lattice calculationsM{ ) at two
invariance in terms of well-known quantities. For glueballsnearby values of3. A more powerful application comes
and potentials, these were also presented in |. The main coffifom using the renormalization group invariance to relate the
clusion is that the combination of squared color field 3 dependence dfl to the 3 dependence of the lattice spac-
strengths corresponding to the acti@tectric plus magnetic  ing a. SinceM(B(a))/a is the physical continuum mass
is much larger than the combination corresponding to thésa—0, it must be independent af. Hence
energy(electric minus magnetic This implies that the elec-
tric and magnetic field strengths are comparable. This con- 0= W: M 1dam d_ﬁ 2
clusion has been a useful benchmark for models of nonper- da a’ adpda
turbative QCD. Although this general conclusion WaS 1 s
correct, the explicit results in | were in error and the correct
expressions are given here. dg
The lattice analysis of the field strengths depends on the M= Sna > Oioo. ()
scale at which these fields are probed. The results can be
calculated reliably by perturbation theory for very short dis-Note thatds/dIn a=—11IN?/(1272) to lowest order in per-
tance scales. However, for scales appropriate for nonpertuturbation theory for an SUW{) gauge theory. Thus the
bative states, perturbation theory on the lattice in terms of th@laquette action ioweredin the glueball surroundings com-
bare coupling is now known to be poorly convergent and it ispared to the vacuum.
worthwhile to reassess the assumptions leading to these re- This is one of the prototype lattice action sum rules. It
lations. relates the plaquette action around a glueball to the mass of
Recently there has been a reawakening of interest in thithe glueball. It is exact provided that a nonperturbative de-
area—partly from new accurate lattice resliiB$ and partly  termination of the lattices function is used.
because of the realizatidd,5] that the applicatiofl] of the Further relations can be derived by splitting the lattice
sum rules to static potentials was wrong. Wilson action into several terms with different coefficients.
Here we summarize the derivation of | and confirm theThis analysis of asymmetric lattices was incorrect in I. In
correction needed for the application to potentials. We extendrder to establish clearly the correct expressions, here we use
the discussion to apply the sum rules to torelons and to ana more direct method of derivation which also has the ad-
lyze the transverse and longitudinal color fields separatelwantage of being more general.
This enables us to explore in detail the problem of the field Consider the general case where there are different coef-
energy in the potential between static sources. ficients for all six orientations of plaquette:

0556-2821/96/5F)/41024)/$10.00 53 4102 © 1996 The American Physical Society



B Y Oy— 2 By,

i,j,i<j i,j,i<j

(4)

There will be four lattice spacingg; in general. We shall
need to evaluate the derivativeg;; /da, . At the symmetry

point wherea;=a for all i=1,4, these derivatives fall into
two classes:

Bij .
T ak—S if k=i orj and
Bij . . :
7In ak_U if k#i or j. (5)
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4103
9Py e
= — +
7in a S and 7in a S+2U, (14
9Ps IPBs
oIn at_U and&In aS—ZS+U. (15

The dependence @ and B; on a; andag coming from
the weak coupling limit of the theory6] is that, where
é=aslay,

Bi=ELB(ag) +2Ncg(§) + - -],
Bs= g_l[ﬁ(as)"_ZNCt(g)"' -,

where até=1, cs=c,=0 and Karsch obtains,=0.114 for

(16)

The generalization of the identities derived in | are alson=2 andc.=0.2016 forN= 3. Then substituting Eq$16)

needed: into Egs.(14) and(15) gives the constraint
oM dg
= )10, 6 ey
7B > (1o (6) aN(c{+c) == g7 5 (17)

where the sum is again over one time slice. Then the renofrhis is the same constraint as found by Karsch from similar
malization group invariance of the result obtained on such &onsjstency arguments.

lattice implies that Using these expressions gives

9 M(Bi(ap,a1,82,a3), - - -):0 @ .1 dg ,
9a; ao ' S__ﬁ+2Ncs+§dlna’ U=B—2Nc; (19
whereag enters because the glueball correlation is convengnd thus
tionally determined in the time direction. Because only this 1 dp
time direction is privileged in this case, at the symmmetry S—U=-2B8+4Nc.+ s (19
na

point, we have that

Ogj=0; and Oy =0, for j,k#0, 8

where the subscript-20 is implied hereon.

Applying the renormalization group invariance conditions

of Eq. (7) for i=0 and fori#0 gives

M=> (3SO,+3Uly), 9)
0=, [(2U+S)O,+(U+2S)O,]. (10)

Then combining Egs(9) and (10) yields
M= 2(S+U)(30.+30,), (12)

which is the the same as E() provided we have the con-
sistency condition

dg

Subtracting Eqs(9) and(10) then gives
2
M=, 3(S-U)(30:-30,). (13)

This latter equation is appropriate to the energy in the
color field around a glueball. In order to make it more useful,

we need to estimate the combination of derivati$esU.

Consider the special case, as used by Kafg¢thwhere
a=ay; ay=a=az=as and Bo=p;Bi;j=ps where
i,j>0. The derivatives in this case can be relatecstand
U, at the symmetry point:

This implies that, agg— <, the energy sum rulfEq. (13)]
becomes
4
M= 3A(305=30y. (20)

The expression of Eq20) in | had a factor of 1 instead of
4/3, coming from an error in the evaluation of the weak
coupling result for the dependence of the asymmegiscon
the a’s. Note that the naive continuum expression for the
energy in the color field would be obtained with a factor of 1.

In principle S— U can be determined nonperturbatively by
simulating a lattice with nonequa’s and determining the
ratio of the lattice spacings in the four directions from the
glueball correlations in those directions. Accurate data do not
exist at present, although an indirect method has been used in
SU(2) and substantial corrections are fourd to the weak
coupling results. This is not surprising since lattice perturba-
tion theory in the bare coupling is now known to be poorly
convergent. This nonperturbative evaluatj@h gives values
of (U—-9)/(2B) of 0.66 atB=2.4 and 0.77 aB=2.8 com-
pared to the weak coupling values of 0.85 and 0.87, respec-
tively. It is amusing that these nonperturbative estimates are
close to 0.75 which would give the naive energy relation
M=> B(30-30,). (22)

The gluonic vacuum in QCD is known to be polarizable.
It behaves like a medium and can be assigned an effective
dielectric constant. Thus it is not really surprising that the
naive sum of the energy in the color fieldg.e.,
> B(30,—30;)] does not agree exactly with the mass. In-
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deed the result will depend in QCD on the scale at which the We now apply the general consideration of 6 couplings
field energy is evaluated. A sensible scale would be commeng;; as above. The new feature is that the torelon correlator is
surate with the glueball mass, where a nonperturbative deteextended in thex andt directions. Thus we need to distin-
mination of S— U is needed and rough agreement is obtainedyuish thex (longitudinal L) andy,z (transverseP) spatial
between the apparent field energy and the mass. The wealkrections. The four independent types of plaquette have ori-
coupling calculatioiwhich shows that only 3/4 of the mass entationstL, tP, LP, and PP: we label them as?| , £p,
lies as apparent energy in the color figldsplies a very  %p, .%,, respectively, in a natural notation. Note that
short distance scale of energy determination, which willhere is related to the difference of the plaquette value in the
probe the vacuum polarization in a different manner. torelon state and in the vacuum and so is the difference of
It is worth emphasizing the basic result, which was ob-gauge invariant combinations of electric color fields squared.
tained in | already, that the electric and magnetic fieldFollowing the same steps as above we obtain three indepen-
strengths are comparable. In detail, the departure from equattent constraints from the invariance with respectatn

ity is correctly given by a_, andap of (1/ap)E(Ra.,Bij(ay)):
s 0O, —-uU-2s 3 dp 33N g? - )
Z):D_S:mml_ﬁmmldl—mﬂmjﬂ EZE (SZL‘FZSZP‘FZUﬁp‘FU%L), (26)
(22 JE

R—== S# +2U&p+2S75p+U.75,), 2
where the approximation used in estimatl®gndU is valid JR 2 (57 P P 2 @

at largep.
0=, [UZ +(S+U)Zp+(S+U).Zp+S7%.], (29
I1l. POTENTIALS AND TORELONS

Having calibrated the approach on the glueball, we Conyvhere th_e sSum IS over oné time slice. .
Combining these equations we obtain

sider string states. The potential between static quarks is the
case of greatest practical interest. Another related situation is
with a closed loop of color flux encircling the periodic
boundary condtions: the torelon. As discussed in |, there is IE
some subtlety in principle in dealing with the self-energy of o= _ > _ g
the static quarks. For clarity of presentation, the torelon case E+ Rr?R B E 2S-U) (A=A, (30
is considered first since the derivation is more compact. JE

The torelon is a closed string of color flux in the funda- E-R—=2, 2(S—U)(&p—.%5p). (32)
mental representation that encircles the periodic boundary JR
conditions in thex direction where there arR lattice spac- ) ) . o
ings in this direction. Its energy is measured on a lattice byt IS @S0 convenient to write down the combination corre-
analyzing correlations of closed Polyakov line operators afPonding naively to the total energy in the fields:

IE o
+Rﬁ=2 2(SHUN & +28p+2.58p+.5), (29

t=0 andt=T. The study of the larg& behavior then gives 1 JE 2 _ ) B
the lattice observablg(R, 8). E-37mR™ > 3(S-U)(AL+28p—20p= 7). (32)
The analysis of | gives, whetR is kept constant,
JE(R) Again the action sum rulg€Eq. (29)] agrees with the result
B R:E O1_0, (23 obtained from a symmetric lattideeq. (25)] with the same

relationship ofS+U to the 8 function[Eq. (12)] as for the

. lueball case. Thus, apart from the term with a derivative
where 1 now refers to the plaquette expectation value bg?v b

; ) with respect toR, the results for the total actidiEq. (29
tween torelon states and the sum is again over all plaquett ! b u lofiEq. (29)]

in a time slice. The renormalization aroup analvsis nowea%d total energyEq. (32)] are similar in normalization to the
) group y glueball case introduced above.

needts t?_tarek_acc?hun:_ ofatheofaé:t that Ra must be kept Consider, for orientation, the case where the torelon en-
constant in taking the ima—1o. 5o ergy is a sum of a string tension piece and a string fluctuation

0 dE(R,B(a))/a ~E RUJE N 1dB doE piece:
- da . @ a’dR adadiBly E(R)=KR-f/R, (33
(24)
where we expect= #/3 (this behavior of the torelon energy
Thus, has been checked numerically receri}). Then the sum
dB rules become
ER* o R:dlna2 Hi-o. (25

2KR=D, 2(S+U)(4 +25p+25p+.75)), (34

As pointed out by Dosclet al. [4], this expression differs
from that in | where the term with the derivative with respect 2KR= 2 2(S-U)(£ -7, (35)
to R was omitted. The net effect of that term is, for a con-
fining potential, to increase the effective left-hand side of the

action sum rule by a factor of 2. —21/R=2 2(S=U)(%p=5p). (36
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This shows that the transverse energy in the fidldsere in the nonperturbative state and in the vacuum. The lattice
here we define energy as—.%) will be much smaller for definition we use has energy and action determined by the
large R than the longitudinal energy. Moreover it has the plaguette. In principle it should be possible to define a quan-
opposite sign. These sum rules provide an independent wdify which characterizes the energy and action in the color
to study the split of the total torelon energy into string ten-fields of a state and which has a continuum limit. Such a

sion and string fluctuation components. defintion could be based, for example, on using a square
Consider the sum rule for the longitudinal energy with theWilson loop offixedphysical size aa— 0. This would probe
weak coupling B— ) value forS—U: the energy and action distributions afiged physical scale
N and so would give a result free of lattice artefacts. But, of
FKR=2 B(AL~41). (37 course, such a definition would not satisfy the sum rules we

have derived.
The right-hand side is just the naive expression for the en- The simplest result, which was obtained in | and which
ergy in the longitudinal fields. Thus we obtain one-half of thehas been checked in numerical studies, is that the action in
expected semiclassical result KR. This is somewhat sur- the color fields is much larger than the energy. This follows
prising since the longitudinal color flux is applied explicitly because the derivatives gf; with respect ta, on an asym-
and in the semiclassical limit the energy should remain relametric lattice can be expressed in terms of two independent
tively unaffected by quantum corrections. However, thequantitiesS andU which can be estimated. The correct ex-
vacuum polarization effects will be strong at the large energyression for the ratio, derived here, is
scale(corresponding tg8— ) used to evaluate the expres- Energy 3(S+U) -3 dg g° 33N
sion. Acion. S-U 4Bdina 4 24r -t
The application to the potential between static sources
follows the same steps as for the torelon. The difference i$or a glueball statéwhere the approximation used in estimat-
thatR is now the spatial extent of a Wilson loop rather thaning S andU is valid at largeg). For the interquark potential
the spatial extent of the lattice itself. The main new feature i®r for a torelon this ratio is approximately 3 times smaller
that there will also be a self-enegry contribution in the latticestill.
observable energi(R). This self-energy was discussed in . The naive expectation is that the spatial sum of the energy
As a—0 it becomes the dominant term in the energy but it isdensity in the color field around a state should equal the
very localized spatially. Thus it is possible to separate it outenergy of the state itself. We correct the results given in |,
leaving just the same results as for the torelon discussioand find that, evaluated by the semiclassical expression, the
above. One way to remove the self-energy contribution, irsum of the energy density in the color fields around a glue-
practice, is by taking the difference of expressions for twoball (and torelon is given by 3/4(and 1/2, respective)yof
values ofR when it cancels. the energy of the state times32(U —S). Thus no nonper-
The analogue of Eq(33) for the potential energ¥(R) turbative value forS—U can make both of these sums ex-
between static sources at separatRnis a sum of self- actly equal to the energy. Evaluating the energy density sum
energy, Coulombic and string tension terms: at a large energy scale, we can l&i: perturb;tion theory to
v _ obtain a field energy around a glueb@hd torelomn which is
E(R)=Vo~e/R+KR. 38 3/4 (and 1/2, respectivelyof the energy of the state. These
After removing the self-energy parVf), the sum rules then fractions are closer to one when a nonperturbative estimate at
become the same as Eq84)—(36) with f changed toe. @ lower energy scale is used to determine the field sums. The
Thus the same result applies that the transverse energy in tg&planation for the departure of these relations from identity
color fields will be much smaller for largR than the longi- IS most easily achieved by invoking the vacuum polarization
tudinal energy(where here we define energy @s-.%). This  €ffects as producing an effective dielectric constant. More-
is a new result. over this effective dielectric constant must be different in the
glueball (spherical and torelon(cylindrical) geometries.
IV CONCLUSIONS We also present sum rules for the longitudinal and trans-
verse field energy in a string state: torelon or interquark po-
We have studied the energy and action distribution in theential. For the potential between static quarks, this implies
color fields around nonperturbative states. We use the semihat at largeR the transverse energy in the color fields will be
classical definition of these distributions and define the apmuch smaller than the longitudinal energy. It will be inter-
propriate difference of the plaquette combination evaluate@sting to explore this in lattice studies.
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