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Taming the scalar mass problem with a singlet Higgs boson
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We investigate the fine-tuning problem in the standard model and show that Higgs boson and top qu
masses consistent with current experimental bounds cannot be obtained unless one extends the particle
trum. A minimal extension which achieves this involves the addition of a singlet real scalar but this mode
not very predictive. With a discrete symmetry and the further addition of one generation of vectorlike fermio
one can get a solution which leads to a phenomenologically viable prediction for the mass of the stand
model Higgs boson.
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I. INTRODUCTION

Electroweak precision tests at the CERNe1e2 collider
LEP and the recently reported discovery of the top quark
Fermilab @1# have established beyond reasonable doubt
fact that the standard model~SM! is an excellent description
of fundamental interactions at least up to the electrowe
symmetry-breaking scale. Nevertheless, there is a genera
lief that the SM does not tell us the whole story, but mere
provides an effective Lagrangian of a deeper underly
theory which is yet to be established. One of the chief r
sons for such a belief is the so-calledfine-tuningproblem.

In a nutshell, the fine-tuning problem is the following
The masses of scalars, specifically the Higgs boson, rec
radiative corrections which are quadratically divergent. If t
SM ceased to be applicable at a scaleL, the mass of the
Higgs boson would, therefore, be driven to the same or
L. That this cannot be so is known from the fact that th
would result in a strongly interacting scalar sector whe
perturbation theory would break down. One is, therefo
driven to argue that the tree-level mass of the Higgs bo
must cancel with the radiatively induced self-energy functi
to yield acceptable values of the physical mass of the Hi
boson ~60 GeV–1 TeV!. Taking L to be the symmetry-
breaking scale of grand unified theories~GUT’s!, i.e.,
L;1016 GeV, this implies an unnatural cancellation of abo
26–28 orders of magnitude.

The fine-tuning problem described above affects
masses of scalars only, since the masses of fermions
vector bosons are protected by chiral and gauge symmet
so that their radiative corrections can have only logarithm
divergences. This can be clearly seen on computation of
diative corrections to, say, the mass of theZ boson, where
the quadratic divergences in individual diagrams will can
in the final result. With this idea in mind, an elegant resta
ment of the fine-tuning solution to the problem of runaw
corrections to scalar masses is the so-calledVeltman condi-
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tion @2#. Assuming that the underlying theory has some yet
to-be-discovered symmetry which protects the scalar mas
one simply sets to zero the sum of computed quadratic d
vergences in the radiative corrections to the scalar sel
energy. Clearly this implies some relation between the phys
cal Higgs boson mass and the masses of other particles su
as the top quark and the gauge bosons. Theexplanationof
such a relationship must lie, as already stated, in the unde
lying theory. For a phenomenological study, however, the
Veltman condition is very useful, since it reduces, to some
degree, the arbitrariness in the choice of top quark and Higg
boson masses in the SM.

Application of the Veltman condition to a model implies a
little more than mere cancellation of the coefficients of the
quadratic divergences in self-energy diagrams of the scalar
The condition must not change with renormalization group
~RG! flow of the couplings. Thus, iff (gi ,mi) be the net
coefficient of the quadratic divergence in question, then th
Veltman condition is

f ~gi ,mi !;
v2

L2 ~1!

wherev5^0uH0u0&. Stability under RG flow requires

d

dt
f ~gi ,mi !50 ~2!

where t[ ln(Q2/m2). These two equations would lead to a
unique prediction formt andmH in the SM. Unfortunately
one does not obtain any real solution to these equations~see
Sec. II!. The literature is fairly rich in deeper discussions of
this problem, including calculations involving two- and
three-loopb functions for the running coupling constants
and proper modes of regularization. Some of these ar
touched upon in the following section.

One solution to the fine-tuning problem lies in banishing
fundamental scalars from the theory altogether. Attempt
have been made in this direction, but without conspicuou
success. The other solution to this dilemma seems to lie i
extension of the SM beyond its minimal particle content.
4042 © 1996 The American Physical Society
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53 4043TAMING THE SCALAR MASS PROBLEM WITH A SINGLET . . .
Typical of such solutions is supersymmetry, where pairing
bosons and fermions occurs in such a way that contribut
to f (gi ,mi) cancel pairwise for every SM particle and
superpartner. Even the minimal supersymmetric extensio
the SM, however, requires the addition of 66 particles to
SM. It is desirable, therefore, to consider minimal extensi
of the SM particle spectrum to see if the Veltman condit
can be satisfied more economically.

In this article, we first consider the addition of vectorli
singlet and doublet fermions to the SM and show that
extension also fails to yield a real solution. However,
addition of a singlet real scalar~which has no interaction
with the gauge sector but interacts with the Higgs doub!
can satisfy the Veltman condition. This simple-minded s
nario, however, involves a large number of free parame
and hence has no predictive power. An alternative scen
in which one considers a singlet real scalar with a sponta
ously broken discrete symmetryh→2h can reduce the num
ber of free parameters but this scenario cannot accommo
a RG-stable Veltman condition for a top quark mass gre
than 102 GeV. However, the further addition of one gene
tion of vectorlike fermions leads, not only to acceptable
lutions of the Veltman condition~for both doublet and sin
glet! for all values of the top quark mass allowed
experiment, but also to potentially interesting predictio
such as a Higgs boson mass in the range 300 to 400 G
The vectorlike fermions can naturally appear in so
superstring-inspired models. Thus one does not introd
any new scale below the GUT one, in spite of consider
new particles. In short, unless one can satisfy the Veltm
condition, the introduction of new physics will not redu
the severity of the fine-tuning problem.

The plan of this paper is as follows. In Sec. II, we discu
the Veltman condition in the SM and show that it has no r
solution. We also show that inclusion of vectorlike singlet
doublet fermions does not improve the situation. Section
is devoted to two models, one with a singlet real scalar
the other with a singlet real scalar as well as vectorlike
mions. Finally, our conclusions are given in Sec. IV.

II. VELTMAN CONDITION IN THE SM

In this work, we consider the coefficients of quadra
divergences generated at the one-loop level, anticipating
contributions from higher orders will be suppressed by po
ers of the coupling constants. To this order, then, the Veltm
condition in the SM has the form

umH
2 12mW

2 1mZ
224mt

2u<
16p2

3L2 v
2mH

2 . ~3!

In the limit L@v, this leads to a simple relation

mH
2 .4mt

222mW
2 2mZ

2 ~4!

which yieldsmH5182622 GeV formt5174617 GeV. In
determining the above, we setmW580.2 GeV and
mZ591.2 GeV. If we allow new physics to appear at a low
scale, say 10 TeV, in which case the right side of Eq.~3! is of
the order ofmH

2 , the uncertainty inmH is increased by abou
5 GeV either way.
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We can rewrite Eq.~4! using the tree-level relations be-
tween masses and coupling constants in the SM. This lead
to the alternative form

8l1g1
213g2

228gt
2.0 ~5!

wheremH
2 52lv2, mt5gtv/A2, andg1 andg2 are the cou-

pling constants for U~1!Y and SU~2! L , respectively. If we
now impose RG stability on this equation, we demand

d

dt
@8l1g1

213g2
228gt

2#50. ~6!

Using the well-known1 b functions of the SM, viz.

16p2
dl

dt
512l216gt

2l2
3

2
g1
2l2

9

2
g2
2l23gt

41
3

16
g1
4

1
3

8
g1
2g2

21
9

16
g2
4 , ~7!

16p2
dgt
dt

5S 94 gt22 17

24
g1
22

9

8
g2
224g3

2Dgt , ~8!

16p2
dg1
dt

5
41

12
g1
3 , ~9!

16p2
dg2
dt

52
19

12
g2
3 , ~10!

16p2
dg3
dt

52
7

2
g3
3u~Q22mt

2!2
23

6
g3
3u~mt

22Q2!,

~11!

we obtain

72l2136gt
2l245gt

429g1
2l227g2

2l1
25

4
g1
42

15

4
g2
4

1
9

4
g1
2g2

2148g3
2gt

21
17

2
g1
2gt

21
27

2
g2
2gt

250. ~12!

Numerical studies show that Eqs.~5! and ~12! have no real
solutions formt andmH in the range 10 GeV,mt,2 TeV.
This tells us that, even if the Veltman condition is satisfied a
a low energy scale, it is not valid when we go to high ener-
gies, where the problem of runaway scalar masses reappea

Some authors@3# have argued that the strong coupling
g3 should not appear in the above analysis, since mass ge
eration is essentially an electroweak phenomenon. We do n
agree with this point of view, asg3 appears only in the RG
evolution ofgt , where its role is known to be important. In
any case, exclusion ofg3 does not improve matters signifi-
cantly. One does, indeed, get a real solution, but fo
mt5117 GeV, a value which is ruled out by the current Col-
lider Detector at Fermilab~CDF! data@1#. We also note, in
passing, that even if one considers a lower value ofL one

1We use the conventiont[ ln(Q2/m2) rather thant[ ln(AQ2/m)
as a result of which ourb functions are half those in the latter
convention.
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does not obtain real solutions, though, in this case, the fin
tuning problem itself is not so severe.

It is appropriate, at this juncture, to briefly consider som
further discussions on the subject which are available in t
literature. In the first place, it may be noted that we ha
obtained all the above results using a simple cutoff regul
ization. It has been shown@4# that this is appropriate since
dimensional regularization cannot isolate quadratic and log
rithmic divergences. The Veltman condition can, however,
derived elegantly using point-splitting techniques for regula
ization @5,6#. Another set of papers@7,8# have discussed two-
loop Veltman conditions and shown that the stability cond
tions at one loop can lead to the cancellation at two loo
and similarly for the next order, though this appears to bre
down at the fourth order. However, as in Ref.@3#, these con-
siderations ignore the contribution of the strong couplin
constant and thereby get lower values for the top quark ma
which are already ruled out by experiments@1#. Finally, it
should be noted that, if one requires the Veltman condition
hold and imposes the additional constraint that the se
energy corrections to the top quark mass vanish, then o
predicts@9# mt5170 GeV andmH5300 GeV. However, the
second condition is ratherad hoc.

Let us now consider an extension of the SM particle spe
trum by a single generation of exotic vectorlike singlet o
doublet fermions. We have not discussed an extra sequen
generation, or a generation of mirror fermions, since the
are severely constrained by electroweak precision tests
LEP 1 @10#. A lower bound on the masses of vectorlike fer
mions from LEP 1 data is 45 GeV. Apart from this, vectorlik
singlets are not at all constrained by these data, while do
blets are merely constrained by the oblique parameterT to be
nearly mass degenerate. However, these masses play littl
no role in the subsequent discussion.

To study the Veltman condition taking these fermions in
account, one notes that they can have gauge-invariant m
terms and can also couple to the SM gauge bosons accord
to their quantum number assignments. Taking these into
count, one now obtainsb functions

16p2
dg1
dt

5
187

36
g1
3 , ~13!

16p2
dg2
dt

52
19

12
g2
3 , ~14!

16p2
dg3
dt

52
17

6
g3
3u~Q22mt

2!2
19

6
g3
3u~mt

22Q2! ~15!

for vectorlike singlets and

16p2
dg1
dt

5
139

36
g1
3 , ~16!

16p2
dg2
dt

52
1

4
g2
3 , ~17!

16p2
dg3
dt

52
17

6
g3
3u~Q22mt

2!2
19

6
g3
3u~mt

22Q2! ~18!
e-

e
he
ve
ar-

a-
be
r-

i-
ps
ak

g
ss,

to
lf-
ne

c-
r
tial
se
at
-
e
u-

e or

to
ass
ing
ac-

for vectorlike doublets. Consequently, Eq.~12! gets modified
to

72l2136gt
2l245gt

429g1
2l227g2

2l1
107

12
g1
42

15

4
g2
4

1
9

4
g1
2g2

2148g3
2gt

21
17

2
g1
2gt

21
27

2
g2
2gt

250 ~19!

and

72l2136gt
2l245gt

429g1
2l227g2

2l1
83

12
g1
41

9

4
g2
4

1
9

4
g1
2g2

2148g3
2gt

21
17

2
g1
2gt

21
27

2
g2
2gt

250, ~20!

for vectorlike singlets and doublets, respectively.
Numerical studies of the above equation again reveal tha

there is no real solution formt andmH as in the SM. This is
true even if we consider more than one extra generation sinc
the system of equations changes little unless the number o
extra generations is very large. We conclude, therefore, tha
mere inclusion of vectorlike fermions does not provide a
solution to the fine-tuning problem.

III. THE SINGLET HIGGS BOSON OPTION

Let us now consider the minimal extension of the SM
scalar sector by a singlet real scalar (h0) which has all
SU~3!c3SU(2)L3U(1)Y quantum numbers equal to zero
and hence does not couple with any of the gauge bosons o
the SM. Thus the presence ofh0 does not change Eqs.~9!–
~11!.

We shall make two assumptions about the scalar potentia
First, the potential is bounded from below, which is, strictly
speaking, a necessary requirement and not an assumptio
Second,h0 andH0, the SM Higgs boson, do not mix with
each other.~If they do, some quantitative results may change
but no qualitative change of what we will discuss takes
place.! We shall consider two different scenarios which sat-
isfy these criteria.

Scenario I.The most general scalar potential involving
theh0 and the SM doubletF has the form:

V scalar52m2F†F1l~F†F!21eh1m̃2h21dh31l̃h4

1c~F†F!h1a~F†F!h2 ~21!

with l,l̃. 0. Spontaneous breaking of the electroweak sym-
metry immediately leads to the relations

mh
252m̃21av2, ~22!

mH
2 52lv2. ~23!

The Veltman conditions will now incorporate the cou-
plingsl, l̃, anda ~which give rise to quadratic divergences!
as well as the ones arising in the minimal SM. The RG
equations for these couplings now become
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16p2
dl

dt
512l216gt

2l2
3

2
g1
2l2

9

2
g2
2l23gt

416a2

2
1

2
lc21

3

16
g1
41

3

8
g1
2g2

21
9

16
g2
4 , ~24!

16p2
dl̃

dt
536l̃21a2218l̃d2, ~25!

16p2
da

dt
5S 36l172l̃16gt

22
1

2
c226d22

3

2
g1
22

9

2
g2
2Da.
~26!

The Veltman condition for the singlet field is

3l̃1a50 ~27!

and its stability condition becomes

aFa2S 4l1
2

3
gt
22

1

6
g1
22

1

2
g2
22

1

18
c21

4

3
d2D G50.

~28!

The Veltman condition for the SM Higgs boson now b
comes

8l1
4

3
a1g1

213g2
228gt

250, ~29!

and the corresponding stability condition is easily found u
ing Eqs.~24! and ~26!. It is easy to check numerically tha
with a rather largec and correspondingly smalld one can
always satisfy all the constraints including the stability co
dition for h0 with the top quark mass well within the CDF
limit @1#. This hardly comes as a surprise, since the mo
has seven free parameters (a,c,d,e,l̃,m̃2,gt) while there are
just five constraints, viz., the Veltman conditions for the s
glet scalar and the SM Higgs boson with the correspond
stability conditions and the requirement that 150 Ge
,mt, 200 GeV.

It is rather interesting that the mere addition of a sing
scalar can help us to obtain phenomenologically allowed
lutions to the fine-tuning problem. However, due to the pr
ence of so many undetermined parameters this scenario
little or no predictive power. Only if the model can be em
bedded in a deeper underlying theory~one which incorpo-
rates the symmetry behind the Veltman condition, perhap!
can we expect relations between some of these paramete
which case the scenario would regain interest. At the pres
state of our knowledge, it appears pointless to pursue
approach any further.

Scenario II.A small modification in the above, howeve
leads to a much more attractive scenario. Let us introduce
singlet scalar together with a discrete symmetryh→2h,
which is spontaneously broken to yield a vacuum expec
tion value~VEV! v8 of the singlet field. The unbroken po
tential is

V scalar52m2F†F1l~F†F!22m̃2h21l̃h41a~F†F!h2

~30!
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with m̃2. 0, which is essentially like alf4 theory coupled
to the SM.2 The symmetry-breaking pattern now yields the
relations

mh
254m̃222av2, ~31!

mH
2 52m222av82. ~32!

Notice that the number of undetermined parameters in this
model has now reduced to five, since the discrete symmetry
forces us to setc5d5e50 and we have introduced the
extra parameterv8. One can naively expect to find a solu-
tion, therefore, in which all the parameters are fixed.~In the
absence of a vacuum expectation value for the singleth0,
there are just four undetermined parameters which do not
allow sufficient play to satisfy the five constraints detailed
above.!

The RG equations for the couplingsl, l̃, anda, for this
scenario, are obtained simply by settingc5d50 in Eqs.
~24!–~26!. Using these in the Veltman condition~27! for the
singlet field we get the RG stability condition

aFa2S 4l1
2

3
gt
22

1

6
g1
22

1

2
g2
2D G50 ~33!

which is just Eq.~28! with c5d50. It is now trivial to verify
that Eqs. ~27! and ~33! have no nontrivial solution for
mt.102 GeV which is the threshold for which the quantity
in parentheses~in the last equation! becomes positive. When
coupled also with the Veltman condition and the RG stability
condition of the SM Higgs boson, the set of equations have
no real solution although the number of contraints is equal to
the number of undetermined parameters.3

We conclude, therefore, that the inclusion of just a singlet
scalar field, in this scenario, cannot make the fine-tuning
problem vanish at all scales up toL.

Let us, therefore, enrich the particle spectrum in this sce-
nario further by adding one generation of exotic vectorlike
fermions (F). A purely phenomenological study@11# of the
one-loop-induced processZ0→h0g has shown that there are
practically no contraints on this kind of scenario from LEP-1
data. We have seen, in the previous section, that these extr
fermions will modify theb functions of the theory. Their
Yukawa couplings withh0 are given by

LhF̄F52zFhF̄F. ~34!

Notice that the discrete symmetryh→2h should now in-
cludeF→ ig5F. It is now clear that unless the discrete sym-
metry is broken spontaneously the vectorlike fermions can-
not develop mass terms. Observe that this modification
introduces four new parameters in our analysis, viz.,zU ,

2The discrete symmetry must be broken, however, to allow us to
introduce Yukawa couplings of the singlet scalar with massive vec-
torlike fermions, which, we shall see, are required to solve the
Veltman conditions.
3The apparent paradox created by this statement is resolved if we

recall that there are other constraints arising from the positivity of
the couplingsl and l̃. In a strict sense, then, there are more con-
straints than free parameters.
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zD , zN , and zE ~the suffixes are self-explanatory!. The
masses of these fermions are given by

mF5v8zF . ~35!

The electroweak precision data force us to takezU.zD and
zN.zE for vectorlike doublet fermions. A similar assum
tion about the Yukawa couplings of vectorlike singlet ferm
ons may not be far from the truth. Thus we have added
more unknowns to the set of equations to be solved
should, therefore, expect a solution. For simplicity, we sh
initially set zU5zD5zN5zE , so that there is only one extr
parameter to play with and consider modifications of t
scheme subsequently.

As the vectorlike fermions do not couple with the S
Higgs boson, the Veltman condition forH0 is given by Eq.
~29! while Eq. ~27! will be modified to

3l̃1a2Z250, ~36!

where

Z25( Ncz
253~zU

2 1zD
2 !1~zN

21zE
2 !. ~37!

Equations~28! and ~29! will be modified to

16p2
dl̃

dt
536l̃21a214l̃Z22( Ncz

4, ~38!

16p2
da

dt
5S 36l172l̃16gt

214Z22
3

2
g1
22

9

2
g2
2Da.

~39!
p-
i-
two
and
all
a
his

M

Theb functions for thez ’s are

16p2
dzU
dt

5S 32 zU
2 1Z22

4

3
g1
224g3

2D zU , ~40!

16p2
dzD
dt

5S 32 zD
2 1Z22

1

3
g1
224g3

2D zD , ~41!

16p2
dzN
dt

5S 32 zN
21Z2D zN , ~42!

16p2
dzE
dt

5S 32 zE
21Z223g1

2D zE ~43!

for vectorlike singlet fermions, and

16p2
dzU
dt

5S 32 zU
2 1Z22

1

12
g1
22

21

8
g2
224g3

2D zU , ~44!

16p2
dzD
dt

5S 32 zD
2 1Z22

1

12
g1
22

21

8
g2
224g3

2D zD , ~45!

16p2
dzN
dt

5S 32 zN
21Z22

3

4
g1
22

21

8
g2
2D zN , ~46!

16p2
dzE
dt

5S 32 zE
21Z22

3

4
g1
22

21

8
g2
2D zE ~47!

for vectorlike doublet fermions. The RG stability equations
are
72l2136gt
2l245gt

4136a2136al172al̃16gt
2a29g1

2l227g2
2l1

107

12
g1
42

15

4
g2
41

9

4
g1
2g2

2148g3
2gt

21
17

2
g1
2gt

2

1
27

2
g2
2gt

22
3

2
ag1

22
9

2
ag2

214aZ250, ~48!

108l̃213a2136al172al̃16gt
2a2

3

2
g1
2a2

9

2
g2
2a1~12l̃14a!Z222Z426( Ncz

41g1
2~8zU

2 12zD
2 16zE

2 !

124g3
2~zU

2 1zD
2 !50, ~49!

for vectorlike singlets, and

72l2136gt
2l245gt

4136a2136al172al̃16gt
2a29g1

2l227g2
2l1

83

12
g1
41

9

4
g2
41

9

4
g1
2g2

2148g3
2gt

21
17

2
g1
2gt

21
27

2
g2
2gt

2

2
3

2
ag1

22
9

2
ag2

214aZ250, ~50!

108l̃213a2136al172al̃16gt
2a2

3

2
g1
2a2

9

2
g2
2a1~12l̃14a!Z222Z426( Ncz

41
1

2
g1
2~zU

2 1zD
2 13zE

213zN
2 !1

21

4
g2
2Z2

124g3
2~zU

2 1zD
2 !50, ~51!
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for vectorlike doublets.
The set of equations is now solved numerically in ea

case and our results are shown in Table I for vectorlike s
glet fermions and Table II for vectorlike doublet fermion
We are able, for the top quark massmt as input, to predict
values for the couplingsl,l̃,a, and z. Moreover, we can
also use these as inputs to predict values of the SM Hi
boson massmH . Masses of the singlet Higgs boson and t
vectorlike fermions cannot be predicted, but one can obta
ratiomh /mF which roughly tells us that this scenario will b
valid only if there are relatively light exotic fermions. Suc
fermions should definitely be seen at a 500 GeVe1e2 col-
lider, if not at LEP-2, and are an important prediction of t
model. As explained above, we have tak
zU5zD5zN5zE to obtain the results given in these table
Assuming that thez ’s are of the same order of magnitud
we have checked that the results hardly change if we t
zN5zE52zU52zD or zU5zD52zN52zE for the vector-
like singlet fermions. For the vectorlike doublet fermion
l does not change by more than 2–3%. This is illustrated
Table III. The change in the predicted ratiomh /mE from
Table II is due to the fact that the corresponding Yuka
coupling carries a factor of one-half compared with that

TABLE I. The predicted parameters for vectorlike singlet ferm
ons with mt as input. All masses are in GeV. We have s
zU5zD5zE5zN5z.

mt l l̃ a z mH mh /mF

150 0.80 1.06 -1.39 0.47 311 6.15
155 0.86 1.11 -1.45 0.49 323 6.14
160 0.92 1.16 -1.49 0.50 334 6.11
165 0.98 1.22 -1.53 0.52 344 6.06
170 1.04 1.27 -1.56 0.53 355 6.01
175 1.11 1.33 -1.64 0.54 367 6.01
180 1.18 1.39 -1.70 0.56 378 6.01
185 1.25 1.45 -1.76 0.57 389 5.99
190 1.32 1.51 -1.81 0.58 400 5.96
195 1.39 1.58 -1.85 0.60 410 5.91
200 1.47 1.64 -1.94 0.61 422 5.93

TABLE II. The predicted parameters for vectorlike doublet fe
mions with mt as input. All masses are in GeV. We have s
zU5zD5zE5zN5z.

mt l l̃ a z mH mh /mF

150 0.81 1.08 -1.45 0.47 313 6.21
155 0.86 1.13 -1.45 0.49 322 6.09
160 0.92 1.18 -1.49 0.50 333 6.07
165 0.99 1.24 -1.59 0.51 346 6.10
170 1.05 1.39 -1.61 0.56 356 5.90
175 1.12 1.35 -1.69 0.54 368 6.05
180 1.19 1.41 -1.76 0.55 379 6.05
185 1.26 1.47 -1.82 0.56 390 6.03
190 1.33 1.53 -1.87 0.58 401 6.00
195 1.40 1.59 -1.90 0.59 411 5.96
200 1.48 1.66 -1.99 0.61 423 5.96
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quarks. It seems, therefore, to be a safe assumption to take al
z ’s equal. With such a relation among thez ’s, one can simul-
taneously solve four equations at some particular point of the
l,l̃ space for a givenmt . It is noteworthy that the solution
comes out in the perturbative domain of the couplings, i.e.,
ulu, ul̃u, uau, uz2u<4p. The prediction of the mass of the SM
Higgs boson also comes out in the range 300–400 GeV,
which appears to be in the right ballpark if one accepts cur-
rent fits to LEP 1 data for the Higgs boson mass.

IV. CONCLUSIONS

We have shown that the Veltman condition in the SM
together with its RG stability fails to produce any acceptable
solution. This leads us to consider minimal extensions of the
SM, first in the fermionic sector by introducing vectorlike
exotic fermions, and then in the scalar sector by introducing
a singlet real scalar. Extension of the standard model in this
manner is, of course,ad hoc, and an improved theory~in
which the standard model is embedded! should explain why
such particles are present, apart from providing the underly-
ing symmetry reflected in the Veltman condition. Neverthe-
less, even without such a theory, it is interesting to see that
the first option fails to produce any real solution to the Velt-
man condition. The second provides acceptable solutions,
but leads to the introduction of a great many undetermined
parameters which makes the model completely unpredictive.
A discrete symmetry removes some of these parameters, bu
also restricts solutions to the rangemt, 102 GeV, which is
ruled out by experiment. However, when we consider vec-
torlike fermions as well as a singlet scalar~together with the
discrete symmetry! in the particle spectrum, not only do we
get solutions to the Veltman conditions for the two scalars,
but we also get a prediction ofmH , which is in the experi-
mentally favored range. The couplings also come out to be
perturbative in nature, which is essential for the self-
consistency of the entire scheme. This appears to be an en
couraging result which should motivate searches for singlet
Higgs bosons and exotic vectorlike fermions at the upcoming
colliders.
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TABLE III. The predicted parameters for vectorlike doublet fer-
mions with mt as input. All masses are in GeV. We have set
zU5zD52zE52zN52z. This results in a value formh /mE

roughly double that in Table II.

mt l l̃ a z mH mh /mE

150 0.83 1.15 -1.56 0.26 316 11.27
160 0.95 1.25 -1.67 0.28 339 11.19
170 1.07 1.36 -1.73 0.30 359 10.99
180 1.21 1.48 -1.88 0.31 382 10.97
190 1.35 1.61 -1.99 0.33 404 10.86
200 1.50 1.75 -2.11 0.34 426 10.78
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