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Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system
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We present a systematic phenomenological analysis of the te§t® tfsymmetry that are possible within
an openquantum-mechanical description of the neutral kaon system that is motivated by arguments based on
guantum gravity and string theory. We develop a perturbative expansion in terms of the three small
CPT-violating parameters admitted in this description, and provide expressions for a complete set of
K—2m, 3, and 7/ v decay observables to second order in these small parameters, and contrast this for-
malism with CPT violation within conventional quantum mechanics. We also illustrate the new tests of
CPT symmetry and quantum mechanics that are possible in the open quantum-mechanical formalism using a
regenerator. Indications are that experimental data from the CPLEAR and previous experiments could be used
to establish upper bounds on tB4> T-violating parameters that are of order #d GeV, approaching the order
of magnitude that may be attainable in quantum theories of gravity.

PACS numbsg(s): 11.30.Er, 13.20.Eb, 14.40.Aq

I. INTRODUCTION [8], notably one based on a noncritical formulation of string

. theory[9].
The neutral kaon system has long served as a penetrating The suggestion that quantum coherence might be lost at

probe of fundamental physics. It has revealed or illuminateghe microscopic level was made in RE8], which suggested
many new areas of fundamental physics, including paritthat asymptotic scattering should be described in terms of a
violation, CP violation, flavor-changing neutral interactions, superscattering operat@®, relating initial (p;,) and final
and charm. It remains the most sensitive test of fundamentgb,,,) density matrices, that does not factorize as a product of
symmetries, being the only place wheﬂ?d?giolation has S- andS'-matrix elements:
been observed, namely, at the level of 10GeV in the _ .
imaginary part of the effective mass matrix for neutral kaons, Pou=Bpin: 5% SS. @
and providing the most stringent microscopic check ofThe loss of quantum coherence was thought to be a conse-
CPT symmetry within the framework of quantum mechan- quence of microscopic quantum-gravitational fluctuations in
ics, namely, (myo— Mgo)/myo|<9x 10 ° [1]. the space-time background. Model calculations supporting
It is well known thatCPT symmetry is a fundamental this suggestion were presente] as well as contestgd 0].
theorem of quantum field theory, which follows from local- Referenc¢6] pointed out that if Eq(1) is correct for asymp-
ity, unitarity, and Lorentz invariancg?]. However, the topic totic scattering, there should be a corresponding effect in the
of CPT violation has recently attracted increased attentionquantum Liouville equation that describes the time evolution
drawn in part by the prospect of higher-precision tests bypf the dentity matrixp(t):
CPLEAR[3] and at DAPNE [4], and in part by the renewed ap(t)
theoretical interest in quantum gravity motivated by recent ——=i[p,H]+idHp, 2
developments in string theory. Some of the phenomenologi- at
cal discussion has been in the context of quantum mechanigghich is characteristic of an open quantum-mechanical sys-
[5], abandoning implicitly or explicitly the derivation of tem. Referencg6] parametrized the non-Hamiltonian term
quantum mechanics from quantum field theory, in whichijn the case of a simple two-state system, such adthi®
CPT is sacrosanct. Instead, we have followed the approacBystem, presented a first analysis of its phenomenological
of Ref. [6], in which a parametrization o€ PT-violating  consequences, and gave experimental bounds on the
effects is introduced via a deviation from conventional quannonguantum-mechanical parameters.
tum mechanic$6,7], believed to reflect the loss of quantum  The question of microscopic quantum coherence has re-
coherence expected in some approaches to quantum graviggntly been addressed in the context of string theory using a
variety of approachegll]. In particular, we have analyzed
this question using noncritical string thedr/2], with criti-
*Present address: Department of Physics, Rice University, 6100ality restored by nontrivial dynamics for a timelike Liou-
Main Street, Houston, Texas 77005. ville field [12,13, which we identify with the world-sheet
TOn leave from P.P.A.R.C. Advanced Fellowship, Department ofcutoff and the target-time variab|&,9]. This approach leads
Physics(Theoretical Physigs University of Oxford, 1 Keble Road, to an equation of the forn§2), in which probability and
Oxford OX1 3NP, United Kingdom. energy are conserved, and the possible magnitude of the ex-
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tra term |8|=0O(E?/M p), whereE is a typical energy tum gravity [6], as argued specifically in the context of a
scale of the system under discussion. The details of this agroncritical string analysig7,9]. This provides a specific form
proach are not essential for the phenomenological discussidar the modification(2) of the quantum Liouville equation
of this paper, but it is interesting to note that the experimenfor the temporal evolution of the density matrix of observ-
tal sensitivity may approach this theoretical magnitude. able matte{7,9]

It has been pointed o(iL4] that at least the strong version P
of the CPT theorem must be violated in any theory de- g ; —NiG Tal
scribed by a nonfactorizing superscattering matix(1), aP=ilpHIviohp,  M=g'Cyldp] &
which leads to a loss of quantum coherence. This is also true ) _ ] ]
of the parametrization proposed by RE], which violates ~ Where the coordinatelg)'} parametrize the space of possible
CPT in an intrinsically nonquantum-mechanical way. More Stfing models and the extra terd# is such that the time
detailed descriptions of phenomenological implications and@volution has the following basic properties.

improved experimental bounds were presented in R (i) The total probability isconservedn time:

These results were based on an analysi& ofand K5 de-

cays, and did not consider the additional constraints obtain- iTrp:O (4)
able from an analysis of intermediate-time data. A systematic at

approach to the time evolution of the density matrix for the

neutral kaon system was proposed in R&6], and prelimi- (i) The energyE is conserved on the average
nary estimates of the improved experimental constraints on P
the nonquantum-mechanical parameters were presented. ETr( Ep)=0 (5)

Similar results were presented later in Rdf7], which also

discussed correlation measurements possible é@tfactory o
such as DA NE. as a result of thaenormalizability of the world-sheeto

The main focus of this paper is to present detailed formuMmodel specified by the parametagswhich describe string
las for the time dependences of several decay asymmetri@§opagation in a string space-time foam background.

that can be measured by the CPLEAR and®ME experi- (iii) The von Neumann entrogy= —kgTrp Inp increases
ments, using the systematic approach proposed in[Ref. Monotonically with time

and described in Sec. Ill. In particular, we discuss in Sec. IV 3

the asymmetrie_s _I_<nown aAZ,,_, Agw_, A;, Acpr, and _ —S=0, (6)
Aam, Whose definitions are reviewed in Sec. Il. We show in ot

Sec. V that experiments with a regenerator can provide use- . ) ) i . i .
ful new measurements of the nonquantum—mechanicég‘/h":h vanlshe_s only if one restricts one’s attention to crl_tlcal
CPT-violating parameters. Then, in Sec. VI we derive illus- (conforma) strings, in which case there is no arrow of time
trative bounds on the nongquantum-mechanical parameteE)Z 9]. However, we argue that quantum fluctuations in the
from all presently available data. Section VII contains a brief a}quroqnd space time should _be trgated by including non-
discussion of the extension of the formalism of Réf] to C”“C?" (I."OUV'”e.) strln.gs[lz,liﬂ, in which casg(G) pecomes
the correlation measurements possiblebdactories such as a st_rlc_t inequality. This "';‘t_‘er property alsq |mpl_|es thaF the
DA®NE. We emphasize the need to consider a general paitgtlsfucal entropyBy=Trp" is "‘.‘ISO mpnotonlcally Increasing
rametrization of the two-particle density matrix, that CannotWlth time, pure states Qvolve into mixed ones, and there is an
be expressed simply in terms of the previously introduced™W of time in th!s pictur¢ 7], . -
single-particle density matrix parameters, and enables energé é'v)_ Correspondm_gly, the supersc_atterlng_ maﬁ;xwhmh
conservation to be maintained, as we have demonstratdd defined by its action on asymptotic density matrices,
[7,9] in our noncritical string theory approach to the loss of — % @
guantum coherence. In Sec. VIII we review our conclusions, Pout™ SPin
contrasting our approach witEPT violation because of annet be factorized into the usual product of the Heisenberg
k_aon mass or lifetime Q|ﬁerence¢§l\/l.,5l“.wnh|n conven-  geattering matrix and its Hermitian conjugate,
tional quantum mechanid4.8] and with directCPT viola-
tion in 27r and 7/ v decay amplitudefl9], and discuss the 8+SY, S=e Mt 8
prospects for future experimental and theoretical work. For-
mulas for the CPLEAR observables in the context of stanwith H the Hamiltonian operator of the system. In particular,
dard quantum-mechanic@lP T violation[5] are collected in  this property implies thaf has no inverse, which is also
Appendix A, where bounds on the corresponding parametemxpected from the propertyii ).
are also obtained. Lastly, complete formulas for the second- (v) The absence of an inverse f&rimplies thatstrong
order contributions to the density matrix in our quantum-CPT invariance of the low-energy subsystem is lost, accord-
mechanical-violating framework are collected in Appendixing to the general analysis §14,9].
B. It should be stressed that, although for the purposes of the
present work we keep the microscopic origin of the
guantum-mechanics-violating terms unspecified, it is only in
the noncritical string model of Ref7], and the associated

In this section we first review aspects of the modificationsapproach to the nature of time, that a concrete microscopic
(2) of quantum mechanics believed to be induced by quanmodel guaranteeing the propertigs-(v) has so far emerged

Il. FORMALISM AND RELEVANT OBSERVABLES
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naturally. Within this framework, we expect that the string underlying string model, and thaéiA| might further be sup-
o-model coordinateg' obey renormalization-group equa- pressed by E/Mp)-dependent factors, or even vanish. Nev-

tions of the general form ertheless, Eq.10) gives us an order of magnitude to aim for
2 in the neutral kaon system, namel3((Aqcp oOr mg)?/

'gizlgiMPI:|IBi|=0<_2) (9 Mp)~10'° GeV. We note in passing that a
Mp phenomenologically-distinct approach @PT violation in

. i . the context of string theory is taken ji8], where it is ar-
where the dot denotes differentiation with respect to the tar- g yIs [a8] .

. : Y . ! . gued that a spontaneous violation®P T may yield nonzero
get time, measured in strindA{,") units, andk is a typical

energy scale in the observable matter system. S#)c@and values ofoM and ol

i ) . : In the formalism of Ref[6], the extra(non-Hamiltonian
g' are themselves dimensionless numbers of order unity, W%rm in the Liouville equation fop can be parametrized by a
expect that in general ! louvi quat p P 12 y

4X4 matrix 6K .5, where the indicesy,, ... enumerate
E? the Hermitiano matricesoyg ; 5 3, Which we represent in the
|oW[=0 Mo (100 K., basis. We refer the reader to the literat{ife15] and

Appendix A for details of this description, noting here the
However, it should be emphasized that there are expected following forms for the neutral kaon Hamiltonian:
be system-dependent numerical factors that depend on the

i i 1 i , 1
M_EF_RG\/I]_ZJF sz—‘lZ E&M_25F_| Iliz_ Elmrlz
H= (11)

1 i , 1 i i
5OM= 28T +i IMMyo— 5Iml'y, M= 5T +ReMy,— 5Rel'y,

in theK, , basis, or apparent that none of the nonzero terms, 8,y in i .z
(13) commutes with th€ P T transformation. In other words,

T _ 151“ imr _Re each of the three parameters B, v violatesCPT, leading
2 12 12 to a richer phenomenology than that in conventional quan-
1 tum mechanics. This is because the symme#it matrix
H =| —=6r -T —2ReM;, —2ImMy, has three parameters in its bottom right-hand2 subma-

“p 2 trix, whereas thén matrix appearing in the time evolution
—Iml';, 2ReMy, -Tr — M within quantum mechanic§5] has only one complex
R, —2ImMy, SM r CPT-violating parametep,

(12 1 .
in the o-matrix basis. As discussed in R¢6], we assume - EM (15)
that the dominant violations of quantum mechanics conserve 2 HAT|+iAm

strangeness, so that,; = 0, and thatsii;z = 0 so as to

conserve probability. Sincéi ,; is a symmetric matrix, it ) ] .
follows that alsodi o= oW ,,=0. Thus, we arrive at the wheredM and 61" violate CPT, but do not induce any mix-

general parametrization ing in the time evolution of pure state vectdrs5]. The
parameterdam=M, —Mg and|AT'|=T's—T'| are the usual
00 0 0 differences between mass and decay widths, respectively, of
0 0 0 Ky an(_jKS states. A brief revi_ew of the quantum-_mechanical
S 5= (13 formalism is given in Appendix A. For more details, we refer
0 0 —2a —-2p the reader to the literatufd 8,19. The above results imply
0 0 —28 -2y that the experimental constrairjts] on CPT violation have

to be rethought if one allows a modification of quantum me-
where, as a result of the positivity of the Hermitian densitychanics, as discussed here. As we shall discuss later on, there
matrix p [6], are essential differences between quantum-mecha@Gieal
violation and the nonquantum-mechani€4P T violation in-
a,y>0, ay>p° (14 duced by the effective parametersgs,y [6].
Useful observables are associated with the decays of neu-
We recall[15] that theCPT transformation can be ex- tral kaons to 2r or 37 final states, or semileptonic decays to
pressed as a linear combination @} ; in the K, , basis:  #lv. In the density-matrix formalism introduced above, their
CPT=og3c0s9+a,sing, for some choice of phasé. It is  values are given by expressions of the fdn
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(0;))=Tr{ Oip], (16) CP properties, by restricting one’s attention to part of the
phase space (), e.g., final states with
where the observables; are represented by>22 Hermitian ~ m(#* 7% >m(=~ 7). In order to separate this interference

matrices. For future use, we give their expressions in thérom that because dfs, decays into final states with iden-

Ky 2 basis: tical CP properties, because GfP violation in theK ; , mass
matrix or in decay amplitudes, we consid&0] the differ-
o :(0 0) o M(l 0) (17) ence between final states with(7w* 7% >m(7~ #° and
2m o 1)0 * o o) m(7* 7% <m(7~#°. This observable is represented by
the matrix
1 1 1 -1
O7T7|+V: 1 1) ' O7T+|7_V: -1 1 ) ' (18) . 0 o

02‘;=( 7 0 ) (19

which constitute a complete Hermitian set. As we discuss in Y

more detail later, it is possible to measure the interference
betweerK , decays intor " 7~ w0 final states with different where

_ [ it 79> m(z— 290 = [ mizt 20) < m(r— 70 dQTA(13,=2)Aq(l5,=1)

T , 20
[dQAL(15,= DI 20
|
where. 7 is expected to be essentially real, so that @& TIO,.p(1)]~ T Opop(t)]  TH O, Ap(t)]
observable provides essentially the same information as A,,.= — = T0., S 001"
O, 1+,— 0,4+ 5. TH{O,,p(1)]+ T Op,p(t)]  TMO272p(V)]
In this formalism, purek® or K states, such as the ones (23

used as initial conditions in the CPLEAR experimg3i are

where we have defined: Ap(t)=p(t)—p(t) and
described by the density matrices p()=p(t)~p(1)

S p(t)=p(t)+ p(t). We note that in the above formalism we

make no distinction between neutral and charged two-pion

1/1 1 1/ 1 -1 final states. This is because we neglect, for simplicity, the

pKOZE(l 1>, PEOZE(_l 1 ) (21)  effects of €'. Since |e'/e|<1073, this implies that our
analysis of the new quantum-mechanics-violating parameters

must be refined if magnitudes €'|AT'|=10 6|AT’| are to

We note the similarity of the above density matri¢2$) to  be studied.

the semileptonic decay observableg18), which is because In a similar spirit to the identical final state case, one can

of the strange quark sj content of the kaonK®  compute the asymmetr; for the semileptonic decay case,

ss—ul"v, K% s—ul v, and our assumption of the va- wheref=#"1"v#f=="1"v. The formula for this observ-

lidity of the AS=AQ rule. able is

In this paper we shall apply the above formalism to com-

pute the time evolution of certain experimentally observed THO,-+,p(1)]— TI[O,+- 57 p(t)]

quantities that are of relevance to the CPLEAR experiment Ar(t)= = .

[3]. These are asymmetries associated with decays of an ini- TO7-1+,p(O]+ THO+1- 5 p(1)]

tial K° beam as compared to corresponding decays of aPyiher observables are discussed in Sec. IV
« _age 0 . . .
initial K beam: To determine the temporal evolution of the above observ-
3 B ables, which is crucial for experimental fits, it is necessary to
R(Kt0=o_>f)_ R(Kf’=o—>f) know thg equations of moltlon for the componentg ah the
(22 K1, basis. These arfé,15]

p11=—TLputyp2—2 RE(IMM1,—iB)p1al, (25

(29)

A(t)= — —
v R(K{_p— )+ R(K{_g— 1)

where R(K°— f)=Tr[O¢p(t)] denotes the decay rate into

the final statef, given that one starts from a puke® at p1z=—(I'+iAm)p;,—2ia IMpyy

t=0, whose density matrix is given in(21), and +(IMM 1= B)(p11— p2o), (26)
R(K°—f)=Tr[O;p(t)] denotes the decay rate into the con-

jugate statef, given that one starts from a puké’ at t=0. p2o=—Tgpoot yp11+2 RE(IMM 1,—iB)p12], (27)

Let us illustrate the above formalism by two examples.
We may compute the asymmetry for the case where there are———
identical final state$=f =2, in which case the observable !Since we neglect’ effects and assume the validity of theS
is given in(17). We obtain =AQ rule, in what follows we also consistently neglectllp [4].
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where, for instancep may represenfp or 2 p, defined by

the initial conditions

0 1 0
Ap<0>=(_1 O), 2p<0>=(0 1). (29

In these equations, I'|=(5.17x10%s)! and
I's=(0.8922< 10 19s)™! are the inversek, and Kg life-
times, T'=(Ts+T)/2, |AT|=Tgs—T =(7.3640.016)
x10*® GeV, and Am=0.5351x10'%s 1=3.522x10 *°
GeV is theK, —Kg mass difference. Also, th€ P impurity
parametefe is given by

ImM 4,

€= — ), (29
3|AT|+iAm

which leads to the relations

1
pL=

(le|—i2B cosp)e™ ¢ |e|2+ y—4B2coLd— 4| e|sing

where we have defined the following scaled variables

a=al|AT|, B=pI|AT],
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1|AT||€]

el —llaid _
1275 cosp ' € |ele™':tang

iar|’
(30)

with |€]~2.2x 1072 and ¢~45° the “superweak” phase.

These equations are to be compared with the correspond-
ing quantum-mechanical equations of R¢g& 15| which are
reviewed in Appendix A. The paramete& and 8 play
similar roles, although they appear with different relative
signs in different places, because of the symmetrgtéfas
opposed to the antisymmetry of the quantum-mechanical
evolution matrixH. These differences are important for the
asymptotic limits of the density matrix, and its impurity. In
our approach, one can readily show that, at large decays
exponentially to[15]

Conversely, if we look in the short-time limit for a solution of EQ85)—(27) p11<<p12<por, We find[15]

ps=

These results are to be contrasted with those obtained within

conventional quantum mechanics,

1 ¢ le|? € a4
pL= € |6|21 ps= e* 1] ( )

which, as can be seen from their vanishing determifant,
correspond to pur&, andKg states, respectively. In con-

|e|2+ y—4pB%coLp+ 4P| e|sing (|| +i23 cosp)e?
(le|—i28 cosp)e'?

(|| +i2B cosp)e'¢ ) a1
y=7I|AT]. (32)
1 ) (33

Ill. PERTURBATION THEORY

The coupled set of differential equatiof®5)—(27) can be
solved numerically to any desired degree of accuracy. How-
ever, it is instructive and adequate for our purposes to solve
these equations in perturbation theory an 3, y, and
le|, so as to obtain convenient analytical approximations
[16]. Writing

pi(O=p (O+p (O +pP O+, (35

trast, p_,ps in Egs.(31) and(33) describe mixed states. As \yhere pi(-”)(t) is proportional to &pdépg",ypﬂ €|Pe, with

l

mentioned in the Introduction, the maximum possible order, +pg+Pp,+pP.=n, we obtain a set of differential equa-
. a 0% € I
of magnitude for|al, 8|, or |y| that we could expect tions at each order in perturbation theory. To zeroth order we

theoretically iSO(E?/Mp)=O((Aqep 0rmg)%/Mp)~10~19
GeV in the neutral kaon system.

To make a consistent phenomenological study of the vari-
ous quantities discussed above, it is essential to solve the
coupled system of equation®5—(27) for intermediate
times. This requires approximations in order to get analytic

results[16], as we discuss in the next section.

2A pure state will remain pure as long aspTe (Trp)? [6]. In the

case of X2 matrices Tp?=( Trp)?>—2dep, and therefore the pu-

rity condition is equivalently expressed as gel0.

get
PP () =p1y(0)e "L, (36)
P (1) =pyn(0)e T, (37)
pi2(t)=p1(0)e” (IFiAmY, (39)

where, in the interest of generality, we have left the initial
conditions unspecified. At higher orders, the differential
equations are of the form
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(n- 1) Ap andZ p, one simply needs to insert the appropriate set of
p\" () =—Ap| (t)+2 (v, (39  initial conditions[Eq. (28)]. Through first order we obtain
the ready-to-use expressions

whereX’ excludes the;; term. Multiplying by the integrat- 2]
ing factore™!, one obtains A\ V()= cosé¢[ e Tlcog Amt+ ¢p— 8¢)
[eA‘p.J (H]1= e’“E oy (), (40 +e t'cog - 54)], (46)
which can be integrated in terms of the known functions at ApS (1) = |56| [—e cogAmt—¢— 5¢)
the (h—1)th order, and the initial Condltlop,(”)(O) 0, for cosi¢
n=1:ie., +e "dcog p+ 85¢)], (47)
p” (t) e Atf dt’ e At’ 2 p(n 1 (41) Apgg+l)(t):_e—(l‘+iAm)t_ tj:\;e—rt[sin(Amt)
Following this straightforwardbut tediou$ procedure, —(Amt)e~'amy, (48)
we obtain the set of first-order expressions
. STt =e i sleT e (49
PLT () =py(0)Y e ! —e "]
| | (O+1 (t) e Fst+ ,’i/[e—FLt_e—Fst]’ (50)
C0§¢|P12 (0)|[[e”'cog Amt+¢p— Sp— 1)
(0+1)( )_ | | {e|(5¢ &) [e—FLt e (F+iAm)t]
—e "tcog ¢p— 64— ¢12)], (42)
2 (Sp+P)ra—Tst _ o= (F+iAm)t
P55 (1)=p14(0)y[e Tti—e s +e [e77s—e 0T (8D

2|e| For most purposes, first-order approximations suffice.

< ———|p1(0)|[e” "cog Amt— p— Sp— p1)) However, in the case of th&,, andR,,. observables, some
CO ¢ second-order terms in the expression fop are required.
—e T's'cog p+ 8+ 1)1, (43) For exampIeApzz) introduces the firstr dependence in the

numerator ofA, ., wherea§p(2) cuts off the otherwise ex-
ponential growth with time of the numerator. The complete
second-order expressions fof; », 1,are collected in Appen-
dix B.

2a e
P22 (V)= rglpid O)le™" e Puzsin(Amy)

€l
CoOH¢p

—(Amt)e™!Amtidaz) 4 {p11(0)€!?¢=

IV. ANALYTICAL RESULTS

X[e Tit—g - (IFiamt] 4 5 (0)e!(9¢+¢) We now proceed to give explicit expressions for the tem-
. oral evolution of the asymmetriesA A A
—Tgt_ A= (T+iAm)t P ! o2 P M
xX[e"'s—e 1} (44 Acpr, andA,,, that are possible objects of experimental

In these expressionsh;,=Arg[ p1»(0)], and we have de- study, in particular, by the CPLEAR Collaboratifi.

fined A A
. 2w
28 co i i ion i i i
tande=— B 54’. (45) Following the discussion in Sec. Il, one obtains, for this
€ asymmetry,
Note that genericallall three parametersy, 3,y) appear to A _ Apoy(t) 52
first order. However, in the specific observables to be dis- 22(1)= —Epzz(t)’ (52)

cussed below, this is not necessarily the case because of the

particular initial conditions that may be involved. Thus, thesewith Ap,, and 2 p,, given through first order in Eq447)
general expressions may be useful in the design of experand (50); second-order contributions can be obtained from
ments that seek to maximize the sensitivity to theEg. (B16). The result for the asymmetry, to second order in
CPT-violating parameters. To obtain the expressions foithe small parameters, can be written most concisely as

coq ¢+ 69¢)

€l COSH ¢

+AX, | +eTsTutAX,— el/2(Ts=TLt
co

2|¢f
S(sqscos{Amt— ¢—8d)+AX;

A2'n’(t) =

[1_ “,y+le]+e(stl‘L)t[",y_’_Exz]_el/Z(I‘Ser)tzxs '

(53
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0.4 0.005
o 4=5x10"2 oo B=1x10%  (a)
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" ’ " P
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B

FIG. 2. The time-dependent asymmetky,. for representative
choices 0f23 (A3, depends very weakly o#, 7). The top curve
corresponds to the standard case. Also shown is the ratio
Im#,,. | Rens,=tan(¢— 6¢) as a function ofB.

2
t/1:S |€l

. 2
EX1=—7 +m

FIG. 1. The time-dependent asymmefky,. for various choices cog p—258¢)
of the CP T-violating parametersia) dependence or, (b) depen- e

c0g28¢)+cog2¢+26¢)

dence ong, (c) dependence ofy. The unspecified parameters are 2 cosp
set to zero. The curve with no label corresponds to the standard case . 5 cogp+25¢)
(a=p=7=0). FHAT[| ="+ ]el cosp cos ¢ |’ &7
where the second-order coefficiemtX; , ; and> X, , 3 are S 3= 324 ,C0Lp—25¢) -
given by 2= 7"+l cosp cogdep 8
sxg= 2t [COSAMt—266)+cog Amt—2—256)]
cogp+ 6 sin(¢+ & 3T 25 Lcosami— cosAami=2z2¢— .
AX,=2]e[5 2501 0D) e ising cosp bt 0P cos'5
coH¢ CoSH ¢ (59
(54) .
This form is useful wherB<|e|, since thend¢~0. In the
usual casdi.e., a= 8= y=0), we obtain
.codp—95¢)
AX2=2|6|)/%, (55) _ 2|e|cosp—2|e|er’?TsTUicog Amt— ¢)
Az(t)= [1+3X0]+els Tts X el2 (s TUrg x4
(60)
. COSp dela with
AX3—4|6|7mCOS{Amt— 5¢)+ WSIH(Amt— d))
SXi=|€el1+2 cog2¢)+t|AT|], (61)
Alel cosp | t|AT Amt 5
|6|acos§¢ 2 CO%cos( mt=¢-54) S X5=|€l?, (62)

, (56) S X3=4|€|*cosp cog Amt—¢b). (63

—cofAmt—2¢—5¢)
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Comparing the two cases, we note the following. tern, requires B cosp—+|e. The denominator then be-
5 (i)OThr? secontillng in E(;(If:?»). sthofws thaito f[ltrst ordz} h.ﬂgomes y—4B2cogp—y—|e? and we also require
itd) changes the size of the interference pattern and shi 52| e[2. The fatal problem is thabg— —sgn(3) = and

(2) The denominator in Eq(53) shows that necessarily tﬂe w;}terft;rence patternh|s shlftedI Ijlgnmcantly. Thlz means
5=3X,~|el or else the interference pattern would be that the effects seen in the neutral kaon system, and conven-

damped too soon. In fact, because of this upper limit, ondionally interpreted a< P violation, indeedcannot because

can in practice neglect all terms proportionahtohat appear  °f the CPT violation[16,17. _ .

formally at second order, since they are in practice third, Fi9ure 1 shows the effects diy(t) of varying(a) a, (b)

order. B, and (c) y. We see that the intermediate-time region 5
(3) The effect ofa is felt only at second order, through =<t/7,<20 is particularly se:\r_ws_iti\{e. to ‘nonzero valugs of

AX; andAXs, although it is of some relevance only in the these parameters. The sensitivityddn Fig. }(a) is consid-

interference patternAXs). erably less than that t8 in Fig. 1(b) and toy in Fig. 1(c),
Some of the terms in Eq53) can be written in a less Which is reflected in the magnitudes of the indicative numeri-

concise way which shows the effect gf more explicitly, ~ cal bounds reported in Sec. VI.

instead of it being buried insid&¢. To first order, although

keeping the important second-order termsiK,, we can B. Azn

write Analogously, the formula for the asymmetry is

A, (1)~{2|€|cosp+ 48 sing cosp—2/|e|2+4B2coL ¢ A t_Tr[O3,TE(t)]—Tr[O3,Tp(t)]_ o (1 o)
37 ’

37 - — ’
x el2Ts~ TVt cog Amt— ¢p— 5¢)} Tr{O3,p(t) ]+ T Oz,p(t)] 0 0( |
65
x{1+eTs Tt [} +]€2— 4B%c0o2
{ R [v+el A ¢ from which one immediately obtains
—48|€e|sing]} . (64)
. ) _— . Apia(t)
In this form one can readily see wheth@P violation can in As(t)= SpuD)’ (66)

fact vanish, with its effects mimicked by nonquantum-

mechanicalCPT violation. Setting|e|=0, one needs to re- To first order in the small parameterdp,; and 3 p,; are
produce the interference pattern, and also the denominatagiven in Eqs(46) and(49). This asymmetry can therefore be
To reproduce the overall coefficient of the interference patexpressed as

codp—35¢) 2l _,,
_ — (gt _
) 2| €l 05 cos&i)e cofAmt+ ¢— 5¢)
A311'(t)_ 1+A_A —(Fg—Tt
y—ve
~[2|€|cosp— 48 sing cosp]—2e~ Y2Ts T Rep, cosAmt—Imys,sinAmt], (67)

where, to facilitate contact with experiment, in the secondcertainties drops out. In the standa@dP-violating scenario,
form we have neglected thg contribution, expresseél¢ in  the ratio is Imy,,. / Renps, =tandg~1, whereas in our sce-
terms of B8 (45), and defined nario, it is

A Im2s,, |€|sing+ 28 cod e
Rens,=|€|cosp— 2 sing cosp, Rers. elcoss— 23 sing cosh =tan(¢—5¢).

(69

Im7s,=|e|sing+23 code. (69) It is apparent from the gbov&a formulas t_h_agw is much
more sensitive tg than toe or y. This sensitivity ofAz,; to
B is shown in Fig. 2a), and that of (Iny3,./ Rens,) in Fig.
In the CPLEAR experiment, the time-dependent decay2(b).
asymmetry intor°7* 7~ is measured3], and the data is fit As already mentioned in Sec. Il, additional information
to obtain the best values for Bg, and Imps.. It would  may be obtained fromr*™ 7~ #° decays by observing the
appear particularly useful to determine the ratio of these twalifference between the rates far™ 7~ #° decays with
parameters, so that a good fraction of the experimental urm(7* 7% >m(7~ #°) andm(=" 7% <m(#~ #°), [20] rep-
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resented byOI' [Egs. (19) and (20)]. This division of the We obtain the formula
final-state phase space into two halves is @ét invariant,
and hence enables one to measure interference between the

CP-evenl;,=2 and CP-odd;,=1 final states. Defining At ReApi, (71)
3T ReXpyp
o _ TO05,p(0)] =T Og,p(1)] 70
3T T Og,p(t) ]+ T O, p(1)]’ To first order in small parameters, we find
|
2a
—e ' cosAmt+ —[sinAmt— (Amt)cosAmt]
At tand (72
w € "
cclsf|5¢>[cos(¢_ Sp)e Til4+cog p+ 8p)e 's'—2 cospe cogAmt—6¢)]
|
Note thatAj" —c for t—0, signaling a breakdown of our Ap1tApypt2 REpg,
approximation scheme. In tf@P T-conserving case, this ob- = (74

i + +2 ReApy,’

servable becomes 2Pt 2Pz P12

—e cosAmt 3 .

Ty o T —Tt : with the first-order expressions fdxp and2p
cosple” 'L'+e” s—2e "'cosAmt L 11,22,12@N0 % P11 22,12

|elcos] ] given in Eqs(46)—(51). In the usual nor€ P T-violating case,
We see that this observable is sensitivertfsee the numera- one finds, to first order, the exactly time-independent result
tor of (72)], and to B via 8¢. The sensitivity toa may
supplement usefully the information obtainable from the

int
A3774)

A, measurement discussed in Sec. IV E. Ar=4|€|cosp, (79
C.A;
The formula for this asymmetry, as obtained by applyingas expecte@i3]. In the C P T-violating case, to first order, one
the formalism of Sec. Il, assumes the form finds a time-dependent expression
|

4 e lcog p— 5¢) +e T's'coq o+ 8¢p) — 2e cof Amt— 5¢)cosp 26
T cospl . o . T 2a ' (79

e 't(1+2y)+e s (1-2y)—2e Y cosAmt+ m(smAmt—Amt cosAmt)

|

which asymptotes to Api+Apr,—2RE py,
S AcPT=S 15 ,,,—2Re\py, (78)

4elcog p—S5¢p) 4| e|cosp—8p sing cosp P11 P22 P12

T Ny 3
cosp(1+2y) 1+2y To first order, in both the CPT-conserving and

77 CPT-violating cases, we find
The sensitivities ofAr to a andﬁ are illustrated in Fig. &) A =0 (79
and 3b), respectively. We see that the sensitivity dois CcpT— ™"
again less than that t@, and is restricted td/7;<15,
whereas the greater sensitivity fopersists to large, as in

Eq. (77), where the correspondingtterly negligible sensi-
tivity to  can be inferred.

To second order, the terms in the numerator of @8) can
be written most succinctly in the long-time limit. With the
help of the expressions in Appendix B, we obtain

Ap{?— —2|e|y cosp+8|e|a cosp sirPe
D. Acpr

Following the discussion in Sec. Il, the formula for this +4BY sing cosp+16a sing cosh, (80)
observable, as defined by the CPLEAR Collaboraf® is 2 ) “l
given by Eq(22) with f= 1" v andf=7"1"». We obtain Apy3—2|ely cosp—4pBYy sing cosp,
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ReS p\2—4|e|& cosp sirtp+8ap sing cose, 0. 0065

4=5x10"2 @

~

which show that in the long-time limitAcpr=0 also to 00068
second order. In fact, some algebra shows thapt=0 AT
through second order fall values oft. This result implies 0.0067
that |Acp7] =10 © and thus is unobservably small.

We point out that this result is@uite distinctive signature 0.0066
of the modifications of the quantum mechanics proposed in
Refs.[6,15], since in the case of quantum-mechanical viola- 0.0065
tion of CPT symmetry[5], there is a nontrivial change in e
Acpt, proportional to theCPT-violating parameterssM s
anddT. Indeed, in Appendix A we obtain the following first-
order asymptotic result

A=1x10"2

0.007

AU 4 sing cospoM +2 codgdl, (81 (b)

0.0065

written in terms of the scaled variables. Part of the reason for AT 0.006 ﬁ=1x10'4
this difference is the different role played &M as com- 0.0055
pared to theB parameter in the formalism of Reff6], as 0005 4
discussed in detail in Ref15]. In particular, there are im- ' _B=sx10°
portant sign differences between the ways thkt and 8 00045
appear in the two formalisms, that cause the suppression to 0.00abs - = o =
second order of any quantum-mechanical-violating effects in Ve
Acpt, a@s opposed to the conventional quantum-mechanics

case.

S

FIG. 3. The time-dependent asymmethy for representative
E. Agm choices of(a) « (8=0) and(b) 8 (a=0). The dependence opis

. . negligible. The flat line corresponds to the standard case.
Following Ref.[3], one can defind\,,, as gl P

R(KO—>7T+)+R(}ZO—>7T_)_R(}ZO—>7T+)_R(KO—>7T_)
Asm= 0.+ 0_. - 0.+ 0_._-
RIK'—»7")+R(K’" -7 )+ R(K’ - 7" )+ R(K*—77)

(82

in an obvious short-hand notation for the final states of the In the case of n&€PT violation, the observablé,, has
semileptonic decays, where only the pion content is shows  minimum  for tahmt=—T/Am~— |AT|/Am=

explicitly. In the formalism of Sec. Il, this expression be- —1/tanp. Since tam~1, the minimum occurs for

comes (t/ 78 min=37/2. In theCP T-violating case, Eq(85) can be
2 Redpyy rewritten as

m—e———- 83
AT S p1t+Spa ®3

2e "'CycodAmt—anm)

The first-order expression in the usual @dnT-violating Asm= "~ e {(1+2y)+e Tsi(1-27%)" (86)
case is

2e cosAmt with

Aam= ~ 5T g TS (84) ) )
_ 2altang _1—at|AF|

as obtained in Ref3]. In the CPT-violating case to first tan‘ﬁAm_l—anﬂ’ AMT cosham (87)
order, as Eq948)—(50) show, neithete| nor 8 come in, and
we obtain Since the minimum occurs fdfAT'|~5, for small values of

25 «, one can neglect the time-dependent piecesjn, and

2e ! cosAmt+ ——(sinAmt—Amt cosAmt) Cam- The new minimum condition foh, ,, is then modified
Agm=— tan? _ . to tan@Amt— ¢, ,)~—1lltanp, and thus the minimum is
m e ' t(1+2y)+e 's(1-27) shifted to
(85)
. A . P . . . 377 R

Since y is negligible, this observable provides arclusive (79 mir~ - + 4, 88)

test of &. 2
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with . 7= (K°|A|K®) the forwardK°-nucleus scattering am-

0.5 (a) plitude (and analogously for#), andN is the nuclear re-
0.4 generator density. We can rewriteH (89) in the K, , basis
A 0.3 as
A o2 4=5x10"2 - _ =
o / T+T T-T
0 AH= = =1, 91
0 T-T T+T
2% 5 10 15 20 which can, in principle, be included as a contributiortHtan
Vg the density-matrix equation:
dp=—Ii[H,p]+idKp, 92
where S represents the possiblEPT- and quantum-
mechanicalQM)-violating term.
A It may be adequate as a first approximation to treat the
Am

regenerator as very thin, in which case we may use the im-
pulse approximation, and the regenerator changdy an
amount

-0.14

3.5 4 4.5 5 5.5 .6 6.5 7 6p:_|[A%,p], (93)

where

FIG. 4. The time-dependent asymmemy,,, for representative

choices gf& (,Z%z y=0). This asymmetry depends most sensitively AT = f dt AH. (94)
only on a. In both panels, the bottom curve corresponds to the
standard case. In the detéd), the dashed line indicates the location
of the minimum asx is varied. Writing
. P11 P12

for small values ofa. A similar test fora was proposed in p=( ) (95
Ref.[16], where it was based on the traditional semileptonic P12 P22
dgcay charge asymmetry parameft) [15]. However, to i, his approximation, we obtain
first order that observable depends alsd rand 8, and as
such it isnot a direct test ofa, as opposed to the one pro- .
posed here. Figure 4 exhibits the sensitivity &f,,, to a, 5p=—iAT(2I IMp12 = p11tpa (96)
including (a) the general dependence in the interference re- p11— P22 —2i Impyy)’
gion and(b) the detailed location of the minimum as is
varied. where

V. REGENERATION ATEJ dt(T—'F). (97)

A. Simplified thin-regenerator case

_Regeneration involves the coherent scattering &°zor This change inp enables the possibl€PT- and QM-
KO off a nuclear target, which we assume can be describe |ola_1t|ng _terr_ns in(92) to be probed in ahew way. _C0n5|der
using the normal framework of quantum field theory and™€ |dEaI|z§20'n that the neutrél beam is already in &,
guantum mechanics. Thus we describe it by an effectivétate[ g-BDJ:

Hamiltonian which takes the form

1 € +B*
T O P=PL™ et le]?+C)’ 8
AH=| ) = (89)
where
i 0 KO ; . ) . .

in the (K°,K") basis, where B=—i23 cospe ¢, C=y—4p2cod—4B|e|sing.
(99
27N — 27N — _ . . .
= o T= W (90)  Substituting Eqs(98) and(99) into Eg.(96), we find that in

myg - My the joint larget and impulse approximations
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1+2AT Im(e+B) € +B*+i(1—|e|>~C)AT

—+ =
PHOP=| (LB i(1-|e>~C)AT |el>+C—2AT Im(e+B)

(100

We see that the usual semileptonic decay asymmetry observ- (iv) For r=t—t,=0, the beams are described by density

able matricesp"(7) andp'(7), which again evolve as described
in Sec. I, but this time with initial conditions
(0 2 1on  PHO=pt)+p(t) andp'(0)=p(t,) + dp(t,).
On-14y=Ogt1-3= 2 0/ (109 In this context, we consider two kinds of tests. In a

CPLEAR-like scenario, the identity of the beam is known

which measures Ref B) in the case without the regenera- irrespective of thre presence of the regenerator, and thus a
tor, receives no contribution from the regeneraiice., AT ~ Measurement ok;.(7), i.e., A, after the thin regenerator

cancels out in the sum of the off-diagonal elemgr®n the s traversed, appears feasible. The second test is reminiscent
other hand, there is a new contribution to the value ofofthe Fermilab experiments, where the experimental setup is

R,,=R(K, —2m)= Tr[O,,p]=ps: namely, such thatt,>rg, and the beam is in &, state. After the
regenerator is traversed, one then measRegsin the inter-
Ro.=|€l2+y—4pB%cod p—4p)|e|sing—2AT Im(e+B).  ference region. _
(102 Before embarking on elaborate calculations, we should

perhaps quantify our “thin-regenerator” criterion. For the
The quantity Img+B) was not accessible directly to the impulse approximation to be validp in Eq. (96) should not

observableR,,, in the absence of a regenerator. Theoreti-changep by too much. Since the entries pare typically

cally, the phases of andB (99) are fixed: i.e., ~1072 or smaller, we should demand thaf be a reason-
ably small number. Let us estimateT=[dt(T—T). As-
sin(¢p— o A ing. 2 — 7%~ 1/ d relativistic k , btai
n(cscl;&b(ﬁ) _ _|elsing— 23 co2 e suming m,. and relativistic kaons, we obtain

(103

Im(e+B)=—]|¢]

AT~ % thickness[cm] density [g/cnT], (104
Nevertheless, this phase prediction should be checked, so the
regenerator makes a useful addition to the physics program.

The above analysis is oversimplified, since the impulseand thus a “thin” regenerator should have a thickness
approximation may not be sufficiently precise, and the neu=1 cm. This estimate appears reasonable when considering
tral K beam is not exactly in &, state. Moreover, the result that in the 2 ns or so that the beams are usually observed
in Eqg. (100 is valid only at the time the beam emerges from (about 2@), they travel~60 cm. Such a regenerator could
the regenerator. However, this simple example may serve toonceivably be installed in an upgraded CPLEAR experi-
illustrate the physics interest of measurements using a regement. In the Fermilab E73[121] and E773[22,23 experi-
erator. We next generalize the analysis to include a generahents, the regenerators used are much thicker, and the valid-
neutralK beam encountering a thin regenerator, with the fullity of our approximation is unclear.
time dependence after leaving the regenerator.

1Ay,

B. Detailed tor test . .
clafled regenerator tesis We start withA5_ =Ap5,/3ph,, where, e.g.Aphy(7) is

To make contact with the overall discussion in this papergiven by p,(7) in Egs. (37 and (43) with
we envision the following scenario. p(0)—=Ap"(0)=Ap(t,)+ 8(Ap)(t,), and 8(Ap) given in
(i) PureK® K® beams are produced at time=0, corre-  Eq. (96) with p—Ap. We obtain
sponding to initial density matricgs, and p, respectively.
(i) These beams are described by density matrides
andp(t), and evolve with time as described in Sec. II, until

a timet=t, where they are described yt,) andp(t,). ApoA( 1) =1 [Apoot;) —2AT IMApyo(t)]— Y[ Apaa(ty)
(iii) At t=t,, a thin regenerator is encountereth our
thin-regenerator approximatiofdescribed in the previous +2AT ImApy(ty)]
subsection att=t,, suddenly the density matrices receive
an additional contributiodp(t,) or 8p(t,), according to Eq. 9| |CO5(¢“L 5¢+A¢12)|A * (0)]
€ P [8P12
(96). cosS¢
Xe TS+ Y[ Apyy(t,) +2AT ImApyot,)]

3For simplicity, we assume that the regenerator is encountered at Cra 2l i s

the sameAt=t, after production forll beam particles. In specific xXe 'L+ C055¢|AP12(0)|€‘ cos

experimental setups, our expressions would need to be folded with
appropriate geometrical functions. X(AmM7r—¢—Sd— Ay, (105
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r . 2| e|cog p— 59) .
2o 1) =1 [2pAty) —2AT IMZ pyo(t) ] — Y[ 2 p1a(ty) Apll(tr)HW 2pult)—1+y~1,
+2AT Impo(ty)] Apylt)—0  Spplt;)—y=0, (112
codp+op+2 i) | Crer
AT g POl O

- =T r
FAZp1(t) + 28T IMZpy(t)Je Inserting these limiting expressioriand takingy=0), we

2| €l . obtain
—=712p10)|e”" cogAmT— -3¢
Cosi¢p r COS b+ 5p+Ad1) e
—S 1) (106 Apo(7)— —2|¢€| cos5h |Ap1(0)e
| | —I'r
where we have defined the phageg,, and= ¢, through COS&/)IAPH(O )|e

. XCOSAMT—p— Sp—Ah1o), (113
Ap’0)=|Ap1at,) —iAT[Apyy(t,) — Apoy(t,)]|€'4 %12,

o
W00 sy 28Tl e _00)

cosi¢
3 p5A0)=2p1At) =i AT[Z pra(t,) — S ponlt,) ] €22, cog p+ 5+ 1) e
p1A0) | paAt; [2p1a(ty) P2 r)]| (108 _2|6| = IEP12(O)| e Ts
In these expressions, the “initial-condition” input matrices 2l¢ ———3p1,(0)]e '

Ap(t,) andXp(t,) are obtained from Eqg46)—(51) by in- co§¢
sertingt=t,. We obtain a rather complicated result, which, X COSAMT— p— 8p—3 1), (114
in addition to theC P T-violating parameters, also depends on

AT andt, . To illustrate the behavior o&,_, let us consider and thus

two Iimitlng casest, < g andt, > rg5. For a regenerator very

close to the origin t<7g), we basically have 0.4 4 (a),
Ap(t,)~Ap(0) and= p(t,) =~ p(0), as in Eq(28), and we ﬁ=1X10\
obtain 0.2 \
A;n 0
cog p+ 6¢)
A r T 2 € *FST -0.2
p22( )_) | | Cogqs 6=5X10-4
-0.4 T~
B 2| e T"cog Amr— ¢— 84), (109 1 1.2 1.4 1.6 1.8 Z
cos8 ¢ '
2.5
SppT)—(1-y)e s+ 5e L (110 (b)
2
Neglectingy, we find (thg)g 7
1.5
1.25
A7) S fcog g+ 59 :
2m COSS¢ o s
) -0.0004 -0.0002 1] 0.0002 0.0004

—e!2Ts~TUcog Amr— ¢p— 8¢)}. (111)

B

Thus, when the regenerator is placed near the production giG. 5. The time- -dependent asymme&y_(7) in the presence
point, the effects oAT drop out, and the result without & of a thin regenerator placed far from the production point, as a
regenerator is recoverddee Eq.(53) dropping ¥ and all  function of the timer after leaving the regenerator, for representa-
second-order terms tive choices of [A}(7) is rather insensitive t&, y, which are set

Of more interest is the case of a regenerator placed in th® zerd. The right-most curve corresponds to the standard case.
asymptotic regiont(>7g). In this case, the expressions for Also shown(b) is the position of theffirst) zero in A; (7) as a
Ap(t,) andS p(t,) simplify considerably, through first order: function of 3.
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|Ap7,(0)] —cog ¢+ 5p+ Ay +et?TsTTUTcog Amr— p— Sp— A1)
Aor = S0l [ At
[msin(qb— Sp)—cod p+ Sp+3 ¢y | +et2Ts T cogAmT— p— 5p— 2 1)
(119
with
; . 2|elcogp—59)]| |
Aplz(())—>—lAT|6|CT%ZS eA¢12=>A¢12=—g, (116
3pi(0)— %ei(‘s‘ﬁ"’)—iAT ei¥d2, (117

The result in Eq(115 reveals a large shiftX¢,,=— 7) in the interference pattern relative to the case of no regenerator.
According to our estimate oA T in Eq. (104), it would appear thah T>|¢| is a case of interest to consider. In this limit,

AT drops out from theA,, . observableA ¢,,=3 ¢,=— 3, and
cog p— 6¢) sin(¢+ 8¢p) +e2Ts T sin Amr— ¢p— )

r
2n(7)— 2| cosS¢p  sin(p+ Sd)—sin(¢p— ¢p) +e?Ts TV sin Amr— ¢p— 8¢) (118
|
The time dependence &&,_(7) is shown in Fig. 5 from Ry (t)=cge s+ e Tt +2c,e Mcog Amt—¢),
which it is apparent tha#,_(7) is basically flat except for (120

values ofr for which sinAmr—¢— 6¢$)=0. This occurs for
(117)o~2(nm+ T+ 5¢), a result which is plotted against Where to second order, tlog, ¢, , ¢, coefficients are given

B (for n=0) also in Fig. 5. We note that for increasingly by:

larger values of, the structure in the curves becomes nar- Cs=1—2|e|cosp+|e|?(1+2 cos2p+t|AT|), (121)
rower and narrower and therefore much less sensitivg, to
with the first zero 6 =0) possibly being the only observable cL=|el? (122
one. L '

2R, c=|e|— 2| e|?cosp. (123

The observabl&r,,=R(K—2m) has traditionally been | s then apparent that to the order calculated:

the focus ofCP-violation studies. Because the detector iSC|2:CSC|_:|6|2. Violations of this relation would indicate

physically located a distance away from the source of thejenartyres from standard quantum mechanics, which can be
neutral kaons, most of th€s component of the beam decays parametrized by24]

away, and one is basically sensitive only to tke— 2

decays. To study also the interesting interference region, a c
regenerator is inserted in the path of tke particles right {=1- . (124
VCsCL

before they reach the detector, so tkatparticles are regen-
erated and interference studies are possible. Unfortunately,
the regenerator complicates the physics somewhat. To simf our quantum-mechanical-violating framework, we expect
plify the problem, let us first consider the case of a purel/#0. Indeed, we obtain
K beam whose decay products can be detected from the

instant of production(not unlike in the CPLEAR experi- Cszl_&_2|e|M, (125)
men). We will address the effect of the regenerator in the COSO¢p
next subsection.
In our formalism, theR,.. observable corresponds to the cL=y+ 3,2+|6|2003¢_25¢) —2|¢] :ycos{qs— 6¢)
operatorO,,, in (17), which gives cosp coS 5¢p cosi¢ (1,26)
Ra(1)=p2aA1). (119 €l
‘= o’ (127

Through second order, the corresponding expression is ob-

tained from Egs. (37), (43), and (B16) by inserting where only terms relevant to the computatior{/db second
p11(0)=p(0)=p1(0)=1. In the case of standard order have been kegnote thata does not contribute tg to
guantum-mechanicdl P violation, one obtains the order calculatedAlso, in this case the general relation in
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Eqg. (120 gets modified by a phase shift in the interference 3. R,

term ¢— ¢+ 5¢. Using these expressions, we obfain Let us now tumn to theR, = ply(7) observable in the

presence of a thin regenerator. Hesg,(7) is given to first

CCE _ |e|2/00§5fos¢_25¢) order by Egs. (37 and (43)9\évith p(%)gpf(0)=p(t,)
sCL 3/(1_4|€|COS¢)+|E|2005¢ e + 6p(t;), andSp given in Eqg.(96). We obtain
1 2n(T)=1[p2at;) = 2AT Impyo(t) 1= Y paa(ty)
~ (128
ﬁﬁ COM’—;‘W +2AT Impysty)]
€ Cco
+ 8¢+
and thus —2|6|COS(¢COS;¢ ¢12)|Pr12(0)| e s
T 1 _ ¥ 2B 3 pra(t) + 28T Impya(t) e 0
TI VTS code269) | AP T 2|: ’
[€]? — | p"(0)|e T"cog Amr— ¢~ 5p— 1),
€] cosp (129 +C055¢|P12( )|e”" "cogAmr— = 5d— 1))

where the second form holds for small valuesydfe|? and (130

S~ — 23 cospl|d. The parameter has been measured to Where
be ¢¥*=0.03+0.02 [25]. Settin =0, one obtains . i
5~ (gi 2)x1077 [24].[ M]ore gene?allg/ the dependence of PiA0)=padt) ~1ATLpualtr) — pdt) ]2 (131
Zon ,23 and y is shown in Fig. 6, along with the present As we discussed above, the initial condition maisit,) is

experimental limits ory. simply p,: namely,
|
1+ y—2|€|cosp+ 4 sing cosp (|| +i28 cosp)e'®
p(t)= - i - -~ (132
(le|—i2B cosp)e |e|>+ y—48°%cos ¢ — 48| €| sing

Note that at the instant the beam leaves the regeneratdm this case, we again see that the regenerator introduces a
(r=0), we obtain R5.(0)=p5,(0)=py(t,)  shiftin the interference pattern and modifies its overall mag-
—2AT Imp,(t,) which, after insertingp(t,) from Eq. nitude, even in the absence @PT violation. In the limit in

(132, agrees with the result derived above in E#02  which AT>|e|, |p/,(0)|—AT, ¢1,—— Z and
where no time dependence after leaving the regenerator was

considered.
In the interference region, the expression Ry, simpli- - 2|e|AT r T
fies considerably: we keep only the term proportional to Roa(7)— coDé e cog AmT—¢— 5+ 5|,
-I'r
€ (139
RE(7)= |t (0] T"Cog Amr— g 56— )
2m coep'P12 125 which exhibits a large phase shift and a distinctive linear
(133 dependence OAT, it is a nice signature. Moreover, the re-
sult still allows a determination of the P T-violating param-
with eter B, throughéd¢ (45).

We now address th¢ parameter in the presence of a

regenerator. Let us first start with the case of standard quan-
el (90— &) _jAT|el %12, (134  tum mechanics, where we expecto vanish. Looking back

at Eqgs.(121)—(123), we see thafto the order calculatedhe

£=0 relation amounts tpc{H12=cPc?) | where the orders

“Note that in the scenario discussed in Sec. IV A, wheeT  at which the relevant contributions appear have been indi-

violation accounts for the observe@P violation (i.e., |e|=0,  cated. In the case of a regenerator, the time dependence of
2B cosp—=|d, y—2|€|?), one obtainsc?/(csc)—1e¢=0.  py7) is the same as that phy(t), the only difference being
(This result was implicitly obtained in Ref15].) Such result is not  in the coefficients which depend on different initial-condition
enough to validate the scenario, since as discussed above, this seaatrices p'(0) vs p(0)]. To make our result more general,
nario is fatally flawed by the large phase shift in the interferencewe will keep this initial-condition matrix unspecified. Using
term. Egs.(37), (43), and(B16), we then get

(0)=| 1
P12 C055¢
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c=p,40), (136) We now repeat the exercise in our quantum-mechanics-
violating framework, where we obtain
c{?=p1(0)| el (137 bt 564 D)
A co 1
" cE M =p2A0) = p11(0) =2 €|| p10)] oD :
i =|p1A0)]€l, (138 (140
and, therefore,
. . cog p—26¢)
fon=1— S [p12(0)] 0. (139 e ¥ =p1s(0) ¥+ Pzz(0)72+P11(0)|6|2m
QU= 4™ -4 =Y
\/CSCL \/Pll(O)Pzz(o) coS p— Sp— 1)
—~2|€| Yp1A0)| =, (141
where we have used the fact that a pure quantum-mechanical Coo¢p
(2X2) density matrix has zero determinant
[defp(0)=p12(0)p2(0)—|p1(0)[?]. This result applies im-
mediately to the regenerator case where a particular form of cw=_ 1% €l — 1p0)], (142)
p(0) is used: namely, p},(0)=1, p5(0)=~|e|?+ I " cosg P12
2AT|elsing, and |p},(0)|?~|e|?+2AT|e|sing, which
indeed satisfy def (0)=0. which entail
c. €l ,COS p—25¢)
@5—|P12 (0)12 { p11(0)p2o 0) ¥+ [p340) — p71(0) 1%+ p11(0) p2A 0) | | Cosh 0200
2|ely -
CO§¢|912(0)|[P22(0)005(¢ 0~ 12 +p12(0)COL P+ Sh+ dh1)]( - (143
|
This expression can be most easily interpreted in the limit of sSin(¢— 6¢) €|
interest, AT>|e|, where the initial condition matriy'(0) |p1(0)[?~2AT| €| + . (149
Cosd¢ cos ¢
reduces to
Note that the source of quantum-mechanical decoherence is
P1(0)~1, (149 given by
sin(¢— 6¢) ,COLP—26¢)
p2A0)~y+2AT|e| +| el : sin(¢—d¢)sindd
cosd¢ Cosp COS S¢h 2 ~

With these expressions fgi' (0), oneobtains, for the nu-
merator and denominator of EQL43),

2 i _
T €] 2AT|E|S”‘(Q;’5—S£¢’)}, (1489

A=5x10"7

-0.05

-6 2
t_, _______________ 'r ----- l?:")do C|~C0g5¢

sin(¢—5¢) cod ¢p—26¢)
-0.0001 -0.00005 0 0.00005  0.0001 CsCL~2AT]¢| cosd¢ [7+|6|2 cosp co;&j)}'
/B (149

and thus the regenerator effectST) drop out, and the ex-
FIG. 6. The dependence of the quantum-mechanical-violatingressions without a regenerator in E¢28 and (129 are
parametery on j for representative values 6f (& does not con- recovered, i.e.{,=¢. This result also implies that the ex-
tribute to the order calculatgdThe present experimental value of perimental limits on¢, that are derived in the presence of a
£=0.03+0.02 is indicated, as well as our derived indicative boundsregenerator, can be directly applied to our expressior{ for
on B=(2.0£2.2)x 1075, as assumed in the previous subsection.
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We note that, although the study dfalone, in tests using 4. Acpr
a regeneratof24], does not seem to add anything to the |5 gec. v D, we showed that there is no contribution to
discussion of the possible breakdown of quantum+he A, observable up to second order. One may wonder
mechanical coherence within our framework, individual\yhether the introduction of a regenerator could change this
terms in the expressiofi30) for R;,(7) depend linearly on  result. To this end we compufes,, which is defined as in
the regenerator density viaT, and the dependence on the Eq. (78) but with the Ap,Xp matrices replaced by the
nonquantum-mechanical parameters is different from the noA p", 3 p" matrices. Expressions for the latter are compli-
regenerator case, so the regenerator is able to provide intatated, as exhibited explicitly in the previous subsections.
esting new probes of our framework. In this respect, experiHowever, the expression fokgpr simplifies considerably
mental tests oCPT symmetry within quantum mechanics when calculated consistently through first order only, since
suggested earlid26], using arrays of regenerators, find also many of the entries in the input matricAg(t,),2 p(t,) need
a natural application within our quantum-mechanics-to be evaluated only to zeroth order. After some algebra, we
violating framework. obtain

[e Tsin(Amt)](e "7~ 's) +[e Mt —e s sinA (mr)

r
T7)=2AT — — — — — — ,
cpr(7) e e Ty e Tshe Ts74 2e The Tcog Amr+ Amt,)

(150

which, for 7> rg, asymptotes to €|
" codp

[1+ at|AT|]eTs T 2cog Amt— ¢ — 84).
ALpr(7)—2AT exd — 3 (I's— Tt Isin(Amt,). (152
(151
For our indicative purposes, we assume that the size of the
interference term is within 5% of the standard result for ob-
Thus, we see that all dependence on @B- (|e]) and  sgryations in the rangére=10. Sincea>0 and the overall

CPT- (a,B,7) violating parameters drops out, which con- gactor (1/cos¢)~1 (see below, we requireat|AT|<0.05
firms the result obtained without a regenerator. The novelq{lﬁ]: ie.

is that Agpt is nonetheless nonzero, and proportional to
AT. This result is interesting, but not unexpected since the
matter in the regenerator scatté$ differently from scatter- a<5.0x103, a=<3.7x10 % GeV. (153
ing K° (90). Formally, this is expressed by the fact that the
regenerator Hamiltonian in Eq91) is proportional too,
and therefore does not commute with 8@ T operator, and _ A .
so violates CPT. That is, the regengrator is a OUAqco or my)?/Mp)=<10"*° GeV which is of theoreti-
CPT-violating environment, although completely within cal mtergst in the neutral kaon §ystem. ~
standard quantum mechanics. The simplest way to constra}m the parameBemvolves
the observableR, . andA, ., which differ from the standard
results at first order i3, as seen in Fig. (b). This new
V1. INDICATIVE BOUNDS ON CPT-VIOLATING contribution can affect the overall size of the interference
PARAMETERS pattern and shift its phase relative to the superweak phase
) ¢, as seenin Eq$53) and(133). It is easy to check that the

The formulas derived above are ready to be used in fits tQnift in phases¢ is sufficiently small for any possible
the experimental data. A complete analysis requires a d&shange in the overall size of the interference pattbatause
tailed understanding of all the statistical and systematic efof 54) to be negligible, e.g),6¢|<2° implies a change in
rors, and their correlations, which goes beyond the scope ghe size by<6x10 4. There are two independent sets of
this papef{27]. Here, we restrict ourselves to indications of y5t4 that give information ofi¢: (i) the Particle Data Group
the magnitudes of the bounds that are likely to be obtainedompilation[1] which fits NA31, E731, and earlier data, and
from such an analysis. _ _ (i) more recent data from the E773 Collaborat{@2,23.

The parametea can be constrained by observing that theNew data from the CPLEAR Collaboration are discussed
overall size of the interference term My, (53) does not  gjsewherg27]. In each case, both the superweak phéase
differ significantly from the standard resulsee also Fig. ang thek—a* 7 interference phaseé,  are measured,
1(a)]. The relevant dependence ancomes at second order gnq the corresponding values di¢=¢, —¢ are ex-
throughA X3, which is given in Eq(56). From this expres- {r5cted:
sion, we can see that the dominant term is the third one, i.e.,

(— 2| ] a/ cosdp)t| AT |cos@mt— ¢p— 5¢), which is enhanced
relative to the other terms because of th&I'| factor. The 0¢p=(—0.71:0.95° [1], 6¢$=(—0.84t1.42° [22].
dominant interference term through second order is then (154

This is to be compared to the order of magnitude
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Combining these independent measurements in quadrature, TABLE I. Compilation of indicative bounds o€ P T-violating

we find §¢=(—0.75+0.79)°, corresponding to parameters and their sources.
B=(2.0+2.2x10°5, B=(1.5+1.6)x10"1° GeV, Source Indicative bound
(159
R Rom Agy @<5.0x1073
to be compared with the earlier boun@|<6x10"° ob- R
tained in Ref.[16] by demanding 5¢|<2°. As expected Rex:Azr B=(2.0+2.2)x107°

from Fig. 1, the indicative boun@l55 on || is consider-

! ) . | Mo~ micol B<3.1x10°°
ably more restrictive than thai53 on |a|. Alternatively, R
one may boung3 by considering the relationshisee, e.g., Rex y=5x1077

| | m* Hsm¢—0.03i 0.02
_ N+ - L o -
|myo—Mmio|~ ZAmMJ(D LD+ 3AD, Positivity > B2 Y~ (163 B)?
(156)

where A®=d—®, . As pointed out in Ref[19], Eq. Let us close this section with a remark concerning the

(156) is modified in the presence of dire€tP T violation in positivi;[y constraints in Eq. (14): «>0, y>0, and
the =0 K_—2m decay amplituddsee Eq.(13) of Ref. ay>B°. Thg data are not yet sufficient to conclude_ anything
[19]]. Consequences of such dire€PT violation are ad- @bout the sign of ther and y parameters. The third con-
dressed in the concluding section of this pajsere our Eqs.  Straint implies

(169—(174)].

n2 P2
In our particular framework, up te'/e effects,A® =0, &>'8T> B ~(103,23)2. (160)
Ogy=0¢, P, =0+, |77+—|=|6|/COS‘S¢%|6|1 and thus Y a’max
|€l[ 5] Thus, if 8 is observable, sag~ 102, thena>10* should

| Mo — Mo ~2Am sing ~2(B]. (157 pe observable too. A compilation of all these indicative

bounds and their sources is given in Table I.
The E773 Collaboration has determinef3] that
|mgo— mgo|/myo<13x 10719 at the 90% C.L., whereas the VIl. COMMENT ON TWO-PARTICLE DECAY
Particle Data Group quotémo— myo|/Mmco<9x 10 1], CORRELATIONS

and thus it follows that |B]<3.1x10®, . . . !
|B|<2.3x10°1° GeV. This result is consistent with that in Further interesting tests of quantum mechanics @
Eq. (155 symmetry can be devised by exploiting initial-state correla-

The y parameter has the peculiar property of appearing irJiions because of the prodl_Jction of a pair of neu}ral kaons in
the observables at first order, but without being accompanieaop—l;re qugntum-mecha.m.c'al state, e.g., e —¢—
by a similar first-order term proportional e| (as is the case K K'- In this case, the initial state may be represented by

for ,Z%). In fact, if corresponding terms exist, they are propor-[28]
tional to |e|?. This means that large deviations from the

usual results would occur unlegs<|e|2. This result is ex- |k; —k)= i[|K°(k);E°(—k))—|IZ°(k);K°(—k))].
emplified in Fig. 1c), from which we conclude that V2
¥<1075. In Ref.[16], y=<0.1€|?> was obtained. However, (161

since|e’/ €| ~ 103 effects have been neglected, we conclud

e . . .
conservatively that At subsequent timets=t, for particle 1 and=t, for particle

2, the joint probability amplitude is given in conventional
guantum mechanics by

!

le[~107%, y=7x10"?! GeV. (158

y=

€ [k,ty;—k,t)=e HWue H=RG K —k) (162
We can also study the combined effectsdofindy onthe  Thus, the temporal evolution of the two-particle state is com-
{ parameter in Eq(129), which reads pletely determined by the one-particle variabl@@PV'’s)
R 23 contained inH.
Y . Tests of quantum mechanics a@PT symmetry in ¢
2le? msm¢>—0.03i0.02. (159 decays have recently been discus§#d| in a conjectured
extension of the formalism df6,15], in which the density
The combined bounds on both parameters can be read affiatrix of the two-particle system was hypothesized to be
Fig. 6, which makes clearly the point that a combined fit isdescribed completely in terms of such one-particle variables
essentialto obtain the true bounds on th@PT-violating  (OPV’s): namely,H and («,3,7). It was pointed out that
parameters. Note that the bounds 6n(155 and y (159  this OPV hypothesis had several striking consequences, in-
derived above are consistent with those that follow from Egcluding apparent violations of energy conservation and angu-
(159 (see Fig. 6. lar momentum.
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As we have discussed abo{29], the only known theo- TABLE Il. Qualitative comparison of predictions for various
retical framework in which E¢2) has been derived is that of observables if€ PT-violating theories beyond guantum-mechanics
a noncritical string approach to string theory, in whigh  Vviolation (QMV) and within quantum mechani¢®@M). Predictions
energy is conserved in the mean as a consequence of tgaher differ (+) or agree &) with the results obtained in conven-
renormalizability of the world-sheet model, but(ii) angular ~ tional quantum-mechanicalP violation. Note that these frame-
momentum is not necessarily consery&8,d], as this is not works can be qualitatively distinguished via their predictions for
guaranteed by renormalizability and is known to be violated™t+ Acet: Aam, and.
in some toy background{9], though we cannot exclude the
possibility that it may be conserved in some particular back! r0cess QMV
grounds). Therefore, we are not concerned that Huet and,
Peskin[17] find angular momentum nonconservation in theirA3v
hypothesized OPV approach. However, the absence of en,
ergy conservation in their approach leads us to the concIuACPT
sion that irreducible two-particle parameters must be intro,
duced into the evolution of the two-particle density matrix. ,
The appearance of such nonlocal parameters does not coh-
cern us, as the string is intrinsically nonlocal in target space,
and this fact plays a key role in our model calculations of
contributions tosH. The justification and parametrization of rameters §M =0, >I'— — 2| ¢|/cosg). However, this pos-

such irreducible two-particle effects go beyond the scope ofjpjjiry js experimentally excluded because of the large value
this paper, and we plan to study this subject in more detail iy entails for theA.p1 observable. In passing, we showed that

due course. the ¢ parameter vanishes since no violation of quantum me-
chanics is allowed. In analogy with Sec. VI, we also obtained
VIIl. CONCLUSIONS indicative bounds on th€ P T-violating parameters. In Table
. . . : .|l we list all the observables and make a qualitative compari-
We have derived in this paper approximate expressions . .
son between them and conventional quantum-mechanical
for a complete set of neutral kaon decay observable

(27,37, m/v) which can be used to constrain parametersﬁp violation. We see that the QM and quantum-mechanics-

characterizingCPT violation in a formalism, motivated by V'OI?“”C? (.QMV.) E ZT'bV'OIT]t'ng frar(r;_evx_/orks ]E:an be qualita-
ideas about quantum gravity and string theory, that incorpoyvey istinguished by their predictions OAr, Acpr,
' Am, andZ. As seen in Table II, the two observablas,.

rat ible micr ic | f ntum coheren - N
ates a possible microscopic oss of quantum coherence dAs, are sensitive to CPT violation in both the QM and

treating the neutral kaon as an open gquantum-mechanic
9 Ppen q MV frameworks. For the sake of completeness, we present

system. Our explicit expressions are to second order in th . .
small CPT-violating parameters, 3,y, and our systematic ere formulas that include both these possible effects, and
discuss how they may be disentangled.

procedure for constr_ucting analytic approximations may be Given the present status of experimental activities, the
extended to any desired level of accuracy. Our formulas max1 " . : -
ore sensitive observable s, in the interference region,

be used to obtain indicative upper bounds where first-order effects are dominant. In this case, we obtain
<4x10°Y GeV, =3x10°1° GeV, an expression forA, . whlch resembles Eq(53) (with
“ 1Al 2 X123=AX;,3=0), but with the replacements

QO
<

b N
[ NS

y=7x10"?! GeV, (163

which are comparable with the order of magnitude 160
~1071° GeV which theory indicates might be attained by o¢— d¢x, |€|H|E|{1_ EHCO%
such CPT- and quantum-mechanics-violating parameters.

Detailed fits to recent CPLEAR experimental data are reyhere the new phase shifiby is defined by
ported elsewherf27].

We have not presented explicit expressions for the case
where the deviatiohe’/e|<10"2 from pure superweak P A — A -
violation is non-negligible, but our methods can easily be tand by — — (28—oM)cosp (2,3—5M)n0
extended to this case. They can also be used to obtain more X 10 | €] v
specific expressions for experiments with a regenerator, if le|]| 1— z —cosp
desired. The extension of the formalism of Ré] to corre- 2 |l
latedK °K° systems produced it decay, as at DRNE [4],
involves the introduction of two-particle variables, which
lies beyond the scope of this paper.

As mentioned in the main text, in Appendix A we have
obtained formulas for all observables in the caseC#H T
violation within standard quantum mechanics. In the case of
ASM and ASM, one can “mimic” the results from standard

37

CP violation with suitable choices of theé P T-violating pa-

~|el, (169

(165

This generalized expression implies that the indicative
bounds in Eqs(155 and (A43) become combined into

A1
B— §5M=(2.0i2.2)><10‘5. (166)
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This implies that the effects cfﬁ and 6M cannot be disen-
tangled by a measurement 85, alone. Recall, however,
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If there were direcCPT violation in thew/v decay ampli-
tudes, the semileptonic observab{&8) would also be modi-

that these parameters appear in different conceptual framéed, becoming
works, so there is no strong reason to expect both them of to

be present simultaneously. Turning to tAg, observable,
combining the effects of both QM and QMV sources of
CPT violation leads to the replacements in E§8):

160
Sp— 8oy, |€e|l—]€l 1+§HCOS¢

. (167

%le

where the new phase shifipy, is defined by

Sy = — (2B— 6M)cosp

~tandgy. (169

1 16T
+§HCOS¢

€l

We note that a non-negligible value 8" would be indi-
cated if the phase shifts iA,,. and A3, should be found to
differ, i.e., 5¢px Vs ¢y..°> Any such possible discrepancy
would not, however, reveal whether QMEPT violation
(i.e., B) is present or not.

We comment also on the possible appearance of direct

O;*|+y:|A|ZOﬂ'*I+1ﬂ O7T+|7;:|'&|ZO7T+|7;1
(174

where any difference betweeA and A would violate
CPT. Since CPT violation must be small, we expect
|Al/|A|=1+ n~1 and we can then examine the effects of
n to first order. These effects enter iy, A,,, and
Acpt. However, they are most relevant in the last observ-
able, as the prediction for it in QMV vanishes. A calculation
along the lines of that in Sec. IV D gives to first order
Aipr=2n, offering a clear distinction from the QMV sce-
nario. We recall that the CPLEAR Collaboration has reported
the result AZEY=(—0.4+2.0=2.0=1.5)x10"3 [3], con-
firming the smallness of.

We close by reiterating that the neutral kaon system is the
best microscopic laboratory for testing quantum mechanics
andCPT symmetry. We believe that violations of these two
fundamental principles, if present at all, are likely to be
linked, and have proposed a formalism that can be used to
xplore systematically this hypothesis, which is motivated by

CPT violation in decay amplitudes. Such phenomena are nGyeas ahout quantum gravity and string theory. Our under-
predicted by the modification to quantum mechanics that w tanding of these difficult issues is so incomplete that we

have discussed above, but have been proposed elsewhey;

[19]. If such an effect were present, the two-pion decay op

erator in Eq.(17) would be generalized to
C NP

O%=| \x 1/ (169

where \ is a new complexCPT-violating parameter. The
first-order result for the\, . observable is then shifted by

—2|\|eTs™TUY2coq Amt— ¢,), (170

where we have defined=|\|e'%». Since the amplitude of
the cosine term il — 2 is known not to differ much from
the usual result, we see that|/|e|<1 is required. We can
combine this new contribution &, . with the previous ones
to generalize the previous results fof, _|=|e€|/cosdd~|¢|
and ¢, = ¢+ 5¢. To first order in|\|/| €|, we find

|7+ -|~|el+[\[cog ¢— ), 17

A
bi-~¢ptddp— uSiﬂ(qﬁ—%)- 172

€l

(Note that\ causes a first-order shift iy, _|, whereass
first shifts it at second order. The expression for
|mgo—mgo| in Eq. (156) is generalized to

sin(¢—¢,)

Mool = 26+ M| AT (o7

173

SThis possibility is not allowed in th€ P T-violating scenario of
Ref.[18], wheresT'=0 is obtained.

&hnot calculate the sensitivity which would be required to
Teveal modifications of quantum mechanics or a violation of
CPT. Hence, we cannot promise success in any experimen-
tal search for such phenomena. However, we believe that
both the theoretical and experimental communities should be
open to their possible appearances.
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APPENDIX A: CPT VIOLATION IN THE
QUANTUM-MECHANICAL DENSITY MATRIX
FORMALISM FOR NEUTRAL KAONS

In this appendix we review the density-matrix formalism
for neutral kaons an@ P T violation within the conventional
guantum-mechanical framewofk,15]. The time evolution
of a generic density matrix is determined in this case by the
usual guantum Liouville equation

dp=—i(Hp—pH"). (A1)
The conventional phenomenological Hamiltonian for the

neutral kaon system contains Hermitidmasg and anti-
Hermitian (decay components:
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(M+36M)—3i('+ 3 6I) 3l
H= , (A2)
M~ 3il (M= 36M)—3i(I'—36I)

in the (K°, K° basis. ThesM and 6" terms violateCPT _ , 1 i
[5]. As in Ref.[6], we define components @f andH by p1o=—(I'+iAm)ppt+| IMMp— Z5F_ §5M P11
=1 H=1h =0,1,2,3 A3 L !
P=32Pa0a: =2Ng04, a=V,l,z, ( ) - ImM12+251"—§5M P22, (Ag)

in a Paulio-matrix representation: thg, are real, but the 1 i
hg are complex. Th&€PT transformation is represented by poo=—Tgpot2 RE{( ImM 1,— Z&F+ §5M>p12}.

- — : (A10)
CPTIK%)=€'?K%, CPTIK%=e""K%, (A4)
One can readily verify thagd decays at largé to
for some phas@, which is represented in our matrix formal- 1 e +5*
ism b ~e Tt A1l
y p=e e+6 |etd|?)’ (ALD
CPT= 0 e’ (A5) which has a vanishing determinant, thus corresponding to a

“le i 0 /- pure long-lived mass eigenstaitg . The CP-violating pa-

rametere and theCPT-violating parametew are given as

Since this matrix is a linear combination of, ,, CPT in- above: namely,

variance of the phenomenological Hamiltoniahl =

(C PT)‘_lH(CPT), plearly requires that contains no term = ImM 2 -

proportional toos, i.e.,h; = 0 so thatéM = I' = 0. 3|AT|+iAm
Conventional quantum-mechanical evolution is repre-

sented bydp,=H,ppg, Where, in the ((0, KO) basis and Conversely, in the shottlimit, a Kg state is represented by

allowing for the possibility ofCPT violation,

16T +ioM

1
2 LAT|+iAm’

(A12)

Ft(|€_5|2 5_5) (A13)
p~e7 S y Al
Imhy Imh;  Imh, Imhs -5 1

[ Imhy Imh,  —Reh; Reh, which also has zero determinant. Note that the relative signs
Hap= Imh, Rehs Imh, —Reh; |’ (AB) " of the & terms have reversed: this is the signatureCét T

violation in the conventional quantum-mechanical formal-
ism. Note that the density matricggs. (A11l) and (A13)]
correspond to the state vectors

Imh; —Reh, Reh; Imhg

We note that the real parts of the mathiare antisymmetric,

while its imaginary parts are symmetric. Now is an appropri- K )oc(1+ e—8)|KO)— (1—e+ 5)|IZ°), (A14)
ate time to transform to thi€; ,= 1/y2 (K°FKO) basis, cor- —
responding tar, <> 03, 0o — 0, in whichH,; becomes [Kg)c(1+ e+ 8)|KO)+(1-€e-0)[K%,  (A15)
. and are both pure, as should be expected in conventional
-I -zl —Iml';;  —Rel'p quantum mechanics, even@PT is violated.
1 _ _ _ As above, we solve the differential equations in perturba-
Hop= 2 0T r 2RMy —2ImMiz| oy theory in|e| and the new parameters
—Iml'y, 2ReMy, -T — oM
— &M —~ or
—Re';, —2ImM, oM -T M= —, '=—. (A16)
(A7) AT |AT|

] ] ) The zeroth order results for the; are the same as those in
The corresponding equations of motion for the componentgqs (36)—(38): namely,

of p in theK, , basis ardas above we neglect lm, contri-
butiong PP (t)=py(0)e "L, (A17)

' L i p5Y (1) =poA0)e TS, (A18)
p11i=—T'p11—2R ImM 15+ 4—151“—1- E(SM P12l
(A8) piY (1) =p1(0)e” (TF1AMY, (A19)
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The first-order results for the density matrix elements are

pd=—2|X"||p1A0)|[e "ticog ¢p— by — ¢12)

—e Tcog Amt+d— ¢y — d10)], (A20)
p55=—2|X||p1A0)|[e" TS'cod p+ dx+ 1)
—e McogAmt—¢— dx— ¢12)], (A21)

pi5=p1(0)|X|e (4T e Mt —e(Triamy
+poA 0)| X' |!(¢™ 4 [ @ sl — e (MHiamr),
(A22)
where the two complex constarXsand X’ are defined by
co&z)EK/l

|e| - Lcospol
(A23)

X=|e|— Lcospol +i cospoM, tanpy=

ASM(t) =

3867
X' =|€|+ Lcospol +i cospoM,
cosp oM
tandy, = L,\ (A24)
||+ 3cosp ST

For future reference, we note the special case that occurs
when SM =0: and|e|=0, namely,

ST>0: ¢y=m, ¢y =0; (A25)

ST<0: ¢y=0, ¢y=m. (A26)

With the results fop through first order, and inserting the
appropriate initial condition§28), we can immediately write
down the expressions for the various observables discussed
in Sec. IV. ForA,_, we obtain

2|X|cod ¢+ px) — 2| X|e"s™ L Zcog Amt=§— ¢y)

1+el's~ oY x|2 ’

(A27)

where in the denominator we have also included the non- AQM=2|X’|cog ¢— ¢y:) + 2| X|cod ¢+ ¢x) = 4| €| cosp,

negligible second-order contributions ®p$2. From this
expression, it is interesting to note that one caimic the
standardC P-violating result forA,.. in Eq. (60) by setting
|e|—0 and making the choices for tHeP T-violating pa-
rameters

2e|

cosp’
(A28)

mimic CP violation: éM=0, ol ——

which give|X|—|e| and ¢x=0. For theA;,. observable, we
find

AM(t)=2|X"|cog p— px/) — 26~ T's TV Rep,, cosimt
—Imn,,SinAmt], (A29)
with

Im23,=[X"|siN(¢— dx/),
(A30)

Rens,=|X'|cos ¢~ dx),

that is

Im”]37r
Rens

=tan(¢— o). (A31)

m

Here, we also note that the stand&dP-violating result is
obtained for the choices of parameters in E428) which
give | X'|—|€e| and ¢y, =, since tangp— 7)=tane.

For the observableA;, we obtain the exactly time-
independent first-order expression

(A32)

which is identical to the case of MOPT violation. In the
case ofAcpt, We find

A(e Tit—e T —2e A sinAmt

Apr(t) = e Nite Ts—2e TlicosAmt
(A33)
with
A1=2|X"|cod ¢~ px:) — 2| X|coL ¢+ px)
=4 sing cospoM +2 cogparl, (A34)
A= =2|X"[siN(¢p— ) + 2| X|SIN( ¢+ Px)
=4 co2poM —2 sing cospol . (A35)

Note that|e| drops out of the expression fakcpr as it
should. In the long-time limit, we obtain

A —4 sing cospoM+2 cogpsl’.  (A36)
Since the dynamical equations determining the density ma-
trix do not manifestly possess the mimicking symmetry in
Eq. (A28), one expects this mimicking phenomenon to break
down in some observables. This is the casé\gft where

we find the asymptotic “mimic” result

Acpr— —4|€e|cosp~—6x10"3, (A37)
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to be contrasted with the standard resulfgf-t=0. Experi-  given in Eqs.(42)—(44).° We obtain

mentally, the CPLEAR Collaboration has measured this pa- ;

rameter to be AgX£T=_( —0.4£2.0£2.0£ 1.5)X 10—.3 [3]. 2 ORI ) (B1)
Comparing the prediction in EA37) with the experimental =
data, we see that the “mimic” result appears disfavored by
the Acpt measurement. where the time-dependeR{'"/(t) functions are given by

Finally, sinceAp(Y=3pM=3p{Y=0, theA,,, observ- "
able has the same first-order expression as in stard&rd R[l =eTti-e T, (B2)
violation: namely,

REM(t)=t|AT|e L, (B3)
oM 2e McosAmt
Afm(D=~ Tz g Ts (A38) RLM(t) = —e Tcog Amt— 8¢ — 1)
Since in this mechanism @& PT violation, quantum me- +e Licod 5p+ $12), (B4)

chanics is not violated, from the discussion in Sec. V B 2 we [115y _ _ a-Tte: Tt
expect the parametef to vanish. Indeed, using the above Ry (t)=—e "'sif(Amt+ ¢)+e” " Lising, (BY)
expressions fop,,, we find AT

R ()= —e It ﬂcos(AmH- $—0dp— 12
5 2 cosp '

cg’=p2A0), (A39)
ci? = p11(0)[X|2, (A40) +COgAMt+2h— S— by)
ciV=[p1A0)||X], (A41) +e Tlcog2¢— ¢p— ¢y, (B6)
where we have also calculated the needed second-order Rt = —e Tcog Amt+2¢—25¢)
(long-lived) terms inp,,. Moreover, the generic expression
(120 gets modified in the interference term by the replace- +e Tlcog2¢p—26¢), (B7)

ment: ¢— ¢+ dpx+ ¢d1o. It then immediately follows that
c?/(cscL)=p10)|/[p11(0)p2x0)]=1, where we have  R{H(t)=—e cogamt—25¢)+e "'cog25¢),

made use of the def0)=0 property. Therefore, as expected (B8)
g:()‘ [11] . .
As in Sec. VI, we can derive indicative bounds on theand thec; ™ coefficients are
CPT-violating parameters. The coefficient of the interfer-
ence term in ASM (A27) can be expressed as: ci=—p,1(0)5?— 2(0)|6|2cos(¢+26¢)
L om _ : _ : 1 p1\Y)Y —p2 TCOSd) cof6¢
|X|=| €] = 3cospdT |/cospy . Demanding that this amplitude
differ by less than 5% from the usual case, and with ahe ol 0l el cog p+ p+ 1) BO
priori knowledge thatéy should be smallas we demon- [p1A0)]| ]y coH : (B9)
strate below, we obtaincosp|dT'|/|e[<0.05, i.e., (6—250)
,CO
g [11]_|~r2__ o~
|5T|<3x10°4, |[oT|<2x10°18 GeV. (A42) C2 = | lel? cosp codog P10 (B1O
We can obtain a bound 08M by noticing the correspon- (11]_
dence M« — 28 that follows from Egs.(45) and (A23) €3 4|6|7c055¢|p12(0)|’ (B1D
when the bound in EqA42) holds. From Eq(155), we then
find 4a|6| cog 8¢ — p12),
[11] _
A 4 tan(ﬁ CO&SQS 12(0)| (812)
SM=(—4.0+4.4x10 5,
SM=(—3.0£32x10 1 GeV. (A43) ckM=44 e|cosé AECIE (B13)
Alternatively, the analogue of Eq. (157 is 2/ €|?
|myo—mgo|~| M|, which entails| M| <3.7x 10" 1°GeV, ckl= o255 P1u0), (B14)
once the 90% C.L. upper bound from E7[Z28] is inserted. cos 5¢
2
APPENDIX B: SECOND-ORDER CONTRIBUTIONS = |§| p20). (B15
TO THE DENSITY MATRIX cos ¢

The second-order contributions to the density matrix in
our quantum-mechanical-violating framework can be ob- ®Expressions fop$3,, valid for a particular choice of initial con-
tained by using Eq(41) with the first-order |nput$>ll,22'12 ditions were given in Ref16].
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Analogously,

7
o= 3, PR, ®16)

where the time-dependeR{??(t) functions are given by
Rt =e Mil—e™ s (B17)
RZA(t)=t|AT|e st (B19)

RPA(t)=e cog Amt—6¢— ¢p1) — e 'slcog 6+ 1)
(B19)

Rt =e"'sinAmt—¢)+e "s'sing  (B20)

A
REZZ](I)=eFt2|CO|SﬁCOS(Amt ¢—0¢d—b12)

—co§AMmt—2¢—6¢dp— 1)

and thec}?? coefficients are

cogp—26¢)
cosp coS 5¢

COS p— 05— 1)

= p,x(0) Y2+ p11(0) €]

—2|p10)|| €]y

coi +256¢)
el cos(;bcosqad;b p220),

0[22]—4|6|7

[22] 4a|6| Cogé(ﬁ ¢12)

+e Ts'coq2¢p+ 8+ ¢y, (B21)
R?(t)=—e cogAmt—25¢)+e "scog254),
(B22)
R2(t)=—e Tcog Amt—2¢p—25¢)

+e T'slcog2¢p+25¢), (B23)

|
P 22 A0)sing  RIA(1.0)— o | (0)[REA(t)

P12 tand tan¢ P12 121 ) tan¢> P12
| €l
c056¢>

2i|€|sing

T comg LPuO)sin(¢— 8$)REA (1) + pol 0)sin( ¢+ 5¢)R5121(t)]}

e

2le
" cospg r M p2A0) = pas(O)J[REA(1) + RZ(1)] +

—cog ¢p— 5p— 1) RFA(t) — cod p+ 5+ 1) REP](t)]] ,

where the time-dependent functioRs'?(t) are given by

Ri*(t,a)=e [e/sinAmt— (Amt)e 'Amt-ia],
RM(t)= L e e T1d sinAmt— (Amt)e'*™]+i(Amt)%e”
R%lz](t) — e—i¢[e—FLt_ e—(F+iAm)t]'

RI1A(t) =gl Yo Ts\— g (I+ismiy,

———[p1(0O)RTZ(t, p— 6) + poA O)RIZ (L, — p— 5¢)]

|p1 O)|[IRLE(t,— ¢p— 1)
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(B24)

(B25)

(B26)

(B27)

(B29)

(B29)

(B30

(B31)

(B32)

(B33)

(B34)

(B35
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