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Electromagnetic form factors of the SU3) octet baryons in the semibosonized S(3)
Nambu—Jona-Lasinio model
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The electromagnetic form factors of the @Joctet baryons are investigated in the semibosonize(8SU
Nambu—Jona-Lasinio modéthiral quark-soliton modgl The rotational I, and strange quark mass correc-
tions in linear order are taken into account. The electromagnetic charge radii of the nucleon and magnetic
moments are also evaluated. It turns out that the model is in remarkably good agreement with the experimental
data.

PACS numbds): 13.40.Gp, 13.40.Em, 14.20.Dh, 14.20.Jn

[. INTRODUCTION the model enables us to describe quantitatively a great deal
of static properties of the nucleon such BsA splitting
In spite of the belief that quantum chromodynamics[8,11], axial constant$8,12,13, electromagnetic form fac-
(QCD) is the fundamental underlying theory of the strongtors [14,15, and to some extent also magnetic moments
interaction, low energy phenomena such as static propertids,15].
of hadrons defy solutions based on QCD. The pertinacity of Although the SW2) version of the model was quite suc-
QCD in the low energy region have led to efforts to constructcessful to explain many static properties of the nucleon, it is
an effective theory for the strong interaction. In pursuit of necessary to extend the model from(8Jto SU3) so that it
this aim, the chiral quark-soliton model, also known as thecan be possible to examine the same properties of hyperons
semibosonized Nambu—Jona-LasiildIL) model, emerged and moreover to investigate the effects of hidden strangeness
as a successful effective theory to describe the low-energgn the nucleon which are, in particular, manifested in the
phenomena without loss of important properties of QCD#N o term[16,17], the isosplitting of the baryonic masses
such as chiral symmetry and its spontaneous breaking.  [18], and strange form factofd.9]. Blotz et al.[22,23 and
Originally, the idea of finding the soliton in a model with Weigelet al.[24] have carried out the extension of the model
quarks coupled to pions was realized by Kahana, Ripka, anflom SU(2) to SU(3). Starting from the semibosonized NJL-
Soni[1] and Birse and Banerjd@]. The bound states of the type Lagrangian, they have shown that the model describes
valence quarks were well explored in the model while ithyperon spectra successfully. The extended3pthodel is
suffered from the vacuum instabilif]. This problem of the distinguished from the S@2) NJL in two ways: First, the
vacuum instability was solved by Diakonov and Petfdy  mixed terms of the pure S8) part and the strange vacuum
Having investigated the instanton picture of the QCDpart are induced by the trivial embedding of the(3\soli-
vacuum in the low-momenta limit in Ref4], they have ton into SUS3). Second, since the mass of the strange
shown that the low-momenta theory is equivalent to thevacuum part is not negligible, one has to take into account
quark-soliton model free from the vacuum instability. Thethe mass term in the effective action explicitly. The mass
model was further elaborated in Rdb] so that it could corrections are treated perturbatively in linear order. It was
predict the static properties of the nucleon in the gradienshown that the perturbative treatment of ting in the NJL
approximation. model describes the octet-decuplet mass split{iag,23
The baryon in this model is regardedMgvalence quarks very well and plays an essential role in the mass splitting of
coupled to the polarized Dirac sea bound by a nontriviahyperons. These two differences determine the characteris-
chiral field configuration in the Hartree approximat{&+8|.  tics of the SW3) NJL model.
The identification of the baryon quantum numbers is ac- Reference$22,24 indicate that the S{8) NJL provides a
quired by the semiclassical quantizatif¢®,9] (in nuclear more refined structure of the collective Hamiltonian than that
physics called the cranking methpth]) which is performed  provided by the pseudoscalar Skyrme model. A comparable
by integrating over the zero-mode fluctuations of the pionstructure can be obtained in the Skyrme model only by in-
field around the saddle point. It makes the baryon carrytroducing explicit vector mesons. However, it is inevitable to
proper quantum numbers like spins and isospins. 125U import large numbers of parameters into the Skyrme model
with vector meson, while the parameters in the NJL model
can be fixed completely by adjusting mesonic masses and
“Electronic address: kim@hadron.tp2.ruhr-uni-bochum.de decay constants(.,fx). The only free parameter we have is
TPresent address: Department of Physics, State University of Ne#he constituent quark mass arising as a result of the sponta-
York, Stony Brook, New York 11794, neously broken chiral symmetry. This parameter is fixed by
*On leave of absence from Petersburg Nuclear Physics Institutedjusting the mass splitting3] properly.
Gatchina, St. Petersburg 188350, Russia. It is of great importance that M/ rotational corrections
SElectronic address: goeke@hadron.tp2.ruhr-uni-bochum.de  are taken into account. Starting from the path integral for-
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malism, when we integrate over zero-mode fluctuationsve shall look uporM as a constant and introduce the ultra-
around the saddle point, a time-ordered product of collectiveviolet cutoff via the proper time regularization which pre-
operators appears. TheNl/contribution survives because of serves gauge and chiral invariaf@9]. The my and mg in
the noncommutivity of the collective operatdrE2]. It was  Eq. (4) are, respectively, defined by

examined in detail in Ref13] by calculating the axial vector

constantggy, and isovector magnetic moments in @Y In my,+ mg+mg m,+my—2mg

the same spirit, the SB8) model was applied to obtain the Mo= 3 v M= 23 : ®)
axial constantg®®, g¥, andg{® [20,21,25-27. It pre-
dicted the experimental data within abdl@%. The operatoiD is expressed in Euclidean space in terms of

In a recent paper, we have proceeded to evaluate the magre Euclidean time derivativé, and the Dirac one-particle
netic momentg28]. The magnetic moments of the 8)  HamiltonianH (V)

octet baryons predicted by the present model are in a remark-

able agreement with the experiments. iD=d,+H(U)+psm—pml (6)
Now, we are in a position to study the electromagnetic

form factors and other form factors such as strange fornyith

factors. It is important to investigate the form factors in our - v

model, since it allows us to take a step forward in studying _a —

dynamics. Hence, as a first phase, we will consider the elec- H(U)= i_+’8MU+’8m1' 0

tromagnetic form factors. It is of great significance to know

them in the SWB) NJL in that not only they provide us with 3 anda are the well-known Dirac Hermitian matric30].

the electromagnetic informations but also allow us to pro-The m is defined by ,+mg)/2=m,=my. We want to

ceed to explore the techniques for the form factors of theemphasize that the NJL model is a low-energy effective

neutral °) currents and charged weal/(") currents. model of QCD. Hence, the action of this model can have, in
The outline of the paper is as follows. In Sec. Il, we principle, corrections from higher orders such as a term

develop the general formalism for the electromagnetic form~m?¥ ¥ for example. However, the coefficient in front of

factors in the S(B) NJL. In Sec. IlI, we discuss the electric such a term is not knowntheoretically. Therefore, it is

form factors with related quantities such as electric chargeneaningless to go beyond the linear order of the quark mass

radii. In Sec. IV, we continue to study the magnetic formexpansion unless higher order correctidesy., the coeffi-

factors of the S(B) octet baryons. In Sec. V, we summarize cient in front ofﬁ']z\IfT\If) to the action are known.

the work and draw conclusions. The electromagnetic form factors of the barydhgg?)
are defined by the expectation values of the electromagnetic
Il. THE GENERAL FORMALISM currentV, of the quark fields:
In this section, we present the general formalism for the _
electromagnetic form factors of the ) octet baryons in (B',p'|V,,(0)|B,p)=Ug/(p")| ¥,F1(q?)
the NJL.
The SU3) NJL is characterized by a partition function in _ q” 5
Euclidean space given by the functional integral over pseu- +iou 5y Fa(a) \us(p)  (8)
doscalar meson and quark fields: N
with
Zz= f DV 7 Trexp — Sy — .
Vu(2)=¥(2)7,Q¥ (2). 9)

:j gq;_%p‘rgwanF< _j d4xqulip>, ) My denotes the nucleon mafs.designates the charge op-
erator of the quark fieldV (z):

whereD denotes the Dirac differential operator

2
. oA = 0 0
iD=B(—id+m+MU) (2 3
with the pseudoscalar chiral field Q: 0o - % 0 | =Ty+ ; (10
U=exp 7\%ys. ©) o o 1
m is the matrix of the current quark mass given by 3
m=diag(m, ,my,Mg) = Myl+mghg. (4) Tz andY are, respectively, the third component of the isospin

and hypercharge given by the Gell-Mann—Nishjima formula.
A2 represent the usual Gell-Mann matrices normalized ahe g2 is just the four-momentum transfef=—Q? with
tr(\®\P)=24%". Here, we assume isospin symmetry, i.e.,
m,=my. M shows the dynamical quark mass arising from
the spontaneous chiral symmetry breaking, which is in gen- 'The coefficient for then¥?™¥ is determined by the soft-pion
eral momentum depende®]. For the sake of convenience, theorem.
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Q2>0. Hence, the electromagnetic current can be de- GE(Q)=F5(Q?+F5(@Q?. 13

composed into the third and eighth &)Y octet currents
In the nonrelativistic limit Q?<M?2), the Sachs form factors

Ge(Q?) andGy,(Q?) are related to the time and space com-
V,=V¥+ —v® (11) i i
vV \/§ © ponents of the electromagnetic current, respectively:

(B',p’|Vo(0)|B,p)=GE(Q?)

with
1 — 1 — [N 1 B 2\i j '
Vf):zq,n)\aq,’ VLS)ZE\I,M)\S\I,_ 12 (B',p |Vi(0)|va>:mGM(Q )i€id (N [oN),
(14)
The electromagnetic form faCtOE(QZ)an” be expressed \yhere o stand for Pauli spin matrice$)) is the corre-
in terms of the Sachs form factor§z(Q°) and Gy (Q): sponding spin state of the baryon.
Q2 The matrix elements of the electromagnetic current can be
GE(Q)=F§(Q? - v F2(Q?), rep_resented by the Euclidean functional integral in our model
defined by Eq(1):

. 1 .T.,T 33 L s s s
(B",p'|V,.(0)|B,p)==lim exp ips7 —ips7 fd xd%y exp(—ip’-y+ip-x)
ST —ow

Xf!jufEzllff@‘PTJB,(Q,TIZ)\IIT(O)EyMQ\P(O)JE(i,—T/2)exp{—f d4zx1fTiD\1f}

(15
The baryonic statefB,p) and(B’,p’| are, respectively, defined by
[B,p)=lim expipsxs)— f d3xexp(ip - X)JL(X,X4)|0)
Xg——®
A’ ; ] 1 3 [ "
(B',p’'|= lim exq—|p4y4)—f d?yexp(—ip’-y){(0]Jg:(Y,Ya). (16)
y4—>+oc \/Z
The baryon curreniig can be constructed from quark fields with the number of calys
1
Js(x)= NI Sz JJSTT VWi (X) - “Way iy (X)- 17
ap- - ay, denote spin-flavor indices, whilg - - |N designate color indices. The matrlcE§ c are taken to endow the

corresponding current with the quantum numhklgT T5Y. TheJ plays the role of creating the baryon state. With the quark
fields being integrated out, E¢L5) can be divided into two separate contributions:

(B'.p'|V,.(0)[B,p)=(B",p'|V,(0)|B,p)vart (B".p'|V,(0)|B,P)sea (18

where

, ProBne pe T T
(B",p’|V,(0)[B,p)ya= N por ey ¢lim exp(|p4§—|p4§)fd3xd3yexp(—|p y+ip-x)

£ JITITLY! JJ3TT3YT

N¢

- 1 - 1
Xf 5//Uexp(—Seﬁ)i=2l Bi<y,T/2’5‘0,tz> [BYMQ]w’y'<OthB
Y

X,— T/2>
NC

. 1
x[1 Bj<y,T/2‘5

[l X, — T/2> (19

“

and
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1 ... oot T T I
<B’,|c>’IVM(O)IB,|0>sea=§FB1 e TN exp(ipq—ip‘ig)fd3xd3yexr>(—ip’-y+ip-x)

! r
IITITLY TTY

1

~ Ne . 1
o [B7.Q] o,tz>ilj[l ﬁi<y,T/2B

X, —T/2> . (20)

aj

X J DUexp — Seﬁ)Trym< 0t,

Seff IS the effective chiral action expressed by with the angular velocity
Seir=—SpI d,+H(U)+ Bm— Bm1]. (2D L
T / i _"i0paya
Sp stands for the functional trace of the time-independent A (t)A(t)_'QE_z'QE)‘ (27)

function.

The integral over bosonic fields can be carried out by the
saddle point method in the lardé; limit, choosing the fol- and the velocity of the translational motion
lowing ansatz:

N
Il
N

(28)

2l

_(UO O)
U=, 4| (22)

whereU, is the SU2) chiral background field The canonical quantization of the 8) soliton can be found

in Refs.[31,32. Expanding Eq{(26) in powers of angular
Ug=exdn- 7P(r)]. (23)  and translational velocities~1/N.), we end up with the
action for collective coordinates:

P(r) denotes the profile function satisfying the boundary
conditionP(0)=m andP(e)=0. In order to find the quan-
tum 1N, corrections, we have to integrate Eq§9), (20 - : >
over small oscillations of the pseudo-Goldstone fi€2@) Seon™ = NeTrINID + Sl Al* Syand 21, 29
around the saddle point. This will not be done except for the
zero modes. The corresponding fluctuations of the pion fieldg;here
are not small and hence cannot be neglected. The zero modes
are pertinent to continuous symmetries in our problem. Ac-
tually, there are three translational and seven rotational zero 1 1 o
modes. We have_ to take into account the translatlo_nal zerog [A]= §|abJ' dtQ.Qp, SyandZ]= EMCJ dtz.Z,
modes properly in order to evaluate form factors, since the
soliton is not invariant under translation and its translational (30
invariance is restored only after integrating over the transla-
tional zero modes. The rotational zero modes determine thei the moments of inertid®® calculated in Ref[23].
quantum numbers of baryoin8]. Explicitly, the zero modes \, 'is 5 classical mass of the soliton. Corresponding collec-
are taken into account by considering a slowdyating and tive Hamiltonians have a form
translatinghedgehog:

U(x,t)=A(t)U[x—Z(t)JAT(1). (24) B.p
. ) ) Hior= (1 _1)ab~]a‘]ba Htrans:2M ) (32)
A(t) belongs to an S[3) unitary matrix. The Dirac operator cl

iD in Eq. (6) can be written as
whereJ, are operators of angular momentum dhdre mo-

iD=[d,+HU)+AT(AM) —iBZ-V mentum operators.
R Hence, Eqs(19) and (20) can be written in terms of the
+BAT(H) (M—mD)A(1)]. (25  rotated Dirac operatoiD and chiral effective actiorSy.
. ) L The functional integral over the pseudoscalar figlds re-
The corresponding collective action is expressed by placed by the path integral which can be calculated in terms

of the eigenstates of the Hamiltonian corresponding to the
Si= —N.SpIM o, +H(U)+AT(DAM) —i BZ-V+ BAT(1) collective action given in Eq(29) and these Hamiltonians
R can be diagonalized in an exact manner. Therefore, @§5.
x(rh—rﬁl)A(t)—,BAT(t)VMyUQA(t)] (26) and(20) can be rewritten as ordinary integrals:
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PN, e . .
JJT,TNYTJJTTYEXD{ [(Ne— 1)Eva|+EsegT}Tlwa d*xd’ exp(—ip’-y+ip-x)

<B,!p,|vlu(o)|Blp>Va|: Z

X f dAdAdAdZdZdZ(Z|exp( —HyandT 12)| Z)(Z|€Xp — HypandT 12)| Zi )( Al eXp — Hyo(T/2) | A)

N
S . o 1 - -
><<A|exp(—HrotT/2)|Ai>k§=)l J’[Bk< y—2Z;,TI2 AfB —z> [A'Bv,QAl,,
Y
R
X | —Z|=Al|x=2Z;,-T/2 , (32)
iD
Ay
:8 .BN g

cexp[ (NEya+ Eged T Ilmfd3xd3y exp(—ip’-y+ip-X)

T—oo

1
<B P |V (0) |B p)sea z J;J T’T \ZNAN NG

X f dAdAdAdZdZdZ(Z|exp( —HyandT 12)| Z)(Z|€Xp{ — HyandT 12)| Zi (Al €Xp{ — Hyo(T/2) | A)

> |
vy’

J1---] denotes the time-ordered product of collective operators. This is because of the fact that the functional integral
corresponds to the matrix elements of the time-ordered products of the collective operators. In particular, the time ordering is
very significant when we consider the magnetic form factassin case of the axial constants: $&8,20), since the spin
operatorJ® does not commute with the $8) rotational unitary matriXA(t). As we integrate over zero modes in the final and

initial states, we obtain the translational and rotational corrections of the classical energies of the soliton from the effective
actions S, and S;. Therefore, introducing the spectral representations of the quark propdgat@xpressed by the
eigenfunctions of the Dirac Hamiltonigd(U), and making use of relations

(33

X(Alexp(—H,oT/2)| Ai>7[ Trm< -7

f dZ(Z|exp(— Syand| Z)F(x—Z) — <2|exrx—sran9|i>f A3 f(x"), (34)
T—o
JJ TT,Y f d'[1 [Af¢ (x e =¥ YTT3)(Y 335 (A1), (39
FjJ TT3Y d’ ,H [6'(x)A]o,= {//E?()TE viasg (A, (36)
n M J(J+1)

(Alexp( — S |Ai) = ; ‘pEY)TTs)(Y’JJS)(A)¢EY)TT3)(Y’JJ3)(Ai)eXF{—T ) (37)
(YTTs)
(Y'333)

we obtain relatively simple expressions:

(B".p'[V,(0)|B,p)vai=Nc f d°Z exp(iq-2) LU( )dA¢<”>*(A)¢<“> (AT A+ 7LIA) + 7T, (39)

S 1 ~ N
(B",p'|V,(0)|B,p)ses= Nc f d°Z exp(iq-Z) f dAw,w Ay, (A)L7[Tr<2i—5[ATB7MQA]‘Z>}- (39

Here, we have considered contributions up to the first ordé€lof i.e., the 1IN, corrections and the linear corrections of the
strange quark mass;. The mixed termO(ms/N,) is relatively small, so that it is neglect¢d8]. It is performed by the
expansion of the propagatoril/ in terms of Qg andmg:
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1 1
e (—iQe)—— — BATH
TEEECREETE 'QE)aT+H+a+H( AATA) G TR (40
The collective SW3) octet wave functionswi‘”,)y,(A) are identified with the S(3) Wigner functions
PO (A)=dim(n)(—1)Y 2H5[ (Y, T, T4 DM(A) |~ Y',d,— Jg)]* (42)

(YTT3)(Y'JJ3)

as eigenstates of the collective rotational Hamiltonian. The functioiig) are defined as

0
74 (A)=(val By, \val)DP)(A),

1
(A== [(valnn)(n| By, A°lvahi (A DGYA) (vl By, |n)(n|A?vah DS A) OZ(A e

_ 1
T3 (A == (mo=m) X [{vall £ln)(n| £y, vah DGI(A)(val B, M In)(n| Blvah DA le—¢-

1
~ms 2, [{vall Bx*n)(n| By, \"val D2 (A)DGy(A) +(vall By, A In)nl BA*Ival) DGy A)DE: (A) Jg——¢
(42

D) is defined ag(DE)+1/y/3D). The collective S(B) octet wave function in Eq41) satisfies the orthonormalif3]

f dAY (A P A) = 8308800 (43)

The subscriptgcv of :,Z/(n) representY TT3)(Y'JJ3). (n) stands for the irreducible representation of(SUY’ is the negative
of the right hypercharge constrained Mg= N.B/3=1. Since EQ.(39), in particular, its real part diverges, we have to
regularize it. We employ the well-known proper time regularization

1 du
RES = 2Trf ue—“D*Dqs(u;Ai) (44)

with

d)(u;Ai):Z cﬂ(u—%). (45)

The cutoff parameterp(u;A;) is fixed via reproducing the physical pion decay constgnt 93 MeV and other mesonic
propertied23]. As was done in case of the valence part, we take into accountiheatd lineam, correctiongsee Appendix

A for detail).
Making use of the expansion equati@t0) and the S§3) octet wave functions and employing the proper-time regulariza-

tion, we arrive at

SN Em)([DGa /i Q8168 | € 20 m(a)
<{Dg;,iﬂké}>35ﬂ4 En—Eva

ab /a q

< 1m(Q) — A et m( @)

2 ({D&),i 0%} m%mc(mo—m)ﬁ (DGDedu g g
val m n val

- N
<B, p |V 0)|B p>val_ C<D(8)>Bf vaI(Q)‘F?C%

J/i val, m(q)

(8) p(8)y — - mvalm A7
+Ncm8§n: ({Dga:Das e E,En ' (46)
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N HENS| L -
<B/vp,|v,u(o)|Bap>sea:_ 2 SQr(En)<D(8) [ S, M]‘%‘Z;n(Q)

"
2 (En En){[DS)iQ2])g m]
+ 2 | (En’Em)<{D(Q8;7IQE}>B 4 “u; nm(Q)

+—E (D&Y e 7 Y(En Em) 8,40 2nm(Q)
+ _(mo m)E (DEN 25 (En Em)- 5 0m(@) 8,
+%msm2m ({DGa.D& e { ﬁ((EE”n’,EE’“)) 5’“ ]%‘;?nm@, (47
where the quark matrix elements are written as
78 @= | XTI 00 87,00,
O 2= f d3xed f APy W () By, N ()T (YINCT (y),

Al G) = f d3xeld f APy W () By, AW ()W L (y) BE (),

T ()= f dixeli-s f YT (x) By, AT (0T (y) BN (). 49

The regularization functions are given by

) du _uE?
.%)(En)=fﬁ¢(u;Ai>lEnle 5,

a(Eg+Ep) —E exp{—[@E2+ (1— @)EZ]/AZ

, 1 1
Q%E(/(En,Em)zzcifoda

Ja(l-a) B2+ (1- a)E ’
Ene—uEﬁ_;’_ Eme_UEfzn e—uEﬁ_e—uEﬁ.l
2(En,Em) = f u;Ay) +
1(En Em) 2 o EntEm u(E;—Eq)
1 sgn(E,) —sgnEm)
2. /(En Em)=3 E._E, :
B E) 1 °°du¢( A)[Ene‘“Eﬁ—Eme‘“Eﬂ 49
V4 , = — [—— u; .
prmnem 2\/; 0 \/G I En—Em

I, are moments of inertia defined in R§R2]. () denotes the SU3) Wigner functionD® and the angular velocity
the expectation value of the WignBrfunctions in collective ()¢ of the soliton. This is because of the time ordering of the
space spanned b%. The expectation values of tH& func-  operators and the symmetric properties of the quark matrix
tions can be evaluated by $8) Clebsch-Gordan coefficients elements under indicas andm or underG?s parity [35]. If
listed in[33,34]. The indexu is the Lorentz index and and  the quark matrix elements are antisymmetric, then the com-
b denote the flavors, whereaglesignates the space compo- mutator survives, while if they are symmetric, then the anti-
nent of the electromagnetic current. We can here notice thatommutator does. The quark matrix elements for the electric
in EQ. (47) 1/N, term includes two different commuting re- form factors w=4) are symmetric whereas some of the
lations, i.e., the commutator and anti-commutator betweematrix elements for the magnetic form factors are anti-
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symmetric. However, note that on the whole the matrix ele-hedgehog solutions are obtained by means of the embedding
ment of the current is symmetric, since the regularizatiorof the SU2) hedgehog fieldJ, as shown in Eq(22), it is
functions are symmetric under exchangenoindm except  convenient to define the projection operatBrsand Ps:
for %,.

The regularization functions in E¢49) are determined in 1 00 0 0O
the proper time regularization manifestly except fat , p.=l0 1 0 P.=| 0 0 0] (52)
which corresponds to the Wess-Zumino terms from the T ’ s
imaginary part of the action. In fact”Z , is not a regular- 000 0 01

ization function. It is independent of the cutoff parameter . . L
A Having defined these projection operators, we can separate

the pure SW2) part from the SW3) which are represented by
the collective operators. Utilizing the projection operators
'émd introducing SU(2)X U(1)y-invariant tensors

With SU(3) symmetry explicitly broken byng, the col-
lective Hamiltonian is no longer SB) symmetric. There-
fore, the eigenstates of the Hamiltonian are neither in a pur

octet nor in a pure decuplet but in mixed states. Treating A fa=123
mg as a perturbation, we can obtain the mixed(3ary- _ T
onic states: P\2={ 0 ifa=456,7,
— 1 if a=8,
18,B)=|8,8)+c,|10,B)+c5,|27B) (50)
with a b i (fabc abc 1 c gb8 8 dbc
PIA@PAP=]|i(f2Pc—¢ )—T(aaa + 63850
1 3
V5
B abc|y c
CIO:E(O'_rl) 1 Izms, +d A (53)
0 we can find that the quark matrix elements include only the
/6 pure SU2) components with transition matrix elements be-
tween the vacuum states with &) flavors and the eigen-
1 3 states of the one-body Hamiltonian equat{@ The SU3)
cor= 75(30Fri=4ry) | lams (3D elements only appear in the collective parts. Hence, we can

write the expression of the electric form factors

V6

. . - - N ) 1(Q2)
in the baS|_s{N, A, 2_, Z]. Here,B denote_s the S(3) octet GE(QZ)Z —C<Dg§>3%’(Q (D Ja)B

baryons with the spin 1/2. The constantis related to the \/—

SU(2) 7N o termZ gy()= 3/2(m,+mgy) o andr; designates
K;/l;, whereK; stands for the anomalous moments of iner-

2.7,(Q%
_(D® A 254 (8)y(8)
tia defined in Ref[23]. (Doplple " +(DgzDqae

@)
lll. THE ELECTRIC PROPERTIES \/—(|1771(Q )= 71(Q*)K)+(DgDE,

|
OF THE SU(3) OCTET BARYONS !

The electric form factors are easily obtained by the matrix xﬂ@ > T 2(Q2) = T5(QDK,), (54)
elements of the time component of the electromagnetic cur- IZ\/—

rent, as was defined in E@L4). Equation(47) furnishes the

final expression of the electric form factor. Since the(®U where

- 1
AQ?)= f d3xjo<Qr>[\1f$a.<x)wva|<x>—5; SGEn) W () Wa(x)|,

T H) 7 (%) - T L (y) T (y)
En_ Eval

.. N , 1 - .
7= J d*jo(Qr) J d3y[ + S WA T (X)W (y) 7Y (Y)- 2 A En Em) |

{«PL() vV W ro(y) 1

> Nc ) i}
7AQ) =52 f d*xjo(Qr) f d E o E. 5\Pl(x)wmo<x>w;o<y>wn(y>./a;<En,Eﬁo},
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W) 78 a(X) - Pl (Y) BTV o (y)
En_ EvaI

- N .
Q=T deXJo(Qr)de
1 - -
+ 5 W) TV (X)W r(Y) BTV (Y)- 2 A Eq E) |

N, U)W ()P L(Y) BT ro(y) 1
./5’2(Q2)=€E fd3xjo(Qr)fd3y{ i ||5 _E' i +5Wﬁ(x)wmo(x)WLo(y)B‘I'n(y).%?/z(En,E%),
n,m° m@ val

(59

with the regularization functions?, and.7 ,, defined in Eq. when we take into account the pion mass. Hence, at large
(49). The subscriptsa and p denote the flavor indices distances we use the exact Yukawa-type asymptotic behavior

a=1,2,3 andp=4, . ..,7,respectively, andn’ denotes the of the profile function:
vacuum state with the SB) flavor. jo(Qr) is the spherical
Bessel function of integral order 0. We can see that when _ 1+m.r
P(rn=a exp(—m,rr)—rz—, (57

(§2=O, % becomes the baryon numbBe=1, while.7; and

JZ; become the usual and the anomalous moments of inertia, ) ) )

respectively. In that case, E¢54) is reduced to the Gell- Where a is a constant governing the strength of the pion

Mann—Nishjima formulaQ=Ts+ Y, using the relation f|eld.llt is determined by matchmg the _self—conS|stent profile
function to the asymptotic tail given in Ed57) at large

8 8 " distances, i.e., about 4 fm. Since the neutron electric form
2 D(gg)Ra: La=Ts, z Dg%)Ra=L8=—\/§Y. factor, electromagnet_lg charge radius, and magnetlc form
a=1 a=1 2 factors are very sensitive to the long-range tail, we have to

(56) use the larger size of the radial box. Hence, we employ the
box sizeD=10 fm which is large enough to incorporate the
long-range part properly.

At @220, the mass corrections do not contribute to the elec _ .
Figure 1 shows the electric form factor of the proton

tric form factors, since the fourth and fifth terms in E§4) ' : '
vanish at the zero momentum transfer. while Fig. 2 draws that of the neutron as a function@#

In order to calculate the form factors and other observWith the constituent quark mass 370 MeV, 420 MeV, and 450

ables numerically, we follow the well-known Kahana andM€V. The empirical data are provided by R¢&9]. From

Ripka method36). Since the isovector electric charge radii -9 1, we can easily find that the proton electric form factor
have a pole in the chiral limit, we take the pion mass(GE) increases as the constituent quark mass does. For the

m, =139 MeV into account. The self-consistent profile func-Pest fit, we choose the constituent quark midss 420 MeV

tion obtained by the Kahana-Ripka method has a good be-
havior in the solitonic region, but the tail of the pion field is

. . . . . Neutron
spoiled a little because of the finite size of the radial box 0.08 — —
=== -M=370 MeV
———— M=420 MeV
- M=450 MeV
Proton = 0.06F .
10— 17— g
&
g

08F % ~~=--M=310MeV - = 0.041
5 N ——M = 420MeV p
et N M = 450MeV g
€06 N g
g = 0.02
&
.8 041
"E 00 L 1 I 1 ) i i 1 1 1
E W0 0z 04 06 08 10

0.21 Q? [GeV?

A 1 1 1 1 1 1 1 1
09002 0z 06 08 1.0 FIG. 2. The neutron electric form factor as a functiorQ3t The
Q? [GeV] solid curve corresponds to the constituent quark mdss: 420

MeV, while dashed curve drawd = 370 MeV. The dotted curve
FIG. 1. The proton electric form factor as a function@?t: The displays the case d#l = 450 MeV. The empirical data are taken
dashed curve corresponds to the constituent quark milas870  from Platchkovet al. [39]. The other four points are results for
MeV, while solid curve is foM =420 MeV. The dotted curve dis- G extracted by Jones-Woodwasd al. [40] (open diamony by
plays the case df1=450 MeV. The empirical data are taken from Thompsoret al.[41] (open boy, by Edenet al.[42] (open circle,
Hohler et al.[38]. and by Meyerhoffet al. [43] (open triangle
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Proton Electric isospin form factor
g 1.0 ‘ . . .
_\4\.
r SU(2 - AN
] 08 ---m,= 0( )MeV ;_‘08_ \\\\\ _gsg:z:u:o) T
b5 — m, =180 MeV 8 NN ——-= GO = 1)
< 06f 2 NN T VO )
g ! 206— \_\ . GO = 1) 4
& = RN
204 5041 M -
48 b '\\.\ s -
= 3 RN S~
Fﬂ 0.2F E 02+ "\\\\\\ =~
L M = 420 MeV T
0. 1 1 i 1 I 1 L 1 1 ) . ) ) ) ) ) )
8002 "04 06 08 10 00 05— Te
Q2 [GeV2] Q2 [GeVZ]
FIG. 3. The proton electric form factor as a function@f: The FIG. 5. The electric isospin form factors of the nucleon as a

solid curve corresponds to the strange quark nmass 180 MeV,  fynction ofQ2: The solid curve corresponds to the isoscalar electric

while dashed curve draws withouts. The dotted curve displays form factor of the nucleon in S(3), while the dashed curve denotes

the case of the S(@) model.M=420 MeV is chosen for the con-  the isovector one. The dot-dashed curve draws the isoscalar one in

[s;i;L]Jentquark mass. The empirical data are taken froml¢tet al.  sy(2), whereas the dotted curve stands for the isovector one in
. SU(2).

as usually done for the other observables. However, the neyqrm factors increase but the decreases. In the meanwhile,
tron electric form factor Gg) does not show such depen- the G{ gets an optimal value around 420 MeV.

dence on thév as that of the proton does. The dependence The contribution of them, corrections with the wave
of Gg is not monotonous. As shown in Fig. &g with  function corrections is displayed in Figs. 3 and 4. In fact, the
M=420MeV is greater than those in the case ofm_ corrections without the collective wave functions modi-
M=370MeV and M=450 MeV. At the first glance, it fied bring G down sizably, since themg terms
might seem to be strange. However, sit@g is a very tiny Br%i(éz)_'?i(éz)Ki] diminish electric form factors in

andt §§r1t§|tlv$ qtual_r:tlty, one SthO.UId dcareLuIIy etx'?)mtl'ne €aCleneral. However, as explained above, the collective wave
contribution 1o It. Aaving scrutinized each contribulion, We ¢,netion corrections are in particular significant in order to

find that. the wave function corr_ections given by E50) are improveGg . On the contrary to the case of tt to which

r_espon3|ble for the a_bovg-mentloned behavp@&\. In par- the wave function corrections contribute about 1%, those

ticular, _theo appearing in nEq(51) p!ays a pivotal role OT contributions toG{ are strong enough to overcome tivg

governing the behavior dBg . As M increases, the electric corrections. As a result, the totahs corrections enhance
Gg about 20%-30% in the smallQ? region.

Neutron More important observables for us are probably electric
0.08— T T charge radii which are determined by the behavior of the
8 0.06 S Charged SU(3) octet baryons
& | { { sU() 10— . ; :
=) ) __ my= 0 MeV L R
£ 004F 1 ﬁ JH { — m, =180 MeV ] --- ot
L T et 061 |
£ 8 L
3 3
&= 0.02gl - < 0.2F M = 420 MeV .
b M = 420 MeV RS
' e g-02- T .
000562 04 06 08 10 g I
Q2 [G6V2] = —0.6- /»(,,«-” |
el e
./,/~/ E-
FIG. 4. The neutron electric form factor as a functionQgt The _1‘8 S S S WSS W=
. .0 0.2 0.4 0.6 0.8 1.0
solid curve corresponds to the strange quark nrmass 180 MeV, ) ;
while dashed curve draws withouts. The dotted curve displays Q? [GeV']
the case of the S@) model.M =420 MeV is chosen for the con-
stituent quark mass. The empirical dd&haded circlg are taken FIG. 6. The electric form factors of the charged (SJoctet

from Platchkovet al. [39]. The other four points are results for baryons as a function d®?: The solid curve corresponds to the
G extracted by Jones-Woodwagt al. [40] (open diamony by proton electric form factor. The dashed curve is ¥of. The dash-
Thompsoret al.[41] (open boy, by Edenet al.[42] (open circle, dotted curve displays that &~ and the dotted curve that & ~.
and by Meyerhoffet al.[43] (open triangle M =420 MeV is chosen for the constituent quark mass.
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TABLE I. The electric charge radii of the §B) octet baryons

Neutral SU(3) octet baryons predicted by our model compared to the evaluation from the
0.05——————————— Skyrme model by Park and Weig@7] and the experimental num-
, 0.047 M = 420 MeV T bers. The constituent quark mass is fixedvie= 420 MeV.
0.03 n 4
% 0.02 . Baryons Our model Park & Weigel Experiment
< =0
S001H e B i
E 0.00 A Nt R p 0.78 1.20 0.74
S 001k | n ~0.09 -0.15 -0.11
£ 4 S A ~0.04 ~0.06 -
©—0.02f R _
B _o03L w ] st 0.79 1.20 -
004k ] 30 0.02 ~0.01 -
_0.0 e 2" —-0.75 —1.21 -
o 02 04 05 08 10 =0 ~0.06 ~0.10 -
Q? [GeVY = -0.72 -1.21 -

) FIG. 7. Th? electric fc;rrr;hfactorl_sd of the neutral Sﬂ‘meth values of the collective operators. In particular, the terms
arﬁons e:s ?. ufnCt'O? d? ) The jo Ih zurve qurisp%? Sd toht € with thel, in Eq. (54) can be understood as kaonic contri-
heutron electric form factor. o € dasned curve 1sfarine a% " butions in the mesonic languag45]. They are relevant to
dotted curve displays that &° and the dotted curve that &°. . .

- ) . the hidden strangeness having an effect on the nucleon.
M =420 MeV is chosen for the constituent quark mass. .

We now turn our attention to the other @) hyperons. In

Figs. 6 and 7, we present the electric form factors for the

- 2: . .
electric form factors neaQ”=0, which are defined by SU(3) octet hyperons. Figure 6 draws those of charged hy-

dGE(QZ) perons while Fig. 7 displays those of neutral ones. Without
<r2>E= - 6d—Qz . (58 m, correction, we could obserug-spin symmetry expressed
Q%=0 by

Using Eq.(58), we obtain the electric charge radii of the
proton and the neutron(r?'=0.78 fn? and (r?)p
=—0.09 fn?, respectively. The experimental data are
(r?,=0.74 fn? and(r?),=—0.1130.003 fnf [44]. We
can see that our results are in a good agreement with expeftigyres 6 and 7 show us $8) symmetry breaking arising
mental ones within about 10%. _ . from them correction. In case of the charged octet baryons,
In dotted curves in Figs. 3 and 4, we show the predictionthe sU3) splittings of the electric form factors are rather
of the SU2) model [15]. As for the proton electric form  smajl while they are quite visible for the neutral ones. The
factor, it is comparable to the $8), whereas a great discrep- predicted electric charge radii for different baryons are listed
ancy is observed in case of the neutron electric form factoly, Taple I, compared with the S8) Skyrme model with
This discrepancy can be understood by looking into the elecyseydoscalar vector mesdigy].
tric isospin form factors. Figure 5 shows differences in the
electric isospin form factors between the @Jand SU3) IV. MAGNETIC PROPERTIES OF THE SU (3) OCTET
models. From Fig. 5, we can find that in case of thg3U BARYONS
the difference between the isoscalar and isovector form fac-
tors is quite small while their sum is comparable. The dis- The space components of the electromagnetic current are
crepancy in the neutron form factors lies in this differenceresponsible for the magnetic form factors. As used in case of
between electric isospin form factors. It is partly because othe electric form factor, we again make use of the projection
the absence ofng and terms depending on tHe in the  operators given in Eq(52) and SU(2}xU(1)y-invariant
SU(2) model and partly because of the different expectatiortensors, so that we obtain the expressiorGﬁ{(Qz):

p _37 3T _~E-
GE,M_GE,M* GE,M_GE,M*

=0 0
GEm=GCGE . Gé,M:_GE,M- (59

.M (@Y (@) 21(Q?) 25(Q?)
GEA(QZ):|€T<DE§§>B Q%)+ 1|1 + 2|2 —<DE§§J3)B\}_T|1—(dquDgng>B($pq2|—2

2

+2my((D ~ 1)DE)e. 7o( Q%)+ myDEIDG)s| 2.72(Q) — 3 rrz'l(éZ))

s 2
+ ms£<d3qué%>D<c§a>B«qu( 2.75(Q)~ §r2%2(Q2)) 1 : (60)

where
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G(Q)=52 fd XJl(qr)J d®| sgn(E,) E_E.
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FIG. 8. The proton magnetic form factor as a functionQ: FIG. 10. The proton magnetic form factor as a functionQst

The dashed curve corresponds to the constituent quark madde solid curve corresponds to the strange quark mass180

M =370 MeV, while solid curve is foM =420 MeV. The dotted MeV, while dashed curve draws withoot. The dotted curve dis-

curve displays the case ® =450 MeV. The empirical data are plays that of the S(2) model. M=420 MeV is chosen for the

taken from Haler et al.[38]. The numbers are given in units of the constituent quark mass. The empirical data are taken froimedo

Bohr-magneton without any rescaling. et al. [38]. The numbers are given in units of the Bohr-magneton

without any rescaling.

The regularization functions?, .%2,, % ,, and .7z, are

defined in Eq(49). The subscriptp andq in Eq. (60) des- M =370 MeV toM =450 MeV. In contrast to the case of the

ignate flavor indices from 4 to 7. Tha® in the summation electric form factors, the dependence of the magnetic form

stands for the vacuum states with the (3Uflavor. r; is  factors on the constituent quark mass is not linear. Up to

K;/1, for short. As we can see from the densities for thearound Q*=0.2 GeV? in case of the proton @*=0.4

magnetic form factors in Eq61), they are pure S(2) quan- Ge\? for the neutrol, smaller constituent quark masses are

tities. The SW3) components are only found in the collective more contributive to the magnetic form factors. However, as

operators in Eq(60). Therefore, it is straightforward to cal- Q? increases, the dependence on the constituent quark mass

culate Eq.(60) numerically. To make sure, we have com- undergoes a change, i.e., the greater constituent quark masses

pared the density of each contribution with the correspondcontribute more to the magnetic form factors. In fact, we can

ing density in the gradient expansion given in Appendix B.reach the empirical data in the vicinity d®*=0 with

As the soliton size increases, our expressions converge td =370 MeV, we reproduce roughly the correct momentum

those of the gradient expansion. dependence. We selebt =420 MeV for the best fit to be
The nucleon magnetic form factors are displayed in Figsconsistent with all observables in this paper.

8 and 9, as the constituent quark mass is varied from Figures 10 and 11 present the contributions of the strange
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, -- M =370MeV -7
a — M = 420MeV 4 -——-m,= 0 MeV
—-2.1F M = 450MeV —2.1F M = 420 MeV ———m, =180 MeV -
—_ ‘ | n 1 L 1 L 1 L —- i [ L | L 1 ' t ¢
2"3.0 0.2 0.4 0.6 0.8 1.0 2"3.0 0.2 0.4 0.6 0.8 1.0
Q? [GeV?] Q? [GeV?]
FIG. 9. The neutron magnetic form factor as a functiorQaf FIG. 11. The neutron magnetic form factor as a function of

The dashed curve corresponds to the constituent quark ma$d’: The solid curve corresponds to the strange quark mass
M =370 MeV, while solid curve is foM =420 MeV. The dotted m,=180 MeV, while dashed curve draws withaut. The dotted
curve displays the case M =450 MeV. The empirical data rep- curve displays the case of the &Jmodel.M =420 MeV is cho-
resented by black dots are taken fromhtw et al.[38] while the  sen for the constituent quark mass. The empirical data represented
data with open triangles are from the most recent experifaefit by black dots are taken from Héer et al.[38] while the data with

The numbers are given in units of the Bohr-magneton without anypen triangles are from the most recent experinjéit. The num-
rescaling. bers are given in units of the Bohr-magneton without any rescaling.
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TABLE Il. The magnetic moments of the $8) octet baryons predicted by our model. Each contribution
is listed from the leading order. The results are also compared with the Skyrme model of Park and Weigel
[37]. The experimental data for the magnetic moments are taken froni48&fOur final values are given by
,uB(Ql,mg). The constituent quark mass is fixedNb=420 MeV.

Baryons us(0°,md) wa(Qtmd) wa(Qtml) Park & Weigel Expt.
p 1.01 2.27 2.39 2.36 2.79
n -0.75 —1.55 -1.76 —1.87 -1.01
A -0.38 -0.78 -0.77 —-0.60 —-0.61
3* 1.01 2.27 2.42 2.41 2.46
30 0.38 0.78 0.75 0.66 -
3 -0.25 -0.71 -0.92 -1.10 -1.16
E° -0.75 —-1.55 —1.64 -1.96 -1.25
= -0.25 -0.71 —-0.68 —-0.84 —-0.65
|50 Al 0.65 1.34 1.51 1.74 1.61

guark mass. On the contrary to the electric form factors, th&he numerical results are listed in Table lll. The results for
m correction enhances the magnetic form factors abouthe nucleon are in good agreements with the experimental
5% to 10%. In particular, it is of great significance for the data.

neutron magnetic form factor in fitting the empirical data as

_shown in Fig. 11. Our theoretical magnetic form _fa<_:t0rs are V. SUMMARY AND CONCLUSION
in good agreements with the empirical data within about
15% as the other quantities. The aim of this work has been to investigate the electro-

Table Il shows each contribution of the rotationaNl/ magnetic form factors of the SB) octet baryons and related
andm, corrections to the magnetic moments, i@5(Q?) at  quantities such as electromagnetic charge radii and magnetic
Q?=0 (in Ref.[28], the magnetic moments are discussed inmoments in the S(B) semibosonized NJL model. Starting
detail). Our results are compared with the @Y Skyrme  from the effective chiral action, we have expressed the ma-
model with pseudoscalar vector med@&T]. Figures 12 and trix elements of electromagnetic current in the model. When
13 display the magnetic form factors of the charged and neuguantizing the soliton, the contributions arising from the
tral octet baryons, respectively. The explicit breaking ofnoncommutativity of collective operators were considered. It
U-spin symmetry in the magnetic form factors are observedgives a nonzero contribution of the rotationaNg/correc-

The corresponding magnetic charge radii are defined by tions. Themg corrections are treated perturbatively, the col-
lective wave function correction being taken heed of. The

6 dGBE(Q?) octet states of the baryon are mixed with higher irreducible
(r)B=— — < - . (62)  representations becauserof.
ms  dQ Q?=0 The parameters of the model, including the cutoff, are

adjusted tom,=139 MeV andf =93 MeV. The only pa-

Charged SU(3) octet baryons
3 TP T " T j T T T ] Neutral octet Baryons
o+ M = 420 MeV b T T T T T T T T
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%0 "0z 04 06 08 10 ot | | | ]

Q? [GeV?] 280 02z "04 06 08 10
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FIG. 12. The magnetic form factors of the charged®Wctet
baryons as a function o®?: The solid curve corresponds to the FIG. 13. The magnetic form factors of the neutral(SUoctet
proton magnetic form factor. The dashed curve is ¥of. The baryons as a function o®?: The solid curve corresponds to the
dash-dotted curve displays that Bf and the dotted curve that of neutron magnetic form factor. The dashed curve isXfoiThe dash-
E~. The experimental data for the magnetic moments are takedotted curve displays that &° and the dotted curve that &°.
from Ref[46]. M=420 MeV is chosen for the constituent quark The experimental data for the magnetic moments are taken from
mass. Ref.[46]. M=420 MeV is chosen for the constituent quark mass.
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TABLE lll. The magnetic charge radii of the $8) octet bary-  where
ons predicted by our model compared with the Skyrme model of R . R
Park and Weigel[37]. The constituent quark mass is fixed to  D=d,+H+iQg+BATQA—IA,ATQA— o ALATQA,
M =420 MeV.

Df=—9,+H-iQc+BATQA+iIA,ATQA— 0, AATQA,

Baryons Our model Park & Weigel Experiment (A2)
p 0.70 0.94 0.74 Hence
n 0.78 0.94 0.77 ’
A 0.70 0.78 - DDT=Wy(A),0%m%) + W, (A} 0% m°) +W,(A, 01
st 0.71 0.96 -
30 0.70 0.86 - +W3(A%, Q1 +W,(mh)+0(Qh,mY) +0(Q?)
3 0.74 1.07 - 5

+
=0 0.75 0.90 _ o(m?), (A3)
= 0.51 0.84 - with

Wo=— 2+ HE,

rameter we have in the model is the constituent quark mass

M which is fixed toM =420 MeV by the mass splitting of lei{A4ATQA,ﬁ }—[akAkATQA,a ]—i[HE,A4ATQA]
the SU3) baryons. The electric form factor of the proton is i §

in an excellent agreement with the empirical data. As far as —{Hg ,akAkA*QA},

the electric form factor of the neutron is concerned, it is well

known that there are large uncertainties in extracting it from W,=—{Q¢ ,A4ATQA}+i[QE ,akAkATQA],

experiment$42]. However, compared to Rg#3], our result

is found to be in a remarkable agreement with it. The electric Wy=—i{Qg,d,} +i[Hg,Qg],

charge radii of the nucleon are also obtained in good agree-

ment with the experimental result within about 10%. W,=[BATMA, . ]+{Hg, BATMA} —i [BATrﬁA,A4ATQA]
We also evaluated electric and magnetic form factors of .

all other members of the SB) baryon octet. The magnetic +{,8ATﬁ1A,akAkATQA}. (A4)

moments are in a good agreement with the experimental R R

data. As far as th€? dependence is concerned, since thereThe terms of higher orders it and m and of (-m are

are no experimental data available, these numbers are prediteglected, since they are believed to be very tiny.

tions. In all cases, the, corrections are about 10%. Taking advantage of the Feynman-Schwinger-Dyson for-
Electromagnetic form factors of the baryons are used irmula, we can expand expUW) aroundWy:

order to extract strange form factors from the experimental L

data. The e_valuat|on of these quantities and of sem|Iepton|c exp(—uVV)=ex;1—uW0)—uf da exp(—uaW,)

and mesonic decays of hyperons will be the next steps in our 0

research.
X[W—Wo]eXF(—u(l—a)Wo)
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The lowest order contribution d®g vanishes. The sea con-
tribution ong comes only from the imaginary part of the
effective action. As for the next order 6z, we needw,
andW, - W5. After some manipulations, we obtain

APPENDIX A: THE DERIVATION
OF THE REGULARIZATION

In this appengix, we ;shall give an explicit derivation of N
the regularized)® and ()~ contributions to the electromag- , ot_ e (8) iy
netic form factors. We make use of the proper-time regular- (B.p'[Vo(0)[B.p) 4 ;n RiEy Em)({Doa 1 Qb
ization scheme. We can see that the procedure is very similar
to the case of the axial constari®?0]. Note that the non- Xf d3xeld-x
anomalous part is regularized. As is written in E4d), the
regularized effective action is expressed as
xf A3y W ()N ()

d
ReSeﬁ:SpfTUQS(U;Ai)exp(—uDDT), (A1) X\Pl](y))\b\l,n(y). (A6)
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The mg correction because oV, and W,- W, vanishes as E) |
0 _c —U[BEA+(1- B)E]
the Q0 contribution. Them, correction arises only from the =z X[Ad=—-u=—>, | dBe m n
s 5A 87Tn,m 0
guantization ofi Qg [23].
The regularization of the magnetic form factor is more

involved because of the time ordering of collective operators. X[BEm—(1—B)E] [1QE,Dgpl
Here, we need only the term A{Hg,a,ATQA} for the VB(1—B)
lowest order contribution: X<n|)\a| m><m|a_)\b|n>
—N 2 \/\(e uE ”Em){IQa,D(a)
16 n,m

(B,p’|Vi(0)|B,p)™
X(n|\3m)(m|a;\"|n). (A12)

The second part of EqA12) is canceled bys/ 6A; X1[ A¢],
2 OA; Spf dud(u;A; )f de so that we have

X exp( — uaWo)AdHe , o ATQAYexd — u(1— a)W,] .
(B,p'|Vi(0)|B,p)"

"G (nlanmR(E,), (A7) e
:_u_ d e UAEL+(1-BIE]]

whereR(E,) is defined in Eq(49).
As a next step, we proceed to evaluateﬂ@correction X[ BE—

iQ2.,D
to the magnetic form factor. It is tedious but straightforward: [ Q]

1
E.|/———
P ]Vﬂ(l—ﬂ)
X (n|A3my{m|a;\®|n). (A13)

1) Having integrated oveB, we obtain
(B.D'IVA(0)B,p)" = —— (X[ A+ X Ad)a, o, g nteg g
I
(A8)

1 Nc
) (B.p'IVi(0)[B,p)" == "2 ([DGA.Jb](n|x?|m)
wnere "

X(m[a;\°In).Z(Eq ,Em), (A14)

1 1 where % is defined in Eq(49).
Xi[Ad= 550 duguin,) | de expi—uawp wiia

xexd —u(1l—a)Wo], (A9) APPENDIX B: THE GRADIENT EXPANSION OF THE
MAGNETIC MOMENTS

1 1 1-8 It is well known that the exact expressions for the mag-
Xo[Acl= ESpJ du¢(u;Ai)f d/o’J da exp(—uaWy) netic moments can be expanded in powers of gradients of the
0 0 chiral fields[48]. In this way the quark determinant gives

X (W[ A]+Wa[ Ac])exp( —uBWo) terms, which are quite similar to the Skyrme model expres-
sions[37]. An important difference is, however, the contri-
X (W[ A+ Ws[A)exd —u(l—a—B)W]. butions of order)* from the real part of the action. In the
present case we obtain
(A10)
The terms includingW, - W; and W3- W; vanish. The first 877 1M, 1M,
term 8/ 8A; X;[A] is obtained to be MB= _ZMnf drr?sir? (D qz)s| —- 3 4— *380

- <d3ppDQp‘]p>B _ <DQ8J3>B

2 |1\/§

4 .
s i \F , + %J’ drr2sirf 66’
R - (e UE,_ uEm a (8)

X(n|\3my{m|a;\P|m). (A11)

(B1)

Our numerical densities for the electromagnetic form factors
are compared with those obtained from the gradient expan-
The second term is sion in order to warrant the calculation.
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