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Threshold corrections in orbifold models and superstring unification of gauge interactions
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The string one loop renormalization of the gauge coupling constants is examined in Abelian orbifold models.
The contributions to string threshold corrections independent of the compactification moduli fields are evalu-
ated numerically for several representative examples of orbifold models. We consider cases with standard and
nonstandard embeddings as well as cases with discrete Wilson line background fields which match reasonably
well with low energy phenomenology. The gap separating the observed grand unification scale
MGUT.231016 GeV from the string unification scaleMX.531017 GeV is discussed on the basis of stan-
dardlike orbifold models. We examine one loop gauge coupling constant unification in a description incorpo-
rating the combined effects of moduli-dependent and -independent threshold corrections, an adjustable affine
level for the hypercharge group factor, and a large mass threshold associated with an anomalous U~1! mecha-
nism.

PACS number~s!: 12.10.Kt, 11.10.Hi, 11.25.Mj
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I. INTRODUCTION

The idea that particle physics at the Fermi scale desce
from string physics at the Planck scale has gained increa
credibility since the proposal in 1985 to compactify th
anomaly-free E83E88 heterotic string on a six-dimensiona
~6D! Calabi-Yau manifold@1#. Indeed, the circumstancia
evidence gathered from the precision tests of the electrow
interaction@2,3#, the high energy unification of the standa
model gauge interactions@4#, and the implications of a heavy
top quark @5# have given faith in the supersymmetric~as
opposed to the composite! Higgs boson option as a viabl
extension of the standard model of electroweak interactio
On the other hand, the highly selective search of a semir
istic 4D superstring model, within the Calabi-Yau@6,7#, the
orbifold @8,9#, or the free fermionic@10,11# approaches,
which realizes the standard model as its low energy limit,
been well rewarded. It may well be that a realistic mod
becomes soon reachable through what has been term
discrete fine-tuning@12# among the simplest classes of fre
orbifold @13#, fermionic @14#, or N52 direct product@15#
superconformal field theories. The main reason, however,
the interest in a superstring-inspiredN51 supergravity lies
in the remarkable organizational principle that string theo
provides in constructing the basic~Kähler metric, superpo-
tential, gauge functions! components of the effective locally
supersymmetrics model @16#.

String theory does not only explain the gravitationa
gauge, and Yukawa interactions, it also makes simple defi
predictions about their classical level unification at the str
scale@17#. The low energy field theory action, obtained b
integrating out the massive string modes, is described by
infinite series expansion in powers of the inverse string sc
which is the unique free parameter of string theory. The
fective Lagrangian comprises local interactions of increas
dimensionalities involving the gravitational, gauge, matt
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and moduli supermultiplet fields, subject to the strong con
straints imposed by supersymmetry@18#, gauge~world sheet!
symmetries@19#, global~compactification space! symmetries
@20#, and modular~string duality! symmetries@21#. As to the
nontrivial quantum level of string theory, this is intimately
related with the mechanisms which determine the vacuum
expectation values~VEV’s! of the ~flat potential! moduli
fields. As is well known, the expansion parameters which
control the quantum string topological ands model pertur-
bation theories are themselves identified with the invers
VEV’s of the external spacetimeS-dilaton field and the in-
ternal spacetime overallT-dilaton modulus@22#. Further, to
fully fix the entire set of coupling constants entering the
effectives model Lagrangian, one must postulate perturba
tive or nonperturbative~such as, for instance, hidden sector
gaugino condensation inducing spontaneous local supersym
metry breaking! mechanisms in order to stabilize the various
moduli fields which parametrize the continuous families of
string vacua. Fortunately, exact statements can still be mad
for certain terms in the superpotential and gauge function
which are protected by perturbative nonrenormalization
theorems resulting from characteristic holomorphicity prop-
erties of superstring theory@23,24#. Also, certain semiclassi-
cal nonperturbative effects, such as thes model world sheet
instantons@25#, are usefully constrained through the modular
symmetries@26#.

One of the most serious challenges for superstring phe
nomenology is theS-dilaton VEV problem. The argument,
spelled out some time ago@27,28#, that this is likely to settle
at intermediate values inducing a strongly coupled string
theory, seems to upset, on phenomenological grounds, th
attractive proposal that the observed high energy extrapola
tion of the standard model gauge coupling constants reflec
a perturbative string unification. A related difficulty resides
in the order of magnitude mismatch between the observe
unification scale and the string scale@4#. The general hope,
of course, is that these problems could be surmounted by th
variety of mechanisms that string theory reserves in stock.
is significant, however, that the various anticipated effect
3920 © 1996 The American Physical Society
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which might influence the quantum string vacuum@threshold
corrections,S-T dilatons mixing, anomalous U~1! group fac-
tor, strongly anisotropic compactification space@29#, etc.#
have all in common a sensitivity to the string loop contrib
tions.

One of the first attempts to deal with the string loop reno
malization of the gauge coupling constants was underta
by Minahan@30#. Evaluating the one string loop contributio
to the three-point correlator of the gauge boson vertex ope
tors in orbifold models and taking a suitable limit of larg
string and compactification scales enabled him to identify
familar (b function! logarithmic divergence which renormal
izes the gauge coupling constant. As is well known, t
string loop perturbation theory is ultraviolet finite, and so t
only source of divergences in need of renormalization sho
be those originating in the infrared cutoff which is intro
duced to separate the massless from the massive s
modes. The first systematic discussion of the low ene
matching of string theory to field theory was provided b
Kaplunovsky@31#, using the effective world sheets model
background field approach@32#. Based on a specific regular
ization procedure in string theory which parallels the co
ventional Pauli-Villars field theory regularization, he ident
fied two additive contributions to the renormalization of th
inverse squared gauge coupling constants, the so-ca
string threshold corrections: a universal correction, asso
ated with ~back-reaction! gravitational effects and string
scale massive oscillator modes, and a genuine compacti
tion correction, associated with compactification scale m
sive string modes. The latter correction contains, along w
a moduli-independent component (D-term masses!, a
moduli-dependent component (F-term masses! which plays
a crucial role in the mechanism of cancellation of thes
model anomalies affecting the modular symmetries at
level of the supergravity effective action@33–37#. Because
the moduli-dependent component arises from theN52
spacetime supersymmetric subspaces of the Hilbert spac
states only, general results about its structure can be infe
by using the highly constrained framework of the (2,2
world sheet superconformal theories@38#.

Our main interest in the first half of this paper will b
focused on the moduli-independent threshold correctio
which we shall analyze on the basis of the Kaplunovs
formula @31#. It is appropriate to mention at this point tha
regarding, as we do, the compactification and the univer
back-reaction effects as separate corrections may prove
ficial and unjustified. Clearly, the problem resides in the d
pendence on the infrared regularization scheme. This ob
vation has recently guided a proposal by Kiritsis an
Kounnas@39,40# to implement a consistent string infrare
cutoff by working with a curved~rather than flat! external
spacetime superconformal field theory@41#. The formalism
developed in@40# generalizes that of Kaplunovsky@31# and
suggests that the universal back-reaction correction, ass
ated with the various background fields, is indeed entang
with the moduli-independent compactification correctio
The second half of the present paper will be devoted to
phenomenological discussion of the standard model ga
coupling constants unification. To set the stage for these
plications, we shall expose in the following in a more co
crete way the main physical motivations for undertakin
u-
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these studies in the present context.
In superstring unification, as in grand unification theory

~GUT!, the high energy extrapolation of the standard model
renormalized gauge coupling constants is described by a on
loop scale evolution of familiar form:

~4p!2

ga
2~m!

5
~4p!2ka

gX
2 12ba ln

m

MX
1D̃a~Mi ,M̄ i !. ~1!

The indexa53,2,1 labels the SU(3)3SU~2!3U~1! group
factors Ga , ba are the b function slope parameters
associated with the low energy modes,ba(g)
52baga

3/(4p)21•••), andMi ,M̄ i are the compactification
moduli fields. The superstring case is, however, distin-
guished by three important features@31#.

~i! Tree level relations@17# involving the gauge and gravi-
tational interactions:

gX
25kaga

25
4k2

a8
5

32p

a8MP
2 . ~2!

In addition to the string theory expansion parametergX ~or
4D dilaton VEV ^S&51/gX

2) which is specified by the ratio
of the string mass scaleMS52/Aa8 to the phenomenologi-
cal Planck massMP5A8p/k51.2231019GeV, as exhibited
in Eq. ~2!, three extra free@positive integers for non-Abelian
group factors and positive rational numbers for Abelian U~1!
factors# parameterska are introduced into Eq.~2!, corre-
sponding to the levels of the affine Lie algebras for the gauge
group factorsGa in the underlying string theory.

~ii ! An improved unification scaleMX defined in Eq.~1!
as the matching scale between the field and string theorie
renormalized coupling constants at which these obey mos
closely the tree level relations, Eq.~2!. For the field theory
coupling constants in the dimensional reduction with modi-
fied minimal subtractionDR regularization scheme@42#, one
has@31#

MX5
e~12g!/2

4pA4 27
gXMP5

e~12g!/2

A2p A4 27
MS

.gX5.2731017 GeV. ~3!

The field theory~FT! convention in use here is related to the
string theory~ST! one asga

FT5A2gaST, corresponding to the
normalization of the Lie algebra generators, TrR(Qa

2)

5 1
2 c(R), wherec(R)5 l (R) is the Dynkin index of repre-

sentationR.
~iii ! Threshold corrections accounting for the contribu-

tions of the infinite set of massive string states at the string
(MS) and compactification (MC) scales, integrated out by
matching the field and string theory scattering amplitudes.
These corrections are represented in Eq.~1! by the functions
D̃a(Mi ,M̄ i) depending upon the structure of the string mass
spectrum and the other characteristic parameters of the com
pactified space manifold, such as the VEV’s of the compac-
tification moduli fields,Mi5Ti ,Ui @33#. Specifically,MX is
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3922 53M. CHEMTOB
defined as the choice of scale which minimizes the thresh
corrections contributions. Of course, the perturbative char
ter of formula~1! implies that the size ofD̃a should be com-
parable to that of two-loop effects, so thatD̃a;1.

For a quantitative test of superstring unification based
Eq. ~1! and for a proper identification of the fundament
parametersMX and gX , it is essential to understand th
structure and size of threshold corrections. Thus, an addi
decomposition such as described by the following ansa
D̃a5kaY2baD, may be exploited to introduce an effectiv
unification scale and coupling constant,

MX→MX85MXe
D/2, gX→gX85

gX

S 11
YgX

2

~4p!2
D 1/2 , ~4!

so defined as to incorporate the contributions from the ab
two componentsY andD.

The toroidal compactification orbifold models prove ve
helpful in obtaining information onD̃a . The contributions
from compactification modes admit here a natural addit
decomposition into a moduli-dependent component aris
from the chiral massF terms and a moduli-independent com
ponent arising from the vector massD terms@34#. As is well
known, the moduli-dependent contributions play an essen
role in the cancellation ofs model anomalies affecting the
target space duality symmetry@36#. These can be represente
by general formulas involving the automorphic functions
the compactication manifold accompanied by mod
dependent coefficients. On the other hand, the mod
independent contributions carry only an implicit dependen
on the compactification manifold and on the gauge gro
embedding of its point and space~discrete Wilson lines!
symmetry groups. In spite of several attempts in the lite
ture to estimate numerically the size of both components
threshold corrections@31,43–46# ~orbifold models@31,45#,
fermionic heterotic@43,44#, and type II@46# models!, one is
still lacking a clear physical understanding of their magn
tude. Our main goal in this paper is to present results for
moduli-independent threshold corrections through an ext
sive numerical study based on a sample of orbifold mode
A recent work by Dienes and Faraggi@47,48#, which ap-
peared while the present paper was being completed, pur
a similar goal to ours based on the fermionic models.

The main physical motivation for this paper is, howeve
the wide gap that separates the improved string unificat
scaleMX50.216MS.531017 GeV, assuminggX;1, from
the observed grand unification scale,MGUT.231016 GeV,
as determined by extrapolating the gauge coupling consta
up from their experimentally determined values at t
Z-boson mass@4#. The implications of this order of magni
tude discrepancy in scales have been emphasized on se
occasions@12,49#. The conflict for superstring unification
can be resolved in three different ways. One can, of cou
always postulate the existence of low energy (103 GeV!,
intermediate energy (1010–1013 GeV!, or string scale energy
matter thresholds entering as vector representations of
color and/or of the electroweak interactions groups. As w
discussed within specific superstring models in Re
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@47,48,50# and in a model-independent way in Refs.
@51,10,52#, such additional multiplets must be very few
(<2) in number. In the semirealistic orbifold models@8,9#
also, the extra chiral-antichiral generations get reduced
very small numbers, once the anomalous U~1!-breaking
mechanism is turned on. The second possibility is to postu
late @53# large string threshold corrections such that afte
becoming equal and joining together at the observed sca
MGUT, the gauge coupling constants follow diverging flows
up toMX . A matching of the one loop extrapolated values o
ga(MX) with their predicted values, as obtained by adjusting
the moduli-dependent threshold corrections, can be succe
fully achieved in terms of wide classes of solutions for the
modular weights of massless modes consistent with th
anomaly cancellation constraints@36,53#. The third and final
possibility is to postulate@54# an affine level parameter for
the weak hypercharge group U~1!Y somewhat lower than the

standard grand unification group valuek15
5
3 . With such an

enhanced starting value for@k1a1
2(mZ)#

21 one achieves a
delayed joining of the gauge coupling constants flows whic
can easily raise up the unification scale by one order of ma
nitude. While either of the last two possibilities is well mo-
tivated by itself and appears sufficient to rescue a superstrin
grand desert scenario, there remains certain unsatisfacto
points. Thus, the rather large VEV’s for the moduli fields
requested in the first possibility,^T&510–30, induce an or-
der of magnitude gap between the compactification an
string scales that might harm the consistency of a weak
coupled superstring~cf. next paragraph!. These VEV’s are
also much larger than the values (^T&.2) favored on the
basis of the gaugino condensation models for broken loc
supersymmetry@55#. On the other hand, no known semireal-
istic orbifold examples of low~point group! order @9# seem
to exist for which the hypercharge group level paramete
comes as low as the valuek1.1.4 favored in the third pos-
sibility. A simple argument is developed by Dienes and
Faraggi in Refs.@47,48# which shows that for any~orbifold
or fermionic! model which realizes a direct compactification
to the standard model group with the low energy quark
lepton spectrum, requiring a correctly normalized hyper
charge imposes the boundk1>5/3. The preceding bound
can, however, be evaded by considering suitable simple e
tensions of theZN abelian orbifolds@56–58#. Thus, as dem-
onstrated in@56#, for theZN3ZM orbifold models, the con-
straints from the standard model spectrum tolerate wid
intervals of variations,k1'1–2. The AbelianZN orbifolds
with Wilson lines can also evade the above bound, as exem
plified in @57#, where a semirealisticZ8-I orbifold standard
model is constructed which hask1561/384.

A generic feature of standardlike orbifold models is the
occurrence of a rich spectrum of charged massless mod
appearing on side of the requested~quark and lepton! chiral
families in vector representations of the color and wea
groups. In fact, the matter representations of the observab
sectors group factors are generally sizable enough so that
correspondingb function parametersba arise with either
small negative values or large positive values. This sugges
that a first stage of slow or nonasymptotically free scale evo
lution may well take place fromMX down to some scale
where the extra modes pair up by acquiring mass and d
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couple. As is well known@27,28#, in order for the 4D low
energy effective theory to be weakly coupled, so as not
invalidate the use of Eq. ~1! (gX'gdMC

3,1, gd
510-dimensional gauge coupling constant!, and in order to
avoid dealing with a strongly coupled 10D theor
(gdMS

3,1), one must require that the compactification an
unification scales retain a magnitude comparable to the str
scale,MX.MC.MS . The second restriction can be relaxe
by allowing, for instance, for an anisotropic compactificatio
manifold ~large radius in one out of the six compactifie
dimensions! in which a weakly coupled effective theory
gX&1, could remain compatible with a strongly couple
string theory~largegd) @29#. Assuming the above near equal
ity of scales, then a natural identification for the decouplin
scale of the extra matter is the mass scale, denotedMA ,
which is induced by a nonvanishing Fayet-IliopoulosD-term
contribution to some apparently anomalous U~1! group fac-
tor occurring upon compactification@59#. This suggestion is
not new, of course, and appears in several places in the s
cialized literature. The idea is to cancel the nonvanishing o
loop string contributions to theD-term scalar potential of an
apparently anomalous U~1! factor by judiciously lifting the
VEV’s of certain scalar fields while restoring a stable supe
symmetric vacuum. We shall carry out an analysis of the o
loop gauge coupling constant unification which combines t
gether the above ideas of adjustable moduli VEV’s andk1
level parameters together with that of an adjustable interm
diate scaleMA , while describing the scale evolution in the
interval from MX to MA on the basis of orbifold models
predictions.

The paper contains four sections. In Sec. II, we discuss
wide outline the basic formalism involved in the one loo
string renormalization of the gauge coupling constants
applied to orbifold models. None of the results discussed
this section is new, our main intent being to provide a co
crete, encapsulated presentation of the relevant formalism
Sec. III, we present numerical results for the modu
independent threshold corrections for a sample of repres
tative orbifold models. In Sec. IV, we examine the viabilit
of superstring unification in an extended picture includin
threshold corrections and an additional string size ener
scale associated with an anomalous U~1! symmetry. In Sec.
V, we summarize the main conclusions.

II. ONE LOOP STRING RENORMALIZATION

A. Threshold corrections to gauge coupling constants

We consider the class of low energy supersymmetric the
ries descending from 4D heterotic string theories with a no
to
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semisimple gauge group)aGa . The genus zero~unity!
world sheet~with Wick-rotated Euclidean metric! of the con-
formal field theory is a sphere~torus! parametrized by planar

coordinatesz̄5e22p i z̄, z5e2p i z, with corresponding cylin-
drical coordinates given for the sphere byz̄5s2 i t ,
z5s1 i t , sP@0,1#, tP@2`,`# and for the torus by
z5s1tt, z̄5s1 t̄t, s,tP@0,1#, where the torus modular
parameter is denoted byt5t11 i t2 . The right-moving
Ramond-Neveu-Schwarz~RNS! superstring is built with 20
spacetime and spin fieldsXm( z̄), cm( z̄) ~m50, . . . ,9!, asso-
ciated withD54 external dimensions of the flat spacetime
(m50, . . . ,3) andd2D5102D56 internal dimensions
(m54, . . . ,9) of thecompactification space manifold, rep-
resented in a complex basis asXR

i ,XR
ī , c i5eif i, c ī5e2 if i

( i51,2,3), where the complex scalar fieldsf i(z) are coor-
dinates of the SO~6! group Cartan torus. This is tensored by
a left-moving bosonic string built with 26 fieldsXm(z)
(m50, . . . ,25), comprising D external space coordinates
and 262D internal space coordinates which are distributed
into 6 compactified space coordinatesXL

i ,XL
ī and 16 gauge

coordinates of the E83E88 Cartan torusFI ,F8I (I51, . . . ,8),
generating the currentsJa(z) of the affine Lie algebrasGa of
levels ka . At certain places, we refer to these coordinates
globally asFI (I51, . . . ,16) andalso by using their fermi-
onic representation in terms of complex 2D Weyl spinors
(la,lā)5e6 iF I @ I51, . . . ,16,a51, . . . ,8#. Of course, the
above covariantly quantized string theory must be supple-
mented with the anticommuting conformal ghost fields
cz(z,z̄),bzz(z,z̄) and the commuting superconformal spinor
ghost fieldsg( z̄),bz( z̄) @60#.

The one loop string threshold corrections in the approach
of Kaplunovsky@31# are described by the general formula

D̃a[kaY01Da , Da52E
F

d2t

t2
~kaBa~q,q̄!2ba!, ~5!

where one has decomposed the total contribution, denoted
D̃a , into a universal contributionkaY0 , independent of the
gauge group factor~except for the coefficientka), arising
from the~back-reaction! gravitational interactions and oscil-
lator excitations modes, and a contribution solely due to the
massive compactification modes, denotedDa . The latter
component is expressed as a deformed partition function in-
tegrated over the inequivalent~even representations of the
modular group! complex structures of the genus 1 world
sheet, with an integrand
Ba~q,q̄!522Tr~Qs
2Qa

2qL021q̄L̄02 1/2!

52
1

2 (
even~ ā,b̄ !

F ~21!2ā12b̄
1

h2~t!h̄2~ t̄ !
2q̄

d

dq̄
S q̄F āb̄ G~ t̄ !

h̄~ t̄ !
D G2Tr@~21!2b̄FQa

2qL02 22/24q̄L̄02 9/24#, ~6!
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where the first factor represents the partition function of

external theory inserted with the operatorQs
25(2 1

121x2),
wherex denotes the 4D helicity or chirality vertex operat
and we have introduced the familiar Dedekind functi
h(t)5q1/24)n(12qn) and the Jacobi theta functio
q@ f

u #(t) whose definition is stated explicitly in Eq.~18! be-
low. The overbars stand for complex conjugation: name
q̄@ f

u #( t̄)5$q@ f
u #(t)%!, h̄( t̄)5$h(t)%!.

We have accounted in Eq.~6! for the contributions from
the ghost fields in the familiar way@16#, which simply
amounts to canceling out the determinantal factors associ
with the time and~string! longitudinal components of the
space-time and spin fields. The extra numerical factor of 2
front of the trace in Eq.~6! reflects the change from strin
theory to field theory normalization conventions for th
gauge coupling constants. The second trace factor in Eq~6!
~with F5 fermion number operator,L0 , L̄05conformal di-
mensions operators! corresponds to the partition function fo
the internal conformal field theory characterized by the c
tral charges for the (L,R) sectors (c,c̄)5(22,9), inserted
with the squareQa

2 of any one of the gauge group generato
for subgroupGa . The integral over the world sheet toru
complex modular parametert5t11 i t2 , with q5e2p i t,
q̄5e22p i t̄, extends over one modular group SL(2,Z) funda-
the

or
on
n

ly,

ated

in
g
e
.

r
en-

rs
s

mental domain, for which we consider the standard choice

F5@ ut1u<
1
2 , utu>1#. Infrared convergence of the integral,

Eq. ~5!, is ensured by the subtraction ofba5 limt2→`kaBa ,

where ba5
1
6 (a@2c(Ra

S)22c(Ra
F)111c(Ra

V)] (S5com-
plex scalar,F5Weyl or Majorana fermion,V5vector! rep-
resents the summed contributions to theb function slope
parameters from the massless string modesa belonging to
the representationRa .

The summation in Eq.~6! over the subset of even
spin structures of the right-moving sector, (ā,b̄)

5@(0,0),(0,12 ),(
1
2 ,0)# where ā,b̄505 NS(A) ~Neveu-

Schwarz, antiperiodic! or 1
25R(P) ~Ramond, periodic!, is

performed by insertion of the familiar Gliozzi-Scherk-Olive
~GSO! projection phase factors leading to the supersymmet
ric string @16,61#.

For a comparison with Eqs.~5! and ~6!, we record the
corresponding formulas for the one string loop cosmologica
constant,

L5E
F

d2t

t2
3 Z~q,q̄!,

and the partition function
Z~q,q̄!5Tr~qL021q̄L̄02 1/2!5
1

2 (
~ā,b̄ !

F ~21!2ā12b̄

q̄F āb̄ G~ t̄ !

h2~t!h̄3~ t̄ !
GTr @~21!2b̄FqL02 22/24q̄L̄02 9/24# . ~7!
-

n

ed
B. Specialization to orbifolds

To express the second internal space factor in Eq.~6! for
orbifolds, we recall first that the projection~modding! with
respect to the orbifold point symmetry is achieved by sum
ming over the~space and time! twisted subsectors (g,h) by
using @62–64#

Tr~••• !5
1

uGu(g (
h;@g,h#50

x~g,h!Trg~h••• !, ~8!

whereuGu is the orbifold point group order andx(g,h) are
degeneracy factors. For toroidal compactication, all fields a
free so that the torus partition function is obtained by ass
ciating to a complex coordinate fieldX(s,t) of given chiral-
ity, a factor 1/(pA2t2) ~flat case! or (12e2p iv)/h(t) @un-
twisted case with time twistX(s,t11)5e2p ivX(s,t)# or

h~t!/qF 121v

1

2
1v

G
@space twisted caseX(s11,t)5e2p ivX(s,t)# and to a fer-
mionic Majorana-Weyl field, obeying the twisted boundar
conditions
-

re
o-

y

c~s11,t !52e2p iu8c~s,t !,
~9!

c~s,t11!52e22p if8c~s,t !,

a fermionic determinant factor

FqF u8
f8G /h~t!G1/2.

The zero modes are associated a factorqpL
2/2q̄pR

2 /2 summed
over the winding modes spanning the compactification mani
fold lattice L6 with basis vectorsea

i and over the Kaluza-
Klein momentum modes spanning its dual latticeL! with
basis vectorsei

!a @cf. Eq. ~21! below#.
We recall next that a torusR6/L6, defined by

Xi[Xi12pnaea
i , having a point symmetry groupP of au-

tomorphisms of the latticeL6, defines an Abelian orbifold
endowed with a space symmetry groupG5P3L6. The
space group action on the string theory fields is described i
terms of rotationsuk and translationsuk, f together with their
associated gauge group shift embedding elements describ
by translations VI and Wilson lines translations
aa
I (I51, . . . ,16, a51,2,3). The space groupG5$gp%

5$bp ,wp% composition laws read g1g2
5(b1b2 ,b1w21w1), gp

215(bp
21 ,2bp

21wp). For definite-
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ness, we shall specialize henceforth to the case of an Abe
point groupP5ZN and discuss as we proceed certain of th
generalizations encountered in later applications.

The string Hilbert space of states consists of the untwist
sector (k50) and the twisted (k51, . . . ,N21) sectors. The
twisted sectorsgk are distinguished by the boundary
conditions „X(s11,t),c(s11,t)…5gk „X(s,t),
2(21)2āc(s,t)…. They are organized into conjugacy
lian
e

ed

classes of the space group with representative eleme
gk5@uk,uk, f # and their associated classes
$gk.g8gkg8215(uk,uk),g85gpPZN%, where the set of shift
vectorsuk5@upuk, f1(12uk)u# (uPL6 ,p50, . . . ,N21),
span lattice cosets~labeled by the indexf ! with representa-
tive elementsuk, f . The compactified space coordinates
Xi5XL

i 1XR
i 5xi1 iptpi12pswi1••• ~units 2a851) ad-

mit the ~zero and oscillators! modes expansion
„XL
i ~z!,XR

i ~ z̄!…5
xi

2
2

i

2
~pL

i lnz,pR
i lnz̄!1

i

2(mi

S ami

Li

mi
z2mi,

ami

Ri

mi
z̄2mi D . ~10!
e

d

In twisted sectors, the string center-of-mass coordinatesxi

are not arbitrary real parameters but rather must sat
gkx5x1ûk, f1u, (ûk, f ,uPL6). Therefore, each of thegk

twisted sectors splits into subsets which can be classified
terms of the corresponding set of fixed points of the spa
group, f (k) i , defined as ukf (k)5 f (k)1ûk, f where
ûk, f
i 5mk, f

a ea
i (ma5 integers! are translation vectors of the

6D toroidal latticeL6 determined by the condition that the
return the rotated fixed pointukf back to its original position,
so thatf5(12uk)21ûk, f1u. Specifically, thek-twisted sec-
tor fixed pointsf a

(k) are distinguished by a labela running
over the number of fixed points. The lattice vectorsûk, f iden-
tify with the lattice coset representativesuk, f introduced
above only for prime orbifolds. For simply twisted secto
isfy

in
ce

y

rs

k51 or k5N21521(modN), the fixed pointsf (k) and
conjugacy classesuk, f are in one-to-one correspondence, so
that f (k) faithfully label these classes andûk, f5uk, f . This
property holds true for all the twisted sectors in the prime
orbifoldsZ3,7. For the multiply twisted sectors, the full set of
fixed points f a

(k) decomposes into disjoint subsets
$ f A

(k) , f A8
(k) , . . . %, where the fixed points within each subset

~labeled by A! are related asupAf A
(k)5 f A8

(k)Þ f A
(k) for

pA,k, and hence are in one-to-one correspondence with th
same conjugacy classesuk, f . The cases involving nontrivial
subsets@ f A

(k)#, comprising more than one fixed point, arise
only for the nonprime (N51) orbifoldsZ4,6,8,12and for the
direct product orbifoldsZN3ZM .

The orbifold space group elements can now be expresse
as
ted by
f

gk5$uk,uk, f5mk, f
a ea ;kṼ

I5kVI1mk, f
a aa

i %,

uk5diag~u i
k!5diag~e2p ikv i ! F(

i
v i50G . ~11!

The orbifold group action on fields@Eq. ~12! below# and state vectors@Eq. ~13! below# reads, in obvious notation,

gkXL,R
i 5u i

kXL,R
i 12pmk, f

a ea
i , gkFI5FI12p~kVI1mk, f

a aa
I !, gkc i5u i

kc i , ~12!

gh@~a2ni
i !pi~a2mj

j̄ !qj # SLRD upR ,r i[a i1kv i&R^ upL ,PI[WI1kṼI&L

5e2p ikh~v•r1Ṽ•P!72p ih~ni1mj !@~a i !2ni

pi ~a j̄ !2mj

qj # SLRD upR ,r i&R^ upL ,PI&L . ~13!

The above used correspondence between Wilson line translation vectors and the noncontractible loopsuk, f refers to Abelian
orbifolds with Abelian gauge embeddings. Abelian orbifolds with non-Abelian shift gauge embeddings can be construc
extending the definition of Wilson lines to class-dependent shift vectorskṼI→Vk, f

I derived from a gauge embedding matrix o
general form@65#. Non-Abelian orbifolds with non-Abelian gauge embeddings are discussed in Ref.@66#.

The internal space oscillator operators (ani
i ,amj

j̄ )( LR) , wherei , j̄ are complex conjugate bases indices@given by the familiar

linear combinations of real basis indicesm5(11 i2)/A2,(12 i2)/A2, . . .#, enter with the moddingsniPZ7u i ,

mjPZ6u j , whereZ designates the set of integers. The translation vectorsa i5ni ,(ni1
1
2 ) @niPZ, ( iniP2Z11~odd inte-

gers!# are elements of the SO~6! group weight latticeG6 andW
I5nI , (nI1 1

2 ), @nIPZ, ( I51
8 nIP2Z ~even integers!# are
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elements of the E83E88 group weight latticeG818 . The translation vectorsv i andVI ,aa
I with respect to these lattices mus

obey Nv iPG6 , NVIPG818 , Nmaaa
I PG818 as well as the level matching~modular invariance underTN) conditions

N@(kVI1mk, f
a aa

I )22(kv i)2#P2Z.
With the above rules in hand, we can now quote the following more explicit formula derived from Eq.~6!:

Ba~q,q̄!522
1

uGu(m,n x~m,n!e~m,n!
1

2 (
even~ ā,b̄ !

F ~21!2ā12̄b̄
1

h2~t!h̄2~ t̄ !
2q̄

d

dq̄
S q̄F āb̄ G~ t̄ !

h̄~ t̄ !
D G

3 )
i51,3

F q̄F ā1mv i
b̄1nv i

G~ t̄ !

h̄~ t̄ !
G )
i51,3 F h̄~ t̄ !

q̄F 121mv i

1

2
1nv i

G ~ t̄ !

h~t!

qF 121mv i

1

2
1nv i

G ~t!G
3
1

4

1

h16~t! F (
a,b;a8,b8

h~m,n;a,b;a8,b8!)
I51

8

Qa
I2qF a1mṼI

b1nṼIG ~t!

3)
I51

8

Qa8
I2qFa81mṼI8

b81nṼI8
G ~t!GF (

L6 ,L6
!
qpL

2/2q̄pR
2 /2G , ~14!
e

-
t
s

n-

ec-

.

t

he

n

where the second and third factors, recognizable by
brackets, are contributed by the internal space coordina
and spinors, the fourth factor by the gauge coordinates,
the last~fifth! factor by the compactified space zero mode
The numerical factors appearing in denominators account
the averaging over the timelike spin structures. The cor
sponding formula for the partition functionZ(q,q̄) can be
obtained from Eq.~14! by removing the overall numerica
factor 22, the logarithmic derivative operator, 2q̄ (d/dq̄) ,
and the factors (Qa

I )2, (Qa8
I)2 from inside the internal theory

trace.

C. Classification of threshold corrections

The generalized GSO orbifold projection, which selec
the singlet states with respect to the orbifold space symme
group, is represented by the sum over the various twis
orbifold subsectors (g,h)5(m,n), performed jointly with
the sum over the spin structures~a,b!, ~a8,b8! for the fermi-
onized fields associated with the gauge degrees of freed

The summations over the twisted subsectors (g,h)
5(m,n) and the spin structures for the gauge fermions d
grees of freedom, (a,b),(a8,b8), are weighted by phase
factors e(m,n) and h(m,n;a,b;a8,b8) which are deter-
mined by the requirement thatZ(q,q̄) be invariant under the

modular SL~2, Z! group, generated byS:t→2 1
t and T:

t→t11. The elements of the set of twisted (g,h) subsec-
tors are mixed together under the action of the modu
group according to the transformation law@62,67#
t→(at1b)/(ct1d), (g,h)→(hcgd,hagb), (a,b,c,d
PZ,ad2bc51). @For ZN orbifolds,S:(m,n)→(N2n,m),
T:(m,n)→(m,m1n).# The entire set of twisted subsector
can be organized into disjoint subsets~orbits! of subsectors
which close under the modular group action. The interor
the
tes
and
s.
for
re-

l

ts
try
ted

om.

e-

lar

s

bit

phase factorsh(m,n, . . . ) arefixed uniquely by the require-
ment of modular invariance. The intraorbit~discrete torsion!
phase factorse(m,n) are independently fixed by the con-
straints derived from higher string loops modular invarianc
and unitarity @68#. These constraints definee(m,n) as the
solutions to the equations

eN~m,n!51, e~0,n!5e~N,n!51,

e~n,m!5e21~m,n!. ~15!

The additional freedom that might be present when the fac
torse(m,n) are nontrivial phases serves then to label distinc
string theories constructed from the same orbifold. Orbifold
with no (g,h) fixed 2D torus~i.e., not simultaneously fixed
by both spaceg and timeh twists! possess one modular orbit
only. Orbifolds having one simultaneous (g,h) fixed 2D
torus possess several modular orbits which are in correspo
dence with the distinctN52 suborbifolds of the initial orbi-
fold.

The multiplicity factors x(m,n)5x(g,h) count, for
twisted subsectors, the number of distinct degenerate subs
tors associated with fixed points of the orbifold point group
which are simultaneously invariant under bothg and h.
~Useful information on these factors is provided in Refs
@69–71#.! For untwisted sectors (m50), there occurs corre-
sponding nontrivial factorsx(1, h) from the projection on
oscillator states symmetric with respect to the orbifold poin
group. These can be explicitly calculated from the formula
x(1,un)5) i u22i sin(pnvi)u25udet8(12un)u, where the
product and determinant are understood to extend over t
rotated 2D tori planes.

In the presence of Wilson lines, an additional summatio
must be included over the independent Wilson linesaa sat-
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isfying the propertyukaaÞaa and over the independent non
contractible loop parameters labeled by the integersma,
spanning restricted finite intervals. The overall sum ov
twisted subsectors in Eq.~14! is then replaced as follows:
(m,n5(m(aa

(n,m
m, f
a . For the Abelian direct product orbi-

folds ZN3ZM , (M5pN, pPZ), straightforward exten-
sions of the above rules apply in which one deals with pa
of generators (u1 ,u2), shift vectors (v1 ,v2), (V1 ,V2), and
-

er

irs

twisted subsectors (g1g2 ;h1h2)5(m1m2 ;n1n2), setting the
discrete torsion phase factor in accordance with the abo
constraints, Eq.~15!, to take the discrete set of values@9,68#
e(m1m2 ;n1n2)5e2p ik(m1n22m2n1)/N (k50, . . . ,N21).

Turning to the interorbit phasesh(m,n;a,b;a8,b8), we
note that these depend, of course, on the conventions adop
for the fermionic determinants. A complex left-moving chira
~Weyl! fermion field with the spin structure prescribed by the
boundary conditions
ion.

, for

ted

rth
c~s11,t !52e2p i ~u1a!c~s,t !, c~s,t11!52e22p i ~f1b!c~s,t !, ~16!

contributes a Weyl-Dirac operator determinantal factor

detabF u
f G5 qabF u

f G~t!

h~t!
, ~17!

while the corresponding case of a right-moving chiral fermion is obtained by simply taking the complex conjugate express
The carefully chosen phase convention@68,72#

h~t!detabF u
f G5qabF u

f G~n50ut!5e2 ipu~f12b!qF a1u
b1f G~n50ut!,

qF u8
f8G~nut!5 (

nPZ
q~n1u8!2/2e2p i ~n1u8!~n1f8!, ~18!

where the equation in the second line exhibits the conventional definition for the Jacobiu function, incorporates the appro-
priate relative phases which ensure the modular invariance of the partition function. Thus, in the notation of Eq.~14!, the

interorbit phases are identified with the products of phase factors,)e2 ipu(f12b)3)e1 ipū(f̄12b̄), extending over the left- and
right-moving spinor fields. The combined extended GSO phase factor from the fermionic determinants can also be written
the bosonic representation of the gauge degrees of freedom, in the form

h~m,n;a,b,a8,b8!→D f ,m
n 5exp~2p i $nPI•ṼI2 ~1/2! mn~ṼI !22@nri•v i2 ~1/2! mn~v i !2#%!, ~19!

where we use the notation specified in Eq.~13!. Equivalently, if one were instead to substitute in Eq.~14!,

qF a1u
b1f G→qabF u

f G ,
using the definition for theu function specified by Eq.~18!, the modular invariance constraints would then take the simple
form of unit phases for the whole set of interorbit phases,h(m,n;a,b;a8,b8)51. The most direct way to establish the above
result for the extended GSO projection in orbifolds is by operating on each of the individual terms in the sum over twis
subsectors in Eq.~14! repeatedly with the modular group generatorsS,T in an appropriate order so as to span the various
orbits, until one hits back on the starting individual term. For a more elegant proof, one can follow the same steps as in@72#
involving the use of the identities relating the fermionic and bosonic representations ofu functions and of the Poisson formula
by which one transforms the summation over the compactification lattice to that over its dual. Combining in this way the fou
~gauge sector! and fifth ~zero modes! factors in Eq.~14! yields an equivalent representation for the product of these factors in
terms of a manifestly modular invariant sum over an even, self-dual~shifted! ~22,6!-dimensional Lorentzian lattice:

Z5 (
wPL6 ,pPL6

! ,WPG818

qPL
2/2q̄PR

2 /2, ~20!

PL,R5@pLm ,PI5WI1kVI1AI
mwm;pRm#, pm

L,R56Gmnw
n1

1

2
~pm2km!,

km52Bmnw
n1WIAm

I 1
1

2
AInw

nAm
I ~p25pmG

mnpn!, ~21!
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where wm5 1
2G

mn(pLn2pRn)5maea
m , pm5pLm1pRm5naem

!a (ma,na5winding and momentum modes integers!,
GmlGln5dn

m , and the basis vector norms(m(ea
m)2 identify with the compactification radii squared,r a

2 , along the various
periods of the 6D compactification torus. The background metric and antisymmetric tensor fie
(Gmn ,Bmn)5(Gab ,Bab)em

!aen
!b and the Wilson line vector fieldAm

I 5aa
I em

!a represent the generalized coupling constants of th
world sheets model of the heterotic string whose action~specialized to the superconformal gauge! is reproduced below, for
definiteness:

S52
1

4pa8
E E dsdt$Ahhab~]aX

m]bX
n1 i c̄R

mra¹bcR
n !Gmn~X!

1eab@]aX
m]bX

nBmn~X!1]aXL
m]bFIAm

I ~X!#2a8AhR~2!D~X!%, ~22!
u

d

t

s
s
l
d

h
e

where ¹acn5]acn1Vlm
n ]aX

lcm (V5 generalized spin
connection with respect to the metric and torsion tenso!

and D(X)52 1
2 lnS(X) denotes the dilaton field. Thes

model background fields in orbifolds, as in toroidal man
folds, areX-independent constants, due to the vanishing c
vature tensor.

The charge generatorsQa in Eq. ~6! identify with the zero
mode components of the Lie algebraGa gauge current vertex
operators,Qa5Ja

0[*(d2z/2p i )Ja(z). The allowed currents
are chosen among the linear combinations of the vertex

erators $ i ]FI(z),eiPIF
I (z)%, invariant under the orbifold

group. Any choice of componentQa
a @a51, . . . ,dim(Ga)#

is admissible since all the components squaredQa
a2 contrib-

ute equally to the trace over string states. It is easiest to w
with the Cartan subalgebra generators because of the sim
structure of their representation as linear combinations of
momentum operators,Qa5QaI*(d

2z/2p i ) i ]FI , with coef-
ficients QaI such that Qai5( IQaIEi

I @Ei
I ,EI

! i

( i51, . . . ,16) are themoving orthogonal frames basis an
its dual for theG818 torus# represent the directions~flat com-
ponents! in the E83E88 weight lattice invariant with respec
to the orbifold group subject to the invariance constrain
QaIV

I , QaIab
I PZ. The weight lattice vector components rep

resenting the eigenvalues of the Cartan subalgebra opera
Qa

a @a51, . . . ,rank(G)#, for the momentum eigenstate
uPI5WI1kṼI&, are given by the scalar product
$Qa

a
•P5QaI

a PI%. These relations can be used to explicit
determine theQaI , their absolute normalization being fixe
by reference to the normalization condition Tr(QaQb)

5 1
2 c(R)dab for the associated matrices.
For non-Abelian subgroup factors, the gauge group s

embedding case, to which we have limited our consid
ations here, always leads to unit levelska51. For Abelian
subgroups, the parameterska , which are still called levels
for convenience of language, depend on the normalization
the corresponding charge operatorsQa and specified by@9#
ka52( I(Qa

I )2.
The insertion of the charge squared operators is accoun

for, in the notations introduced in Eq.~14!, by replacing the
u function factors~denotedq I for short! by modified ones
using the rule
rs

i-
r-

op-

ork
pler
the

ts
-
tors,

y

ift
r-

of

ted

)
I

q IQa
I2→ (

IÞJ51

8

Qa
I Qa

Jq I8qJ8 )
KÞI ,J

qK

1(
I51

8

~Qa
I !2q I9)

KÞI
qK , ~23!

where the primed and double-primedu functions are defined
in terms of the sum representation given in Eq.~18! by in-
serting linear and quadratic powers of the lattice momenta
according to the prescriptions

q I5(
PI

qP
I2/2, q8I5(

PI
PIqP

I2/2,

q9I52q
d

dq
q I5(

PI
PI2qP

I2/2, ~24!

using self-evident shorthand notation. More directly,
using the dependence on the variablen exhibited in
Eq. ~18!, one can write (q8I ,q9I )(nut)
5„]/](2p in),]2/](2p in)2…q I(nut). Note that the precise
definition of the 4D chirality operator, introduced after Eq.
~6!, reads, in this notation,

x252q
d

dq
ln

q

h
1

1

12
51

1

12
1

q9

q
12(

n51

`
nqn

12qn
.

The rules in Eqs.~23! and ~24! follow directly from a con-
sideration of the bosonic representation of the partition func-
tion, as described above in the paragraph preceding Eq.~21!.

One expects that the solution for the phases
h(m,n;a,b;a8,b8) yielding a modular invariant partition
functionZ(q,q̄) should also automatically make the product
t2Ba(q,q̄) modular invariant. This result is indeed true, al-
though the way it is achieved is rather subtle. As discussed in
detail by Dienes and Faraggi@48#, the contributions arising
from the square terms (Qa

I )2 in Eq. ~23! introduce modular
symmetry-breaking terms via the double primed quantities
q I

9 . These left-moving sector modular anomaly terms are,
however, precisely canceled by corresponding right-moving
sector modular anomaly terms arising from the helicity
charge operator squaredQs

2 .
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Turning now to the threshold corrections as calculat
from Eq. ~14!, we note that theDa have a natural additive
decomposition in terms of moduli-dependent an
-independent contributions which we associate with the fi
and second terms in the formula

Da~M ,M̄ !5da1Da
~m!~M ,M̄ !.

This separation arises when one classifies contributions
cording to the numberN54,2,1 of space-time supersymme
tries which are realized in terms of disjoint subspaces of t
Hilbert space of states@33#. There exists a one-to-one corre
spondence between the supersymmetry irreducible repres
tation spaces and the spaces of states of suborbifolds wh
are constructed from subgroups of the full point symmet
group, themselves identified with the modular orbits. Th
N54,2,1 supersymmetries are then associated with the s
orbifolds leaving fixed 3, 1, or 0 2D tori, respectively. Th
N54 supersymmetric subsector arises from the purely tor
dal, trivial orbit, (g,h)5(1,1), which is clearly absent in
d

d
st

ac-
-
e

en-
ich
y
e
ub-

i-

orbifolds, due to the projection. The moduli-dependent term
originate fromN52 suborbifolds~one fixed 2D torus! sub-
sectors and the moduli-independent ones from theN51 sub-
orbifolds ~no fixed 2D torus! subsectors. TheN51,2 orbits
generally contribute to bothba or Da , while theN54 tor-
oidal subsector (g,h)5(1,1) ~three fixed 2D tori! contributes
to neither.

The moduli-dependentN52 contributions arise necessar-
ily from subsectors having nonvanishing momentapL,R . In-
deed, a nontrivial zero mode factor different from unity oc
curs only for twisted subsectors (m,n) with a simultaneously
fixed 2D torus. For this case, the factors in the partition func
tion in Eq. ~14! multiplying the zero mode factor combine
into the product of a constant function oft̄ times a holomor-
phic function oft which, being a nonsingular modular in-
variant function, must therefore also reduce to a consta
independent oft. The modular integral over the zero mode
factor can then be expressed by a general formula involvin
automorphic functions for the moduli fields associated wit
the fixed 2D torus. For decomposable 6D tori, one finds@33#
Da
~m!~T,T̄!5(

i51

3

(
Gi

b̃a8
i
†ln@~Ti1T̄i !uh~Ti !u4#1 ln@~Ui1Ū i !uh~Ui !u4#‡, ~25!
d

e

d

s
in

w

where the sum overGi runs over the distinctN52 suborbi-
folds G8 or modular orbits of the point group,Ti ī5Ti ,
Uiī5Ui designate the@~1,1! and ~1,2! harmonic forms# di-
agonal compactification moduli fields, and the coefficien
b̃a8

i5b̂a8
i uGi u/uGu denote the associated massless modeb

function slope parametersb̂a8
i multiplied by the ratios of

point group orders. The dependence on the Dedekind fu
tion reflects the target space duality symmetry under the
(2,Z) modular group. The model-dependent coefficientsb̃a8

i

can also be identified in terms of the massless modes p
erties by means of the formula@36# b̃a8

i[ba8
i2kadGS

i , with

ba8
i5 1

2 @c(Ga)2(Ra(112na
i )c(Ra)#, where na

i are the
massless modes modular weights anddGS

i the coefficients of
the anomaly canceling Green-Schwarz counterterm. T
splitting ba8

i5b̃a8
i1kadGS

i exhibits the characteristic propert
of the mechanisms responsible for the cancellation of thes
model duality symmetry anomalies~proportional toba8

i),
which involve both the threshold corrections (b̃a8

i) and a
gauge-group-independent Green-Schwarz counterterm co
sponding to a one loop redefined dilaton field@35#
ts

nc-
SL

rop-

he
y

rre-

S1S̄→S1S̄1( i@2dGS
i /(4p)2# ln(Ti1T̄i). For nondecom-

posable tori, the target space modular symmetry is lowere
to subgroups of PSL(2,Z). Similar expressions to Eq.~25!
continue to hold, differing by a nontrivial dependence on th
sets of allowed moduli, in particular, involving rescalings
such asTi→Ti /3 or Ti /4 @73#.

The moduli-independent contributionsda are associated
with the vanishing of all components of the momentum an
winding modespL,R

m , which therefore results in a trivial zero
mode factor equal to unity. No analytic simplification for the
modular parametert integral is known to exist in this case,
for which one must resort to a numerical evaluation. Thi
task is the subject of next section and represents the ma
new result reported in this paper.

III. NUMERICAL RESULTS

Before presenting the results we digress to describe ho
we deal with the numerical integration over the complex
parametert. The two-dimensional modular integral can be
separated in two different ways:
E
F
d2t f ~t1 ,t2!5E

0

1/2

dt1E
~12t1

2
!1/2

`

dt2@ f ~t1 ,t2!1 f ~2t1 ,t2!#5E
A3/2

`

dt2E
Re~12t2

2
!1/2

1/2

dt1@ f ~t1 ,t2!1 f ~2t1 ,t2!#. ~26!

The general structure of the integrand functionBa(q,q̄), as follows from Eq.~6!, is that of a doubly infinite sum of terms
involving products of functions ofq,q̄ reading, schematically,
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Ba~t,t̄ !5(
l,m

ca~l,m!fl~q!fm~ q̄!5 (
EL ,ER

wa~EL ,ER!qELq̄ER. ~27!

The power indicesEL,R in the second equation identify with the squared masses or conformal dimensions for the phy
spectrum,

EL[hL215NL1
PI2

2
1E021,

ER[hR2
1

2
5NR1

r i2

2
1E02

1

2 FE05
1

2(i @kv i #~12@kv i # !, 0,@kv i #,1G , ~28!
d
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wherehL,R are the conformal dimensions,NL,R the oscillator
operators eigenvalues,PI ,v i are defined in Eq.~13!, and
E0 the vacuum energy shift induced by the orbifold mo
dings. The projection on the modular group invariants is
essential element here in canceling the terms in the sec
sum of Eq.~27! with negative powers of

S qq̄D5e62p i t122pt2,

thus leading to nonsingular expansions with powers iden
fied with the left and right sectors physical spectrum squa
masses,EL,R . @The diagonal elements of the coefficien
block,wa(EL ,ER), identify with the density of string states
of fixed mass, weighted by the squares of their gauge
helicity charges.#

The functions oft2 obtained upon integration overt1 , as
exhibited by the second equation in Eq.~26!, have discon-
tinuous derivatives att251. This is seen clearly in Fig. 1
where thet2 integrand is plotted for certain orbifold model
to be discussed below. This figure illustrates certain gene
features that are encountered in all the other cases. The m
items are~i! untwisted sector contributions smaller in com
parison with the twisted sector ones and nearly independ
of t2 for t2.1, ~ii ! twisted sectors contributions exponen
tially convergent fort2.1, and~iii ! constant limiting values
for kaBa reached at the rather early valuest2'2–3, which
are to be identified with theb function slope parametersba
associated with the charged massless modes for the var
sectors.

To explain these results, we note first that when the pow
indicesEL,R take integral values, as is always the case for
untwisted sector contributions, then the Fouriert1 integral
extends ~for t2>1) over one period of the integrand
namely,*21/2

1/2 dt1e
2p i (EL2ER)t1, and so selects in the expan

sion given in Eq.~27! the termsEL5ER1n,nPZ. The lead-
ing contributions to thet2 integral at larget2 is dominated
by the charged modes with a minimal value of (EL1ER), as
follows from the dependence*dt2e

22pt2(EL1ER). This ex-
plains the rapid convergence to a nearly flat behavior w
variablet2 for t2.1 of the untwisted sector contributions t
Ba(q,q̄). On the other hand, whenEL,R take fractional val-
ues,EL,R5kL,R /N, kL,RPZ, as is the case for the twiste
sectors contribution, then thet1 integral is nontrivial over
the entiret2 interval and does not anymore selectEL2ER
-
an
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PZ. The t2 integral still involves a sum of exponentially
decreasing terms of the forme22pt2(kL1kR)/N.

As is well known, the modular invariance underTN leads
to the restrictionN(EL2ER)PZ for the physical spectrum
which implies for the supersymmetric Abelian orbifolds that
eachEL level is matched by anER level @13,68#. One should
not be misled, however, by the above left-right level match
ing property and deduce that the double sum in Eq.~27!
actually degenerates into a single sum restricted t
EL5ER . If true, this property would have made thet1 inte-
gral trivial and dispensed with the need to evaluate it for
each case.

Once the constant parts in the full integrand, which are
identified with the massless mode contributions given by
ba , are removed, the subtracted integrands (kaBa2ba) are
fastly convergent functions. An infrared cutoff at, say,
t252–3 is more than sufficient to retain the dominant par
of the quadrature. Nevertheless, the projections involved i
the summations over the orbifold subsectors cause stron
cancellations which adversely affect the accuracy of the fina
results. The most appropriate way to organize calculation
here would be to express analytically the integrands in powe
expansions inq,q̄ prior to the numerical integration. This
procedure is the one adopted in Refs.@45,46,48#. However,
in order to deal with a variety of orbifold examples of in-
creasing complexity with respect to the orbifold group order
or the inclusion of Wilson lines, the implementation of this
procedure would obviously require the use of symbolic pro
gramming. For our limited purposes in this work we shall
sacrifice a high numerical accuracy of the results and choos
instead, as in Ref.@43#, to perform all calculations by means
of brute force numerical programming.

The numerical integrations are carried out in the orde
indicated by the second equation in~26!; namely, thet1
integral is performed first, successively for the twot2 inter-
valsA3/2<t2<1 and 1<t2<`, and thet2 integrals next,
after subtracting the numerically determined asymptotic val
ues,kaBa2(kaBa)t5` . Thet integrals are evaluated in suc-
cession for the untwisted and the various twisted sectors~la-
beled byg or m!. The GSO~physical subspace! projections
for eachg sector, represented in Eq.~14! by the summations
over h (n integers! and over the independent Wilson lines
aa and the associated winding numbers (ma integers!, are
carried out inside thet integrals, namely, at fixed
t5t11 i t2 . This ordering is, of course, important and nec-
essary since the summation overh is essential in projecting
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FIG. 1. The threshold function2kaBa(t), integrated overt1 , is plotted as a function oft2 for three cases:~a! the group SU~2! of the
nonstandard embeddingZ4 orbifold, in Table II;~b! the group factor SU~3!c of the case BZ3 orbifold model in Table III;~iii ! the first SU~2!
on line group factor of theZ7 orbifold model in case D Table III. The untwisted sector contributions are drawn as solid lines and tho
twisted sectors are drawn as long-dashed-short-double-dashed (u), long-dashed–short-dashed (u2), and short-dashed (u3) lines.
e
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out the unphysical tachyonic terms~negative powers of
q,q̄). It is also helpful in reducing the rounding off errors
caused by the severe cancellations taking place in the pro
tion.

We convinced ourselves by various cross-checks that o
could maintain a numerical accuracy with relative errors
order 1022 for most of the cases to be considered below, a
specifically for all the orbifoldsZN (N<12). The rounding
errors worsen with increasing orbifold order and increasi
numbers of Wilson lines. The cross-checks involve the fo
lowing verifications:~i! smoothness of thet2 integrands as a
function oft2 for eachg sector after theh projections on the
physical subspaces of the Hilbert space of states are car
out, a feature which is apparent on the results in Fig. 1;~ii !
convergence of the integralskaBa for eachg sector to the
expected value of theb function slope parametersba , which
are independently calculated in terms of the known massl
spectrum of the model;~iii ! independence of the results fo
non-Abelian group factors on the choice of a specific char
generatorQa

I within the Cartan basis;~iv! stability of the
jec-

ne
of
nd

ng
l-

ried

ess
r
ge

numerical results against variations by about 30% in th
number of integration points used in the numerical quadr
tures overt1 andt2 , with respect to an average number o
integration points of 7 and 15, respectively. Further, the e
pected vanishing for each twisted subsector of the contrib
tions to the cosmological constantL, which originates from
the right-moving supersymmetry@30#, is systematically veri-
fied at the level of 1027.

Let us quote here useful results concerning the inputs f
some of the orbifold parameters. Details regarding the gau
symmetry groups and the massless spectra can be found
consulting the results in Refs.@9,69,70#. For theZ3,7 prime
orbifolds, the degeneracy factorsx(g,h) count the number
of simultaneously fixed points byg and h. Thus, for
twisted sectors,x(g,h)527,9,3,1 (gÞ1), independently of
(h51, . . . ,uN), for the Z3 orbifolds with 0,1,2,3 inequiva-
lent Wilson lines, respectively. For theZ7 orbifolds,
x(g,h)57(1), independently of (h51, . . . ,uN), where the
first ~second! numbers refer to cases without~with! one Wil-
son line. ~The reduction of the degeneracy factors in th
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presence of Wilson lines, reflecting the distinguishability o
subsets of twisted subsectors, is compensated by the sum
tion over the winding numbersmm, f

a .) For the nonprime or-
bifolds, where x(g,h) count the number of conjugacy
classes, we shall restrict here to cases with no Wilson lin
Quoting from Ref. @70#, one has, for theZ4 orbifold,
x(u,u0,1,2,3)5(16)4, x(u2,u0,1,2,3)5(16,4)2; for the Z62I
orbifold, x(u,u0, . . . ,5)5(3)6, x(u2,u0, . . . ,5)5(27,3)3,
x(u3,u0, . . . ,5)5(16,1,1)2; for the Z82I orbifold,
x(u@1,3#,u0, . . . ,7)5(4)8, x(u2,u0, . . . ,7)5(16,4)4,
x(u4,u0, . . . ,7)5(16,2,4,2)2; for the Z122I orbifold,
x(u@1,2,5#,u0, . . . ,11)5(3)12, x(u3,u0, . . . ,11)5(4,1,1)4, x(u4,
u0, . . . ,11)5(27,3,3,3)3, x(u6,u0, . . . ,11)5(16,1,1,4,1,1)2,
where the exponents indicate the number of repetitions of
associated patterns. In theZ33Z3 orbifold with one Wilson
line associated with the first factor, as in the example pr
f
ma-

es.

the

e-

sented below, x(g,h)5@3,3,3,9,3,3,3,9# for
g5@u1 ,u1

2 ,u2 ,u1u2 ,u1
2u2 ,u2

2 ,u1u2
2 ,u1

2u2
2#, independently of

h5u1
n1u2

n2 . Note that x(1,h)5x(h,1) and x(um,h)
5x(uN2m,h).

TheN52 subtwisted sectors associated with given (g,h)
simultaneously fixed planes consist in theZ4 orbifold case of
a single modular orbitO of (g,h) sectors given by
O5$(1,u2),(u2,1),(u2,u2)%. The other nonprimeZN orbi-
folds in Tables I and II all possess singleN52 modular
orbits which are constructed analogously by including al
distinct (g,h) subsectors, withg and h running over the
ZN elements leaving a given two-torus fixed. Thus, for the
Z6-I orbifold, the relevant element isu3; for Z8-I, it is u4;
and for Z12-I, the relevant elements areu3,u6,u9. The
Z33Z3 orbifold possesses three orbitsO i , associated with
the three fixed planes, given by
O 15$~1,u2
1,2!,~u2 ,u2

0,1,2!,~u2
2 ,u2

0,1,2!%, O 25O1@u2→u1#,

O 35H ~1,u1u2
2!,~1,u1

2u2!,F S u1u2
2

u1
2u2

D ,1G , F S u1u2
2

u1
2u2

D ,u1u22G , F S u1u2
2

u1
2u2

D ,u12u2G J . ~29!
i

t

-

s

We present our results for cases corresponding to the s
dard embedding~2,2! orbifolds in Table I. Results for cases
corresponding to nonstandard embedding (0,2) orbifolds
presented in Table II. Details concerning the gauge gro
and the massless spectra can be found in Refs.@64,36#. Fi-
nally, to elucidate the role of discrete Wilson lines, thresho
corrections results for semirealistic orbifold models~cases
A–E! having three chiral matter generations are presented
Table III. Cases A–C refer toZ3 orbifolds. Up to extra U~1!
factors, the observable sector gauge group for case A@9#
coincides with the standard model gauge group, while th
for case B, also due to Fontet al. @9#, is a left-right chirally
symmetric gauge group extension SU(3)c3SU(2)L
3SU(2)R and that of case C, due to Kim and Kim@74#, is an
intermediate unification gauge group SU(3)c3SU(3)w .
Case D in Table III refers to aZ7 orbifold model with gauge
group SU(3)3SU(2)3U(1), proposed by Katsukiet al.
@70#. Case E in Table III refers to aZ33Z3 @9# orbifold with
an observable sector gauge group SU(3)c3SU(2)L
3SU(2)R3SU(2).

One of the first calculations of the moduli-independe
threshold corrections was that attempted by Kaplunovs
@31# for the simplest case of standard embedding orbifold
He reported a small gauge-group-dependent te
D52@(Da /ka)2(Db /kb)#/@(ba /ka)2(bb /kb)#.0.07. The
Z3 orbifold case with two Wilson lines, designated in Tabl
III as case A, was recently considered by Mayret al. @45#.
Assuming tentatively the decompositionda52baD1kaY,
with the first component proportional to the factor grou
slope parameters and the second to the affine levels, th
authors foundD.0.079, Y.4.41. As for the comparison
with the existing estimates made in fermionic constructio
of 4D superstrings, this is not very enlightening in the co
text of the present work because the threshold corrections
tan-
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the models discussed in Ref.@43# @D„SU(5)…
2D„U(1)…5224# and in Ref.@46# @D„SU(3)…2D„U(1)…
522.5# arise from moduli-dependent contributions inN52
sectors only. In a recent systematic study, Dienes and Faragg
@48# report results for several new cases. They indicate, in
particular, that the above-quoted threshold corrections in the
flipped SU(5) case@46# must be reduced by an approximate
factor of 3. Let us note here that the models obtained in the
fermionic construction refer to specific points in the moduli
space for which one lumps together the moduli-dependen
and -independent contributions.

Several conclusions can be drawn from the results in
Tables I–III. Our results for theZ3 orbifold cases essentially
reproduce those available from previous works@31,45#. Fur-
ther, the two-component decompositionda52baD1kaY
excellently fits all ourZ3 orbifold cases, including the non-
standard embedding and Wilson line models, with the same
values for the parameters, namely, within the numerical ac-
curacy of our results,D.0.068,Y.3.4. Because of the ad-
ditional difference effects involved in extractingD, a liberal
estimate of the relative precision on the parameterD is
10%. The independence with respect to the shift embedding
and Wilson lines is a remarkable feature which, as empha
sized in@45#, presumably originates in a general, deep prin-
ciple of string theory, which still remains mysterious.

The threshold correctionsda significantly increase in
magnitude with increasingZN orbifold order, roughly asN,
while always retaining the same positive sign. For the other
prime orbifold, namely,Z7 , the two-component formula
again fits well with our results in Tables I and III, but only if
we restrict ourselves to the non-Abelian group factors, for
which we findD.0.20,Y.15. The formula loses its valid-
ity if one includes the Abelian U(1) factors, since a pairwise
comparison of the various group factors leads to the range
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TABLE I. Threshold corrections for theZ3,4,7 orbifolds with standard gauge embeddings. The entries in
the first line are the rotation anglesu i ( i51,2,3) and the shift vectorsv i ( i51,2,3),VI (I51, . . .,8). The
second and subsequent columns correspond to the gauge group factors in the observable and hidden~primed!
sectors. The successive line entries list the group factors, the charge generators componentsQa

I , the levels
ka , the b function slope parameter,ba or, for the nonprime orbifolds withN52 suborbifolds, the pairs
(ba

N51 ,b̂a8), such thatba5ba
N511b̂a8 , and the moduli-independent threshold correctionsda .

Orbifold Z3 :u i5(113)/3, v i5(1122)/3, VI5(11205)/3

Group SU~3! E6 E88
Qa ~1–106) (031203) (1206)8
ka 1 1 1
ba 272 272 90
da 8.31 8.31 22.76

Orbifold Z4 :u i5(112)/4, v i5(1122)/4, VI5(11205)/4

Group SU~2! E6 U~1! E88
Qa ~1–106) (031203) 1

2 (1
2205) (021204)8

ka 1 1 3 1

(ba
N51 ,b̂a8) (212,242) (236,242) (2162,294.5) (60,30)

da 12 9.1 10.4 21.21

Orbifold Z6-I : u i5(114)/6, v i5(1122)/6, VI5(112205)/6

Group SU~2! E6 U~1! E88
Qa ~1–106) (0412102) (122205) (1206)8
ka 1 1 12 1

(ba
N51 ,b̂a8) (228,228) (238,228) (21998,21008) (70,20)

da 13.5 11.5 337 21.1

Orbifold Z7 :u i5(124)/7, v i5(1223)/7, VI5(122305)/7

Group E6 U~1!1 U~1!2 E88
Qa (031203) (210105) (21222105) (1106)8
ka 1 4 12 1
ba 236 2208 21398 90
da 22.7 78.2 805 22.24

Orbifold Z8-I : u i5(125)/8, v i5(1223)/8, VI5(122305)/8

Group E6 U~1!1 U~1!2 E88
Qa (0412102) (012105) (2212105) (1106)8
ka 1 4 12 1

(ba
N51 ,b̂a8) (233,221) (2180,284) (21301,2756) (75,15)

da 17.5 62 601 21.65

Orbifold Z12-I : u i5(147)/12, v i5(1425)/12, VI5(142505)/12

Group E6 U~1!1 U~1!2 E88
Qa (0312103) (012105) (2212105) (1106)8
ka 1 4 12 1

(ba
N51 ,b̂a8) (239,228) (2188,2112) (21398,2101) (70,20)

da 21 65 657 23.25
s

to

a
ied
of variation,D.0.6 to20.2, for the results in Table I, and
D.0.1–1 for the results in Table III. However, these pred
tions are not very precise, since one expects larger nume
inaccuracies to occur inD for the Abelian factors due to the
stronger cancellation effects there. We have also conside
the standardlikeZ7 models proposed by Casaset al. @75#.
Performing the calculations for example 2 of this paper, w
ic-
rical

red

ith

7VI5(0213312)(08)8, 7aI5(32-13-2-3-2)(517)8, gives for
the corresponding gauge group factor
SU~2!3SU~3!3SO~15!8 the resultsba5(212,27,20), da
5(8.5,9.6,4.4), which leads to analogous conclusions
those reached for the model of Katsukiet al. @70#.

For the nonprime orbifolds, the two-component formul
ceases again having a universal validity, even when appl
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TABLE II. Threshold corrections for orbifoldsZ3,4 with nonstandard gauge embeddings. For each case,
the first line gives the shift vectorsVI ,V8I (I51, . . .,8). Thesecond and subsequent columns correspond to
a selection of the gauge group factors in the observable and hidden~primed! sectors. The successive line
entries list the group factors, the charge generators componentsQa

I , the levelska , the b function slope
parametersba or, for the nonprime orbifolds withN52 suborbifolds, the pairs (ba

N51 ,b̂a8), such that
ba5ba

N511b̂a8 , and the moduli-independent threshold correctionsda .

Orbifold Z3 :VI5(11205)/3, VI85(11205)8/3

Group SU~3! E6 SU~3! 8 E68
Qa (10105) (031203) (10105)8 (0612)8
ka 1 1 1 1
ba 272 9 245 29
da 8.28 2.73 8.28 2.73

Orbifold Z3 :VI5(1106)/3, VI85(207)8/3

Group E7 U~1!1 U(1)28 SO(14)8
Qa (12106) (1206) (107)8 (01205)8
ka 1 4 2 1
ba 36 2432 290 218
da 0.9 42.8 9.77 4.52

Orbifold Z3 :VI5(14203)/3, VI85(207)8/3

Group SU~9! SO(14)8 U(1)8
Qa (12106) (01205)8 (107)8
ka 1 1 2
ba 218 9 299
da 4.58 2.74 10.1

Orbifold Z4 :VI5(11205)/4, VI85(2206)8/4

Group SU~2! E6 U~1! SU(2)8 E78
Qa (12106) (031203) (12205) (1206)8 (021204)8
ka 1 1 12 1 1

(ba
N51 ,b̂a8) (212,242) (12,242) (22163,21512) (284,30) (12,30)

da 0.98 3.74 427 14.6 3.74
la

of

u-
to a fixed orbifold case. It seems natural here to identify t
coefficient ba with the N51 sectors slope paramete
ba
N51 , sinceda also arises from these sectors only. Certa
regularities do appear, however. Applying the formu
da52ba

N51D1kaY to the Z4 orbifold in Table I, we find
that the observable sector gauge groups agree with the
diction:D.20.12,Y.14. By contrast, fitting with the two-
component decomposition simultaneously the observa
and hidden sector gauge groups leads to inconclusive fi
The overall variations for the parameters cover the rang
D.20.12 to10.2,Y.10 to 14. The corresponding predic
tions for Table II show now variations for both observab
and hidden sectors separately, yielding the rang
D.20.12 to10.2, Y.2. We note here that with the alter-
native identification of the coefficientba to the total,
summedN51,2 sector slope parameter, regularities are al
gether absent.

For theZ6,8,12 orbifolds, in the lattice realization desig-
nated by the suffixI , the results shown in Table I revea
similar features to those of theZ4 case. Thus, restricting
ourselves to the observable sector only, one satisfactorily
he
r
in
la

pre-

ble
ts.
e,
-
le
es

to-

l

fits

the numerical results based on the two-component formu
with D52(0.2,0.15,0.59),Y5(19,22,44) for theZ6,8,12-I
orbifolds, respectively. Application to the mixed observable
and hidden sector corrections yields instead the domains
variations,D.(0.15–0.22),Y.~9–12!, when going from
Z6-I to Z12-I. The alternative lattice realizations associated
with Z6,8,12-II lead to qualitatively similar results. Thus, for
theZ8-II standard embedding orbifold@characterized by the
shift vectorv i5(1324)/8#, we find, for the same order of
gauge group factors as for theZ8-I case in Table I,
ba5~237.5, 2220, 21135, 60!, da5~19, 49, 589,22.6!,
which results in the range of variation,D.20.4 to10.2.

Finally, the results for our singleZ33Z3 orbifold case in
Table III, indicate rather small values forda . These can be
well fitted with the two-component formula, with the param-
etersD.0.03;0.1,Y.0.54. We have also examined for the
Z33Z3 orbifold the effect of the discrete torsion factor
e(m1 ,m2 ,n1 ,n2)5e2p ip(m1n22m2n1)/N (p50, . . . ,N). The
results in Table III refer to the casep50. The spectrum and
the slope parametersba

N51 are known@9# to depend on the
torsion. The changes in the present case are light; in partic
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TABLE III. Threshold corrections for a selection of three-generation orbifold models with two Wilson lines~cases A–C! and one Wilson
line ~case D!. ForZ3 orbifolds, the winding number parameters attached to the Wilson lines take the valuesmk, f50,61. Case A is a standard
model groupZ3 orbifold model studied by Fontet al. @9#, ~Sec. 4.2!: 3VI5(142000)(207)8, 3a1,2

I 5(072)(01105)8, 3a3,45(11121011)
3(1106)8. Case B is a left-right groupZ3 orbifold modelZ3 orbifold model studied by Fontet al. @9# ~Sec. 4.3!: 3VI5(142000)(207)8,
3a1

I 5(072)(001104)8, 3a3
I 5(132130)(1106)8. Case C is an intermediate unification groupZ3 orbifold model examined by Kim and Kim

@74#: 3VI5(11211200)(08)8, 3a1
I 5(0311211)(1404)8, 3a3

I 5(072)(18)8. Case D is a standard model groupZ7 orbifold model due to
Katsukiet al. @70#: 7VI5(2305)(1106)8, 7a1

I 5(322152111)(42205)8. Case E is an intermediate unification groupZ33Z3 orbifold model
with one Wilson line from Fontet al. @9# ~Sec. 5!: 3v1

i 5(1,0,21), 3v2
i (0,1,21); 3V1

I 5(21105)(1106)8, 3V2
I 5(0206)(021111000)8;

3a1
(1)I5(051122)(051122)8. ~The indices 1,2 refer to the twoZN factors.! The successive line entries list the group factors, the charge

generators componentsQa
I , the levelska , theb function slope parametersba or, for the nonprime orbifolds withN52 suborbifolds, the

pairs (ba
N51 ,b̂a8), such thatba5ba

N511b̂a8 , and the moduli independent threshold correctionsda .

A: Z3

SU~3! SU~2! U~1!1 U~1!2 U~1!4 U~1!5 U~1!Y U(1)48 U(1)68 SO108
Qa (031203) (102105) (1305) (0312103) (0610) (071) (107)8 (1106)8 (06121)8
ka 1 1 6 4 2 2 11

3 2 4 1
ba 29 218 2216 2104 230 216 271.5 214 268 18
da 4.01 4.62 45.3 20.7 5.44 4.49 16.3 2.65 18.2 2.16

B: Z3

SU~3! SU(2)L SU(2)R U(1)1 U(1)2 U(1)3 U(1)4 SU(2)8 SO(8)8 U(1)8
Qa (102105) (051210) (031203) (1305) (0312103) (05120) (071) (02121104)8 (04103)8 (107)8
ka 1 1 1 6 4 4 2 1 1 2
ba 26 215 215 2216 2100 2100 212 224 6 226
da 3.76 4.37 4.37 44.9 20.2 20.2 4.17 5.0 1.27 5.12

C: Z3

SU~3! SU~3! U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 SO(12)8 U(1)(5)8 U(1)(6)8
Qa (10105) (0310102) (122105) (03122102) (06210) (0721) (122105) (12106)8 (21404)8 (04214)8
ka 1 1 6 6 2 2 12 1 8 8
ba 218 218 2310 2257 231.5 225.5 21176 27 2464 2400
da 4.58 4.58 51.3 47.6 5.50 5.10 200 1.51 85.2 81

D: Z7

SU~2! SU~3! U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 E68 U(1)(6)8 U(1)(7)8
Qa (031203) (06121) (107) (0106) (02105) (0312103) (0513) (051210)8 (1206)8 (121205)8
ka 1 1 2 2 2 4 6 1 4 12
ba 214 214 220 222 223 2100 2217 36 292 2788
da 11 11 11 12 12 46 108 0.70 48 397

E: Z33Z3

SU~2! SU(2)L SU(2)R SU~3! U(1)1 U(1)2 U(1)3 SU(3)8 SO(6)8 U(1)8
Qa (10105) (031203) (0312103) (051021) (0106) (102105) (0513) (051021)8 (0212104)8 (1206)8
ka 1 1 1 1 2 4 6 1 1 4

SbaN51

b̂a8
D S 2

224D S 210
224D S 1

236D S 1
213D S 23

256D S 242
2112D S 212.5

2270D S 1
213D S 1

213D S 215
2126D

da 0.50 0.85 0.60 0.60 0.60 6 6.35 0.60 0.60 3.75
h
E

l
.

lar, theN52 slope parameters are unchanged. Thus, for t
choicep51, we find for the same ten group factors of case
in Table III, ba

N515(21,5,22,22,22,262,26,22,22,
259), da5(0.49,0.31,0.59,0.59,0.82,6.2,4.6,0.59,0.59,5.0).
These results again fit nicely the two-component formu
with identical ranges for the parameters as in the abovep50
case.
e

a

IV. UNIFICATION AND ANOMALOUS U „1… SCALE

A. Threshold corrections

In this section we examine the viability of the perturbative
superstring unification within the orbifold approach. Let us
first discuss the implications of the results obtained in Sec
III for the moduli-independent threshold corrections. We re-
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strict to the standardlikeZ3 orbifold models given in Table
III. Sinceda are generally of positive sign, it follows that th
moduli-independent threshold corrections will always res
in reduced effective unified coupling constant and enhan
~reduced! unification scale, depending on whether theb
function slope parametersba are positive ~negative! or,
equivalently, gauge~matter! dominated. Assuming the simple
formulada52baD1kaY, then, as already noted in connec
tion with Eq.~4!, one can absorb the string threshold corre
tions into an effective unification scaleMX8 and an effective
string coupling constantgX8 . Using the numerical values fo
ba and da in Table III, we find very small moduli-
independent corrections to the unification scale and the c
pling constant, which attain at most a 10% enhancement
a 5% reduction, respectively.

Identifying the string moduli-independent threshold co
rections obtained here,da/4p.0.4, tentatively with a corre-
sponding field theory threshold correction of typical structu
@76#, d(4p/ga

2)56O(1)ln(MHMX), yields for the ratio of
the average heavy particle mass to unification ma

MH /MX. 1
2 . Thus, one checks that these contributions a
e
ult
ced

-
c-

r

ou-
and

r-

re

ss,

re

of the same order of magnitude as the two loop field theory
renormalization corrections@77#. We conclude therefore that
the moduli-independent threshold corrections should mildly
affect the high energy extrapolation of the gauge coupling
constants. More quantitatively, one can estimate the correc-
tions to the weak angle and color coupling constant by
means of the formulas@36#

sin2uW~mZ!5
k2

k11k2
1

a~mZ!

4p

k1
k11k2

FAlnmZ
2

MX
2 1DAG ,

~30!

as
21~mZ!5

k3
k11k2

F 1

a~mZ!
1

B

4p
ln
mZ
2

MX
2 1

DB

4pG , ~31!

where we use the notationA52(b1k2 /k12b2),
B52@b11b22b3(k11k2)/k3#, DA52(D1k2 /k12D2),
DB52@D11D22D3(k11k2)/k3#. Evaluating the threshold
corrections for case A in Table III, by usingk1511/3 and
D1,2,35(16.3,4.62,4.01), yields
d„sin2uW~mZ!….~25;18!31025, as
21~mZ!.2~4–5!31022 @das~mZ!.~5–8!31024#,
t

u

e
fi

a

,

where we have seta21(mZ)5127.960.1. We see that the
corrections are rather small and lie well inside the prese
experimental uncertainties on these parameters@77#,
as(mZ)50.12060.010, sin2uW(mZ)50.232460.0006. The
extreme smallness of the effect here is due to the cancella
of the level-dependent componentkaY in da in the linear
combinations appearing inDA,B . In fact, these cancellation
effects are the cause for the large uncertainties in the res
above. If we used the two-component formula, so th
DA52AD, DB52BD, and setk1 ,ba at the vaues pre-
scribed in the minimal supersymmetric model, we would fin
insteadd(sin2uW).2231024, das.331024.

Turning to the moduli-dependent correctionsDa
(m) , we

note that these are generically of opposite sign with resp
to da and so have an opposite effect on the effective uni
cation parameters. These contributions become sizable o
to the extent that large moduli VEV’s and large ratio
b̃a8/ba are used, as is clearly demonstrated in the approxim
formula, valid for large VEV’s,

MX8.MXF ep~T1T̄!
6

T1T̄
G
b̃a8
2ba

. ~32!

To estimate the corrections in Eqs.~17!, one can use the
approximate formulas

DA,B.SA8
B8D F ln~2TR!2

p

3
TRG ,

where
nt

ion

lts
at

d

ct
-
nly
s
te

SA8
B8 D5SA2dA

B2dBD ,
such that

SABD5S 28/520 D
for the minimal supersymmetric standard model and
dA,dB depend on the modular weight parameter assign-
ments. The solutions reported in Refs.@36,53# give

SABD.S 4–1624–40D
or, equivalently,

SA8
B8 D.S 2–100–20D .

In order for the corrections to sin2uW and as to reach an
order of magnitude higher than those found above from the
moduli-independent corrections, one needs, at least
TR5Re(T);10.

B. Standardlike superstring unification scenario

We shall now present an extended analysis of the string
unification picture in which the coupling constant scale evo-
lution proceeds through an intermediate threshold atMA in-
duced by an anomalous U~1! mechanism. A two-stage scale
evolution is considered: an initial short evolution fromMS to
MA , described by the slope parametersba

A set at the values
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predicted in the orbifold models, followed by a wide sca
evolution fromMA to mZ described by the minimal super-
symmetric standard model slope parameters. The relev
formula reads

~4p!2

ga
2~m!

5kaS ~4p!2

gX
2 1ỸD 12baln

m

MA
12ba

Aln
MA

MX

1Da
~m!~T,T̄!. ~33!

We regard the five parameters (gX , k1 , T, Ỹ[Y0
1Y,MA), which enter explicitly Eq.~33!, as adjustable pa-
rameters. Note thatMX has a fixed linear dependence o
gX which is specified by Eq.~3!. The moduli-independent
contribution has been incorporated here through the lev
dependent componentkaY only. Thus, we setD50. Incor-
poration of the slope-dependent component,2baD could be
achieved by modifying the relationship between the strin
unification scale and coupling constant, usin
MX55.2731017gXe

D/2 GeV. The compactification scale
MC can be tentatively identified in order of magnitude wit
the average of the inverse radii of the 6D torus periods
writing

MC5
2p

R
.
MS

2 SCorb

T D 1/2. 2ACorbMX

AT
, ~34!

whereR52pr , the average circumference, and the avera
moduli field VEV’s ^T&5T are related as
T5CorbR

2/a8(2p)2, with Corb a calculable constant of or-
der unity@71#, determined by the requirement that the targ
space duality transformation acts likeT→1/T. For the
simple T6 torus, Corb51, while for, say, theZ3 orbifold,
Corb5A3/4. One concludes from Eq. ~34! that
MC /MX.1/AT.

A rough order of magnitude estimate for the anomalo
U~1! Higgs mechanism scaleMA can be obtained by impos-
ing the condition of a vanishingD-term scalar potential@59#
2DA /gA

25(aQA
aufau21gXcA /4a8AkA for a group factor

UA(1) distinguished by the indexA. We recall that the tri-
angle anomaly coefficient cA is defined as @19#
48p2cA5Tr(QA)54Tr(QA

3), where the traces extend ove
the massless modes. This enters the Green-Schwarz cou
term through the substitution for the dilaton field
S1S̄→S1S̄1cAVA , whose function is to cancel the vari-
ous UA(1) group factor~gauge and gravitational! triangle
anomalies by assigning to the gauge vector and dilaton ch
supermultiplet fields the transformation law
VA→VA2LA2LA

! , S→S1cALA . The predicted magni-
tude for the scale is

MA.^f&5
MP

A8p

gX

A2 F2
gXTr~QA!

192p2QAAkA
G 1/2. ~35!

Using tentatively for the model-dependent ratio the estima
2Tr(QA)/(QAaAkA).10, one obtainsMA.1.2gX

3/231017

GeV, which indicates thatMA should be of the same order o
magnitude asMX .

We use the known experimental values of the gauge co
pling constants at the Z-boson mass, namely,
le
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g1
2(mZ)50.127,g2

2(mZ)50.425,g3
2(mZ)51.44, as inputs to

determine via Eq.~33! three among the above-quoted adjust-
able parameters. We choose these to begX , Ỹ, MA . This
choice is motivated by the fact that the dependence on the
parameters in Eq.~33! can be made linear by means of an
obvious change of variables. The solutions forgX , Ỹ, MA

are determined as a function of the remaining free param
eters, namely,T and k1 , and the sets of slope parameters,
ba
A , b̃a8. For a solution to be acceptable it must comply with
the perturbation theory constraints thatgX andY be of order
unity and with the obvious inequalities between scales
MA /MX,1,MC /MX,1, which we shall eventually supple-
ment by the inequalityMA /MC,1, reflecting the assump-
tion that the mechanism inducing the scaleMA is a conse-
quence of compactification.

We shall present the results of numerical applications onl
for case A in Table III, settingba5(211,21,3), correspond-
ing to the minimal supersymmetric standard model,
ba
A5(271.5,218,29), as obtained from Table III, and
ba85(18,8,6),dGS57, where the choice of slope and Green-
Schwarz parametersba85( iba8

i , dGS5( idGS
i for the moduli-

dependent threshold corrections is based on the solutions r
ported in Ref.@36# ~see also Ref.@78#!. Regardingk1 as a
free parameter when this is predicted to be 11/3 and includ
ing moduli-dependent threshold corrections in a case~such
as theZ3 orbifold! where these are absent is certainly liable
to criticism. It may also be objected that sincek1 andMA

take fixed values once one chooses a given orbifold model,
is not justified to consider these as free parameters. The a
swer is that we are really studying here a class of model
having similar characteristics with respect to the massles
spectrum. The dramatic rise in the number of solutions fo
orbifold models involving two or three Wilson lines@75,79#
may be invoked as a plausibility argument to justify some
freedom in choosing the hypercharge and the anomalou
gauge coupling constant normalizations. Further, since th
type of orbifold model appears to have a marginal influence
on the size of threshold corrections, as we have concluded
Sec. II, we hope that these shortcomings do not affect th
consistency of our procedure.

Our main purpose is to explain the nontrivial interplay
between the various parameters which are most significa
for string phenomenology. Choosing the particular subse
k1 ,T as our free parameters while adjusting the other
(Ỹ,MA ,gX) to the inputsga(mZ

2) (a53,2,1) is only a tech-
nical convenience. Let us first discuss some qualitative fea
tures of the solutions and, in particular, the correlations
among the parameters. The dependence onỸ andgX shows
clearly that any change ingX can be compensated by a nega-
tive contribution toỸ. A decrease ofk1 widens the distance
between the quantities (ga

2ka)
21 and so can be compensated

by decreasingMA /MX or gX . Finally, because the functional
dependence onMA andgX in Eq. ~33! involves a logarithm
of these quantities, one expects a strong sensitivity of th
parameters on the inputs.

The results are displayed in Fig. 2. These represent a co
tinous two-parameter (k1 ,T) family of solutions forgX , Ỹ,
MA consistent with a high energy extrapolation of the gauge
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FIG. 2. One loop renormalization group analysis of superstring unification parameters based on high energy extrapolation of the
coupling constants starting from their experimental values atmZ . The solutions for2Ỹ ~a!, MA /MX ~b!, andgX ~c! are plotted as a function
of k1 for a discrete set of values of the moduli VEV,T51 ~solid line!, 10 ~long-dashed–short-double-dashed line!, 15 ~long-dashed–short-
dashed line!, 20 ~dash-dotted line!, 30 ~dashed line!. The slope discontinuities exibited byỸ in ~a! arise because of the changes of sign of
Ỹ in this semilogarithmic plot.~For the T530 curve, Ỹ.0.) We display in~d! graphs of the gauge coupling constant@4p/ga

2ka ,
(a53,2,1)# variation with renormalization scale for the particular solution characterized by the valuesk151.6, T520, yielding the solution
Ỹ52114,MA /MX50.38, gX50.63.
ent
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re
coupling constants joining roughly at the common val
4p/ga

2ka.25. The physical constraints onỸ, gX , MA select
a reduced domain for the free parameters,k1P(1.4,1.8),
TP(1,30). The variations with respect to these paramet
are monotonic. For fixedT, increasingk1 leads to a rapidly
~algebraically! increasingỸ from large negative to positive
values and to less rapidly increasingMA /MX andgX . Strong
variations are also found for theT dependence. However, a
T increases pastT'25, Ỹ becomes positive and nearly in
dependent ofk1 . The values ofk1 on the lower side,
k1,1.4, are excluded by the constraints onỸ and those on
the higher side,k1.1.8, by the constraints ongX and
MA /MX .

A wide class of solutions occurs withgX!1 and
ue

ers

s
-

2Ỹ@103, independently ofT and k1 . These arise through
an obvious compensation effect of the moduli-independ
corrections withgX , as is apparent in Eq.~33!. Although the
Y0 component ofỸ remains uncalculated so far, it appea
unlikely that this can much exceed the componentY which
was evaluated in Sec. IV to be ofO(1). In fact, since a large
Y0 is only possible for a strongly coupled string theory in
volving a largegX , the above must be regarded as an inco
sistent class of solutions.~However, because the generic de
pendence on coupling constant of nonperturbative effect
expected to be less suppressed in string theory than in fi

theory @29#, e2c/gX versuse2(4p)2/gX
2
, one could possibly

achieve largeY0 with not too largegX .) In the following, we
shall restrict ourselves to the conventional framework whe
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one assumes a smooth connection between string theory
its low energy limit and hence retains the constrain
gX;1, uỸu;10.

Examining the variation of the solutions withk1 in Figs.
2~a!–2~c!, we see that these are very rapid, especially tha
Ỹ. The conditionỸ;1 can be satisfied only through a ver
careful fine-tuning ofk1 for fixedT or of T for fixedk1 . This
is possible only in cases whereỸ changes sign in the relevan
intervals of k1 ,T. The moduli-dependent corrections a
quite essential to achieve a high energy extrapolation con
tent with superstring unification. Incorporating the thresho
MA provides solutions with reducedT. The constraints on
Ỹ andgX require 15,T,30 and 1.5,k1,1.8. Incorporat-
ing the constraintMA /MX,1 restricts this interval to
1.5,k1,1.7. ~Narrower intervals would be imposed if on
also sets lower bounds, say,MA /MX.1021 and
gX.1021.) If one takes into account the additional con
straintMA /MC,1, this would lead to the stronger bound
MA /MX.MA /MCAT,1/AT, which would select the nar-
rower interval 1.5,k1,1.6.

For concreteness, we show in Fig. 2~d! the scale evolution
of the gauge coupling constants for one particular solution
determined by the above procedure. One should not be
turbed by the large value ofuỸu used here, since the nearb
solution determined with a carefully tuned value ofk1 or T
so as to giveỸ;1 would yield nearly identical flows for the
gauge coupling constants. This figure illustrates one of
characteristic implications of string unification, namely, th
the simultaneous equality at some scale of the extrapola
coupling constants has no special significance. The pict
depicted in Fig. 2~d! is rather generic. The most favorabl
situation corresponds then to an approximate joining of
coupling constants flows at a large scale near 531016 GeV,
which is to be identified with the anomalous UA(1) scale
MA , associated with the decoupling of the extra quarks
leptons modes. In the string unification picture, the joinin
scaleMA can be made larger thanMGUT because of the
slightly reduced normalization of the hypercharge group co
pling constant and of the spread of the coupling constant
MX which is related to the moduli-dependent threshold c
rections.

Let us comment briefly on the sensitivity of the solution
to the slope parameters.@Our procedure would obviously
break down forba

A'ba , as this would make the linear sys
tem of equations, Eq.~33!, singular.# The slope parameters
ba
A determine the variation of the coupling constants fro
MX to MA . The choice ofba

A is correlated to that of the
moduli-dependent slope parametersb̃a8 , since the latter de-
termine the amount by which the coupling constants a
spread atMX . Consider first the case of fixedb̃a8 . Increasing
T implies a wider spread of the coupling constants atMX

which should therefore be compensated by larger slopesba
A

in order to catch up with the extrapolated coupling consta
up to 1016 GeV. Rather than showing new plots, we on
mention here that if one performs a uniform reduction of t
slopesba

A by, say, a factor 2, the solutions would rule out th
entire domain ink1 ,T except for a narrow region around
T515,k151.7. Conversely, enhancing the slopesba

A by, say,
a factor 2 ameliorates the initial picture without changin
and
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qualitatively the character of solutions. One concludes there-
fore that the cases involving negative slope parametersba

A

with large absolute values~richer matter spectra!, which are
generic in orbifold model building, are more favorable for
unification.

The choice of b̃a85ba82kadGS is also quite sensitive.
Rather than performing an exhaustive study we have consid
ered two other cases obtained from Ref.@36# and further
motivated in Ref.@78#. Applying the above procedure of so-
lution for these cases, we found a significantly worsened
picture. The first case, characterized byba85(7.5,2.5,1.50),
dGS52.5, admits solutions only for large values ofT.30
and correspondingly largek1.1.8. It improves slightly if
reduced values are used for the slopesba

A . The second case,
characterized byba85(24.67,4,5), dGS56, admits no solu-
tions at all, mainly on account of an incompatibity between
the constraints onY andMA /MX . One concludes therefore
that negative or small values for theN52 slope parameters
b̃a8 do not constitute a favorable option.

Having focused so far on standardlike compactification
models, we briefly discuss the other two possible classes o
superstring models. The first refers to compactification mod-
els with grand unified groups SU~5! @43# or SO~10! @65# @up
to extra U~1! factors#, with a flipped assignment for the mat-
ter fields with respect to the standard GUT basis or with a
regular GUT assignment involving higher affine levels,k.1
@80#. A perturbative weak coupling scenario assuming a
smooth evolution fromMGUT to MX can be analyzed in the
manner described above either by setting the parameter
bG , b̃G8 , and Y at values specified by the models or by
imposing appropriate constraints on them. It should not be
difficult to obtain satisfactory solutions forgX andMA by
following a procedure similar to that used above. An alter-
native strong coupling scenario could also be envisaged@65#
if the slope bG takes a large~gauge-dominated! positive
value andgX is large so as to lead to GUT groupG with
renormalization group invariant scale comparable to the
string scale,LG5MX8e

28p2kG /bGg8X2. Although such a sce-
nario forbids a smooth connection from string theory to the
low energy field theory, it still provides a prediction for the
GUT scale, namely,MGUT.LG .

The second class of compactification models corresponds
to intermediate unification on a semisimple electroweak
gauge group. One interesting example is case C in Table III
where the gauge symmetry at compactification,
SU~3!c3SU(3)w3U(1)P3, breaks down to the standard
model group at an anomalous U~1! scale according to
SU~3!w3U(1)P3→SU(2)w3U(1)Y , whereY5T8w1P3/3.
Using the information supplied in Ref.@74#, we find a level

parameterk(P3)5
1
3 . This implies a normalization of the

hypercharge coupling constant such thatk1511 1
275 28

27 .
Although this falls well below the favorable interval ofk1
values specified above, it is nevertheless interesting that the
situation for case C is exactly opposite to that found above
for case A. However, as already discussed in the Introduc-

tion, although one can derive a boundk1>
5
3 for minimal

standard-like models, this is evaded forZN3ZM orbifolds or
for ZN orbifolds with Wilson lines@56–58#. As we have just
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demonstrated, intermediate unification of hypercharge i
non-Abelian group factor provides a further viable option

V. CONCLUSIONS

Our results confirm those obtained in previous wor
@31,45# and extend these with new predictions covering
large sample of orbifold cases. The moduli-independ
components of the threshold corrections are positive and
typical sizeda/4p;1, which is therefore quite comparabl
to those for gauge field theories in spite of the fact that in
nitely many massive states are integrated out for sup
strings. We find thatda are nearly insensitive to the gaug
group embedding and to the discrete Wilson lines, but t
they increase with the point group order of theZN orbifolds,
roughly according to a linear power lawda;N. The two-
parameter decompositionda52ba

N51D1kaY, suggested in
previous investigations@45#, fits very well theZ3 orbifold
models, with the predictionsD.0.068, Y.3.3, indepen-
dently of the embedding of the point and space groups in
gauge group, but has a restricted applicability for the hig
order orbifoldsZ7 as well as the nonprime ones. Combinin
pairwise the various observable group factors, one still fin
for the nonprime orbifolds certain regularities, with the fo
lowing domains of variations for the parameters:D.20.6 to
10.2,Y.50–10.
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In order for the large value of the predicted string unifi-
cation scaleMX not to conflict with observations, one needs
both moduli-dependent threshold corrections~with associ-
ated compactification scaleMC /MX.1/AT'0.3) as well as
a weak hypercharge group level parameter varying in th
narrow interval k151.4–1.7. The information that the
moduli-independent correctionsda are 1–10 is useful in pro-
viding stronger correlations among the parameters releva
to string phenomenology. Postulating an anomalous U~1!
mechanism at a scale 0.1,MA /MX,1 significantly eases
the above constraints on slope parameters while raising t
bound on the allowed values ofMC . The resulting picture is
intermediate between a delayed joining of the coupling con
stant flows, due to the smaller value ofk1 , and of a contin-
ued flow beyond crossing, consistent with the moduli
dependent threshold corrections. Our analysis emphasiz
the need of constructing orbifold models combining the
property of a low value for the hypercharge group level pa
rameter along with the usual desirable features, namely, thr
chiral families, low rank gauge group, andN52 subsectors.

ACKNOWLEDGMENTS

Service de Physique The´orique is Laboratoire de la Direc-
tion des Sciences de la Matie`re du Commissariat a` l’Energie
Atomique.
s

.

@1# P. Candelas, G.T. Horowitz, A. Strominger, and E. Witten
Nucl. Phys.B258, 46 ~1985!.

@2# G. Altarelli, in Proceedings of the International Europhysic
Conference on High Energy Physics, Marseille, France, 1993,
edited by J. Carr and M. Perrottet~Editions Frontie`res, Gif-sur-
Yvette, France, 1994!.

@3# D. Schaile, inProceedings of the XXVIIth International Con-
ference on High Energy Physics, Glasgow, Scotland, 1994, ed-
ited by P.J. Bussey and I.G. Knowles~Institute of Physics,
Bristol, 1994!.

@4# U. Amaldi, W. de Boer, and H. Fu¨rstenau, Phys. Lett. B260,
447 ~1991!; J. Ellis, S. Kelley, and D. Nanopoulos,ibid. 260,
131 ~1991!; P. Langacker and M. Luo, Phys. Rev. D44, 817
~1991!.

@5# L. Ibáñez and G.G. Ross, inPerspectives in Higgs Physics,
edited by G. Kane~World Scientific, Singapore, 1993!.

@6# M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi, and N
Seiberg, Nucl. Phys.B259, 549 ~1985!.

@7# G.G. Ross, inParticles and Fields–3, Proceedings of the
Banff Summer Institute, Banff, Canada, 1988, edited by A. N
Kamal and F. C. Khanna~World Scientific, Singapore, 1989!;
J. Wu and R. Arnowitt, Phys. Rev. D49, 4931~1994!.
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