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Stabilization of the Skyrmion
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We examine the effects of treating the linear scale of the Skyrmion as a quantum variable. It is found that
when angular momentum also is included, the soliton is stable and there is no need for the artificial quartic
term traditionally used. These results involve a careful treatment of the constrained degrees of freedom and the
guantization procedure and differ from those of earlier work using a less fundamental approach. Acceptable
values are found for the masses and other static properties of the nutl@@32, and Roper resonance.

PACS numbds): 12.39.Dc

. INTRODUCTION U=A(t)UAT(1), (2.2

A well known model of the baryons, based on the largewhereA is a matrix introducing collective rotation as in the
N, limit of QCD [1,2], is to treat baryons as Skyrmiofg], ~ work of Adkins, Nappi, and Wittefi7]. Spin and isospin are
i.e., solitons of the pion field based on the Lagrangian quantum variables and the appropriate spin states are pro-

jected to describe a baryon. Then one obtains an altered
ffr . Euler-Lagrange equation which has certain unphysical char-
L=7 J Tr(a,Ug*Un)d°r, (LD acteristicd8].
However, Verschelde and co-workers have shown in a
where series of paper§9-12] that it is essential in deriving the
profile equation determining to maintain in the calcula-
U=exdir ¢(r/R,t)], tions the complete number of degrees of freedom in the basic
. o ) ) ] ] Lagrangian(1.1). This is done by keeping the small non-
with ¢ the pion field andr the isospin matrices. The soliton heggehog portion of the field and by using the appropriate
solytlons for whichU —>1_at infinity fall _mto distinct topo- guantal dynamical principle to form the profile equation. We
logical classes. Those with the topological cons@tl are  extend Verschelde’s work by including radial vibrations.

identified as single baryons. _ _ . ~ The basic Eq(1.1) gives the Lagrangian density
In classical mechanics, the static soliton solutions of this

Lagrangian are unstable against radial collapse because of 2 . , .

the Derrick instability{ 4], that is the energy collapses to zero I=514'9i(d) - adlgij(P)ad'], (2.3

as the length scalR decreases. Actually, Skyrme’s Lagrang-

ian contains an additional term quartic Uh which gives  with ¢' theith-component of the isospin field. The metric of

stable solutions. However, there has been considerable intefhe isospin space is

est in the simple quadratic Lagrangiéhl) and it has been o

suggested that solitons may be stable if the sé¥B is ¢

treated as a quantum varialke]. 9ij(#)=S6;+(1-9) PP (2.4
We have examined this question from first principles and o

this paper shows that these baryonic solitons are indeedith S=(si’¢/¢?) and ¢*=¢'¢'.

stable provided that the collective coordinates describing ro- The explicit dependence on vibrational and rotational co-

tations and vibrations are both quantized. ordinates appears in the expression dr

Il. GENERAL FORMALISM $(10=Ujj(a)[d40)+ 7 (0], (2.59

In the one-baryon sector, the minimum-energy,where
maximum-symmetry configuration of the classical soliton is i

“ " ) - F
the “hedgehog ¢'S(a)=F(a)&'=7U, (2.5b

U.=exdiF(o)7-T], (2.1
whereU;; is now the usual matrix function of Euler angles

whereo=r/R andR is a scale constant. a. As the scale variablR undergoes quantal oscillations, the

To examine the properties of the baryon, one must deteifield vibrates radially.
mine the “profile function” F. In classical dynamics, one It is seen thall ¢ is the radially vibrating and rotating
determinesE from the Euler-Lagrange equation, a satisfac-hedgehog. The quantity is a general isospin fielteferred
tory procedure when the quartic term is present, but not othto body-fixed axeswith the same number of degrees of free-
erwise[6]. dom as¢'. In order to discuss the Skyrmion, we consider the

Rotation is introduced by taking limit as »—0, but it is important to do so at the final stage of
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the calculation after the profile equation has been found. _

There are now four redundant variables sircand R are QaEJ' A0 7'gij(¢s) €ajups=0. (2.10b
additional degrees of freedom. Thus one must introduce con-

straints and use an appropriate quantization procedure. Fom Eq. (2.103, the metric gjj does not appear because
this, we use the Dirac formalisifii3]. gij(pg)a’=0a".

In this picture,7 is to represent a pion field other than the In dealing with the angular variables, it is more conve-
Skyrmion, hence it is natural to constrajrto be orthogonal nient to use the body-fixed angular momehjarather than
to ¢s. In EqQ.(2.58, 7 is shown with time dependence more the P, conjugate to Euler angles. Using explicit formslaf
general than only that contained in the scale varifdflg in as the angular momentubn functions, Eq.(2.9 becomes
the denominator ofr; this implies thaty may behave quite
generally, neither having scale vibrations nor rotations syn-
chronous with the hedgehog. For the purposes of this study,
however, it is sufficient to assume the rigid gauge, so called . .
because it requires to adapt immediately to the collective It is also desirable to remove from, any portion that
motions[11]. This implies removing the explicit time depen- depends on the collective coordinates and arrange that the
dence ofy in Eq. (2.53 leaving time only ino. con_stra|nts(2.8)_ gnd (2.1 not containP or 1,. This is

Comparisons of “soft” and rigid gauges have been madeachieved by writing
[12,14). Use of the rigid gauge implies an adiabatic assump-
tion that more general “nonrigid” changes in are of a
much higher energy scalshorter time scajehan that of the
collective motion. Thus the rigid gauge is to be used for
ground state properties, not for highly excited states or dy- , _
namical processes such as pion scatterirdy decay{10,15. XREJ d%¢ mF'o' =0, (2.13a

Also, since we are describing odd parity states with total

Iaz—f d® 7 €qij(dh+ 7). (2.1

7Ti7]= 7T:+ 7Tit, (2.12

insisting that

angular momentum 1/2 or 3/2; contains spherical harmon-

ics of order one only. o Xazf d3c w{eaijF(ﬂ':O (2.13b
One obtains the momenta conjugatedto 7%, R, and o,
by noting that Eq(2.59 gives and finding that
=0 )+ 71+ U; _F IR+ 7l 1
P = e, Gl PRI Uy — g RE 7, == G"P- 77, (2.14
(2.6)
where GM=—-R ?F'¢M™+Rd8,tY, (2.15
dF .
F'=go Sa= ea”f d*oc F'o'yl, (2.16
and, since th'=R3A 5 €bmi0’ SsF, (2.17
i _(95/ 3 10 4k, Kk
7745_(9('# J Aap= €ami€pmi | d°0 Ssdg(Ps+ 7°), (2.18
17 . Ta=lat 1y, (2.19
— _ _11-1
A Ta= RseaijJ dic 7Ti77j, (2.20
JL 3 i F'o! . o F
P=—.=—J'd r mgUi| —— I—Jd ra, —al,
JR R R
(2.9 a=f d*o o?F'2 (2.20)
JL i -1 9Yik o) dinate system is nowi(o),R i(a),P,1, with
P=—— = | 3 Fuy-1=] Ky k) 29 ur coordinate system is now/(o0),R, a5, m(0),P,1, wi
& da, f kgl dag (gt 7). (29 the constraint function§lg,Q,,Xg, X,

) N . In the Dirac method for constrained systefids] with
Equations(2.8) and(2.9) are conditions connecting the mo- ¢onstraint function<; , one forms the matrix of the Poisson
menta, reflecting the fact that there are four superfluous deyrackets of the constraints

grees of freedom. We also need the four conditions on the
coordinates. As noted above, we wigtto be orthogonal to A =[C;,C]. (2.22

the rotational9,11] and vibrational zero modes, that is
For any two functiongA andB, the Dirac brackets are

QREJ d*c 5'F'o'=0, (2.103 [A,Blo=[AB]-[A,CIA;YC;,B]. (223
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To quantize, the commutator of two operators is put equal to 5xR 5Q0R
i times the Dirac brackets, not the Poisson brackets. [Qr.Xr]= f d*c — L
Here, the constraints are the  eight-vector K
(XR,QR,X5,Q,). One sees, for example, that and in this way one finds that
|
[ 0 —1lla 0 0 0 0 0 07
la 0 0 0 0 0 0 0
0 0 0 0 0 1IN O 0
Ao 0 0 0 0 0 0 1A O (2.2
0 0 0 0 0 0 0 1A’ '
0 0 —1/A 0 0 0 0 0
0 0 0 —1/A 0 0 0 0
L O 0 0 0 -1/A O 0 0
|
where commutators are given by Dirac brackets. The noncommut-

ing pairs inH arel, andU(a), P andR, and =} and 7.

Many earlier papers have not proceeded in this way but
have first obtained the zero-order collective Hamiltonian not
involving » and then quantized, ordering operators only at

2 8
=§fd3cr SSF2=?7Tjdcr o2SiPE. (2,25

The Dirac brackets this “collective theory” level. But it is crucial to retairny
until one has the profile equation and this requires that both
(o). m (e ]=R™3 8 8%(o—o H and 7, be Hermitian at the full “field theory” level. In a
[7(0),m(a)] ( j0 oo’ detailed account of this workL6], we show that the follow-

ing symmetric ordering is the only way to achieve this dual

_i F’(O’)O’iF,(O")O',j Hermlthlty
a Equations(2.7) and (2.14 become

1 k | ’ ’
A €mikds(0) €mjips(a')S(a’) | 7Tld>(o-)= % {Uimvﬂ'lm}"_uimﬂ'{n: (3.2
(2.2
The Dirac brackets of} and 7} with the collective coordi- Trm:i (P,G™ — 1 {tm, 7.1 3.3
nates and momenta are zero and the Dirac brackets of the 12 ' 2 barsal
collective coordinates and momenta are the same as the Pois-
son brackets. where{ } denotes an anticommutator. Using
That the new coordinate system is canonical may be veri-
fied by showing that with Eqs(2.5 and (2.6), the Dirac [Ujj lal=T€aj Uik (3.9
brackets and the constraint equations, one finds
i . , and takingm,=U 'm,, we find
['(r),my(r')]=8;8%(r—r"). (2.27)
l ~
IIl. THE HAMILTONIAN my= T S €ty = b (3.5

The Lagrangian(2.3) gives the classical Hamiltonian ) - ) )
Notice the additional quantum term 4, compared with Eq.

5 (2.12. Using these expressions and the Dirac commutators
2f2 fd r m,g; () based on(2.26 to expand to first order iny and 7, one
finds, after lengthy algebra, that
f2 _ .
) J & Ged'0ii () 0k @D H=Heor+ Hing (36

To obtain the corresponding quantum Hamiltonian in thewhereH,, depends only on the collective coordinates and
new coordinates, one symmetrizes the expressions involvinly;,, is of first order inn or . There are, in fact, no terms
noncommuting factors to ensure Hermiticity, recalling thatof first order inm, and
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f2H be+1R3I23+1P2R1PR2+3R SINE=\ >\+1 4) 3
coll = oA 1 " %a ! > 1mM At el (3.7
3 i~ " F' sinF 1 1 3 ’ nsk
fH,mr fR d°o 7'o F+20_ ] +2aA|aEa”kP'¥ d°oc F'Sgn"o
;I Iyl & fd% 7+2i(/¢F) ni&i—fd% 37+51(F7)(77a&b+7;b&a)
5A2RS @b “ab ' dF " 2dF
1 s .1 d _ Al 1 )
+Wfd ono ZE(F.?)JF.fSSJr.;% _Ql+E Mt A (3.9
|
where effect from symmetrization was noted in a papéd] by
] , Verschelde and Verbeke which also displays, for rotation
Ss=(sinF/F)%, . 7=FS only, an explicit form ofH consistent with the appropriate
terms of Eqs(3.7) and (3.8).
and It is helpful to castH ., in a simpler form by using the
dimensionless variable
b= f d? F')? 2|, 3.9
2" (399 q=(f bR (3.10
for which the momentum relationship is
- f do 7F= (3.9
3 113
P:wab{q Pt (3.11
)\1A=J dc 7F'o, (3.99 o . .
This gives the Schiinger equation
AZA:J P FFo* (3.99 Ll am@umEs @12
' om dq2 q2 q .
~ where
QlA=f dio .72, (3.9¢
Vi
m= —-, (3137
~ 9b
QZAZJ d3c 72(F'alF), (3.91)
S N S T
5 5 V= 9 u A 3( 1 1™ ) 6 36 ( . @
a= | d°c(F' o), (3.99
with
— 3 " _2\2 3
£ fd o (F"?)2, (3.9 1 |(|+1)—L—J. (3.1

In expandingH to first order in7, one encounters an
integral of the formfd®o f(o)7'6'6%G" and, sincey has
only first order spherical harmonics! 525" is replaced by
its | =1 part, viz.(1/5)(8,,6°+ 8,3+ 8,,0°).

The second and third terms ., due to rotation and
vibration involve a moment of inertidd and a vibrational
inertial parametew. The presence of; and\, requires both

rotation and vibration. Th|s rotation-vibration coupling in-

volves the third term in7! ,» given by Eq.(3.5 which in turn
comes from symmetrlzmg the rotational partm; We find

that these\; terms provide a positive binding contribution to

the potential term irH .., which plays an important role in
the stability of the soliton.

The rotational term i, has the factot?—3/4. Unlike
the rigid rotor Hamiltonian of Adkins, Nappi, and Witté#],
there is the renormalizing term3/4. This purely quantum

The state of a Skyrmion is specified by the spin argpin
|l=J,15,J3) and by a vibrational eigenstate of E§.12.

IV. THE PROFILE EQUATION AND STABILITY

As Verscheldd9] first emphasized, the equation of mo-
tion for the static field, viz.,q'r(,,zo, should be cast in the
form

([H,m,])=0, (4.9)
where all degrees of freedom are retained and the expecta-
tion value is in a stationary state of the collective Hamil-
tonian. This equation leads to the condition for the profile
functionF. Thus the profile and the parameters of the Skyr-
mion such as the inertial coefficients vary from state to state.
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The value of the commutator i®.1) must be found by
using the appropriate Dirac brackets such as in B26).
Thus, using Eqgs(2.7) and (3.5), Eq.(4.]) is

<[HcoII+Hintr’Uim(%lm+ W{T])D:O- 4.2

Since the expectation value is in a statef,, the com-
mutator withH .., does not contribute t¢4.2). There is fur-
ther simplification because we require (#.2) only terms
that are independent of and 7. SinceH,,, is of order»
and n commutes withJ (@), [Hjn, Uim] 7, can be ignored.
Also, the only term inr " in Eq. (3.3) which does not com-

mute withH;., is {l,,t 1"}, but this term is of second order in

n and 7, and therefore its commutator witH,,, remains
proportional ton. Also, one sees that, for arfy

3 d
({P.A(RI = 1.0 da 5 (v =0,

sincey=0 at both limits. Consequently, the only part(df2)
which contains zero order terms gives
<Uim[Hintr!7T{n]>:0' (4-3)

Equation(2.25 and the properties of the matritk allow
us to write

“ d®p f(p) n*p", 7{(0)
i

R 1 .
:E(‘skmf(a')a'l_a 5|k|:'0'0'mf d3p fF'p

—% (5mk&'—5m|&k)|:ssj d3p fF}, (4.4

- o™ 1
[f d3p f K, 7o) |=i %g(f—;F’O'f d3p fF'p),

(4.5
(Uimo™ = 8130%(U3g) =T}, (4.6
(Uim{lm,la}&a>:1“[2|(l+1)—1]. (4.7

With these results, Eq4.3) gives the profile equation
q74
<Kf [S2F+C,SF—u sin F+C,F' o]

b3 5 F' sin2F
— Flo-b?F'+2—— ||} =0,
o g ag

4.9

—4/3

q

b

A
c1=2u—91—(5)(2>\§—>\1—>\2), (4.93

2

3
CZZ(W)AI(Z)\i_)\l_)\Z)_’_

3A
5| (@ =0, 5u).
(4.9
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The first term ofH, in Eq. (3.7) is the classical energy
f2bR which tends to zero as the scale variaRegoes to
zero. This is the Derrick instability.

If one includes also the rotational energy,

5u 1
E:fﬂ. fﬂ.bR-FEXW . (410}

Thus forl=J=1/2, i.e.,u=0, the energy is simply the clas-
sical result. This differs from the earlier papers and is due to
the “renormalization” of the angular momentum term, noted
by Verscheldg¢11] and due to the appropriate ordering of the
quantum operators and the inclusion of the intrinsic degrees
of freedom of the field. However, for th&(1232, u=3/5

and the minimum energy of the soliton occurs for
f_R=(9/20A)Y* and is(4/3)f .(9b%/2A)Y4. This energy is

of a reasonable order of magnitude. Its precise value depends
on the form ofF. The equation foF is Eq.(4.8) but with g

taking the single specific valuéb®2A)*® and without
terms due to vibration, i.e., ag—~,

2u—Q,)SF+S°F in 2F 9A F"+ 2F
(2u 1)Ss F—u sin b p
sin 2F

The form ofF at large distances was considered at one time
to be sinusoida8] but Verscheldd9] suggested that it has
exponential decay whem is properly included. Equation
(4.11) confirms Verschelde’s result since at large distances,
asF—0, S;—1, one gets

2F" 2F 2b

F +T—?_ﬁ(l_ﬂl)|::0. (413

Recalling thatS;=<1, the definitions in Eq(3.9) show that
;<1. Thus the asymptotic solution fér is e “’/o where
u=>0.

When the scale vibration is included in the theory, the
energy of the system is the eigenvalueHyf,, given by the
Schralinger equation(3.12. The coefficients of this equa-
tion are scale invariant and depend only on the functional
form of F(o). Hence the expectation value & (i.e., the
scalg and the energy are determined and there is no Derrick
instability. The various static properties of the nucleonic
states are also fixed.

For this conclusion to be valid, there must be a solution
for F, simultaneously satisfying the Scldinger equation
(3.12 and the profile equatio(#.8).

The profile equation

f dqg ¥*(9)g9(0,q)=0 (4.13

is an integral equation which must hold for all values of the
“parameter”x, writing o=xq 23 x=f_br. The wave func-
tion ¢ given by (3.12 behaves at smalj asq' and at large

q as exp—yq*®) where

2t=1+(1+4p)¥? (4.143
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and do=(xx)%, (4.19
y=3(m/8)Y2= (a/2b%)12, (4140 \where
Indeed, using k=(nkidy)¥" and v=n/(2n+4).
—nt _ 4/3
y=arexp—yq™) For largex, qq is large but still less tha® in (4.15), since

_ —2I3 4v/n . .
with y as a variational parameter gives results very near nuZ{do) =Xdo “*x™" and thus the asymptotic form &f is

merical solutions of a similar equatiga7]. still valid. _ _ , o
We wish to study the asymptotic form &f for large o. _We expand the integrand '(7,4'1& In f})powe,r Series n

For large values of, o is also large except whepis large  $=97 o é(lg‘gérgmce theth derivative ¢’(qo) is propor-

of orderx®2. But whenq is large, ¢ is exponentially small tional to x , the ratio of successive terms is of order

and, therefore, we can choose a value ddirge enough that ¢{x*. Thus, if|{f<x*, only leading terms of the series are
needed. In this way, one finds that the maximum of the inte-
Q ) % 5 grand is att=(s/C)x~3x~? and that the integrand has one-
fo dq ¢ 9>qu ¥y, (419 half its maximum value for {=(2 In2/C)Y%”, where
C=x%¢"(q,) is a finite number independent of Both

where Q is the large value ofy at which the asymptotic these values of are small compared with, and are also
approximation forF (o) begins to fail. Of course, in neglect- Well within the range for validity for the series.
ing the contribution forq>Q, we note that the functional ~ We thus see that the integrand is well represented by a

9(a,q) is finite asc—0. narrow Gaussian centered gg and that
Now, sinceS,—1 at largeo, the profile equation for large
r becomes f dq ¢’e” ?=(27/C)Yqiexd — ¢(qo) X
— 4 ' — 4/ ’ ” ’
(@ [AF+A0F 1+q Y AgoF +Ay(F"+2F o L (27/C) 23 e — by X35 D
—2F/ad?)])=0, (4.19 (4.20
where This allows us to find the relative orders of magnitude for
A;=(1+Cy—2u)/A?, large x of the four terms in the profile equatidd.16). The
results are
— 2
A2—02/A y <q74F>OCX50712U,
— 3
A3—1/(ab ), <q—40_Fr>ocX5078v,
A,=—1b%
4 <q’4’3aF’)OCXSO,
To examine possible asymptotic forms®f we consider
the very general function (0" “F"+2F' |0 —2F/g?))yoc xS0t 802
F~oa Nexp(—ko"). (417 wheresy=(2N+1)v—N+ 7. Sincev=1/4 if n=2, we see
that the third term is dominant for<h<2, the fourth for
One sees that the terms (4.16) are of the type n>2 and the third and fourth are of the same ordemfer2.
Since each term of the profile equation is nonzero, there is
f dq ¥2q2c Mexp(— ko), therefore no solution fom>0, unless perhaps fon=2.
However, whem=2, both third and fourth terms are nega-

tive and there is therefore no solutidmhe coefficients of
the leading integrals of forr¥.20) are —nkA; andn?k?A,,
respectivelyl
J dq o°e” ¢, (4.18 We conclude that the asymptotic form Bf must have
n=0, i.e., it is simplyo—N. In this case, the first three terms
with of (4.16) are all of ordex* and the fourth term is negligible.
The equation is

which for g large (but still <Q) is proportional to

¢: 2,yq4/3+ er‘Iq—Zn/3,
(A;—NA)(q *F)=NAg(q~ **F). (4.21)
s=a+2M/3+ 7.
If A;—NA,>0, there may be a solution.

7is introduced to allow for any power-dependent factogin If A—oo, ie., if one ignores rotationA; —NA,=0. We

We study these integrals for large valuesxofOne can conclude that stability requires both rotation and vibration.
show that the integrand if#.18 has a pronounced relatively Chepilko et al. [18] found otherwise, but their work quan-
narrow maximum neag,, the value for which(q) is mini-  tized the theory only at the collective level, that is without
mum. One finds taking account of they degrees of freedom.
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There might still be no solution i were such thatr and
A simultaneously became infinite for &that satisfied the
equations. The danger to be considered is Ehat largeo is
proportional tos™ N with N—3/2, whena and A are loga-
rithmically divergent. We shall now show that such Bn
does not simultaneously satisfy the Salinger equation
(3.12 and the profile equation.

If « andA are large because of the behaviofoat large
o, it is only the contributions from larger that need be
considered in the defining integral8.9). Thus, in the inte-

grals, we puS,=1,.7=F and find by simple integration that

in this limit Q,=1, Q,=\;=—3/2, \,=6—2a/3A, and

4
C1=2u—§, (4223
3 15 \[A
CZ=_<Z+? U)(;), (4.22h
a 3 )
T35 N (4.229
E=(N+1)2 (4.220

Again, consider the profile equation for largeAs before,
because of the exponential behavior #af we may taker
large enough to ignore the region wheye Q and so use the
asymptotic form ofF (o). Using Eq.(4.22 and N=3/2+¢,
the profile equatiori4.21) becomes

1 10 2 3
<Pq3+2€/3(§ U—§ 6)_ 2ab3 q1/3>:0_ (4_239

We write the wave function as
y=q'exp(—ya")f(q), (4.24

wheref is well-behaved at all points, and we find

I Et—EJrga
4 4
a\ _ —3al/
(g®)=(2y) %" (3 1) , (4.25
| Et—z
where
'(“):f dx x*e X2, (4.26

Using Egs.(4.14) and(3.14), the profile equation for=J
=1/2 to ordere is

13
27¢l —1+§ e|+8l(1)=0 (4.27
and forl=J=3/2, it is
243(1.52—-8I1(3.52=0. (4.28

As €0, |(—1+¢) is of order 1£, so the first term of
(4.27) is finite, but both terms are positive. 4.28, the
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integrals depend off, it is reasonable, as noted above, to
consider that () is approximately the gamma functidifu
+1). With this approximation, the left side @¢#.28 is 172
I'(2.52>0. Thus in neither case is the equation satisfied.

To summarize, we have found thiit near 3/2 does not
provide a solution and therefore the danger of a collapsing
soliton does not arise. This analysis shows that, for stability,
one needs both rotation and vibration and suggests that a
form factor with asymptotic behaviar N should be sought.

V. NUMERICAL SOLUTIONS AND STATIC PROPERTIES

The profile equatiort4.8) and the vibrational Schdinger
equation(3.12 must be solved consistently to determine a
profile F(o), since all parameters are functionals f A
strictly numerical iterative procedure is not feasible, in part
because Eq(3.12 is actually an infinite number of condi-
tions, one for each value of We therefore constructed ana-
lytic forms for F containing arbitrary parameters to be deter-
mined by how well the profile equation is satisfied forrall
Equation (4.8 contains eight terms which must cancel to
give a sum of zero. An arbitrary functidn will give a non-
zero residue. Divide this residue by the sum of the absolute
values of the eight terms and call the resut). If o(r) is
zero,F satisfies the equation for that valuergfand if w(r)
is small, F is a good approximation. For our approximate
functions, we evaluated(r) for about 20 values of and
accepted functions for which adb(r)=0.005. Amongst the
“accepted” functions, we chose as best those which mini-
mized the sum of the(r) over the various values of

If one finds anF (o) which satisfies the profile equation,
one can form an infinite number of others by defining a new
function F,(o)=F(B0). Writing 7=B0 and noting
dF,/do=B dF(7)/d7, one sees from EQ.(3.9 that
b,=b/B, A;=AIB, ay=alB® and the other coefficients in
Eq. (4.8 are unchanged. Also when the argumenEgfs o,
the value ofr for a fixedq is r;=oq?¥f_b, and when the
argument ofF is Bo, the value ofr for the sameq is
r=Bcq?¥f_b=r,. So, in factF(r,q)=F(r,q) and soF,
is also a solution. However, as a functionafit is different
and has a different slope at the origin, i.eF;(0)
=pBF'(0).

The form we have found most successful is

F(o)=2arctang(o)], (5.1
211 c
g(()’):_E ;eXF(—CO')'i‘m, (5.1b

whereN, F’, c, d are adjustable constants. Note tifdD)
=1, F(«0)=0, andF'(0) is the parameteF’. Also F”"(0)=0
which agrees with a power series expansion of @) for
smallr. For a givenN, an equivalent functiorF; hasF;
=BF', ¢c;=fc, d;=pNd.

Our procedure was to choose valuesN¥grF', andc and
then to findd such that the functionals, satisfy the asymp-
totic form of the profile equation, that is E¢4.21) with
F=0 N3 One then determines if this set of values
{N,F’,c,d} gives an acceptableé with small Zw(r). Be-
cause of the equivalent solutiorfs; is essentially arbitrary.

terms are of opposite sign, but although the values of thé-or N=2, there are acceptable solutions for a short range of
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T : T - T , TABLE |. Static properties: the values in column 3 are the
results of this work; those in column 4 are for the standard Skyr-
N mion with f .=93 MeV, g=5.5, andm_=0.

Experiment  Vibration-rotation  Skyrmion

4 M(N) (GeV) 0.939 0.921 1.34
s M(A) (GeV) 1.232 1.51 1.77
M(N*) (GeV) 1.440 1.48
(r3§? (fm) 0.79 0.46 0.41
] o) 0.88 0.81 0.55
e 4.70 1.69 3.09
Ja 1.23 0.27 0.60
2'0 3’0 40
a
2\ Aa 4/
FIG. 1. The profile functiorF (o) of the nucleonA, and Roper (o= (ffrb3) (@™, (529

resonance from top to bottom, respectively, with common slope
—0.6 at origin. M @ o
ro=3r (@ ™), (5.20)

c; with F'=-0.4, the range is 1:8c<1.4. However, these "
solutions differ from each other by less than 3% at any value 2MA
of o. Indeed, when graphed on a reasonable scale, the ap- Ml:(W)<q2>’ (5.20
pearance is simply that of a rather thick curve. Value®of m
significantly different from 2 did not give acceptable profiles.

For the nucleon, the best profile we found 9A=(K><q4’3), (5.20
{N,F’,c,d}={2.0,—-0.40, 1.20, 0.5056has an average(r) 3
of about 0.003. In view of narrow ranges Nfandc found

for acceptable solutions and the insensitivity of the profile toWhere

the value ofc within the range, it may be that this profile is b

quite close to a precise unique solution. 0= — (m) J d3c 7F'F, (5.39
The profile found forl=J=3/2 is {2.0, —0.60, 1.40, ™

2.074. Taking | =J=1/2 with the first excited state d¢f 1
to describe the Roper resonaridé (1440 as a radial oscil- x=— b*ZJ d30< F'+ = sin 2,:)_ (5.3
lation, we find a good profile with the s€t.9, —0.75, 1.95, o

10.328. These profiles are shown in Fig. 1, with a common . .
slopeF’=—0.6. Figure 2 shows the vibrational wave func- M iS the observed mass of the protqn, and u, are in
tions of Eq.(3.12. units of nuclear magneton, arig=93 MeV. The results are

We have calculated the masses of the nuclebrand in Table I, where they are compared with experiment and

Roper resonance, and the isoscalar mean-square radius, i¥gth values for the Skyrmion with the quartic ter].

scalar and isovector magnetic moments and axial vector cou- 't 1S Seen that the results for the quantally stabilized soli-
pling constant for the nucleon using ton are reasonable except fey andg, . For a more realistic

description of baryons, one must include additional features
in the Lagrangian such as vector meson fields. In particular,
the inclusion of thep meson improves the value gf [19].

0.3 ; , — ; , : ‘

VI. SUMMARY

The question as to whether quantization will remove the
Derrick instability from the simple Skyrme Lagrangian with
no quartic term has been answered in the affirmative, pro-
vided one includes both rotational and vibrational collective
coordinates as quantal variables.

Our analysis extends Verschelde’s work on rotation. It re-
quires careful attention to all degrees of freedom of the pion
field and use of the Dirac procedure for quantizing a system
08— — 00 with constraints. The resulting stability and static properties

q are also sensitive to care in ordering operators to ensure Her-
miticity of observables at what we have called the field

FIG. 2. The vibrational wave functions of nuclean,and Roper  theory level. The profile§ that determine the radial shape
resonance. The Roper resonance has a node anilithehifted to ~ are a result of the competing effects of classical binding,
the right with respect to the nucleon. rotation, and vibration. It is satisfying that the profiles differ

¥(q)
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somewhat for the different baryons. more realistic by introducing interactions with the other me-
Basically, both the radial extent of the soliton and its ori- son fields.

entation in space are variables which should be treated quan-

tally. We see that when this is done, there is no need for the

quartic term either to give stability or to obtain reasonable ACKNOWLEDGMENTS

baryon properties. It would seem then that the most satisfac-
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