
c
al

PHYSICAL REVIEW D 1 APRIL 1996VOLUME 53, NUMBER 7

0556
Electromagnetic form factors of the SU„3… octet baryons in the semibosonized SU„3…
Nambu–Jona-Lasinio model

Hyun-Chul Kim,* Andree Blotz,† Maxim V. Polyakov,‡ and Klaus Goeke§

Institute for Theoretical Physics II, P.O. Box 102148, Ruhr-University Bochum, D–44780 Bochum, Germany
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The electromagnetic form factors of the SU~3! octet baryons are investigated in the semibosonized SU~3!
Nambu–Jona-Lasinio model~chiral quark-soliton model!. The rotational 1/Nc and strange quark mass correc-
tions in linear order are taken into account. The electromagnetic charge radii of the nucleon and magneti
moments are also evaluated. It turns out that the model is in remarkably good agreement with the experiment
data.

PACS number~s!: 13.40.Gp, 13.40.Em, 14.20.Dh, 14.20.Jn
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I. INTRODUCTION

In spite of the belief that quantum chromodynami
~QCD! is the fundamental underlying theory of the stron
interaction, low energy phenomena such as static prope
of hadrons defy solutions based on QCD. The pertinacity
QCD in the low energy region have led to efforts to constru
an effective theory for the strong interaction. In pursuit
this aim, the chiral quark-soliton model, also known as t
semibosonized Nambu–Jona-Lasinio~NJL! model, emerged
as a successful effective theory to describe the low-ene
phenomena without loss of important properties of QC
such as chiral symmetry and its spontaneous breaking.

Originally, the idea of finding the soliton in a model wit
quarks coupled to pions was realized by Kahana, Ripka,
Soni @1# and Birse and Banerjee@2#. The bound states of the
valence quarks were well explored in the model while
suffered from the vacuum instability@3#. This problem of the
vacuum instability was solved by Diakonov and Petrov@4#.
Having investigated the instanton picture of the QC
vacuum in the low-momenta limit in Ref.@4#, they have
shown that the low-momenta theory is equivalent to t
quark-soliton model free from the vacuum instability. Th
model was further elaborated in Ref.@5# so that it could
predict the static properties of the nucleon in the gradi
approximation.

The baryon in this model is regarded asNc valence quarks
coupled to the polarized Dirac sea bound by a nontriv
chiral field configuration in the Hartree approximation@5–8#.
The identification of the baryon quantum numbers is a
quired by the semiclassical quantization@5,9# ~in nuclear
physics called the cranking method@10#! which is performed
by integrating over the zero-mode fluctuations of the pi
field around the saddle point. It makes the baryon ca
proper quantum numbers like spins and isospins. In SU~2!,
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the model enables us to describe quantitatively a great de
of static properties of the nucleon such asN-D splitting
@8,11#, axial constants@8,12,13#, electromagnetic form fac-
tors @14,15#, and to some extent also magnetic moment
@8,15#.

Although the SU~2! version of the model was quite suc-
cessful to explain many static properties of the nucleon, it i
necessary to extend the model from SU~2! to SU~3! so that it
can be possible to examine the same properties of hypero
and moreover to investigate the effects of hidden strangene
on the nucleon which are, in particular, manifested in th
pN s term @16,17#, the isosplitting of the baryonic masses
@18#, and strange form factors@19#. Blotz et al. @22,23# and
Weigelet al. @24# have carried out the extension of the mode
from SU~2! to SU~3!. Starting from the semibosonized NJL-
type Lagrangian, they have shown that the model describ
hyperon spectra successfully. The extended SU~3! model is
distinguished from the SU~2! NJL in two ways: First, the
mixed terms of the pure SU~2! part and the strange vacuum
part are induced by the trivial embedding of the SU~2! soli-
ton into SU~3!. Second, since the mass of the strang
vacuum part is not negligible, one has to take into accoun
the mass term in the effective action explicitly. The mas
corrections are treated perturbatively in linear order. It wa
shown that the perturbative treatment of thems in the NJL
model describes the octet-decuplet mass splitting@22,23#
very well and plays an essential role in the mass splitting o
hyperons. These two differences determine the character
tics of the SU~3! NJL model.

References@22,24# indicate that the SU~3! NJL provides a
more refined structure of the collective Hamiltonian than tha
provided by the pseudoscalar Skyrme model. A comparab
structure can be obtained in the Skyrme model only by in
troducing explicit vector mesons. However, it is inevitable to
import large numbers of parameters into the Skyrme mod
with vector meson, while the parameters in the NJL mode
can be fixed completely by adjusting mesonic masses an
decay constants (f p , f K). The only free parameter we have is
the constituent quark mass arising as a result of the spon
neously broken chiral symmetry. This parameter is fixed b
adjusting the mass splitting@23# properly.

It is of great importance that 1/Nc rotational corrections
are taken into account. Starting from the path integral for
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4014 53KIM, BLOTZ, POLYAKOV, AND GOEKE
malism, when we integrate over zero-mode fluctuatio
around the saddle point, a time-ordered product of collec
operators appears. The 1/Nc contribution survives because o
the noncommutivity of the collective operators@12#. It was
examined in detail in Ref.@13# by calculating the axial vector
constantsgA and isovector magnetic moments in SU~2!. In
the same spirit, the SU~3! model was applied to obtain th
axial constantsgA

(3) , gA
(8) , and gA

(0) @20,21,25–27#. It pre-
dicted the experimental data within about10%.

In a recent paper, we have proceeded to evaluate the m
netic moments@28#. The magnetic moments of the SU~3!
octet baryons predicted by the present model are in a rem
able agreement with the experiments.

Now, we are in a position to study the electromagne
form factors and other form factors such as strange fo
factors. It is important to investigate the form factors in o
model, since it allows us to take a step forward in studyi
dynamics. Hence, as a first phase, we will consider the e
tromagnetic form factors. It is of great significance to kno
them in the SU~3! NJL in that not only they provide us with
the electromagnetic informations but also allow us to p
ceed to explore the techniques for the form factors of
neutral (Z0) currents and charged weak (W6) currents.

The outline of the paper is as follows. In Sec. II, w
develop the general formalism for the electromagnetic fo
factors in the SU~3! NJL. In Sec. III, we discuss the electri
form factors with related quantities such as electric cha
radii. In Sec. IV, we continue to study the magnetic for
factors of the SU~3! octet baryons. In Sec. V, we summariz
the work and draw conclusions.

II. THE GENERAL FORMALISM

In this section, we present the general formalism for t
electromagnetic form factors of the SU~3! octet baryons in
the NJL.

The SU~3! NJL is characterized by a partition function i
Euclidean space given by the functional integral over ps
doscalar meson and quark fields:

Z5E DCDC†Dpaexp~2SNJL!

5E DCDC†DpaexpS 2E d4xC†iDC D , ~1!

whereD denotes the Dirac differential operator

iD5b~2 i ]”1m̂1MU ! ~2!

with the pseudoscalar chiral field

U5expipalag5 . ~3!

m̂ is the matrix of the current quark mass given by

m̂5diag~mu ,md ,ms!5m011m8l8 . ~4!

la represent the usual Gell-Mann matrices normalized
tr(lalb)52dab. Here, we assume isospin symmetry, i.
mu5md . M shows the dynamical quark mass arising fro
the spontaneous chiral symmetry breaking, which is in g
eral momentum dependent@4#. For the sake of convenience
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we shall look uponM as a constant and introduce the ultra
violet cutoff via the proper time regularization which pre
serves gauge and chiral invariance@29#. Them0 andm8 in
Eq. ~4! are, respectively, defined by

m05
mu1md1ms

3
, m85

mu1md22ms

2A3
. ~5!

The operatoriD is expressed in Euclidean space in terms
the Euclidean time derivative]t and the Dirac one-particle
HamiltonianH(U)

iD5]t1H~U !1bm̂2bm̄1 ~6!

with

H~U !5
aW •¹

i
1bMU1bm̄1. ~7!

b andaW are the well-known Dirac Hermitian matrices@30#.
The m̄ is defined by (mu1md)/25mu5md . We want to
emphasize that the NJL model is a low-energy effecti
model of QCD. Hence, the action of this model can have,
principle, corrections from higher orders such as a te
;m2C†C for example. However, the coefficient in front o
such a term is not known1 theoretically. Therefore, it is
meaningless to go beyond the linear order of the quark m
expansion unless higher order corrections~e.g., the coeffi-
cient in front ofm̂2C†C) to the action are known.

The electromagnetic form factors of the baryonsFi(q
2)

are defined by the expectation values of the electromagn
currentVm of the quark fields:

^B8,p8uVm~0!uB,p&5ūB8~p8!FgmF1~q
2!

1 ismn

qn

2MN
F2~q

2!GuB~p! ~8!

with

Vm~z!5C̄~z!gmQ̂C~z!. ~9!

MN denotes the nucleon mass.Q̂ designates the charge op
erator of the quark fieldC(z):

Q̂5S 2

3
0 0

0 2
1

3
0

0 0 2
1

3

D 5T31
Y

2
. ~10!

T3 andY are, respectively, the third component of the isosp
and hypercharge given by the Gell-Mann–Nishjima formu
The q2 is just the four-momentum transferq252Q2 with

1The coefficient for them̂C†C is determined by the soft-pion
theorem.
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Q2.0. Hence, the electromagnetic currentVm can be de-
composed into the third and eighth SU~3! octet currents

Vm5Vm
~3!1

1

A3
Vm

~8! ~11!

with

Vm
~3!5

1

2
C̄gml3C, Vm

~8!5
1

2
C̄gml8C. ~12!

The electromagnetic form factorsFi(Q
2) can be expressed

in terms of the Sachs form factors,GE(Q
2) andGM(Q

2):

GE
B~Q2!5F1

B~Q2!2
Q2

4MN
2 F2

B~Q2!,
GM
B ~Q2!5F1

B~Q2!1F2
B~Q2!. ~13!

In the nonrelativistic limit (Q2!MN
2 ), the Sachs form factors

GE(Q
2) andGM(Q

2) are related to the time and space com
ponents of the electromagnetic current, respectively:

^B8,p8uV0~0!uB,p&5GE
B~Q2!

^B8,p8uVi~0!uB,p&5
1

2MN
GM
B ~Q2!i e i jkq

j^l8uskul&,

~14!

where sk stand for Pauli spin matrices.ul& is the corre-
sponding spin state of the baryon.

The matrix elements of the electromagnetic current can b
represented by the Euclidean functional integral in our mode
defined by Eq.~1!:
k

^B8,p8uVm~0!uB,p&5
1

Z
lim
T→`

expS ip4T22 ip48
T

2D E d3xd3y exp~2 ipW 8•yW1 ipW •xW !

3E DUE DCE DC†JB8~y
W ,T/2!C†~0!bgmQ̂C~0!JB

†~xW ,2T/2!expF2E d4zC†iDC G .
~15!

The baryonic statesuB,p& and ^B8,p8u are, respectively, defined by

uB,p&5 lim
x4→2`

exp~ ip4x4!
1

AZ
E d3xexp~ ipW •xW !JB

†~xW ,x4!u0&

^B8,p8u5 lim
y4→1`

exp~2 ip48y4!
1

AZ
E d3yexp~2 ipW 8•yW !^0uJB8~y

W ,y4!. ~16!

The baryon currentJB can be constructed from quark fields with the number of colorsNc :

JB~x!5
1

Nc!
e i1••• i Nc

G
JJ3TT3Y

a1•••aNcca1i1
~x!•••caNc

iNc
~x!. ~17!

a1•••aNc
denote spin-flavor indices, whilei 1••• i Nc designate color indices. The matricesG

JJ3TT3Y

a1•••aNc are taken to endow the

corresponding current with the quantum numbersJJ3TT3Y. TheJB
† plays the role of creating the baryon state. With the quar

fields being integrated out, Eq.~15! can be divided into two separate contributions:

^B8,p8uVm~0!uB,p&5^B8,p8uVm~0!uB,p&val1^B8,p8uVm~0!uB,p&sea, ~18!

where

^B8,p8uVm~0!uB,p&val5
1

Z
G
J8J38T8T38Y8

b1•••bNc G
JJ3TT3Y

a1•••aNc
*
lim
T→`

expS ip4T22 ip48
T

2D E d3xd3yexp~2 ipW 8•yW1 ipW •xW !

3E DUexp~2Seff!(
i51

Nc

b i K yW ,T/2U 1iDU0,tzL
g

@bgmQ̂#gg8g8K 0,tzU 1iDUxW ,2T/2L
a i

3)
jÞ i

Nc

b j K yW ,T/2U 1iDUxW ,2T/2L
a j

~19!

and
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^B8,p8uVm~0!uB,p&sea5
1

Z
G
J8J38T8T38Y8

b1•••bNc G
JJ3TT3Y

a1•••aNc
*
lim
T→`

expS ip4T22 ip48
T

2D E d3xd3yexp~2 ipW 8•yW1 ipW •xW !

3E DUexp~2Seff!TrglcK 0,tzU 1iD @bgmQ̂#U0,tzL)
i51

Nc

b i K yW ,T/2U 1iDUxW ,2T/2L
a i

. ~20!
-

s
e

Seff is the effective chiral action expressed by

Seff52Spln@]t1H~U !1bm̂2bm̄1#. ~21!

Sp stands for the functional trace of the time-independ
function.

The integral over bosonic fields can be carried out by
saddle point method in the largeNc limit, choosing the fol-
lowing ansatz:

U5SU0 0

0 1D , ~22!

whereU0 is the SU~2! chiral background field

U05exp@nW •tWP~r !#. ~23!

P(r ) denotes the profile function satisfying the bounda
conditionP(0)5p andP(`)50. In order to find the quan-
tum 1/Nc corrections, we have to integrate Eqs.~19!, ~20!
over small oscillations of the pseudo-Goldstone field~22!
around the saddle point. This will not be done except for
zero modes. The corresponding fluctuations of the pion fie
are not small and hence cannot be neglected. The zero m
are pertinent to continuous symmetries in our problem. A
tually, there are three translational and seven rotational z
modes. We have to take into account the translational z
modes properly in order to evaluate form factors, since
soliton is not invariant under translation and its translatio
invariance is restored only after integrating over the trans
tional zero modes. The rotational zero modes determine
quantum numbers of baryons@9#. Explicitly, the zero modes
are taken into account by considering a slowlyrotating and
translatinghedgehog:

Ũ~xW ,t !5A~ t !U@xW2ZW ~ t !#A†~ t !. ~24!

A(t) belongs to an SU~3! unitary matrix. The Dirac operato
iD̃ in Eq. ~6! can be written as

iD̃5@]t1H~U !1A†~ t !Ȧ~ t !2 ib˙ZW •¹

1bA†~ t !~m̂2m1!A~ t !#. ~25!

The corresponding collective action is expressed by

S̃eff52NcSpln@]t1H~U !1A†~ t !Ȧ~ t !2 ibŻW•¹1bA†~ t !

3~m̂2m̄1!A~ t !2bA†~ t !VmguQ̂A~ t !# ~26!
ent
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with the angular velocity

A†~ t !Ȧ~ t !5 iVE5
1

2
iVE

ala ~27!

and the velocity of the translational motion

ZẆ 5
d

dt
ZW . ~28!

The canonical quantization of the SU~3! soliton can be found
in Refs. @31,32#. Expanding Eq.~26! in powers of angular
and translational velocities (;1/Nc), we end up with the
action for collective coordinates:

Scoll'2NcTrlniD1Srot@A#1Strans@ZW #, ~29!

where

Srot@A#5
1

2
I abE dtVaVb , Strans@ZW #5

1

2
MclE dtZẆ •ZẆ ,

~30!

with the moments of inertiaI ab calculated in Ref.@23#.
Mcl is a classical mass of the soliton. Corresponding collec
tive Hamiltonians have a form

H rot5~ I21!abJaJb , H trans5
PW •PW

2Mcl
, ~31!

whereJa are operators of angular momentum andPW are mo-
mentum operators.

Hence, Eqs.~19! and ~20! can be written in terms of the
rotated Dirac operatoriD̃ and chiral effective actionS̃eff .
The functional integral over the pseudoscalar fieldU is re-
placed by the path integral which can be calculated in term
of the eigenstates of the Hamiltonian corresponding to th
collective action given in Eq.~29! and these Hamiltonians
can be diagonalized in an exact manner. Therefore, Eqs.~19!
and ~20! can be rewritten as ordinary integrals:
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^B8,p8uVm~0!uB,p&val5
1

Z
G
J8J38T8T38Y8

b1•••bNc G
JJ3TT3Y

a1•••aNc
*
exp$2@~Nc21!Eval1Esea!T% lim

T→`
E d3xd3y exp~2 ipW 8•yW1 ipW •xW !

3E dAfdAdAidZW fdZWdZW i^ZW f uexp~2H transT/2!uZW &^ZW uexp~2H transT/2!uZW i&^Af uexp~2H rotT/2!uA&

3^Auexp~2H rotT/2!uAi&(
k51

Nc

T F bkK yW2ZW f ,T/2UAf

1

iD̃
U2ZW L

g

@A†bgmQ̂A#gg8

3g8K 2ZWU 1
iD̃

Ai
†UxW2ZW i ,2T/2L

ak

G , ~32!

^B8,p8uVm~0!uB,p&sea5
1

Z
G
J8J38T8T38Y8

b1•••bNc G
JJ3TT3Y

a1•••aNc
*
exp@2~NcEval1Esea!T# lim

T→`
E d3xd3y exp~2 ipW 8•yW1 ipW •xW !

3E dAfdAdAidZW fdZWdZW i^ZW f uexp~2H transT/2!uZW &^ZW uexp~2H transT/2!uZW i&^Af uexp~2H rotT/2!uA&

3^Auexp~2H rotT/2!uAi&T FTrglcK 2ZWU 1
iD̃

@A†bgmQ̂A#U2ZW L
gg8

G . ~33!

T @•••# denotes the time-ordered product of collective operators. This is because of the fact that the functional inte
corresponds to the matrix elements of the time-ordered products of the collective operators. In particular, the time order
very significant when we consider the magnetic form factors~as in case of the axial constants: see@15,20#!, since the spin
operatorJa does not commute with the SU~3! rotational unitary matrixA(t). As we integrate over zero modes in the final and
initial states, we obtain the translational and rotational corrections of the classical energies of the soliton from the effe
actionsStrans and Srot . Therefore, introducing the spectral representations of the quark propagator@5#, expressed by the
eigenfunctions of the Dirac HamiltonianH(U), and making use of relations

E dZW i^ZW uexp~2Strans!uZW i& f ~xW2ZW i ! →
T→`

^ZW uexp~2Strans!uxW &E d3x8 f ~xW8!, ~34!

G
JJ3TT3Y

b1•••bNcE d3x8W )
k51

Nc

@Aff~xW8!#bk
5c

~YTT3!~Y8JJ3!

~8!* ~Af !, ~35!

G
JJ3TT3Y

a1•••aNc
* E d3x8W )

k51

Nc

@f†~xW8!Ai
†#ak

5c
~YTT3!~Y8JJ3!

~8!
~Ai !, ~36!

^Auexp~2Srot!uAi&5 (
n

~YTT3!

~Y8JJ3!

c
~YTT3!~Y8JJ3!

~n!
~A!c

~YTT3!~Y8JJ3!

~n!* ~Ai !expS 2
J~J11!

2I
TD , ~37!

we obtain relatively simple expressions:

^B8,p8uVm~0!uB,p&val5NcE d3Z exp~ iqW •ZW !E
SU~3!

dAcmn
~n!* ~A!cm8n8

~n!
~A!T @F 1

~V0!~A!1F 2
~V1!~A!1F 3

~ms!~A!#, ~38!

^B8,p8uVm~0!uB,p&sea5NcE d3Z exp~ iqW •ZW !E
SU~3!

dAcmn
~n!* ~A!cm8n8

~n!
~A!T FTrK ZW U 1iD̃ @A†bgmQ̂A#UZW L G . ~39!

Here, we have considered contributions up to the first order ofVE , i.e., the 1/Nc corrections and the linear corrections of the
strange quark massms . The mixed termO(ms /Nc) is relatively small, so that it is neglected@28#. It is performed by the
expansion of the propagator 1/iD̃ in terms ofVE andms :
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1

iD̃
'

1

]t1H
1

1

]t1H
~2 iVE!

1

]t1H
1

1

]t1H
~2bA†m̂A!

1

]t1H
. ~40!

The collective SU~3! octet wave functionscm8n8
(n) (A) are identified with the SU~3! Wigner functions

c
~YTT3!~Y8JJ3!

~n!
~A!5Adim~n!~21!Y8/21J3@^Y,T,T3uD ~n!~A!u2Y8,J,2J3&#* ~41!

as eigenstates of the collective rotational Hamiltonian. The functionsF i(A) are defined as

F 1
~V0!~A!5^valubgmlauval&DQa

~8!~A!,

F 2
~V1!~A!52(

n
@^valulaun&^nubgmlbuval& iVE

a~A!DQb
~8!~A!^valubgmlbun&^nulauval&DQb

~8!~A!iVE
a~A!#

1

Eval2En
,

F 3
~ms!~A!52~m02m̄!(

n
@^valubun&^nubgmlauval&DQa

~8!~A!^valubgmlaun&^nubuval&DQa
~8!~A!#

1

Eval2En

2m8(
n

@^valublaun&^nubgmlbuval&D8a
~8!~A!DQb

~8!~A!1^valubgmlbun&^nublauval&DQb
~8!~A!D8a

~8!~A!#
1

Eval2En
.

~42!

DQa
(8) is defined as12(D3a

(8)11/A3D8a
(8)). The collective SU~3! octet wave function in Eq.~41! satisfies the orthonormality@33#

E dAcm8n8
~n8!* ~A!cmn

~n!~A!5dn8ndm8mdn8n . ~43!

The subscriptsmn of cmn
(n) represent (YTT3)(Y8JJ3). (n) stands for the irreducible representation of SU~3!. Y8 is the negative

of the right hypercharge constrained byYR5 NcB/351. Since Eq.~39!, in particular, its real part diverges, we have to
regularize it. We employ the well-known proper time regularization

ReSeff5
1

2
TrE

0

`du

u
e2uD†Df~u;L i ! ~44!

with

f~u;L i !5(
i
ciuS u2

1

L i
2D . ~45!

The cutoff parameterf(u;L i) is fixed via reproducing the physical pion decay constantf p593 MeV and other mesonic
properties@23#. As was done in case of the valence part, we take into account the 1/Nc and linearms corrections~see Appendix
A for detail!.

Making use of the expansion equation~40! and the SU~3! octet wave functions and employing the proper-time regulariza-
tion, we arrive at

^B8,p8uVm~0!uB,p&val5Nc^DQa
~8!&BP m;val

a ~qW !1
Nc

2 (
m

H sgn~Em!^@DQa
~8! ,iVE

b #&Bdm i

^$DQa
~8! ,iVE

b%&Bdm4
J Q m;val,m

ab ~qW !

En2Eval

1
Nc

2 (
m

^$DQa
~8! ,iVE

b%&Bdm i

Q m;val,m
ab ~qW !

En2Eval
1Nc~m02m̄!(

m
^DQa

~8!&Bdm i

Mm;val,m
a ~qW !

En2Eval

1Ncm8(
m

^$DQa
~8! ,D8b

~8!%&B
Km;val,m

ab ~qW !

En2Eval
, ~46!
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^B8,p8uVm~0!uB,p&sea52
Nc

2 (
m

sgn~En!^DQa
~8!&BHR~En!dm i

dm4
J P m;n

a ~qW !

1
Nc

4 (
n,m

HRQ~En ,Em!^@DQa
~8! ,iVE

b #&Bdm i

RI~En ,Em!^$DQa
~8! ,iVE

b%&Bdm4
J Qm;nm

ab ~qW !

1
Nc

4 (
n,m

^$DQa
~8! ,iVE

b%&BRM~En ,Em!dm iQ m;nm
ab ~qW !

1
Nc

2
~m02m̄!(

n,m
^DQa

~8!&BRb~En ,Em!Mm;nm
a ~qW !dm i

1
Nc

2
m8(

n,m
^$DQa

~8! ,D8b
~8!%&BH Rb~En ,Em!dm i

RM~En ,Em!dm4
JKm;nm

ab ~qW !, ~47!

where the quark matrix elements are written as

P m;n
a ~qW !5E d3xeiq

W
•xWCn

†~x!bgmlaCn~x!,

Q m;nm
ab ~qW !5E d3xeiq

W
•xWE d3yCn

†~x!bgmlaCm~x!Cm
† ~y!lbCn~y!,

Mm;nm
a ~qW !5E d3xeiq

W
•xWE d3yCn

†~x!bgmlaCm~x!Cm
† ~y!bCn~y!,

Km;nm
ab ~qW !5E d3xeiq

W
•xWE d3yCn

†~x!bgmlaCm~x!Cm
† ~y!blbCn~y!. ~48!

The regularization functions are given by

R~En!5E du

Apu
f~u;L i !uEnue2uEn

2
,

RQ~En ,Em!5
1

2p
ciE

0

1

da
a~En1Em!2Em

Aa~12a!

exp$2@aEn
21~12a!Em

2 #/L i
2%

aEn
21~12a!Em

2 ,

RI~En ,Em!52
1

2Ap
E
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2uEn
2
1Eme

2uEm
2

En1Em
1
e2uEn

2
2e2uEm

2

u~En
22Em

2 !
G ,

RM~En ,Em!5
1

2

sgn~En!2sgn~Em!

En2Em
,

Rb~En ,Em!5
1

2Ap
E
0

`du

Au
f~u;L i !FEne

2uEn
2
2Eme

2uEm
2

En2Em
G . ~49!
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I i are moments of inertia defined in Ref.@22#. ^&B denotes
the expectation value of the WignerD functions in collective
space spanned byA. The expectation values of theD func-
tions can be evaluated by SU~3! Clebsch-Gordan coefficients
listed in @33,34#. The indexm is the Lorentz index anda and
b denote the flavors, whereasi designates the space compo
nent of the electromagnetic current. We can here notice
in Eq. ~47! 1/Nc term includes two different commuting re
lations, i.e., the commutator and anti-commutator betwe
-
hat

en

the SU~3! Wigner functionD (8) and the angular velocity
VE of the soliton. This is because of the time ordering of t
operators and the symmetric properties of the quark ma
elements under indicesn andm or underGg5 parity @35#. If
the quark matrix elements are antisymmetric, then the co
mutator survives, while if they are symmetric, then the an
commutator does. The quark matrix elements for the elec
form factors (m54) are symmetric whereas some of th
matrix elements for the magnetic form factors are an
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symmetric. However, note that on the whole the matrix el
ment of the current is symmetric, since the regularizatio
functions are symmetric under exchange ofn andm except
for RQ .

The regularization functions in Eq.~49! are determined in
the proper time regularization manifestly except forRM

which corresponds to the Wess-Zumino terms from t
imaginary part of the action. In fact,RM is not a regular-
ization function. It is independent of the cutoff paramete
L.

With SU~3! symmetry explicitly broken byms , the col-
lective Hamiltonian is no longer SU~3! symmetric. There-
fore, the eigenstates of the Hamiltonian are neither in a pu
octet nor in a pure decuplet but in mixed states. Treati
ms as a perturbation, we can obtain the mixed SU~3! bary-
onic states:

u8,B&5u8,B&1c1̄0
B u1̄0,B&1c27

B u27,B& ~50!

with

c1̄0
B 5

A5
15

~s2r 1!F 101
0

G I 2ms ,

c27
B 5

1

75
~3s1r 124r 2!FA6

3

2

A6
G I 2ms ~51!

in the basis@N, L, S, J#. Here,B denotes the SU~3! octet
baryons with the spin 1/2. The constants is related to the
SU~2! pN s termSSU(2)5 3/2(mu1md)s andr i designates
Ki /I i , whereKi stands for the anomalous moments of ine
tia defined in Ref.@23#.

III. THE ELECTRIC PROPERTIES
OF THE SU„3… OCTET BARYONS

The electric form factors are easily obtained by the matr
elements of the time component of the electromagnetic c
rent, as was defined in Eq.~14!. Equation~47! furnishes the
final expression of the electric form factor. Since the SU~3!
e-
n

he

r

re
ng

r-

ix
ur-

hedgehog solutions are obtained by means of the embeddin
of the SU~2! hedgehog fieldU0 as shown in Eq.~22!, it is
convenient to define the projection operatorsPT andPS :

PT5S 1 0 0

0 1 0

0 0 0
D , PS5S 0 0 0

0 0 0

0 0 1
D . ~52!

Having defined these projection operators, we can separa
the pure SU~2! part from the SU~3! which are represented by
the collective operators. Utilizing the projection operators
and introducing SU(2)T3U(1)Y-invariant tensors

PTl
a5H ta if a51,2,3,

0 if a54,5,6,7,

1 if a58,

PTl
aPSl

b5F i ~ f abc2eabc!2
1

A3
~dacdb81da8dbc!

1dabcGlc, ~53!

we can find that the quark matrix elements include only the
pure SU~2! components with transition matrix elements be-
tween the vacuum states with SU~2! flavors and the eigen-
states of the one-body Hamiltonian equation~7!. The SU~3!
elements only appear in the collective parts. Hence, we ca
write the expression of the electric form factors

GE
B~QW 2!5

Nc

A3
^DQ8

~8!&BB~QW 2!2^DQa
~8!Ja&B

2I 1~QW
2!

I 1

2^DQp
~8!Jp&B

2I 2~QW
2!

I 2
1^D8a

~8!DQa
~8!&B

3
4ms

I 1A3
„I 1K 1~QW

2!2I 1~QW
2!K1…1^D8p

~8!DQp
~8!&B

3
4ms

I 2A3
„I 2K 2~QW

2!2I 2~QW
2!K2…, ~54!

where
B~QW 2!5E d3x j0~Qr !FCval
† ~x!Cval~x!2

1

2(n sgn~En!Cn
†~x!Cn~x!G ,

I 1~QW
2!5

Nc

6 (
n,m

E d3x j0~Qr !E d3yFCn
†~x!tWCval~x!•Cval

† ~y!tWCn~y!

En2Eval
1
1

2
Cn

†~x!tWCm~x!•Cm
† ~y!tWCn~y!RI ~En ,Em!G ,

I 2~QW
2!5

Nc

6 (
n,m0

E d3x j0~Qr !E d3yFCm0
†

~x!Cval~x!Cval
† ~y!Cm0~y!

Em02Eval
1
1

2
Cn

†~x!Cm0~x!Cm0
†

~y!Cn~y!RI ~En ,Em
0 !G ,
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K 1~QW
2!5

Nc

6 (
n,m

E d3x j0~Qr !E d3yFCn
†~x!tWCval~x!•Cval

† ~y!btWCn~y!

En2Eval

1
1

2
Cn

†~x!tWCm~x!•Cm
† ~y!btWCn~y!RM~En ,Em!G ,

K 2~QW
2!5

Nc

6 (
n,m0

E d3x j0~Qr !E d3yFCm0
†

~x!Cval~x!Cval
† ~y!bCm0~y!

Em02Eval
1
1

2
Cn

†~x!Cm0~x!Cm0
†

~y!bCn~y!RM~En ,Em
0 !G ,
~55!
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with the regularization functionsRI andRM defined in Eq.
~49!. The subscriptsa and p denote the flavor indices
a51,2,3 andp54, . . . ,7,respectively, andm0 denotes the
vacuum state with the SU~2! flavor. j 0(Qr) is the spherical
Bessel function of integral order 0. We can see that wh
QW 250, B becomes the baryon numberB51, while I i and
K i become the usual and the anomalous moments of iner
respectively. In that case, Eq.~54! is reduced to the Gell-
Mann–Nishjima formulaQ5T31

1
2Y, using the relation

(
a51

8

D3a
~8!Ra5L35T3 , (

a51

8

D8a
~8!Ra5L85

1

2
A3Y.

~56!

At QW 250, the mass corrections do not contribute to the ele
tric form factors, since the fourth and fifth terms in Eq.~54!
vanish at the zero momentum transfer.

In order to calculate the form factors and other obser
ables numerically, we follow the well-known Kahana an
Ripka method@36#. Since the isovector electric charge rad
have a pole in the chiral limit, we take the pion mas
mp5139 MeV into account. The self-consistent profile func
tion obtained by the Kahana-Ripka method has a good
havior in the solitonic region, but the tail of the pion field i
spoiled a little because of the finite size of the radial bo

FIG. 1. The proton electric form factor as a function ofQ2: The
dashed curve corresponds to the constituent quark massM5370
MeV, while solid curve is forM5420 MeV. The dotted curve dis-
plays the case ofM5450 MeV. The empirical data are taken from
Höhler et al. @38#.
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when we take into account the pion mass. Hence, at larg
distances we use the exact Yukawa-type asymptotic behav
of the profile function:

P~r !5a exp~2mpr !
11mpr

r 2
, ~57!

where a is a constant governing the strength of the pion
field. It is determined by matching the self-consistent profile
function to the asymptotic tail given in Eq.~57! at large
distances, i.e., about 4 fm. Since the neutron electric form
factor, electromagnetic charge radius, and magnetic for
factors are very sensitive to the long-range tail, we have t
use the larger size of the radial box. Hence, we employ th
box sizeD.10 fm which is large enough to incorporate the
long-range part properly.

Figure 1 shows the electric form factor of the proton
while Fig. 2 draws that of the neutron as a function ofQ2

with the constituent quark mass 370 MeV, 420 MeV, and 45
MeV. The empirical data are provided by Ref.@39#. From
Fig. 1, we can easily find that the proton electric form facto
(GE

p) increases as the constituent quark mass does. For t
best fit, we choose the constituent quark massM5420 MeV

FIG. 2. The neutron electric form factor as a function ofQ2: The
solid curve corresponds to the constituent quark massM 5 420
MeV, while dashed curve drawsM 5 370 MeV. The dotted curve
displays the case ofM 5 450 MeV. The empirical data are taken
from Platchkovet al. @39#. The other four points are results for
GE
n extracted by Jones-Woodwardet al. @40# ~open diamond!, by

Thompsonet al. @41# ~open box!, by Edenet al. @42# ~open circle!,
and by Meyerhoffet al. @43# ~open triangle!.
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as usually done for the other observables. However, the n
tron electric form factor (GE

n) does not show such depen
dence on theM as that of the proton does. The dependen
of GE

n is not monotonous. As shown in Fig. 2,GE
n with

M5420 MeV is greater than those in the case
M5370 MeV andM5450 MeV. At the first glance, it
might seem to be strange. However, sinceGE

n is a very tiny
and sensitive quantity, one should carefully examine ea
contribution to it. Having scrutinized each contribution, w
find that the wave function corrections given by Eq.~50! are
responsible for the above-mentioned behavior inGE

n . In par-
ticular, thes appearing in Eq.~51! plays a pivotal role of
governing the behavior ofGE

n . As M increases, the electric

FIG. 3. The proton electric form factor as a function ofQ2: The
solid curve corresponds to the strange quark massms5180 MeV,
while dashed curve draws withoutms . The dotted curve displays
the case of the SU~2! model.M5420 MeV is chosen for the con-
stituent quark mass. The empirical data are taken from Ho¨hleret al.
@38#.

FIG. 4. The neutron electric form factor as a function ofQ2: The
solid curve corresponds to the strange quark massms5180 MeV,
while dashed curve draws withoutms . The dotted curve displays
the case of the SU~2! model.M5420 MeV is chosen for the con-
stituent quark mass. The empirical data~shaded circle! are taken
from Platchkovet al. @39#. The other four points are results for
GE
n extracted by Jones-Woodwardet al. @40# ~open diamond!, by

Thompsonet al. @41# ~open box!, by Edenet al. @42# ~open circle!,
and by Meyerhoffet al. @43# ~open triangle!.
eu-
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form factors increase but thes decreases. In the meanwhile,
theGE

n gets an optimal value around 420 MeV.
The contribution of thems corrections with the wave

function corrections is displayed in Figs. 3 and 4. In fact, th
ms corrections without the collective wave functions modi
fied bring GE

n down sizably, since thems terms

@ I iK i(QW
2)2I i(QW

2)Ki # diminish electric form factors in
general. However, as explained above, the collective wa
function corrections are in particular significant in order to
improveGE

n . On the contrary to the case of theGE
p to which

the wave function corrections contribute about 1%, thos
contributions toGE

n are strong enough to overcome thems

corrections. As a result, the totalms corrections enhance
GE
n about 20%;30% in the smallQ2 region.
More important observables for us are probably electr

charge radii which are determined by the behavior of th

FIG. 5. The electric isospin form factors of the nucleon as
function ofQ2: The solid curve corresponds to the isoscalar electr
form factor of the nucleon in SU~3!, while the dashed curve denotes
the isovector one. The dot-dashed curve draws the isoscalar one
SU~2!, whereas the dotted curve stands for the isovector one
SU~2!.

FIG. 6. The electric form factors of the charged SU~3! octet
baryons as a function ofQ2: The solid curve corresponds to the
proton electric form factor. The dashed curve is forS1. The dash-
dotted curve displays that ofS2 and the dotted curve that ofJ2.
M5420 MeV is chosen for the constituent quark mass.
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electric form factors nearQ250, which are defined by

^r 2&E
B526

dGE
B~Q2!

dQ2 U
Q250

. ~58!

Using Eq. ~58!, we obtain the electric charge radii of th
proton and the neutron^r 2&p

th50.78 fm2 and ^r 2&n
th

520.09 fm2, respectively. The experimental data a
^r 2&p50.74 fm2 and ^r 2&n520.11360.003 fm2 @44#. We
can see that our results are in a good agreement with exp
mental ones within about 10%.

In dotted curves in Figs. 3 and 4, we show the predict
of the SU~2! model @15#. As for the proton electric form
factor, it is comparable to the SU~3!, whereas a great discrep
ancy is observed in case of the neutron electric form fac
This discrepancy can be understood by looking into the e
tric isospin form factors. Figure 5 shows differences in t
electric isospin form factors between the SU~2! and SU~3!
models. From Fig. 5, we can find that in case of the SU~3!,
the difference between the isoscalar and isovector form
tors is quite small while their sum is comparable. The d
crepancy in the neutron form factors lies in this differen
between electric isospin form factors. It is partly because
the absence ofms and terms depending on theI 2 in the
SU~2! model and partly because of the different expectat

FIG. 7. The electric form factors of the neutral SU~3! octet
baryons as a function ofQ2: The solid curve corresponds to th
neutron electric form factor. The dashed curve is forL. The dash-
dotted curve displays that ofS0 and the dotted curve that ofJ0.
M5420 MeV is chosen for the constituent quark mass.
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values of the collective operators. In particular, the terms
with the I 2 in Eq. ~54! can be understood as kaonic contri-
butions in the mesonic language@45#. They are relevant to
the hidden strangeness having an effect on the nucleon.

We now turn our attention to the other SU~3! hyperons. In
Figs. 6 and 7, we present the electric form factors for the
SU~3! octet hyperons. Figure 6 draws those of charged hy-
perons while Fig. 7 displays those of neutral ones. Without
ms correction, we could observeU-spin symmetry expressed
by

GE,M
p 5GE,M

S1
, GE,M

S2
5GE,M

J2 ,

GE,M
n 5GE,M

J0
, GE,M

L 52GE,M
S0

. ~59!

Figures 6 and 7 show us SU~3! symmetry breaking arising
from thems correction. In case of the charged octet baryons,
the SU~3! splittings of the electric form factors are rather
small while they are quite visible for the neutral ones. The
predicted electric charge radii for different baryons are listed
in Table I, compared with the SU~3! Skyrme model with
pseudoscalar vector mesons@37#.

IV. MAGNETIC PROPERTIES OF THE SU „3… OCTET
BARYONS

The space components of the electromagnetic current ar
responsible for the magnetic form factors. As used in case o
the electric form factor, we again make use of the projection
operators given in Eq.~52! and SU(2)T3U(1)Y-invariant
tensors, so that we obtain the expression ofGM

B (QW 2):

TABLE I. The electric charge radii of the SU~3! octet baryons
predicted by our model compared to the evaluation from the
Skyrme model by Park and Weigel@37# and the experimental num-
bers. The constituent quark mass is fixed toM5420 MeV.

Baryons Our model Park & Weigel Experiment

p 0.78 1.20 0.74
n 20.09 20.15 20.11
L 20.04 20.06 –
S1 0.79 1.20 –
S0 0.02 20.01 –
S2 20.75 21.21 –
J0 20.06 20.10 –
J2 20.72 21.21 –

e

GM
B ~QW 2!5

MN

uQW u
F ^DQ3

~8!&BS Q0~QW
2!1

Q1~QW
2!

I 1
1
Q2~QW

2!

I 2
D 2^DQ8

~8!J3&B
X 1~QW

2!

A3I 1
2^d3pqDQp

~8!Jq&Bdpq

X 2~QW
2!

I 2

12ms^~D88
~8!21!DQ3

~8!&BM0~QW
2!1ms^D83

~8!DQ8
~8!&BS 2M1~QW

2!2
2

3
r 1X 1~QW

2!D
1msA3^d3pqD8p

~8!DQq
~8!&BdpqS 2M2~QW

2!2
2

3
r 2X 2~QW

2!D G , ~60!

where
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Q0~QW
2!5NcE d3x j1~qr !FCval

† ~x!g5$ r̂3sW %•tWCval~x!2
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2(n sgn~En!Cn
†~x!g5$ r̂3sW %•tWCn~x!R~En!G ,

Q1~QW
2!5

iNc

2 (
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E d3x j1~qr !E d3yFsgn~En!
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†~x!g5$ r̂3sW %3tWCval~x!•Cval

† ~y!tWCn~y!

En2Eval

1
1

2(m Cn
†~x!g5$ r̂3sW %3•tWCm~x!•Cm

† ~y!tWCn~y!RQ~En ,Em!G ,

Q2~QW
2!5

Nc

2 (
m0

E d3x j1~qr !E d3yFsgn~Em0!
Cm0

†
~x!g5$ r̂3sW %•tWCval~x!Cval

† ~y!Cm0~y!

Em02Eval

1(
n

Cn
†~x!g5$ r̂3sW %•tWCm0~x!Cm0
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X 2~QW
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Em02Eval

1(
n

Cn
†~x!g5$ r̂3sW %•tWCm0~x!Cm0

†
~y!Cn~y!RM~En ,Em0!G ,

M0~QW
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E d3x j1~qr !E d3yFCn

†~x!g5$ r̂3sW %•tWCval~x!Cval
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The regularization functionsR, RQ , RM , andRb are
defined in Eq.~49!. The subscriptsp andq in Eq. ~60! des-
ignate flavor indices from 4 to 7. Them0 in the summation
stands for the vacuum states with the SU~2! flavor. r i is
Ki /I i for short. As we can see from the densities for t
magnetic form factors in Eq.~61!, they are pure SU~2! quan-
tities. The SU~3! components are only found in the collectiv
operators in Eq.~60!. Therefore, it is straightforward to cal
culate Eq.~60! numerically. To make sure, we have com
pared the density of each contribution with the correspon
ing density in the gradient expansion given in Appendix
As the soliton size increases, our expressions converg
those of the gradient expansion.

The nucleon magnetic form factors are displayed in Fi
8 and 9, as the constituent quark mass is varied fr

FIG. 8. The proton magnetic form factor as a function ofQ2:
The dashed curve corresponds to the constituent quark m
M5370 MeV, while solid curve is forM5420 MeV. The dotted
curve displays the case ofM5450 MeV. The empirical data are
taken from Ho¨hleret al. @38#. The numbers are given in units of th
Bohr-magneton without any rescaling.

FIG. 9. The neutron magnetic form factor as a function ofQ2:
The dashed curve corresponds to the constituent quark m
M5370 MeV, while solid curve is forM5420 MeV. The dotted
curve displays the case ofM5450 MeV. The empirical data rep-
resented by black dots are taken from Ho¨hler et al. @38# while the
data with open triangles are from the most recent experiment@47#.
The numbers are given in units of the Bohr-magneton without a
rescaling.
he
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M5370 MeV toM5450 MeV. In contrast to the case of the
electric form factors, the dependence of the magnetic fo
factors on the constituent quark mass is not linear. Up
around Q250.2 GeV2 in case of the proton (Q250.4
GeV2 for the neutron!, smaller constituent quark masses ar
more contributive to the magnetic form factors. However,
Q2 increases, the dependence on the constituent quark m
undergoes a change, i.e., the greater constituent quark ma
contribute more to the magnetic form factors. In fact, we ca
reach the empirical data in the vicinity ofQ250 with
M5370 MeV, we reproduce roughly the correct momentu
dependence. We selectM5420 MeV for the best fit to be
consistent with all observables in this paper.

Figures 10 and 11 present the contributions of the stran
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FIG. 10. The proton magnetic form factor as a function ofQ2:
The solid curve corresponds to the strange quark massms5180
MeV, while dashed curve draws withoutms . The dotted curve dis-
plays that of the SU~2! model.M5420 MeV is chosen for the
constituent quark mass. The empirical data are taken from Ho¨hler
et al. @38#. The numbers are given in units of the Bohr-magneto
without any rescaling.

FIG. 11. The neutron magnetic form factor as a function o
Q2: The solid curve corresponds to the strange quark ma
ms5180 MeV, while dashed curve draws withoutms . The dotted
curve displays the case of the SU~2! model.M5420 MeV is cho-
sen for the constituent quark mass. The empirical data represen
by black dots are taken from Ho¨hler et al. @38# while the data with
open triangles are from the most recent experiment@47#. The num-
bers are given in units of the Bohr-magneton without any rescalin
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TABLE II. The magnetic moments of the SU~3! octet baryons predicted by our model. Each contribution
is listed from the leading order. The results are also compared with the Skyrme model of Park and Wei
@37#. The experimental data for the magnetic moments are taken from Ref.@45#. Our final values are given by
mB(V

1,ms
1). The constituent quark mass is fixed toM5420 MeV.

Baryons mB(V
0,ms

0) mB(V
1,ms

0) mB(V
1,ms

1) Park & Weigel Expt.

p 1.01 2.27 2.39 2.36 2.79
n 20.75 21.55 21.76 21.87 21.91
L 20.38 20.78 20.77 20.60 20.61
S1 1.01 2.27 2.42 2.41 2.46
S0 0.38 0.78 0.75 0.66 –
S2 20.25 20.71 20.92 21.10 21.16
J0 20.75 21.55 21.64 21.96 21.25
J2 20.25 20.71 20.68 20.84 20.65
uS0→Lu 0.65 1.34 1.51 1.74 1.61
al

-

tic

-

t

quark mass. On the contrary to the electric form factors,
ms correction enhances the magnetic form factors ab
5% to 10%. In particular, it is of great significance for th
neutron magnetic form factor in fitting the empirical data
shown in Fig. 11. Our theoretical magnetic form factors a
in good agreements with the empirical data within abo
15% as the other quantities.

Table II shows each contribution of the rotational 1/Nc

andms corrections to the magnetic moments, i.e.,GM
B (Q2) at

Q250 ~in Ref. @28#, the magnetic moments are discussed
detail!. Our results are compared with the SU~3! Skyrme
model with pseudoscalar vector meson@37#. Figures 12 and
13 display the magnetic form factors of the charged and n
tral octet baryons, respectively. The explicit breaking
U-spin symmetry in the magnetic form factors are observ
The corresponding magnetic charge radii are defined by

^r 2&M
B 52

6

mB

dGM
B ~Q2!

dQ2 U
Q250

. ~62!

FIG. 12. The magnetic form factors of the charged SU~3! octet
baryons as a function ofQ2: The solid curve corresponds to th
proton magnetic form factor. The dashed curve is forS1. The
dash-dotted curve displays that ofS2 and the dotted curve that o
J2. The experimental data for the magnetic moments are ta
from Ref @46#. M5420 MeV is chosen for the constituent qua
mass.
the
out
e
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re
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in

eu-
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The numerical results are listed in Table III. The results for
the nucleon are in good agreements with the experiment
data.

V. SUMMARY AND CONCLUSION

The aim of this work has been to investigate the electro
magnetic form factors of the SU~3! octet baryons and related
quantities such as electromagnetic charge radii and magne
moments in the SU~3! semibosonized NJL model. Starting
from the effective chiral action, we have expressed the ma
trix elements of electromagnetic current in the model. When
quantizing the soliton, the contributions arising from the
noncommutativity of collective operators were considered. I
gives a nonzero contribution of the rotational 1/Nc correc-
tions. Thems corrections are treated perturbatively, the col-
lective wave function correction being taken heed of. The
octet states of the baryon are mixed with higher irreducible
representations because ofms .

The parameters of the model, including the cutoff, are
adjusted tomp5139 MeV andfp593 MeV. The only pa-

e
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ken
rk

FIG. 13. The magnetic form factors of the neutral SU~3! octet
baryons as a function ofQ2: The solid curve corresponds to the
neutron magnetic form factor. The dashed curve is forL. The dash-
dotted curve displays that ofS0 and the dotted curve that ofJ0.
The experimental data for the magnetic moments are taken from
Ref. @46#. M5420 MeV is chosen for the constituent quark mass.
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rameter we have in the model is the constituent quark m
M which is fixed toM5420 MeV by the mass splitting of
the SU~3! baryons. The electric form factor of the proton
in an excellent agreement with the empirical data. As far
the electric form factor of the neutron is concerned, it is w
known that there are large uncertainties in extracting it fro
experiments@42#. However, compared to Ref.@43#, our result
is found to be in a remarkable agreement with it. The elec
charge radii of the nucleon are also obtained in good agr
ment with the experimental result within about 10%.

We also evaluated electric and magnetic form factors
all other members of the SU~3! baryon octet. The magnetic
moments are in a good agreement with the experimen
data. As far as theQ2 dependence is concerned, since the
are no experimental data available, these numbers are pre
tions. In all cases, thems corrections are about 10%.

Electromagnetic form factors of the baryons are used
order to extract strange form factors from the experimen
data. The evaluation of these quantities and of semilepto
and mesonic decays of hyperons will be the next steps in
research.
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APPENDIX A: THE DERIVATION
OF THE REGULARIZATION

In this appendix, we shall give an explicit derivation o
the regularizedV0 andV1 contributions to the electromag
netic form factors. We make use of the proper-time regul
ization scheme. We can see that the procedure is very sim
to the case of the axial constants@20#. Note that the non-
anomalous part is regularized. As is written in Eq.~44!, the
regularized effective action is expressed as

ReSeff5SpE du

u
f~u;L i !exp~2uDD†!, ~A1!

TABLE III. The magnetic charge radii of the SU~3! octet bary-
ons predicted by our model compared with the Skyrme model
Park and Weigel@37#. The constituent quark mass is fixed t
M5420 MeV.

Baryons Our model Park & Weigel Experiment

p 0.70 0.94 0.74
n 0.78 0.94 0.77
L 0.70 0.78 –
S1 0.71 0.96 –
S0 0.70 0.86 –
S2 0.74 1.07 –
J0 0.75 0.90 –
J2 0.51 0.84 –
ass

is
as
ell
m

tric
ee-

of

tal
re
dic-

in
tal
nic
our

.
nd
by

-

f
-
ar-
ilar

where

D5]t1H1 iVE1bA†Q̂A2 iA4A
†Q̂A2akAkA

†Q̂A,

D†52]t1H2 iVE1bA†Q̂A1 iA4A
†Q̂A2akAkA

†Q̂A,
~A2!

Hence,

DD†5W0~Am
0 ,V0,m0!1W1~Am

1 ,V0,m0!1W2~Am
1 ,V1!

1W3~Am
0 ,V1!1W4~m

1!1O~V1,m1!1O~V2!

1O~m2!, ~A3!

with

W052]t
21HE

2 ,

W15 i $A4A
†Q̂A,]t%2@akAkA

†Q̂A,]t#2 i @HE ,A4A
†Q̂A#

2$HE ,akAkA
†Q̂A%,

W252$VE ,A4A
†Q̂A%1 i @VE ,akAkA

†Q̂A#,

W352 i $VE ,]t%1 i @HE ,VE#,

W45@bA†m̂A,]t#1$HE ,bA
†m̂A%2 i @bA†m̂A,A4A

†Q̂A#

1$bA†m̂A,akAkA
†Q̂A%. ~A4!

The terms of higher orders inV and m̂ and of V•m̂ are
neglected, since they are believed to be very tiny.

Taking advantage of the Feynman-Schwinger-Dyson f
mula, we can expand exp(2uW) aroundW0:

exp~2uW!5exp~2uW0!2uE
0

1

da exp~2uaW0!

3@W2W0#exp~2u~12a!W0!

1u2E
0

1

dbE
0

12b

exp~2uaW0!@W2W0#

3exp~2ubW0!@W2W0#

3exp@2u~12a2b!W0#1••• ~A5!

First, we shall consider in case of the electric form fact
The lowest order contribution ofVE vanishes. The sea con
tribution of VE

0 comes only from the imaginary part of th
effective action. As for the next order ofVE , we needW2
andW1•W3 . After some manipulations, we obtain

^B,p8uV0~0!uB,p&V1
5
Nc

4 (
nm

RI~En ,Em!^$DQa
~8! ,iVE

b%&B

3E d3xeiq
W
•xW

3E d3yCn
†~x!laCm~x!

3Cm
† ~y!lbCn~y!. ~A6!

of
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Thems correction because ofW4 andW4•W1 vanishes as
theV0 contribution. Thems correction arises only from the
quantization ofiVE @23#.

The regularization of the magnetic form factor is mo
involved because of the time ordering of collective operato
Here, we need only the term2Ak$HE ,akA

†Q̂A% for the
lowest order contribution:

^B,p8uVi~0!uB,p&V0

5
1

2

d

dAi
SpE duf~u;L i !E

0

1

da

3exp~2uaW0!Ak$HE ,akA
†Q̂A%exp@2u~12a!W0#

5
Nc

2
DQa

~8!(
n

^nua il
aun&R~En!, ~A7!

whereR(En) is defined in Eq.~49!.
As a next step, we proceed to evaluate theVE

1 correction
to the magnetic form factor. It is tedious but straightforwar

^B,p8uVi~0!B,p&V1
5

d

dAi
~X1@Ak#1X2@Ak# !Ak50 ,

~A8!

where

X1@Ak#5
1

2
SpE duf~u;L i !E

0

1

da exp~2uaW0!W2@Ak#

3exp@2u~12a!W0#, ~A9!

X2@Ak#5
1

2
SpE duf~u;L i !E

0

1

dbE
0

12b

da exp~2uaW0!

3~W1@Ak#1W3@Ak# !exp~2ubW0!

3~W1@Ak#1W3@Ak# !exp@2u~12a2b!W0#.

~A10!

The terms includingW1•W1 andW3•W3 vanish. The first
term d/dAi X1@Ak# is obtained to be

d

dAi
X1@Ak#5

2 i

16
Nc(

n,m
Au

p
~e2uEn

2
2e2uEm

2
!$ iVE

a ,DQb
~8!%

3^nulaum&^mua il
bum&. ~A11!

The second term is
re
rs.

d:

d

dAi
X2@Ak#52u

iNc

8p (
n,m

E
0

1

dbe2u@bEm
2

1~12b!En
2
#

3@bEm2~12b!En#
1

Ab~12b!
@ iVE

a ,DQb#

3^nulaum&^mua il
bun&

1
i

16
Nc(

n,m
Au

p
~e2uEn

2
2e2uEm

2
!$ iVE

a ,DQb
~8!%

3^nulaum&^mua il
bun&. ~A12!

The second part of Eq.~A12! is canceled byd/dAi X1@Ak#,
so that we have

^B,p8uVi~0!uB,p&V1

52u
iNc

8p (
n,m

E
0

1

dbe2u@bEm
2

1~12b!En
2
#

3@bEm2~12b!En#
1

Ab~12b!
@ iVE

a ,DQb#

3^nulaum&^mua il
bun&. ~A13!

Having integrated overb, we obtain

^B,p8uVi~0!uB,p&V1
52

Nc

4 (
m

^@DQa
~8! ,Jb#&B^nulaum&

3^mua il
bun&RQ~En ,Em!, ~A14!

whereRQ is defined in Eq.~49!.

APPENDIX B: THE GRADIENT EXPANSION OF THE
MAGNETIC MOMENTS

It is well known that the exact expressions for the mag
netic moments can be expanded in powers of gradients of t
chiral fields @48#. In this way the quark determinant gives
terms, which are quite similar to the Skyrme model expre
sions @37#. An important difference is, however, the contri-
butions of orderV1 from the real part of the action. In the
present case we obtain

mB522MnE drr 2sin2u^DQ3&BF8p

3
fp
21

1

3

Mu

4I 1
1
1

3

Mu

8I 2
G

1
4

9pE drr 2sin2uu8F2^d3ppDQpJp&B
I 2

2
^DQ8J3&B

I 1A3
G .

~B1!

Our numerical densities for the electromagnetic form facto
are compared with those obtained from the gradient expa
sion in order to warrant the calculation.



53 4029ELECTROMAGNETIC FORM FACTORS OF THE SU~3! OCTET . . .
@1# S. Kahana, G. Ripka, and V. Soni, Nucl. Phys.A415, 351
~1984!.

@2# M.S. Birse and M.K. Banerjee, Phys. Lett.136B ~1984!.
@3# V. Soni, Phys. Lett. B183, 91 ~1987!.
@4# D. Diakonov and V. Petrov, Nucl. Phys.B272, 457 ~1986!.
@5# D. Diakonov, V. Petrov, and P. Pobylitsa, Nucl. Phys.B272,

809 ~1988!.
@6# H. Reinhardt and R. Wu¨nsch, Phys. Lett. B215, 577 ~1988!.
@7# Th. Meissner, F. Gru¨mmer, and K. Goeke, Phys. Lett. B227,

296 ~1989!.
@8# M. Wakamatsu and H. Yoshiki, Nucl. Phys.A524, 561~1991!.
@9# G.S. Adkins, C.R. Nappi, and E. Witten, Nucl. Phys.B228,

552 ~1983!.
@10# P. Ring and P. Schuck,The Nuclear Many-Body Problem

~Springer-Verlag, New York, 1980!.
@11# K. Goeke, A.Z. Go´rski, F. Grümmer, Th. Meissner, H.
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