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Taming the scalar mass problem with a singlet Higgs boson
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We investigate the fine-tuning problem in the standard model and show that Higgs boson and top quark
masses consistent with current experimental bounds cannot be obtained unless one extends the particle spec-
trum. A minimal extension which achieves this involves the addition of a singlet real scalar but this model is
not very predictive. With a discrete symmetry and the further addition of one generation of vectorlike fermions
one can get a solution which leads to a phenomenologically viable prediction for the mass of the standard
model Higgs boson.
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[. INTRODUCTION tion [2]. Assuming that the underlying theory has some yet-
to-be-discovered symmetry which protects the scalar mass,

Electroweak precision tests at the CERNe™ collider  one simply sets to zero the sum of computed quadratic di-
LEP and the recently reported discovery of the top quark avergences in the radiative corrections to the scalar self-
Fermilab[1] have established beyond reasonable doubt thenergy. Clearly this implies some relation between the physi-
fact that the standard modéM) is an excellent description cal Higgs boson mass and the masses of other particles such
of fundamental interactions at least up to the electroweaRs the top quark and the gauge bosons. &kglanationof
symmetry-breaking scale. Nevertheless, there is a general bguch a relationship must lie, as already stated, in the under-
lief that the SM does not tell us the whole story, but merelylying theory. For a phenomenological study, however, the
provides an effective Lagrangian of a deeper underlying/eltman condition is very useful, since it reduces, to some
theory which is yet to be established. One of the chief readegree, the arbitrariness in the choice of top quark and Higgs
sons for such a belief is the so-calléide-tuningproblem. boson masses in the SM.

In a nutshell, the fine-tuning problem is the following.  Application of the Veltman condition to a model implies a
The masses of scalars, specifically the Higgs boson, receivéitle more than mere cancellation of the coefficients of the
radiative corrections which are quadratically divergent. If thequadratic divergences in self-energy diagrams of the scalars.
SM ceased to be applicable at a scale the mass of the The condition must not change with renormalization group
Higgs boson would, therefore, be driven to the same ordefRG) flow of the couplings. Thus, iff(g;,m;) be the net
A. That this cannot be so is known from the fact that thiscoefficient of the quadratic divergence in question, then the
would result in a strongly interacting scalar sector whereVeltman condition is
perturbation theory would break down. One is, therefore,
driven to argue that the tree-level mass of the Higgs boson
must cancel with the radiatively induced self-energy function
to yield acceptable values of the physical mass of the Higgs
boson (60 GeV—1 TeV. Taking A to be the symmetry- wherev=(0|H°|O). Stability under RG flow requires
breaking scale of grand unified theorid§UT’s), i.e.,
A~10'® GeV, this implies an unnatural cancellation of about
26-28 orders of magnitude.

The fine-tuning problem described above affects the
masses of scalars only, since the masses of fermions amhere t=In(Q%u?). These two equations would lead to a
vector bosons are protected by chiral and gauge symmetriegnique prediction fom; and my in the SM. Unfortunately
so that their radiative corrections can have only logarithmicone does not obtain any real solution to these equatsees
divergences. This can be clearly seen on computation of reBec. I). The literature is fairly rich in deeper discussions of
diative corrections to, say, the mass of théoson, where this problem, including calculations involving two- and
the quadratic divergences in individual diagrams will cancelthree-loop 8 functions for the running coupling constants
in the final result. With this idea in mind, an elegant restate-and proper modes of regularization. Some of these are
ment of the fine-tuning solution to the problem of runawaytouched upon in the following section.
corrections to scalar masses is the so-calletiman condi- One solution to the fine-tuning problem lies in banishing

fundamental scalars from the theory altogether. Attempts
have been made in this direction, but without conspicuous
“Electronic address: akundu@saha.ernet.in success. The other solution to this dilemma seems to lie in
Electronic address: sreerup@theory.tifr.res.in extension of the SM beyond its minimal particle content.
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Typical of such solutions is supersymmetry, where pairing of We can rewrite Eq(4) using the tree-level relations be-
bosons and fermions occurs in such a way that contributionsveen masses and coupling constants in the SM. This leads
to f(g;,m,) cancel pairwise for every SM particle and its to the alternative form
superpartner. Even the minimal supersymmetric extension of 5 5 5
the SM, however, requires the addition of 66 particles to the 8\ +01+395-80;=0 )
SM. It is desirable, therefore, to consider minimal extensions ) )
of the SM particle spectrum to see if the Veltman conditionWheremy=2xv%, m=gwv/2, andg, andg, are the cou-
can be satisfied more economically. pllng_constants for (Jl)Y and SuZ)L, r_espectwely. If we

In this article, we first consider the addition of vectorlike "OW impose RG stability on this equation, we demand
singlet and doublet fermions to the SM and show that this d
extension also fails to yield a real solution. However, the —[8\+g3+3g2—8g?]=0. (6)
addition of a singlet real scaldwhich has no interactions dt
with the gauge sector but interacts with the Higgs doublet, = . . .
can satis?y tr?e Veltman condition. This simple—gﬁnded sce-US’Ing the well-knowd £ functions of the SM, viz.
nario, however, involves a large number of free parameters A 3 9 3
and hence has no predictive power. An alternative scenario, 1672 ——=12\2+6g°\ — = g2\ — = g5\ —3g; + —=01
in which one considers a singlet real scalar with a spontane- dt 2 2 16

ously broken discrete symmethy— —h can reduce the num- 3 9

ber of free parameters but this scenario cannot accommodate + §gfg§+ 1—69‘2‘, (7)
a RG-stable Veltman condition for a top quark mass greater

than 102 GeV. However, the further addition of one genera- dg 9 17 9

tion of vectorlike fermions leads, not only to acceptable so- 16772d_tt: ng— Zlgi— §g§—4g§ Ot )

lutions of the Veltman conditiorifor both doublet and sin-
glet) for all values of the top quark mass allowed by

experiment, but also to potentially interesting predictions 16772%:4_193 9)

such as a Higgs boson mass in the range 300 to 400 GeV. dt 127

The vectorlike fermions can naturally appear in some

superstring-inspired models. Thus one does not introduce 16772%:_3993 (10)

any new scale below the GUT one, in spite of considering dt 12¥2

new particles. In short, unless one can satisfy the Veltman g . 93

condition, the introduction of new physics will not reduce ,003 3 2 2 3 2 2

the severity of the fine-tuning problem. 16m" 3¢ =~ 2930(Q7~ M)~ 5 g50(m; — Q7
The plan of this paper is as follows. In Sec. II, we discuss (11

the Veltman condition in the SM and show that it has no real )
solution. We also show that inclusion of vectorlike singlet orV& oPtain
doublet fermions does not improve the situation. Section Il 25 15
is devoted to two models, one with a singlet real scalar and ~ 72\2+ 3697\ —459; — 997\ — 275\ + Zg‘l‘— Zgg
the other with a singlet real scalar as well as vectorlike fer-
mions. Finally, our conclusions are given in Sec. IV. 9 17 27
+ 79105+ 489307 + 50707 + 5 0307 =0. (12
II. VELTMAN CONDITION IN THE SM

) ) . . Numerical studies show that Eq&) and (12) have no real

In this work, we consider the coefficients of quadrat'csolutions form, andmy, in the range 10 Ge¥m,<2 TeV.

divergences generated at the one-loop level, anticipating thay, s te|is ys that, even if the Veltman condition is satisfied at

contributions from higher orders will be suppressed by POW= [ow energy scale, it is not valid when we go to high ener-

ers of the coupling constants. To this order, then, the Veltmagies '\yhere the problem of runaway scalar masses reappears.
condition in the SM has the form Some authorg3] have argued that the strong coupling

2 g3 should not appear in the above analysis, since mass gen-
2 2 2 o 167 5 o eration is essentially an electroweak phenomenon. We do not
|m&+2mg,+ ms— 4m?| < 3AZV Mh- (3) s éssentially \ P on.
agree with this point of view, ag; appears only in the RG
o ) . . evolution ofg,, where its role is known to be important. In
In the limit A>v, this leads to a simple relation any case, exclusion af; does not improve matters signifi-
5 5 5 5 cantly. One does, indeed, get a real solution, but for
Mi=4m; —2my,—mz (49 m,=117 GeV, a value which is ruled out by the current Col-

lider Detector at FermilafCDF) data[1]. We also note, in
which yieldsmy=182+22 GeV form=174+17 GeV. In  passing, that even if one considers a lower value\obne
determining the above, we sem,=80.2 GeV and
m,=91.2 GeV. If we allow new physics to appear at a lower
scale, say 10 TeV, in which case the right side of Byis of Ve use the conventiot=In(Q% u?) rather thant=In(y/Q? u)
the order ofm? , the uncertainty irm,, is increased by about as a result of which oup functions are half those in the latter
5 GeV either way. convention.
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does not obtain real solutions, though, in this case, the findor vectorlike doublets. Consequently, Ef2) gets modified
tuning problem itself is not so severe. to
It is appropriate, at this juncture, to briefly consider some
further discussions on the subject which are available in the 5 , 4 , ) 07 , 15 ,
literature. In the first place, it may be noted that we have 72\"+360iA =450y =9GN~ 27950+ 7501~ 0
obtained all the above results using a simple cutoff regular-
ization. It has been showf®] that this is appropriate since 9 ., 5 17 5,27 ,
dimensional regularization cannot isolate quadratic and loga- + 79102+ 48930t + 5 910t + 5 920=0 (19
rithmic divergences. The Veltman condition can, however, be
derived elegantly using point-splitting techniques for regular-,4
ization[5,6]. Another set of papell¥,8] have discussed two-
loop Veltman conditions and shown that the stability condi- 83 9
tions at one loop can lead to the cancellation at two loops 7202+ 3692\ — 45g; — 9g\ — 27g3\ + 1—29‘1‘+ Zgg
and similarly for the next order, though this appears to break
down at the fourth order. However, as in R], these con- 9 17 27
siderations ignore the contribution of the strong coupling +Zg§g§+48g§gt2+ ?gfthJr ?ggth:o, (20)
constant and thereby get lower values for the top quark mass,
which are already ruled out by experimenid. Finally, it i , i
should be noted that, if one requires the Veltman condition tdF vectorlike singlets and doublets, respectively.
hold and imposes the additional constraint that the self- Numerical studies of the above equation again reveal that

energy corrections to the top quark mass vanish, then or@€re is no real solution fan; andmy as in the SM. This is
oredicts[9] m,= 170 GeV andm,,=300 GeV. However, the {u€ even if we consider more than one exra generation since
second condittion is rathed hoc ’ the system of equations changes little unless the number of

Let us now consider an extension of the SM particle spec€X{ra generations is very large. We conclude, therefore, that
trum by a single generation of exotic vectorlike singlet orMere inclusion of vectorlike fermions does not provide a
doublet fermions. We have not discussed an extra sequenti§P!ution to the fine-tuning problem.
generation, or a generation of mirror fermions, since these
are severely constrained by electroweak precision tests at Ill. THE SINGLET HIGGS BOSON OPTION
LEP 1[10]. A lower bound on the masses of vectorlike fer- _ . .
mions from LEP 1 data is 45 GeV. Apart from this, vectorlike Let us now conS|d_er the minimal extenspn of the SM
singlets are not at all constrained by these data, while dolEC@lar sector by a singlet real scaldr’ which has all
blets are merely constrained by the oblique paranieterbe ~ SU3)cXSU(2) X U(1)y quantum numbers equal to zero

nearly mass degenerate. However, these masses play little %‘Pd hence does not couple with any of the gauge bosons of
no role in the subsequent discussion. the SM. Thus the presence bf does not change Eq)—

To study the Veltman condition taking these fermions into(ll)' . .
account, one notes that they can have gauge-invariant mass We shall make two assumptions about the scalar potential.

terms and can also couple to the SM gauge bosons accordiﬁ%rst the potential is bounded from below, which is, strictly

to their quantum number assignments. Taking these into ac eaklng,oa necessary requirement and not an assumption.
count, one now obtaing functions Second,h” andH", the SM Higgs boson, do not mix with

each other(If they do, some quantitative results may change

dg, 187 but no qualitative change of what we will discuss takes
1672 — = —03, (13)  place) We shall consider two different scenarios which sat-
dt 36 isfy these criteria.
g Scenario 1.The most general scalar potential involving
02 19 the h® and the SM double® has the form:
16772W =- 1—293, (14
7 <cata= — M2D D+ N (D T®)2+ eh+ M2h2+ dh3+ \h?
d 17 19
16720 = — 030(QP—m)) — ~g3Am—Q) (19 +e(@'D)h+a(@'d)h? 2y
¢ torlike singlet d with \,A> 0. Spontaneous breaking of the electroweak sym-
or vectorlike singlets an metry immediately leads to the relations
d 139 ~
16772% = ¥g§, (16) m2=2m?+av?, (22)
dg 1 mg=2\v?. (23)
167?47 =— 703, (17
t The Veltman conditions will now incorporate the cou-
d 17 10 plings\, \, anda (which give rise to quadratic divergenges
O3 as well as the ones arising in the minimal SM. The RG
2793 _ 1 3 2_ .2y Y 3 2 A2
16m dt 6 930(Q"~m; 6 g30(m—Q%) (19 equations for these couplings now become
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dn 3 9 with m?> 0, which is essentially like a ¢* theory coupled
2 2 2 2 2 4 2 2 . -
167" 4r =12+ 6gih — 591A — 5921 — 30, + 6a to the SM? The symmetry-breaking pattern now yields the
relations
1 3 3 9 y

- E)\c2+ Eg‘l‘Jr §g§g§+ 1—69‘2‘, (24) m2=4m?— 2av?, (32)

@ mé=2m?—2av'2. (32
2 — 2 2__ A2
16w 5—36)\ +a“—18\d4, (29 Notice that the number of undetermined parameters in this

model has now reduced to five, since the discrete symmetry
a . 1 3 forces us to set=d=e=0 and we have introduced the
16wza= 36\ + 720+ 697 — Ecz—Gdz— ng— Egg a. extra parametep’. One can naively expect to find a solu-
(26) tion, therefore, in which all the parameters are fix@d.the
absence of a vacuum expectation value for the sinigflet

The Veltman condition for the singlet field is there are just four undetermined parameters which do not
allow sufficient play to satisfy the five constraints detailed
3h+a=0 (27)  above) .
The RG equations for the couplings A, anda, for this
and its stability condition becomes scenario, are obtained simply by settioged=0 in Eqs.
(24)—(26). Using these in the Veltman conditidg7) for the
2, 1,1, 1 4 singlet field we get the RG stability condition
ala—| 4N+ 50— 07— 505~ 5C°+ ;0% | |=0.
3 6 2 18 3 2 1 1
298 —| 4N+ 0% z93— 595 |=0 33
( ala 39t 691 292 - ( )
The Veltman condition for the SM Higgs boson now be-

which is just Eq(28) with c=d=0. It is now trivial to verify
that Egs.(27) and (33) have no nontrivial solution for
4 m;>102 GeV which is the threshold for which the quantity
8N+ za+ g3+395—8g2=0, (29 in parentheseéin the last equationbecomes positive. When
coupled also with the Veltman condition and the RG stability

condition of the SM Higgs boson, the set of equations have
‘no real solution although the number of contraints is equal to
the number of undetermined parameters.

We conclude, therefore, that the inclusion of just a singlet
scalar field, in this scenario, cannot make the fine-tuning

comes

and the corresponding stability condition is easily found us
ing Egs.(24) and (26). It is easy to check numerically that
with a rather largec and correspondingly smatl one can

always satisfy all the constraints including the stability con-
dition for h* with the top quark mass well within the CDF roblem vanish at all scales up 1o

limit [1]. This hardly comes as a surprise, since the model | o4 ;5 therefore, enrich the particle spectrum in this sce-

has seven free paramgteesc(,d,e,)\,mz,gt) while there are  nario further by adding one generation of exotic vectorlike
just five constraints, viz., t_he Veltman cpndltlons for the sin-fermions ). A purely phenomenological studit1] of the

glet _spalar an(_j'the SM Higgs bosqn with the Co”eSpO”d'”%ne-loop-induced proceZ®—h%y has shown that there are
stability conditions and the requirement that 150 GeVpactically no contraints on this kind of scenario from LEP-1
<mg< 200 GeV. data. We have seen, in the previous section, that these extra

It is rather interesting that the mere addition of a singletiermions will modify the 8 functions of the theory. Their
scalar can help us to obtain phenomenologically allowed soy,kawa couplings witth® are given by

lutions to the fine-tuning problem. However, due to the pres-
ence of so many undetermined parameters this scenario has Snre=—L(eh FF. (34)
little or no predictive power. Only if the model can be em-
bedded in a deeper underlying thedogne which incorpo- Notice that the discrete symmeth/—~ —h should now in-
rates the symmetry behind the Veltman condition, perhapszludeF—iysF. It is now clear that unless the discrete sym-
can we expect relations between some of these parameters,riretry is broken spontaneously the vectorlike fermions can-
which case the scenario would regain interest. At the presemtot develop mass terms. Observe that this modification
state of our knowledge, it appears pointless to pursue thi:itroduces four new parameters in our analysis, Vig,
approach any further.

Scenario II.A small modification in the above, however,
leads to a much more attractive scenario. Let us introduce the’The discrete symmetry must be broken, however, to allow us to
singlet scalar together with a discrete symmehrys —h, introduce Yukawa couplings of the singlet scalar with massive vec-
which is spontaneously broken to yield a vacuum expectatorlike fermions, which, we shall see, are required to solve the
tion value(VEV) v’ of the singlet field. The unbroken po- Veltman conditions.

tential is 3The apparent paradox created by this statement is resolved if we
5 recall that there are other constraints arising from the positivity of
7 scala= — MPDTD + N (O Td)2—m?h2+ \h*+a(dTd)h? the couplings\ and\. In a strict sense, then, there are more con-

(30 straints than free parameters.
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{p, {n, and g (the suffixes are self-explanatoryThe  The 8 functions for thel’s are
masses of these fermions are given by

d¢y (3 4

Me=v' ¢ (35 16772W=(§€6+22— 595—495) v, (40
The electroweak precision data force us to tgke={p and dz 3 n
{n={g for vectorlike doublet fermions. A similar assump- 16 2_D:(_ 2472 "2 4 2) 41
tion about the Yukawa couplings of vectorlike singlet fermi- a2 3917493) o, 4D
ons may not be far from the truth. Thus we have added two
more unknowns to the set of equations to be solved and 2d§N ) )
should, therefore, expect a solution. For simplicity, we shall 16m dt §§N+Z iN (42)
initially set {y,={p={n={e, SO that there is only one extra
parameter to play with and consider modifications of this dée (3
scheme subsequently. 167T2W: <E§§+ Zz—3g§) Le (43)

As the vectorlike fermions do not couple with the SM
Higgs boson, the Veltman condition f&t° is given by Eq.

(29) while Eq. (27) will be modified to for vectorlike singlet fermions, and

" dg 3 1 21
3\+a-2Z?=0, (36) 1ew2d—f:(§€6+22—1—29i— §g§—4g§)§u, (44)
where
dép (3 1 21
16 2_°Y | Z 2_|_22__ 2_~= 2_4 2) , 45
22=3 NL=3G+B)+(G+D). @) Tdr |20t E T g o sl 49
. , ” dZy (3 3., 21
Equations(28) and (29) will be modified to 1672 - =(§§ﬁ+22— Zg%_ Eg%) ‘n, (46)
dv . .
1672 —— =36\2+a?+4NZ2— >, N4, (39)
dt 2d§E 3 2 2 3 2 2 2
167 T §§E+Z —2917 g9 {e (47)

16m2 22 36)\+72)~\+692+422—§ 2 252)a
t 2gl 292 .

dt for vectorlike doublet fermions. The RG stability equations

(39 are

- 107 , 15, 9 17
7202+ 3697\ — 459 + 36a%+ 36a\ + 72a\+ 6gfa— 99N — 275N+ —5 01— 405+ 79705+ 489307 + — 9107
27 3 9
+ 5 039¢— 5 a0i— 5 ag;+4az’=0, (49)

. . 3 9 .
108\%+3a’+ 36a\ + 72aN+ 6gZa— Egia— Eg§a+ (122 +4a)2%2-27%- 6, N.J*+0%(873+272+602)
+2495(L5+ (3) =0, (49

for vectorlike singlets, and

- 83, 9, 9 17 27
7202+ 3697\ — 459 + 362+ 36a\ + 72aN+ 6gTa— 9gTA — 2795\ + 1501+ 705+ 79105+ 480307 + 5 0107 + 5 950¢
3 2 9 2 2
— sag;— sag,+4az =0, (50)
2 2
. ~ 3 9 . 1 21
108+ 3a%+36a\ + 72N+ 6g7a— 5 gia— 5 g3a+ (120 +4a)Z— 27"~ 6>, N4+ SOI(L T (B+3EE+3LR) + 1 95Z°

+2495(L5+ £5)=0, (51)
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TABLE I. The predicted parameters for vectorlike singlet fermi- ~ TABLE lll. The predicted parameters for vectorlike doublet fer-
ons with m; as input. All masses are in GeV. We have setmions with m, as input. All masses are in GeV. We have set
lu={p=0le={n=1. Lu={¢p=2Lg=2{ny=2¢. This results in a value fom,/mg
roughly double that in Table II.

m, N N a { my my, /mg

m N N a 14 my my, /mg

150 0.80 1.06 -1.39 0.47 311 6.15
155 0.86 111 -1.45 0.49 323 6.14 150 0.83 1.15 -1.56 0.26 316 11.27
160 0.92 1.16 -1.49 0.50 334 6.11 160 0.95 1.25 -1.67 0.28 339 11.19

165 0.98 1.22 -1.53 0.52 344 6.06 170 1.07 1.36 -1.73 0.30 359 10.99

170 1.04 1.27 -1.56 0.53 355 6.01 180 1.21 1.48 -1.88 0.31 382 10.97

175 1.11 1.33 -1.64 0.54 367 6.01 190 1.35 1.61 -1.99 0.33 404 10.86

180 1.18 1.39 -1.70 0.56 378 6.01 200 1.50 1.75 -2.11 0.34 426 10.78

185 1.25 1.45 -1.76 0.57 389 5.99

190 1.32 1.51 -1.81 0.58 400 5.96

195 1.39 1.58 -1.85 0.60 410 591  quarks. It seems, therefore, to be a safe assumption to take all
200 1.47 1.64 -1.94 0.61 422 5.93 {’s equal. With such a relation among tkis, one can simul-

taneously solve four equations at some particular point of the
N\, \ space for a givem, . It is noteworthy that the solution
for vectorlike doublets. comes out in the perturbative domain of the couplings, i.e.,
The set of equations is now solved numerically in each\|, [\, |al, |£?|<4 . The prediction of the mass of the SM
case and our results are shown in Table | for vectorlike sinHiggs boson also comes out in the range 300-400 GeV,
glet fermions and Table Il for vectorlike doublet fermions. which appears to be in the right ballpark if one accepts cur-
We are able, for the top quark masg as input, to predict rent fits to LEP 1 data for the Higgs boson mass.
values for the couplinga,A,a, and {. Moreover, we can
also use these as inputs to predict values of the SM Higgs
boson massn,, . Masses of the singlet Higgs boson and the V. CONCLUSIONS
vectorlike fermions cannot be predicted, but one can obtain a
ratio my, /mg which roughly tells us that this scenario will be
valid only if there are relatively light exotic fermions. Such
fermions should definitely be seen at a 500 G&\e~ col-
lider, if not at LEP-2, and are an important prediction of the
model. As explained above, we have taken
{u={p={n= (e to obtain the results given in these tables.
Assuming that the’s are of the same order of magnitude,
we have checked that the results hardly change if we tak
IN=Le=20y=2¢p or {y={p=2{Ny=2( for the vector-
like singlet fermions. For the vectorlike doublet fermions

We have shown that the Veltman condition in the SM
together with its RG stability fails to produce any acceptable
solution. This leads us to consider minimal extensions of the
SM, first in the fermionic sector by introducing vectorlike
exotic fermions, and then in the scalar sector by introducing
a singlet real scalar. Extension of the standard model in this
manner is, of coursead ho¢ and an improved theoryin
which the standard model is embed@stdould explain why
&uch particles are present, apart from providing the underly-
ing symmetry reflected in the Veltman condition. Neverthe-
S ' less, even without such a theory, it is interesting to see that
A does not change by more than 2._3%' Th!s is illustrated Mhe first option fails to produce any real solution to the Velt-
Table ”I‘_ The change in the predicted ram"/mE from man condition. The second provides acceptable solutions,
Table_ Il'is dL.Je to the fact that the correspondmg YUkaWabut leads to the introduction of a great many undetermined
coupling carries a factor of one-half compared with that forparameters which makes the model completely unpredictive.
A discrete symmetry removes some of these parameters, but
TABLE Il. The predicted parameters for vectorlike doublet fer- also restricts solutions to the rangg< 102 GeV, which is
mions with m; as input. All masses are in GeV. We have setruled out by experiment. However, when we consider vec-

fu=0p=Lle={n=1¢. torlike fermions as well as a singlet scaltmgether with the
- discrete symmetpyin the particle spectrum, not only do we
m A A a ¢ My My /Mg get solutions to the Veltman conditions for the two scalars,

150 0.81 1.08 -1.45 0.47 313 6.1 but weII alfso getda predlct+(;]n of,, , ;/_VhICh |Is in the experi- )
155 086 113 -145 049 322  6.09 me?tabyt. avore ratnge. ﬁ ‘;]Ou!p INgs af.olc?metﬁ”t to Ife
160 0.92 118 1.49 0.50 333 607 Perturbative in nature, which is essential for the self-
consistency of the entire scheme. This appears to be an en-
165 0.99 1.24 -1.59 0.51 346 6.10 . . . .
couraging result which should motivate searches for singlet

170 L1.05 1.39 -161 0.56 356 5.90 Higgs bosons and exotic vectorlike fermions at the upcoming
175 1.12 1.35 -1.69 0.54 368 6.05 colliders

180 119 141  -176 055 379 6.05 '

185 1.26 1.47 -1.82 0.56 390 6.03
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