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Precision tests ofCPT symmetry and quantum mechanics in the neutral kaon system

John Ellis,1 Jorge L. Lopez,2,3,* N. E. Mavromatos,4,
†
andD. V. Nanopoulos2,3

1CERN Theory Division, 1211 Geneva 23, Switzerland
2Center for Theoretical Physics, Department of Physics, Texas A&M University, College Station, Texas 77843–4242

3Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, The Woodlands, Te
4Laboratoire de Physique The´orique ENSLAPP [URA 14-36 du CNRS, associe´e à l’ E.N.S de Lyon,
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We present a systematic phenomenological analysis of the tests ofCPT symmetry that are possible within
anopenquantum-mechanical description of the neutral kaon system that is motivated by arguments based on
quantum gravity and string theory. We develop a perturbative expansion in terms of the three small
CPT-violating parameters admitted in this description, and provide expressions for a complete set of
K→2p, 3p, andpl n decay observables to second order in these small parameters, and contrast this for-
malism with CPT violation within conventional quantum mechanics. We also illustrate the new tests of
CPT symmetry and quantum mechanics that are possible in the open quantum-mechanical formalism using a
regenerator. Indications are that experimental data from the CPLEAR and previous experiments could be used
to establish upper bounds on theCPT-violating parameters that are of order 10219 GeV, approaching the order
of magnitude that may be attainable in quantum theories of gravity.

PACS number~s!: 11.30.Er, 13.20.Eb, 14.40.Aq
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I. INTRODUCTION

The neutral kaon system has long served as a penetrat
probe of fundamental physics. It has revealed or illuminate
many new areas of fundamental physics, including pari
violation,CP violation, flavor-changing neutral interactions
and charm. It remains the most sensitive test of fundamen
symmetries, being the only place whereCP violation has
been observed, namely, at the level of 10218 GeV in the
imaginary part of the effective mass matrix for neutral kaon
and providing the most stringent microscopic check o
CPT symmetry within the framework of quantum mechan
ics, namely,u(mK02mK̄0)/mK0u,9310219 @1#.

It is well known thatCPT symmetry is a fundamental
theorem of quantum field theory, which follows from local-
ity, unitarity, and Lorentz invariance@2#. However, the topic
of CPT violation has recently attracted increased attentio
drawn in part by the prospect of higher-precision tests b
CPLEAR @3# and at DAFNE @4#, and in part by the renewed
theoretical interest in quantum gravity motivated by rece
developments in string theory. Some of the phenomenolo
cal discussion has been in the context of quantum mechan
@5#, abandoning implicitly or explicitly the derivation of
quantum mechanics from quantum field theory, in whic
CPT is sacrosanct. Instead, we have followed the approa
of Ref. @6#, in which a parametrization ofCPT-violating
effects is introduced via a deviation from conventional quan
tum mechanics@6,7#, believed to reflect the loss of quantum
coherence expected in some approaches to quantum gra
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@8#, notably one based on a noncritical formulation of string
theory @9#.

The suggestion that quantum coherence might be lost a
the microscopic level was made in Ref.@8#, which suggested
that asymptotic scattering should be described in terms of a
superscattering operatorS” , relating initial (r in) and final
(rout) density matrices, that does not factorize as a product o
S- andS†-matrix elements:

rout5S” r in :S”ÞSS†. ~1!

The loss of quantum coherence was thought to be a conse
quence of microscopic quantum-gravitational fluctuations in
the space-time background. Model calculations supporting
this suggestion were presented@8# as well as contested@10#.
Reference@6# pointed out that if Eq.~1! is correct for asymp-
totic scattering, there should be a corresponding effect in the
quantum Liouville equation that describes the time evolution
of the dentity matrixr(t):

]r~ t !

]t
5 i @r,H#1 idH” r, ~2!

which is characteristic of an open quantum-mechanical sys
tem. Reference@6# parametrized the non-Hamiltonian term
in the case of a simple two-state system, such as theK0-K̄0

system, presented a first analysis of its phenomenologica
consequences, and gave experimental bounds on th
nonquantum-mechanical parameters.

The question of microscopic quantum coherence has re
cently been addressed in the context of string theory using a
variety of approaches@11#. In particular, we have analyzed
this question using noncritical string theory@12#, with criti-
cality restored by nontrivial dynamics for a timelike Liou-
ville field @12,13#, which we identify with the world-sheet
cutoff and the target-time variable@7,9#. This approach leads
to an equation of the form~2!, in which probability and
energy are conserved, and the possible magnitude of the ex
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53 3847PRECISION TESTS OFCPTSYMMETRY AND QUANTUM . . .
tra term udH” u5O(E2/M Pl), whereE is a typical energy
scale of the system under discussion. The details of this
proach are not essential for the phenomenological discus
of this paper, but it is interesting to note that the experime
tal sensitivity may approach this theoretical magnitude.

It has been pointed out@14# that at least the strong versio
of the CPT theorem must be violated in any theory de
scribed by a nonfactorizing superscattering matrixS” ~1!,
which leads to a loss of quantum coherence. This is also
of the parametrization proposed by Ref.@6#, which violates
CPT in an intrinsically nonquantum-mechanical way. Mo
detailed descriptions of phenomenological implications a
improved experimental bounds were presented in Ref.@15#.
These results were based on an analysis ofKL andKS de-
cays, and did not consider the additional constraints obta
able from an analysis of intermediate-time data. A systema
approach to the time evolution of the density matrix for th
neutral kaon system was proposed in Ref.@16#, and prelimi-
nary estimates of the improved experimental constraints
the nonquantum-mechanical parameters were presen
Similar results were presented later in Ref.@17#, which also
discussed correlation measurements possible at af factory
such as DAFNE.

The main focus of this paper is to present detailed form
las for the time dependences of several decay asymme
that can be measured by the CPLEAR and DAFNE experi-
ments, using the systematic approach proposed in Ref.@16#
and described in Sec. III. In particular, we discuss in Sec.
the asymmetries known asA2p , A3p , AT , ACPT , and
ADm , whose definitions are reviewed in Sec. II. We show
Sec. V that experiments with a regenerator can provide u
ful new measurements of the nonquantum-mechan
CPT-violating parameters. Then, in Sec. VI we derive illu
trative bounds on the nonquantum-mechanical parame
from all presently available data. Section VII contains a br
discussion of the extension of the formalism of Ref.@6# to
the correlation measurements possible atf factories such as
DAFNE. We emphasize the need to consider a general
rametrization of the two-particle density matrix, that cann
be expressed simply in terms of the previously introduc
single-particle density matrix parameters, and enables ene
conservation to be maintained, as we have demonstra
@7,9# in our noncritical string theory approach to the loss
quantum coherence. In Sec. VIII we review our conclusio
contrasting our approach withCPT violation because of
kaon mass or lifetime differencesdM ,dG within conven-
tional quantum mechanics@18# and with directCPT viola-
tion in 2p andpl n decay amplitudes@19#, and discuss the
prospects for future experimental and theoretical work. F
mulas for the CPLEAR observables in the context of sta
dard quantum-mechanicalCPT violation @5# are collected in
Appendix A, where bounds on the corresponding parame
are also obtained. Lastly, complete formulas for the seco
order contributions to the density matrix in our quantum
mechanical-violating framework are collected in Append
B.

II. FORMALISM AND RELEVANT OBSERVABLES

In this section we first review aspects of the modificatio
~2! of quantum mechanics believed to be induced by qu
ap-
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tum gravity @6#, as argued specifically in the context of a
noncritical string analysis@7,9#. This provides a specific form
for the modification~2! of the quantum Liouville equation
for the temporal evolution of the density matrix of observ-
able matter@7,9#

]

]t
r5 i @r,H#1 idH” r, dH” [ġiGi j @g

i ,r# ~3!

where the coordinates$gi% parametrize the space of possible
string models and the extra termdH” is such that the time
evolution has the following basic properties.

~i! The total probability isconservedin time:

]

]t
Trr50 ~4!

~ii ! The energyE is conserved on the average,

]

]t
Tr~Er!50 ~5!

as a result of therenormalizability of the world-sheets
model specified by the parametersgi which describe string
propagation in a string space-time foam background.

~iii ! The von Neumann entropyS[2kBTrr lnr increases
monotonically with time,

]

]t
S>0, ~6!

which vanishes only if one restricts one’s attention to critical
~conformal! strings, in which case there is no arrow of time
@7,9#. However, we argue that quantum fluctuations in the
background space time should be treated by including non-
critical ~Liouville! strings@12,13#, in which case~6! becomes
a strict inequality. This latter property also implies that the
statistical entropySst[Trr2 is also monotonically increasing
with time, pure states evolve into mixed ones, and there is an
arrow of time in this picture@7#.

~iv! Correspondingly, the superscattering matrixS” , which
is defined by its action on asymptotic density matrices,

rout5S” r in ~7!

cannot be factorized into the usual product of the Heisenberg
scattering matrix and its Hermitian conjugate,

S”ÞSS†, S5e2 iHt , ~8!

with H the Hamiltonian operator of the system. In particular,
this property implies thatS” has no inverse, which is also
expected from the property~iii !.

~v! The absence of an inverse forS” implies thatstrong
CPT invariance of the low-energy subsystem is lost, accord-
ing to the general analysis of@14,9#.

It should be stressed that, although for the purposes of the
present work we keep the microscopic origin of the
quantum-mechanics-violating terms unspecified, it is only in
the noncritical string model of Ref.@7#, and the associated
approach to the nature of time, that a concrete microscopic
model guaranteeing the properties~i!–~v! has so far emerged
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naturally. Within this framework, we expect that the strin
s-model coordinatesgi obey renormalization-group equa
tions of the general form

ġi5b iMPl:ub i u5OS E2

MPl
2 D ~9!

where the dot denotes differentiation with respect to the t
get time, measured in string (MPl

21) units, andE is a typical
energy scale in the observable matter system. SinceGi j and
gi are themselves dimensionless numbers of order unity,
expect that in general

udH” u5OS E2

MPl
D . ~10!

However, it should be emphasized that there are expecte
be system-dependent numerical factors that depend on
g
-

ar-

we

d to
the

underlying string model, and thatudH” u might further be sup-
pressed by (E/MPl)-dependent factors, or even vanish. Nev-
ertheless, Eq.~10! gives us an order of magnitude to aim for
in the neutral kaon system, namely,O„(LQCD or ms)

2/
MPl…;10219 GeV. We note in passing that a
phenomenologically-distinct approach toCPT violation in
the context of string theory is taken in@18#, where it is ar-
gued that a spontaneous violation ofCPTmay yield nonzero
values ofdM anddG.

In the formalism of Ref.@6#, the extra~non-Hamiltonian!
term in the Liouville equation forr can be parametrized by a
434 matrix dH” ab , where the indicesa,b, . . . enumerate
the Hermitians matricess0,1,2,3, which we represent in the
K1,2 basis. We refer the reader to the literature@6,15# and
Appendix A for details of this description, noting here the
following forms for the neutral kaon Hamiltonian:
H5S M2
i

2
G2ReM121

i

2
ReG12

1

2
dM2

i

4
dG2 i ImM122

1

2
ImG12

1

2
dM2

i

4
dG1 i ImM122

1

2
ImG12 M2

i

2
G1ReM122

i

2
ReG12

D ~11!
e

in theK1,2 basis, or

Hab5S 2G 2
1

2
dG 2ImG12 2ReG12

2
1

2
dG 2G 22 ReM12 22 ImM12

2ImG12 2 ReM12 2G 2dM

2ReG12 22 ImM12 dM 2G

D
~12!

in the s-matrix basis. As discussed in Ref.@6#, we assume
that the dominant violations of quantum mechanics conse
strangeness, so thatdH” 1b 5 0, and thatdH” 0b 5 0 so as to
conserve probability. SincedH” ab is a symmetric matrix, it
follows that alsodH” a05dH” a150. Thus, we arrive at the
general parametrization

dH” ab5S 0 0 0 0

0 0 0 0

0 0 22a 22b

0 0 22b 22g

D ~13!

where, as a result of the positivity of the Hermitian dens
matrix r @6#,

a,g.0, ag.b2. ~14!

We recall @15# that theCPT transformation can be ex-
pressed as a linear combination ofs2,3 in the K1,2 basis:
CPT5s3cosu1s2sinu, for some choice of phaseu. It is
rve

ity

apparent that none of the nonzero terms}a,b,g in dH” ab
~13! commutes with theCPT transformation. In other words,
each of the three parametersa, b, g violatesCPT, leading
to a richer phenomenology than that in conventional quan-
tum mechanics. This is because the symmetricdH” matrix
has three parameters in its bottom right-hand 232 subma-
trix, whereas theh matrix appearing in the time evolution
within quantum mechanics@5# has only one complex
CPT-violating parameterd,

d52
1

2

1
2 dG1 idM
1
2 uDGu1 iDm

, ~15!

wheredM anddG violateCPT, but do not induce any mix-
ing in the time evolution of pure state vectors@15#. The
parametersDm5ML2MS and uDGu5GS2GL are the usual
differences between mass and decay widths, respectively, of
KL andKS states. A brief review of the quantum-mechanical
formalism is given in Appendix A. For more details, we refer
the reader to the literature@18,19#. The above results imply
that the experimental constraints@1# onCPT violation have
to be rethought if one allows a modification of quantum me-
chanics, as discussed here. As we shall discuss later on, ther
are essential differences between quantum-mechanicalCPT
violation and the nonquantum-mechanicalCPT violation in-
duced by the effective parametersa,b,g @6#.

Useful observables are associated with the decays of neu-
tral kaons to 2p or 3p final states, or semileptonic decays to
p ln. In the density-matrix formalism introduced above, their
values are given by expressions of the form@6#
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^Oi&5Tr@Oir#, ~16!

where the observablesOi are represented by 232 Hermitian
matrices. For future use, we give their expressions in
K1,2 basis:

O2p5S 0 0

0 1D , O3p}S 1 0

0 0D , ~17!

Op2 l1n5S 1 1

1 1D , Op1 l2n̄5S 1 21

21 1 D , ~18!

which constitute a complete Hermitian set. As we discuss
more detail later, it is possible to measure the interfere
betweenK1,2 decays intop

1p2p0 final states with different
the

in
ce

CP properties, by restricting one’s attention to part of the
phase space V, e.g., final states with
m(p1p0).m(p2p0). In order to separate this interference
from that because ofKS,L decays into final states with iden-
ticalCP properties, because ofCP violation in theK1,2mass
matrix or in decay amplitudes, we consider@20# the differ-
ence between final states withm(p1p0).m(p2p0) and
m(p1p0),m(p2p0). This observable is represented by
the matrix

O3p
int 5S 0 K

K * 0 D , ~19!

where
K[
@*m~p1p0!.m~p2p0!dV2*m~p1p0!,m~p2p0!dV#A2~ I 3p52!A1~ I 3p51!

*dVuA1~ I 3p51!u2
, ~20!
s

-

whereK is expected to be essentially real, so that theO3p
int

observable provides essentially the same information
Op2 l1n2Op1 l2n̄ .

In this formalism, pureK0 or K̄0 states, such as the one
used as initial conditions in the CPLEAR experiment@3#, are
described by the density matrices

rK05
1

2 S 1 1

1 1D , r K̄05
1

2 S 1 21

21 1 D . ~21!

We note the similarity of the above density matrices~21! to
the semileptonic decay observables in~18!, which is because
of the strange quark (s) content of the kaonK0

{ s̄→ūl1n, K̄0{s→ul2n̄, and our assumption of the va
lidity of the DS5DQ rule.

In this paper we shall apply the above formalism to com
pute the time evolution of certain experimentally observ
quantities that are of relevance to the CPLEAR experim
@3#. These are asymmetries associated with decays of an
tial K0 beam as compared to corresponding decays of
initial K̄0 beam:

A~ t !5
R~K̄ t50

0 → f̄ !2R~Kt50
0 → f !

R~K̄ t50
0 → f̄ !1R~Kt50

0 → f !
, ~22!

whereR(K0→ f )[Tr@Ofr(t)# denotes the decay rate int
the final statef , given that one starts from a pureK0 at
t50, whose density matrix is given in~21!, and
R(K̄0→ f̄ )[Tr@Of̄ r̄(t)# denotes the decay rate into the co
jugate statef̄ , given that one starts from a pureK̄0 at t50.

Let us illustrate the above formalism by two example
We may compute the asymmetry for the case where there
identical final statesf5 f̄52p, in which case the observabl
is given in ~17!. We obtain
as

s

-

-
ed
ent
ini-
an

o

n-

s.
are
e

A2p5
Tr@O2pr̄~ t !#2Tr@O2pr~ t !#

Tr@O2pr̄~ t !#1Tr@O2pr~ t !#
5
Tr@O2pDr~ t !#

Tr@O2pSr~ t !#
,

~23!

where we have defined: Dr(t)[r̄(t)2r(t) and
Sr(t)[r̄(t)1r(t). We note that in the above formalism we
make no distinction between neutral and charged two-pion
final states. This is because we neglect, for simplicity, the
effects of e8. Since ue8/eu&1023, this implies that our
analysis of the new quantum-mechanics-violating parameter
must be refined if magnitudes&e8uDGu.1026uDGu are to
be studied.

In a similar spirit to the identical final state case, one can
compute the asymmetryAT for the semileptonic decay case,
where f5p1l2n̄Þ f̄5p2l1n. The formula for this observ-
able is

AT~ t !5
Tr@Op2 l1nr̄~ t !#2 Tr@Op1 l2 n̄ r~ t !#

Tr@Op2 l1nr̄~ t !#1 Tr@Op1 l2 n̄ r~ t !#
. ~24!

Other observables are discussed in Sec. IV.
To determine the temporal evolution of the above observ

ables, which is crucial for experimental fits, it is necessary to
know the equations of motion for the components ofr in the
K1,2 basis. These are@6,15#1

ṙ1152GLr111gr2222 Re@~ ImM122 ib!r12#, ~25!

ṙ1252~G1 iDm!r1222ia Imr12

1~ ImM122 ib!~r112r22!, ~26!

ṙ2252GSr221gr1112 Re@~ ImM122 ib!r12#, ~27!

1Since we neglecte8 effects and assume the validity of theDS
5DQ rule, in what follows we also consistently neglect ImG12 @4#.
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where, for instance,r may representDr or Sr, defined by
the initial conditions

Dr~0!5S 0 21

21 0 D , Sr~0!5S 1 0

0 1D . ~28!

In these equations, GL5(5.1731028 s)21 and
GS5(0.8922310210 s)21 are the inverseKL and KS life-
times, G[(GS1GL)/2, uDGu[GS2GL5(7.36460.016)
310215 GeV, and Dm50.535131010 s2153.522310215

GeV is theKL2KS mass difference. Also, theCP impurity
parametere is given by

e5
ImM12

1
2 uDGu1 iDm

, ~29!

which leads to the relations
t

n
-

ImM125
1

2

uDGuueu
cosf

, e5ueue2 if:tanf5
Dm

1
2 uDGu

,

~30!

with ueu'2.231023 andf'45° the ‘‘superweak’’ phase.
These equations are to be compared with the correspon

ing quantum-mechanical equations of Refs.@5,15# which are
reviewed in Appendix A. The parametersdM and b play
similar roles, although they appear with different relative
signs in different places, because of the symmetry ofdH” as
opposed to the antisymmetry of the quantum-mechanica
evolution matrixH. These differences are important for the
asymptotic limits of the density matrix, and its impurity. In
our approach, one can readily show that, at larget, r decays
exponentially to@15#
rL'S 1 ~ ueu1 i2b̂ cosf!eif

~ ueu2 i2b̂ cosf!e2 if ueu21ĝ24b̂2cos2f24b̂ueusinf D , ~31!

where we have defined the following scaled variables

â5a/uDGu, b̂5b/uDGu, ĝ5g/uDGu. ~32!

Conversely, if we look in the short-time limit for a solution of Eqs.~25!–~27! r11!r12!r22, we find @15#

rS'S ueu21ĝ24b̂2cos2f14b̂ueusinf ~ ueu1 i2b̂ cosf!e2 if

~ ueu2 i2b̂ cosf!eif 1
D . ~33!
-
e

e

These results are to be contrasted with those obtained wi
conventional quantum mechanics,

rL'S 1 e*

e ueu2D , rS'S ueu2 e

e* 1D , ~34!

which, as can be seen from their vanishing determina2

correspond to pureKL andKS states, respectively. In con
trast,rL ,rS in Eqs.~31! and ~33! describe mixed states. As
mentioned in the Introduction, the maximum possible ord
of magnitude for uau, ubu, or ugu that we could expect
theoretically isO(E2/MPl)5O„(LQCD orms)

2/MPl…;10219

GeV in the neutral kaon system.
To make a consistent phenomenological study of the va

ous quantities discussed above, it is essential to solve
coupled system of equations~25!–~27! for intermediate
times. This requires approximations in order to get analy
results@16#, as we discuss in the next section.

2A pure state will remain pure as long as Trr25(Trr)2 @6#. In the
case of 232 matrices Trr25( Trr)222detr, and therefore the pu-
rity condition is equivalently expressed as detr50.
hin

t,

er

ri-
the

tic

III. PERTURBATION THEORY

The coupled set of differential equations~25!–~27! can be
solved numerically to any desired degree of accuracy. How
ever, it is instructive and adequate for our purposes to solv
these equations in perturbation theory inâ, b̂, ĝ, and
ueu, so as to obtain convenient analytical approximations
@16#. Writing

r i j ~ t !5r i j
~0!~ t !1r i j

~1!~ t !1r i j
~2!~ t !1•••, ~35!

where r i j
(n)(t) is proportional to âpab̂pbĝpgueupe, with

pa1pb1pg1pe5n, we obtain a set of differential equa-
tions at each order in perturbation theory. To zeroth order w
get

r11
~0!~ t !5r11~0!e2GLt, ~36!

r22
~0!~ t !5r22~0!e2GSt, ~37!

r12
~0!~ t !5r12~0!e2~G1 iDmt!, ~38!

where, in the interest of generality, we have left the initial
conditions unspecified. At higher orders, the differential
equations are of the form
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ṙ i j
~n!~ t !52Ar i j

~n!~ t !1(
i 8 j 8

8 r i 8 j 8
~n21!

~ t !, ~39!

where(8 excludes ther i j term. Multiplying by the integrat-
ing factoreAt, one obtains

d

dt
@eAtr i j

~n!~ t !#5eAt(
i 8 j 8

8 r i 8 j 8
~n21!

~ t !, ~40!

which can be integrated in terms of the known functions
the (n21)th order, and the initial conditionr i j

(n)(0)50, for
n>1: i.e.,

r i j
~n!~ t !5e2AtE

0

t

dt8 eAt8(
i 8 j 8

8 r i 8 j 8
~n21!

~ t8!. ~41!

Following this straightforward~but tedious! procedure,
we obtain the set of first-order expressions

r11
~1!~ t !5r22~0!ĝ@e2GLt2e2GSt#

1
2ueu
cosdf

ur12~0!u@e2Gtcos~Dmt1f2df2f12!

2e2GLtcos~f2df2f12!#, ~42!

r22
~1!~ t !5r11~0!ĝ@e2GLt2e2GSt#

1
2ueu
cosdf

ur12~0!u@e2Gtcos~Dmt2f2df2f12!

2e2GStcos~f1df1f12!#, ~43!

r12
~1!~ t !5

2â

tanf
ur12~0!ue2Gt@e2 if12sin~Dmt!

2~Dmt!e2 iDmt1 if12#1
ueu

cosdf
$r11~0!ei ~df2f!

3@e2GLt2e2~G1 iDm!t#1r22~0!ei ~df1f!

3@e2GSt2e2~G1 iDm!t#%. ~44!

In these expressions,f125Arg@r12(0)#, and we have de-
fined

tandf52
2b̂ cosf

ueu
. ~45!

Note that genericallyall three parameters (â,b̂,ĝ) appear to
first order. However, in the specific observables to be d
cussed below, this is not necessarily the case because o
particular initial conditions that may be involved. Thus, the
general expressions may be useful in the design of exp
ments that seek to maximize the sensitivity to th
CPT-violating parameters. To obtain the expressions
at

is-
f the
se
eri-
e
for

Dr andSr, one simply needs to insert the appropriate set o
initial conditions @Eq. ~28!#. Through first order we obtain
the ready-to-use expressions

Dr11
~011!~ t !5

2ueu
cosdf

@2e2Gtcos~Dmt1f2df!

1e2GLtcos~f2df!#, ~46!

Dr22
~011!~ t !5

2ueu
cosdf

@2e2Gtcos~Dmt2f2df!

1e2GStcos~f1df!#, ~47!

Dr12
~011!~ t !52e2~G1 iDm!t2

2â

tanf
e2Gt@sin~Dmt!

2~Dmt!e2 iDmt#, ~48!

Sr11
~011!~ t !5e2GLt1ĝ@e2GLt2e2GSt#, ~49!

Sr22
~011!~ t !5e2GSt1ĝ@e2GLt2e2GSt#, ~50!

Sr12
~011!~ t !5

ueu
cosdf

$ei ~df2f!@e2GLt2e2~G1 iDm!t#

1ei ~df1f!@e2GSt2e2~G1 iDm!t#%. ~51!

For most purposes, first-order approximations suffic
However, in the case of theA2p andR2p observables, some
second-order terms in the expression forr22 are required.
For example,Dr22

(2) introduces the firsta dependence in the
numerator ofA2p , whereasSr22

(2) cuts off the otherwise ex-
ponential growth with time of the numerator. The complet
second-order expressions forr11,22,12are collected in Appen-
dix B.

IV. ANALYTICAL RESULTS

We now proceed to give explicit expressions for the tem
poral evolution of the asymmetriesA2p , A3p , AT ,
ACPT , and ADm that are possible objects of experimenta
study, in particular, by the CPLEAR Collaboration@3#.

A. A2p

Following the discussion in Sec. II, one obtains, for thi
asymmetry,

A2p~ t !5
Dr22~ t !

Sr22~ t !
, ~52!

with Dr22 andSr22 given through first order in Eqs.~47!
and ~50!; second-order contributions can be obtained from
Eq. ~B16!. The result for the asymmetry, to second order i
the small parameters, can be written most concisely as
A2p~ t !5

F2ueu
cos~f1df!

cosdf
1DX1G1e~GS2GL!tDX22e1/2 ~GS2GL!tF 2ueu

cosdf
cos~Dmt2f2df!1DX3G

@12ĝ1SX1#1e~GS2GL!t@ ĝ1SX2#2e1/2 ~GS2GL!tSX3
, ~53!
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where the second-order coefficientsDX1,2,3 andSX1,2,3 are
given by

DX152ueuĝ
cos~f1df!

cosdf
28âueusinf cosf

sin~f1df!

cosdf
,

~54!

DX252ueuĝ
cos~f2df!

cosdf
, ~55!

DX354ueuĝ
cosf

cosdf
cos~Dmt2df!1

4ueuâ
tanf

sin~Dmt2f!

24ueuâ
cosf

cosdf F tuDGu
2 cosf

cos~Dmt2f2df!

2cos~Dmt22f2df!G , ~56!

FIG. 1. The time-dependent asymmetryA2p for various choices
of theCPT-violating parameters:~a! dependence onâ, ~b! depen-
dence onb̂, ~c! dependence onĝ. The unspecified parameters ar
set to zero. The curve with no label corresponds to the standard
(â5b̂5ĝ50).
SX152ĝ21
2ueu2

cos2df Fcos~2df!1cos~2f12df!

2
cos~f22df!

2 cosf G
1tuDGuF2ĝ21ueu2

cos~f12df!

cosf cos2df G , ~57!

SX25ĝ21ueu2
cos~f22df!

cosf cos2df
, ~58!

SX35
2ueu2

cos2df
@cos~Dmt22df!1cos~Dmt22f22df!#.

~59!

This form is useful whenb̂!ueu, since thendf'0. In the
usual case~i.e., â5b̂5ĝ50), we obtain

A2p~ t !5
2ueucosf22ueue1/2 ~GS2GL!tcos~Dmt2f!

@11SX1
u#1e~GS2GL!tSX2

u2e1/2 ~GS2GL!tSX3
u ,

~60!

with

SX1
u5ueu2@112 cos~2f!1tuDGu#, ~61!

SX2
u5ueu2, ~62!

SX3
u54ueu2cosf cos~Dmt2f!. ~63!

e
ase

FIG. 2. The time-dependent asymmetryA3p for representative
choices ofb̂ (A3p depends very weakly onâ,ĝ). The top curve
corresponds to the standard case. Also shown is the ratio
Imh3p / Reh3p5tan(f2df) as a function ofb̂.
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Comparing the two cases, we note the following.
~1! The second line in Eq.~53! shows that~to first order!

dfÞ0 changes the size of the interference pattern and sh
it.

~2! The denominator in Eq.~53! shows that necessarily
ĝ&SX2;ueu2, or else the interference pattern would b
damped too soon. In fact, because of this upper limit, o
can in practice neglect all terms proportional toĝ that appear
formally at second order, since they are in practice th
order.

~3! The effect ofâ is felt only at second order, through
DX1 andDX3 , although it is of some relevance only in th
interference pattern (DX3).

Some of the terms in Eq.~53! can be written in a less
concise way which shows the effect ofb̂ more explicitly,
instead of it being buried insidedf. To first order, although
keeping the important second-order terms inSX2 , we can
write

A2p~ t !'$2ueucosf14b̂ sinf cosf22Aueu214b̂2cos2f

3e1/2 ~GS2GL!t cos~Dmt2f2df!%

3$11e~GS2GL!t @ ĝ1ueu224b̂2cos2f

24b̂ueusinf#% . ~64!

In this form one can readily see whetherCP violation can in
fact vanish, with its effects mimicked by nonquantum
mechanicalCPT violation. Settingueu50, one needs to re-
produce the interference pattern, and also the denomina
To reproduce the overall coefficient of the interference p
ifts

e
ne

ird

e

-

tor.
at-

tern, requires 2b̂ cosf→6ueu. The denominator then be-
comes ĝ24b̂2cos2f→ĝ2ueu2 and we also require

ĝ→2ueu2. The fatal problem is thatdf→2sgn(b̂) p
2 and

the interference pattern is shifted significantly. This means
that the effects seen in the neutral kaon system, and conven
tionally interpreted asCP violation, indeedcannot because
of theCPT violation @16,17#.

Figure 1 shows the effects onA2p(t) of varying~a! â, ~b!
b̂, and ~c! ĝ. We see that the intermediate-time region 5
&t/ts&20 is particularly sensitive to nonzero values of
these parameters. The sensitivity toâ in Fig. 1~a! is consid-
erably less than that tob̂ in Fig. 1~b! and toĝ in Fig. 1~c!,
which is reflected in the magnitudes of the indicative numeri-
cal bounds reported in Sec. VI.

B. A3p

Analogously, the formula for the 3p asymmetry is

A3p~ t !5
Tr@O3pr̄~ t !#2Tr@O3pr~ t !#

Tr@O3pr̄~ t !#1Tr@O3pr~ t !#
; O3p}S 1 0

0 0D ,
~65!

from which one immediately obtains

A3p~ t !5
Dr11~ t !

Sr11~ t !
. ~66!

To first order in the small parameters,Dr11 and Sr11 are
given in Eqs.~46! and~49!. This asymmetry can therefore be
expressed as
A3p~ t !5

2ueu
cos~f2df!

cosdf
2

2ueu
cosdf

e2 1/2 ~GS2GL!tcos~Dmt1f2df!

11ĝ2ĝe2~GS2GL!t

'@2ueucosf24b̂ sinf cosf#22e2 1/2 ~GS2GL!t@Reh3pcosDmt2Imh3psinDmt#, ~67!
where, to facilitate contact with experiment, in the seco
form we have neglected theĝ contribution, expresseddf in
terms ofb̂ ~45!, and defined

Reh3p5ueucosf22b̂ sinf cosf,

Imh3p5ueusinf12b̂ cos2f. ~68!

In the CPLEAR experiment, the time-dependent dec
asymmetry intop0p1p2 is measured@3#, and the data is fit
to obtain the best values for Reh3p and Imh3p . It would
appear particularly useful to determine the ratio of these t
parameters, so that a good fraction of the experimental
nd

ay

wo
un-

certainties drops out. In the standardCP-violating scenario,
the ratio is Imh3p / Reh3p5tanf'1, whereas in our sce-
nario, it is

Imh3p

Reh3p
5

ueusinf12b̂ cos2f

ueucosf22b̂ sinf cosf
5tan~f2df!.

~69!

It is apparent from the above formulas thatA3p is much
more sensitive tob̂ than toâ or ĝ. This sensitivity ofA3p to
b̂ is shown in Fig. 2~a!, and that of (Imh3p / Reh3p) in Fig.
2~b!.

As already mentioned in Sec. II, additional information
may be obtained fromp1p2p0 decays by observing the
difference between the rates forp1p2p0 decays with
m(p1p0).m(p2p0) andm(p1p0),m(p2p0), @20# rep-
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resented byO3p
int @Eqs. ~19! and ~20!#. This division of the

final-state phase space into two halves is notCP invariant,
and hence enables one to measure interference betwee
CP-evenI 3p52 and CP-oddI 3p51 final states. Defining

A3p
int 5

Tr@O3p
int r̄~ t !#2Tr@O3p

int r~ t !#

Tr@O3p
int r̄~ t !#1Tr@O3p

int r~ t !#
, ~70!
n the

we obtain the formula

A3p
int 5

ReDr12
ReSr12

. ~71!

To first order in small parameters, we find
A3p
int 5

2e2GtFcosDmt1
2â

tanf
@sinDmt2~Dmt!cosDmt#G

ueu
cosdf

@cos~f2df!e2GLt1cos~f1df!e2GSt22 cosfe2Gtcos~Dmt2df!#

. ~72!
Note thatA3p
int→` for t→0, signaling a breakdown of our

approximation scheme. In theCPT-conserving case, this ob-
servable becomes

A3p
int→

2e2GtcosDmt

ueucosf@e2GLt1e2GSt22e2GtcosDmt#
. ~73!

We see that this observable is sensitive toâ @see the numera-
tor of ~72!#, and to b̂ via df. The sensitivity toâ may
supplement usefully the information obtainable from th
ADm measurement discussed in Sec. IV E.

C. AT

The formula for this asymmetry, as obtained by applyin
the formalism of Sec. II, assumes the form
e

g

AT5
Dr111Dr2212 ReSr12
Sr111Sr2212 ReDr12

, ~74!

with the first-order expressions forDr11,22,12andSr11,22,12
given in Eqs.~46!–~51!. In the usual non-CPT-violating case,
one finds, to first order, the exactly time-independent result

AT54ueucosf, ~75!

as expected@3#. In theCPT-violating case, to first order, one
finds a time-dependent expression
AT5
4ueu
cosdf H e2GLtcos~f2df!1e2GStcos~f1df!22e2Gtcos~Dmt2df!cosf

e2GLt~112ĝ !1e2GSt~122ĝ !22e2GtFcosDmt1
2â

tanf
~sinDmt2Dmt cosDmt!G J , ~76!
which asymptotes to

AT→
4ueucos~f2df!

cosdf~112ĝ !
5
4ueucosf28b̂ sinf cosf

112ĝ
.

~77!

The sensitivities ofAT to â andb̂ are illustrated in Fig. 3~a!
and 3~b!, respectively. We see that the sensitivity toâ is
again less than that tob̂, and is restricted tot/ts&15,
whereas the greater sensitivity tob̂ persists to larget, as in
Eq. ~77!, where the corresponding~utterly negligible! sensi-
tivity to ĝ can be inferred.

D. ACPT

Following the discussion in Sec. II, the formula for th
observable, as defined by the CPLEAR Collaboration@3#, is
given by Eq.~22! with f5p2l1n and f̄5p1l2n̄. We obtain
is

ACPT5
Dr111Dr2222ReSr12
Sr111Sr2222ReDr12

. ~78!

To first order, in both the CPT-conserving and
CPT-violating cases, we find

ACPT50. ~79!

To second order, the terms in the numerator of Eq.~78! can
be written most succinctly in the long-time limit. With the
help of the expressions in Appendix B, we obtain

Dr11
~2!→22ueuĝ cosf18ueuâ cosf sin2f

14b̂ĝ sinf cosf116âb̂ sinf cos3f, ~80!

Dr22
~2!→2ueuĝ cosf24b̂ĝ sinf cosf,
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ReSr12
~2!→4ueuâ cosf sin2f18âb̂ sinf cos3f,

which show that in the long-time limit,ACPT50 also to
second order. In fact, some algebra shows thatACPT50
through second order forall values oft. This result implies
that uACPTu&1026 and thus is unobservably small.

We point out that this result is aquite distinctive signature
of the modifications of the quantum mechanics proposed
Refs.@6,15#, since in the case of quantum-mechanical viola
tion of CPT symmetry@5#, there is a nontrivial change in
ACPT , proportional to theCPT-violating parametersdM
anddG. Indeed, in Appendix A we obtain the following first-
order asymptotic result

ACPT
QM →4 sinf cosfdM̂12 cos2fdĜ, ~81!

written in terms of the scaled variables. Part of the reason f
this difference is the different role played bydM as com-
pared to theb parameter in the formalism of Ref.@6#, as
discussed in detail in Ref.@15#. In particular, there are im-
portant sign differences between the ways thatdM and b
appear in the two formalisms, that cause the suppression
second order of any quantum-mechanical-violating effects
ACPT , as opposed to the conventional quantum-mechani
case.

E. ADm

Following Ref.@3#, one can defineADm as
n

r

to
n
s

FIG. 3. The time-dependent asymmetryAT for representative
choices of~a! â (b̂50) and~b! b̂ (â50). The dependence onĝ is
negligible. The flat line corresponds to the standard case.
ADm5
R~K0→p1!1R~K̄0→p2!2R~K̄0→p1!2R~K0→p2!

R~K0→p1!1R~K̄0→p2!1R~K̄0→p1!1R~K0→p2!
~82!
in an obvious short-hand notation for the final states of t
semileptonic decays, where only the pion content is sho
explicitly. In the formalism of Sec. II, this expression be
comes

ADm5
2 ReDr12

Sr111Sr22
. ~83!

The first-order expression in the usual nonCPT-violating
case is

ADm52
2e2GtcosDmt

e2GLt1e2GSt
, ~84!

as obtained in Ref.@3#. In the CPT-violating case to first
order, as Eqs.~48!–~50! show, neitherueu nor b̂ come in, and
we obtain

ADm52

2e2GtFcosDmt1
2â

tanf
~sinDmt2Dmt cosDmt!G

e2GLt~112ĝ !1e2GSt~122ĝ !
.

~85!

Since ĝ is negligible, this observable provides anexclusive
test of â.
he
wn
-

In the case of noCPT violation, the observableADm has

a minimum for tanDmt52G/Dm'2 1
2 uDGu/Dm5

21/tanf. Since tanf'1, the minimum occurs for
(t/ts)min'3p/2. In theCPT-violating case, Eq.~85! can be
rewritten as

ADm52
2e2GtCDmcos~Dmt2fDm!

e2GLt~112ĝ !1e2GSt~122ĝ !
, ~86!

with

tanfDm5
2â/tanf

12âtuDGu
, CDm5

12âtuDGu
cosfDm

. ~87!

Since the minimum occurs fortuDGu;5, for small values of
â, one can neglect the time-dependent pieces infDm and
CDm . The new minimum condition forADm is then modified
to tan(Dmt2fDm)'21/tanf, and thus the minimum is
shifted to

~ t/ts!min'
3p

2
14â, ~88!
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for small values ofâ. A similar test forâ was proposed in
Ref. @16#, where it was based on the traditional semilepton
decay charge asymmetry parameterd(t) @15#. However, to
first order that observable depends also onueu andb̂, and as
such it isnot a direct test ofâ, as opposed to the one pro
posed here. Figure 4 exhibits the sensitivity ofADm to â,
including ~a! the general dependence in the interference
gion and~b! the detailed location of the minimum asâ is
varied.

V. REGENERATION

A. Simplified thin-regenerator case

Regeneration involves the coherent scattering of aK0 or
K̄0 off a nuclear target, which we assume can be descri
using the normal framework of quantum field theory an
quantum mechanics. Thus we describe it by an effect
Hamiltonian which takes the form

DH5S T 0

0 T̄
D ~89!

in the (K0,K̄0) basis, where

T5
2pN

mK
M, T̄5

2pN

mK
M̄, ~90!

FIG. 4. The time-dependent asymmetryADm for representative
choices ofâ (b̂5ĝ50). This asymmetry depends most sensitive
only on â. In both panels, the bottom curve corresponds to t
standard case. In the detail~b!, the dashed line indicates the locatio
of the minimum asâ is varied.
ic

-

re-

bed
d
ive

withM5^K0uAuK0& the forwardK0-nucleus scattering am-
plitude ~and analogously forM̄), andN is the nuclear re-
generator density. We can rewriteDH ~89! in theK1,2 basis
as

DH5S T1T̄ T2T̄

T2T̄ T1T̄
D , ~91!

which can, in principle, be included as a contribution toH in
the density-matrix equation:

] tr52 i @H,r#1 idH” r, ~92!

where dH” represents the possibleCPT- and quantum-
mechanical~QM!-violating term.

It may be adequate as a first approximation to treat the
regenerator as very thin, in which case we may use the im-
pulse approximation, and the regenerator changesr by an
amount

dr52 i @DH,r#, ~93!

where

DH5E dt DH. ~94!

Writing

r5S r11 r12*

r12 r22
D , ~95!

in this approximation, we obtain

dr52 iDTS 2i Imr12 2r111r22

r112r22 22i Imr12
D , ~96!

where

DT[E dt~T2T̄!. ~97!

This change inr enables the possibleCPT- and QM-
violating terms in~92! to be probed in a new way. Consider
the idealization that the neutralK beam is already in aKL
state@Eq. ~31!#:

r5rL'S 1 e*1B*

e1B ueu21C D , ~98!

where

B52 i2b̂ cosfe2 if, C5ĝ24b̂2cos2f24b̂ueusinf.
~99!

Substituting Eqs.~98! and~99! into Eq. ~96!, we find that in
the joint large-t and impulse approximations

ly
he
n
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r1dr5S 112DT Im~e1B! e*1B*1 i ~12ueu22C!DT

e1B2 i ~12ueu22C!DT ueu21C22DT Im~e1B!
D . ~100!
a

nt
s

g
d

d-
We see that the usual semileptonic decay asymmetry obs
able

Op2 l1n2Op1 l2n̄5S 0 2

2 0D , ~101!

which measures Re(e1B) in the case without the regenera
tor, receives no contribution from the regenerator~i.e., DT
cancels out in the sum of the off-diagonal elements!. On the
other hand, there is a new contribution to the value
R2p5R(KL→2p)5 Tr@O2pr#5r22: namely,

R2p5ueu21ĝ24b̂2cos2f24b̂ueusinf22DT Im~e1B!.
~102!

The quantity Im(e1B) was not accessible directly to the
observableR2p in the absence of a regenerator. Theore
cally, the phases ofe andB ~99! are fixed: i.e.,

Im~e1B!52ueu
sin~f2df!

cosdf
52ueusinf22b̂ cos2f.

~103!

Nevertheless, this phase prediction should be checked, so
regenerator makes a useful addition to the physics progra

The above analysis is oversimplified, since the impul
approximation may not be sufficiently precise, and the ne
tral K beam is not exactly in aKL state. Moreover, the result
in Eq. ~100! is valid only at the time the beam emerges from
the regenerator. However, this simple example may serve
illustrate the physics interest of measurements using a reg
erator. We next generalize the analysis to include a gene
neutralK beam encountering a thin regenerator, with the fu
time dependence after leaving the regenerator.

B. Detailed regenerator tests

To make contact with the overall discussion in this pape
we envision the following scenario.

~i! PureK0,K̄0 beams are produced at timet50, corre-
sponding to initial density matricesr0 and r̄0 , respectively.

~ii ! These beams are described by density matricesr(t)
and r̄(t), and evolve with time as described in Sec. II, unt
a time t5t r where they are described byr(t r) and r̄(t r).

~iii ! At t5t r , a thin regenerator is encountered.3 In our
thin-regenerator approximation~described in the previous
subsection!, at t5t r , suddenly the density matrices receiv
an additional contributiondr(t r) or dr̄(t r), according to Eq.
~96!.

3For simplicity, we assume that the regenerator is encountered
the sameDt5t r after production forall beam particles. In specific
experimental setups, our expressions would need to be folded w
appropriate geometrical functions.
erv-
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~iv! For t5t2t r>0, the beams are described by density
matricesr r(t) and r̄ r(t), which again evolve as described
in Sec. II, but this time with initial conditions
r r(0)5r(t r)1dr(t r) and r̄ r(0)5 r̄(t r)1dr̄(t r).

In this context, we consider two kinds of tests. In a
CPLEAR-like scenario, the identity of the beam is known
irrespective of the presence of the regenerator, and thus
measurement ofA2p

r (t), i.e.,A2p after the thin regenerator
is traversed, appears feasible. The second test is reminisce
of the Fermilab experiments, where the experimental setup i
such thatt r@tS , and the beam is in aKL state. After the
regenerator is traversed, one then measuresR2p in the inter-
ference region.

Before embarking on elaborate calculations, we should
perhaps quantify our ‘‘thin-regenerator’’ criterion. For the
impulse approximation to be valid,dr in Eq. ~96! should not
changer by too much. Since the entries inr are typically
;1023 or smaller, we should demand thatDT be a reason-
ably small number. Let us estimateDT5*dt(T2T̄). As-
sumingM2M̄;1/mp and relativistic kaons, we obtain

DT' 1
30 thickness @cm# density @g/cm3#, ~104!

and thus a ‘‘thin’’ regenerator should have a thickness
&1 cm. This estimate appears reasonable when considerin
that in the 2 ns or so that the beams are usually observe
~about 20tS), they travel;60 cm. Such a regenerator could
conceivably be installed in an upgraded CPLEAR experi-
ment. In the Fermilab E731@21# and E773@22,23# experi-
ments, the regenerators used are much thicker, and the vali
ity of our approximation is unclear.

1. A2p
r

We start withA2p
r 5Dr22

r /Sr22
r , where, e.g.,Dr22

r (t) is
given by r22(t) in Eqs. ~37! and ~43! with
r(0)→Dr r(0)5Dr(t r)1d(Dr)(t r), and d(Dr) given in
Eq. ~96! with r→Dr. We obtain

Dr22
r ~t!5H @Dr22~ t r !22DT ImDr12~ t r !#2ĝ@Dr11~ t r !

12DT ImDr12~ t r !#

22ueu
cos~f1df1Df12!

cosdf
uDr12

r ~0!uJ
3e2GSt1ĝ@Dr11~ t r !12DT ImDr12~ t r !#

3e2GLt1
2ueu
cosdf

uDr12
r ~0!ue2Gtcos

3~Dmt2f2df2Df12!, ~105!

at

ith
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Sr22
r ~t!5H @Sr22~ t r !22DT ImSr12~ t r !#2ĝ@Sr11~ t r !

12DT ImSr12~ t r !#

22ueu
cos~f1df1Sf12!

cosdf
uSr12

r ~0!uJ e2GSt

1ĝ@Sr11~ t r !12DT ImSr12~ t r !#e
2GLt

1
2ueu
cosdf

uSr12
r ~0!ue2Gtcos~Dmt2f2df

2Sf12!, ~106!

where we have defined the phasesDf12 andSf12 through

Dr12
r ~0!5uDr12~ t r !2 iDT@Dr11~ t r !2Dr22~ t r !#ueiDf12,

~107!

Sr12
r ~0!5uSr12~ t r !2 iDT@Sr11~ t r !2Sr22~ t r !#ueiSf12.

~108!

In these expressions, the ‘‘initial-condition’’ input matrice
Dr(t r) andSr(t r) are obtained from Eqs.~46!–~51! by in-
sertingt5t r . We obtain a rather complicated result, whic
in addition to theCPT-violating parameters, also depends o
DT andt r . To illustrate the behavior ofA2p

r , let us consider
two limiting cases:t r!tS andt r@tS . For a regenerator very
close to the origin (t r!tS), we basically have
Dr(t r)'Dr(0) andSr(t r)'Sr(0), as in Eq.~28!, and we
obtain

Dr22
r ~t!→2ueu

cos~f1df!

cosdf
e2GSt

2
2ueu
cosdf

e2Gtcos~Dmt2f2df!, ~109!

Sr22
r ~t!→~12ĝ !e2GSt1ĝe2GLt. ~110!

Neglectingĝ, we find

A2p
r ~t!→

2ueu
cosdf

$cos~f1df!

2e1/2 ~GS2GL!tcos~Dmt2f2df!%. ~111!

Thus, when the regenerator is placed near the produc
point, the effects ofDT drop out, and the result without a
regenerator is recovered@see Eq.~53! dropping ĝ and all
second-order terms#.

Of more interest is the case of a regenerator placed in
asymptotic region (t r@tS). In this case, the expressions fo
Dr(t r) andSr(t r) simplify considerably, through first order
s

h,
n

tion

the
r
:

Dr11~ t r !→
2ueucos~f2df!

cosdf
Sr11~ t r !→11ĝ'1,

Dr22~ t r !→0 Sr22~ t r !→ĝ'0, ~112!

Dr12~ t r !→0 Sr12~ t r !→
ueu

cosdf
ei ~df2f!.

Inserting these limiting expressions~and takingĝ50), we
obtain

Dr22
r ~t!→22ueu

cos~f1df1Df12!

cosdf
uDr12

r ~0!ue2GSt

1
2ueu
cosdf

uDr12
r ~0!ue2Gt

3cos~Dmt2f2df2Df12!, ~113!

Sr22
r ~t!→H 2DTueu

sin~f2df!

cosdf

22ueu
cos~f1df1Sf12!

cosdf
uSr12

r ~0!uJ e2GSt

1
2ueu
cosdf

uSr12
r ~0!ue2Gt

3cos~Dmt2f2df2Sf12!, ~114!

and thus

FIG. 5. The time-dependent asymmetryA2p
r (t) in the presence

of a thin regenerator placed far from the production point, as a
function of the timet after leaving the regenerator, for representa-
tive choices ofb̂ @A2p

r (t) is rather insensitive toâ,ĝ, which are set
to zero#. The right-most curve corresponds to the standard case.
Also shown~b! is the position of the~first! zero in A2p

r (t) as a
function of b̂.
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A2p
r ~t!→

uDr12
r ~0!u

uSr12
r ~0!u

2cos~f1df1Df12!1e1/2 ~GS2GL!tcos~Dmt2f2df2Df12!

F DT

uSr12
r ~0!u

sin~f2df!2cos~f1df1Sf12!G1e1/2 ~GS2GL!tcos~Dmt2f2df2Sf12!

~115!
with

Dr12
r ~0!→U2 iDT

2ueucos~f2df!

cosdf UeiDf12⇒Df1252
p

2
, ~116!

Sr12
r ~0!→U ueu

cosdf
ei ~df2f!2 iDTUeiSf12. ~117!

The result in Eq.~115! reveals a large shift (Df1252 p
2 ) in the interference pattern relative to the case of no regenera

According to our estimate ofDT in Eq. ~104!, it would appear thatDT@ueu is a case of interest to consider. In this limit

DT drops out from theA2p
r observable,Df125Sf1252 p

2 , and

A2p
r ~t!→2ueu

cos~f2df!

cosdf

sin~f1df!1e1/2 ~GS2GL!tsin~Dmt2f2df!

sin~f1df!2sin~f2df!1e1/2 ~GS2GL!tsin~Dmt2f2df!
. ~118!
The time dependence ofA2p
r (t) is shown in Fig. 5 from

which it is apparent thatA2p
r (t) is basically flat except for

values oft for which sin(Dmt2f2df)50. This occurs for

(t/tS)0'2(np1 p
4 1df), a result which is plotted agains

b̂ ~for n50) also in Fig. 5. We note that for increasing
larger values ofn, the structure in the curves becomes n
rower and narrower and therefore much less sensitive tob̂,
with the first zero (n50) possibly being the only observabl
one.

2. R2p

The observableR2p5R(K→2p) has traditionally been
the focus ofCP-violation studies. Because the detector
physically located a distance away from the source of
neutral kaons, most of theKS component of the beam decay
away, and one is basically sensitive only to theKL→2p
decays. To study also the interesting interference region
regenerator is inserted in the path of theKL particles right
before they reach the detector, so thatKS particles are regen-
erated and interference studies are possible. Unfortuna
the regenerator complicates the physics somewhat. To
plify the problem, let us first consider the case of a pu
K0 beam whose decay products can be detected from
instant of production~not unlike in the CPLEAR experi-
ment!. We will address the effect of the regenerator in t
next subsection.

In our formalism, theR2p observable corresponds to th
operatorO2p in ~17!, which gives

R2p~ t !5r22~ t !. ~119!

Through second order, the corresponding expression is
tained from Eqs. ~37!, ~43!, and ~B16! by inserting
r11(0)5r22(0)5r12(0)51. In the case of standard
quantum-mechanicalCP violation, one obtains
t
ly
ar-

e

is
the
s

, a

tely,
sim-
re
the

he

e

ob-

R2p~ t !5cSe
2GSt1cLe

2GLt12cIe
2Gtcos~Dmt2f!,

~120!

where to second order, thecS , cL , cI coefficients are given
by:

cS5122ueucosf1ueu2~112 cos2f1tuDGu!, ~121!

cL5ueu2, ~122!

cI5ueu22ueu2cosf. ~123!

It is then apparent that to the order calculated:
cI
25cScL5ueu2. Violations of this relation would indicate
departures from standard quantum mechanics, which can be
parametrized by@24#

z512
cI

AcScL
. ~124!

In our quantum-mechanical-violating framework, we expect
zÞ0. Indeed, we obtain

cS512ĝ22ueu
cos~f1df!

cosdf
, ~125!

cL5ĝ1ĝ21ueu2
cos~f22df!

cosf cos2df
22ueuĝ

cos~f2df!

cosdf
,

~126!

cI5
ueu

cosdf
, ~127!

where only terms relevant to the computation ofz to second
order have been kept~note thatâ does not contribute toz to
the order calculated!. Also, in this case the general relation in
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Eq. ~120! gets modified by a phase shift in the interferen
termf→f1df. Using these expressions, we obtain4

cI
2

cScL
5

ueu2/cos2df

ĝ~124ueucosf!1ueu2
cos~f22df!

cosf cos2df

'
1

ĝ

ueu2
1
cos~f22df!

cosf

~128!

and thus

z'
1

2 F 12
1

ĝ

ueu2
1
cos~f22df!

cosf
G'

ĝ

2ueu2
2
2b̂

ueu
sinf,

~129!

where the second form holds for small values ofĝ/ueu2 and
df'22b̂ cosf/ueu. The parameterz has been measured t
be zexp50.0360.02 @25#. Setting b̂50, one obtains
ĝ'(362)31027 @24#. More generally, the dependence o
z on b̂ and ĝ is shown in Fig. 6, along with the presen
experimental limits onz.
e

f

3. R2p
r

Let us now turn to theR2p
r 5r22

r (t) observable in the
presence of a thin regenerator. Here,r22

r (t) is given to first
order by Eqs. ~37! and ~43! with r(0)→r r(0)5r(t r)
1dr(t r), anddr given in Eq.~96!. We obtain

R2p
r ~t!5H @r22~ t r !22DT Imr12~ t r !#2ĝ@r11~ t r !

12DT Imr12~ t r !#

22ueu
cos~f1df1f12!

cosdf
ur12

r ~0!uJ e2GSt

1ĝ@r11~ t r !12DT Imr12~ t r !#e
2GLt

1
2ueu
cosdf

ur12
r ~0!ue2Gtcos~Dmt2f2df2f12!,

~130!

where

r12
r ~0!5ur12~ t r !2 iDT@r11~ t r !2r22~ t r !#ueif12. ~131!

As we discussed above, the initial condition matrixr(t r) is
simply rL: namely,
r~ t r !5S 11ĝ22ueucosf14b̂ sinf cosf ~ ueu1 i2b̂ cosf!eif

~ ueu2 i2b̂ cosf!e2 if ueu21ĝ24b̂2cos2f24b̂ueusinf D . ~132!
a

-

f

Note that at the instant the beam leaves the regenera
(t50), we obtain R2p

r (0)5r22
r (0)5r22(t r)

22DT Imr12(t r) which, after insertingr(t r) from Eq.
~132!, agrees with the result derived above in Eq.~102!
where no time dependence after leaving the regenerator
considered.

In the interference region, the expression forR2p simpli-
fies considerably: we keep only the term proportional
e2Gt,

R2p
int ~t!5

2ueu
cosdf

ur12
r ~0!ue2Gtcos~Dmt2f2df2f12!,

~133!

with

r12
r ~0!'U ueu

cosdf
ei ~df2f!2 iDTUeif12. ~134!

4Note that in the scenario discussed in Sec. IV A, whereCPT
violation accounts for the observedCP violation ~i.e., ueu50,
2b̂ cosf→6ueu, ĝ→2ueu2), one obtains cI

2/(cScL)→1⇔z50.
~This result was implicitly obtained in Ref.@15#.! Such result is not
enough to validate the scenario, since as discussed above, this
nario is fatally flawed by the large phase shift in the interferen
term.
tor

was

to

In this case, we again see that the regenerator introduces
shift in the interference pattern and modifies its overall mag-
nitude, even in the absence ofCPT violation. In the limit in

which DT@ueu, ur12
r (0)u→DT, f12→2 p

2 and

R2p
int ~t!→

2ueuDT
cosdf

e2GtcosS Dmt2f2df1
p

2 D ,
~135!

which exhibits a large phase shift and a distinctive linear
dependence onDT, it is a nice signature. Moreover, the re-
sult still allows a determination of theCPT-violating param-
eterb, throughdf ~45!.

We now address thez parameter in the presence of a
regenerator. Let us first start with the case of standard quan
tum mechanics, where we expectz to vanish. Looking back
at Eqs.~121!–~123!, we see that~to the order calculated! the
z50 relation amounts to@cI

(1)#25cS
(0)c2

(2) , where the orders
at which the relevant contributions appear have been indi-
cated. In the case of a regenerator, the time dependence o
r22
r (t) is the same as that ofr22(t), the only difference being
in the coefficients which depend on different initial-condition
matrices@r r(0) vs r(0)#. To make our result more general,
we will keep this initial-condition matrix unspecified. Using
Eqs.~37!, ~43!, and~B16!, we then get

sce-
ce
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cS
~0!5r22~0!, ~136!

cL
~2!5r11~0!ueu2, ~137!

cI
~1!5ur12~0!uueu, ~138!

and, therefore,

zQM512
cI

AcScL
512

ur12~0!u

Ar11~0!r22~0!
50, ~139!

where we have used the fact that a pure quantum-mecha
(232) density matrix has zero determina
@detr(0)5r11(0)r22(0)2ur12(0)u2#. This result applies im-
mediately to the regenerator case where a particular form
r(0) is used: namely, r11

r (0)'1, r22
r (0)'ueu21

2DTueusinf, and ur12
r (0)u2'ueu212DTueusinf, which

indeed satisfy detr r(0)50.
ical
t

of

We now repeat the exercise in our quantum-mechanics
violating framework, where we obtain

cS
~011!5r22~0!2r11~0!ĝ22ueuur12~0!u

cos~f1df1f12!

cosdf
,

~140!

cL
~112!5r11~0!ĝ1r22~0!ĝ21r11~0!ueu2

cos~f22df!

cosf cos2df

22ueuĝur12~0!u
cos~f2df2f12!

cosdf
, ~141!

cI
~1!5

ueu
cosdf

ur12~0!u, ~142!

which entail
cI
2

cScL
5

ueu2

cos2df
ur12~0!u2 H r11~0!r22~0!ĝ1@r22

2 ~0!2r11
2 ~0!#ĝ21r11~0!r22~0!ueu2

cos~f22df!

cosf cos2df

2
2ueuĝ
cosdf

ur12~0!u@r22~0!cos~f2df2f12!1r11~0!cos~f1df1f12!#J 21

. ~143!
is

i

This expression can be most easily interpreted in the limit
interest,DT@ueu, where the initial condition matrixr r(0)
reduces to

r11
r ~0!'1, ~144!

r22
r ~0!'ĝ12DTueu

sin~f2df!

cosdf
1ueu2

cos~f22df!

cosf cos2df
,

~145!

FIG. 6. The dependence of the quantum-mechanical-violat
parameterz on b̂ for representative values ofĝ (â does not con-
tribute to the order calculated!. The present experimental value o
z50.0360.02 is indicated, as well as our derived indicative boun
on b̂5(2.062.2)31025.
of
ur12

r ~0!u2'2DTueu
sin~f2df!

cosdf
1

ueu2

cos2df
. ~146!

Note that the source of quantum-mechanical decoherence
given by

detr r~0!'ĝ22ueu2
sin~f2df!sindf

cosf cos2df
'ĝ. ~147!

With these expressions forr r(0), oneobtains, for the nu-
merator and denominator of Eq.~143!,

cI
2'

ueu2

cos2df F2DTueu
sin~f2df!

cosdf G , ~148!

cScL'2DTueu
sin~f2df!

cosdf F ĝ1ueu2
cos~f22df!

cosf cos2df G ,
~149!

and thus the regenerator effects (DT) drop out, and the ex-
pressions without a regenerator in Eqs.~128! and ~129! are
recovered, i.e.,z r5z. This result also implies that the ex-
perimental limits onz, that are derived in the presence of a
regenerator, can be directly applied to our expression forz,
as assumed in the previous subsection.

ng

f
ds
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We note that, although the study ofz alone, in tests using
a regenerator@24#, does not seem to add anything to th
discussion of the possible breakdown of quantu
mechanical coherence within our framework, individu
terms in the expression~130! for R2p

r (t) depend linearly on
the regenerator density viaDT, and the dependence on th
nonquantum-mechanical parameters is different from the
regenerator case, so the regenerator is able to provide i
esting new probes of our framework. In this respect, exp
mental tests ofCPT symmetry within quantum mechanic
suggested earlier@26#, using arrays of regenerators, find als
a natural application within our quantum-mechanic
violating framework.
e
m-
al

e
no-
ter-
ri-
s
o
s-

4. ACPT
r

In Sec. IV D, we showed that there is no contribution to
the ACPT observable up to second order. One may wonder
whether the introduction of a regenerator could change this
result. To this end we computeACPT

r , which is defined as in
Eq. ~78! but with the Dr,Sr matrices replaced by the
Dr r ,Sr r matrices. Expressions for the latter are compli-
cated, as exhibited explicitly in the previous subsections.
However, the expression forACPT

r simplifies considerably
when calculated consistently through first order only, since
many of the entries in the input matricesDr(t r),Sr(t r) need
to be evaluated only to zeroth order. After some algebra, we
obtain
ACPT
r ~t!52DT

@e2Gtrsin~Dmtr !#~e
2GLt2e2GSt!1@e2GLtr2e2GStr#e2GtsinD~mt!

e2GLtre2GLt1e2GStre2GSt12e2Gtre2Gtcos~Dmt1Dmtr !
, ~150!
t

n

r

i

e

e

which, for t@tS , asymptotes to

ACPT
r ~t!→2DT exp@2 1

2 ~GS2GL!t r #sin~Dmtr !.
~151!

Thus, we see that all dependence on theCP- (ueu) and
CPT- (a,b,g) violating parameters drops out, which con
firms the result obtained without a regenerator. The nove
is that ACPT

r is nonetheless nonzero, and proportional
DT. This result is interesting, but not unexpected since
matter in the regenerator scattersK0 differently from scatter-
ing K̄0 ~90!. Formally, this is expressed by the fact that th
regenerator Hamiltonian in Eq.~91! is proportional tos1 ,
and therefore does not commute with theCPT operator, and
so violates CPT. That is, the regenerator is a
CPT-violating environment, although completely withi
standard quantum mechanics.

VI. INDICATIVE BOUNDS ON CPT-VIOLATING
PARAMETERS

The formulas derived above are ready to be used in fits
the experimental data. A complete analysis requires a
tailed understanding of all the statistical and systematic
rors, and their correlations, which goes beyond the scope
this paper@27#. Here, we restrict ourselves to indications o
the magnitudes of the bounds that are likely to be obtain
from such an analysis.

The parameterâ can be constrained by observing that th
overall size of the interference term inA2p ~53! does not
differ significantly from the standard result@see also Fig.
1~a!#. The relevant dependence onâ comes at second orde
throughDX3 , which is given in Eq.~56!. From this expres-
sion, we can see that the dominant term is the third one,
(22ueuâ/cosdf)tuDGucos(Dmt2f2df), which is enhanced
relative to the other terms because of thetuDGu factor. The
dominant interference term through second order is then
-
lty
to
he

e

to
de-
er-
of
f
ed

e

.e.,

2
2ueu
cosdf

@11âtuDGu#e~GS2GL!t/2cos~Dmt2f2df!.

~152!

For our indicative purposes, we assume that the size of th
interference term is within 5% of the standard result for ob-
servations in the ranget/tS&10. Sinceâ.0 and the overall
factor (1/cosdf)'1 ~see below!, we requireâtuDGu&0.05
@16#: i.e.,

â&5.031023, a&3.7310217 GeV. ~153!

This is to be compared to the order of magnitude
O„(LQCD or ms)

2/MPl…&10219 GeV which is of theoreti-
cal interest in the neutral kaon system.

The simplest way to constrain the parameterb̂ involves
the observablesR2p andA2p , which differ from the standard
results at first order inb̂, as seen in Fig. 1~b!. This new
contribution can affect the overall size of the interference
pattern and shift its phase relative to the superweak phas
f, as seen in Eqs.~53! and~133!. It is easy to check that the
shift in phasedf is sufficiently small for any possible
change in the overall size of the interference pattern~because
of df) to be negligible, e.g.,udfu,2° implies a change in
the size by,631024. There are two independent sets of
data that give information ondf: ~i! the Particle Data Group
compilation@1# which fits NA31, E731, and earlier data, and
~ii ! more recent data from the E773 Collaboration@22,23#.
New data from the CPLEAR Collaboration are discussed
elsewhere@27#. In each case, both the superweak phasef
and theK→p1p2 interference phasef12 are measured,
and the corresponding values ofdf5f122f are ex-
tracted:

df5~20.7160.95!° @1#, df5~20.8461.42!° @22#.
~154!
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Combining these independent measurements in quadrat
we find df5(20.7560.79)°, corresponding to

b̂5~2.062.2!31025, b5~1.561.6!310219 GeV,
~155!

to be compared with the earlier boundub̂u&631025 ob-
tained in Ref.@16# by demandingudfu&2°. As expected
from Fig. 1, the indicative bound~155! on ub̂u is consider-
ably more restrictive than that~153! on uâu. Alternatively,
one may boundb̂ by considering the relationship~see, e.g.,
@23#!

umK02mK̄0u'2Dm
uh12u
sinFsw

uF122F sw1 1
3 DFu,

~156!

whereDF5F002F12 . As pointed out in Ref.@19#, Eq.
~156! is modified in the presence of directCPT violation in
the I50 KL→2p decay amplitude@see Eq.~13! of Ref.
@19##. Consequences of such directCPT violation are ad-
dressed in the concluding section of this paper@see our Eqs.
~169!–~174!#.

In our particular framework, up toe8/e effects,DF50,
Fsw5f, F125f1df, uh12u5ueu/cosdf'ueu, and thus

umK02mK̄0u'2Dm
ueuudfu
sinf

'2ubu. ~157!

The E773 Collaboration has determined@23# that
umK02mK̄0u/mK0,13310219 at the 90% C.L., whereas the
Particle Data Group quotesumK02mK̄0u/mK0,9310219 @1#,
and thus it follows that ub̂u,3.131025,
ubu,2.3310219 GeV. This result is consistent with that in
Eq. ~155!.

The ĝ parameter has the peculiar property of appearing
the observables at first order, but without being accompan
by a similar first-order term proportional toueu ~as is the case
for b̂). In fact, if corresponding terms exist, they are propo
tional to ueu2. This means that large deviations from th
usual results would occur unlessĝ&ueu2. This result is ex-
emplified in Fig. 1~c!, from which we conclude that
ĝ,1025. In Ref. @16#, ĝ&0.1ueu2 was obtained. However,
sinceue8/eu;1023 effects have been neglected, we conclud
conservatively that

ĝ&Ue8

e Uueu;1026, g&7310221 GeV. ~158!

We can also study the combined effects ofb̂ andĝ on the
z parameter in Eq.~129!, which reads

ĝ

2ueu2
2
2b̂

ueu
sinf50.0360.02. ~159!

The combined bounds on both parameters can be read
Fig. 6, which makes clearly the point that a combined fit
essentialto obtain the true bounds on theCPT-violating
parameters. Note that the bounds onb̂ ~155! and ĝ ~158!
derived above are consistent with those that follow from E
~159! ~see Fig. 6!.
ure,

in
ied

r-
e

e

off
is

q.

Let us close this section with a remark concerning the
positivity constraints in Eq. ~14!: a.0, g.0, and
ag.b2. The data are not yet sufficient to conclude anything
about the sign of thea and g parameters. The third con-
straint implies

â.
b̂2

ĝ
.

b̂2

ĝ max

;~103b̂ !2. ~160!

Thus, ifb is observable, sayb̂;1025, thenâ.1024 should
be observable too. A compilation of all these indicative
bounds and their sources is given in Table I.

VII. COMMENT ON TWO-PARTICLE DECAY
CORRELATIONS

Further interesting tests of quantum mechanics andCPT
symmetry can be devised by exploiting initial-state correla-
tions because of the production of a pair of neutral kaons in
a pure quantum-mechanical state, e.g., viae1e2→f→
K0K̄0. In this case, the initial state may be represented by
@28#

uk;2k&5
1

A2
@ uK0~k!;K̄0~2k!&2uK̄0~k!;K0~2k!&#.

~161!

At subsequent timest5t1 for particle 1 andt5t2 for particle
2, the joint probability amplitude is given in conventional
quantum mechanics by

uk,t1 ;2k,t2&[e2 iH ~k!t1e2 iH ~2k!t2uk;2k&. ~162!

Thus, the temporal evolution of the two-particle state is com-
pletely determined by the one-particle variables~OPV’s!
contained inH.

Tests of quantum mechanics andCPT symmetry inf
decays have recently been discussed@17# in a conjectured
extension of the formalism of@6,15#, in which the density
matrix of the two-particle system was hypothesized to be
described completely in terms of such one-particle variable
~OPV’s!: namely,H and (a,b,g). It was pointed out that
this OPV hypothesis had several striking consequences, in
cluding apparent violations of energy conservation and angu
lar momentum.

TABLE I. Compilation of indicative bounds onCPT-violating
parameters and their sources.

Source Indicative bound

R2p ,A2p â,5.031023

R2p ,A2p b̂5(2.062.2)31025

umK02mK̄0u b̂,3.131025

R2p ĝ&531027

z ĝ

2ueu2
2
2b̂

ueu
sinf50.0360.02

Positivity â.b̂2/ĝmax;(103b̂)2
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As we have discussed above@29#, the only known theo-
retical framework in which Eq.~2! has been derived is that o
a noncritical string approach to string theory, in which~i!
energy is conserved in the mean as a consequence of
renormalizability of the world-sheets model, but~ii ! angular
momentum is not necessarily conserved@15,9#, as this is not
guaranteed by renormalizability and is known to be violat
in some toy backgrounds@29#, though we cannot exclude th
possibility that it may be conserved in some particular bac
ground~s!. Therefore, we are not concerned that Huet a
Peskin@17# find angular momentum nonconservation in the
hypothesized OPV approach. However, the absence of
ergy conservation in their approach leads us to the conc
sion that irreducible two-particle parameters must be int
duced into the evolution of the two-particle density matri
The appearance of such nonlocal parameters does not
cern us, as the string is intrinsically nonlocal in target spa
and this fact plays a key role in our model calculations
contributions todH” . The justification and parametrization o
such irreducible two-particle effects go beyond the scope
this paper, and we plan to study this subject in more detai
due course.

VIII. CONCLUSIONS

We have derived in this paper approximate expressio
for a complete set of neutral kaon decay observab
(2p,3p,pl n) which can be used to constrain paramete
characterizingCPT violation in a formalism, motivated by
ideas about quantum gravity and string theory, that incor
rates a possible microscopic loss of quantum coherence
treating the neutral kaon as an open quantum-mechan
system. Our explicit expressions are to second order in
smallCPT-violating parametersa,b,g, and our systematic
procedure for constructing analytic approximations may
extended to any desired level of accuracy. Our formulas m
be used to obtain indicative upper bounds

a&4310217 GeV, ubu&3310219 GeV,

g&7310221 GeV, ~163!

which are comparable with the order of magnitud
;10219 GeV which theory indicates might be attained b
such CPT- and quantum-mechanics-violating paramete
Detailed fits to recent CPLEAR experimental data are
ported elsewhere@27#.

We have not presented explicit expressions for the c
where the deviationue8/eu&1023 from pure superweakCP
violation is non-negligible, but our methods can easily
extended to this case. They can also be used to obtain m
specific expressions for experiments with a regenerator
desired. The extension of the formalism of Ref.@6# to corre-
latedK0K̄0 systems produced inf decay, as at DAFNE @4#,
involves the introduction of two-particle variables, whic
lies beyond the scope of this paper.

As mentioned in the main text, in Appendix A we hav
obtained formulas for all observables in the case ofCPT
violation within standard quantum mechanics. In the case
A2p
QM andA3p

QM , one can ‘‘mimic’’ the results from standard
CP violation with suitable choices of theCPT-violating pa-
f
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rameters (dM50, .dĜ→22ueu/cosf). However, this pos-
sibility is experimentally excluded because of the large value
it entails for theACPT observable. In passing, we showed that
the z parameter vanishes since no violation of quantum me
chanics is allowed. In analogy with Sec. VI, we also obtained
indicative bounds on theCPT-violating parameters. In Table
II we list all the observables and make a qualitative compari
son between them and conventional quantum-mechanic
CP violation. We see that the QM and quantum-mechanics
violating ~QMV! CPT-violating frameworks can be qualita-
tively distinguished by their predictions forAT , ACPT ,
ADm , andz. As seen in Table II, the two observablesA2p

andA3p are sensitive to CPT violation in both the QM and
QMV frameworks. For the sake of completeness, we presen
here formulas that include both these possible effects, an
discuss how they may be disentangled.

Given the present status of experimental activities, the
more sensitive observable isA2p in the interference region,
where first-order effects are dominant. In this case, we obtai
an expression forA2p which resembles Eq.~53! ~with
SX1,2,35DX1,2,350), but with the replacements

df→dfX , ueu→ueuF12
1

2

dĜ

ueu
cosfG'ueu, ~164!

where the new phase shiftdfX is defined by

tandfX52
~2b̂2dM̂ !cosf

ueuF12
1

2

dĜ

ueu
cosfG '2

~2b̂2dM̂ !

ueu
cosf.

~165!

This generalized expression implies that the indicative
bounds in Eqs.~155! and ~A43! become combined into

b̂2
1

2
dM̂5~2.062.2!31025. ~166!

TABLE II. Qualitative comparison of predictions for various
observables inCPT-violating theories beyond quantum-mechanics
violation ~QMV! and within quantum mechanics~QM!. Predictions
either differ (Þ) or agree (5) with the results obtained in conven-
tional quantum-mechanicalCP violation. Note that these frame-
works can be qualitatively distinguished via their predictions for
AT , A CPT, ADm , andz.

Process QMV QM

A2p Þ Þ

A3p Þ Þ

AT Þ 5

ACPT 5 Þ

ADm Þ 5

z Þ 5
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This implies that the effects ofb̂ anddM cannot be disen-
tangled by a measurement ofA2p alone. Recall, however,
that these parameters appear in different conceptual fra
works, so there is no strong reason to expect both them o
be present simultaneously. Turning to theA3p observable,
combining the effects of both QM and QMV sources
CPT violation leads to the replacements in Eq.~68!:

df→dfX8, ueu→ueuF11
1

2

dĜ

ueu
cosfG'ueu, ~167!

where the new phase shiftdfX8 is defined by

tandfX852
~2b̂2dM̂ !cosf

ueuF11
1

2

dĜ

ueu
cosfG 'tandfX . ~168!

We note that a non-negligible value ofdG would be indi-
cated if the phase shifts inA2p andA3p should be found to
differ, i.e., dfX vs dfX8.

5 Any such possible discrepanc
would not, however, reveal whether QMVCPT violation
~i.e., b̂) is present or not.

We comment also on the possible appearance of dir
CPT violation in decay amplitudes. Such phenomena are
predicted by the modification to quantum mechanics that
have discussed above, but have been proposed elsew
@19#. If such an effect were present, the two-pion decay o
erator in Eq.~17! would be generalized to

O2p8 5S ulu2 l

l* 1D , ~169!

where l is a new complexCPT-violating parameter. The
first-order result for theA2p observable is then shifted by

22ulue~GS2GL!t/2cos~Dmt2fl!, ~170!

where we have definedl5ulueifl. Since the amplitude of
the cosine term inK→2p is known not to differ much from
the usual result, we see thatulu/ueu!1 is required. We can
combine this new contribution toA2p with the previous ones
to generalize the previous results foruh12u5ueu/cosdf'ueu
andf125f1df. To first order inulu/ueu, we find

uh12u'ueu1ulucos~f2fl!, ~171!

f12'f1df2
ulu
ueu

sin~f2fl!. ~172!

~Note thatl causes a first-order shift inuh12u, whereasb
first shifts it at second order.! The expression for
umK02mK̄0u in Eq. ~156! is generalized to

umK02mK̄0u'U2b1uluuDGu
sin~f2fl!

cosf U. ~173!

5This possibility is not allowed in theCPT-violating scenario of
Ref. @18#, wheredG50 is obtained.
me-
f to

of

y

ect
not
we
here
p-

If there were directCPT violation in thepl n decay ampli-
tudes, the semileptonic observables~18! would also be modi-
fied, becoming

Op2 l1n
8 5uAu2Op2 l1n , Op1 l2n5uĀu2Op1 l2n̄ ,

~174!

where any difference betweenA and Ā would violate
CPT. Since CPT violation must be small, we expect
uAu/uĀu[11h'1 and we can then examine the effects of
h to first order. These effects enter inAT , ADm , and
ACPT . However, they are most relevant in the last observ-
able, as the prediction for it in QMV vanishes. A calculation
along the lines of that in Sec. IV D gives to first order
ACPT8 52h, offering a clear distinction from the QMV sce-
nario. We recall that the CPLEAR Collaboration has reported
the result ACPT

expt5(20.462.062.061.5)31023 @3#, con-
firming the smallness ofh.

We close by reiterating that the neutral kaon system is the
best microscopic laboratory for testing quantum mechanics
andCPT symmetry. We believe that violations of these two
fundamental principles, if present at all, are likely to be
linked, and have proposed a formalism that can be used to
explore systematically this hypothesis, which is motivated by
ideas about quantum gravity and string theory. Our under-
standing of these difficult issues is so incomplete that we
cannot calculate the sensitivity which would be required to
reveal modifications of quantum mechanics or a violation of
CPT. Hence, we cannot promise success in any experimen-
tal search for such phenomena. However, we believe that
both the theoretical and experimental communities should be
open to their possible appearances.
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APPENDIX A: CPT VIOLATION IN THE
QUANTUM-MECHANICAL DENSITY MATRIX

FORMALISM FOR NEUTRAL KAONS

In this appendix we review the density-matrix formalism
for neutral kaons andCPT violation within the conventional
quantum-mechanical framework@5,15#. The time evolution
of a generic density matrix is determined in this case by the
usual quantum Liouville equation

] tr52 i ~Hr2rH†!. ~A1!

The conventional phenomenological Hamiltonian for the
neutral kaon system contains Hermitian~mass! and anti-
Hermitian ~decay! components:
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H5S ~M1 1
2 dM !2 1

2 i ~G1 1
2 dG! M12* 2 1

2 iG12*

M122
1
2 iG12 ~M2 1

2 dM !2 1
2 i ~G2 1

2 dG!
D , ~A2!
in the (K0, K̄0) basis. ThedM anddG terms violateCPT
@5#. As in Ref. @6#, we define components ofr andH by

r[ 1
2 rasa , H[ 1

2 hasa , a50,1,2,3 ~A3!

in a Paulis-matrix representation: thera are real, but the
hb are complex. TheCPT transformation is represented b

CPTuK0&5eiuuK̄0&, CPTuK̄0&5e2 iuuK0&, ~A4!

for some phaseu, which is represented in our matrix forma
ism by

CPT[S 0 eiu

e2 iu 0 D . ~A5!

Since this matrix is a linear combination ofs1,2, CPT in-
variance of the phenomenological Hamiltonian,H 5
(CPT)21H(CPT), clearly requires thatH contains no term
proportional tos3 , i.e.,h3 5 0 so thatdM 5 dG 5 0.

Conventional quantum-mechanical evolution is rep
sented by] tra5Habrb , where, in the (K0, K̄0) basis and
allowing for the possibility ofCPT violation,

Hab[S Imh0 Imh1 Imh2 Imh3

Imh1 Imh0 2Reh3 Reh2

Imh2 Reh3 Imh0 2Reh1

Imh3 2Reh2 Reh1 Imh0

D . ~A6!

We note that the real parts of the matrixh are antisymmetric,
while its imaginary parts are symmetric. Now is an approp
ate time to transform to theK1,25 1/A2 (K07K̄0) basis, cor-
responding tos1↔s3 , s2↔2s2 , in whichHab becomes

Hab5S 2G 2 1
2 dG 2ImG12 2ReG12

2 1
2 dG 2G 22 ReM12 22 ImM12

2ImG12 2 ReM12 2G 2dM

2ReG12 22 ImM12 dM 2G

D .
~A7!

The corresponding equations of motion for the compone
of r in theK1,2 basis are~as above we neglect ImG12 contri-
butions!

ṙ1152GLr1122 ReF S ImM121
1

4
dG1

i

2
dM D r12G ,

~A8!
y

l-

re-

ri-

nts

ṙ1252~G1 iDm!r121S ImM122
1

4
dG2

i

2
dM D r11

2S ImM121
1

4
dG2

i

2
dM D r22, ~A9!

ṙ2252GSr2212 ReF S ImM122
1

4
dG1

i

2
dM D r12G .

~A10!

One can readily verify thatr decays at larget to

r;e2GLtS 1 e*1d*

e1d ue1du2 D , ~A11!

which has a vanishing determinant, thus corresponding to a
pure long-lived mass eigenstateKL . TheCP-violating pa-
rametere and theCPT-violating parameterd are given as
above: namely,

e5
ImM12

1
2 uDGu1 iDm

, d52
1

2

1
2 dG1 idM
1
2 uDGu1 iDm

. ~A12!

Conversely, in the short-t limit, a KS state is represented by

r;e2GStS ue2du2 e2d

e*2d* 1 D , ~A13!

which also has zero determinant. Note that the relative signs
of the d terms have reversed: this is the signature ofCPT
violation in the conventional quantum-mechanical formal-
ism. Note that the density matrices@Eqs. ~A11! and ~A13!#
correspond to the state vectors

uKL&}~11e2d!uK0&2~12e1d!uK̄0&, ~A14!

uKS&}~11e1d!uK0&1~12e2d!uK̄0&, ~A15!

and are both pure, as should be expected in conventional
quantum mechanics, even ifCPT is violated.

As above, we solve the differential equations in perturba-
tion theory inueu and the new parameters

dM̂[
dM

uDGu
, dĜ[

dG

uDGu
. ~A16!

The zeroth order results for ther i j are the same as those in
Eqs.~36!–~38!: namely,

r11
~0!~ t !5r11~0!e2GLt, ~A17!

r22
~0!~ t !5r22~0!e2GSt, ~A18!

r12
~0!~ t !5r12~0!e2~G1 iDmt!. ~A19!



rs

d

53 3867PRECISION TESTS OFCPTSYMMETRY AND QUANTUM . . .
The first-order results for the density matrix elements are

r11
~1!522uX8uur12~0!u@e2GLtcos~f2fX82f12!

2e2Gtcos~Dmt1f2fX82f12!#, ~A20!

r22
~1!522uXuur12~0!u@e2GStcos~f1fX1f12!

2e2Gtcos~Dmt2f2fX2f12!#, ~A21!

r12
~1!5r11~0!uXue2 i ~f1fX!@e2GLt2e2~G1 iDm!t#

1r22~0!uX8uei ~f2fX8!@e2GSt2e2~G1 iDm!t#,

~A22!

where the two complex constantsX andX8 are defined by

X5ueu2 1
2 cosfdĜ1 i cosfdM̂ , tanfX5

cosfdM̂

ueu2 1
2 cosfdĜ

,

~A23!
X85ueu1 1
2 cosfdĜ1 i cosfdM̂ ,

tanfX85
cosfdM̂

ueu1 1
2 cosfdĜ

. ~A24!

For future reference, we note the special case that occu
whendM50: andueu50, namely,

dG.0: fX5p, fX850; ~A25!

dG,0: fX50, fX85p. ~A26!

With the results forr through first order, and inserting the
appropriate initial conditions~28!, we can immediately write
down the expressions for the various observables discusse
in Sec. IV. ForA2p , we obtain
A2p
QM~ t !5

2uXucos~f1fX!22uXue~GS2GL!t/2cos~Dmt2f2fX!

11e~GS2GL!tuXu2
, ~A27!
where in the denominator we have also included the n
negligible second-order contributions toSr22

(2) . From this
expression, it is interesting to note that one canmimic the
standardCP-violating result forA2p in Eq. ~60! by setting
ueu→0 and making the choices for theCPT-violating pa-
rameters

mimic CP violation: dM50, dĜ→2
2ueu
cosf

,

~A28!

which giveuXu→ueu andfX50. For theA3p observable, we
find

A3p
QM~ t !52uX8ucos~f2fX8!22e2~GS2GL!t/2@Reh3pcosDmt

2Imh3psinDmt#, ~A29!

with

Reh3p5uX8ucos~f2fX8!, Imh3p5uX8usin~f2fX8!,
~A30!

that is

Imh3p

Reh3p
5tan~f2fX8!. ~A31!

Here, we also note that the standardCP-violating result is
obtained for the choices of parameters in Eq.~A28! which
give uX8u→ueu andfX85p, since tan(f2p)5tanf.

For the observableAT , we obtain the exactly time-
independent first-order expression
on- AT
QM52uX8ucos~f2fX8!12uXucos~f1fX!54ueucosf,

~A32!

which is identical to the case of no-CPT violation. In the
case ofACPT , we find

ACPT
QM ~ t !5

A1~e
2GLt2e2GSt!22e2GtA2sinDmt

e2GLt1e2GSt22e2GtcosDmt
,

~A33!

with

A152uX8ucos~f2fX8!22uXucos~f1fX!

54 sinf cosfdM̂12 cos2fdĜ, ~A34!

A2522uX8usin~f2fX8!12uXusin~f1fX!

54 cos2fdM̂22 sinf cosfdĜ. ~A35!

Note that ueu drops out of the expression forACPT as it
should. In the long-time limit, we obtain

ACPT
QM →4 sinf cosfdM̂12 cos2fdĜ. ~A36!

Since the dynamical equations determining the density ma-
trix do not manifestly possess the mimicking symmetry in
Eq. ~A28!, one expects this mimicking phenomenon to break
down in some observables. This is the case ofACPT where
we find the asymptotic ‘‘mimic’’ result

ACPT→24ueucosf'2631023, ~A37!
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to be contrasted with the standard result ofACPT50. Experi-
mentally, the CPLEAR Collaboration has measured this
rameter to beACPT

exp 5(20.462.062.061.5)31023 @3#.
Comparing the prediction in Eq.~A37! with the experimental
data, we see that the ‘‘mimic’’ result appears disfavored
theACPT measurement.

Finally, sinceDr12
(1)5Sr11

(1)5Sr22
(1)50, theADm observ-

able has the same first-order expression as in standardCP
violation: namely,

ADm
QM~ t !52

2e2GtcosDmt

e2GLt1e2GSt
. ~A38!

Since in this mechanism ofCPT violation, quantum me-
chanics is not violated, from the discussion in Sec. V B 2
expect the parameterz to vanish. Indeed, using the abov
expressions forr22, we find

cS
~0!5r22~0!, ~A39!

cL
~2!5r11~0!uXu2, ~A40!

cI
~1!5ur12~0!uuXu, ~A41!

where we have also calculated the needed second-o
~long-lived! terms inr22. Moreover, the generic expressio
~120! gets modified in the interference term by the replac
ment: f→f1fX1f12. It then immediately follows that
cI
2/(cScL)5ur12(0)u2/@r11(0)r22(0)#51, where we have
made use of the detr(0)50 property. Therefore, as expecte
z50.

As in Sec. VI, we can derive indicative bounds on t
CPT-violating parameters. The coefficient of the interfe
ence term in A2p

QM ~A27! can be expressed as

uXu5uueu2 1
2 cosfdĜu/cosfX . Demanding that this amplitude

differ by less than 5% from the usual case, and with thea
priori knowledge thatfX should be small~as we demon-

strate below!, we obtain1
2 cosfudĜu/ueu,0.05, i.e.,

udĜu,331024, udGu,2310218 GeV. ~A42!

We can obtain a bound ondM̂ by noticing the correspon-
dencedM↔22b that follows from Eqs.~45! and ~A23!
when the bound in Eq.~A42! holds. From Eq.~155!, we then
find

dM̂5~24.064.4!31025,

dM5~23.063.2!310219 GeV. ~A43!

Alternatively, the analogue of Eq. ~157! is
umK02mK̄0u'udM u, which entailsudM u,3.7310219GeV,
once the 90% C.L. upper bound from E773@23# is inserted.

APPENDIX B: SECOND-ORDER CONTRIBUTIONS
TO THE DENSITY MATRIX

The second-order contributions to the density matrix
our quantum-mechanical-violating framework can be o
tained by using Eq.~41! with the first-order inputsr11,22,12

(1)
pa-

by

we
e

rder
n
e-

d

he
r-
:

in
b-

given in Eqs.~42!–~44!.6 We obtain

r11
~2!5 (

k51

7

ck
@11#Rk

@11#~ t !, ~B1!

where the time-dependentRk
@11#(t) functions are given by

R1
@11#~ t !5e2GLt2e2GSt, ~B2!

R2
@11#~ t !5tuDGue2GLt, ~B3!

R3
@11#~ t !52e2Gtcos~Dmt2df2f12!

1e2GLtcos~df1f12!, ~B4!

R4
@11#~ t !52e2Gtsin~Dmt1f!1e2GLtsinf, ~B5!

R5
@11#~ t !52e2GtF uDGut

2 cosf
cos~Dmt1f2df2f12!

1cos~Dmt12f2df2f12!G
1e2GLtcos~2f2df2f12!, ~B6!

R6
@11#~ t !52e2Gtcos~Dmt12f22df!

1e2GLtcos~2f22df!, ~B7!

R7
@11#~ t !52e2Gtcos~Dmt22df!1e2GLtcos~2df!,

~B8!

and theck
@11# coefficients are

c1
@11#52r11~0!ĝ22r22~0!ueu2

cos~f12df!

cosf cos2df

22ur12~0!uueuĝ
cos~f1df1f12!

cosdf
, ~B9!

c2
@11#5F ĝ22ueu2

cos~f22df!

cosf cos2df Gr11~0!, ~B10!

c3
@11#54ueuĝ

cosf

cosdf
ur12~0!u, ~B11!

c4
@11#52

4âueu
tanf

cos~df2f12!

cosdf
ur12~0!u, ~B12!

c5
@11#54âueu

cosf

cosdf
ur12~0!u, ~B13!

c6
@11#5

2ueu2

cos2df
r11~0!, ~B14!

c7
@11#5

2ueu2

cos2df
r22~0!. ~B15!

6Expressions forr22,12
(2) valid for a particular choice of initial con-

ditions were given in Ref.@16#.
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Analogously,

r22
~2!5 (

k51

7

ck
@22#Rk

@22#~ t !, ~B16!

where the time-dependentRk
@22#(t) functions are given by

R1
@22#~ t !5e2GLt2e2GSt ~B17!

R2
@22#~ t !5tuDGue2GSt ~B18!

R3
@22#~ t !5e2Gtcos~Dmt2df2f12!2e2GStcos~df1f12!

~B19!

R4
@22#~ t !5e2Gtsin~Dmt2f!1e2GStsinf ~B20!

R5
@22#~ t !5e2GtF uDGut

2 cosf
cos~Dmt2f2df2f12!

2cos~Dmt22f2df2f12!G
1e2GStcos~2f1df1f12!, ~B21!

R6
@22#~ t !52e2Gtcos~Dmt22df!1e2GStcos~2df!,

~B22!

R7
@22#~ t !52e2Gtcos~Dmt22f22df!

1e2GStcos~2f12df!, ~B23!
and theck
@22# coefficients are

c1
@22#5r22~0!ĝ21r11~0!ueu2

cos~f22df!

cosf cos2df

22ur12~0!uueuĝ
cos~f2df2f12!

cosdf
, ~B24!

c2
@22#5F2ĝ21ueu2

cos~f12df!

cosf cos2df Gr22~0!, ~B25!

c3
@22#54ueuĝ

cosf

cosdf
ur12~0!u, ~B26!

c4
@22#5

4âueu
tanf

cos~df2f12!

cosdf
ur12~0!u, ~B27!

c5
@22#524âueu

cosf

cosdf
ur12~0!u, ~B28!

c6
@22#5

2ueu2

cos2df
r11~0!, ~B29!

c7
@22#5

2ueu2

cos2df
r22~0!. ~B30!

Finally,
r12
~2!5

2â

tanf H 2â

tanf
ur12~0!usinf12R1

@12#~ t,0!2
4i â

tanf
ur12~0!uR2

@12#~ t !

2
ueu

cosdf
@r11~0!R1

@12#~ t,f2df!1r22~0!R1
@12#~ t,2f2df!#

1
2i ueusinf
cosdf

@r11~0!sin~f2df!R3
@12#~ t !1r22~0!sin~f1df!R4

@12#~ t !#J
1

ueueidf

cosdf H ĝ@r22~0!2r11~0!#@R3
@12#~ t !1R4

@12#~ t !#1
2ueu
cosdf

ur12~0!u@ iR1
@12#~ t,2df2f12!

2cos~f2df2f12!R3
@12#~ t !2cos~f1df1f12!R4

@12#~ t !#J , ~B31!

where the time-dependent functionsRk
@12#(t) are given by

R1
@12#~ t,a!5e2Gt@eiasinDmt2~Dmt!e2 iDmt2 ia#, ~B32!

R2
@12#~ t !5 1

4 e
2Gt$e2 if12@sinDmt2~Dmt!eiDmt#1 i ~Dmt!2e2 iDmt1 if12%, ~B33!

R3
@12#~ t !5e2 if@e2GLt2e2~G1 iDm!t#, ~B34!

R4
@12#~ t !5eif@e2GSt2e2~G1 iDm!t#. ~B35!
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