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Exact analytic description of neutrino oscillations in matter with an exponentially varying
density for an arbitrary number of neutrino species

E. Torrente Lujan*
Institute fur Theoretische Physik, Universitat Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

~Received 1 May 1995!

Exact analytical expressions in terms of generalized confluent hypergeometric functions for the transition
amplitudes of neutrino oscillations in the presence of matter are computed for an arbitrary number of species.
The density of matter is assumed to be exponentially decaying. The results can be used for the description of
matter-induced neutrino oscillations in the Sun which can take place when the solar neutrinos propagate
radially from the interior to the surface. Expressions are particularly simple in the limit of infinite propagation
time as is suitable for the case of detection at Earth.

PACS number~s!: 14.60.Pq, 96.60.Jw
I. INTRODUCTION

The explanation of the solar neutrino flux problem b
maximally mixed neutrino oscillations in vacuum or b
resonance-enhanced oscillations without large mixing@the
Mikheyev-Smirnov-Wolfenstein ~MSW! effect# is well
known by now and it has been treated abundantly in
literature@1–3#.

For stable and relativistic neutrino
n5(n i ,i51, . . . ,Nn) of equal momentum the propagatio
in vacuum is described in the basis of mass eigenstates

i ] tn5H0n,

where

H05Diag@Ei5A~p21m2!.p1mi
2/2E#. ~1!

The common constantp can be absorbed as an unimporta
phase and is usually omitted.

The weak eigenstatesn8 are related to mass eigenstat
by (u* for antineutrinos!

n85un.

The transitions betweenn8 are described by the amplitud
matrix

A5ue2 iH0tu21.

In the presence of standard matter with arbitrary elect
number density, the propagation is usually well appro
mated by

i ] tn5@H01r~ t !uAu21#n, ~2!

whereA is a matrix withA11 as the only nonzero elemen
r(t), essentially a forward scattering amplitude, is prop
tional to the electron number density of the medium:

r~ t !56A2GFNe~ t !.
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The plus~minus! sign is for neutrinos~antineutrinos!, respec-
tively.

The difference of the eigenvalues ofH0 ~ the inverse of
the usually defined oscillation length! is typically considered
to be, in the solar case, of the order

mi
22mj

2

2E
'
0.121 eV2

1 MeV
'1026–1027 eV.

The electron number density can be parametrized~data
taken from@4#! for sufficiently far distances from the solar
core as

Ne~r !5N0exp~2lr !

5160630 exp~210.660.2r /r 0! mol/cm3,

with r ,r 0 the distance from the center and solar radius, re-
spectively. At the solar center

Ne~0!'100 mol/cm3.

So the value forr(t) varies between zero and its maxi-
mum value of'10211 eV at the center.

Later we will see that the following dimensionless quan-
tities play an important role:

mi
22mj

2

2El
'1.753108

Dm2 ~eV2!

E ~MeV!

~'1 for E51 MeV and Dm251027 eV2!.

r(t)/l varies between 5.53103 and'0 when the neutrino
goes outwards from the center to the sun surface.

In the general case Eq.~2! must be solved numerically
@2,3#. A comparision with numerical studies and qualitative
analyses shows that, for slow~in the neutrino time scale! and
monotonically varying matter density, the adiabatic approxi-
mation can be applied except, possibly, in some small ‘‘reso-
nance’’ region~MSW effect!. This resonance effect is essen-
tially the same as the nonadiabatic crossing of energy levels
in diatomic molecules studied already 60 years ago. The
overall transition probability depends essentially on the ex-
4030 © 1996 The American Physical Society
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istence of this resonance region and not on the detailed m
ter density function. The approximate transition probabil
was computed for two species in two classical papers
Landau and Zener@5# supposing that the density varies lin
early in the~small! resonance region; its formula, adapted
the neutrino context, is

Pee
LZ5expF2p

Dm2

2El

s22u

c2u G . ~3!

The pointt res where the resonance appears is given by

r~ t res!5
Dm2cos2u

E
.

u is the two-neutrino mixing angle.
Apart from these approximate results, exact solutio

have appeared for particular forms of the functionr: for
linear densities, in terms of Weber-Hermite functions@6,7#,
for functions of the form

r~ t !5C@11tanh~lt !#

in @8#, and for exponentially decaying densities

r~ t !5ce2lt

in @9,10#. All these functions for the density are of interest
the solar case; the last two reproduce rather well the r
solar density except in the inner core and to a less degre
the surface boundary. All of these solutions are valid for tw
species and all of them are obtained reducing Eq.~2! to a
second order differential equation identifiable with one of t
classical equations of the mathematical physics.

In this paper , using a completely different method, su
ming a standard time-dependent perturbative expansion,
will give an exact, analytical solution for an arbitrary numb
of species and for arbitrary~possibly nonunitary in case o
sterile neutrinos! mixing matrix using the exponentially de
caying function. Using the limitt→`, which is appropriated
for the case of detection at Earth, we will give especia
simple solutions~this is something that papers@9,10# fail to
give in the two-dimensional case!.

II. AN EXACT SOLUTION FOR d„t…'exp„2t…

We will get an exact solution for the neutrino evolutio
equations in the special case where the electron density
cays exponentially. Standard nonstationary perturbat
theory will be used; we will give general expressions for t
nth term and sum the full series~regardless of mathematica
convergence problems, we will seea posteriori that the se-
ries effectively converges, and the result is physically me
ingful!.

The evolution operator of the differential system

i ] tn5H~ t !n ~4!

is such that

n~ t !5U~ t,t0!n~ t0! ~5!
at-
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obeying the integral equation

U~ t,t0!512 i E
t0

t

H~t!U~t,t0!dt. ~6!

We are interested in the case where the Hamiltonian, o
finite dimensionk, can be decomposed in the following way:

H5H01V~ t !5H01r~ t !V. ~7!

H0, the free Hamiltonian, Hermitic and independent of
time, has eigenvalues$E1 , . . . ,Ek% and eigenvectors
$ua&,ub&, . . . %. We can suppose that at least two of the ei-
genvalues are distinct; the completely degenerate case can
solved in a trivial way.r(t) a scalar function andV a Her-
mitic matrix with all eigenvalues but one equal to zero.

Formally, it is possible to solve Eq.~6! by successive
iterations:

U~ t,t0!5U ~0!~ t,t0!1 (
n51

`

U ~n!~ t,t0!, ~8!

where the order 0 can be taken as

U ~0!~ t,t0!5exp@2 iH 0~ t2t0!# ~9!

andU (n) is the well-known integral

U ~n!5~2 i !nE
G
dtn•••dt1U

0~ t,tn!V~tn!•••U
0~t2 ,t1!

3V~t1!U
0~t1 ,t0!. ~10!

The domain of integration is defined by

G[t.tn.•••.t1.t0 .

A V with the special form of interest to us can be always
reduced to the form

V5u21Diag~1,0, . . . ,0!u ~11!

for some unitary matrixu and its elements are given by

Vi j5(
k,l

uik
21dk1d l1ul j5u1 jui1

21 . ~12!

The following property will be used later valid for anyV of
this form:

Vi jVjl5VilVj j ~no summation involved!.

First we will computeU in the t→` limit. In the end we
will see that in fact we can compute it for any finitet using
the properties of the evolution operator. For simplicity, we
will work in the basis of eigenstates ofH0. For practical
applications~weak eigenstates neutrino transition probabili-
ties! we may want to apply a straightforward coordinate
changeU85v21Uv later.

Through elementary manipulations we get, from Eq.~10!,
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^buU ~n!ua&5~2 i !nexp@2 i ~Ebt2Eat0!# (
k1, . . . ,k~n21!

E
G
dnt exp~ i tnwbk11•••1 i t1wk~n21!a!Vbk1~tn!•••Vk~n21!a~t1!,

~13!

with wk1k25Ek12Ek2 . In addition, using the special form of the potential

^buU ~n!ua&5~2 i !nexp@2 i ~Ebt2Eat0!#Vba (
k1, ...,k~n21!

Bk1 ••• Bk~n21!Ak1, . . . ,k~n21! ,

Ak1, . . . ,k~n21!5E
G
dnt exp~ i tnwbk11•••1 i t1wk~n21!a!r~tn!•••r~t1!,

Bk5Vkk . ~14!

The multiple sums run over all the eigenvalues of the Hamiltonian independently.
We consider an idealized exponentially decaying electron density profile for the Sun:

r~ t !5r0exp~2lt !,

wherer0 can be positive or negative. RedefiningEk ,r0 we can always supposel51.
For this kind of density we can use the equality

I n~w1 , . . . ,wn![E
t0

`

•••E
t0

xn21
dx1 ••• dxnexpS (

n
wnxnD

5
~21!nexp~ t0(nwn!

wn~wn1wn21!•••~wn1wn21•••1w1!
~ valid if Rewn,0, ;n!. ~15!
n
ut
This equality can be proved by induction, noting tha
with the help of the variable change

x15y11y2 , x25y2

the following recurrence relation holds:

I n~w1 , . . . ,wn!5I 1~w1!I n21~w11w2 ,w3 , . . . ,wn!

that together with

I 1~w!5
2exp~wt0!

w

proves our result.
In our case

wn1wn211•••1wn2 j115 iwbk1211 iwk1k221

1•••1 iwk~ j21!k j21 ~16!

5 iwbk j2 j ,

so the (n-1!-tensorAi ••• j can be factorized
t,
Ak1,k2, . . . ,k~n21!5eiwbat0

~2r0e
2t0!n

iwba2n
Ak1Ak2•••Ak~n21! ,

~17!with

Ak~m!5
1

iwbk~m!2m
. ~18!

The fact that this factorization is possible is the key for the
solution of the problem. Note also the importance of the
ordering in the definition of theA’s.

So,

( Bk1•••Bk~n21!Ak1•••Ak~n21!

} )
m51

n21

(
all eigenvalues

Bk~m!Ak~m![)
m

fm . ~19!

What remains is the computation of the expressio
)mfm . Such computation is easy even in a general case b
rather messy. We will do it first for the two-dimensional case
for the sake of clarity.

A. Two-dimensional case

For a two-dimensional case and takingb51,

f m5
B1

2m
1

B2

iw122m
5

21

m

~2 iB1w121m!

~2 iw121m!
~20!
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and the product of them

)
m51

n21

f m5
1

B1

~21!n21

~n21!!

~B1b!~n!

~b!~n!
, ~21!
where we have used the Pochammer symbol Eq.~69! and
definedb52 iw12. Inserting this product in the previous
expressions and recalling the series expansion of the confl
ent hypergeometric function Eq.~68! we can write immedi-
ately the value of the diagonal elements ofU:
s an
ion:
^buUub&5e2 iEb~ t2t0!S 11Vbb (
n51

`

~2 i !n
@2r0exp~2t0!#

n

2n )
m51

n21

f mD
5e2 iEb~ t2t0!S 11

Vbb

Bb
(
n51

`
@2 ir0exp~2t0!#

n

n!

~Bbb!~n!

b~n!
D

5e2 iEb~ t2t0!
1F1~Bbb,b,z!; ~22!

hereb52 iwba andz52 ir0exp(2t0).
For the general caseaÞb it is necessary to work a little bit more to give a closed expression. In this case it appear

additional factor in each term of the series which does not allow for the immediate identification with any known funct

^buUua&5e2 i ~Ebt2Eat0!S dab1ei ~Eb2Ea!t0Vba (
n51

`

~2 i !n
@2r0exp~2t0!#

n

2b2n )
m51

n21

f mD
5e2 i ~Ebt2Eat0!ei ~Eb2Ea!t0

Vba

Bb
(
n51

`
zn

~n21!!

1

b1n

~Bbb!~n!

b~n!

5e2 iEb~ t2t0!
Vba

Bb
g~Bbb,b;z!, ~23!
as before hereb52 iwba .
The function

g~z!5 (
n51

`
1

b1n

~ab!~n!

~b!~n!

zn

~n21!!
~24!

is well defined; the series is absolutely convergent for allz;
manipulating termwise, and using Eq.~73! we get the fol-
lowing differential equation for it:

zg81bg5az 1F1~11ab,11b;z!, g~0!50 ~25!

whose solution is

g~z!5az2bE
0

z

yb
1F1~11ab,11b;y!dy. ~26!

Using the expression~71! for the special casec5g11,
we finally write ~note that in our case the conditions of va
lidity of the previous integral are satisfied!

g~z!5
a

11b
z 1F1~11ab,21b;z!

5 1F1~ab,b;z!2 1F1~ab,11b;z!. ~27!

The remarkable second equality can be deduced from
expressions~73!–~77!. So
-

the

^buUua&5e2 iEb~ t2t0!
Vba

Bb

Bb

11b
z 1F1~11Bbb,21b;z!,

^auUub&5e2 iEa~ t2t0!
Vab

Ba

Ba

12b
z 1F1~12Bab,22b;z!

5e2 iEa~ t2t0!
Vab

12b

3zez 1F1@12~12Ba!b,22b;2z#

5e2 iEa~ t2t0!
Vab

12b
zez 1F1~12Bbb,22b;2z!

5e2 iEa~ t2t0!
Vab

12b
zez 1F1* ~11Bbb,21b;2z* !

~28!

5e2 iEa~ t2t0!
Vab

12b
zez 1F1* ~11Bbb,21b;z!,

~29!

where we have used Eq.~73!. The last formula~29! is only
valid for z purely imaginary, in the case of general complex
z ~for example givenr0 complex! formula ~28! is valid.

We have so completed the computation ofU. In sum-
mary, the elements of the operatorU in a basis of eigenvec-
tors ofH0 are
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U~ t,t0!5exp@2 iH 0~ t2t0!#U red~r0 ,t0!,

U red~r0 ,t0!5S F
V12

V11
G

2
V21

V11
exp~z!G* exp~z!F* D , ~30!

with the shorthand

G5g~z!5
V11

11b 1F1~11B1b,21b;z!,

F5 1F1~B1b,b;z!.

As it should be,U(t) obeys the free equation

i ] tU~ t !5H0U~ t !.

For a reverse sign inr0 ~antineutrino case!, the matrix
U red is basically the same except for the substitutio
B1→12B1:

U red~2r0 ,t0!5exp~2z!S F* 2
V12

V11
G*

V21

V11
exp~z!G exp~z!F D ,

~31!

where now F stands for 1F1@(12B1)b,b,z#, and G
changes similarly.

For H Hermitic U is unitary and we get as a by-produc
the following nontrivial identity for the absolute value o
hypergeometric functions:

i1F1~ab,b;z!i21a~12a!I z

11b 1F1~11ab,21b;z!I 2
[1 ~a real! ~32!

or, using the second equality in~27!,

u1F1~ab,b;z!u2

1S 12a

a D u1F1~ab,11b;z!2 1F1~ab,b;z!u2

[1 ~a real!. ~33!

For the particular case ofu being the orthogonal two-
dimensional matrix

u5S Cu 2Su

Su Cu D ,
the matrixV is

V5S C2u 2SuCu

2SuCu S2u D
andH0 the standard neutrino oscillation Hamiltonian give
by Eq. ~1!. We arrive to (t050 and restoringl)
n

t
f

n

U11
red5 1F1S iw21

l
C2u,

iw21

l
;

2 ir0
l D , ~34!

U12
red5Tu

2 ir0 /l

11 iw21/l
1F1S 11

iw21

l
C2u,21

iw21

l
;

2 ir0
l D .

~35!

We are interested in the expression of the evolution op-
erator in the basis of eigenvalues ofV; it is straigthforward to
computeU85uUu21. After some algebra, applying the
identities we have seen before and averaging out time
dependent terms, the probability of electron permanence is

Pee5iU118 i2

512S2uF11C2u I 1F1S iw21

l
C2u,11

iw21

l
;

2 ir0
l D I 2G .

~36!

An expression equivalent to the previous one has been
obtained already by@11# in terms of Whittaker functions.
However, our expression is simpler and more compact be
cause we use the infinite time limit.

In the limit r0→0 or free case,z→0 and the hypergeo-
metric functions go to 1,U becomes, as expected,

U5exp~2 iH 0t !.

In the limit of vanishing mixing angle,C2u→1, tanu→0
and 1F1(z)→ez in ~34!, so

Pee51. ~37!

In the limit w21/l5Dm2/2El→0, 1F1→1 in ~36! and

Pee512
1

2
S22u. ~38!

In the limit w21/l@1 ~adiabatic regime! we distinguish
two cases: ifw21/l.” uzu we have 1F1→exp(2iC2ur0 /l)
and formula ~38! also applies; ifw21/l.uzu a resonance
occurs and the probability drops abruptly. Some asymptotic
formulas exist for this case valid except in the central region
of the resonance~see@12,13#!.

In the limit of small~but not vanishing! mixing angle, we
are left in principle with the expression for the electron per-
manence probability~computed ignoring diagonal terms in
U)

Pee5~122C2uS2u!I 1F1S iw21

l
C2u,

iw21

l
;

2 ir0
l D I 2.

~39!

In the figures we show a comparison between formulas~36!
and ~39!. We see that even at very small angles Eq.~39! is
not a very good approximation of~36! as we could expect.

In Fig. 1 we plot u1F1u2 @Eq. ~39!# as a function of its
parameters keepingz constant. Increasing values of thex
axis implies a larger mass difference or a smaller neutrino
energy. We observe that the probability is near 1~adiabatic
evolution! except for a very concrete region of the parameter
space~MSW effect or existence of a resonance layer!. The
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starting point and width of this region~but not its end point!
depends on the parameters involved, in particular cos2u.

Figure 2 is equivalent to Fig. 1; this time we plot the exa
expression for thee-e probability, Eq.~36!. The global be-
havior is exactly the same as before; the local oscillatio
have disappeared now, however. Figure 3 shows the beha
of the resonance region also for large mixing angles. T
continuous curve is our exact solution, the dashed curve
Parker approximate formula as given in@14#. Figure 4 shows
the behavior for antineutrinos~reverse sign forr0 in z); in
this case the resonance is absent.

In a second set of plots~Figs. 5,6! we keep constant the
parameters and varyz or equivalently the production point o
the neutrino: largeruzu or r0 means larger density at the
creation point which implies that this one is nearer to t
center. We see again there is a transition between two w
defined zones: for a very far creation point, the neutri
doesn’t pass through any resonance layer, adiabatic reg
conditions always apply, andPee;1.

In order to study in detail the existence and properties
the resonance region it would be convenient to have gen
formulas for the zeros of the hypergeometric functions,
function not only of its argument but also of its paramete
Unfortunely very little is known in a general case. There a
some results~see Appendix and reference therein! about the
real zeros of1F1(a,b;x) with a,b real.

We note that the expressions~30! and ~39! are still for-
mally valid for a purely imaginaryl @we take for granted
that we can take convenient limits Rewn→0 in the integral
~15!#. Expression~36!, however, is not valid any more be
cause we used the Hermiticity ofH ~and unitarity ofU) in
computing it. The extrema ofu1F1u2 are given essentially by
the zeros of 1F1(11a,11b;xj ); for l purely imaginary,
argument and parameters in1F1 become real and we can
apply the bounds in Appendix A given by the Eqs.~78!–~80!.
These bounds can be used to deduce the regions in the
rameter space which allow for the existence of such extre

B. Three- and k-dimensional cases

For three neutrino species, we can write, similarly to E
~20!,
ct

ns
vior
he
the

f

he
ell
no
ime

of
eral
as
rs.
re

-

pa-
ma.

q.

f m5
B1

2m
1

B2

iw122m
1

B3

iw132m

5
21

m

~2a11m!~2a21m!

~2 iw121m!~2 iw131m!
, ~40!

wherea1 ,a2 are the roots of a certain two-degree polyno-
mial, they obey

a11a25 i @w12~12B2!1w13~12B3!#,

~41!

a1a252B1w12w13,

and the product of them

)
m51

n21

f m5
1

B1

~21!n21

~n21!!

~2a1!~n!~2a2!~n!

~b1!~n!~b2!~n!
, ~42!

with b1,252 iw12,13. The expression fora1a2 in Eq.~41! has
been important in the simplification of the previous equation.
Note that this last expression is only valid ifw12 andw13 are
both different from zero.

For the diagonal elements ofU, we can write immedi-
ately, in terms of the generalized hypergeometric functions
@definition ~70!#,

^buUub&5e2 iEb~ t2t0!
2F2~2a1 ,2a2 ,2 iwb,k1 ,2 iwb,k2 ;z!,

~43!

with

a11a25 i @wb,k1~12Bk1!1wb,k2~12Bk2!#,

~44!

a1a252Bbwb,k1wb,k2 ;

k1 ,k2 are labels for the two eigenvectors different fromb.
For the^buUua&, we can repeat exactly the same path as we

did in the two-dimensional section. We arrive at~we do it
already for the general case!
zg81b1g5
a1•••ak21

b1•••bk21
z2F2~2a111, . . . ,2ak2111;b111, . . . ,bk2111;z!, g~0!50, ~45!

with b152 iwba , andbk52 iwbk , wherekÞa,b. The solution of which is

g~z!5
a1•••ak21

b1•••bk21
z2b1E

0

z

dw wb1
k21Fk21~2a111, . . . ,2ak2111;b1 , . . . ,bk21 ;w!

5
a1•••ak21

b1•••bk21
zE

0

1

ds sb1 k21Fk21~2a111, . . . ,2ak2111;b1 , . . . ,bk21 ;sz!

5
a1•••ak21

b1•••bk21

z

11b1
k21Fk21~2a111, . . . ,2ak2111;b112,b211, . . . ,bk2111;z!, ~46!

where we have used the expression Eq.~72! for m51. So
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^buUua&5e2 i ~Ebt2Eat0!Vba

z

11 iwba
2F2~2a111,2a211;2 iwb,k112,2 iwb,k211;z!. ~47!

a1 ,a2 satisfy Eqs.~44! with k15a; k2 are labels for the eigenvectors different tob .
Let us take foru a general unitary three-dimensional parametrized as follows:

u5S 1 0 0

0 Cc Sc

0 2Sc Cc
D S 1 0 0

0 eid 0

0 0 e2 idD S Cf 0 Sf

0 1 0

2Sf 0 Cf
D S Cv Sv 0

2Sv Cv 0

0 0 1
D . ~48!
f

The potentialV is

Vab[u1bua1
215u1bu1a .

The last equality is valid only in our particular case~or for
any realu):

u1a~a5123!5~CfCv,CfSv,Sf!.

Note that the phased and the anglec do not appear inV.
In the basis whereU is diagonalU85uUu21. In particu-

lar, for thee-e transition we have

A115U118 5(
kl

u1l~u
21!k1Ulk5(

kl
VklUkl5trUV.

FIG. 1. The functionu 1F1(Bib,ib,2 i550.2)u2 for two different
B’s near 1, as a function ofb. This corresponds approximately to
the oscillation probability for a neutrino produced atr /r 050.25 as
function ofb5Dm2/2El.
In the small mixing limit the termsVkl are nearly zero for
k, lÞ1. Averaging out time dependent terms, we write ap-
proximately

Pee5uU118 u2.C2fC2vuU11~52F2!u2 ~49!

with obvious arguments for the hypergeometric function.
The computation of an exact, fully simplified expression for
U118 requires the algebraic manipulation of several2F2 func-
tions and is not of major interest. For the expected degree o
approximation of this formula, see the comments corre-
sponding to the two-dimensional case.

Now we are going to study the behavior ofU11 for two
different limits. Let us suppose that the first and second ei-
genvalues are nearly degenerate:w12→0; in this case

FIG. 2. Pee @two neutrino species, formula~36!# for a neutrino
produced atr /r 050.25 as a function ofb5Dm2/2El and two
different mixing angles:B(5cos2u)50.99,0.999.
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FIG. 3. As in Fig. 2 but for a neutrino created
near the surface (uzu'20) as a function of the
mixing angle. The dashed line corresponds to the
Parker approximate solution@as it is given by for-
mula ~2.18! in @14#.

FIG. 4. As Fig. 3 but for antineutrinos~re-
verse sign in the argumentz of the hypergeomet-
ric function!. In this case there is not resonance
~it is possible to distinguish some ‘‘anti’’-
resonace behavior for larger mixing angles!.
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a15 iw13~12B3!, a252B1w12w13→0, ~50!

and

U11}12
a2
w12

@ 1F1~2a1 ,2 iw13;z!21#

512B1w13@12 1F1„2 iw13~12B3!,2 iw13;z…#.

~51!

The three-oscillations has been reduced essentially to a t
dimensional problem. We can apply to this last formula th
arguments of the previous section for finding different limi
ing behaviors as functions of the size ofw13.

It is interesting also to study what happens when one
the eigenvalues is much bigger than the others~but none
goes to zero!, so some of thew’s go to infinity. Let us sup-
posew13→`. In such a limit, solving previously the second
degree algebraic equation, we have

a15
iw12~12B2!

2
,

~52!

a25 iw13~12B3!5 iw13~B11B2!.

Thus

lim
w13→`

U11} lim
w13→`2

F2S iw12~12B2!

2
,

iw13~B11B2!,iw12,iw13;zD
5 1F1S iw12~12B2!

2
,iw12;z~B11B2! D , ~53!

so, as expected, the system behaves effectively as a t
dimensional system. Note that the two-dimensional subm
trix of u is not unitary, so the sumB11B2 is not equal to
unity anymore in Eq.~53!. This procedure is especially use

FIG. 5. Pee @Eq. ~36!#, as a function of the creation point~in
solar radius fraction! for a fixed mixing angle cos2u50.99 and two
different b5Dm2/2El51,20 ~respectively upper and lower
curves!.
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ful for the study of oscillations in models with extremely
heavy sterile neutrinos as those inspired in SO~10! grand
unified ~GU! theories.

For k dimensions, we can write, similarly to Eq.~20!,

f m5
B1

2m
1

B2

iw122m
1•••1

Bk

iw1k2m

5
~21!k

m

@~2a1!1m#...@~2ak21!1m#

~2 iw121m!...~2 iw1k1m!
, ~54!

wherea1 , . . . ,ak21 are the roots of the (k21)-degree poly-
nomial:

p~m!5(
s51

k

Bs )
jÞs

~m2 iw1,j !. ~55!

The coefficient of the power of greatest degree,c0 , and
the constant term,ck21 , of this polynomial are

c05(
s
Bs51,

ck215p~0!5(
s51

k

Bs )
jÞs

~2 i !w1,j5~2 i !k21B1 )
jÞ1

w1 j .

The product of the roots is then

a1...ak215~21!k21
ck21

c1
5 i k21B1 )

jÞ1
w1 j .

Based on the previous formula and assuming all thewi j
different from zero, we can generalize the two- and three-
dimensional expressions for the product

)
m51

n21

f m5
1

B1

~21!n

~n21!!

~2a1!~n!...~2ak21!~n!

~b1!~n!...~bk21!~n!
, ~56!

with bs52 iwbs .
As it can be deduced trivially, the matrixU for k dimen-

sions is the product

FIG. 6. Functionu1F1( iBb,ib,z)u2 as a function ofuzu, for
different values of the parameters.B50.99; the upper and lower
curves correspond respectively tob5 1 and 20.
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U~ t !5exp@2 iH 0~ t2t0!#U red~H
0,V,r0 ,t0!,

the elements ofU red being essentially generalized conflue
hypergeometric functions of orderk21. The diagonal ele-
ments are given in a basis of eigenvalues ofH0 by

^auU redua&5k21Fk21~2a1 , . . . ,2ak21 ,

b1 , . . . ,bk21 ;z!, ~57!

with the a ’s and b ’s defined as before, and
z52 ie2t0/lr0 /l.

For nondiagonal elements,

^buU redua&5
Vba

Vbb

z

11b1
k21Fk21~2a111, . . . ,2ak2111;

b112, . . . ,bk2111;z!. ~58!

Note that for each individual elementb ’s anda ’s are differ-
ently defined.

As it was pointed out before the previous expressions
valid only for the completely nondegenerate case: all
wi j different from zero. The general case will be treated el
where; it is easy to see that the order of the hypergeome
functions appearing there will decrease in one unit for ea
of thew’s equal to zero.

The unitarity ofU for any HermitianH induces a tower of
identities between the absolute values of the hypergeome
functions generalizing the expressions~32,33! found for the
two-dimensional case.

C. Evolution for finite time

Until now we have considered the evolution of the syste
from a finite t0 until infinite time. Now, using general prop
erties of the evolution operator, we will compute the evo
tion for arbitrary finite intervals.

Any U, for any intermediate timet1 , obeys the composi-
tion property

U~ t,t0!5U~ t,t1!U~ t1 ,t0!.

Taking the limit t→` in the above expression we arrive
~taking t050 for simplicity!

U`~ t,0!5U`~ t,t1!U~ t1,0!.

By the subindex̀ we want to remark we have compute
U as in the previous sections, using some limiting proce
So, asU has an inverse,

U~ t,0!5U`
21~m,t !U`~m,0!

5U`
† ~m,t !U`~m,0!

5U red
† ~ t05t !eiH0~m2t !e2 iH0mU red~ t050!

5U red
† ~ t05t !e2 iH0tU red~ t050!, ~59!

where we have effectuated some relabing to let clear the t
dependence.m, appearing at first as a new arbitrary param
eter, disappears from the last expression.U red is the matrix
depending on the diverse parameters of the system, inclu
t0 @compare with Eq.~30!#.
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The matrix defined by Eq.~59! satisfies by construction
the initial conditionU(0,0)51. In addition we must check
that it satisfies Eq.~4!: inserting the last expression we ob-
tained, and eliminating the common factorU red(t050), we
get

2 i ] te
iH0tU red5eiH0tU red@H01r~ t !V#,

eiH0tH0U red2 ieiH0t] tU red5eiH0tU red@H01r~ t !V#,

@H0 ,U red#5 i ] tU red1r~ t !U redV; ~60!

the dependence ofU red on t comes from the substitution
t05t.

If

@H0 ,U red~ t !#'0, ~61!

for example, if the difference of the eigenvalues ofH0 is
relatively small, then Eq.~60! has the trivial solution

U red~ t !5expS 2 iVE
0

t

g~m!dm D ~62!

and theU matrix becomes

U~ t,0!5exp~2 iH 0t !U red~ t !

5exp~2 iH 0t !expS 2 iVE
0

t

g~m!dm D . ~63!

This is a highly nontrivial expression valid for arbitrary
H0 ,V andg(t). Some perturbation approximation expansion
in DE can be implemented for better approximations.

In our particular case it is easy to check that the previous
Eq. ~60! is really fulfilled. It converts to a system of
algebraic-functional relations between hypergeometric func-
tions. For simplicity we take the two-dimensional case.
Equation ~60! is equivalent to only two independent rela-
tions, with the same notation as in previous sections:

]zF5FV111uV12u2G,

F5~2V121b/z!G1]zG; ~64!

with the help of Eq.~A6!, we obtain instead two algebraic
equations that can be proved to be identities with Eqs.~A10!.
We just prove in detail the first one. First we identify
V11[a, V12

2 5a(12a), so the first term is

]zF~ab,b,z!5a 1F1~ab11,b11;z!; ~65!

the second term is

FV111uV12u2G5a 1F1~ab,b;z!1~12a!@ 1F1~ab,b;z!

2 1F1~ab,b11;z!#

5 1F1~ab,b;z!2~12a!

31F1~ab,b11;z!. ~66!

In the first line we have used Eq.~33!. The last expression is
just the identity~A9!.
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In summary, we have proved that the evolution operat
for any finite time is

U~ t,0!5U red
† ~ t !e2 iH0tU red~0!, ~67!

with U red given in the previous sections. Expressions can
given now for the transition probabilities in the mass or wea
basis as we did before. However, the expressions are ra
involved and not so illuminating. For almost any practica
purpose we can stick to the expressions given in thet→`
limit.

III. CONCLUSIONS AND FURTHER DISCUSSION

Exact expressions for the transition probabilities of ne
trinos propagating radially in the Sun are given. These a
valid for an arbitrary number of neutrino species. The sol
tion, very compact in terms of hypergeometric functions,
very suitable for analytical studies of resonance and for s
tematic numerical approximations. The computational ta
of computing numerically this kind of function makes how
ever very impractical the actual use of them in concrete a
plications for the moment.

The perturbative expansion method used, that in this p
ticular case gives an exact solution, is well suited to produ
approximate results for the same matrix form of the potent
~all eigenvalues but one equal to zero! but for arbitrary form
of r(t). The consideration of a finite number of terms in th
expansion is expected not to be useful but yes the summa
for all orders of appropriate leading terms. Another possib
ity is to consider the difference between an arbitraryr(t) and
our exponential as small and do perturbation theory arou
our exact solution. In principle we expect this procedure
be convenient at far distances from the creation point; as
have seen the probability transition depends more on
existence of a resonant region than on the detailed shap
the potential. This would make it possible to compute form
las for nonradial propagation and for the regions where t
exponentially decaying density lose validity: central core a
solar surface.

The phenomenon of resonance~or MSW effect! is re-
markable in itself. The present solution offers a starting po
for its analytical description. We note the similarity of thi
effect with the original form of the Anderson localization
effect presented in@15#. This similarity is especially evident
under the treatment done in this work. In both cases t
locking of a system in one of its quantum states except fo
certain range of the parameter space arise as a property o
solution of a coupled system of ordinary differential equ
tions. As in its case~which physically correspond to the evo
lution of a particular site in a random lattice! the proper
energies~or its differences! of each mode play an importan
role; however, here these are not needed to be stochastic
distributed. This condition of randomness is essential in@15#;
the results in this work induce us to think whether such ra
domness is a mere mathematical convenience more than h
ing a deep physical meaning.

Apart from physical interest, our solution has intrinsi
mathematical interest in the theory of differential equatio
and of special functions. A general theory of equations of t
form
or
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] tx5@A1 f ~ t !B#x,

with A,B constant matrix is missing in spite of the fact these
systems are the ‘‘next-step’’ in complexity from all-constant
coefficient equations. Only solutions for a few examples of
these equations are known.

The generalized hypergeometric functions are shown to
be the asymptotic solutions of a simple differential equation
in a systematic way. New identities for the absolute values of
these functions are derived. The generality of the results ob-
tained here induces us to consider the utility of defining hy-
pergeometric functions of matrix parameters1F1(A,B;z)
with z complex, similar extensions exist already: generaliza-
tions with complex parameters but matrix argument or pa-
rameters and argument defined in arbitrary finite fields for
example. Let us note finally that making the change

y5exp~2t !

our system becomes of the form

]yx5SAy 1BD x
so we have found also a solution for this system, the hyper-
geometric functions appear now as regular solutions for
y→0.
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APPENDIX A: SOME FORMULAS ABOUT
HYPERGEOMETRIC FUNCTIONS

See@12# and references therein for all of these definitions
and formulas. The confluent hypergeometric function is de-
fined by

1F1~a,b;z!5 (
n50

`
~a!~n!

~b!~n!

zn

n!
, ~A1!

where the Pochammer symbol is

~z!~n!5G~n1z!/G~z!. ~A2!

The generalized hypergeometric function is defined by

pFq~a1 , . . . ,ap ,b1 , . . . ,bq ;z!5 (
n50

`
~a1!~n!•••~ap!~n!

~b1!~n!•••~bq!~n!

zn

n!
.

~A3!

The integral
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E
0

t

xg21~ t2x!c2g21
1F1~a,g;x!dx

5tc21
G~g!G~c2g!

G~c! 1F1~a,c;t !; @Rec,g.0#

~A4!

is a special case of

E
0

1

~12x!~m21!xb121
pFq~a1 , . . . ,ap ;b1 , . . . ,bp ;ax!dx

5
G~m!G~b1!

G~m1b1!
pFq~a1 , . . . ,ap ;m1b1 ,b2 , . . . ,bq ;a!;

@Reu,b1!.0, p,q11]. ~A5!

Some other important formulas are

d 1F1~a,g;z!

dz
5

a

g 1F1~11a,11g;z!, ~A6!

1F1~a,g;z!5expz 1F1~g2a,g;2z!, ~A7!

z

g 1F1~a11,g11;z!5 1F1~11a,g;z!2 1F1~a,g;z!,

~A8!
a 1F1~a11,g11;z!5~a2g! 1F1~a,g11;z!

1g 1F1~a,g;z!, ~A9!

a1F1~a11,g;z!5~z12a2g!1F1~a,g;z!

1~g2a!1F1~a21,g;z!. ~A10!

From @16# we know that the real zerosxj of
1F1(a,c;x) for a,c real satisfy the bounds

~c22a!22A@a~a2c!2c#

,xj,~c22a!12A@a~a2c!2c#. ~A11!

The smallest real zerox15xmin satisfy

xmin,
c~c12!

c22a
. ~A12!

Applying the same bound to the expression~A7! we deduce
the lower bound for the maximal real zeroxmax:

~xmin, !
c~c12!

c22a
,xmax. ~A13!
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