
PHYSICAL REVIEW D VOLUME 53, NUMBER 1 1 JANUARY 1996 
Distribution of the color fields around static quarks: Flux tube profiles 
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We report detailed calculations of the profiles of energy and action densities in the quark- 
antiquark string in SU(2) lattice gauge theory. We conclude that at B q-q separation R sz 1.0 fm 
we are beginning to see the asymptotic flux tube. By employing the Michael sum rules we further 
conclude that the peak energy density approaches a constant in R. 
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I. INTRODUCTION 

Although gross features of the string connecting a 
quark and an antiquark are understood, little is known 
about the detailed structure of the flux tube. Questions 
remain as to the size and shape of the energy distribu- 
tion. The linearly rising potential can be understood if 
the energy per unit length of the string is independent 
of the separation of the quark and antiquark. That still 
allows for a variation of the peak density and the width. 
We are also interested in the fields themselves; for ex- 
ample, whether they are governed by dual superconduc- 
tivity, whether they appear Coulomb-like at small sepa- 
rations as expected from asymptotic freedom, and what 
excited strings look like. 

Building on earlier work by a number of authors [l-12], 
this paper addresses the issue of the energy distribution 
at zero temperature. The difficulties of getting good 
signal-to-noise measurements at large qQ separations are 
well known. There are tradeoffs in every strategy. Our 
choice is to represent the qq sources via a Wilson loop 
enhanced using the Parisi, Petronzio, and Rapuano 1131 
noise reduction techniques. Trottier and Woloshyn [14] 
chose this route in a recent flux calculation in three di- 
mensions. We then attempt to extrapolate our results 
to large time extent of the loops. Alternative smearing 
techniques have been developed to increase the overlap 
with the ground state. This has been applied to many 
problems and an early review is given by Marinari [15]. 
In a recent conference proceedings Bali, Schlichter, and 
&hilling 1161 have applied these techniques to the present 
flux problem. Another alternative is to use Polyakov lines 
to represent the sources. But then the “area law” forces 
one to work at finite temperature and then extrapolate 
to zero temperature. 

There have been some analytical predictions of flux 
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tube properties. Liischer, Munster, atid W&z have stud- 
ied the bosonic string model of the effective tube [1’7,18]. 
Their results show that the flux tube width has a log- 
arithmic behavior with the quark separation R. Adler 
constructed a dielectric model [19], which predicts that 
the energy peak density in the flux tube N l/R, and the 

flux tube width - a. Baker, Ball, and Zachariasen 
have obtained the flux tube solution for QCD from the 
dual formulation of the Yang-Mills theory. They give 
analytical evidence for flux tube formation in QCD [20]. 

In this paper we report detailed calculations of the spa- 
cial profiles of energy and action distributions of the flux 
tube. This is a companion paper to Ref. 191. Preliminary 
results of the present work were reported in the QCD vac- 
uum structure conference proceedings [12]. In Ref. [9] we 
developed techniques to extrapolate flux measurements 
to infinite time extent of the Wilson loops. The trans- 
fer matrix eigenvalues were determined from the Wilson 
loops. We tested the global Michael sum rules [21]. We 
also included in that work a study of the energy and ac- 
tion on the midplane between the qq pair. However, it 
was only the integrated flux over the whole plane that 
was needed there. In the present paper we have redone 
the analysis of the same data in a way to extract profiles 
of the flux tube using the transfer matrix eigenvalues de- 
termined in the earlier work. Section II pulls together 
some of the simulation details for completeness. 

There are six orientations of plaquettes corresponding 
to the six components of chromoelectric and chromomag- 
netic fields. We assign the plaquette value to the field 
squared at the center of the plaquette. Hence all compo- 
nents are defined at different space-time points. Interpo- 
lation in four dimensions is required in order to add these 
functions to come up with the energy density. We decided 
on a method used widely in other fields termed “Kriging.” 
Applied to a regular lattice, it gives a prescription to as- 
sign weights to nearest neighbors, next-to-nearest neigh- 
bors, etc. It adapted nicely to four dimensions without 
biasing any particular direction in four-space. This is 
described in Sec. III. In this way we can fill in values 
389 01996 The American Physical Society 



390 HAYMAKER, SINGH, PENG, AND WOSIEK 12 
at every point on a lattice with lattice constant a/2 and 
then all components are compatible. 

Also in this section we discuss the parametrization of 
the flux tube profile on the plane perpendicular to the 
line joining the quark and antiquark at the midpoint be- 
tween them. It is very difficult to get accurate moments 
of these profiles since they are dominated by values of 
the flux at large transverse distance where data are very 
scant. Our compromise was to find a good fitting func- 
tion with a very economical parametrization. We settled 
on a simple function that is exponential for large distance 
and Gaussian for small distances. It did remarkably well 
in that the fit was very insensitive to the sample of points 
used to fit over a very wide range of transverse distances. 

Having determined the profile parameters for a wide 
range of Wilson loops, we then extrapolate these param- 
eters to large time extent of the Wilson loops. In Sec. IV 
we carry out this extrapolation and present results. 

II. SIMULATION 

The lattice observable needed to measure the flux is 

II-51 

f”“(z) = 5 ((YT) - (P)) , 

_ p P,“” -we;1 
- a4 ( > (W 1 (1) 

where W is the Wilson loop, Pr the plaquette located 
at +, ,0 = 4/g’, and ZR is a distant reference point. In 
the classical continuum limit 

f”” “2 - ;((Fwqq “ac , (2) 

where the notation (. . .)9q wLc means the difference of the 
average values in the qQ and vacuum state. From now on 
we shall be using field components in Minkowski space 
notation, hence 

f @” --f ;(-Bf, -B;, -B,“; E;, E;,E,2) . (3) 

Correspondence between various components and f pu is 

standard: space-space plaquettes are magnetic, space- 
time plaquettes are electric. The energy and action den- 
sities are, respectively, 

E= ;(E2+B2), 

Since the magnetic contribution turns out to be negative, 
there is a strong cancellation between the two terms in 
the energy, whereas they are enhanced in the action. One 
remark is that ihe measured negative magnetic energy 
density B2 was obtained from the difference between the 
value of the qq state and that of the vacuum, as shown 
in Eq. (2). To understand the physical origin of the 
negative B2, one needs to study the dynamical properties 
of SU(N) vacuum, which has not been fully understood. 

In the earlier paper [9], we gave some of the details of 
the simulation and measurement techniques. Briefly, our 
lattice size is 173 x 20. We ran three values of p = 2.3, 
2.4, and 2.5. The corresponding lattice spacings a(P) 
were taken to be a(2.3) = 0.171 fm, a(2.4) = 0.128 fm, 
and ~(2.5) = 0.089 fm. We measured Wilson loops for 
all sizes up to 7 x 9 which are reported in Ref. [9] as well 
as the eigenvalues of the transfer matrix calculated from 
these loops. 

An important ingredient in our simulation is the an- 
alytic multihit technique in which one evaluates link in- 
tegrals of the operators being measured. When this is 
applied to a single link on a Wilson loop the result can 
be given in closed form: 

JIdU]Uexp (; tr[UKt]) 

= g$v /iwlexp (; tr[UKf]) , (5) 

where K is the sum of six “staples” coupling to given U in 
the action [13], and In(z) is the modified Bessel function. 
The sum of SU(2) matrices in the j = $ representation 
is a multiple of an SU(2) matrix which we denote by V: 

K = bV, b = (detK)l/’ (6) 

Effectively, what has happened is that the link has been 
replaced by a sum of staples associated with that link 
times a gauge invariant weight given by the ratio of mod- 
ified Bessel functions. 

Figure 1 shows the links involved. The original links 
in the Wilson loop and plaquette are the bold lines. The 
staple links are also shown. It is clear Tom this picture 

FIG. 1. Links involved in link, corner, and plaque& inte- 
grals. 
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that not all the links on the Wilson loop can be evaluated 
with Eq. (5). The criterion to be able to use Eq. (5) to 
evaluate a particular (bold) link is that the correspond- 
ing staples do not involve any of the other bold links. 
A straight line of links satisfies this criterion, but links 
forming a corner do not. Therefore the plaquette and the 
corners of the Wilson loop have to be treated separately. 
Further, since we are trying to measure the self-energy of 
the quarks we need to bring the plaquette close to and, 
in fact, touching the Wilson loop which will result in fur- 
ther special cases. It is expedient to measure the Wilson 
loop and plaquette for each position and orientation inde- 
pendently and then evaluate the cross correlation. This 
is fine as long as a bold link on the Wilson loop does 
not overlap with a staple link on the multihit plaquette 
or vice versa. Since we make use of fast Fourier trans- 
forms to do the cross correlations, all relative positions 
of the two are automatically obtained. We must then go 
back and recalculate the correct exceptions separately. 
We have the choice of either doing more integrals ana- 
lytically or drop back to fewer analytic integrations for 
these exceptions. We chose the latter, maintaining all 
possible analytic integrations that could be constructed 
with the above three analytic results. Working in three 
dimensions, Trottier and Woloshyn [14] use the single link 
integrations and an iteration of them due to Mawhinney 
[22] where the above conflicts do not arise rather than 
employing the corner or plaquette integral. 

Our compromise in all these special cases was the fol- 
lowing: We calculated (a) the plaquette and multihit pla- 
quette, and (b) the Wilson loop with all multihit links 
and the Wilson loop with a gap as shown in Fig. 1. Then 
the correlations were done using three cases: (i) for large 
separations of the Wilson loop and plaquette, all links 
were multihit; (ii) as the plaque& is brought close to 
the Wilson loop, the multihit plaquette was dropped; and 
(iii) when the plaquette was brought in contact with the 
Wilson loop, certain multihit links were also dropped as 
indicated by the gap in Fig. 1. This compromise means 
that having chosen the gap in one particular direction we 
cannot get self-energy.data at other places on the loop, 
for example, to explore the self-energy for a loop with T 
and R reversed. 

Th& plaquette and corner integrals cannot be done in 
closed form but can be evaluated using a character ex- 
pansion. Details can be found in the appendix of ,Ref. 
[6]. This was based in large part on Ref. [23]. For com- 
pleteness we would like to pull together just the results. 

A. Character expansions 

The basic technique used here is to expand the in- 
tegrands using group characters as basis functions. The 
character is given by the trace of the (2j+l)-dimensional 
rotation matrices: 

j=O,l13 2’ ‘2’“’ (7) 
We parametrize group elements by an axis of rotation r? 
and an angle of rotation about that axis denoted here by 
2$: 

U = COS($J) + i sin(+)*. i , (8) 

and the group manifold is then the hyperswface of the 
sphere in four dimensions, S,, and the invariant group 
integration measure is uniform on this manifold. 

We will use the character expansion of a link or product 
of links in the action 

,w+m = ~cj(@)x(jqu), 

Cj(P) = (4j + 2)+$) ( (9) 

where &j+,(p) is the modified Bessel function. The sum 
is over all representations as indicated in Eq. (7). All 
integrations can be done making use of the orthogonality 
of the group integration: 

J 
[DU]D:;(U)*D’j” (U) = ““” m’n’ -6jjlL5mmdnnl (10) 

23 + 1 

From this relation we can find, for example, 

J 
[du]x(j)(vu)x(j’)(u) = 7” ~sjjsX’j’(v) T (11) 

where V is also a link or product of links. This formula 
is very useful in evaluating the following integrals. 

B. Corner integral 

Consider the integral over two links that form a corner: 

(r&VI) E ; J[duldu2]u2u*e-s , 

z s [dU,dU,]eCS ) 
J 

(12) 

where the relevant terms in the action are 

-s E ~[tr(wtuJJ~) + b+(UlV:) + bztT(uzv;)] 

(13) 

This equation defines W; b and V are defined in Eqs. (5) 
and (6). Z can be evaluated immediately using Eq. (11): 

z = c (y+ 
j (23 + 1) ,cj(P)cj(pb,)cj(pb,)X(j)(p) a (14) 

where 

P E wtv,v, (15) 

Applying the character expansion to the three terms in 
the action we give the final result 



392 HAYMAKER, SINGII, PENG, AND WOSIEK 53 
1 x wc;,cd(p) + cj(p)[‘12v’ - w5x (@)(P)][(j + l)~(j-~P)(p) - jx(j+W)(p)] 
p(l- $p)(P)2) (16) 
where c; = dcj(p)/d@. 

C. Plaque&te integral 

In the plaquette integral, at most one link can be eval- 
uated with Eq. (5). Further, it is clear that only two 
of the links forming a corner can make use of Eq. (16). 
Since the plaquette is now a’gauge-invariant trace of four 
links, this case is in fact considerably simpler than the 
corner integral. Again the details can be found in Ref. 
[6]. Consider the four-link integral 

We have displayed explicitly the dependence of the ac- 
tion on the links making up a particular plaquette. Each 
Kk matrix is the sum of five staples. The results are 

Z(.y,P) = Cc.(r) (? 
3 (23 + 1)4 

(19) 

Pulling this together, we get the result 

= wmw~rll~=~ J[ 1 RdUl e-’ (20) 
Z(P>P) , 

Using the plaquette and corner integrals one can re- 
duce statistical fluctuations in the simulations signifi- 
cantly, because the measured values of plaquette and car- 
ner of Wilson loop involve many more links. 
III. DATA INTERPOLATION AND FITTING 

The goal of this work is to bring all the data on finite 
T x R sources into an economical parametrization so that 
it is comprehensible and one can easily see the trends. 
Two issues arise: (i) interpolation of six plaquette orien- 
tations since they are all defined at different space-time 
points, and (ii) guided by the data itself, find a “best” 
parametrization. 

A, Interpolation 

The six components of the flux f’“(z) are defined at 
the center of the corresponding plaquette and hence are 
all at different space-time points. To get information 
on the flux tube we need the best possible estimate of 
all components on the transverse plane defined at the 
center of the Wilson loop for both even and odd T and 
even and odd R. This leads to a rather complex pattern 
of neighbors and nearest neighbors. Getting plaquettes 
with six orientations to agree among themselves where 
best to talk to each other under these circumstances is 
not as simple as it sounds. In order to combine them we 
employed a four-dimensional interpolation method that 
minimizes the variance of the estimated value of the func- 
tion. In other words, as one varies the value of each input 
pqint over, say, one standard deviation, one requires that 
the linear interpolated function be as insensitive as pos- 
sible. There is much literature on this under the name of 
Kriging [24] in mining engineering,and a two-dimensional 
version is employed in surface plot software. 

Consider a function f(z) that is given as a statistical 
variable at a set of points Zj. Suppose the mean (f(z)) 

and variance ~2~ = ((f(~j) - (f(Zj)))‘) are known. De- 

fine an estimate of the function, j(z), as the linear com- 
bination 

(21) 

where the sum is over a subset of the points, and the 
coefficients aj’s are functions of the set of points {sj} 
and the point z. Now use this estimate to evaluate the 
function at one of the given points xi and consider the 
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variance of the difference of the function f(zi) and its 
estimate f(z;): 

The sum excludes the point zi. The covariance matrix is 
defined 

2 
~,,,EI = (UC4 - (fW))(fh) - (f(4))) (23) 

The Kriging method determines the coefficients aj by 
minimizing u,” subject to a constraint; i.e., we minimize 

qaj) = O,“(tzj) + 2p c aj - 1 

(j ) 

, (24) 

where p is a Lagrange multiplier. The constraint arises 
from _the condition that when applied to all points in the 
set, f(w) underestimates f(zi) as often as it overesti- 
mates it: 

(K 
Cajf(zj) - f(Zi) 

>> 
= 0 (25) 

Using ((f(zi))) = f gives the constraint Cjaj = 1. 
&VX the coefficients are given by the equations 

P=l. 
(26) 

We want to apply this to interpolate f(r) at a general 
point. The aj’s are determined from the covariance ma- 
trix at the general point. Since the aj’s are independent 
of the overall normalization of the covariance matrix and 
the relevant property is how the covariance matrix varies 
with distance between the two arguments, so in practical 
applications one assumes that the covariance matrix falls 
as a function of distance, going to zero at large separa- 
tions. 

Our choice is 

dj,nj, - exp(-li -a/T) (27) 

One can easily check that if one chose the set {sj} to 
include the point 26, then the corresponding ai = 1, and 
all other aj’s equal zero. For a point near one of the zj, 
the corresponding aj = 1 dominates. Since we have an 
ad hoc ansatz for the covariance matrix, the actual errors 
in our data do not enter in the interpolation. In fact this 
is just a method of linear interpolation which weighs the 
nearby points more than the far points which is divorced 
from its statistical origins. 
The freedom in this method is in the choice of neigh- 
boring points and the value of the correlation length 7. 
Our criterion was to keep the correlation parameter 7 as 
small as possible while at the same time interpolating 
in a way that did not introduce obvious irregularities of 
the order of a lattice spacing on accurate data sets with 
minimal fluctuation. We found T N the lattice spacing 
and a radius that included one or two dozen points in the 
four-dimensional neighborhood of the interpolated point. 
The errors were calculated by linearly interpolating the 
errors from the neighboring points. This overestimates 
the errors since it assumes that the values used to in- 
terpolate are completely correlated. Assuming they are 
completely uncorrelated, and then interpolating the vari- 
ance gives an error typically less than half of the linearly 
interpolated errors. Since we do not know the covariance 
matrix we took the worst case. 

Using this method we filled in every point at the half 
lattice spacing for each component which then allowed 
us to combine any components. Figures 2 and 3 give 
surface plots of the interpolated data for a Wilson loop of 
2’ = 7 and R = 5 with 0 = 2.4. Shown are two sections, 
one through the two quarks and the second on a plane 
midway between the two quarks to show the flux tube 
profile. Errors tend to be fairly constant for a particular 
R x T data set. Ripples in the background indicate the 
size of the scatter. 

Figure 2 shows the electric and magnetic components 
$E;, -;B;, $E;, and -;B;. From these plots we can 
see that only the electric components have prominent 
peaks around the quarks, and the two transverse compo- 
nents ‘ET and -iBI, are essentially the same. These 
two cb;ponents cancel in calculating the energy and add 
in the action. They are the widest of the four profiles and 
hence the action has a wider profile than the energy. The 
“shoulder” in Fig. 2(a) is an artifact that remains after 
tuning the interpolation parameters for the best overall 
performance. This artifact is not apparent when all six 
components are combined in the pictures that follow. 

Figure 3 shows the action and energy for the same pa- 
rameters as above. The peaks around the quarks rise 
above the background equally in the energy and action 
since they come predominantly ticm the electric compo- 
nents. The Michael sum rules confirm this behavior as 
described in the earlier paper [9]. The flux tube profiles 
for action and energy are quite different. Note the large 
cancellation in the energy compared to the action and 
the resulting difficulty in measuring the former. Rota- 
tional symmetry is reasonably well restored in the action 
profiles, but there are large lattice artifacts in the energy 
profiles. 

B. Fit to proflle function 

The basic parameters we are interested in are the peak 
value and widths of the flux density of the energy and 
action. Obtaining good data on the second moment of 
the profile in order to determine its width is problematic. 
The profiles fall sharply and the fourth moment needed 
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FIG. 2. Surface plots of electric and magnetic components. For each component two sections are shown, one is on the 
longitudinal plane containing the qr~ pair, another is on the transverse plane midway between the 44 pair, (a) and (b) are for 

1 fEi, (c) and (d) for ;B;, (e) and (f) for 5E :, (g) and (h) for -SB:. The data were measured on the Wilson loop with 2’ = 7, 
R = 5, and 0 = 2.4. 

FIG. 3. Surface plots of energy and action, similar to Fig. 2, and obtained’from the same data set. (a) and (,b) are for the 
action density, (c) and (d) for the energy density. 
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TABLE I. The fitting parameters for the action distributions with 0 = 2.3 and various Wilson loop sizes, ‘2’ and R. For each 
loop size we list in order the values of the three parameters, A in GeV/fm3, B in fm, and D in fm. The last value in each case 
gives the integration of the area under the curve in GeV/fm. This table can be filled in by using the R c) T symmetry. 

T 3 4 5 6 7 8 
R 
3 53.0(l) ,47.9(l) 44.9(2) 43.4(3) 42.1(5) 40.4(9) 

0.1328(2) 0.1495(4) 0.1597(6) 0.167(l) 0.172(2) 0.176(4) 
0.1041(2) 0.1105(3) 0.1175(6) 0.121(l) 0.130(2) 0.136(4) 
6.58(3) 7X(5) 7.69(8) 8.05(14) 8.4(3) 8.6(5) 

4 41.7(l) 38.6(2) 37.7(5) 36.0(10) 34.0(10) 
0.1729(5) 0.189(l) 0.196(3) 0.198(5) 0.198(8) 
0.1177(4) 0.123(l) 0.135(2) 0.149(5) 0.153(9) 
7.95(6) 8.55(14) 9.2(3) 9.7(6) 9.0(10) 

5 34.5(3) 34.6(7) 35.0(10) 42.0(30) 
0.210(3) 0.213(5) 0.23(l) 0.20(Z) 
0.107(l) 0.128(3) 0.17(l) 0.16(2) 
8.5(2) 9.3(6) 12.0(20) 12.0(30) 

6 31.0(10) 39.0(40) 
0.22(l) 0.19(2) 
0.058(S) 0.036(4) 
6.7(8) 7.0(10) 

TABLE II. The fitting parameters for the energy distributions with 0 = 2.3 and various Wilson loop sizes, T and R. Further 
definitions are given in Table I. This table is not symmetric in R and T; the violations measure the transverse component 
contribution to the energy. 

T 3 4 5 6 7 8 
R 
3 24.1(l) 18.4(l) 16.0(Z) 14.1(4) 13.8(6) 13.0(10) 

0.0813(4) 0.0897(S) 0.0925(15) 0.091(4) 0.096(5) 0.093(9) 
0.0787(5) 0.0817(g) .0.0878(18) 0.092(4) 0.085(6) 0.088(10) 
1.33(2) 1.17(3) 1.13(5) 1.02(10) 0.98(14) 0.92(22) 

4 17.7(l) 13.2(2) 10.4(3) 9.0(6) 8.0(1,0) 7.0(10) 
0.094(l) 0.104(l) 0.109(4) 0.115(9) 0.12(2) 0.12(l) 
0.088(1) 0.093(2) 0.115(6) 0.112(12) OSO(2) 0.020(2) 
1.28(3) 1.12(4) 1.13(11) 1.0(2) 0.8(4) 0.47(14) 

5 15.6(2) 10.8(4) 7.8(4) 6.0(20) 3.0(10) 
0.0924(17) 0.105(4) 0.12(l) 0.14(7) 0.20(S) 
0.097(2) 0.102(S) 0.16(3) 0.024(6) 
1.21(6) 0.99(11) 1.3(3) 

6 13.2(4) 9.0(6) 6.0(10) 5.0(20) 
0.100(4) 0.118(g) 0.13(3) 0.2(l) 
O.lOS(5) 0.099(6) 0.11(3) 0.04(2) 
1.21(12) 0.93(18) 

7 12.3(7) 8.2(40) 4.0(20) 
0.095(8) 0.12(Z) 0.10(3) 
0.115(14) 0.14(5) 0.14(8) 
1.16(23) 1.2(6) 

8 10.5(8) 8.0(10) 
0.098(5) 0.15(Z) 
~0.137(12) 0.21(7) 
1.2(6) 
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to estimate error would be sampling only large distances 
from the axis where the signal-to-noise is small. Instead 
we fitted the energy and action density in the plane at 
the midpoint between 4 and q using the function 

f(rJJ = aexp(-JcZ+ (Tl/by) 

or rewriting, in terms of the width at half maximum, B, 

f(~-L) = A8 exp[- C2 + (2Cln2 + 11?2)(~~/~)2] 

(29) 

The peak value A and the width B are determined for 
each of 70 cases of different loop sizes and values of 0. 
(We used Minuit to determine the fit and errors.) For 
the third parameter we chose the decay length of the 

tail of this function, D = B/ 
7 (2C ln2 + In 2). This 

parameter was less well determined. We attempted to 
include an additive constant to the function since our 
sum rule paper gave evidence for it. However this gave 
too much freedom to the fit and gave unstable answers. 
We also tried a Gaussian plus background constant and 
this did not fit nearly as well as the function chosen. In 
conclusion, the data are not good enough to determine 
four parameters. There is still some ambiguity as to how 
to assign parameters to this form. But we found the 
peak value A and width at half maximum B are well 
determined. The exponential falloff of this function is 
more difficult to pin down. It perhaps is modeling a true 
exponential falloff plus possibly a background which we 
believe is there due to the fact that we are measuring the 
flux relative to a reference point that is not at infinity. 

The modeling of these data with a x2 criterion is not 
applicable because the fitting functions cannot fit the az- 
imuthal irregularities arising from the cubic symmetry. 
This is pronounced for small R and T where the error 
bars are quite small. We must keep the number of param- 
eters small in order to be able to make predictions and 
modeling this breaking of axial symmetry is not viable. 
We did a least-squares fit to average out these angular 
irregularities. Technically it was essentially the same as 
a x2 fit since the errors are almost constant a&ass the 
profile giving equal weight to all points. However, x2 is 
not a quality criterion and we must find a new one which 
is applicable. Minuit was used to determine the parame- 
ters and the output covariance matrix. We did not have 
input off-diagonal covariance matrix elements at our dis- 
posal because of the limitations in data handling of the 
Monte Carlo. 

We tested the quality of the fit by fitting to subsets of 
the input points and looking ‘for a drift in the parame- 
ters. We believe the fit is modeling the data well because 
of the stability of the numbers over changing the set of 
points used in the fit. We tried many functional forms as 
indicated above and the form we settled on had drift in 
TABLE III. The fitting parameters for the action distributions with fi = 2.4 and various Wilson loop sizes, T and R. Further 
definitions are eiven in Table I. 

\T 3 4 5 6 7 8 9 
R\ 
3 103.3(l) 87.6(l) 77.7(Z) 72.4(3) 69.7(4) 67.1(5) 65.0(10) 

0.0947(l) 0.1065(Z) 0X56(3) 0.1218(4) 0X249(6) 0.128(l) 0.132(Z) 
0.0796(l) 0.0874(2) 0.0938(3) 0.0970(4) 0.1001(6) 0.102(l) 0.098(2) 
6.87(Z) 7.22(3) 7.45(4) 7.58(6) 7.68(g) 7.76(13) 7.7(3) 

4 69.42(9) 58.8(l) 53.8(2) 
0.1262(2) 0.1427(3) 0.1523(6) 
0.0970(2) 0.1023(3) 0.1066(5) 
7.60(3) 7.81(5) 7.99(7) 

5 4.87(2) 44.6(3) 
0.1653(6) 0.178(l) 
0.1101(5) 0.120(l) 
8.22(8) 8.64(15) 

50.3(3) 
0.160(l) 
0.104(l) 
7.9(l) 
40.8(4) 
1.187(2) 
0.127(2) 
8.7(3) 

49.0(4) 
0.162(l) 
0.111(l) 
8.11(17) 
40.2(7) 
0.186(4) 
0.151(6) 
9.2(5) 

49.0(10) 
0.165(5) 
0.119(5) 

8.7(6) 
41.(20) 
0.19(l) 
0.10(l) 
8.2(1.2) 

6 39.3(4) 37.3(S) 38.0(3) 27.0(20) 
0.195(Z) 0.204(5) 0.22(Z) 0.28(3) 
0.121(2) 0.134(4) 0.18(3) 0.034(3) 
8.7(3) 9.1(5) 12.0(20) 9.7(1.7) 

7 32.0(Z) 24.0(30) 
0.26(l) 0.23(3) 
0.31(2) 0.27(3) 
9.4(9) 5.7(1.5) 
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the parameter values which was comparable or smaller 

than the scatter as one increased radiuS for a wide range 
of R and ‘2’. The scatter was comparable to the Mimit 

errors. We determined the parameters using nine sets of 

points, choosing the interior of circles of radius 1.5~~ to 
5.5a. 

Our complete fitting results are shown in Tables I-VI 
for action and energy distributions. The four numbers 

for each loop size are the peak value, A in GeV/f&, 

the width at half maximum, B in fm, the exponential 
decay length, D in fm, and the integration of the area 

under the cwve to give the string tension in GeV/fm. 

As a reminder, since we are looking at the middle time 

slice and looking at the midpoint of the flux tube, these 
parameters are measured in the 2, y plane for t, t at the 

middle of the Wilson loop. The tables report the fits for 
radii 5 3.0~~ and < 3.5~. 

Figure 4 illustrates an interesting general feature of 

our data. The cluster of three points for each R and T 
corresponds to the three quantities: 
50 
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FIG. 4. Peak density for R x 2’ Wilson loop sises with 
0 = 2.4 and R = 3-6, T = 3-6. For fixed T the points 
decrease monotonically with R. Triangles: energy density foi 
R x T loop; circles: energy density for T x R loop; squares: 
11 components of E= and Ba only. 
TABLE IV. The fitting parameters for the energy distributions with 0 = 2.4 and various Wilson loop sizes, T and R. Further 
definitions are given in Tables I and II. 

T 3 4 5 6 7 8 9 
R 

3 50.4(l) 38.70) 31.5(2) 28.5(3) 26.8(4) 25.4(6) 25.0/20) 
0.0623(2) 
0.0599(2) 
1.63(l) 

35.0(2) 
0.0689(4) 
0.0696(5) 
1.45(2) 

28.4(2) 
0.070(l) 
0.076(l) 
1.31(3) 

23.9(3) 
0.071(l) 
0.085(Z) 

1.26(6) 

2X7(3) 
0.070(l) 
0.089(Z) 
1.23(5) 

20.9(6) 
0.071(2) 
0.094(5) 
1.22(9) 

22.0(20) 
0.074(7) 
0.78(11) 
1.09(27) 

0.0694(3) 
0.0624(3) 
1.47(2) 

25.0(l) 
0.0814(5) 
0.0703(5) 
1.26(2) 

18.8(2) 
0.084(Z) 
0.085(Z) 
1.16(4) 

15.1(3) 
0.095(Z) 
0.087(3) 
1.08(6) 

13.8(5) 
0.092(5) 
,0.101(S) 
1.10(14) 

12.9(7) 
0.096(6) 
0.105(11) 
1.1(2) 

14.0(20) 
0.09(2) 
O.lO(3) 
1.6(6) 

O.Oi311) 
0.067(l) 
1.33(3) 

17.7(2) 
0.084(l) 
0.087(2) 
1.12(4) 

11.7(2) 
0.097(3) 
0.106(S) 
1.02(7) 

8.6(4) 
0.108(7) 
0.117(13) 
0.91(14) 

7.3(6) 
0.107(13) 
0.13(3) 
0.87(25) 

6.0(10) 
0.106(27) 
0.12(5) 
0.7(4) 

6.0(20) 
0.16(6) 
0.06(Z) 

o.oi3jg 0.0+5,(l) 0.073(i) O.O7$6j 
0.069(l) 0.069(2) 0.073(3) 0.068(6) 
1.24(4) 1.20(6) 1.17(9) 1.16(22) 

15.0(3) 
0.092(2) 
0.084(2) 
1.00(6) 

10.2(4) 
0.101(6) 
0.108(9) 
0.94(13) 

7.2(5) 
0.12(l) 
0X(2) 
0.8(2) 

4.0(7) 
0.19(4) 
0.05(l) 
0.7(4) 

5.0(30) 
0.06(3) 

7.0(50) 
0.08(4) 
O.OlO(5) 

12.9(3) 
0.094(3) 
0.090(4) 
0.93(7) 

8.2(6) 
0.11(l) 
0.14(3) 
1.05(26) 

S.O(lO) 
0.14(4) 
0.14(S) 
0.8(5) 

12.1(5) 
0.093(6) 
0.091(S) 
0.88(13) 

8.1(S) 
0.100(9) 
0.14(3) 

5.3(1.1) 

3.1(1.5) 

12.0(20) 
0.09(2) 
0.05(l) 
0.6(3) 

7.8(1.6) 
0.15(2) 

0.8(3) 

2.5(1.6) 
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1 1 
E(T +f R) = Z(E; + Bi) - $Ef + Br) (36) 

If one turns the Wilson loop on its side, the 11 components 
are unchanged but the I components of the electric and 
magnetic fields are reversed: Ef tf -BI. Hence there 
is a sign change in the third expression compared to the 
first. The central points of the cluster are the 11 compo- 
nents only. The clustering of the points implies that the 
I components of the electric and magnetic contributions 

to energy density am approximately equal but of opposite 
sign and cancel. The width of the peak is even less sensi- 
tive to the transverse components giving essentially the 
same value for all three points. 

IV. RESULTS FOR THE GROUND STATE 

A. Extrapolation to inflnite Wilson loop time extent 

In the companion paper [9] we described the use of the 
transfer matrix eigenvalues to extrapolate the data to in- 
finite time. Similar to the potential case, the finite time 
extent of the Wilson loop W(R,T) introduces contam- 
ination of the f’“(z) by the excited states of the color 
field [i’]. From the transfer matrix representation of the 
correlation between the Wilson loop W and a plaquette 

p, 

(WP) = Z-‘Tr(7L’--TlaS~~‘2=P~~‘2aS) , (31) 

where S is the operator which excites the q4 states from 
the vacuum, and ‘& is the transfer matrix in the qq 
sector. We obtain, for any component f’” (E F), 

p = 7 + .Rle-w” + Cle-=l=P + (32) 

where F denotes true ground state average, and El 
stands for the energy gap of ‘&, which can be deter- 
mined by fitting the Wilson loops to the exponentials as 
described in Ref. 191. Formula (32) applies to any compo- 
nent (pu) and any three-space location Z of the plaquette 
P““(Z,x~). To minimize the effect of the cross terms, 10 
was always chosen at the middle of the time interval of 
the Wilson loop (hence the term e--E1T/2). For any pa- 
rameter extracted from the flux distribution f““, e.g., the 
peak density, one can use Eq. (32) to fit the parameter 
values corresponding to various Wilson loop time extents, 
and extract the asymptotic value ?= for T + co. 

A sample of the results of extrapolating is shown in 
Figs. 5, 6, and 7. We are simply trying to find the 
TABLE V. The fittine wrameters for the action distributions with a = 2.5 and various Wilson loon sizes. T and R. which 
Y. . 

is similar to Table I. 

\T 3 4 5 6 7 8 9 
R\ 
3. 301.0(10) 241.0(10) 203.0(10) 191.0(10) 178.0(20) 171.0(20) 164.0(30) 

0.0621(l) 0.0681(3) 0.0741(4) 0.0750(5) 0.0782(7) 0.079(l) 0.082(l) 
0.0511(l) 0.0574(3) 0.0626(4) 0.0682(6) 0.0699(S) 0.073(l) 0.074(Z) 
8.48(5) 8.33(8) 8.3(l) 8.4(l) 8.4(2) 8.5(3) 8.5(3) 

4 172.4(2) 135.2(7) 119.0(20) 110.0(10) 103.0(10) 96.0(20) 
0.0804(l) 0.0911(5) 0.0982(S) 0.103(l) 0.106(2) 0.111(3) 
0.0661(l) 0.0744(6) 0.081(l) 0.088(Z) 0.093(2) 0.092(3) 
8.06(3) 8.0(l) 8.17(16) 8.4(3) X.5(3) 8.3(4) 

5 101.1(S) 85.7(7) 77.2(9) i-3.0(10) 62.0(20) 
0.1111(7) 0.123(l) 0.131(2) 0.139(3) 0.148(5) 
0.0798(6) 0.085(l) 0.085(Z) 0.120(S) 0.15(7) 
8.04(13) 8.0(2) 7.9(3) 9.4(5) 8.5(7) 

6 71.2(S) 62.0(10) 63.0(10) 63.0(20) 
0.141(2) 0.159(3) 0.162(2) 0.177(4) 
0.078(l) 0.055(l) 0.0193(3) 0.0212(5) 
7.9(3) 7.7(5) i-.5(3) 9.0(5) 

7 56.0(20) S&0(20) 
0.172(6) 0.158(4) 
0.052(Z) 0.0189(5) 
7.9(S) 6.6(4) 
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asymptotes of the gently decaying curves. The extrapo- 
lated values are displayed on the right (at T = 12). One 
can see for the cases R = 3,4,5 that the extrapolation 
looks reasonable for the height and half width. The data 
are deteriorating for large T for the cases of R = 6,7 
and even at R = 5 for the exponential width. Because of 
reasonable accuracy of the small T points, one can still 
make a prediction of the asymptote in some cases in spite 
of the large T scatter. All fits were done repeatedly ex- 
ploring the effect of the dropping selected points and we 
report those which showed stability. 

However, we found cases where another effect causes 
instabilities in the fit. Raw flux data commonly show 
decaying behavior with the points lying alternatively 

~~ 

slightly above and below the curve in an even-odd pat- 
tern. This is particularly apparent for small T and R and 
is a lattice artifact. The effect is much reduced in this 
analysis because the parameters represent the behavior 
of a large number of plaquettes and we further made a 
special effort to interpolate well to the value at the center 
of the Wilson loop. But the effect is not entirely absent. 
0 I2 3 4 5 5 7 8 8 10 II 12 
Mlson loop time extent 

FIG. 5. Extrapolation of action peak density to infinite 
Wilson loop time extent. The extrapolated values are plotted 
at T = 12. The data were measured on the Wilson loop of 
the size R x T with p = 2.4, for T = 3-9 and R = 3 (open 
triangles), R = 4 (solid triangles), R = 5 (solid squares), 
R = 6 (open squares), and R = 7 (solid circles). 
TABLE VI. The fitting parameters for the energy distributions with 0 = 2.5 and various Wilson loop sizes, T and R. Further 
definitions are given in Tables I and II. 

T 3 4 5 6 7 8 9 
R 

3 160.0(10) ~123.0(10). 94.0(10) 85.0(10) 79.0(20) 77.Of201 71.Of30) 

9 

0.043713) 

0.0414i3; 

0.0487(4) 

2.50(4j ' 

0.0447/51 

2.33(5j ' 

108.0(10) 
0.465(5) 

0.484(7) 

2.10(6) 

75.4(6) 
0:0570(5) 

0.0488(5) 

1.84(4) 

82.0(10) 

0.0489(S) 

0.053(l) 

1.86(S) 

54.9(S) 

0.059(l) 

0.062(Z) 

1.72(S) 

71.0(10) 

0.048(l) 

0.060(S) 

1.79(12) 

43.0(10) 

0.066(2) 
0.069(3) 

1.68(12) 

65.0(20) 

0.050(Z) 

0.060(S) 

1.66(15) 

38.0(20) 

0.066(4) 

0.071(6) 

1.5(2) 

60.0(20) 

0.048(2) 

0.063(4) 

1.59(15) 

33.9(1.5) 

0.072(4) 

0.067(5) 

1.4(2) 

55.0(30) 32.0(30) 

0.051(3) 0.074(S) 

0.061(6) 0.072(U) 

1.5(3) 1.4(4) 

0.0517(7) 

0.048(l) 

2.02(7) 

51.0(10) 
0.059(l) 

0.060(Z) 

1.54(S) 

29.2(6) 

0.070(2) 

0.070(3) 

1.22(S) 

24.0(10) 

0.080(S) 
0.088(S) 

1.4(2) 

lS.O(lO) 
0.089(S) 

0.094(17) 

1.3(3) 

17.0(20) 

0.096(14) 

0.13(5) 

1.6(5) 

15.0(30) 

0.12(3) 

0.14(S) 

1.7(S) 

0.0&(i) 
0.050(l) 

1.9(l) 

43.0(10) 
0.065(2) 

0.058(Z) 

1.4(l) 

25.0(10) 

0.071(4) 

0.078(S) 

1.16(18) 

16.0(10) 
0.09(l) 
0.975(11) 
0.93(26) 

14.0(20) 

0.081(16) 

0.077(22) 

0.77(37) 

lLO(30) 
O.lO(3) 

0.07(3) 

12.0(40) 

OSO(5) 

0.053(i) 

0.050(Z) 

1.8(l) 

,37.0(20) 
0.065(4) 

0.062(5) 

1.3(2) 

17.0(10) 

0.083(S) 

0.075(11) 

0.90(24) 

8.0(20) 
0.12(2) 

0.035(7) 

0.59(28) 

9.0(30) 

0.08(3) 

0.04(2) 

4.0(20) 
0.21(9) 
0.02(l) 

o.osi(zj 

0.052(Z) 

1.75(16) 

33.0(20) 

0.068(4) 

0.060(S) 

1.2(2) 

17.5(1.8) 

0.094(13) 

0.052(S) 

0.9(3) 

8.0(2.2) 

0.15(5) 
0.13(S) 

1.1(S) 

9.0(30) 

0.11(5) 

o.o55(3j 

0.051(3) 

1.7(2) 

28.0(30) 

0.072(S) 

0.055(7) 

1.0(3) 

16.0(20) 

0.086(16) 

0.067(16) 

0.81(41) 

6.0(1.7) 
0.16(3) 

0.7(3) 
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motivated us to look upon a:’ as a process-independent 
quantity to confront the c and b measurements l-7 with 
a unique one-parameter PT prediction.’ 

Hereafter, we fix heavy quark masses to be 

M, = 1.5 GeV, MI, = 4.75 GeV (4.1) 

(Sensitivity to the b-quark mass will be discussed below.) 

A. Fitting mean quark energies 

Figure 2 shows the quality of the fit to seven separate 
data of Table I together with the total x2 as a function of 
Ac5) in the F model with A = 0.191 (the best-fit value). 
Some explanation is in order. In this figure (and similar 
plots below) for each datum the ratio 

(4.2) 

is displayed against the right vertical scale. Dashed hor- 
izontal lines mark lu levels for each single datum. The 
two curves (which should be read out against the left 
scale) show the squared deviation of the points (4.2) from 
the median, that is, the total x’. The solid curve sums 
up all seven data, while the dash-dotted one accumulates 
the “high W” data only. The “high W” sample we define 
excluding the entries No. 1 and No. 6, which correspond 
to the quark mass-to-energy ratios 

MfE z=z Me/5 GeV .-u M&5 GeV = 4 

These two entries are subject to significant nonrelativistic 
corrections. The fact that the two fits are consistent is 
good news: It shows that the nonrelativistic effects have 
been properly taken into account”’ in the PT radiator 
(2.7). 

Figure 3 demonstrates sensitivity of the PT descrip- 
tion to the “confinement parameter.” Here we have cho- 
sen the Gs model for a change. The first thing to be 
noticed is that with the best-fit parameter C, = 2.86 one 
obtains the fame value A@) e 580 MeV, a comparable 
quality of the fit, ~2, z 0.7, and even the same dy- 
namics of each of seven data as in the above F-model 
description (Fig. 2). In the upper part of this plot, 
two marginal values of C, are also shown which corre- 
spond to one standard deviation from the total seven-fit: 
&,(2.53) = ~L~"(3.21) =x&(2.86) + 1. 

In Fig. 4 comparison is made of the quality of the fits 
within different models for the effective coupling (two 
loop, nf = 5). For each value of A, the A/C parameter 

‘In spite of the fact that such a naive approach suggests the 
same theoretical expectation for the two physically different 
data No. 3 and No. 5. 

“The relativistic version of (2.4)-(2.7) reported earlier [i’] 
failed to properly embody the “b at 32” datum No. 6. 
3.0 

2.5 

“x 
2.0 

1.0 

FIG. 2. A dependence of the F-model fit to mean energy 
losses (two-loop a”,R with nf = 5). The right scale shows the 
normalized deviation between a theoretical prediction and an 
experimental datum (4.2). Dashed lines mark the lo band. 
Solid and dash-dotted lines show the values of x2 (against 
the left scale) for all data and the high W data sample corre- 
spondingly. 

has been adjusted to minimize the error (one-parameter 
fit). The upper scale shows corresponding values of alji~ 
at LEP recalculated from a:’ with use of the relation 
(2.17b). 

It is worthwhile to notice some peculiarity of the G1 
model. This model is “too soft” in a sense that it in- 
duces the negative preasymptotic power term c( kma in 
a:‘(k), which correction suppresses azff in a relatively 
high momentum region. 

Figure 5 illustrates this peculiarity. Here the couplings 
corresponding to the best-fit A/C values for Ac5) = 580 
MeV axe compared. Solid lines (F, &a) correspond to 
x2 z 0.7. In the G1 model shown by the dash-dotted line 
(x2 z 1.2), a$ stays noticeably smaller above 1.5 GeV 
before the perturbative logarithmic regime sets up and 
all the models merge. 

As a result, to compensate for reduced radiation inten- 
sity the best-fit A value [and thus a(Mz)] within the G1 
model tends to be larger compared to “sharp” models F, 
Gz, . . 

Leaving G1 aside, we conclude that both the quality 
of the fit and the value of A the “sharp” models point at 
hardly exhibit any model dependence. From Fig. 4 (see 
also Fig. 3) we deduce 

A@‘) = 580 f- 80 MeV (4.3a) 

Being translated into the MS parameter tbis gives 

arn = 0.127 dz 0.003 (4.3b) 

The error here is purely statistical (one standard devia- 
tion). 
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we can rule out a Coulomb field as expected. Interest- 
ingly for small separations, the eyeball fit to N l/R4 is 
quite good which may be due to a Coulomb-like behavior 
at small distances. (The above argument that the width 
must grow like RZ does not apply because there is no 
string for small R.) The dielectric model 1191 predicts 
the peak density N l/R. Such a behavior would imply 

the width - Jii which is certainly possible in our data. 
We can say that the peak energy density and width are 
consistent with a constant value for large quark separa- 
tion but we cannot rule out a slow variation. The issue 
can be tightened by making use of the Michael sum rules 
[21] as we mention in the next section. 

C. Using sum rules to tighten predictions of energy 
behavior 

A consistency check on the flux distributions can be 
obtained by using the Michael sum rules 1211 for energy 
and action. 

In Ref. [9] we have shown that our data are essen- 
tially consistent with these sum rules. The one difficulty 
is the fact that the self-energy determined from the po- 
tential differs from the self-energy determined fxom the 
action sum rule. This may be due to an ambiguity in the 
definition of self-energy or possibly due to our classical 
expressions for energy and action which ignore quantum 
corrections. By taking a derivative with respect to the 
quark separation, R, this difficulty is avoided. 

Figure 10 shows the data for the ratio of the action in 
the center slice to the energy in the center slice, which 
were measured for ,0 = 2.3, 2.4, and 2.5, at various q4 
separations R. One can see that for small R the ratio is 
small; however, at large R most data show large values 
(z 10) for the ratio, but the fluctuations at large R re- 
strict us to a crude estimate. From the sum rules and Fig. 
10 we estimate that the p function, -(P&/a) E 10 & 2, 
compared to the current estimates [9,4], 7.7 f 1.0. The 

t- 

------ ----~ _-._. 

i 

-1 

FIG. 10. Ratio of integrations of action to energy densities 
on center slice; labels are similar to Fig. 8. 
0.“” 0 20 0.40 0.60 0,x 
Quark Separation (fmy “” 

FIG. 11. Ratio of widths of action to energy profiles on 
center slice; labels are similar to Fig. 8. 

asymptotic value is -51/121 = 3nzP/ll % 6.0 for 
/3 = 2.4. There is ample evidence from other measwe- 
mats that although scaling works well, asymptotic scal- 
ing is violated [25] and hence we do not expect to get the 
asymptotic value. 

An alternative approach is to as.sume the sum rules 
are correct and use them to infer information about the 
energy density from the action density, which is far easier 
to measure since relative errors are down by an order of 
magnitude. As is clear from the sum rule the action 
does not scale, yet the variation over these values of p 
is very small. An examination of Fig. 8(a) shows that 
the action for each @ teems to stabilize to a constant 
for increasing distance for the peak density and for the 
width. This is strongly supported by data for ,0 = 2.3 
and 2.4. For 0 = 2.5 the quark separation R appears to 
be too small to draw a conclusion. From these data one 
can see that the peak values seem to approach a nonzero 
finite constant at large R. We would like to use the sum 
rules to predict the behavior of the energy density. A 
constant peak energy density follows only if the widths 
of the energy and action peaks have the same behavior. 
Figure 11 shows that in fact they do. From this and 
using the sum rules we conclude that the energy density 
stabilizes to a constant value also. This conclusion is an 
argument against the dielectric model [19]. However, due 
to the limitation on the available range of R of our data 
we cannot make conclusions about logarithmic behavior 
of the flux tube width as predicted by Liischer [18]. 

D. Longitudinal profile of flux tube 

To see the profile of the whole flux tube, in Fig. .1,2 we 
plot the integrations of flux action on various transverse 
slices along the qq axis, where 2 = 0 is the location of 
one quark source, the positions of Z < 0 correspond to 
slices outside the qq pair, and the positions with Z > 0 
correspond to slices between the qp pair. Because of the 



402 HAYMAKER, SINGH, PENG, AND WOSIEK 53 
---- 

n 

z 

FIG. 12. Integrations of,action density on transverse slices 
along the qq axis. The data were measured for p = 2.4 on 
the Wilson loops extrapolated for large time for R = 3 (open 
triangles), R = 4 (solid triangles), R = 5 (solid squares), and 
R = 6 (open squares). 

symmetry of flux distribution about the midway point 
between the qcj pair, we only show the distribution from 
one end to the midpoint between the q4 pair. One can 
see that the peak values are in the neighborhood of the 
source, which is caused by the large self-energy concen- 
trated around the source. However, the flux action values 
between the qq pair are comparable to the peak values. 
This implies that the integrations of flux action on the 
transverse slice near the qq pair are not dominated by 
the self-energy contributions, although the density val- 
ues due to self-energy are large, their distribution regions 
are very narrow. This agrees with the action density dis- 
tribution shown in Fig. 3(a), where the peaks of action 
density are restricted in a narrow region at each source. 
From Fig. 12 one can also see that away from the out- 
side of the qrj sources the flux action decreases rapidly 
with the distance from the source, and almost vanishes 
at the moderate distance, R = 4a (i.e., 2 = -4). How- 
ever, the flux action between the qq pair is large, and 
is almost constant as Z increases. This agrees with the 
expectation for the flux tube formation. 

V. SUMMARY AND CONCLUSIONS 

The linear rise of the static quark potential is very well 
established [26]. This of course implies the existence of a 
flux tube. This is a critical ingredient in our understand- 
ing of confinement. In this paper, using the data gener- 
ated in simulations done a few years ago, Figs. 8 and 9 
indicate that we are able to reach perhaps the beginning 
of the flux tube plateau. The effects of the self-energies 
are just beginning to lose their importance at separations 
of about 1.0 fm. Preliminary results of this present work 
were reported in the conference proceedings [12]. 

One impediment to getting a definitive determination 
of the shape of the flux tube is the area law which sup: 
presses the signal exponentially in the area of the Wilson 
loop. Crucial to our work was the “analytic multihit” 
and other techniques, described in Sec. II, to enhance 
the signal-to-noise. There are now well-developed tech- 
niques to “fatten” the creation and annihilation legs of 
the Wilson loop and greatly increase the overlap with the 
plaquette used to sample the energy density. 

Our determination of the energy density, the lower 
points in Fig. 8, gives a rough value of about 3.0 i 1.5 
GeV/f&. However, we cannot rule out a peak density 
falling like l/R (the higher curve at large R, arbitrarily 
normalized) and a width growing like Jii as predicted by 
Adler [19]. The second curve is the Coulomb prediction 
l/R4 which fits the data nicely for small separations as 
one might expect from asymptotic freedom but has no 
relevance for large separations as described in Sec. IV. 

A comparison between the energy and action densities 
suggests a way to tighten the prediction of the energy 
5ux tube properties. Cancellations that suppress the en- 
ergy by an order of magnitude are absent in the action. 
Although the absolute errors are the same for the two 
quantities, the relative errors are much smaller for the 
action. The surface plots in Fig. 3 show that the ac- 
tion density is known much more accurately than the 
energy density. Figure 8 shows that the peak density for 
the action appears to stabilize to a constant value in the 
range of 1.0 fm. We point out that enough information 
is known about the Aux tube to infer from this that the 
energy density also stabilizes to a constant value. 

The argument is based on two results. First, the 
Michael sum rules 1231, give a fixed ratio for the integra- 
tions of the profile over the transverse plane independent 
of the qq separation R. Second, our most accurate mea- 
surement in the present work is the width at half maxi- 
mum. Figure 11 shows that the ratio of these quantities 
for the action vs energy is consistent with a constant in 
R in the range of 0.6-1.0 fm. From these two results and 
the constancy of the action density we conclude that the 
energy density of the flux tube is also a constant iride- 
pendent of R. 

Note added in proof. After this paper was submit- 
ted for publication, a paper by Bali et al. on flux tubes 
for SU(2) appeared [27]. This reference has significantly 
improved statistics over ours and reaches larger quark 
separations. separations. 

More recently a number of papers [28-311 pointed out More recently a number of papers [28-311 pointed out 
that the Michael sum rules [21] are incorrect. The general that the Michael sum rules [21] are incorrect. The general 
feature that the action is much larger than the energy in feature that the action is much larger than the energy in 
the 5ux tube is still correct. 

In the present paper, we rely on the fact that the sum 
rules predit that the ratio of the energy stored in a slice 
of the flux tube to the action stored in the flux tube is 
independent of R, the quark separation. This property 
is still true in the corrected sum rules. 
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