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Stabilization of the Skyrmion
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~Received 14 August 1995!

We examine the effects of treating the linear scale of the Skyrmion as a quantum variable. It is found
when angular momentum also is included, the soliton is stable and there is no need for the artificial qu
term traditionally used. These results involve a careful treatment of the constrained degrees of freedom a
quantization procedure and differ from those of earlier work using a less fundamental approach. Accep
values are found for the masses and other static properties of the nucleon,D~1232!, and Roper resonance.
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I. INTRODUCTION

A well known model of the baryons, based on the lar
Nc limit of QCD @1,2#, is to treat baryons as Skyrmions@3#,
i.e., solitons of the pion field based on the Lagrangian

L5
f p
2

4 E Tr~]mU]mU†!d3r , ~1.1!

where

U5exp@ i t•f~r /R,t !#,

with f the pion field andt the isospin matrices. The solito
solutions for whichU→1 at infinity fall into distinct topo-
logical classes. Those with the topological constantB51 are
identified as single baryons.

In classical mechanics, the static soliton solutions of t
Lagrangian are unstable against radial collapse becaus
the Derrick instability@4#, that is the energy collapses to ze
as the length scaleR decreases. Actually, Skyrme’s Lagran
ian contains an additional term quartic inU which gives
stable solutions. However, there has been considerable i
est in the simple quadratic Lagrangian~1.1! and it has been
suggested that solitons may be stable if the scaleR(t) is
treated as a quantum variable@5#.

We have examined this question from first principles a
this paper shows that these baryonic solitons are ind
stable provided that the collective coordinates describing
tations and vibrations are both quantized.

II. GENERAL FORMALISM

In the one-baryon sector, the minimum-energ
maximum-symmetry configuration of the classical soliton
the ‘‘hedgehog’’

Uc5exp@ iF ~s!t• r̂ #, ~2.1!

wheres5r /R andR is a scale constant.
To examine the properties of the baryon, one must de

mine the ‘‘profile function’’ F. In classical dynamics, one
determinesF from the Euler-Lagrange equation, a satisfa
tory procedure when the quartic term is present, but not o
erwise@6#.

Rotation is introduced by taking
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U5A~ t !UcA
†~ t !, ~2.2!

whereA is a matrix introducing collective rotation as in the
work of Adkins, Nappi, and Witten@7#. Spin and isospin are
quantum variables and the appropriate spin states are pro
jected to describe a baryon. Then one obtains an altered
Euler-Lagrange equation which has certain unphysical char-
acteristics@8#.

However, Verschelde and co-workers have shown in a
series of papers@9–12# that it is essential in deriving the
profile equation determiningF to maintain in the calcula-
tions the complete number of degrees of freedom in the basic
Lagrangian~1.1!. This is done by keeping the small non-
hedgehog portion of the field and by using the appropriate
quantal dynamical principle to form the profile equation. We
extend Verschelde’s work by including radial vibrations.

The basic Eq.~1.1! gives the Lagrangian density

L5
fp
2

2
@ḟ igi j ~f!ḟ j2]kf

igi j ~f!]kf
j #, ~2.3!

with fi the i th-component of the isospin field. The metric of
the isospin space is

gi j ~f!5Sd i j1~12S!
f if j

f2 , ~2.4!

with S5~sin2f/f2! andf25f if i .
The explicit dependence on vibrational and rotational co-

ordinates appears in the expression forfi :

f i~r ,t !5Ui j ~a!@fs
j ~s!1h j~s,t !#, ~2.5a!

where

fs
i ~s!5F~s!ŝ i5

Fs i

s
, ~2.5b!

whereUi j is now the usual matrix function of Euler angles
a. As the scale variableR undergoes quantal oscillations, the
field vibrates radially.

It is seen thatUfs is the radially vibrating and rotating
hedgehog. The quantityhi is a general isospin field~referred
to body-fixed axes! with the same number of degrees of free-
dom asfi . In order to discuss the Skyrmion, we consider the
limit ash→0, but it is important to do so at the final stage of
3967 © 1996 The American Physical Society
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3968 53A. ABDALLA AND M. A. PRESTON
the calculation after the profile equation has been fou
There are now four redundant variables sincea andR are
additional degrees of freedom. Thus one must introduce c
straints and use an appropriate quantization procedure.
this, we use the Dirac formalism@13#.

In this picture,h is to represent a pion field other than th
Skyrmion, hence it is natural to constrainh to be orthogonal
to fs . In Eq. ~2.5a!, h is shown with time dependence mor
general than only that contained in the scale variableR(t) in
the denominator ofs; this implies thath may behave quite
generally, neither having scale vibrations nor rotations s
chronous with the hedgehog. For the purposes of this stu
however, it is sufficient to assume the rigid gauge, so cal
because it requiresh to adapt immediately to the collective
motions@11#. This implies removing the explicit time depen
dence ofh in Eq. ~2.5a! leaving time only ins.

Comparisons of ‘‘soft’’ and rigid gauges have been ma
@12,14#. Use of the rigid gauge implies an adiabatic assum
tion that more general ‘‘nonrigid’’ changes inh are of a
much higher energy scale~shorter time scale! than that of the
collective motion. Thus the rigid gauge is to be used f
ground state properties, not for highly excited states or
namical processes such as pion scattering orD decay@10,15#.

Also, since we are describing odd parity states with to
angular momentum 1/2 or 3/2,h contains spherical harmon
ics of order one only.

One obtains the momenta conjugate tofi , hi , R, andaa
by noting that Eq.~2.5a! gives

ḟ i5
]Ui j

]aa
ȧa@fs

j ~s!1h j #1Ui j S 2
F8

R
s j Ṙ1ḣ j D ,

~2.6!

where

F85
dF

ds
,

and, since

pf
i 5

]L

]ḟ i
,

ph
i 5

]L

]ḣ i 5pf
j U ji5Ui j

21pf
j , ~2.7!

P5
]L

]Ṙ
52E d3r pf

i Ui j FF8s j

R
G52E d3r ph

j F8

R
s j ,

~2.8!

Pa5
]L

]ȧa
5E d3r ph

i Ui j
21 ]Ujk

]aa
~fs

k1hk!. ~2.9!

Equations~2.8! and ~2.9! are conditions connecting the mo
menta, reflecting the fact that there are four superfluous
grees of freedom. We also need the four conditions on
coordinates. As noted above, we wishh to be orthogonal to
the rotational@9,11# and vibrational zero modes, that is

VR[E d3s h iF8s i50, ~2.10a!
d.
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Va[E d3s h igi j ~fs!ea jkfs
k50. ~2.10b!

In Eq. ~2.10a!, the metric gi j does not appear because
gi j (fs)s

j5s i .
In dealing with the angular variables, it is more conve-

nient to use the body-fixed angular momentaI a rather than
thePa conjugate to Euler angles. Using explicit forms ofU
as the angular momentumD functions, Eq.~2.9! becomes

I a52E d3r ph
i eai j~fs

j1h j !. ~2.11!

It is also desirable to remove fromph any portion that
depends on the collective coordinates and arrange that th
constraints~2.8! and ~2.11! not containP or I a . This is
achieved by writing

ph
i 5p l

i1p t
i , ~2.12!

insisting that

XR[E d3s p t
iF8s i50, ~2.13a!

Xa[E d3s p t
ieai jFs j50 ~2.13b!

and finding that

p l
m5

1

a
GmP2J ata

m , ~2.14!

Gm52R22F8sm1Rdata
m , ~2.15!

da5eai jE d3s F8s ih j , ~2.16!

ta
m5R23Lab

21ebm jŝ
jSsF, ~2.17!

Lab5eamkebmlE d3s Ssfs
1~fs

k1hk!, ~2.18!

J a5I a1 Ĩ a , ~2.19!

Ĩ a5R3eai jE d3s p t
ih j , ~2.20!

a5E d3s s2F82. ~2.21!

Our coordinate system is nowh i(s),R,aa ,p t
i(s),P,I a with

the constraint functionsVR ,Va ,XR ,Xa .
In the Dirac method for constrained systems@13# with

constraint functionsCi , one forms the matrix of the Poisson
brackets of the constraints

D i j5@Ci ,Cj #. ~2.22!

For any two functionsA andB, the Dirac brackets are

@A,B#D5@A,B#2@A,Ci #D i j
21@Cj ,B#. ~2.23!
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To quantize, the commutator of two operators is put equal
i times the Dirac brackets, not the Poisson brackets.

Here, the constraints are the eight-vecto
(XR ,VR ,Xa ,Va). One sees, for example, that
to

r
@VR ,XR#5E d3s

dXR

dp t
i

dVR

dh
i 5a,

and in this way one finds that
D2153
0 21/a 0 0 0 0 0 0

1/a 0 0 0 0 0 0 0

0 0 0 0 0 1/L 0 0

0 0 0 0 0 0 1/L 0

0 0 0 0 0 0 0 1/L

0 0 21/L 0 0 0 0 0

0 0 0 21/L 0 0 0 0

0 0 0 0 21/L 0 0 0

4 , ~2.24!
ut-

ut
ot
at

th

al

rs

d

where

L5
2

3 E d3s SsF
25

8p

3 E ds s2sin2F. ~2.25!

The Dirac brackets

@h i~s!,p t
j~s8!#5R23S d i jd

3~s2s8!

2
1

a
F8~s!s iF8~s8!s8 j

2
1

L
emikfs

k~s!emjlfs
l ~s8!Ss~s8! D .

~2.26!

The Dirac brackets ofhi andp t
i with the collective coordi-

nates and momenta are zero and the Dirac brackets of
collective coordinates and momenta are the same as the P
son brackets.

That the new coordinate system is canonical may be v
fied by showing that with Eqs.~2.5! and ~2.6!, the Dirac
brackets and the constraint equations, one finds

@f i~r !,pf
i ~r 8!#5d i jd

3~r2r 8!. ~2.27!

III. THE HAMILTONIAN

The Lagrangian~2.3! gives the classical Hamiltonian

H5
1

2 f p
2 E d3r pf

i gi j
21~f!pf

j

1
f p
2

2 E d3r ]kf
igi j ~f!]kf

j . ~3.1!

To obtain the corresponding quantum Hamiltonian in t
new coordinates, one symmetrizes the expressions involv
noncommuting factors to ensure Hermiticity, recalling th
the
ois-

eri-

he
ing
at

commutators are given by Dirac brackets. The noncomm
ing pairs inH are I a andU~a!, P andR, andp t

i andhi .
Many earlier papers have not proceeded in this way b

have first obtained the zero-order collective Hamiltonian n
involving h and then quantized, ordering operators only
this ‘‘collective theory’’ level. But it is crucial to retainh
until one has the profile equation and this requires that bo
H andpf be Hermitian at the full ‘‘field theory’’ level. In a
detailed account of this work@16#, we show that the follow-
ing symmetric ordering is the only way to achieve this du
Hermiticity.

Equations~2.7! and ~2.14! become

pf
i ~s!5

1

2
$Uim ,p l

m%1Uimp t
m , ~3.2!

p l
m5

1

2a
$P,Gm%2

1

2
$ta
m ,J a%, ~3.3!

where$ % denotes an anticommutator. Using

@Ui j ,I a#5 i ea jkUik ~3.4!

and takingph5U21pf , we find

ph
m5p t

m1p l
m1

i

2
eanmta

n5p t
m1p̃ l

m . ~3.5!

Notice the additional quantum term inph compared with Eq.
~2.12!. Using these expressions and the Dirac commutato
based on~2.26! to expand to first order inh and pt , one
finds, after lengthy algebra, that

H5Hcoll1H intr , ~3.6!

whereHcoll depends only on the collective coordinates an
H intr is of first order inh or pt . There are, in fact, no terms
of first order inpt and



3970 53A. ABDALLA AND M. A. PRESTON
f p
2Hcoll5 f p

4bR1
1

2L
R23S I22 3

4D1
1

2a FP2R212 iPR221
3

2
R23S l1

22l12l21
1

6
j2

4

3D G , ~3.7!

f p
2H intr52 f p

4RE d3s h i ŝ i S F912
F8

s
2
sin 2F

s2 D1
1

2aL
I aeankH P, 1

R2 E d3s F8Ssh
nŝkJ

2
1

5L2R3 I aI bFdabE d3sS F 12
d

dF
~F F ! Dh i ŝ i2E d3sS 3F 1

1

2

d

dF
~FF !~haŝb1hbŝa! D G

1
1

L2R3 E d3s h i ŝ iF14 d

dF
~FF !1F Ss1F S 2V11

L

a S 12 l11
1

2
l22l1

2D D G , ~3.8!
on

-

cta-
il-
le
r-
te.
where

Ss5~sin F/F !2, F 5FSs

and

b5E d3sF12 ~F8!21F F/s2G , ~3.9a!

L̃5E d3s F F5
3

2
L, ~3.9b!

l1L̃5E d3s F F8s, ~3.9c!

l2L̃5E d3s F F9s2, ~3.9d!

V1L̃5E d3s F 2, ~3.9e!

V2L̃5E d3s F 2~F8s/F !, ~3.9f!

a5E d3s~F8s!2, ~3.9g!

ja5E d3s~F9s2!2. ~3.9h!

In expandingH to first order inh, one encounters an
integral of the form*d3s f (s)h i ŝ i ŝaŝb and, sincehi has
only first order spherical harmonics,ŝ i ŝaŝb is replaced by
its l51 part, viz.~1/5!(d iaŝ

b1d ibŝ
a1dabŝ

i).
The second and third terms inHcoll due to rotation and

vibration involve a moment of inertiaL and a vibrational
inertial parametera. The presence ofl1 andl2 requires both
rotation and vibration. This rotation-vibration coupling in
volves the third term inp h

i given by Eq.~3.5! which in turn
comes from symmetrizing the rotational part ofp f

i . We find
that theseli terms provide a positive binding contribution t
the potential term inHcoll which plays an important role in
the stability of the soliton.

The rotational term inHcoll has the factorI
223/4. Unlike

the rigid rotor Hamiltonian of Adkins, Nappi, and Witten@7#,
there is the renormalizing term23/4. This purely quantum
-

o

effect from symmetrization was noted in a paper@11# by
Verschelde and Verbeke which also displays, for rotati
only, an explicit form ofH consistent with the appropriate
terms of Eqs.~3.7! and ~3.8!.

It is helpful to castHcoll in a simpler form by using the
dimensionless variable

q5~ f pbR!3/2 ~3.10!

for which the momentum relationship is

P5
3

4
f pb$q1/3,Pq%. ~3.11!

This gives the Schro¨dinger equation

fp

2m F2
d2

dq2
1

n

q2
12mq2/3Gc5Ec, ~3.12!

where

m5
4a

9b3
, ~3.13!

n5
20

9
u

a

L
1
2

3
~l1

22l12l2!1
1

9
j2

25

36
, ~3.14!

with

u5
1

5 F I ~ I11!2
3

4G . ~3.15!

The state of a Skyrmion is specified by the spin andi spin
uI5J,I 3 ,J3& and by a vibrational eigenstate of Eq.~3.12!.

IV. THE PROFILE EQUATION AND STABILITY

As Verschelde@9# first emphasized, the equation of mo
tion for the static field, viz.,ṗf50, should be cast in the
form

^@H,pf
i #&50, ~4.1!

where all degrees of freedom are retained and the expe
tion value is in a stationary state of the collective Ham
tonian. This equation leads to the condition for the profi
functionF. Thus the profile and the parameters of the Sky
mion such as the inertial coefficients vary from state to sta
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The value of the commutator in~4.1! must be found by
using the appropriate Dirac brackets such as in Eq.~2.26!.
Thus, using Eqs.~2.7! and ~3.5!, Eq. ~4.1! is

^@Hcoll1H intr ,Uim~p̃ l
m1p t

m!#&50. ~4.2!

Since the expectation value is in a state ofHcoll, the com-
mutator withHcoll does not contribute to~4.2!. There is fur-
ther simplification because we require in~4.2! only terms
that are independent ofh andpt . SinceH intr is of orderh
andh commutes withU~a!, @H intr , Uim# ph can be ignored.
Also, the only term inp̃ l

m in Eq. ~3.3! which does not com-
mute withH intr is $ Ĩ a ,t a

m%, but this term is of second order in
h and pt and therefore its commutator withH intr remains
proportional toh. Also, one sees that, for anyf ,

^$P, f ~R!%&5
3

2
f pbE dq

d

dq
~c2f q1/3!50,

sincec50 at both limits. Consequently, the only part of~4.2!
which contains zero order terms gives

^Uim@H intr ,p t
m#&50. ~4.3!

Equation~2.25! and the properties of the matrixU allow
us to write

F E d3r f ~r!hkr̂ l ,p t
m~s!G

5
i

R3 H dkmf ~s!ŝ l2
1

3a
d lkF8sŝmE d3r f F8r

2
1

3L
~dmkŝ

l2dmlŝ
k!FSsE d3r f FJ , ~4.4!

F E d3r fhkr̂k,p t
m~s!G5 i

ŝm

R3 S f2 1

a
F8sE d3r f F8r D ,

~4.5!

^Uimŝm&5d i3ŝ
3^U33&5G i , ~4.6!

^Uim$I m ,I a%ŝ
a&5G@2I ~ I11!21#. ~4.7!

With these results, Eq.~4.3! gives the profile equation

K q24

L2 @Ss
2F1C1SsF2u sin 2F1C2F8s#

1
q24/3

b6 Fb3a F8s2b2S F912
F8

s
2
sin 2F

s2 D G L 50,

~4.8!

C152u2V12S L

2a D ~2l1
22l12l2!, ~4.9a!

C25S 3L2

4a2 Dl1~2l1
22l12l2!1S 3L

2a D ~V1l12V225u!.

~4.9b!
The first term ofHcoll in Eq. ~3.7! is the classical energy
f p
2bR which tends to zero as the scale variableR goes to

zero. This is the Derrick instability.
If one includes also the rotational energy,

E5 f pS f pbR1
5

2

u

L

1

f p
3R3D . ~4.10!

Thus for I5J51/2, i.e.,u50, the energy is simply the clas-
sical result. This differs from the earlier papers and is due to
the ‘‘renormalization’’ of the angular momentum term, noted
by Verschelde@11# and due to the appropriate ordering of the
quantum operators and the inclusion of the intrinsic degree
of freedom of the field. However, for theD~1232!, u53/5
and the minimum energy of the soliton occurs for
fpR5(9/2bL)1/4 and is ~4/3!f p(9b

3/2L)1/4. This energy is
of a reasonable order of magnitude. Its precise value depen
on the form ofF. The equation forF is Eq. ~4.8! but with q
taking the single specific value~9b3/2L!3/8 and without
terms due to vibration, i.e., asa→`,

~2u2V1!SsF1Ss
2F2u sin 2F2S 9L

2b D S F91
2F8

s

2
sin 2F

s2 D50. ~4.11!

The form ofF at large distances was considered at one tim
to be sinusoidal@8# but Verschelde@9# suggested that it has
exponential decay whenh is properly included. Equation
~4.11! confirms Verschelde’s result since at large distances
asF→0, Ss→1, one gets

F91
2F8

s
2
2F

s22
2b

9L
~12V1!F50. ~4.12!

Recalling thatSs<1, the definitions in Eq.~3.9! show that
V1,1. Thus the asymptotic solution forF is e2ms/s where
m.0.

When the scale vibration is included in the theory, the
energy of the system is the eigenvalue ofHcoll given by the
Schrödinger equation~3.12!. The coefficients of this equa-
tion are scale invariant and depend only on the functiona
form of F~s!. Hence the expectation value ofR ~i.e., the
scale! and the energy are determined and there is no Derric
instability. The various static properties of the nucleonic
states are also fixed.

For this conclusion to be valid, there must be a solution
for F, simultaneously satisfying the Schro¨dinger equation
~3.12! and the profile equation~4.8!.

The profile equation

E dq c2~q!g~s,q!50 ~4.13!

is an integral equation which must hold for all values of the
‘‘parameter’’x, writing s5xq22/3, x5 f pbr. The wave func-
tion c given by ~3.12! behaves at smallq asqt and at large
q as exp~2gq4/3! where

2t511~114n!1/2 ~4.14a!
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and

g53~m/8!1/25~a/2b3!1/2. ~4.14b!

Indeed, using

c5qtexp~2gq4/3!

with g as a variational parameter gives results very near
merical solutions of a similar equation@17#.

We wish to study the asymptotic form ofF for larges.
For large values ofx, s is also large except whenq is large
of orderx3/2. But whenq is large,c2 is exponentially small
and, therefore, we can choose a value ofx large enough that

E
0

Q

dq c2g@E
Q

`

dq c2g, ~4.15!

whereQ is the large value ofq at which the asymptotic
approximation forF~s! begins to fail. Of course, in neglect
ing the contribution forq.Q, we note that the functiona
g(s,q) is finite ass→0.

Now, sinceSs→1 at larges, the profile equation for large
r becomes

^q24@A1F1A2sF8#1q24/3@A3sF81A4~F912F8/s

22F/s2!#&50, ~4.16!

where

A15~11C122u!/L2,

A25C2 /L
2,

A351/~ab3!,

A4521/b4.

To examine possible asymptotic forms ofF, we consider
the very general function

F;s2Nexp~2ksn!. ~4.17!

One sees that the terms in~4.16! are of the type

E dq c2qas2Mexp~2ksn!,

which for q large ~but still ,Q! is proportional to

E dq qse2f, ~4.18!

with

f52gq4/31kxnq22n/3,

s5a12M /31t.

t is introduced to allow for any power-dependent factor inc.
We study these integrals for large values ofx. One can

show that the integrand in~4.18! has a pronounced relatively
narrow maximum nearq0, the value for whichf(q) is mini-
mum. One finds
nu-

-
l

q05~kx!3v, ~4.19!

where

k5~nk/4g!1/n and v5n/~2n14!.

For largex, q0 is large but still less thanQ in ~4.15!, since
s(q0)5xq0

22/3}x4v/n and thus the asymptotic form ofF is
still valid.

We expand the integrand in~4.18! in a power series in
z5q2q0 and, since ther th derivativef (r )(q0) is propor-
tional to x(423r )v, the ratio of successive terms is of orde
zx23v. Thus, if uzu!x3v, only leading terms of the series are
needed. In this way, one finds that the maximum of the int
grand is atz5(s/C)k23vx2v and that the integrand has one
half its maximum value for z5~2 ln2/C!1/2xv, where
C5x2vf9(q0) is a finite number independent ofx. Both
these values ofz are small compared withq0 and are also
well within the range for validity for the series.

We thus see that the integrand is well represented by
narrow Gaussian centered onq0 and that

E dq qse2f.~2p/C!1/2q0
sexp@2f~q0!#x

v

5~2p/C!1/2k3svexp~2f0!x
~3s11!v.

~4.20!

This allows us to find the relative orders of magnitude fo
largex of the four terms in the profile equation~4.16!. The
results are

^q24F&}xs0212v,

^q24sF8&}xs028v,

^q24/3sF8&}xs0,

^q24/3~F912F8/s22F/s2!&}xs018v22,

wheres05(2N11)v2N1t. Sincev51/4 if n52, we see
that the third term is dominant for 0,n,2, the fourth for
n.2 and the third and fourth are of the same order forn52.
Since each term of the profile equation is nonzero, there
therefore no solution forn.0, unless perhaps forn52.
However, whenn52, both third and fourth terms are nega
tive and there is therefore no solution.@The coefficients of
the leading integrals of form~4.20! are2nkA3 andn

2k2A4 ,
respectively.#

We conclude that the asymptotic form ofF must have
n50, i.e., it is simplys2N. In this case, the first three terms
of ~4.16! are all of orderxs0 and the fourth term is negligible.
The equation is

~A12NA2!^q
24F&5NA3^q

24/3F&. ~4.21!

If A12NA2.0, there may be a solution.
If L→`, i.e., if one ignores rotation,A12NA250. We

conclude that stability requires both rotation and vibratio
Chepilko et al. @18# found otherwise, but their work quan-
tized the theory only at the collective level, that is withou
taking account of theh degrees of freedom.
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There might still be no solution ifF were such thata and
L simultaneously became infinite for anF that satisfied the
equations. The danger to be considered is thatF at larges is
proportional tos2N with N→3/2, whena andL are loga-
rithmically divergent. We shall now show that such anF
does not simultaneously satisfy the Schro¨dinger equation
~3.12! and the profile equation.

If a andL are large because of the behavior ofF at large
s, it is only the contributions from larges that need be
considered in the defining integrals~3.9!. Thus, in the inte-
grals, we putSs51,F 5F and find by simple integration tha
in this limit V151, V25l1523/2, l25622a/3L, and

C152u2
4

3
, ~4.22a!

C252S 341
15

2
uD S L

a D , ~4.22b!

a

L
5
3

2
N2, ~4.22c!

j5~N11!2. ~4.22d!

Again, consider the profile equation for larger . As before,
because of the exponential behavior ofc, we may taker
large enough to ignore the region whereq.Q and so use the
asymptotic form ofF~s!. Using Eq.~4.22! andN53/21e,
the profile equation~4.21! becomes

K 1

L2 q
2312e/3S 103 u2

2

9
e D2

3

2ab3
q21/3L 50. ~4.23!

We write the wave function as

c5qtexp~2gq4/3! f ~q!, ~4.24!

where f is well-behaved at all points, and we find

^qa&5~2g!23a/4

I S 32 t2
1

4
1
3

4
aD

I S 32 t2
1

4D
, ~4.25!

where

I ~m!5E dx xme2xf 2. ~4.26!

Using Eqs.~4.14! and~3.14!, the profile equation forI5J
51/2 to ordere is

27eI S 211
13

3
e D18I ~1!50 ~4.27!

and for I5J53/2, it is

243I ~1.52!28I ~3.52!50. ~4.28!

As e→0, I ~211e! is of order 1/e, so the first term of
~4.27! is finite, but both terms are positive. In~4.28!, the
terms are of opposite sign, but although the values of
 he

integrals depend onf , it is reasonable, as noted above, to
consider thatI ~m! is approximately the gamma functionG~m
11!. With this approximation, the left side of~4.28! is 172
G~2.52!@0. Thus in neither case is the equation satisfied.

To summarize, we have found thatN near 3/2 does not
provide a solution and therefore the danger of a collapsin
soliton does not arise. This analysis shows that, for stabilit
one needs both rotation and vibration and suggests that
form factor with asymptotic behaviors2N should be sought.

V. NUMERICAL SOLUTIONS AND STATIC PROPERTIES

The profile equation~4.8! and the vibrational Schro¨dinger
equation~3.12! must be solved consistently to determine a
profile F~s!, since all parameters are functionals ofF. A
strictly numerical iterative procedure is not feasible, in par
because Eq.~3.12! is actually an infinite number of condi-
tions, one for each value ofr . We therefore constructed ana-
lytic forms forF containing arbitrary parameters to be deter
mined by how well the profile equation is satisfied for allr .
Equation ~4.8! contains eight terms which must cancel to
give a sum of zero. An arbitrary functionF will give a non-
zero residue. Divide this residue by the sum of the absolu
values of the eight terms and call the resultv(r ). If v(r ) is
zero,F satisfies the equation for that value ofr , and ifv(r )
is small, F is a good approximation. For our approximate
functions, we evaluatedv(r ) for about 20 values ofr and
accepted functions for which allv(r )&0.005. Amongst the
‘‘accepted’’ functions, we chose as best those which mini
mized the sum of thev(r ) over the various values ofr .

If one finds anF~s! which satisfies the profile equation,
one can form an infinite number of others by defining a new
function F1(s)5F(bs). Writing t5bs and noting
dF1/ds5b dF(t)/dt, one sees from Eq.~3.9! that
b15b/b, L15L/b3, a15a/b3 and the other coefficients in
Eq. ~4.8! are unchanged. Also when the argument ofF1 is s,
the value ofr for a fixedq is r 15sq2/3/ f pb1 and when the
argument ofF is bs, the value of r for the sameq is
r5bsq2/3/ f pb5r 1 . So, in fact,F1(r ,q)5F(r ,q) and soF1
is also a solution. However, as a function ofs, it is different
and has a different slope at the origin, i.e.,F18(0)
5bF8(0).

The form we have found most successful is

F~s!52arctan@g~s!#, ~5.1a!

g~s!52
2

F8 F 1s exp~2cs!1
c

11dsNG , ~5.1b!

whereN, F8, c, d are adjustable constants. Note thatF~0!
5p, F~`!50, andF8~0! is the parameterF8. Also F9~0!50
which agrees with a power series expansion of Eq.~4.8! for
small r . For a givenN, an equivalent functionF1 hasF18
5bF8, c15bc, d15bNd.

Our procedure was to choose values forN, F8, andc and
then to findd such that the functionalsli satisfy the asymp-
totic form of the profile equation, that is Eq.~4.21! with
F5s2N/3. One then determines if this set of values
$N,F8,c,d% gives an acceptableF with small Sv(r ). Be-
cause of the equivalent solutions,F8 is essentially arbitrary.
ForN52, there are acceptable solutions for a short range
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c; with F8520.4, the range is 1.0<c<1.4. However, these
solutions differ from each other by less than 3% at any va
of s. Indeed, when graphed on a reasonable scale, the
pearance is simply that of a rather thick curve. Values ofN
significantly different from 2 did not give acceptable profile

For the nucleon, the best profile we foun
$N,F8,c,d%5$2.0,20.40, 1.20, 0.5056% has an averagev(r )
of about 0.003. In view of narrow ranges ofN andc found
for acceptable solutions and the insensitivity of the profile
the value ofc within the range, it may be that this profile i
quite close to a precise unique solution.

The profile found for I5J53/2 is $2.0, 20.60, 1.40,
2.074%. Taking I5J51/2 with the first excited state ofHcoll
to describe the Roper resonanceN* ~1440! as a radial oscil-
lation, we find a good profile with the set$1.9,20.75, 1.95,
10.328%. These profiles are shown in Fig. 1, with a comm
slopeF8520.6. Figure 2 shows the vibrational wave fun
tions of Eq.~3.12!.

We have calculated the masses of the nucleon,D and
Roper resonance, and the isoscalar mean-square radius
scalar and isovector magnetic moments and axial vector c
pling constant for the nucleon using

FIG. 1. The profile functionF~s! of the nucleon,D, and Roper
resonance from top to bottom, respectively, with common slo
20.6 at origin.

FIG. 2. The vibrational wave functions of nucleon,D, and Roper
resonance. The Roper resonance has a node and theD is shifted to
the right with respect to the nucleon.
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^r 2&05S Lu

f p
2b3D ^q4/3&, ~5.2a!

m05
Mu

3 f p
^q22/3&, ~5.2b!

m15S 2ML

3 f pb
3D ^q2&, ~5.2c!

gA5S x

3D ^q4/3&, ~5.2d!

where

u52S b

2p2L D E d3s F F8F, ~5.3a!

x52b22E d3sS F81
1

s
sin 2F D . ~5.3b!

M is the observed mass of the proton,m0 andm1 are in
units of nuclear magneton, andf p593 MeV. The results are
in Table I, where they are compared with experiment and
with values for the Skyrmion with the quartic term@7#.

It is seen that the results for the quantally stabilized soli-
ton are reasonable except form1 andgA . For a more realistic
description of baryons, one must include additional feature
in the Lagrangian such as vector meson fields. In particula
the inclusion of ther meson improves the value ofgA @19#.

VI. SUMMARY

The question as to whether quantization will remove the
Derrick instability from the simple Skyrme Lagrangian with
no quartic term has been answered in the affirmative, pro
vided one includes both rotational and vibrational collective
coordinates as quantal variables.

Our analysis extends Verschelde’s work on rotation. It re-
quires careful attention to all degrees of freedom of the pion
field and use of the Dirac procedure for quantizing a system
with constraints. The resulting stability and static properties
are also sensitive to care in ordering operators to ensure He
miticity of observables at what we have called the field
theory level. The profilesF that determine the radial shape
are a result of the competing effects of classical binding
rotation, and vibration. It is satisfying that the profiles differ

pe

TABLE I. Static properties: the values in column 3 are the
results of this work; those in column 4 are for the standard Skyr-
mion with fp593 MeV, g55.5, andmp50.

Experiment Vibration-rotation Skyrmion

M (N) ~GeV! 0.939 0.921 1.34
M ~D! ~GeV! 1.232 1.51 1.77
M (N* ) ~GeV! 1.440 1.48
^r 2&0

1/2 ~fm! 0.79 0.46 0.41
m0~mN! 0.88 0.81 0.55
m1~mN! 4.70 1.69 3.09
gA 1.23 0.27 0.60
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somewhat for the different baryons.
Basically, both the radial extent of the soliton and its o

entation in space are variables which should be treated q
tally. We see that when this is done, there is no need for
quartic term either to give stability or to obtain reasonab
baryon properties. It would seem then that the most satis
tory way to develop the Skyrme soliton model is to aband
the quartic term and use the formalism of this work ma
ri-
uan-
the
le
fac-
on
de

more realistic by introducing interactions with the other m
son fields.
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