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Threshold corrections in orbifold models and superstring unification of gauge interactions
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The string one loop renormalization of the gauge coupling constants is examined in Abelian orbifold models.
The contributions to string threshold corrections independent of the compactification moduli fields are evalu-
ated numerically for several representative examples of orbifold models. We consider cases with standard and
nonstandard embeddings as well as cases with discrete Wilson line background fields which match reasonably
well with low energy phenomenology. The gap separating the observed grand unification scale
Mgur=2X 10 GeV from the string unification scalély=5x10'" GeV is discussed on the basis of stan-
dardlike orbifold models. We examine one loop gauge coupling constant unification in a description incorpo-
rating the combined effects of moduli-dependent and -independent threshold corrections, an adjustable affine
level for the hypercharge group factor, and a large mass threshold associated with an anortiglmecha-
nism.

PACS numbgs): 12.10.Kt, 11.10.Hi, 11.25.Mj

I. INTRODUCTION and moduli supermultiplet fields, subject to the strong con-
straints imposed by supersymmeliys], gauge(world sheex
The idea that particle physics at the Fermi scale descendsymmetrieg 19], global (compactification spagesymmetries
from string physics at the Planck scale has gained increasif@0], and modulafstring duality symmetrieg21]. As to the
credibility since the proposal in 1985 to compactify the nontrivial quantum level of string theory, this is intimately
anomaly-free EXEg heterotic string on a six-dimensional related with the mechanisms which determine the vacuum
(6D) Calabi-Yau manifold[1]. Indeed, the circumstancial expectation valuegVEV'’s) of the (flat potential moduli
evidence gathered from the precision tests of the electrowedields. As is well known, the expansion parameters which
interaction[2,3], the high energy unification of the standard control the quantum string topological amdmodel pertur-
model gauge interactiorig], and the implications of a heavy bation theories are themselves identified with the inverse
top quark[5] have given faith in the supersymmetias VEV’s of the external spacetimg-dilaton field and the in-
opposed to the composjtéliggs boson option as a viable ternal spacetime overall-dilaton modulug§22]. Further, to
extension of the standard model of electroweak interactiongully fix the entire set of coupling constants entering the
On the other hand, the highly selective search of a semireakffective o model Lagrangian, one must postulate perturba-
istic 4D superstring model, within the Calabi-Y@®,7], the  tive or nonperturbativésuch as, for instance, hidden sector
orbifold [8,9], or the free fermionic[10,11] approaches, gaugino condensation inducing spontaneous local supersym-
which realizes the standard model as its low energy limit, hasnetry breaking mechanisms in order to stabilize the various
been well rewarded. It may well be that a realistic modelmoduli fields which parametrize the continuous families of
becomes soon reachable through what has been termeds@ing vacua. Fortunately, exact statements can still be made
discrete fine-tuning12] among the simplest classes of free for certain terms in the superpotential and gauge functions
orbifold [13], fermionic [14], or N=2 direct produc15]  which are protected by perturbative nonrenormalization
superconformal field theories. The main reason, however, fotheorems resulting from characteristic holomorphicity prop-
the interest in a superstring-inspirét=1 supergravity lies erties of superstring theof23,24). Also, certain semiclassi-
in the remarkable organizational principle that string theorycal nonperturbative effects, such as thenodel world sheet
provides in constructing the basi&ahler metric, superpo- instantong25], are usefully constrained through the modular
tential, gauge functionscomponents of the effective locally symmetrieq26].
supersymmetrier model[16]. One of the most serious challenges for superstring phe-
String theory does not only explain the gravitational,nomenology is theS-dilaton VEV problem. The argument,
gauge, and Yukawa interactions, it also makes simple definitgpelled out some time ag@7,2g, that this is likely to settle
predictions about their classical level unification at the stringat intermediate values inducing a strongly coupled string
scale[17]. The low energy field theory action, obtained by theory, seems to upset, on phenomenological grounds, the
integrating out the massive string modes, is described by aattractive proposal that the observed high energy extrapola-
infinite series expansion in powers of the inverse string scaléion of the standard model gauge coupling constants reflects
which is the unique free parameter of string theory. The efa perturbative string unification. A related difficulty resides
fective Lagrangian comprises local interactions of increasingn the order of magnitude mismatch between the observed
dimensionalities involving the gravitational, gauge, matter,unification scale and the string sc4dl. The general hope,
of course, is that these problems could be surmounted by the
variety of mechanisms that string theory reserves in stock. It
“Electronic address: chemtob at amoco.saclay.cea.fr is significant, however, that the various anticipated effects
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which might influence the quantum string vaculthreshold  these studies in the present context.

corrections S-T dilatons mixing, anomalous () group fac- In superstring unification, as in grand unification theory
tor, strongly anisotropic compactification spaj@9], etc]  (GUT), the high energy extrapolation of the standard model
have all in common a sensitivity to the string loop contribu-renormalized gauge coupling constants is described by a one

tions. loop scale evolution of familiar form:
One of the first attempts to deal with the string loop renor-
malization of the gauge coupling constants was undertaken (4m)?%  (47)%k,

7+ 2D, I+ Ao(M M) ()

by Minahan[30]. Evaluating the one string loop contribution Pw) &

to the three-point correlator of the gauge boson vertex opera-
tors in orbifold models and taking a suitable limit of large i
string and compactification scales enabled him to identify thd N€ indexa=3,2,1 labels the SU(3J SU(2)X U(1) group
familar (8 function) logarithmic divergence which renormal- factors G, b, are the g function slope parameters
izes the gauge coupling constant. As is well known, theASsociated — with  the low_ energy ~modesp.(9g)
string loop perturbation theory is ultraviolet finite, and so the= — g3/ (4m)?+-+-), andM; ,M; are the compactification
only source of divergences in need of renormalization shouldnoduli fields. The superstring case is, however, distin-
be those originating in the infrared cutoff which is intro- guished by three important featur&l].

duced to separate the massless from the massive string (i) Tree level relation$17] involving the gauge and gravi-
modes. The first systematic discussion of the low energyational interactions:

matching of string theory to field theory was provided by

Kaplunovsky[31], using the effective world sheet model ) ) Axk?> 327

background field approadi32]. Based on a specific regular- 9x=ka0a=—7= 7. 2
o . . . o a’'Mp

ization procedure in string theory which parallels the con-

ventional Pauli-Villars field theory regularization, he identi-

fied two additive contributions to the renormalization of theIn addition to the string theory expansion paramejgr(or
inverse squared gauge coupling constants, the so-calledP dilaton VEV (S)=1/g%) which is specified by the ratio
string threshold corrections: a universal correction, associef the string mass scald s=2//a’ to the phenomenologi-
ated with (back-reactiop gravitational effects and string cal Planck masM p= V87l k=1.22x 10" GeV, as exhibited
scale massive oscillator modes, and a genuine compactificgn Eq. (2), three extra fregpositive integers for non-Abelian
tion correction, associated with compactification scale masgroup factors and positive rational numbers for Abeligii)U
sive string modes. The latter correction contains, along witlfactor§ parametersk, are introduced into Eq(2), corre-

a moduli-independent componentD{term massgs a  sponding to the levels of the affine Lie algebras for the gauge
moduli-dependent componenk {erm massgswhich plays  group factorsG, in the underlying string theory.

a crucial role in the mechanism of cancellation of itie (i) An improved unification scaly defined in Eq.(1)
model anomalies affecting the modular symmetries at theis the matching scale between the field and string theories
level of the supergravity effective actid@3-37. Because renormalized coupling constants at which these obey most
the moduli-dependent component arises from tie2  closely the tree level relations, E(R). For the field theory
spacetime supersymmetric subspaces of the Hilbert space ebupling constants in the dimensional reduction with modi-

states only, general results about its structure can be inferrgghg minimal subtractioR regularization schenf@2], one
by using the highly constrained framework of the (2,2) has[31]
world sheet superconformal theorigs].

Our main interest in the first half of this paper will be

focused on the moduli-independent threshold corrections M _e(l_”/z Mo elt=772 M

which we shall analyze on the basis of the Kaplunovsky X_4W{/§gx P V27427 S

formula[31]. It is appropriate to mention at this point that

regarding, as we do, the compactification and the universal =0y5.27x 10" GeV. ©)

back-reaction effects as separate corrections may prove arti-
ficial and unjustified. Clearly, the problem resides in the de-The field theory(FT) convention in use here is related to the

pendence on the infrared regularization scheme. This obseg; . h FT_ ST ;
vation has recently guided a proposal by Kiritsis andgtrlngt eory(ST) one asg, \/Ega , corresponding to the

Kounnas[39,4Q to implement a consistent string infrared normalization of the Lie algebra generators, r(T;)

cutoff by working with a curvedrather than flatexternal =z ¢(R), wherec(R)=I(R) is the Dynkin index of repre-
spacetime superconformal field thed#l]. The formalism  SentationR. _ _ _
developed if40] generalizes that of Kaplunovskg1] and (iii) Threshold corrections accounting for the contribu-

suggests that the universal back-reaction correction, assodions of the infinite set of massive string states at the string
ated with the various background fields, is indeed entangletMs) and compactificationNi¢c) scales, integrated out by
with the moduli-independent compactification correction.matching the field and string theory scattering amplitudes.
The second half of the present paper will be devoted to ghese corrections are represented in @gby the functions
phenomenological discussion of the standard model gaugs,(M;,M;) depending upon the structure of the string mass
coupling constants unification. To set the stage for these ajgpectrum and the other characteristic parameters of the com-
plications, we shall expose in the following in a more con-pactified space manifold, such as the VEV's of the compac-
crete way the main physical motivations for undertakingtification moduli fields,M;=T; ,U; [33]. Specifically,My is
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defined as the choice of scale which minimizes the threshol§7,48,5Q and in a model-independent way in Refs.
corrections contributions. Of course, the perturbative charad51,10,52, such additional multiplets must be very few
ter of formula(1) implies that the size oA, should be com-  (<2) in number. In the semirealistic orbifold modé¢B, 9]
parable to that of two-loop effects, so th&t~1. also, the extra chiral-antichiral generations get reduced to
For a guantitative test of superstring unification based orvery small numbers, once the anomalougl)breaking
Eqg. (1) and for a proper identification of the fundamental mechanism is turned on. The second possibility is to postu-
parametersMy and gy, it is essential to understand the late [53] large string threshold corrections such that after
structure and size of threshold corrections. Thus, an additiveecoming equal and joining together at the observed scale
decomposition such as described by the following ansatay g, the gauge coupling constants follow diverging flows
A;=k,Y—Db,A, may be exploited to introduce an effective up toM . A matching of the one loop extrapolated values of
unification scale and coupling constant, ga(My) with their predicted values, as obtained by adjusting
the moduli-dependent threshold corrections, can be success-
fully achieved in terms of wide classes of solutions for the

My— M =Mye??, gxﬁggz%—, (4)  modular weights of massless modes consistent with the
1+ 9 ) anomaly cancellation constrair|t36,53. The third and final
(4m)* possibility is to postulat§¢54] an affine level parameter for

the weak hypercharge groupl)y somewhat lower than the

so defined as to incorporate the contributions from the abovétandard grand unification group valke= 5. With such an
two component¥ andA. enhanced starting value fcﬁklai(mz)]‘l one achieves a
The toroidal compactification orbifold models prove very delayed joining of the gauge coupling constants flows which
helpful in obtaining information om\,. The contributions can easily raise up the unification scale by one order of mag-
from compactification modes admit here a natural additivenitude. While either of the last two possibilities is well mo-
decomposition into a moduli-dependent component arisingivated by itself and appears sufficient to rescue a superstring
from the chiral mas§ terms and a moduli-independent com- grand desert scenario, there remains certain unsatisfactory
ponent arising from the vector maBsterms[34]. As is well ~ points. Thus, the rather large VEV's for the moduli fields
known, the moduli-dependent contributions play an essentigiequested in the first possibilityT) = 10-30, induce an or-
role in the cancellation of- model anomalies affecting the der of magnitude gap between the compactification and
target space duality symmetf$6]. These can be represented string scales that might harm the consistency of a weakly
by general formulas involving the automorphic functions ofcoupled superstringcf. next paragraph These VEV's are
the compactication manifold accompanied by model-2lso much larger than the value§T{=2) favored on the
dependent coefficients. On the other hand, the modulibasis of the gaugino condensation models for broken local
independent contributions carry only an implicit dependenceupersymmetry55]. On the other hand, no known semireal-
on the compactification manifold and on the gauge grougstic orbifold examples of low(point group order[9] seem
embedding of its point and spadeiscrete Wilson lings to exist for which the hypercharge group level parameter
symmetry groups. In spite of several attempts in the literacomes as low as the vallkg=1.4 favored in the third pos-
ture to estimate numerically the size of both components o$ibility. A simple argument is developed by Dienes and
threshold correction§31,43—46 (orbifold models[31,45,  Faraggi in Refs[47,48 which shows that for anyorbifold
fermionic heterotid43,44], and type 1I[46] models, one is  or fermionig model which realizes a direct compactification
still lacking a clear physical understanding of their magni-to the standard model group with the low energy quark-
tude. Our main goal in this paper is to present results for théepton spectrum, requiring a correctly normalized hyper-
moduli-independent threshold corrections through an extersharge imposes the bourld=5/3. The preceding bound
sive numerical study based on a sample of orbifold modelscan, however, be evaded by considering suitable simple ex-
A recent work by Dienes and Farag7,48, which ap- tensions of theZy abelian orbifold{56—-58. Thus, as dem-
peared while the present paper was being completed, pursuesstrated i{56], for the Zyx Zy, orbifold models, the con-
a similar goal to ours based on the fermionic models. straints from the standard model spectrum tolerate wide
The main physical motivation for this paper is, however, intervals of variationsk;~1-2. The AbelianZy orbifolds
the wide gap that separates the improved string unificatiomith Wilson lines can also evade the above bound, as exem-
scaleMy=0.218Vs=5x 10! GeV, assumingyy~1, from  plified in [57], where a semirealistiZg-| orbifold standard
the observed grand unification scaMg =2x10'® GeV, = model is constructed which h&s=61/384.
as determined by extrapolating the gauge coupling constants A generic feature of standardlike orbifold models is the
up from their experimentally determined values at theoccurrence of a rich spectrum of charged massless modes
Z-boson mas$4]. The implications of this order of magni- appearing on side of the requestegiark and leptonchiral
tude discrepancy in scales have been emphasized on sevefailies in vector representations of the color and weak
occasions[12,49. The conflict for superstring unification groups. In fact, the matter representations of the observable
can be resolved in three different ways. One can, of coursesectors group factors are generally sizable enough so that the
always postulate the existence of low energy 3(1BeV), correspondingB function parameterg3, arise with either
intermediate energy (1B-10'2 GeV), or string scale energy small negative values or large positive values. This suggests
matter thresholds entering as vector representations of thbat a first stage of slow or nonasymptotically free scale evo-
color and/or of the electroweak interactions groups. As wasution may well take place fronMy down to some scale
discussed within specific superstring models in Refswhere the extra modes pair up by acquiring mass and de-
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couple. As is well knowr{27,28, in order for the 4D low semisimple gauge groupl,G,. The genus zerdqunity)
energy effective theory to be weakly coupled, so as not tavorld sheefwith Wick-rotated Euclidean metniof the con-
invalidate the use of Eq.(1) (gxwngf‘:<1, gq formal field theory is a spher@orug parametrized by planar
=10-dimensional gauge coupling constamnd in order to  coordinatesz=e 27¢, z=e27¢, with corresponding cylin-
avoid dealing with a strongly coupled 10D theory grical coordinates given for the sphere hy=o—it,
(ggM3<1), one must require that the compactification and;=g+it, oe[0,1], te[—,] and for the torus by
unification scales retain a magnitude comparable to the string_ 4 7t = o+ 7t, o,t<[0,1], where the torus modular
scale,Mx=Mc=Ms. The second restriction can be relaxed harameter is denoted by=r;+i7,. The right-moving
by allowing, for instance, for an anisotropic compactification Ramond-Neveu-Schwal®RNS) superstring is built with 20
manifold (large radius in one out of the six compactified spacetime and spin field§(2), ¥*(2) (u=0, . .. ,9, asso-
dimensions in which a weakly coupled effective theory, ciated withD=4 external dimensions of the flat spacetime
gx=<1, could remain compatible with a strongly coupled (u=0,...,3) andd—D=10-D=6 internal dimensions
string theory(largegy) [29]. Assuming the above near equal- (=4, ...,9) of thecompactification space manifold, rep-
ity of scales, then a natural identification for the decouplingresented in a complex basis XE v Y=g d/r_ e idi
1/\R - ) -

scale of the extra matter is the mass scale, dendgd (i=1,2,3), where the complex scalar fields(z) are coor-

\év:r;(t:rri]blﬁtzggl{[gego%ea:m;rae?]ﬁhIggan?ZIe;:(!Lﬁg[Saef;?- dinates of the S®) group Cartan torus. This is tensored by
pp y P a left-moving bosonic string built with 26 fieldX*(z)

tor occurring upon compactificatid®9]. This suggestion is QZO’. _.,25), comprising D_external space coordinates

npt.new,.of course, anq appears in several places.ln }he SPEnd 26-D internal space coordinates which are distributed
cialized literature. The idea is to cancel the nonvanishing one =

loop string contributions to thB-term scalar potential of an N0 6 compactified space coordlnamE,X'L, and 16 gauge
apparently anomalous (1) factor by judiciously lifting the — coordinates of the £ E§ Cartan torus=',F '(1=1,...,8),
VEV's of certain scalar fields while restoring a stable super-generating the current;(z) of the affine Lie algebra&, of
symmetric vacuum. We shall carry out an analysis of the ondevels k,. At certain places, we refer to these coordinates

loop gauge coupling constant unification which combines toglobally asF' (1=1, ...,16) andalso by using their fermi-
gether the above ideas of adjustable moduli VEV's &pd onic representation in terms of complex 2D Weyl spinors
level parameters together with that of an adjustable interme(—)\a,)\a):eiiF' [I=1,...,16,a=1,...,8. Of course, the

diate scaleM 5, while describing the scale evolution in the above covariantly quantized string theory must be supple-

interval from My to M, on the basis of orbifold models mented with the anticommuting conformal ghost fields

predictions. c%(z,z),b,4z,z) and the commuting superconformal spinor
The paper contains four sections. In Sec. II, we discuss ighost fieldsy(z),3,(z) [60].

wide outline the basic formalism involved in the one loop  The one loop string threshold corrections in the approach

string renormalization of the gauge coupling constants asf Kaplunovsky[31] are described by the general formula
applied to orbifold models. None of the results discussed in

this section is new, our main intent being to provide a con-
crete, encapsulated presentation of the relevant formalism. In  ~ d
Sec. Ill, we present numerical results for the moduli- Aa=KaYotAs, Ag= _f
independent threshold corrections for a sample of represen-
tative orbifold models. In Sec. IV, we examine the viability
of superstring unification in an extended picture including
threshold corrections and an additional string size energyhere one has decomposed the total contribution, denoted
scale associated with an anomaloud)Usymmetry. In Sec. A, into a universal contributiok,Y,, independent of the
V, we summarize the main conclusions. gauge group factofexcept for the coefficienk,), arising
from the (back-reactiopgravitational interactions and oscil-
lator excitations modes, and a contribution solely due to the
Il. ONE LOOP STRING RENORMALIZATION massive compactification modes, denotéd. The latter
component is expressed as a deformed partition function in-
tegrated over the inequivaleéven representations of the
We consider the class of low energy supersymmetric theomodular group complex structures of the genus 1 world
ries descending from 4D heterotic string theories with a nonsheet, with an integrand

2
(kaBa(q ’ a) - ba)a (5)

T
F T2

A. Threshold corrections to gauge coupling constants

Ba(0,0)= —2Tr(Q3Q3g 0 1glo~ 1/2)

1 - = 1 _d B - —
=__ —1)2a+2B _oq | = _1\2BF2~Lo— 22/2471 o~ 9/24
2| (PG| Ty ) 2T DT e, @

ever(a,B)
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where the first factor represents the partition function of themental domain, for which we consider the standard choice

external theory inserted with the opera®@f=(— 5+x?), F=[|m|<3%, |7/=1]. Infrared convergence of the integral,
where y denotes the 4D helicity or chirality vertex operator Eq. (5), is ensured by the subtraction bf= IimTﬁwkaBa,
and we have introduced the familiar Dedekind function, . .. b,=13,[—c(RS)—2c(RF)+11c(RY)] (S=com-

7(7)=qY?11,(1—q") and the Jacobi theta function - ) S\ ald
o RO T ~ plex scalar,F=Weyl or Majorana fermionyV=vectop rep-
B[ 4](7) whose definition is stated explicitly in E(L8) be resents the summed contributions to tBefunction slope

k—)w{; Tbe overEars s*tan_d_for compI?x conjugation: narne'y‘parameters from the massless string modeselonging to
I 41(1) =1L 41(7)}", n(7)={n(7)}". i the representatioR,, .
We have accounted in E¢6) for the contributions from The summationa in Eq.(6) over the subset of even

the ghost fields in the familiar way16], which simply : : . —
: : iatSHin structures of the right-moving sector, «,(3)
amounts to canceling out the determinantal factors associate —

with the time and(string longitudinal components of the =1(0,0),(02),(,0)] where @,B=0=NS(A) (Neveu-
space-time and spin fields. The extra numerical factor of 2 ifSchwarz, antiperiodjcor 3=R(P) (Ramond, periodig is
front of the trace in Eq(6) reflects the change from string performed by insertion of the familiar Gliozzi-Scherk-Olive
theory to field theory normalization conventions for the (GSO projection phase factors leading to the supersymmet-
gauge coupling constants. The second trace factor in(@q. i string[16,61. _

(with F= fermion number operatot,,, Lo=conformal di- For a comparison with Eqg5) and (6), we record the
mensions operatorsorresponds to the partition function for corresponding formulas for the one string loop cosmological
the internal conformal field theory characterized by the cen€onstant,

tral charges for thel(,R) sectors ¢,c)=(22,9), inserted )
with the squareQ? of any one of the gauge group generators A= j d_TZ(q Q)
for subgroupG,. The integral over the world sheet torus F 7'3 T
complex modular parameter=r,+i7,, with q=e?"",

g=e 2™7, extends over one modular group SI{pfunda- and the partition function

] . ol ] )
Z(9,q)=Tr(g-o" 1gto~ 112)= 52 (— 1)2E+25 T Tr[(—1)2fFqlo~ 22/24gLo— 9/24] 7)
(@.B) 77 (1) (1)
|
B. Specialization to orbifolds Ho+11)=—e2? gy t)
To express the second internal space factor in(Bgfor 9
orbifolds, we recall first that the projectigimodding with o t+1)= _e—27-ri¢’¢(0_ t)

respect to the orbifold point symmetry is achieved by sum-
ming over the(space and timetwisted subsectorsg(h) by 5 fermionic determinant factor
using[62—-64

’ 1/2

ﬁd),

In(T)

1
Tr<-~)=@§ S X(@MTrgth--), (8

h:[g.h]=

21,— 2
The zero modes are associated a facf®f’qP=? summed
. - ) over the winding modes spanning the compactification mani-
degeneracy factors. For toroidal compactication, all fields ar 9 P 9 P

" S . old lattice A4 with basis vectore, and over the Kaluza-
free so that the torus partition function is obtained by assoi<I . A d .a its dual lattied with
ciating to a complex coordinate fiek{(o,t) of given chiral- b ein moTen*L;rr[l ;n(I)E eizifin?m? Its duat fa Wi
ity, a factor 1/r\27,) (flat case or (1—e2™%)/p(7) [un- ~ Poos Vectors = (cl. £q. €owl.

twisted case with time twisk(o-t+1)= e27X(.1)] or ‘We recall next that a torusR%/A° defined by
' ' X'=X'+2mn?%,, having a point symmetry group of au-

where|G| is the orbifold point group order ang(g,h) are

1 tomorphisms of the lattic\®, defines an Abelian orbifold
—+v endowed with a space symmetry gro@=PXxAS%. The
()19 2 space group action on the string theory fields is described in
E n terms of rotationg* and translationsiy ¢ together with their
2Y associated gauge group shift embedding elements described

by translations V' and Wilson lines translations
[space twisted cas¥(o+1,t)=e>""X(ot)] and to a fer- @, (I1=1,...,16,a=1,23). The space grouB={g,}
mionic Majorana-Weyl field, obeying the twisted boundary ={8p,W,} composition laws read 0.0,
conditions =(B1B2.B1W2+Wy), g, =(B,*,— B, 'wp). For definite-
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ness, we shall specialize henceforth to the case of an Abeliaciasses of the space group with representative elements

point groupP = Z, and discuss as we proceed certain of thegk=[0k,uk,f] and their associated classes
generalizations encountered in later applications. {g*=g’g*g' ~=(6,uy),9' =gPe Zy}, where the set of shift
The string Hilbert space of states consists of the untwistegrectors u,=[ 6°u, 1+ (1— 6*)u] (ue Ag,p=0, ... N—1),

sector k=0) and the twistedK=1, ... N—1) sectors. The span lattice cosetdabeled by the index) with representa-
twisted sectorsgk are distinguished by the boundary tive elementsu, ;. The compactified space coordinates
conditions X(o+1.0),y(o+1,t))=g" X(ot), X=X +Xg=x'+imtp'+270oW + - - - (units 22’ =1) ad-
—(—1)?>*y(o,t)). They are organized into conjugacy mit the (zero and oscillatoysmodes expansion

x

(XL(2),XR(2))=

N

P e a’LT‘Ii ag:_
_E(D'Llnz,p'RInz)nLEE _Z*miiﬁzfmi . 19

In twisted sectors, the string center-of-mass coordinates k=1 or k=N—1=—1(modN), the fixed pointsf® and

are not arbitrary real parameters but rather must satisfgonjugacy classesy ; are in one-to-one correspondence, so
g*x=x+0, ;+U, (U s,ueAg). Therefore, each of thgk  that f faithfully label these classes arig ;=uy ;. This

twisted sectors splits into subsets which can be classified iRFOPerty holds true for all the twisted sectors in the prime
terms of the corresponding set of fixed points of the spac@'PifoldsZs 7. For the multiply twisted sectors, the full set of
group, f®i  defined as OFO=f®01{,, where f|x(|e()d ﬁ(())mts £(0 decomposes into disjoint  subsets
lAJL,f=m§,feia (m?= integers are translation vectors of the {fa’.fo", ...}, where the fixed points within each subset

Paf(K) — 57 (K) £ £(K)
6D toroidal latticeA g determined by the condition that they (abeled by A) are related asgPafy’=f, "= )" for

: . ; - " pA<k, and hence are in one-to-one correspondence with the
return the rotatekd_ﬂleed poirt'f bagk toits or|g|na}l position, same conjugacy classesg ;. The cases involving nontrivial
so thatf =(1— 6°) ™ *u, s+ u. Specifically, thek-twisted sec- '

) . 0 e i > subsets[f(Ak)], comprising more than one fixed point, arise
tor fixed pointsf,, gre d|st|_ngwshed by a IabeIA rur_mlng only for the nonprime K= 1) orbifolds Z, ¢ 5 1,and for the
over the number of fixed points. The lattice vectogs iden-  direct product orbifoldZy X Zy, .

tify with the lattice coset representativeg ; introduced The orbifold space group elements can now be expressed
above only for prime orbifolds. For simply twisted sectorsas

g ={6" U =m3 (e, KV =KV + m? caL},
¢*= diag 6%) = diag e*™k¥i) [2 vi=o}. (12)
I

The orbifold group action on field€q. (12) below] and state vectorEg. (13) below] reads, in obvious notation,

g*XL = XL g t2mmE €, gF'=F'+2m(kV'+mdal), g yi=6ry, (12)

g“[(alni)pi(aimpqi](k)lpR,r‘Ea‘+kv‘>R®|pL PI=W'+kV),

= ez VPRI (o) (o) T IR, )R PP (13

The above used correspondence between Wilson line translation vectors and the noncontractibig;loefess to Abelian
orbifolds with Abelian gauge embeddings. Abelian orbifolds with non-Abelian shift gauge embeddings can be constructed by

extending the definition of Wilson lines to class-dependent shift vek&b'rs»v}(’f derived from a gauge embedding matrix of
general form65]. Non-Abelian orbifolds with non-Abelian gauge embeddings are discussed irhG@éf.

The internal space oscillator operatoré]i(, ainj)(lg) , Wherei,j are complex conjugate bases indifgiwen by the familiar
linear combinations of real basis indices=(1+i2)/y2,(1—i2)/\/2,...], enter with the moddingsn,eZ= 6,
m; e Z+ 6;, whereZ designates the set of integers. The translation veetbr, ,(n;+ %) [njeZ, 2n;e2Z+1(odd inte-
gers] are elements of the 6) group weight latticel's andW'=n', (n'+ %), [n'eZ, =8 ,n'e2Z (even integerqd are



3926 M. CHEMTOB 53

elements of the £< E; group weight latticel'g, g. The translation vectors' and V',a[,j1 with respect to these lattices must
obey Nv'el's, NV'eTg g, Nm""age I's,s as well as the level matchingmodular invariance undef™) conditions
N[(kV'+m ;al)?— (kv')?] e 2Z.

With the above rules in hand, we can now quote the following more explicit formula derived fro6)Eq.

_ 1 1 vii5s B ) % (1)
Ba(0,0)=~ 2512 X(m'”)e(m’n)ieve%@ O N da\
—| 0_i+ml}i —
<[] _LB* N, (7) (7) 7(7)
i=13 7(7) i=13 1 1
B §+mvi 3 §+mv|
D 1 (1) O 1 (7)
E-i—nvi E—i—nvi
1 1 . . ’ : 12 a+m§/|
2 707 a'ﬁ%ﬁ, n(m,n;a,B;a’,B )L[l Qa v B0V (7)
8 Y
12 a'+m)/| 212p212
<L Q0 gy |0 AGE,Ag QPUAPR2|, (14

where the second and third factors, recognizable by thehase factors;(m,n,...) arefixed uniquely by the require-
brackets, are contributed by the internal space coordinataaent of modular invariance. The intraorlidtiscrete torsion
and spinors, the fourth factor by the gauge coordinates, anphase factors(m,n) are independently fixed by the con-
the last(fifth) factor by the compactified space zero modesstraints derived from higher string loops modular invariance
The numerical factors appearing in denominators account fasind unitarity[68]. These constraints defingdm,n) as the
the averaging over the timelike spin structures. The corresolutions to the equations

sponding formula for the partition functioB(q,q) can be

obtained from Eq(14) by removing the overall numerical eN(m,n)=1, e(0n)=e(N,n)=1,

factor —2, the logarithmic derivative operatorg2d/dq),

and the factors@L)?, (Q.')? from inside the internal theory e(n,m)=¢e X(m,n). (15)
trace.

The additional freedom that might be present when the fac-
C. Classification of threshold corrections tors e(m,n) are nontrivial phases serves then to label distinct

) . . i string theories constructed from the same orbifold. Orbifolds
The generalized GSO orbifold projection, which selectsit 1o (g,h) fixed 2D torus(i.e., not simultaneously fixed

the singlet states with respect to the orbifold space symmetrMy both space and timeh twists) possess one modular orbit
group, is represented by the sum over the various t\letegmy. Orbifolds having one simultaneoug,h) fixed 2D

orbifold subsectors ¢,h)=(m,n), performed jointly with {45 possess several modular orbits which are in correspon-
the sum over the spin structures ), (a',8') for the fermi- — gence with the distindi=2 suborbifolds of the initial orbi-
onized fields associated with the gauge degrees of freedomg 4

The summations over the twisted subsectorsh) The multiplicity factors y(m,n)=x(g,h) count, for

=(m,n) and the spin structures for the gauge fermions deyisteq subsectors, the number of distinct degenerate subsec-
grees of freedom, ¢,8),(a’,pB’), are weighted by phase 4.5 associated with fixed points of the orbifold point group

factors (m,n) and »(m,n;@,B;a’,B") which are deter- \yhich are simultaneously invariant under baghand h.

mined by the requirement tha(q,q) be invariant under the (Useful information on these factors is provided in Refs.

modular SI(2, Z) group, generated by 7— — 1 and T:  [69-71].) For untwisted sectorsnf=0), there occurs corre-

7—7+1. The elements of the set of twisted,l) subsec- sponding nontrivial factorg/(1, h) from the projection on
tors are mixed together under the action of the modulapscillator states symmetric with respect to the orbifold point
group according to the transformation lawW62,67] group. These can be explicitly calculated from the formula
r—(ar+b)/(cTt+d), (g,h)—(h°g%h3g®), (a,b,c,d  x(1,6")=II;|—2i sin(mnv;)|>=|det (1—6")|, where the

eZ,ad—bc=1). [For Zy orbifolds, S:(m,n)—(N—n,m), product and determinant are understood to extend over the
T:(m,n)—(m,m+n).] The entire set of twisted subsectors rotated 2D tori planes.
can be organized into disjoint subsétsbits) of subsectors In the presence of Wilson lines, an additional summation

which close under the modular group action. The interorbitmust be included over the independent Wilson liagssat-
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isfying the property9*a, # a, and over the independent non- twisted subsectorsggg,;h;h,)=(m;m,;n;n,), setting the
contractible loop parameters labeled by the integmfs  discrete torsion phase factor in accordance with the above
spanning restricted finite intervals. The overall sum overconstraints, EQ(152),_E0 take the/(’:i\‘iscrete set of valugk68]
twisted subsectors in Eq14) is then replaced as follows: €(MiMy;nyn,)=em(Mnz=mn)/N (k=0, ... N-1).
Smn=3mSa Snma . For the Abelian direct product orbi- __1Urning to the interorbit phaseg(m,n;a, B;a’,8’), we

’ a " m,f ) note that these depend, of course, on the conventions adopted
folds ZyxXZy, (M=pN, peZ), straightforward exten- for the fermionic determinants. A complex left-moving chiral
sions of the above rules apply in which one deals with pairgweyl) fermion field with the spin structure prescribed by the
of generators §,, 6,), shift vectors ¢;,v,), (V1,V,), and  boundary conditions

Wo+1)=—e*""Dy(at), Ylot+1)=—e M@ Py(a,t), (16)
contributes a Weyl-Dirac operator determinantal factor

0
ﬁaﬁ d) (T)

BECE 4

det,z &

while the corresponding case of a right-moving chiral fermion is obtained by simply taking the complex conjugate expression.
The carefully chosen phase convent[@3,72]

0 0 : a+ 0
n(7)det,g A:ﬂaﬁ[d, (v=0|n)=e" @200y o l(v=0]7),
15{3;’, (V|T):Z q(n+9’)2/2e27ri(n+6’)(v+¢’), (18)
neZ

where the equation in the second line exhibits the conventional definition for the Jadafction, incorporates the appro-
priate relative phases which ensure the modular invariance of the partition function. Thus, in the notatior(1eh,Bhe

interorbit phases are identified with the products of phase fadi@s'7(¢*28) x [1e* ' 7(¢+28) extending over the left- and
right-moving spinor fields. The combined extended GSO phase factor from the fermionic determinants can also be written, for
the bosonic representation of the gauge degrees of freedom, in the form

p(mn:a,Bra’,B/)—AD = exﬁZWi{”Pl M= (1/2) mn(WH)2=[nri v = (1/2) mn(ui)z]})’ (19)
where we use the notation specified in EtR). Equivalently, if one were instead to substitute in EL{),

a+0} 9 0
B+ VBl g

using the definition for the function specified by Eq(18), the modular invariance constraints would then take the simple
form of unit phases for the whole set of interorbit phasgsn,n; «,8;«’,8')=1. The most direct way to establish the above
result for the extended GSO projection in orbifolds is by operating on each of the individual terms in the sum over twisted
subsectors in Eq.14) repeatedly with the modular group generat8$ in an appropriate order so as to span the various
orbits, until one hits back on the starting individual term. For a more elegant proof, one can follow the same st¢jgg]as in
involving the use of the identities relating the fermionic and bosonic representati@rfsioctions and of the Poisson formula

by which one transforms the summation over the compactification lattice to that over its dual. Combining in this way the fourth
(gauge sectgrand fifth (zero modesfactors in Eq.(14) yields an equivalent representation for the product of these factors in
terms of a manifestly modular invariant sum over an even, self-ginfted (22,6-dimensional Lorentzian lattice:

U

7= 2 q Pﬁ/zapé/z, (20)

WEAG,pEAg,WEF8+8

1
PL,R= [pL,u, ’ I:)l =W| + I<V| +AiuW,u,! pR/J,]! pI,;’RZ * G/J,VWV+ E(pp,_ k,u)v

1
k=28, W'+ WA, + SAWA,  (p*=p,G"'P,), (21)
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where W= 3G*"(pL,~Pgr,) =M2€4, P,=PL,+Pr.= n.e,* (m?n,=winding and momentum modes integers
G*'G,,= 46", and the basis vector norrTEM(ef;)2 identify with the compactification radii squarelds, along the various
periods of the 6D compactification torus. The background metric and antisymmetric tensor fields
(GuvsBu) = (Gap,Bap) e:f‘e,*,b and the Wilson line vector fieIAL=age;a represent the generalized coupling constants of the
world sheets model of the heterotic string whose acti@pecialized to the superconformal gaugereproduced below, for

definiteness:

1 —
S=-— mf f dadt{VhhP(9,X 3 X"+ p oV s G 4u(X)

+ P[0, XEI X B, (X) + 3, X{ 0 5F | AL(X) ] - a’ VhR@D(X)}, (22

where V y4"=d,4"+ Q;Maax*w (= generalized spin 8

connection with respect to the metric and torsion tensors H 19|Q22—>|;J: . QuQad/ ﬁjKl;L Fi

and D(X)=— 3InSX) denotes the dilaton field. The '

model background fields in orbifolds, as in toroidal mani- i N2 ar

folds, areX-independent constants, due to the vanishing cur- +|§=:1 (Qa)™ rll D, (23
vature tensor.

The charge generato€3, in Eqg. (6) identify with the zero  \vhere the primed and double-primédunctions are defined
mode components of the Lie algelg gauge current vertex in terms of the sum representation given in Ebg) by in-
operatorsQazngf(dZZIZTri)Ja(z). The allowed currents serting linear and quadratic powers of the lattice momenta
are chosen among the linear combinations of the vertex opaccording to the prescriptions

erators {i9F'(z),e” '@}, invariant under the orbifold

group. Any choice of compone®: [a=1, ... dim(G,)] 9= g?2, 9= plgP?

is admissible since all the components squa@é& contrib- p! P!

ute equally to the trace over string states. It is easiest to work

with the Cartan subalgebra generators because of the simpler 9" = Zqif}' _ 2 Puqu'Z/z (24)
structure of their representation as linear combinations of the d ol ’

momentum operator),=Q,,f (d?z/2i)iJF', with coef-

ficients Q, such that Q,=3,QuEl [El E using self-evident shorthand notation. More directly,
(i=1,...,16) are thenoving orthogonal frames basis and Using the dependence on the variabie exhibited in
its dual for thel g, g torus| represent the directior{flat com-  Eq. (18), one can write 09" (v|7)
ponent in the ;X E} weight lattice invariant with respect =(3/d(2miv),d°/9(2miv)?)9'(v|7). Note that the precise
to the orbifold group subject to the invariance constraintsd€finition of the 4D chirality operator, introduced after Eq.
Q.V', Quap e Z. The weight lattice vector components rep- (6), reads, in this notation,

resenting the eigenvalues of the Cartan subalgebra operators, d 8 1 Y o .

Q2 [a=1,...rank@G)], for the momentum eigenstates X2=20-—IN—+ ==+ —+—+2> in
|[P'=W'+kV'), are given by the scalar products dg- 7 12 12 9§ “i=1l-q
{QZ.-P=QZP'}. These relations can be used to explicitly

determine theQ,,, their absolute normalization being fixed ;Zirgf[:gi i;]fE%Séiggo?]?cdrf:zgsgr?gt%;eg;li/hg(:)n;rfi‘tigﬁnfljnc
Ey L reference to the normalization condition Q¢Qy) tion, as described above in the paragraph precedingZgy.

= 3 ¢(R) 6,y for the associated matrices. One expects that the solution for the phases

For non-Abelian subgroup factors, the gauge group shift,(m,n;a,8;a’,B') yielding a modular invariant partition
embedding case, to which we have limited our considerfunctionZ(q,q) should also automatically make the product
ations here, always leads to unit levélg=1. For Abelian  7,B,(q,q) modular invariant. This result is indeed true, al-
subgroups, the parametekg, which are still called levels though the way it is achieved is rather subtle. As discussed in
for convenience of language, depend on the normalization adetail by Dienes and Faragpd8], the contributions arising
the corresponding charge operat@g and specified by9]  from the square termsQ})? in Eq. (23) introduce modular
Ko= 22,(Q!d)2, symmetry-breaking terms via the double primed quantities

The insertion of the charge squared operators is accountedl . These left-moving sector modular anomaly terms are,
for, in the notations introduced in E@l4), by replacing the however, precisely canceled by corresponding right-moving
0 function factors(denotedd, for shor) by modified ones sector modular anomaly terms arising from the helicity
using the rule charge operator squar@ﬁ.
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Turning now to the threshold corrections as calculatedrbifolds, due to the projection. The moduli-dependent terms
from Eg. (14), we note that the\, have a natural additive originate fromN=2 suborbifolds(one fixed 2D torussub-
decomposition in terms of moduli-dependent andsectors and the moduli-independent ones fromi\thel sub-
-independent contributions which we associate with the firsrbifolds (no fixed 2D torug subsectors. Thél=1,2 orbits

and second terms in the formula generally contribute to both, or A,, while theN=4 tor-
_ _ oidal subsectord,h)=(1,1) (three fixed 2D topi contributes
Ag(M,M)=8,+AM™M(M,M). to neither.

The moduli-dependerii=2 contributions arise necessar-
This separation arises when one classifies contributions adly from subsectors having nonvanishing momepta; . In-
cording to the numbeN=4,2,1 of space-time supersymme- deed, a nontrivial zero mode factor different from unity oc-
tries which are realized in terms of disjoint subspaces of theurs only for twisted subsectors(n) with a simultaneously
Hilbert space of statd83]. There exists a one-to-one corre- fixed 2D torus. For this case, the factors in the partition func-
spondence between the supersymmetry irreducible represetion in Eq. (14) multiplying the zero mode factor combine
tation spaces and the spaces of states of suborbifolds whighto the product of a constant function etimes a holomor-
are constructed from subgroups of the full point symmetryphic function of = which, being a nonsingular modular in-
group, themselves identified with the modular orbits. Thevariant function, must therefore also reduce to a constant
N=4,2,1 supersymmetries are then associated with the sulndependent of~. The modular integral over the zero mode
orbifolds leaving fixed 3, 1, or 0 2D tori, respectively. The factor can then be expressed by a general formula involving
N=4 supersymmetric subsector arises from the purely toroiautomorphic functions for the moduli fields associated with
dal, trivial orbit, (g,h)=(1,1), which is clearly absent in the fixed 2D torus. For decomposable 6D tori, one fif88

3
A?%ﬂﬂ=§%2Bﬁmnn+inmnWMWMUﬁGMMUMﬂl (25)
1= Gl

where the sum oveB' runs over the distindN=2 suborbi- g+5_,5+S+ Ei[25¢4(47)2]|n(ﬂ+ﬁ)- For nondecom-
folds G" or modular orbits of the point groupli;=T;,  posable tori, the target space modular symmetry is lowered
Uim=U; designate th¢(1,1) and (1,2 harmonic form$ di- {5 subgroups of PSL(Z). Similar expressions to Eq25)
agonal compactification moduli fields, and the coefficientsgontinue to hold, differing by a nontrivial dependence on the
b,'=b|G'|/|G| denote the associated massless mgHe sets of allowed moduli, in particular, involving rescalings
function slope parametel’s" multiplied by the ratios of such asT;—T,;/3 or T;/4 [73].
point group orders. The dependence on the Dedekind func- The moduli-independent contribution%, are associated
tion reflects the target space duality symmetry under the Skith the vanishing of all components of the momentum and
(2,Z) modular group. The model-dependent coefficidrffs ~ winding mode{’ g, which therefore results in a trivial zero
can also be identified in terms of the massless modes proprode factor equal to unity. No analytic simplification for the
erties by means of the formu(&6] b" b" ka5iGS’ with ][nodurllarhparametef integral is known to e>|<ist inI this ca§|_er;

ri i or which one must resort to a numerical evaluation. This
by'= 2[¢(Ga) ~ Zpe(1+2n,)C(R,)]. where n,, are the task is the subject of next section and represents the main

massless modes modular weights aid the coefficients of new result reported in this paper.

the anomaly canceling Green-Schwarz counterterm. The
splitting b, = b’I +k, 85 exhibits the characteristic property
of the mechanlsms responsible for the cancellation ofsthe lil. NUMERICAL RESULTS

model duality symmetry anomaliegroportional tob,'), Before presenting the results we digress to describe how
which involve both the threshold correctlonba() and a we deal with the numerical integration over the complex
gauge-group-independent Green-Schwarz counterterm corrparameterr. The two-dimensional modular integral can be
sponding to a one loop redefined dilaton fie[@5] separated in two different ways:

1/2 oo 1/2
| @rtnm= | Can | dnlta = [ dn[ L anlim - @9
F 0 (1- 2 312 )2

The general structure of the integrand funct®(q,q), as follows from Eq.(6), is that of a doubly infinite sum of terms
involving products of functions off,q reading, schematically,
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Ba(T,F)sz Ca(K,M)%(Q)%(a):EEE Wa(EL ER)GFLO™R, (27)

L'=R

The power indice€,  in the second equation identify with the squared masses or conformal dimensions for the physical
spectrum,

P|2
ELEhL_l:NL“F 7+EO_ 1,
1 ri2 1 1
Er=hr— 5 =Ng+ 5 +Eo— 5 Eo=§Ei [kvil(1—[kv;]), O<[kv;]<1|, (28)

whereh_r are the conformal dimensiond,  the oscillator  Z. The 7, integral still involves a sum of exponentially
operators eigenvalue®',v' are defined in Eq(13), and  decreasing terms of the forer 2772(kL+kr/N
E, the vacuum energy shift induced by the orbifold mod-  As is well known, the modular invariance undgY leads
dings. The projection on the modular group invariants is arto the restrictionN(E, —Eg) € Z for the physical spectrum
essential element here in canceling the terms in the secorwhich implies for the supersymmetric Abelian orbifolds that
sum of Eq.(27) with negative powers of eachE, level is matched by akR level[13,68. One should
not be misled, however, by the above left-right level match-
q _ ing property and deduce that the double sum in &)
(— =g*2mn =27y actually degenerates into a single sum restricted to
q E, =Eg. If true, this property would have made the inte-
gral trivial and dispensed with the need to evaluate it for
thus leading to nonsingular expansions with powers identieach case.
fied with the left and right sectors physical spectrum squared Once the constant parts in the full integrand, which are
massesE, r. [The diagonal elements of the coefficients jdentified with the massless mode contributions given by
block, w4(E_ ,Eg), identify with the density of string states b,, are removed, the subtracted integrankisB,—b,) are
of fixed mass, weighted by the squares of their gauge anthstly convergent functions. An infrared cutoff at, say,
helicity charged. 7,=2-3 is more than sufficient to retain the dominant part
The functions ofr, obtained upon integration oveq, as  of the quadrature. Nevertheless, the projections involved in
exhibited by the second equation in E@6), have discon- the summations over the orbifold subsectors cause strong
tinuous derivatives at,=1. This is seen clearly in Fig. 1 cancellations which adversely affect the accuracy of the final
where ther, integrand is plotted for certain orbifold models results. The most appropriate way to organize calculations
to be discussed below. This figure illustrates certain generigere would be to express analytically the integrands in power
features that are encountered in all the other cases. The maépansions ing,q prior to the numerical integration. This
items are(i) untwisted sector contributions smaller in com- procedure is the one adopted in R#5,46,48. However,
parison with the twisted sector ones and nearly independei order to deal with a variety of orbifold examples of in-
of 7, for 7,>1, (ii) twisted sectors contributions exponen- creasing complexity with respect to the orbifold group order
tially convergent forr,> 1, and(iii ) constant limiting values or the inclusion of Wilson lines, the implementation of this
for k,B, reached at the rather early valugs~2-3, which  procedure would obviously require the use of symbolic pro-
are to be identified with thg function slope parametets, = gramming. For our limited purposes in this work we shall
associated with the charged massless modes for the variogacrifice a high numerical accuracy of the results and choose
sectors. instead, as in Ref43], to perform all calculations by means
To explain these results, we note first that when the poweof brute force numerical programming.
indiceskE,_ take integral values, as is always the case for the The numerical integrations are carried out in the order
untwisted sector contributions, then the Fourigrintegral indicated by the second equation (@6); namely, ther;
extends (for m»=1) over one period of the integrand, integral is performed first, successively for the twpinter-
namely, f 3 ,d 7€ (EL"ER™L and so selects in the expan- vals \3/2<7,<1 and I<r,<c, and ther, integrals next,
sion given in Eq(27) the termsE =Eg+n,neZ. The lead- after subtracting the numerically determined asymptotic val-
ing contributions to ther, integral at larger, is dominated ues,k,B,— (k,Ba.),-.. The 7 integrals are evaluated in suc-
by the charged modes with a minimal value & (+ Eg), as  cession for the untwisted and the various twisted sectars
follows from the dependencfdr,e 2"2(EL*ER) This ex-  beled byg or m). The GSO(physical subspageprojections
plains the rapid convergence to a nearly flat behavior witHor eachg sector, represented in EQL4) by the summations
variabler, for 7,>1 of the untwisted sector contributions to over h (n integer$ and over the independent Wilson lines
Ba(d,0). On the other hand, whel,  take fractional val- a, and the associated winding numbers®(integers, are
ues,E| g=Kk_r/N, k. reZ, as is the case for the twisted carried out inside ther integrals, namely, at fixed
sectors contribution, then the integral is nontrivial over 7= 7;+i1,. This ordering is, of course, important and nec-
the entirer, interval and does not anymore seléGt—Eg  essary since the summation oveis essential in projecting
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FIG. 1. The threshold functiork,B,(7), integrated overr, is plotted as a function of, for three casesa) the group SW) of the
nonstandard embeddiragy, orbifold, in Table II;(b) the group factor S(B).. of the case BZ; orbifold model in Table llliiii) the first SU2)
on line group factor of th&, orbifold model in case D Table Ill. The untwisted sector contributions are drawn as solid lines and those of
twisted sectors are drawn as long-dashed-short-double-daghelbiig-dashed—short-dasheé?}, and short-dashedt) lines.

out the unphysical tachyonic term®egative powers of numerical results against variations by about 30% in the
g,q). It is also helpful in reducing the rounding off errors number of integration points used in the numerical quadra-
caused by the severe cancellations taking place in the projetdres overr; and 7,, with respect to an average number of
tion. integration points of 7 and 15, respectively. Further, the ex-
We convinced ourselves by various cross-checks that ongected vanishing for each twisted subsector of the contribu-
could maintain a numerical accuracy with relative errors oftions to the cosmological constant which originates from
order 10 2 for most of the cases to be considered below, andhe right-moving supersymmetf@0], is systematically veri-
specifically for all the orbifoldZy (N<12). The rounding fied at the level of 10’.
errors worsen with increasing orbifold order and increasing Let us quote here useful results concerning the inputs for
numbers of Wilson lines. The cross-checks involve the fol-some of the orbifold parameters. Details regarding the gauge
lowing verifications:(i) smoothness of the, integrands as a symmetry groups and the massless spectra can be found by
function of 7, for eachg sector after théx projections on the consulting the results in Ref§9,69,7Q. For theZ;; prime
physical subspaces of the Hilbert space of states are carrientbifolds, the degeneracy factogg,h) count the number
out, a feature which is apparent on the results in Fidiil; of simultaneously fixed points by and h. Thus, for
convergence of the integralgB, for eachg sector to the twisted sectorsy(g,h)=27,9,3,1 ¢+1), independently of
expected value of thg function slope parametebs,, which  (h=1,...,6V), for the Z; orbifolds with 0,1,2,3 inequiva-
are independently calculated in terms of the known massledent Wilson lines, respectively. For th&, orbifolds,
spectrum of the modeljii ) independence of the results for y(g,h)=7(1), independently of =1, ... ,6"), where the
non-Abelian group factors on the choice of a specific chargéirst (second numbers refer to cases withowtith) one Wil-
generatorQ'a within the Cartan basis{iv) stability of the son line.(The reduction of the degeneracy factors in the
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presence of Wilson lines, reflecting the distinguishability ofsented below, X(g,h)=[3,3,3,9,3,3,3,}9 for
subsets of twisted subsectors, is compensated by the summg=[ 6, ,63,6,,0,0,,626,,65,6,65,6265], independently of
tion over the winding numberm;f .) For the nonprime or- h= 0;1022. Note that x(1h)=x(h,1) and x(6™h)
bifolds, where x(g,h) count the number of conjugacy =, (oN~™ h).

classes, we shall restrict here to cases with no Wilson lines. TheN=2 subtwisted sectors associated with givgrh
Quoting from Ref.[70], one has, for theZ, orbifold, simultaneously fixed planes consist in thgorbifold case of

x(0,60°123=(16)*, x(6% 6°123=(16,4); for the Zg—| a single modular orbitc of (g,h) sectors given by
orbifold,  x(6,6% ~-9=(3)°%, x(6%6%9H=(27.3F, ~={(1,6%),(6%1),(6%6%)}. The other nonprimeZy orbi-
x(6%,6%-9=(16,1,1f; for the Zg—1 orbifold, folds in Tables | and Il all possess singk=2 modular
x(013,9% N =(4)8, x(6%,6%--%=(16,4y,  orbits which are constructed analogously by including all

x(6%,6%-N=(16,2,4,2%; for the Z,,—I| orbifold, distinct (g,h) subsectors, witg and h running over the

x (61129 01y =(3)12 4 (63,6% - 1Y=(4,1,1F, x(#*,  Zy elements leaving a given two-torus fixed. Thus, for the
6% 1=(27,3,3,3%, x(65,6% - 1H=(16,1,1,4,1,13,  Zg-I orbifold, the relevant element i8>; for Zg-I, it is 6%;
where the exponents indicate the number of repetitions of thand for Z,,-1, the relevant elements aré€® 6% 6°. The
associated patterns. In tlfg X Z5 orbifold with one Wilson  Z3X Z5 orbifold possesses three orbifg, associated with
line associated with the first factor, as in the example prethe three fixed planes, given by

O1={(1,03%,(65,659,(65,03™3},  7,=04[ 6, 61],

6,62 6,62 6,62
o 2 2 1Y2 1Y2 2 1Y2 2
ol anddoal| gl ([ el (5] ae) 2

We present our results for cases corresponding to the stathe models discussed in Ref.[43] [A(SU(5))
dard embedding2,2) orbifolds in Table I. Results for cases —A(U(1))=—24] and in Ref.[46] [A(SU(3))—A(U(1))
corresponding to nonstandard embedding (0,2) orbifolds are- — 2.5] arise from moduli-dependent contributionsNi= 2
presented in Table Il. Details concerning the gauge grougectors only. In a recent systematic study, Dienes and Faraggi
and the massless spectra can be found in R6%&36. Fi-  [48] report results for several new cases. They indicate, in
nally, to elucidate the role of discrete Wilson lines, thresholdparticular, that the above-quoted threshold corrections in the
corrections results for semirealistic orbifold modétases flipped SU(5) cas¢46] must be reduced by an approximate
A—E) having three chiral matter generations are presented ifactor of 3. Let us note here that the models obtained in the
Table Ill. Cases A—C refer t@; orbifolds. Up to extra 1)  fermionic construction refer to specific points in the moduli
factors, the observable sector gauge group for cag8]A space for which one lumps together the moduli-dependent
coincides with the standard model gauge group, while thaand -independent contributions.
for case B, also due to Foet al. [9], is a left-right chirally Several conclusions can be drawn from the results in
symmetric gauge group extension SU{IBSU(2)  Tables I-Ill. Our results for th&; orbifold cases essentially
X SU(2)g and that of case C, due to Kim and K[md4], isan  reproduce those available from previous woi8%,45. Fur-
intermediate unification gauge group SU{I)SU(3),. ther, the two-component decompositiofy= —b,A +k,Y
Case D in Table Ill refers to &, orbifold model with gauge excellently fits all ourZ; orbifold cases, including the non-
group SU(3XSU(2)xU(1), proposed by Katsuketal. standard embedding and Wilson line models, with the same
[70]. Case E in Table Il refers to &5 Z5 [9] orbifold with  values for the parameters, namely, within the numerical ac-
an observable sector gauge group SUEBPU(2).  curacy of our resultsA=0.068,Y=3.4. Because of the ad-
X SU(2)gX SU(2). ditional difference effects involved in extractig a liberal
One of the first calculations of the moduli-independentestimate of the relative precision on the parameieiis
threshold corrections was that attempted by Kaplunovskyl0%. The independence with respect to the shift embedding
[31] for the simplest case of standard embedding orbifoldsand Wilson lines is a remarkable feature which, as empha-
He reported a small gauge-group-dependent ternsized in[45], presumably originates in a general, deep prin-
A=—[(A,/ky) — (A /ky) /[ (balky) — (by/ky) ]=0.07. The  ciple of string theory, which still remains mysterious.
Z5 orbifold case with two Wilson lines, designated in Table The threshold corrections, significantly increase in
Ill as case A, was recently considered by Mayral. [45]. magnitude with increasingy orbifold order, roughly ad,
Assuming tentatively the decompositiahy=—b,A +k,Y, while always retaining the same positive sign. For the other
with the first component proportional to the factor groupprime orbifold, namely,Z,;, the two-component formula
slope parameters and the second to the affine levels, theagain fits well with our results in Tables | and IlI, but only if
authors foundA=0.079, Y=4.41. As for the comparison we restrict ourselves to the non-Abelian group factors, for
with the existing estimates made in fermionic constructionsvhich we findA=0.20, Y=15. The formula loses its valid-
of 4D superstrings, this is not very enlightening in the con-ity if one includes the Abelian U(1) factors, since a pairwise
text of the present work because the threshold corrections ioomparison of the various group factors leads to the ranges
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TABLE I. Threshold corrections for thé; 4 ; orbifolds with standard gauge embeddings. The entries in
the first line are the rotation angl#s (i=1,2,3) and the shift vectors (i=1,2,3),V' (1=1,...,8). The
second and subsequent columns correspond to the gauge group factors in the observable afutinidden
sectors. The successive line entries list the group factors, the charge generators con@bnﬁmslevels
ka, the B function slope parameteh, or, for the nonprime orbifolds wittN=2 suborbifolds, the pairs
(bY=1 b)), such thab,=b}=*+b, and the moduli-independent threshold correctiéps

Orbifold Z5: 6,=(113)/3, v;=(11—-2)/3, V'=(1126)/3

Group Su3) Eg Es
Qa (1-10) (0%120%) (1%0%)’
Ky 1 1 1
b, -72 -72 90
b2 8.31 8.31 —2.76

Orbifold Z,: 6,=(112)/4, v;=(11—-2)/4, V'=(112C)/4

Group Su2) Eg u(1) (=
Q. (1-10) (0%120%) 3 (1220°) (0%2120%)’
Ky 1 1 3 1
(bY=1 b)) (—12-42) (—36,—42) (—162—94.5) (60,30)
5, 12 9.1 10.4 -1.21
Orbifold Zg-1 : 6;=(114)/6, v;=(11—2)/6, V'=(11—20°)/6

Group Suy?2) Eg U1 Eg
Q. (1-106) (0%1-107) (1%2-20°) (1%0%)’
Ky 1 1 12 1
(bY=1 b)) (—28,—28) (—38,—28) (—1998-1008) (70,20)
8, 13.5 11.5 337 -1.1

Orbifold Z,: 6,=(124)/7, v;=(12—13)/7, V'=(12—-30)/7

Group B U, U(2), Es
Q. (0%120%) (—1010) (-1-2-10°) (110’
Kq 1 4 12 1

b, —36 —208 —1398 90
5, 22.7 78.2 805 —2.24
Orbifold Zg-1 : 6,=(125)/8, v;=(12—23)/8, V'=(12—30°)/8

Group & U, u(), Es
Q. (0*1-109) (01-10°) (2—1—10°) (11060’
Ky 1 4 12 1
(bY=1 b)) (—33,-21) (—-180-84) (—1301-756) (75,15)
5, 17.5 62 601 —1.65
Orbifold Z,,-1 : 6,=(147)/12, v;=(14-5)/12, V'=(14-50°)/12

Group & u(), u(), Es
Q. (0%1-10%) (01-10°) (2-1-10°) (110)’
Ky 1 4 12 1
(bY=1 b)) (—39,—28) (-188-112) (—1398-101) (70,20)
5, 21 65 657 —-3.25

of variation,A=0.6 to —0.2, for the results in Table |, and 7V'=(0%1%31%)(08)’, 7a'=(32-13-2-3-2)(51)’, gives for
A=0.1-1 for the results in Table Ill. However, these predlc the corresponding gauge group factors
tions are not very precise, since one expects larger numeric&8lU(2) X SU(3) XSQ(15)" the resultsb,=(—12,—7,20), &,
inaccuracies to occur i for the Abelian factors due to the =(8.5,9.6,4.4), which leads to analogous conclusions to
stronger cancellation effects there. We have also considerdtiose reached for the model of Katswkial. [70].

the standardlikeZ; models proposed by Casas$ al. [75]. For the nonprime orbifolds, the two-component formula
Performing the calculations for example 2 of this paper, withceases again having a universal validity, even when applied
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TABLE II. Threshold corrections for orbifoldZ; , with nonstandard gauge embeddings. For each case,
the first line gives the shift vectod ,V'' (I=1, .. .,8). Thesecond and subsequent columns correspond to
a selection of the gauge group factors in the observable and higidiemed sectors. The successive line
entries list the group factors, the charge generators compotilgntshe levelsk,, the B function slope
parametersb, or, for the nonprime orbifolds wittN=2 suborbifolds, the pairst‘:l,f);), such that
b,=bY~*+b,, and the moduli-independent threshold correctidgs

Orbifold Z5:V,=(112¢)/3, V|=(1120)'/3

Group Su3) Eg SU®l)’ Eg
Q. (1010) (0%120%) (1016)’ (0%12)’
Ky 1 1 1 1
ba -72 9 —45 -9
s 8.28 2.73 8.28 2.73

Orbifold Z5:V,=(116)/3, V| =(20)'/3

Group E u(1), U(1), SO(14y
Q. (1-10°) (1209 (10’ (01205’
Kq 1 4 2 1
b, 36 —432 -90 -18
54 0.9 428 9.77 452

Orbifold Z5:V,=(1*20%/3, V|=(20)'/3

Group Sy9) SO(14y u(1)’
Qa (1-10°) (07°0°%)’ (10’
Kq 1 1 2
b, -18 9 -99
5a 4.58 2.74 10.1

Orbifold Z,:V,=(1120)/4, V|=(22C)'/4

Group Sy2) Eg u() SuU(2) E;
Q. (1—10F) (0%120%) (1%220P) (1%0%)’ (021204’
K, 1 1 12 1 1
(bY=1 b)) (—12,~42) (12-42) (—2163-1512)  (—84,30) (12,30)
5, 0.98 3.74 427 14.6 3.74

to a fixed orbifold case. It seems natural here to identify thehe numerical results based on the two-component formula
coefficient b, with the N=1 sectors slope parameter with A=-(0.2,0.15,0.59),Y=(19,22,44) for theZgg 7!
bg‘:l, since 5, also arises from these sectors only. Certainorbifolds, respectively. Application to the mixed observable
regularities do appear, however. Applying the formulaand hidden sector corrections yields instead the domains of
8,=—b) "*A+Kk,Y to the Z, orbifold in Table I, we find  variations, A=(0.15-0.22),Y=(9-12, when going from
that the observable sector gauge groups agree with the prés-| t0 Z1-l. The alternative lattice realizations associated
diction: A=—0.12, Y=14. By contrast, fitting with the two- With Zg g1l lead to qualitatively similar results. Thus, for
component decomposition simultaneously the observablthe Zg-1l standard embedding orbifolgtharacterized by the
and hidden sector gauge groups leads to inconclusive fitshift vectorv;=(13—4)/8], we find, for the same order of
The overall variations for the parameters cover the rangegauge group factors as for thZg-1 case in Table I,
A=-0.12t0+0.2, Y=10 to 14. The corresponding predic- b,=(—37.5, —220, —1135, 60, 5,=(19, 49, 589,-2.6),
tions for Table 1l show now variations for both observable which results in the range of variation,=—0.4 to +0.2.
and hidden sectors separately, yielding the ranges Finally, the results for our singlg; X Z; orbifold case in
A=-0.12 to+0.2, Y=2. We note here that with the alter- Table IIl, indicate rather small values f@,. These can be
native identification of the coefficienb, to the total, well fitted with the two-component formula, with the param-
summedN = 1,2 sector slope parameter, regularities are altoetersA=0.03~0.1, Y=0.54. We have also examined for the
gether absent. Z3XZ5 orbifold the effect of the discrete torsion factor
For the Zg g1, Orbifolds, in the lattice realization desig- e(m;,my,ny,ny)=e2™P(M2=mM)N (=0 . N). The
nated by the suffid, the results shown in Table | reveal results in Table Ill refer to the cage=0. The spectrum and
similar features to those of thg, case. Thus, restricting the slope parametetsy * are known[9] to depend on the
ourselves to the observable sector only, one satisfactorily fiteorsion. The changes in the present case are light; in particu-
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TABLE lII. Threshold corrections for a selection of three-generation orbifold models with two Wilson(bases A—Cand one Wilson
line (case D. ForZ; orbifolds, the winding number parameters attached to the Wilson lines take the mglye®,+ 1. Case Ais a standard
model groupZ, orbifold model studied by Forgt al. [9], (Sec. 4.2 3V'=(1%2000)(20)’', 3a},=(072)(0116)’, 3az,=(11121011)
X (11¢F)’. Case B is a left-right grou@; orbifold modelZ; orbifold model studied by Forgt al. [9] (Sec. 4.3 3V'=(1%2000)(20)’,
3a}=(072)(00110)’, 3a5=(1%21°0)(11¢F)’. Case C is an intermediate unification gratyporbifold model examined by Kim and Kim
[74]: 3V'=(11211200)(6)’, 3a)=(0%11211)(T0%’, 3a3=(072)(1%)'. Case D is a standard model grodp orbifold model due to
Katsukiet al.[70]: 7V'=(230%)(11C%)’, 7a}=(32—152111)(4229)'. Case E is an intermediate unification graZyx Z, orbifold model
with one Wilson line from Fonet al. [9] (Sec. 5: 3v}=(1,0,—1), 3vh(0,1,—1); 3V}=(211F)(11¢%)’, 3V,=(02¢°)(0—1111000};
3a(11)':(0511—2)(0511—2)/. (The indices 1,2 refer to the twidy factors) The successive line entries list the group factors, the charge
generators componenfgg, the levelsk,, the B8 function slope parametets, or, for the nonprime orbifolds wittN=2 suborbifolds, the

pairs 0N =*,b.), such thato,=bY=*+b!, and the moduli independent threshold correctiéps
A: Z,

SV ) SuU2) U1, U1, UD)4 UD)s ULy U(1), U(1)e SOy
Q. (0%120% (10-10°) (1%0%  (0%1-1C%)  (0°10) (01) (10)’ (11F)"  (0%1—1)’
Ka 1 1 6 4 2 2 g 2 4 1
ba -9 —-18 —-216 —104 -30 —-16 -71.5 —14 —-68 18
b, 4.01 4.62 45.3 20.7 5.44 4.49 16.3 2.65 18.2 2.16
B: Z5

SU@R) SU(2)* SU(2)R u(1), uU(1), U(1), U(1), SuU(2)Y SO(8Y u(1)’
Q. (10-10°) (0°1—10) (0°1%0%) (1%0%  (0°1-10°) (0°1%0) (071)  (01-110" (0*1C%)’ (207’
Ky 1 1 1 6 4 4 2 1 1 2
b, -6 -15 -15 —216 —100 —100 -12 —24 6 —26
b5, 3.76 4.37 4.37 44.9 20.2 20.2 4.17 5.0 1.27 5.12
C:Z;

SUER) SU@R) U(1), U(1), U(1)s U(1)4 U1)s SO(12y u()(5)"  U(1)(6)
Q. (101¢) (0%101C¢) (12-10°) (0%1%2-10?) (0°—10) (0'—1) (12-10°) (1-10°)' (—1%%" (0*—1%)’
Ka 1 1 6 6 2 2 12 1 8 8
ba -18 —-18 -310 —257 —-31.5 -255 —-1176 27 —464 —400
ba 4.58 4.58 51.3 47.6 5.50 5.10 200 1.51 85.2 81
D: Z,

SuU@2) SUR) U(1), U(1), U(1)s U(1)4 U(1)s Es u(L)(e)  ua)(y
Q. (0%120% (0%1-1) (10) (010) (0210°) (0%1-10% (0%1%  (051-—10) (120%)"  (1-1200)’
ka 1 1 2 2 2 4 6 1 4 12
ba -14 —14 -20 -22 -23 —100 —217 36 -92 —788
ba 11 11 11 12 12 46 108 0.70 48 397
E: Z3XZs

SU©2) SuU(2}  SUE2R SU@) u(1), u(1), U(1)s SuU(3) SO(6) u(1)’
Q. (101¢) (0%1%0% (0%1-10%) (0°10-1) (01)  (10-10°) (0°1%  (0°10-1)" (0%1—10%' (1205’
Ky 1 1 1 1 2 4 6 1 1 4
byt 2 -10 1 ( 1 ) -3 —42 -12. 1 1 -15

b, —24 —24 -36 -13 —56 —112 —270 —-13 —-13 —-126

s 0.50 0.85 0.60 0.60 0.60 6 6.35 0.60 0.60 3.75

lar, theN=2 slope parameters are unchanged. Thus, for the IV. UNIFICATION AND ANOMALOUS U (1) SCALE
choicep=1, we find for the same ten group factors of case E
in Table Ill, bY™'=(-1,5-2,-2,-2,-62,-6,—2,—2,

—59), 6,=(0.49,0.31,0.59,0.59,0.82,6.2,4.6,0.59,0.59)5 In this section we examine the viability of the perturbative
These results again fit nicely the two-component formulasuperstring unification within the orbifold approach. Let us
with identical ranges for the parameters as in the alpov®  first discuss the implications of the results obtained in Sec.
case. Il for the moduli-independent threshold corrections. We re-

A. Threshold corrections
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strict to the standardlik& orbifold models given in Table of the same order of magnitude as the two loop field theory
Il. Since &, are generally of positive sign, it follows that the renormalization correctiong7]. We conclude therefore that
moduli-independent threshold corrections will always resulthe moduli-independent threshold corrections should mildly
in reduced effective unified coupling constant and enhancedffect the high energy extrapolation of the gauge coupling
(reduced unification scale, depending on whether tfe constants. More quantitatively, one can estimate the correc-
function slope parameterb, are positive (negative or, tions to the weak angle and color coupling constant by
equivalently, gaugématte)j dominated. Assuming the simple means of the formulag36]
formula §,= —b,A +k,Y, then, as already noted in connec-

2

tion with Eq. (4), one can absorb the string threshold correc- ;> (my) = Ko a(mz) kg A2 4 A
tions into an effective unification scaM and an effective WA K+ ks A7 Kitky W Al
string coupling constardy . Using the numerical values for (30
b, and 6, in Table Ill, we find very small moduli-
independent corrections to the unification scale and the cou- 2

: . . _ k3 B m; Ag
pling constant, which attain at most a 10% enhancement and a;limy)=—"3—|——+—In—5+—|, (3D
a 5% reduction, respectively. kitko|a(mz) 4w Mg 4w

Identifying the string moduli-independent threshold cor-
rections obtained heré,/4m=0.4, tentatively with a corre- \yhere we use the notationA=—(b;K,/k;—b,),
sponding field theory threshold correction of typical structureg— — [, + b, — ba(k; + ko) /ks], Ax=—(AsKo/ki—Ay),
[76], 5(4m/g3)==+0(1)In(MyMy), yields for the ratio of Az =—[A,+A,— Ay(k,+ky)/ks]. Evaluating the threshold
the average heavy particle mass to unification masssorrections for case A in Table IlI, by usirig=11/3 and
My /My= 3. Thus, one checks that these contributions are\; , 7=(16.3,4.62,4.01), yields

8(sirfOy(my))=(—5~+8)X10"° a l(my)=—(4-5)X10"2 [Sagmy)=(5-8)x10 4],

where we have sei~1(m;)=127.9+0.1. We see that the A’
corrections are rather small and lie well inside the present (B’)
experimental uncertainties on these parametgrd],
ag(m;)=0.120+0.010, sik@4,(m,)=0.2324+0.0006. The such that
extreme smallness of the effect here is due to the cancellation
of the level-dependent componektY in &, in the linear A\ [28/5
combinations appearing i, g. In fact, these cancellation B/ |\ 20
effects are the cause for the large uncertainties in the results
above. If we used the two-component formula, so thafor the minimal supersymmetric standard model and
Ap=—AA, Ag=—BA, and setk;,b, at the vaues pre- 6A,6B depend on the modular weight parameter assign-
scribed in the minimal supersymmetric model, we would findments. The solutions reported in Reff36,53 give
insteadd(sirtéy)=—2x10"*%, das=3%x10"*

Turning to the moduli-dependent correction™ , we (A):( 4_16()
note that these are generically of opposite sign with respect B 24-4
to 8, and so have an opposite effect on the effective unifi-
cation parameters. These contributions become sizable oan’
to the extent that large moduli VEV's and large ratios A 2_10
b./b, are used, as is clearly demonstrated in the approximate (B’ ) :( 0_20) .
formula, valid for large VEV's,

A—6A
B—oB)’

equivalently,

- In order for the corrections to sifi, and a to reach an

HT+T ;bi order of magnitude higher than those found above from the
e | ° moduli-independent corrections, one needs, at least,
My=My —— (32  Tgr=Re(T)~10.

To estimate the corrections in Eqd7), one can use the B. Standardlike superstring unification scenario

approximate formulas We shall now present an extended analysis of the string
unification picture in which the coupling constant scale evo-
A ™ lution proceeds through an intermediate threshol¥atin-
Anp= B’) In(2Tg) - §TR ' duced by an anomalous(l) mechanism. A two-stage scale
evolution is considered: an initial short evolution frdvh to
where M, , described by the slope parametb&set at the values
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predicted in the orbifold models, followed by a wide scaleg?(m,)=0.127,g3(m;,)=0.425,g3(m,) =1.44, as inputs to
evolution fromM, to m; described by the minimal super- determine via Eq(33) three among the above-quoted adjust-
symmetric standard model slope parameters. The relevanhje parameters. We choose these toghe Y, M. This
formula reads choice is motivated by the fact that the dependence on these
parameters in Eq33) can be made linear by means of an

(4m)? (4m)? M A Ma . : .
—— =K, >—+Y | +2b,In—+2b;In— obvious change of variables. The solutions @gr, Y, M,
ga(M) gX MA MX

are determined as a function of the remaining free param-
+A<am>(-|-,f)_ (33  eters, namelyT andk;, and the sets of slope parameters,
. b%, b.. For a solution to be acceptable it must comply with
We regard the five parametersgy, ki, T, Y=Yy the perturbation theory constraints tlggtandY be of order
+Y,M,), which enter explicitly Eq(33), as adjustable pa- unity and with the obvious inequalities between scales,
rameters. Note thaMy has a fixed linear dependence on M,/My<1, Mc/My<1, which we shall eventually supple-
gx which is specified by Eq(3). The moduli-independent ment by the inequalityM ,/M <1, reflecting the assump-
contribution has been incorporated here through the levekion that the mechanism inducing the scMe, is a conse-
dependent componektY only. Thus, we sef=0. Incor- quence of compactification.
poration of the slope-dependent componenb,A could be \ve shall present the results of numerical applications only
ach!eve_d by modifying the relatloqsh|p between the strlngror case Ain Table IIl, setting, = (—11,—1,3), correspond-
unle:atlon O?7caIeA/2 and CﬁUp“ng co.?.sta_nt, us:nging to the minimal supersymmetric standard model,
My=>5.27x10"gxe™" GeV. The compactification scale bi=(-71.5-18-9), as obtained from Table Ill, and

Mc can be tentatively identified in order of magnitude with ¢ . .
the average of the inverse radii of the 6D torus periods b)pa_(18’8’6)’505_7’ where the choice of slope and Green-

writing Schwarz parametets,=3b.", 55= ;85 for the moduli-
dependent threshold corrections is based on the solutions re-

27 Mg Cqp\*? 2\/60rb|\/|)< ported in Ref[36] (see also Ref[78]). Regardingk; as a
Mc=gm =5 |7 = T (34  free parameter when this is predicted to be 11/3 and includ-

ing moduli-dependent threshold corrections in a caseh

whereR=21r, the average circumference, and the averag@S theZs orbifold) where these are absent is certainly liable
moduli  field VEV's (T)=T are related as {0 criticism. It may also be objected that sinkg and M,
T=CypR¥ ' (212, with C,y;, a calculable constant of or- take fixed values once one chooses a given orbifold model, it
der unity[71], determined by the requirement that the targetiS not justified to consider these as free parameters. The an-
space duality transformation acts like—1/T. For the swer is that we are really studying here a class of models
simple T torus, C,,=1, while for, say, theZ; orbifold, having similar characteristics with respect to the massless
Con=13/4. One concludes from Eq.(34) that Spectrum. The dramatic rise in the number of solutions for
Mc/My=11T. orbifold models involving two or three Wilson [ing35,79

A rough order of magnitude estimate for the anomalougnay be invoked as a plausibility argument to justify some
U(1) Higgs mechanism scaM , can be obtained by impos- freedom in choosing the hypercharge and the anomalous
ing the condition of a vanishinB-term scalar potentigs9]  gauge coupling constant normalizations. Further, since the
—Dalga=32,Q%| |2+ gxCalda’ Kk, for a group factor type of orbifold model appears to have a marginal influence
Ua(1) distinguished by the inde&. We recall that the tri- 0n the size of threshold corrections, as we have concluded in
angle anomaly coefficientc, is defined as [19] Sec. Il, we hope that these shortcomings do not affect the
48m2ca=Tr(Q,)=4Tr(Q3), where the traces extend over consistency of our procedure.
the massless modes. This enters the Green-Schwarz counter-Our main purpose is to explain the nontrivial interplay
term through the substitution for the dilaton field, between the various parameters which are most significant
S+S—S+S+c,Va, whose function is to cancel the vari- for string phenomenology. Choosing the particular subset
ous Uy(1) group factor(gauge and gravitationakriangle kl,T as our free parameters while adjusting the others
anomalies by assigning to the gauge vector and dilaton chirgly,M 4 ,gx) to the inputsga(mi) (a=3,2,1) is only a tech-
supermultiplet  fields  the  transformation  laws nical convenience. Let us first discuss some qualitative fea-
Va—Va—Ap—AL, S—>S+caAs. The predicted magni- tures of the solutions and, in particular, the correlations
tude for the scale is among the parameters. The dependencd @amd gy shows
clearly that any change igx can be compensated by a nega-

1/2
M a=( ) — Me gx|  9xTr(Qa) (35  five contribution toY. A decrease ok, widens the distance
A V8w 2|  19272Qka between the quantitiegifk,) ~* and so can be compensated

by decreasing/l /My or gy . Finally, because the functional
Using tentatively for the model-dependent ratio the estimatelependence oM, andgy in Eg. (33) involves a logarithm
—Tr(Qa)/(Qaavka)=10, one obtainsM,=1.2932x 10"  of these quantities, one expects a strong sensitivity of the
GeV, which indicates tha¥l , should be of the same order of parameters on the inputs.
magnitude ad . The results are displayed in Fig. 2. These represent a con-
We use the known experimental values of the gauge couinous two-parameterk(,T) family of solutions forgy, Y,
pling constants at the Z-boson mass, namely, M, consistent with a high energy extrapolation of the gauge
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FIG. 2. One loop renormalization group analysis of superstring unification parameters based on high energy extrapolation of the gauge
coupling constants starting from their experimental valueszat The solutions for-Y (@), M5/My (b), andgy (c) are plotted as a function
of k; for a discrete set of values of the moduli VEV=1 (solid line), 10 (long-dashed—short-double-dashed )jri5 (long-dashed—short-
dashed ling 20 (dash-dotted ling 30 (dashed ling The slope discontinuities exibited btyln (a) arise because of the changes of sign of
Y in this semilogarithmic plot(For the T=30 curve, Y>0) We display in(d) graphs of the gauge coupling conste[rzltw/ga a
(a=3,2,1)] variation with renormalization scale for the particular solution characterized by the \gla€s6, T= 20, yielding the solution
Y=—-114,M,/My=0.38, gx=0.63.

COUP“”Q constants joining roughly at the common value_ys 103, independently off andk,. These arise through
4/ g2k,=25. The physical constraints of gx, M, select  an obvious compensation effect of the moduli-independent
a reduced domain for the free parametese (1.4,1.8),  corrections withgy, as is apparent in E¢33). Although the
Te(1,30). The variations with respect to these parametery, component ofY remains uncalculated so far, it appears
are monotonic. For fixed, increasing, leads to a rapidly unlikely that this can much exceed the componénwhich
(algebraically increasingY from large negative to positive was evaluated in Sec. IV to be 6f(1). Infact, since a large
values and to less rapidly increasiht, /My andgy . Strong Y is only possible for a strongly coupled string theory in-
variations are also found for the dependence. However, as volving a largegy , the above must be regarded as an incon-
T increases past~25, Y becomes positive and nearly in- sistent class of solutiongHowever, because the generic de-
dependent ofk,. The values ofk; on the lower side, pendence on coupling constant of nonperturbative effects is
k;<1.4, are excluded by the constraints rand those on €xpected fo be less suppressed in string theory than in field
the higher side,k;>1.8, by the constraints omy and theory [29], e 9% versuse 4M%9%, one could possibly
Ma/My. achieve largeY ; with not too largegy .) In the following, we

A wide class of solutions occurs witlyy<<l and shall restrict ourselves to the conventional framework where
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one assumes a smooth connection between string theory agdalitatively the character of solutions. One concludes there-
its low energy limit and hence retains the constraintsfore that the cases involving negative slope paramehérs
gx~1,|Y|~10. with large absolute valueicher matter spectjawhich are

Examining the variation of the solutions wit in Figs.  generic in orbifold model building, are more favorable for
2(a)—2(c), we see that these are very rapid, especially that ofinification. B
Y. The conditionY~1 can be satisfied only through a very ~ The choice ofb,=b.—k,dgs is also quite sensitive.
careful fine-tuning ok, for fixed T or of T for fixedk;. This  Rather than performing an exhaustive study we have consid-
is possible only in cases wheYechanges sign in the relevant ered two other cases obtained from REF6] and further
intervals of k;,T. The moduli-dependent corrections are motivated in Ref[78]. Applying the above procedure of so-
quite essential to achieve a high energy extrapolation considution for these cases, we found a significantly worsened
tent with superstring unification. Incorporating the thresholdpicture. The first case, characterized ty=(7.5,2.5,1.50),

M provides solutions with reduced. The constraints on  dgs=2.5, admits solutions only for large values ©f>30

Y andgy require 15<T<30 and 1.5k;<1.8. Incorporat- and correspondingly largk,>1.8. It improves slightly if
ing the constraintM,/My<1 restricts this interval to reduced values are used for the slopgs The second case,
1.5<k;<1.7. (Narrower intervals would be imposed if one characterized by,=(—4.67,45), dgs=6, admits no solu-
also sets lower bounds, sayMa/My>10"! and tions at all, mainly on account of an incompatibity between
gx>10"1)) If one takes into account the additional con-the constraints ofY andM /My . One concludes therefore
straintM ,/M <1, this would lead to the stronger bound, that negative or small values for tiN=2 slope parameters
Ma/My=Ma/McT<1/\T, which would select the nar- ' do not constitute a favorable option.

rower interval 1.5°k;<1.6. _ Having focused so far on standardlike compactification

For concreteness, we show in FigdPthe scale evolution  models, we briefly discuss the other two possible classes of
of the gauge coupling constants for one particular solution agyperstring models. The first refers to compactification mod-
determined by the above procedure. One should not be digjs with grand unified groups $6) [43] or SO(10) [65] [up
turbed by the large value ¢¥| used here, since the nearby to extra U1) factorg, with a flipped assignment for the mat-
solution determined with a carefully tuned valuekafor T ter fields with respect to the standard GUT basis or with a
So as to givey ~1 would yield nearly identical flows for the regular GUT assignment involving higher affine levéds; 1
gauge coupling constants. This figure illustrates one of thg80]. A perturbative weak coupling scenario assuming a
characteristic implications of string unification, namely, thatsmooth evolution fromM gyt to My can be analyzed in the
the simultaneous equality at some scale of the extrapolateﬁanrler described above either by setting the parameters
coupling constants has no special significance. The picturg b, andY at values specified by the models or by
depicted in Fig. &) is rather generic. The most favorable imposing appropriate constraints on them. It should not be
situation corresponds then to an approximate joining of thejifficult to obtain satisfactory solutions fay, and M, by
coupling constants flows at a large scale nearl8'° GeV,  following a procedure similar to that used above. An alter-
which is to be identified with the anomalousy(1) scale  native strong coupling scenario could also be envisagsH
M, associated with the decoupling of the extra quarks off the slope bg takes a large(gauge-dominatedpositive
leptons modes. In the string unification picture, the joiningyalue andgy is large so as to lead to GUT group with
scaleM, can be made larger thallgyr because of the renormalization group invariant scale comparable to the
sl[ghtly reduced normalization of the hypercha}rge group Cou'string scaleAg= M>/<878w2kGIng’x2. Although such a sce-
pling C(.)nst.ant and of the spread (.)f the coupling constants Hario forbids a smooth connection from string theory to the
Mx .Wh'Ch is related to the moduli-dependent threshold CONow energy field theory, it still provides a prediction for the
rections. : L . GUT scale, namelyM g r=Ag.

Let us comment briefly on the sensitivity of the sqlutlons The second class of compactification models corresponds
to the slope pa;ameterEOur. procedure would (,)bV'OUSIV to intermediate unification on a semisimple electroweak
break down forb;~b,, as this would make the linear sys- g5 ,ge group. One interesting example is case C in Table I
teAm of quatlons, Ec(.SB}, singular] The §Iope parameters \yhere  the gauge symmetry at compactification,
b, determine the varlatlon gf'the coupling constants fromSU(3)c>< SU(3),XU(1)p., breaks down to the standard
My to.MA. The choice ofb} is cgrrelgted to that of the model group at an a?mmalous(l) scale according to
moduli-dependent slope parametéts since the latter de- gy3) x U(1)p,—SU(2), X U(1)y, whereY=Tg,+ Pa/3.

spread aM . Consider first the case of fix il . Increasing - L
T implies r:wider spread of the couplingé%onstantH parameterk(P3)= 3. This implies a normalization of the
28

which should therefore be compensated by larger slbjes hypercharge coupling constant such that=1+ 7= 57.
in order to catch up with the extrapolated coupling constanté\lthough this falls well below the favorable interval &f

up to 10° GeV. Rather than showing new plots, we only values specified above, it is nevertheless interesting that the
mention here that if one performs a uniform reduction of thesituation for case C is exactly opposite to that found above
slopesb{;\ by, say, a factor 2, the solutions would rule out thefor case A. However, as already discussed in the Introduc-
entire domain ink;,T except for a narrow region around tion, although one can derive a boukg=3 for minimal
T=15,k;=1.7. Conversely, enhancing the sIo;bJ@sby, say, standard-like models, this is evaded #yx Z,, orbifolds or

a factor 2 ameliorates the initial picture without changingfor Zy orbifolds with Wilson lined56-58. As we have just
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demonstrated, intermediate unification of hypercharge in a In order for the large value of the predicted string unifi-
non-Abelian group factor provides a further viable option. cation scaleMy not to conflict with observations, one needs
both moduli-dependent threshold correctiomgth associ-
V. CONCLUSIONS ated compactification scaM c/My=1/T~0.3) as well as

o | fi h btained i . K a weak hypercharge group level parameter varying in the
ur results confirm those obtained In previous WOrkSy ..oy interval k,=1.4-1.7. The information that the

[31,49 and extend these with new predictions covering amoduli-independent correctior are 1-10 is useful in pro-

large sample of orbifold cases. The modull-lndependen{/idmg stronger correlations among the parameters relevant

components of the threshold corrections are positive and qfo string phenomenology. Postulating an anomalo$) U

typical size 8,/47w~ 1, which is therefore quite comparable mechanism at a scale 8M,/My<1 significantly eases

to those for gauge.ﬂeld theories In spite of the fact that Irm'the above constraints on slope parameters while raising the
nitely many massive states are integrated out for supe

. We find thais i " h 'bound on the allowed values bf . The resulting picture is
strings. We find thab, are nearly insensitive to the gauge i mediate between a delayed joining of the coupling con-
group embedding and to the discrete Wilson lines, but thagtant flows, due to the smaller valuelaf, and of a contin-
they increase with the point group order of g orbifolds, ' !

hi di i | h ued flow beyond crossing, consistent with the moduli-
roughly according to a linear power la@~N. The tWo- — gapendent threshold corrections. Our analysis emphasizes
parameter decompositiof,= —b,  “A+k,Y, suggested in

. . o ) : the need of constructing orbifold models combining the
previous investigation§45], fits very well theZ; orbifold property of a low value for the hypercharge group level pa-
models, with the prediction2d=0.068, Y=3.3, indepen-

¢ ; i rameter along with the usual desirable features, namely, three
dently of the embedding of the point and space groups in thepirg| families, low rank gauge group, aht=2 subsectors.
gauge group, but has a restricted applicability for the higher

order orbifoldsZ; as well as the nonprime ones. Combining
pairwise the various observable group factors, one still finds
for the nonprime orbifolds certain regularities, with the fol-  Service de Physique Thaque is Laboratoire de la Direc-
lowing domains of variations for the parametes:—0.6 to  tion des Sciences de la Matiedu Commissariat BEnergie
+0.2,Y=50-10. Atomique.
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