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Exact analytic description of neutrino oscillations in matter with an exponentially varying
density for an arbitrary number of neutrino species
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Exact analytical expressions in terms of generalized confluent hypergeometric functions for the transition
amplitudes of neutrino oscillations in the presence of matter are computed for an arbitrary number of species.
The density of matter is assumed to be exponentially decaying. The results can be used for the description of
matter-induced neutrino oscillations in the Sun which can take place when the solar neutrinos propagate
radially from the interior to the surface. Expressions are particularly simple in the limit of infinite propagation
time as is suitable for the case of detection at Earth.

PACS numbsds): 14.60.Pq, 96.60.Jw

[. INTRODUCTION The plus(minug sign is for neutrinogantineutrinog, respec-
tively.

The explanation of the solar neutrino flux problem by The difference of the eigenvalues B ( the inverse of
maximally mixed neutrino oscillations in vacuum or by the usually defined oscillation lengtts typically considered
resonance-enhanced oscillations without large miXithg ~ to be, in the solar case, of the order
Mikheyev-Smirnov-Wolfenstein (MSW) effecf] is well s
known by now and it has been treated abundantly in the mi—my 01-1 eV?
literature[1-3]. 2E 1 MeV

For stable and relativistic neutrinos
v=(v;,i=1,... N,) of equal momentum the propagation  The electron number density can be parametri@tata
in vacuum is described in the basis of mass eigenstates bytaken from[4]) for sufficiently far distances from the solar

core as

~107%-10"7 eV.

igr=H%,
Ng(r)=Ngexp(—Ar)

=160+30 exg —10.6-0.2r/ry) mol/cn?,

where

H°=Diag E;= V(p?+ m?)=p+m?/2E]. (1)
with r,rg the distance from the center and solar radius, re-

The common constant can be absorbed as an unimportantspectively. At the solar center
phase and is usually omitted.
The weak eigenstates’ are related to mass eigenstates Ne(0)~100 mol/cnd.

by (u* for antineutrino . . .
y( g So the value foip(t) varies between zero and its maxi-

I mum value of~10 ! eV at the center.
Later we will see that the following dimensionless quan-
The transitions between’ are described by the amplitude tities play an important role:
matrix ,
mé—m: Am? (eV?)
— e iHO% —1 ' L~ _
A=ue "MluT 2E\N 1.75¢10° E (MeV)

In the presence of standard matter with arbitrary electron
number density, the propagation is usually well approxi-
mated by

(=1 for E=1 MeVand Am?>=10"" e\?).

p(t)/\ varies between 5:%10° and ~0 when the neutrino
i9,v=[H+ p(t)uAu v, (2)  9oes outwards from the center to the sun surface.
In the general case Eq2) must be solved numerically
whereA is a matrix withA;; as the only nonzero element. [2,3]. A comparision with numerical studies and qualitative
p(t), essentially a forward scattering amplitude, is propor-analyses shows that, for sloim the neutrino time scajeand

tional to the electron number density of the medium: monotonically varying matter density, the adiabatic approxi-
mation can be applied except, possibly, in some small “reso-
p(t)y== \/EGFNe(t). nance” region(MSW effec). This resonance effect is essen-

tially the same as the nonadiabatic crossing of energy levels
in diatomic molecules studied already 60 years ago. The
* Electronic address: e.torrente@cern.ch overall transition probability depends essentially on the ex-
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istence of this resonance region and not on the detailed mapbeying the integral equation

ter density function. The approximate transition probability

was computed for two species in two classical papers by [t

Landau and Zen€5] supposing that the density varies lin- U(t,t0)=1—|ft H(7U(7,to)dT. ®)

early in the(small resonance region; its formula, adapted to °

the neutrino context, is We are interested in the case where the Hamiltonian, of
AMZ 220 finite dimensiork, can be decomposed in the following way:

pLz_ exp{ _Am 20

2EN c20 ] @

H=H%+V(t)=H%+p(t)V. (7

The pointt,.s where the resonance appears is given by HO the free Hamiltonian, Hermitic and independent of
time, has eigenvalues{E,,... E} and eigenvectors
{|a),|b), ...}. We can suppose that at least two of the ei-
genvalues are distinct; the completely degenerate case can be
. ) o solved in a trivial wayp(t) a scalar function an® a Her-

¢ is the two-neutrino mixing angle. mitic matrix with all eigenvalues but one equal to zero.

Apart from these approximate results, exact solutions pormally, it is possible to solve Eq6) by successive
have appeared for particular forms of the functipnfor  jterations:

linear densities, in terms of Weber-Hermite functidbs?],

Am?cos20
p(tred = —E

for functions of the form o
p(t)=C[1+tanh(At)] U(t’tO):U(O)(t’tOHnZl UM (tto), ®
in [8], and for exponentially decaying densities where the order O can be taken as
p(t)=ce™™ UO(t,to) =exd —iH (t—ty)] (9

in [9,10]. All these functions for the density are of interest in andU (™ is the well-known integral
the solar case; the last two reproduce rather well the real
solar density except in the inner core and to a less degree in
the surface boundary. All of these solutions are valid for twoU'"= (i )nf dry- - - drUO(t, 7y) V(1) - - - UO(7p,71)
species and all of them are obtained reducing @g.to a r
second order differential equation identifiable with one of the XV(1)U%(71,t0). (10)
classical equations of the mathematical physics.
In this paper , using a completely different method, sum-  The domain of integration is defined by
ming a standard time-dependent perturbative expansion, we
will give an exact, analytical solution for an arbitrary number I=t>7r,>-->7>t,.
of species and for arbitrargpossibly nonunitary in case of
sterile neutrinosmixing matrix using the exponentially de- A v with the special form of interest to us can be always
caying function. Using the limit— oo, which is appropriated reduced to the form
for the case of detection at Earth, we will give especially
simple solutiongthis is something that papel8,10] fail to V=u"1Diag(1,0, ...,Qu (12)
give in the two-dimensional case
for some unitary matribu and its elements are given by

Il. AN EXACT SOLUTION FOR é(t) ~exp(—t
® p( ) Vij:E uﬂ(lﬁklému”:uljuﬁl. (12)
We will get an exact solution for the neutrino evolution kil
equations in the special case where the electron density de-
cays exponentially. Standard nonstationary perturbatiod he following property will be used later valid for any of
theory will be used; we will give general expressions for thethis form:
nth term and sum the full seridsegardless of mathematical

convergence problems, we will seeposteriorithat the se- VijViji=V;Vjj  (nosummation involved
ries effectively converges, and the result is physically mean-
ingful). First we will computeU in thet—< limit. In the end we
The evolution operator of the differential system will see that in fact we can compute it for any finiteising
the properties of the evolution operator. For simplicity, we
idywv=H(t)v (4) will work in the basis of eigenstates ¢1°. For practical
applications(weak eigenstates neutrino transition probabili-
is such that ties we may want to apply a straightforward coordinate

changeU’=v " Uv later.
v(t)=U(t,to) v(to) 5 Through elementary manipulations we get, from Bd),
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(bluM|ay=(—i)"exd —i(Ept—Eato)] >, frdnT expi TaWpia + - - - +i71Wyn—1)a) Voka(7n) - - - Vin—1)a( 71),

ki,..” k(n—1)
(13
with wyqo=E,; — E». In addition, using the special form of the potential
(blu™]a)=(—i)"ex —i(Ept—Eato)Vpa E Bkt =+ Brin-1)Ax1, .. kin-1)»
ki,.. k(n—1)
Akl,. .. ,k(nfl): jrdnT eXF(i Tnka1+ cee i Tka(nfl)a)p(Tn) .. 'p(Tl),
Bk:ka' (14)
The multiple sums run over all the eigenvalues of the Hamiltonian independently.
We consider an idealized exponentially decaying electron density profile for the Sun:
p(t)=poexp(—At),
wherep, can be positive or negative. Redefinigg, py we can always suppose=1.
For this kind of density we can use the equality
*° Xn—1
In(wl,...,wn)zf J dx1~--dxnexp<2 Wan)
to to n
—1)"exp(te= W
(= 1)7explto>nWn) (valid if Rew,<0, Vn). (15)

Wn(Wn+Wn71)' ! '(Wn+Wn71' o +W1)

This equality can be proved by induction, noting that, _ (—poe to)n
. ; iWpat Po
with the help of the variable change Agik2, .. k(n—1)=€""ba0 Wpa—n AAro A1y
a
. a7
X1=Y1tY2, X2=Y2 with
_ 1
the following recurrence relation holds: Ak(m)_iwbk(m)—m' (18

The fact that this factorization is possible is the key for the
solution of the problem. Note also the importance of the

| - =1 I + c o .
n(Wes - W) =1 (W)l g Wyt Wo, W, - W) ordering in the definition of thé\’s.
So,
that together with
2 B Bin-nAa- - Acn-n)
—expwtp)
hy(w)=—"— n—1

& H 2 Bk(m)Ak(m)EH fm- (19)
m=1 all eigenvalues m
proves our result.

What remains is the computation of the expression
In our case

II,f,. Such computation is easy even in a general case but
rather messy. We will do it first for the two-dimensional case

. . for the sake of clarity.

WptWp_qg 4 W 1T 1Whjqg = 14+ 1Wqo— 1

T iWggo—1 (16) A. Two-dimensional case

For a two-dimensional case and takibg 1,
=iWpj—],
B, B, -1 (—=iBjwqytm)
“miwpm m (—iwgptm)

fn=

so the @-1)-tensorA;...; can be factorized (20)
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and the product of them where we have used the Pochammer symbol (E§) and
defined B= —iwq,. Inserting this product in the previous
expressions and recalling the series expansion of the conflu-
ent hypergeometric function E¢68) we can write immedi-
ately the value of the diagonal elementslbf

n-1 _q\yn—1
I f.— 1 (=1)" " (BiB)n) (21)
m=1

"B, (n—1)! (B

n n-1
(b|U|b)=e~Ex(t 0 [Zpoexp~t9)]" 1y fm)

1+Vpp X, (—i)"
n=1 —n m=1

— e-iEnt—to) 14 Vbb D [—ipoexp(—to)]" (BuB)(n)
Bb n=1 nl ﬁ(n)
=e B Fy(ByB,8,2); (22)

here 8= —iwy, andz= —ipgexp(—tp).
For the general casa#b it is necessary to work a little bit more to give a closed expression. In this case it appears an
additional factor in each term of the series which does not allow for the immediate identification with any known function:

o -1
| - [~ poexp —to)]"}
blUla :e*'(Ebt*Eato) S _i_el(Ebea)toV —j)n f
<| |> ab bangl( ) —,G—n ngl m
— o~ i(Ext—Eql) i (Ep- Ea)tov z" 1 (BpB)n
By <1 (n—1)! B+n B
=e 1Folt ‘°>—g(BbﬁB 2), 23

as before her@= —iwy,.

The f i (b|U|a) e —iEp(t— tO)V
e Ttunction B 1+B

zF1(1+ByB,2+ B;2),

B o1 (aB)imy 2" _ Vv, .
92= 2 Fon (B (D 29 (aulp)=e Bt R g Fy(1-ByB 2 Bi2)

is well defined; the series is absolutely convergent fozall _ —iEa(t—ty) Vab
manipulating termwise, and using E.3) we get the fol- -€ 1-8
lowing differential equation for it:
Xz€ 1F4[1-(1-B,)B,2—B;—2]
29 +Bg=az Fy(1+aB1+B;2), 9(0)=0 (25 Vi
—e Ealtot) s F (1-ByB8,2- 8- 2)
whose solution is 1-5

Vab
z —e Ealimt) 20y E k(14 BB, 2+ 8; — 2*
g(z)=az*ﬁj y? Fi(1+aB 1+ By)dy.  (26) 1-p7¢ P (1B 2 fim )
0
(28)
Using the expressiofi71l) for the special case= y+1, Vi
we finally write (note that in our case the conditions of va- —E(t—tg) E.*(14+B.B.2+ B
lidity of the previous integral are satisfied - Bzez 1Fa*( o8, 2+ Bi2),
(29)
9(2)= 7752 1F1(1+aB,2+ B;2) where we have used E73). The last formula29) is only

1+ . . - .
ﬂ valid for z purely imaginary, in the case of general complex

= Fi(aB,B;2)— 1Fi(aB,1+B;2). (27 z (for example giverp, complex formula (28) is valid.
We have so completed the computation bf In sum-
The remarkable second equality can be deduced from thaary, the elements of the operatdrin a basis of eigenvec-
expressiong73)—(77). So tors of HC are
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U(t,tg)=exd —iHq(t—tg) JUed po.to),

F —G
Vll
Ured po.to) = A , (30)
- V—exp(z)G* exp(z)F*
with the shorthand
Vi1
G=9(2)=7—51F:1(1+B18,2+ 8,2),

1+ 8

F= 1F1(B1S,8;2).
As it should beU(t) obeys the free equation
ig,U(t)=HOU(t).

For a reverse sign ipy (antineutrino case the matrix

U,q is basically the same except for the substitution

Bl—>1_Bl:
F* _V_12G*
Vi
Ured — po,to) =eXp(—2) V
21exqz exp(z)F
Vll
(31
where now F stands for F4[(1—-B;)B8,8,z], and G

changes similarly.

For H Hermitic U is unitary and we get as a by-product
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Wy iwp; —ipo
uied= 1F1( . c?e, Y ) (34)
uted= To— PN ) Wa,, , , War, Ziko
1+iwy /A T2 A ’ Y
(35

We are interested in the expression of the evolution op-
erator in the basis of eigenvalues\ffit is straigthforward to
compute U'=uUu"!. After some algebra, applying the
identities we have seen before and averaging out time-
dependent terms, the probability of electron permanence is

Pee= ”U:’L]”2
]

(36)

=1-5%6|1+C26

iwp; —ipg
1F1(_C2 N ; X )

An expression equivalent to the previous one has been
obtained already by11] in terms of Whittaker functions.
However, our expression is simpler and more compact be-
cause we use the infinite time limit.

In the limit po— 0 or free casez—0 and the hypergeo-
metric functions go to 1 becomes, as expected,

U=exp—iH"%).

In the limit of vanishing mixing angleC?6—1, tard—0
and ;F4(z)—€*in (34), so

Pee=1. (37)

the following nontrivial identity for the absolute value of In the limit w,; /A =Am2/2EX—0, ;F;—1 in (36) and

hypergeometric functions:

2

I1F1(aB,B;2)|*+ a(1-a) 1F1(1+aB,2+B;2)

1+,8
=1 (area) (32
or, using the second equality {27),
1F1(aB,B:2)|?
e
+ o )|1F1(a,8,1+ﬂ;z)— 1F1(a,3,,3;2)|2
=1 (areal. (33

For the particular case ai being the orthogonal two-
dimensional matrix

Co —So
u=lsge co |
the matrixV is
C%0 —SeCo
V=| —spce <%0

1
~5%20.

Pee=1— 2

(38)

In the limit w,,/A>1 (adiabatic regimewe distinguish
two cases: ifw,;/A#|z| we have ;F;—exp(—iC?fpy/\)
and formula(38) also applies; ifw,;/A=|z| a resonance
occurs and the probability drops abruptly. Some asymptotic
formulas exist for this case valid except in the central region
of the resonancésee[12,13).

In the limit of small(but not vanishingmixing angle, we
are left in principle with the expression for the electron per-
manence probabilitfcomputed ignoring diagonal terms in
U)

2
Woq

1F1( \

c2g iWop _ipo)

NN

Pee=(1—2C205%0)
(39

In the figures we show a comparison between form(B&s
and (39). We see that even at very small angles B9) is
not a very good approximation @86) as we could expect.

In Fig. 1 we plot|,F,|? [Eq. (39)] as a function of its
parameters keeping constant. Increasing values of tixe
axis implies a larger mass difference or a smaller neutrino
energy. We observe that the probability is neaadiabatic

andH° the standard neutrino oscillation Hamiltonian given evolution) except for a very concrete region of the parameter

by Eqg.(1). We arrive to (=0 and restoring\)

space(MSW effect or existence of a resonance layédie
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starting point and width of this regiofout not its end point B, B, B
depends on the parameters involved, in particulaf&os fm=_—m Wo—m + W
Figure 2 is equivalent to Fig. 1; this time we plot the exact 12 13
expression for the-e probability, Eq.(36). The global be- -1 (—a;+m)(—a,+m)
havior is exactly the same as before; the local oscillations "M (— Wt m)(—iwggtm)’ (40)

have disappeared now, however. Figure 3 shows the behavior

of the resonance region also for large mixing angles. Thgynerea, ,a, are the roots of a certain two-degree polyno-
continuous curve is our exact solution, the dashed curve thg,ia|, they obey

Parker approximate formula as given[it¥]. Figure 4 shows

the behavior for antineutrinogeverse sign fop, in 2); in a;+a,=i[wi(1—B,)+wyx(1-B3)],

this case the resonance is absent. (41)
In a second set of plotg-igs. 5,6 we keep constant the

parameters and vagyor equivalently the production point of aja,= — BjWiaWy3,

the neutrino: largeliz| or po means larger density at the
creation point which implies that this one is nearer to theand the product of them
center. We see again there is a transition between two well
defined zones: for a very far creation point, the neutrino n-1 _1yn-1_ _
s . 1 (=" (mapm(—az)m

doesn'’t pass through any resonance layer, adiabatic regime H fn== , ,
conditions always apply, andl,.~ 1. m=1  Br (n=1!  (B)mn(B2m)

In order to study in detail the existence and properties of ) . .
the resonance region it would be convenient to have generdfith B12= —1W12 13- The expression foa, a, in Eq(41) has

formulas for the zeros of the hypergeometric functions, aQ€€n important in the simplification of the previous equation.
function not only of its argument but also of its parameters NOte that this last expression is only validaf, andw,; are

Unfortunely very little is known in a general case. There are?0th different from zero. o _
some resultgsee Appendix and reference thepeabout the For the diagonal elements &f, we can write immedi-
real zeros of,F,(a,b:x) with a,b real. ately, in terms of the generalized hypergeometric functions
We note that the expressiofid0) and (39) are still for-  [definition (70)],
mally valid for a purely imaginar\\ [we take for granted
that we can take convenient limits ®g— 0 in the integral
(15)]. Expression(36), however, is not valid any more be-
cause we used the Hermiticity éf (and unitarity ofU) in
computing it. The extrema d§F,|? are given essentially by
the zeros of ;F,(1+a,1+b;x;); for N purely imaginary,
argument and parameters ifr; become real and we can
apply the bounds in Appendix A given by the E¢&8)—(80). (44)
These bounds can be used to deduce the regions in the pa-
rameter space which allow for the existence of such extrema.

(42)

(b|U[b)y=e " "Eot W0 F ) (—ay, —ay, = iWp k1, — IWp k2;2),
(43

with

ayta=i[Wp1(1—Byg) +Wp ko(1—Byo) ],

a18= — BpWp 11 Wp k2

kq,k, are labels for the two eigenvectors different frdam
For the(b|U|a), we can repeat exactly the same path as we
For three neutrino species, we can write, similarly to Eqg.did in the two-dimensional section. We arrive (&te do it
(20, already for the general cgse

B. Three- and k-dimensional cases

a;---ag— . .
Zze(_al+ 1, P ,—ak_1+1,,81+ 1, . ,Bk_1+1,2), g(0)=0, (45)

Zg,+’Blg:,31"-ﬁk—1

with B8;=—iw},, andB,= —iwy,, wherek#a,b. The solution of which is

al..'akfl 7[; z
9(z)= B B’ 1 0dw WA R (—ag+ L, — a1+ 1B, B W)
a;---ax_1 1
ZWZJO ds &1 ke1Fro1(—ag+1, ... —aw_1+1;81,....Bk-1:S2
a;---a_, Z
:Bl. B . 175, ke1Fro1(—ag+1,...—a_ 1+1;8,+2,8,+1,... Bk_11+1;2), (46)

where we have used the expression &§) for u=1. So
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_ z
(bjUlay=e 1Bt Baloly,  ——— F (—a;+1,—a,+1;—iwy g +2,—iWp o+ 1;2). (47)
1+iwp, ' '

a;,a, satisfy Egs(44) with k;=a; k, are labels for the eigenvectors differentlia
Let us take foru a general unitary three-dimensional parametrized as follows:

1 0 0 1 0 0 Cp 0 So¢ Co Sow O
i _
u=| 0 Cy¢ Sy 0 e OA 0 1 0 Sv Cw O (48)
0 —-Sy Cy 0 0 e'® —-S¢ 0 Co 0 0 1
|
The potentiaV is In the small mixing limit the term&/,, are nearly zero for
. k, I#1. Averaging out time dependent terms, we write ap-
Vap=U1pUas =UpU1a- proximately
The last eguallty is valid only in our particular ca&e for Pee=|U}2=C24C%w|U1s( = ,F,)|? (49)
any realu):
Up(a=1—3)=(C¢Cw,ChSw,Se). with obvious arguments for the hypergeometric function.
a ' ' The computation of an exact, fully simplified expression for
Note that the phasé and the angles do not appear irv. U1, requires the algebraic manipulation of sevesa} func-

In the basis wher#l is diagonall’=uUu™ 1. In particu-  tions and is not of major interest. For the expected degree of

lar, for thee-e transition we have

approximation of this formula, see the comments corre-
sponding to the two-dimensional case.
Now we are going to study the behavior df; for two

J 11 — -1 — —
"ﬁll_ull_%: Uy (u )klulk_%: ViU =truv. different limits. Let us suppose that the first and second ei-

genvalues are nearly degeneratg;— 0; in this case

B=0.99

1000.

1 10. 100. 1000.

N B=0.999

1 B=0.999
.8

1 10. 100.

B

1000.

1 10. 100. 1000.

FIG. 1. The function ;F;(BigB,iB8,—1550.2)2 for two different
B’s near 1, as a function g8. This corresponds approximately to FIG. 2. P, [two neutrino species, formul@6)] for a neutrino
the oscillation probability for a neutrino producedrat,=0.25 as  produced atr/r,=0.25 as a function of8=Am?2EX and two

function of 8=Am?/2E\.

different mixing anglesB(=co$6)=0.99,0.999.
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B=0.50

100.

1 B=0.70

100.

100.

0.6 ]
P
0.4
0.2
0
1 10 100.
B
B=0.50 1 B=0.70
0.8
0.6/_\
0.4
0.2
0
10. 100. 1 10 100.
B B
B=0.90 1 B=0.95

10.

100.

B=0.99

100.

B=0.999

10.

100.

100.

FIG. 3. As in Fig. 2 but for a neutrino created
near the surface|#|~20) as a function of the
mixing angle. The dashed line corresponds to the
Parker approximate solutidas it is given by for-
mula (2.18 in [14].

FIG. 4. As Fig. 3 but for antineutrinoge-
verse sign in the argumentof the hypergeomet-
ric function). In this case there is not resonance
(it is possible to distinguish some “anti’-
resonace behavior for larger mixing angles
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W F
y -~
T pn0. 09, B=1,20

0.8 o. B=0.99, #=1,20

0.6 0

0.4 0

Iess=attr/\/}
0.2 0.2
0 0.4 0.6 0.8 1 1.2 0 200 400 600 800 1000
1/t |zl
FIG. 5. P.. [Eg. (36)], as a function of the creation poifin FIG. 6. Function|,F,(iBS,i3,2)|? as a function of|z|, for

solar radius fractionfor a fixed mixing angle cG$=0.99 and two ifferent values of the paramete®=0.99; the upper and lower
different B=Am?2EX=1,20 (respectively upper and lower cyrves correspond respectively go= 1 and 20.
curves.
ful for the study of oscillations in models with extremely
a;=iw3(1—Bj3), a,=-—Biw;w;3—0, (500  heavy sterile neutrinos as those inspired in(BI grand
unified (GU) theories.

and For k dimensions, we can write, similarly to E¢R0),
Uyl 20 ,F i 1 P B2 .. B¢
oC [ — —_— —_— . _ T e— —— “ e —
11 W12[ 1Fi(—ag,—iwy3;2)—1] T m T iw,—m iWg—m
=1-Bywid 1— 1F1(=iwi3(1—-B3), —iwy3;2)]. =(_1)k [(—ay))+m]...[(-ax-1)+m] (54
(51) m (_|W12+m)(_|W1k+m) '
The three-oscillations has been reduced essentially to a twathereay, ... ,a,_; are the roots of thek(—1)-degree poly-
dimensional problem. We can apply to this last formula thenomial:
arguments of the previous section for finding different limit-
ing behaviors as functions of the sizewfs.
g I p(m=2, B —iwy)). (55)

It is interesting also to study what happens when one of
the eigenvalues is much bigger than the oth@nst none
goes to zerp so some of thev's go to infinity. Let us sup- The coefficient of the power of greatest degreg, and

posew;3—. In such a limit, solving previously the second the constant terng,_,, of this polynomial are
degree algebraic equation, we have

s=1 J¢s

iwi(1-B)) CO:ES Bs=1,
a=——5
(52)
Ck-1=p(0)= SZ Bs #S (—Dwyj= (- B, ¢1W11
a;=iwy3(1—B3)=iwi4B;+By). ) )
Thus The product of the roots is then
. Z1%k-1
iw;(1-B g, =(—1)k 1l _ik-1pg o
lim U lim Fz(—lZ(Z 2), 3. A1 =(—1) ! lj;&lWlJ
Wyg— Wyg— 2

Based on the previous formula and assuming allwhe
iwq 5B+ Bz),iW12,iW13iZ) different from zero, we can generalize the two- and three-
dimensional expressions for the product

iwq5;2(B1+By) |,

= 1F1(M (53

2

-1
nl—[ ; :i (=" (—a))m)---(—a-1)(n) (56)
m=1 " By (n—=D! (Bo)m)-Be-Dm
so, as expected, the system behaves effectively as a two-
dimensional system. Note that the two-dimensional submawith Bs=—iwg.
trix of u is not unitary, so the surB;+ B, is not equal to As it can be deduced trivially, the matrt for k dimen-

unity anymore in Eq(53). This procedure is especially use- sions is the product
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U(t)=exd —iHo(t—to)JUed H%V,po.to), The matrix defined by Eq(59) satisfies by construction

the initial conditionU(0,0)=1. In addition we must check

the elements ol .4 being essentially generalized confluent that it satisfies Eq(4): inserting the last expression we ob-
hypergeometric functions of ordde— 1. The diagonal ele- tained, and eliminating the common factdf.(t,=0), we

ments are given in a basis of eigenvaluei8fby get
(alUred@)=y_1Fk-1(—aq,...,—ay_1, —i9,&M0tU o= eMotU o Ho+ p(t)V],
Pro-Beaiz), &7 MO HOU e €™M0 o= €H0'U o Ho+ p() V],

with the a's and pB’s defined as before, and
Z:_ieitd}\pol)\.
For nondiagonal elements,

[Ho,Ured =i0{U et p(1) U edV; (60)

the dependence dfl,.q on t comes from the substitution

(blUday= b2 2 E o (—a+1 e
ay=—— ——_1Fw_1(—a e A ;
re Vbbl_’_ﬁlklkl 1 k—1
B1+2,... Bro1t1:2). (58) [Ho,Uredt)]=0, (61)

Note that for each individual elemepts anda’s are differ- ~ for example, if the difference of the eigenvaluestf is
ently defined. relatively small, then Eq(60) has the trivial solution

As it was pointed out before the previous expressions are .
valid.only for the completely nondegene(ate case: all the Ureo(t)=exp( —iVJ g(w)du (62
w;; different from zero. The general case will be treated else- 0

where; it is easy to see that the order of the hypergeometric
functions appearing there will decrease in one unit for eaci@nd theU matrix becomes
of thew’s equal to zero. i

The unitarity ofU for any HermitianH induces a tower of U(t,0)=exp(—iHot)Uredt)
identities between the absolute values of the hypergeometric t
functions generalizing the expressiof®2,33 found for the =exp(—iH0t)exp< —ivf g(u)du
two-dimensional case. 0

. (63

This is a highly nontrivial expression valid for arbitrary
Ho,V andg(t). Some perturbation approximation expansion
Until now we have considered the evolution of the systemin AE can be implemented for better approximations.

C. Evolution for finite time

from a finitet, until infinite time. Now, using general prop- In our particular case it is easy to check that the previous
erties of the evolution operator, we will compute the evolu-Eq. (60) is really fulfilled. It converts to a system of
tion for arbitrary finite intervals. algebraic-functional relations between hypergeometric func-
Any U, for any intermediate timg;, obeys the composi- tions. For simplicity we take the two-dimensional case.
tion property Equation (60) is equivalent to only two independent rela-

tions, with the same notation as in previous sections:
U(t,to) =U(t,t1)U(t1,t0).
. . . . . d,F=FV11+|V1]°G,
Taking the limitt—oc in the above expression we arrive at

(taking ty=0 for simplicity) F=(=Vypt Bl2)G+d,G; (64)

Ueo(t,00=Ue(t, 1) U(t1,0). with the help of Eq.(A6), we obtain instead two algebraic
equations that can be proved to be identities with E4%0).
We just prove in detail the first one. First we identify
N=a, V3= a(1—a), so the first term is

By the subindex> we want to remark we have computed
U as in the previous sections, using some limiting proces
So, asU has an inverse,

U(t,00=U2 " (&,H)U.(1,0 d;F(aB,B,2)=a 1Fi(af+16+12); (65)
=UT(u,t)U.(u,0) the second term is
= Ul (to=t)eHolr—De Hony (t,=0) FVi+|Vi)*G=a 1F1(aB,B;2)+(1- a)[ 1F1(aB,B;2)
=U/to=t)e MU o 1,=0), (59 ~ Fi(aB,p+1;2)]

where we have effectuated some relabing to let clear the time = 1Fu(ep.piz)=(1=a)

dependenceu, appearing at first as a new arbitrary param- X ,F1(aB,B+1;2). (66)
eter, disappears from the last expressidp,y is the matrix

depending on the diverse parameters of the system, includirlg the first line we have used E(B3). The last expression is
to [compare with Eq(30)]. just the identity(A9).
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In summary, we have proved that the evolution operator ax=[A+f(t)B]x,
for any finite time is

ot Mt with A,B constant matrix is missing in spite of the fact these
U(t,0)=Urdt)e "oUd0), (67) systems are the “next-step” in complexity from all-constant
coefficient equations. Only solutions for a few examples of
with U g given in the previous sections. Expressions can behese equations are known.
given now for the transition probabilities in the mass or weak The generalized hypergeometric functions are shown to
basis as we did before. However, the expressions are rathge the asymptotic solutions of a simple differential equation
involved and not so illuminating. For almost any practicalin a systematic way. New identities for the absolute values of
purpose we can stick to the expressions given intthec  these functions are derived. The generality of the results ob-
limit. tained here induces us to consider the utility of defining hy-
pergeometric functions of matrix parametes§,(A,B;z)
IIl. CONCLUSIONS AND FURTHER DISCUSSION with z complex, similar extensions exist already: generaliza-
tions with complex parameters but matrix argument or pa-

Exact expressions for the transition probabilities of neutameters and argument defined in arbitrary finite fields for
trinos propagating radially in the Sun are given. These arexample. Let us note finally that making the change
valid for an arbitrary number of neutrino species. The solu-
tion, very compact in terms of hypergeometric functions, is
very suitable for analytical studies of resonance and for sys-
tematic numerical approximations. The computational task
of computing numerically this kind of function makes how- OUr system becomes of the form
ever very impractical the actual use of them in concrete ap-
plications for the moment.

The perturbative expansion method used, that in this par- IyX=
ticular case gives an exact solution, is well suited to produce
approximate results for the same matrix form of the potential . .
(all eigenvalues but one equal to zebut for arbitrary form SO W€ have found also a solution for this system, the hyper-
of p(t). The consideration of a finite number of terms in the 980Metric functions appear now as regular solutions for
expansion is expected not to be useful but yes the summatiofi~ 0-
for all orders of appropriate leading terms. Another possibil-
ity is to consider the difference between an arbitraft) and ACKNOWLEDGMENTS
our exponential as small and do perturbation theory around
our exact solution. In principle we expect this procedure to | would like to thank to Peter Minkowski for many en-
be convenient at far distances from the creation point; as wghtening discussions. This work has been supported in part
have seen the probability transition depends more on thBy the Wolferman-Ngeli Foundation(Switzerland and by
existence of a resonant region than on the detailed shape #fe MEC-CYCIT (Spain.
the potential. This would make it possible to compute formu-
las for nonradial propagation and for the regions where the
exponentially decaying density lose validity: central core and
solar surface.

The phenomenon of resonan¢er MSW effec} is re- See[12] and references therein for all of these definitions
markable in itself. The present solution offers a starting poinand formulas. The confluent hypergeometric function is de-
for its analytical description. We note the similarity of this fined by
effect with the original form of the Anderson localization

y=exp—1)

X

A
—+B
y

APPENDIX A: SOME FORMULAS ABOUT
HYPERGEOMETRIC FUNCTIONS

effect presented ifl5]. This similarity is especially evident * (a), 2"
under the treatment done in this work. In both cases the Fi(a,b;z)=>, m = (A1)
. . . 11 1My b 1

locking of a system in one of its quantum states except for a n=0 (P)(m n!

certain range of the parameter space arise as a property of the

solution of a coupled system of ordinary differential equa-where the Pochammer symbol is

tions. As in its caséwhich physically correspond to the evo-

lution of a particular site in a random latticéhe proper _

energieqor its differencesof each mode play an important (2)m=L(n+2)/T(2). (A2)

role; however, here these are not needed to be stochastically _ _ o _

distributed. This condition of randomness is essentifl &; The generalized hypergeometric function is defined by

the results in this work induce us to think whether such ran-

domness is a mere mathematical convenience more than hav- o o n

) ; . (@) (ap)(n) Z

ing a deep physical meaning. pFglas, ... ap,b1, ... bgi2)= > B by nl"
Apart from physical interest, our solution has intrinsic 1=0 (b)) -+ (Bg) () N!

mathematical interest in the theory of differential equations (A3)

and of special functions. A general theory of equations of the
form The integral
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t
f X" Ht=x)¢" "L F (a,y;x)dx
0

e T nT(c—7)

=t (o)

1Fi(a,cit);  [Rec,y>0]

(A4)

is a special case of

1
jo (1—x)® UxPr=tE (ay,...a,;b1, ... byrax)dx

I'(p)I'(by)
= Wqu(al, <@gt by,by, L bgra);
[Reu,b;)>0, p<q+1]. (A5)
Some other important formulas are
d 1F1(a,'y;z) o
T:;1F1(1+a,1+ Y,2), (A6)
1Fi(a, viz)=exe 1Fi(y—a,y,—2), (A7)

z
;1F1(01+ 1y+1;2)= 1Fi(1+a,y;2)— 1Fi(a,7:2),
(A8)

4041

aFi(atly+1;2)=(a—7y) 1Fi(a,y+1;2)

+v1Fi(e,y,2), (A9)
a Fi(a+ly;2)=(z2+2a—y):1Fi(a,v:2)

+(y—a)Fi(a—1,52). (Al0)
From [16] we know that the real zerosx; of

1F1(a,c;x) for a,c real satisfy the bounds

(c—2a)—2[a(a—c)—C]
<x;<(c—2a)+2y[a(a—c)—c]. (A11)
The smallest real zem, = X, satisfy
c(c+2)

Xmin m (A12)

Applying the same bound to the expressiéY) we deduce
the lower bound for the maximal real zexg,,,:

c(c+2)

(Xmin<) m< Xmax- (A13)
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