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Phase structure of the Schwinger model on the lattice with Wilson fermions
in the Hartree-Fock approximation
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~Received 16 October 1995!

The phase diagram of the Schwinger model on the lattice with one and two degenerate flavors of Wilso
fermions is investigated in the Hartree-Fock approximation. In the case of a single flavor~not directly ame-
nable to numerical simulation!, the calculation indicates the existence of the parity-violating phase at both
weak and intermediate-to-strong couplings. In the broken phase, the Hartree-Fock vacuum sustains a nonz
electric field. With two flavors, parity is not broken at weak coupling. However, both parity and flavor become
spontaneously broken at the Hartree-Fock level as the coupling becomes strong.

PACS number~s!: 11.15.Ha
I. INTRODUCTION

Understanding lattice fermions has been an outstand
issue since the beginning of lattice field theory but satisfa
tory insight is still missing. Aside from nontrivial numerica
complications introduced by fermionic degrees of freedo
there are well-known conceptual obstacles, usually refer
to as the ‘‘fermion doubling problem.’’ As revealed by th
Nielsen-Ninomiya theorem@1,2#, the doubling problem is
intimately connected to chiral symmetry. In fact, this ‘‘no
go’’ theorem has succeeded so far in preventing us fr
formulating chiral gauge theory on the lattice, although t
investigations have intensified recently~see, e.g.,@3,4# and
references therein! and possible clues might be at hand.

Except for the fundamental importance of chiral symm
try in electroweak theory, chiral symmetry has long be
believed crucial in understanding the low energy behavior
strong interactions, described by a vectorlike theory such
QCD. Hinted by the small pion masses, the basic start
point is that the approximate chiral symmetry crucial
shapes the way the low energy strong interacting wo
looks. Pions are regarded as Goldstone bosons coming f
the spontaneous breakdown of this chiral symmetry, and
powerful predictions of the current algebra follow@5#.

It is desirable to study these interesting issues within
nonperturbative framework of lattice QCD. While the cons
quences of the Nielsen-Ninomiya theorem for the vectorli
case are less serious than for chiral gauge theory, the e
ence of chiral anomaly complicates the issue further. T
standard argument is that since the lattice is a physical re
lator, any symmetry of the lattice action will remain the val
symmetry of the theory at every stage, including the co
tinuum limit. Consequently, an explicitly chirally symmetri
lattice model cannot reproduce the anomaly structure of
vectorlike theory. Indeed, the most extensively used versi
of lattice QCD namely, with Wilson fermions and Kogu
Susskind fermions, both explicitly violate chiral symmetr
Nevertheless, it can be shown in lattice perturbation the
that the amount of violation is just right to obtain the corre
anomaly in the continuum limit@2,6#. This is of course quite
comforting. However, to understand chiral symmetry on t
lattice at finite lattice spacing~where all the numerical simu-
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lations are performed! means to relate the concepts of chiral
symmetry breaking to those of the lattice system, where chi-
ral symmetry is not present.

Restricting myself now to the case of Wilson fermions, it
is generally believed that there is a line of phase transitions
kc(g) ~in the hopping parameter–gauge coupling plane! run-
ning up from the QCD fixed pointkc~0!. On this line, pi-
onlike state becomes massless and the continuum chiral
QCD is believed to be approached by following this line
towardskc~0!. Some time ago Aoki@7# set out to answer the
questions raised in the previous paragraph in this context.
Namely, since atgÞ0 the masslessness of the pion cannot be
due to the spontaneous chiral symmetry breaking, what is it
due to? In other words, what is the nature of the phase tran-
sition alongkc(g)?

Aoki’s answer was thatkc(g) represents the line of phase
transitions at which parity~one-flavor case! or parity and
flavor ~multiflavor case! becomes spontaneously broken. For
one flavor, the pion is identified with the massless particle
driving the parity-violating phase transition~^i c̄g5c&Þ0!. In
case of two flavors, it iŝi c̄g5t3c& acquiring an expectation
value.p0 is identified with a massless mode of this phase
transition, while the charged pions are viewed as the Gold-
stone bosons coming from the breakdown of flavor.^c̄g51c&
is always assumed to be zero thus giving no reason forh to
be light, which could be viewed as a solution of the U~1!
problem on a lattice@7#.

At strong coupling, the supporting evidence for this sce-
nario is quite convincing@7#. On the other hand, in the weak
coupling regime ~relevant for the approach to the con-
tinuum!, the situation is far from conclusive. Despite the fact
that some numerical work has been@8# and continues to be
done @9#, the very existence of the parity-flavor-violating
phase still needs to be examined, let alone the detailed pic-
ture of symmetry breaking. The existence of the parity-
flavor-violating phase has been recently established in the
Nambu–Jona-Lasinio model using largeN methods@10# and
also in a numerical simulations with finite number of colors
~N52! @11#. In that case, the parity-flavor-breaking phase in
a model with two flavors seems only to exist at strong and
intermediate couplings.

Recently, there has been a line of seemingly unrelated
developments taking place concerning chiral symmetry fol-
3808 © 1996 The American Physical Society
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lowing the ideas of Kaplan@12#. His approach amounts to
the use of the surface modes of the vectorlike theory w
Wilson fermions in 2d11 dimensions as a basis for the con
struction of (2d)-dimensional chiral gauge theory on the la
tice. ~For review, see@13# and references therein.! Detailed
Hamiltonian analysis of the surface modes of Wilson ferm
ons has been carried out in@14#, where it was also suggeste
that the notion of surface modes might be useful for und
standing the conventional Wilson formulation as well. In pa
ticular, one can think of the appearance of the surface mo
as an underlying mechanism generating the parity-violat
phase.

The nature of the argument is as follows. Consider t
Hamiltonian for one flavor of free Wilson fermions in on
spatial dimension on a finite lattice with open boundaries

HW5K(
j

@c̄ j11~ ig12r !c j2c̄ j~ ig11r !c j11#

1M(
j

c̄ jc j . ~1!

HereK,M ,r are hopping parameter, mass, and the Wils
parameter, respectively.cj is a two component spinor living
on site j . If one increases the hopping parameter~or equiva-
lently decreases the mass! to the supercritical values, so tha

U M2KrU,1, ~2!

two levels start to behave differently from the rest of th
spectrum and appear bound to the ends of the lattice@14#. As
the sizeL of the system goes to infinity, the energy of the
surface modes tends to zero. On a finite lattice the t
modes mix and acquire the energye;e2L. Consider now the
Dirac vacuum with all the negative energy levels filled. Th
last filled level will either be the surface mode on the right
the one on the left,1 thus creating an asymmetric distributio
of particles in the vacuum with an extra particle on one en
Consequently, after turning on the U~1! gauge field, this will
generate an electric field running through the vacuum. In o
spatial dimension such a field cannot be canceled by a
production and we find that parity is not respected by t
vacuum of this theory.

These ideas were further developed in a recent inspira
review by Creutz@3#. He gives a comprehensive qualitativ
picture of the phase structure using the surface modes
nario in both single and multiflavor case. The argument
based on the frequently used analogy between non-Abe
gauge theories in four dimensions and electrodynamics
two dimensions@two-dimensional QED~QED2!, massive
Schwinger model#. As is well known, QED2 exhibits some of
the most intriguing features ascribed to QCD, namely co
finement, chiral symmetry breaking and the existence of
u parameter. As such it represents a popular toy model
QCD with the advantage that it can be analyzed semicla

1On a finite lattice I assume that some very small left-rig
symmetry-breaking term is added to theHW , so that the left and
right modes do not mix.
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cally through bosonization@15#. Taking lessons from the
continuum and combining them with the existence of the
doublers and surface modes on the lattice, one naturally ar-
rives to the conclusion that the physics of the parity-violating
phase corresponds to theu5p case in the continuum. This is
based on the considerations of the previous paragraph and
the fact that in QED2 the u parameter has a direct physical
meaning as the background electric field. The phase dia-
grams of Ref.@3# represent the expected positions ofu5p
transitions on the lattice that should be applicable at weak
coupling.

The purpose of this paper is to investigate the issues of a
parity-violating phase in lattice QED2 with Wilson fermions
in a direct lattice calculation. Compared to the wealth of
exact and approximate information accumulated over the
years on the continuum Schwinger model,2 the knowledge
we have on the lattice is rather modest. First of all, there are
no exact solutions within any of the formulations where dou-
blers are removed. The model was mostly investigated with
Kogut-Susskind fermions, testing various numerical methods
by comparing the lattice results to the exactly known con-
tinuum quantities in the massless case~see, e.g.,@17#!. How-
ever, very little is known about the theory in the Wilson
fermion formulation. The situation is particularly interesting
for a single flavor, because in that case the direct numerical
simulation is not possible. This is due to the fact that for
certain gauge configurations the fermionic determinant is not
positive and therefore one does not have a probabilistic
weight for the purposes of Monte Carlo simulation. In a re-
cent work @18#, Gausterer and Lang studied the Lee Yang
zeros of the partition function on small lattices analytically
~at infinite coupling! and numerically~at intermediate cou-
plings!. The system was also studied in Ref.@19#. In case of
two flavors, the direct numerical analysis is possible, but to
my knowledge, the systematic study of phase structure has
not been carried out.

In what follows, I will study the phase diagram of Hamil-
tonian QED2 on the lattice with one and two degenerate fla-
vors of Wilson fermions in the Hartree-Fock~HF! approxi-
mation. I will work in the axial gauge, where the gauge
degrees of freedom are easily eliminated in favor of fermi-
onic fields, thus providing a convenient setup for the use of
the HF approximation to the vacuum of the theory. The HF
ground state, or the independent fermion ground state, is a
state one might call~by definition! the mean field ground
state for the theory of interacting, particle number conserving
~charge conserving! fermions. It has a nice variational inter-
pretation and can be regarded as a first term in a series of
systematic variational improvements. While belonging to the
standard set of techniques used in many-body theory, HF
methods are rarely invoked in the lattice gauge context.

Dealing with a mean-field-like approach in 111 dimen-
sions, there is of course a danger that the result could be a
serious distortion of the true picture, even on the qualitative
level. On the other hand, it is known that the HF approxima-
tion can perform quite well in one spatial dimension. For
example, in QCD2, the HF state is one possible representa-

ht
2The recent activity concentrated mostly on the multiflavor case.

See, e.g.,@16#.
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tion of the leading largeN approximation to the vacuum
@20#. While this has a good rationale at largeN, it became
clear in recent years that the corresponding picture of ba
ons~represented as simple HF excitations! and mesons~rep-
resented as random phase excitations built on the HF s
tion! is surprisingly accurate atN53 as well @21,22#. I
therefore feel that it is not implausible that the HF approx
mation can give us some valuable hints about the ph
structure of lattice QED2 too. As I will try to show in this
paper, if put together with surface modes considerations,
resulting picture certainly offers a coherent way of thinkin
that might be used in attempts to go beyond the HF appro
mation.

Investigating the phase diagram, I adopt the point of vie
taken in Ref.@3#, that it is quite natural to introduce the axia
mass term~the ‘‘M5’’ term!. More specifically, I will con-
sider the generalized version of Hamiltonian~1!, given by

HW5
5HW1M5(

j
i c̄ jg5c j[HW1H5 . ~3!

Indeed, one obtains such a term from the conventional m
term by a chiral rotation. The existence of au parameter in
the continuum theory can be thought of as being due to
fact that because of regularization, the theory with such
rotated mass term is actually not equivalent to the origin
one and is thus anomalous. In this way, introducingM5 es-
sentially means tradingu ~being an independent parameter
the theory! in favor of this new mass term. Consequently,
will consider the lattice theory in the space of three ba
parameters,M , M5, andg ~gauge coupling!, in contrast to
three conventional continuum parametersm, u, ande.

In Sec. II, starting from the continuum theory in axia
gauge, I will formulate the lattice model with one flavor an
discuss its discrete symmetries. The HF approximation
then described in Sec. III. I do this in some detail, stress
the variational character of the method and the fact that
the discrete symmetries~including parity! are preserved by
the approximation. The numerical solutions of the HF equ
tions on finite lattices and their implications on the HF pha
diagram are discussed in Sec. IV. I try to make all the o
served qualitative features of the vacuum plausible by tr
ing them to the elementary picture of interacting particles
filled HF levels. The model with two flavors is then formu
lated and analyzed in Secs. V and VI. Summary, toget
with some generalizations and speculations, is given in S
VII. Finally, the numerical procedure used to solve the H
equations is described in the Appendix.

II. THE MODEL WITH ONE FLAVOR

The massive Schwinger model with one flavor of ferm
ons is defined by the Lagrangian

L52
1

4
FmnF

mn1c̄@gm~ i ]m2eAm!2m#c, ~4!

whereFmn5]mAn2]nAm . c is the two-component spinor
field,Am is the gauge field, andm,e the mass and dimension
ful coupling constant, respectively. I will consider the theo
in axial gauge~A150!.

The equation of motion forA0 is the equation of con-
straint ~Gauss’ law!
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E8~x![2A09~x!5ec†~x!c~x![er~x!, ~5!

whereE(x)[2A08(x) is the electric field andr the charge
density. It can be solved by

A0~x!52
1

2 E dx8ux2x8uer~x8!1Bx1C. ~6!

The integration constantC is physically irrelevant and will
be put to zero. The constantB represents a uniform back-
ground field which can be also put to zero for my current
purposes. Then the Hamiltonian of the theory for the zero
total charge takes the form

H5E dxF c̄~ ig1]11m!c2
e2

4 E dx8r~x!ux2x8ur~x8!G .
~7!

Upon quantization,c andH become operators in the cor-
responding Hilbert space, with field operators subject to the
canonical anticommutation relations. In the standard treat-
ment, the local charge density operator is replaced by its
normal ordered version :c†c :, with the normal ordering usu-
ally performed with respect to the filled Dirac sea~no par-
ticles, no antiparticles!. This effectively amounts to the com-
pensation of the infinite charge, generated by the sea. Since I
will not introduce the antiparticle operators it is more conve-
nient for my later purposes to define the charge density in
such a way that the compensation is explicit:

r~x![c†~x!c~x!21. ~8!

To formulate this theory on a lattice is now straightfor-
ward. It will be defined by the Hamiltonian

H5HW5
2
g2

4 (
n,m

rnun2murm[HW5
1HI , ~9!

whereHW5
is the free part withH5 defined in~3! and

rn5cn
†cn21. ~10!

The indicesn,m label the lattice sites running from 1 toL
and the lattice spacing has been set to unity. Fermionic vari-
ables are subject to open boundary conditions and satisfy the
canonical anticommutation relations

$cn
s ,cm

†t%5dnmdst , ~11!

with s, t being the spinor indices. The electric field in this
formulation is a derived quantity, defined through the lattice
analog of Gauss’ law~5! by

Ej5
g

2 F(
l51

j

r l2 (
l5 j11

L

r l G . ~12!

HereEj is the operator of electric field on link (j , j11).
It is worth emphasizing at this point that similarly to the

continuum case, the lattice interacting theory possesses exac
discrete symmetries. Choosing the representation ofg matri-
ces as
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g05S 0 1

1 0D , g15S 0 1

21 0D , g55g0g1, ~13!

the operations ofC,P,T in continuum~left column! and on
the lattice~right column! are defined by the following trans-
formation properties of the field operators:

Pc~x!P215g0c~2x!, Pc j P
215g0cL112 j ,

Cc~x!C215g1c̄
T~x!, Cc jC

215g1c̄ j
T ,

Tc~x!T215g0c~x!, Tc jT
215g0c j . ~14!

HereC,P are unitary andT antiunitary operators. The above
transformations indeed leave the corresponding continu
and lattice Hamiltonians withoutH5 ~M550! unchanged.

Note thatH5 is odd underP,C and even underT. There-
foreCP andT are the exact symmetries of the theory at an
M5. This is different from the situation in four dimensions
whereH5 is invariant underC and changes sign underP,T,
which in turn implies that bothPC andT are explicitly bro-
ken by nonzeroM5.

III. HARTREE-FOCK APPROXIMATION

In solid state physics, the HF approximation is frequent
referred to as the ‘‘independent electron approximation’’ an
this probably captures its essence best. Indeed, the main
is to approximate a given state of the fermionic many-bo
system by a Slater determinant of some set of one-parti
states. This is usually applied to approximate the unknow
vacuum of the theory, which is also my main interest here.
that case the method boils down to finding a set of on
particle states with the Slater determinant of minimal energ

Let me therefore start to investigate the vacuum of t
one-flavor lattice Schwinger model by considering an arb
trary ~but fixed! complete orthonormal set of one-particle
fermionic states on a lattice ofL sites:

S[$faua51,2,...,2L%. ~15!

Every statefa is a collection of two-component spinors
residing on siten:

fa[$fn
aun51,2,...,L%, fn

a[S fn
a,1

fn
a,2D . ~16!

One can build the fermionic many-body Fock space out
these states in a standard way and define the complete se
fermionic annihilation operators by

cn5(
a

aafn
a . ~17!

With definition ~10! of the local charge operator, restric
tion to the charge zero sector translates into the requirem
of half-filling. In other words, only states withL particles are
allowed. An arbitrary stateuc& from this subspace can be
written in the form
um

y
,
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uc&5c0u0 f ,0f̄ &1(
r
cr
1u1 f ,1f̄ & r1(

r
cr
2u2 f ,2 f̄ & r1•••

1cLuL f ,L f̄ &. ~18!

Hereu0 f ,0f̄ &, the ‘‘sea,’’ is the state with firstL levels filled:

u0 f ,0f̄ &5a1
†a2

† ...aL
†u0&. ~19!

un f ,n f̄& generically represents states withn fermions re-
moved from the sea and put inton empty levels~n-fermion–
n-antifermion states!. Index r enumerates these basis states
at fixedn. Obviously, the dimension of the charge zero sector
is ( L

2L).
Apart from charge conservation, no other symmetries are

assumed to be respected by the vacuum. One usually restricts
the space of states further by going to subspace of zero mo-
mentum. However, momentum is not well defined on a lat-
tice with open boundaries. Specification of (L

2L) complex
coefficientsc r

k in the above decomposition therefore consti-
tutes an exact representation of the vacuum. Requirement of
minimal energy defines a variational problem for determina-
tion of these coefficients. However, on a reasonably sized
lattice the number of variables in the problem becomes too
huge to be manageable.

The variational philosophy behind the HF approach is to
regard the setS as a collection of variational parameters
instead. In particular, the method aims at adjusting the one-
particle basis in such a way that while retaining only the first
term in decomposition~18!, the lowest energy state is
achieved. Note that in this way, the variational problem in-
volving 2(L

2L) real variables is replaced by one involving
3L2 real variables.3 Moreover, fixingS by the Hartree-Fock
prescription transforms the decomposition~18! into a well
defined variational improvement scheme. Indeed, employing
the HF basis one expects the statesun f ,n f̄& to play increas-
ingly less important roles in the true vacuum with increasing
n. This is expected to be true regardless of the value of the
gauge coupling.

Having defined the HF approximation it is now a straight-
forward matter to transform the problem into the familiar
manageable form. Using the field decomposition~17! one
can rewrite the free part of the Hamiltonian~9! as

HW5
[(

nm
cn
†Knmcm5(

ab
aa
†
K abab , ~20!

where

K ab5(
nm

fn
a†Knmfm

b ,

Knm5K@dn,m11g0~ ig12r !2dn11,mg0~ ig11r !#

1dnm@Mg01 iM 5g1#. ~21!

3Counting here includes the fact that only the filled levels repre-
sent the true variational variables since only they contribute to the
total energy. One also has to take into account the orthonormality
constraints.
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The interaction term becomes a little more complicated a
has three parts:

HI5E I1
g2

2 (
ab

aa
†
N abab1

g2

4 (
abgd

aa
†ab

†
Mabgdagad ,

~22!

where

N ab5(
nm

fn
a†un2mufm

b ,

Mabgd5(
nm

fn
a†fn

gun2mufm
b†fm

d ~23!

andE I is an unimportant constantE I52(g2/4)Snmun2mu.
Note that loosely speaking, the constant term correspond
the self-interaction of the Dirac sea-compensating charge,
quadratic term arises due to the interaction of this cha
with the system, and the quartic term represents the inte
tions of the system itself.

The mean energy in the Slater determinant~19! is a func-
tion of the setS and is given by

E~S!5E I1 (
a51

L FK aa1
g2

2
N aaG

1
g2

4 (
ab51

L

@Mabba2Mabab#. ~24!

The Hartree-Fock set of statesSHF is now determined by
minimizing E(S) with variablesf n

a subject to the orthonor-
mality constraints. Standard manipulations then reveal t
this variational problem can be solved by subjecting the o
particle wave functions to the HF equations of the form

(
m

H̃nmfm
a 5eafn

a , ~25!

with

H̃nm5Knm1
g2

2
@Vnm

D 1Vnm
E # ~26!

and

Vnm
D 5dnm(

j
un2 j uS 12 (

b51

L

f j
b†f j

bD ,
Vnm
E 5 (

b51

L

fn
bun2mufm

b† . ~27!

The ‘‘tilde’’ in H̃nm serves to denote the fact that these a
not the one-particle matrix elements of Hamiltonian~9!. As
expected, the HF equations take the form of a one-part
Hamiltonian eigenstate problem with the complication th
the Hamiltonian matrix depends on the eigenstates the
selves. Thus the equations have to be solved s
consistently. As usual, the self-consistent potential has dir
and exchange parts.
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Due to the self-consistent feature of the above HF equa-
tions, finding an exact solution is a nontrivial task and I have
not succeeded in doing that. On the other hand, there is a
simple way to attempt to solve these equations on finite lat-
tices numerically, namely by iteration. Straightforward appli-
cation of the iterative procedure however doesn’t converge to
the self-consistent solution. The nature of the problems is
similar to those described in Ref.@22# in the context of con-
tinuum QCD2 in the largeN limit. I discuss these technical
issues in the Appendix. Using a modified approach, numeri-
cal solutions can be iteratively found in wide range of cou-
pling constants.

Let me close this section with a few remarks concerning
symmetry within the HF approximation. It is usually helpful
and desirable that the approximation scheme retains as muc
symmetry of the approximated system as possible. Espe
cially if the main purpose of the investigation is spontaneous
symmetry breaking. In particular, as discussed in the previ-
ous section, ifM550, the Hamiltonian~9! is invariant under
parity. Is the parity invariance present in the approximation?
In what sense?

The underlying dynamics driving the HF approximation is
entirely embodied in the HF equations. Therefore, the sym-
metries of these equations should also determine the symme
tries of the approximation. It follows from transformation
properties~14! that under the operation of parity the one-
particle wave functionxn transforms intog0xL112n. Since
the HF Hamiltonian implicitly depends on its eigenstates, the
parity operation in this case has to involve the whole setS. In
fact, it can be checked quite easily that the operation

SHF5$fn
a%→PSHF5$g0f2n

a %, ea→ea ~28!

is a symmetry of the HF equations. In other words, ifSHF is
a self-consistent set solving~25!, thenPSHF is also a self-
consistent set with corresponding one-particle energies
equal.

Let me also mention that not just parity but all the discrete
symmetries discussed in the previous section are preserve
by the HF approximation in the above sense. Of course, per-
forming the symmetry operation on the HF vacuum can lead
to a Slater determinant involving a different self-consistent
set, thus opening the possibility of spontaneous symmetry
breaking.

IV. NUMERICAL ANALYSIS „ONE FLAVOR …

In this section, I will discuss the results of the HF analysis
for the model with one flavor. I will concentrate on the phase
diagram in theM2g2 plane. To observe the parity-violating
effects on a finite lattice, I fixM5 to a very small value
~M551023! throughout this section. The values of hopping
parameter~K51! and Wilson parameter~r50.5! are set in
such a way that the critical value ofM at zero coupling is
Mc~0!51. All quantities are given in the lattice units. More-
over, the electric field is always measured in units ofg. In
particular, this expectation is calculated using formula~12!
with operators of charge density replaced by their expecta-
tion values in the HF vacuum,
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^rn&
HF5 (

a51

L

fn
a†fn

a21, ~29!

and the factor ofg removed.
To assess the accuracy of the self-consistent numer

solution and to provide the criterion for terminating the i
erative procedure, I have computed

d~k!5(
a,n

ufn
a~k11!2fn

a~k!u ~30!

at each iterative stepk. Heref n
a(k)PS(k), the one-particle set

after k iterations~see Appendix!. Obviously,d50 only for
the self-consistent set. In all cases discussed in this sec
S(k) has been accepted as a numerical solution only
d(k),1022. In most cases, however, this number has be
much smaller~up to four orders of magnitude at weak cou
plings!. With the above bound, the physical characteristics
the HF Slater determinant~such as energy!, became essen
tially insensitive to further decrease ofd. To achieve this
accuracy on the lattices I have studied~L532,40,48! took
typically a few tens of iterations at weak couplings~g2<0.5!
and a couple of hundreds at intermediate and strong c
plings ~g2.0.5!. Working in the vicinity of the phase transi
tion typically added roughly one order of magnitude to th
number of iterations. In the region of couplings studied he
~g2<3!, the self-consistent solution has always been straig
forwardly found with free wave functions at givenM used as
a starting point for the iteration.

The representative example of the most relevant finding
this study is displayed in Fig. 1. The vacuum expectati
value of the electric field in the middle of the 32-site lattic
is plotted as a function of the fermion mass at weak coupl
~g250.1!. Note that for large values ofM , the electric field
tends to zero as one would expect in the parity-invaria
theory. However, at small fermion masses the field acqui
an expectation value and the two regions are separated

FIG. 1. Vacuum expectation value of the electric field in th
middle of the system as a function of fermion mass.
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rapid transition. This suggests the existence of a parity-
violating phase transition and confirms the qualitative picture
presented in Ref.@14# at the Hartree-Fock level.

The spatial dependence of the electric field across the lat-
tice is plotted in Fig. 2~a! for typical cases in the broken and
symmetric phases. Note that in the broken phase, the field
nicely settles to a uniform bulk value essentially across the
whole lattice. In the symmetric example, the field is almost
zero everywhere. It is quite interesting to see the spatial dis-
tribution of Hartree-Fock levels in these two situations. This
is shown in Fig. 2~b! where I plot the energy of these levels
against the mean position of particles in them. In the sym-
metric case, all the particles reside on average in the middle
of the lattice and the left-right symmetry is preserved up to
small explicit violations caused by the presence of the small

e

FIG. 2. ~a! Spatial dependence of the electric field in symmetric
~M51.04! and broken~M50.24! phases.~b! Spatial distribution of
the corresponding HF levels.
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M5 term. The filled levels produce a uniform charge dist
bution neutralized by the compensating charge. This is to
compared to the situation in the broken phase, where
left-right symmetry is completely lost. Indeed, it is energe
cally favorable for the levels to spread out asymmetrica
Filling the sea generates the surface charge and an ele
field.

Similar behavior is observed also at higher values of t
gauge coupling. The resulting positions of phase transitio
observed on the lattice with 48 sites are plotted in Fig. 3. T
transition points here are determined simply as the locati
of the rapid rise of the vacuum expectation value of the el
tric field at fixed coupling. In particular, the phase transitio
is assumed to happen at the fermion massMc(g

2), where
this expectation value rises above 1022, i.e., above the value
one order of magnitude larger than the size of the pari
violating M5 term. By comparing to the results on smalle
lattices ~L532,40! I expect the critical masses at nonze
couplings to be increased by a few parts per hundred in
infinite volume limit.

For the model in the standard Euclidean formulatio
Gausterer and Lang@18# concluded the existence of a phas
transition at infinite coupling. After appropriate rescaling
the parameters of their model, the quoted position of t
transition isMc~`!.0.32. Although I do not know of anya
priori reason why the phase transition should occur at
same place in both formulations, it is interesting to obse
that their result is an acceptable asymptotic value at stro
coupling here too.

Similarly to the electric field, the simplest local fermioni
parity-odd operator, namely axial charge densityi c̄g5c, also
acquires an expectation value at the parity-violating pha
transition. This is illustrated in Fig. 4~a! where I plot both the
electric field and the axial charge density as a function
fermion mass atg251.0. Both operators appear to acquire a

FIG. 3. Hartree-Fock phase diagram inM -g2 plane as seen on a
finite lattice. Diamonds sample the critical lineMc(g

2), with parity
broken in the left region. The square marksMc~0! at infinite volume
limit. The left vertical line representsMc~`! quoted in@18# for the
model in standard Lagrangian formulation.
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expectation value simultaneously as expected. Typical spatial
dependence of the axial charge density in the broken and
symmetric phases is plotted in Fig. 4~b! showing the bulk
nature of the order parameter.

The relative size of the electric field and the axial charge
density in the broken phase varies with gauge coupling. This
is demonstrated in Fig. 5 where I plot these expectation val-
ues at fixed fermion mass. Note that while the electric field
starts up finite at weak coupling and decreases monotonically
at intermediate and strong couplings, axial charge density
behaves in a complementary way. It approaches zero with
vanishing coupling and rises as the coupling increases.

The above behavior of electric field is simply a manifes-
tation of charge shielding, an effect well known to be present

FIG. 4. ~a! Electric field and axial charge density against the
fermion mass. Transitions seem to occur simultaneously.~b! Spatial
dependence of axial density in symmetric~M51.04! and broken
~M50.24! phases.
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in the continuum theory as well. Indeed, consider first th
free theory. In that case it is just the filled surface mode th
is responsible for the parity-breaking effects. That is why th
electric field approaches value 0.5~u5p! when coupling
tends to zero. However, once the gauge coupling is turn
on, the rest of the levels spread out@see Fig. 2~b!# and the
accumulation of surface charge is a result of the collectiv
action of all self-consistently interacting particles in filled
states. The net effect of this phenomenon is a screening
the surface charge. As the value of the gauge coupling
creases, while remaining in the broken phase, one expe
the levels to spread out and screen even more since the s
tem wants to reduce the positive attraction energy of th
surface charges. For example, atg251.5, the spatial distribu-
tion of HF levels is shown in Fig. 6. At strictly strong cou-
pling, when the interaction term absolutely dominates, eve
particle in the sea will live bound to just one site of the
lattice, thus eliminating the surface charge completel
Therefore, the field is expected to vanish in this limit in th
HF approximation.

In the light of the above considerations, behavior of th
axial charge density in Fig. 5 becomes also quite natur
Indeed, since at zero coupling the parity violation is all con
centrated on the ends, it will not be reflected in the expect
tion value of the local operator inside the system. Cons
quently, one expects the bulk axial density to vanish. A
strong coupling, however, parity violation is equally contrib
uted by all the filled levels and the axial density acquires a
expectation value.

An interesting feature already present in the examples
Fig. 2, but quite striking in Fig. 6, is that because of th
interaction energy, it is not necessarily the lowest on
particle states that are filled to form the HF vacuum. Indee
in Fig. 6 almost half of the filled levels~denoted by dia-
monds! are those with positive one-particle energies. This
discussed in more detail in the Appendix.

Finally, let me close this section by discussing the order

FIG. 5. Expectation values of electric field and axial charg
density in broken phase. Relative size of the condensates var
with gauge coupling.
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the parity-violating phase transition in the HF approxima-
tion. It is well known that the mean-field-like approaches are
frequently misleading about the order of the phase transition
and the critical exponents. Therefore, while I assume that it
is plausible for HF approximation to recognize the transition,
the information it gives about the order should be taken with
more care.

I have calculated the connected correlation functions
for electric field and axial charge density in the HF vacua.
For the case of electric field, these functions have a very
nice exponential decay in all cases I have studied and the
corresponding correlation lengths could be reliably deter-
mined. Typical behavior of the inverse correlation length
~mass gap! across the phase transition is shown in Fig. 7~a!.
In the symmetric phase, the correlators of the axial charge
behave in the same way. However, in the broken phase they
show some differences as can be observed from Fig. 7~a!.
For weak couplings, the determination of the correlation
length from these axial charge correlators in the broken
phase was less accurate than from the electric ones. Using
the electric field correlation functions, Fig. 7~b! shows the
mass gap along the line of phase transitions on a lattice of 48
sites. These results are reasonably finite-size stable~more so
at stronger couplings! and I exclude the possibility of mass
gap reducing to zero in the infinite volume limit. I conclude
that in the HF approximation the phase transition is of first
order at finiteg, approaching a second order endpoint at zero
coupling.

V. TWO FLAVORS

Turning now to the case of two degenerate fermion fla-
vors, I will consider the lattice Hamiltonian

e
ies FIG. 6. Spatial distribution of the HF levels in broken phase at
g251.5. Filled levels are marked by the diamonds and empty ones
by the crosses.
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H5(
f

(
nm

cn
f†Knmcm

f 2
g2

4 (
f h

(
nm

rn
f un2murm

h .

~31!

Here f ,h are flavor indices assuming two values,Knm is
defined in~21!, and

rn
f 5cn

f†cn
f 21. ~32!

The fermionic operatorsc n
f are subject to the canonical an

ticommutation relations.
Note that with flavors being degenerate, the parame

space of this two-flavor theory is the same as for a sin
flavor, namelyM ,M5 ,g. Also, similarly to the one-flavor

FIG. 7. ~a! Inverse correlation length from electric field an
axial charge correlation functions.~b! Inverse correlation length of
the electric field correlator along the line of phase transitions.
-

ter
gle

case, the above lattice model retains all the discrete symm
tries of the corresponding continuum theory. In addition, the
two-flavor model is invariant under unitary transformations
in flavor space. All of these symmetries will be preserved by
the Hartree-Fock approximation in the sense discussed
Sec. III.

Inclusion of the flavor index does not require any concep
tual changes in the application of the Hartree-Fock proce
dure. On the technical side, it is easiest to skip the explici
use of flavor notation and assemble the two fermionic opera

tors on siten into a four-component columncn[(
c
n
2

cn
1

). The

Hamiltonian then takes the form

H5(
nm

cn
†K̃nmcm2

g2

4 (
nm

rnun2murm , ~33!

with

K̃nm5SKnm 0

0 Knm
D ~34!

and

rn5cn
†cn22. ~35!

Note that to compensate for the charge of the Dirac sea no
requires two units of charge per site.

Using the above notation and the decomposition

cn5 (
a51

4L

aafn
a , ~36!

the derivation of the HF equations is a line by line repetition
of the procedure for the one-flavor case up to the factors of
coming from the doubling of the compensating charge. In
deed, the HF equations take the form

(
m

H̃nmfm
a 5eafn

a , ~37!

with

H̃nm5Knm1
g2

2
@Vnm

D 1Vnm
E # ~38!

and

Vnm
D 5dnm(

j
un2 j uS 22 (

b51

2L

f j
b†f j

bD ,
Vnm
E 5 (

b51

2L

fn
bun2mufm

b† . ~39!

Note that these equations are formally almost identical to
those for one flavor. The crucial difference however is tha
f n

a is now a four-component object andH̃ a 4L34L com-
plex matrix.

d
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VI. NUMERICAL ANALYSIS „TWO FLAVORS …

I will start with the discussion of the phase structure in t
M -M5 plane at fixed gauge coupling. Before turning to th
results of the HF analysis, let me first briefly explain wh
one would expect to be happening here at weak coupl
based on the surface mode picture. To do that, I will need
borrow the ideas of Ref.@3#, and to make this paper reason
ably self-contained, to review briefly the part that is releva
here. Thinking first in the continuum context, consider t
standard mass termmc̄c and its transformation under the
chiral rotationc→eiu/2g5c. We have

mc̄c→m cos~u!c̄c1m sin~u!i c̄g5c. ~40!

Therefore, the chiral rotation by angleu corresponds to the
rotation of the vector~m,0! in the m-m5 plane around the
origin ~‘‘chiral point’’ ! by the same angleu. While naively
expecting that the physics should be the same after the ab
change of variables, this is actually not the case becaus
the chiral anomaly. What we are actually getting is a phys
with different ‘‘gauge’’ u parameters, i.e., with differen
background electric field, realized for example through t
existence of the surface charges. With this identification,
above transformation prescription gives the approximate
lation ~the renormalization effects, for example, will shift th
chiral point to negativem! between the theory considered i
the parameter spaces~e,m,u! and ~e,m,m5!.

On a lattice with Wilson fermions, the situation is a littl
more complicated, because except from~Mc ,0!, there is an-
other chiral point in theM -M5 plane, namely~2Mc ,0!,
where the doubler goes massless. The conjecture then is
here the totalu parameter gets two contributions, each bei
the angle with respect to the two chiral points, with double
contribution taken with the reversed sign. These angles
sketched in Fig. 8~a!. Nf degenerate flavors will contribute
equally to the total value ofu and consequently, one expec
the following approximate relation to hold at weak couplin

u5Nf~up2ud!. ~41!

Hereup ,ud are the contributions of the particle and the do
bler, respectively. In other words, on a lattice with ope
boundaries, the system is expected to generate sur
charges in such a way that the resulting electric field w
approximately correspond tou given by the above relation.

If this qualitative picture is correct, there should be pha
transitions occurring in theM -M5 plane at the positions
whereu reachesp. Indeed, foru.p, it will be energetically
favorable to create a fermion-antifermion pair thus reduci
the magnitude of the electric field and switching its sig
Consequently,u should jump fromp to 2p across these
phase transitions. The conditionu5p defines a line inM -M5
plane, but its qualitative behavior strongly depends on
number of flavors. With single flavor, the only solution is
straight line, connectingMc and2Mc . This can be under-
stood already from the point of view of the ‘‘naive’’ surfac
mode picture as I presented in the Introduction. Inde
switching the sign of a small parity-violating ‘‘M5’’ term
causes the two surface modes to exchange the ends o
lattice, thus switching the sign of the surface charges and
electric field. For two flavors, the conditionu5p defines a
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circle with center at the origin and radiusMc . Including a
small flavor breaking in bothM and M5 to visualize the
chiral endpoints, the phase diagram is expected to look qu
tatively as sketched in Fig. 8~b! @3#. Note that contrary to the
single flavor case, the prediction of this phase structure in t
M -M5 plane is quite nontrivial.

Guided by this simple picture at weak coupling, I set ou
to look for these phase transitions in the Hartree-Fock a
proximation. For numerical work, I again fixed the values o
the hopping parameter~K51! and the Wilson parameter~r
50.5!, so that the critical value ofM at zero coupling is
Mc~0!51. Also, I have always included a very small explici
flavor breaking in bothM andM5. In particular, the masses
of flavors were of the formM60.001 andM560.001. The
self-consistent solutions were again obtained by the modifi
iteration procedure as described in the Appendix. For all r

FIG. 8. ~a! Assignments of the anglesup(p) andud(d) of Eq.
~41! to a general pointA in theM -M5 plane.~b! Expected phase
diagram for two flavors at weak coupling based on the surfa
mode picture of Ref.@3#.
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sults presented here the accuracy of the solution, given
Eq. ~30!, was better than 1023 and typically about 1026. To
achieve this accuracy in the immediate vicinity of the pha
transition on a lattice of 40 sites took less than 104 iterations
at strongest coupling studied here~g256!.

The graphs in Figs. 9~a! and 9~b! illustrate how the above
qualitative ideas are reflected in the Hartree-Fock appro
mation. In Fig. 9~a! I plot the vacuum expectation value o
the electric field along theM5 axis ~M50! at g250.1 on a
lattice with 40 sites. Note that the HF vacuum nicely exhib
the expected abrupt change in the electric field and the
versal of its sign. Probing the field along theM axis ~with
smallM5 present! gives the dependence plotted in Fig. 9~b!.
While behaving in qualitatively the same way, the magnitu
of the field is becoming small as one approaches theM -g2

plane. This is what one would expect if theseu5p transi-

FIG. 9. ~a! Electric field vsM5 in the two-flavor model at
g250.1 andM50 on a lattice with 40 sites.~b! Electric field along
theM axis in the same situation.
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tions, which are naturally first order, end in a second order
chiral endpoint in this plane. The analysis of the electric field
correlators suggests, however, that in the HF approximation,
these transitions at finite coupling are first order even close
to theM -g2 plane. It should be stressed again, however, that
this might well be an artifact of the approximation.

Defining the transition point as the position in theM -M5
plane where the field switches its sign, I plot the phase dia-
grams forg250.1 andg251.2 on a lattice with 32 sites in
Fig. 10. In fact, only the points in the upper right quadrant
were really calculated. The rest of them were obtained using
symmetry with respect to the mass reflections. Note that
while not exactly of circular shape, the transition lines reflect
the expected qualitative features deduced from the surface
mode picture. Also, atg250.1, non-negligible finite-size ef-
fects are present here. While the transition point along theM
axis is essentially stable against the increase of the lattice
size, the transitions along theM5 axis occur atM550.36,
0.42, 0.48 on the lattices with 32, 40, and 48 sites, respec-
tively. Thus it is quite possible that the ellipselike shape of
the transition line will become more circlelike in the infinite
volume limit.

Let me now turn to the question of Aoki’s phase in the
M -g2 plane. First note that the surface mode picture does not
suggest that parity-flavor-broken phase should exist here at
weak coupling. Indeed, as one turns off theM5 and moves
along theM axis, the angleu defined by~41! is always zero.
Both flavors will generate their surface mode asM is low-
ered belowMc , thus changingu by 2p and physically
changing nothing. A good way to picture this is by looking at
Fig. 8~b!: however small the flavor breaking is, if one
moves close enough to theM axis, it is always possible to
pass below the chiral point.

Discussion of these issues in two dimensions might ap-
pear a little academic since because of the Mermin-Wagner

FIG. 10. Phase diagrams of the two-flavor model in theM -M5
plane atg250.1 andg251.2 on a lattice with 32 sites. The points
represent the positions where electric field in the Hartree-Fock
vacuum changes its sign.
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theorem@23#, one would not expect flavor to be spontan
ously broken here atany coupling. Nevertheless, if the sur
face mode picture is of relevance to QCD in four dime
sions, then this qualitative prediction would not chang
Moreover, I consider the following to be good reasons
investigate these issues in the context of the Schwin
model itself: ~1! the lattice model, defined by~33!, is non-
local, and as such does not exactly satisfy the usual assu
tions of the theorem;~2! parity can still be broken; and~3!
flavor could be erroneously broken within the HF appro
mation. Then, although not useful as an information ab
the lattice Schwinger model, it can serve as a toy picture
what might be happening in QCD where there is quite co
vincing evidence that parity flavor is broken at strong enou
coupling.

With that in mind, I have calculated the expectation v
ues of c̄g5t3c and c̄g51c in the HF vacua. Heret3 is the
third Pauli matrix and 1 a unit matrix in flavor space. Not
that the form of flavor breaking inM5 used here chooses th
t3 direction if flavor is broken. Note also that ifM550 and
^c̄g5t3c&Þ0, it is both parity and flavor that are spontan
ously broken. On the other hand, if this expectation is no
zero at nonzeroM5, the parity is broken explicitly while the
flavor spontaneously. Furthermore, if atM550 we had
^c̄g51c&Þ0 and ^c̄g5t3c&50, it would indicate that only
parity has been spontaneously broken.

The results of the HF analysis inM -g2 plane ~with
M551022! on the lattices with up to 40 sites are as follow
I have found no evidence ofc̄g51c acquiring an expectation
value in the region of couplingsg2<6. Consequently, there is
no indication of parity being broken alone. However, the
are regions wherêc̄g5t3c& is nonzero in the Hartree-Foc
approximation on the finite lattice. For example, in Fig. 11~a!
I plot this expectation as a function of fermion mass
g251.2. The broken region appears as a narrow peak a
cent from the left to the ‘‘u5p’’ 4 transition point on this
lattice of 40 sites. I have observed similar peaks atg250.1
andg254.0 with heights roughly 0.08 and 0.70, respective
For the two weaker of the above couplings, I have also p
formed a finite-size analysis of the width of this broken r
gion. This width decreases linearly with 1/L, exhibiting a
small negative intercept in both cases. On the other hand
heights of the peaks stay constant as the lattice size
creases. I therefore conclude that these narrow regions
not survive in the HF phase diagram in the infinite volum
limit. The only remnant of them will probably be the singul
behavior of the parity-flavor order parameter at the ‘‘u5p’’
transition point.

The situation qualitatively changes at even stronger c
plings. In particular, the parity-flavor-broken phase inde
opens up at the subcritical fermion masses. This is dem
strated in Fig. 11~b!, where I show the behavior of the orde
parameter atg256.0 on a lattice with 32 sites. There ha
been a negligible change here as the lattice size increase
L540. I therefore expect the finite-size effects to be small

4Note that I loosely refer to a transition, where electric fie
switches the sign as the ‘‘u5p’’ transition even at strong coupling
This should not be taken too literally neither here, nor in wh
follows.
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is also worth mentioning that̂c̄g5t3c&Þ0 in the whole in-
side region of the ‘‘u5p’’ line at this strong coupling and not
only in theM -g2 plane. This is in contrast to the case of
narrow broken regions at weaker couplings which can onl
be observed close toM -g2 plane on a finite lattice.

This concludes the review of the most important aspec
of the numerical information obtained in this study. In the
last section, I will turn to generalizations and speculations.

VII. SUMMARY, GENERALIZATIONS,
AND SPECULATIONS

The Schwinger model on a lattice with Wilson fermions
has been studied in the Hartree-Fock approximation. Th
main focus was given to the global structure of phase dia
grams with one and two degenerate flavors of fermions. I
future communication, I plan to report on the study of the

ld

at

FIG. 11. ~a! Expectation value ofc̄g5t3c at g251.2 and
M550.01 on a lattice with 40 sites.~b! The same expectation at
g256.0 on a lattice with 32 sites.
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continuum limit in this framework. The surface mode pictu
@3,14# served as a reliable guide in these investigations
weak coupling. The nonperturbative nature of HF appro
mation, however, allows one to study the model at interm
diate and strong couplings as well.

For the case of a single flavor, I plot in Fig. 12 the qua
tative behavior of the concluded full phase diagram of t
model in the Hartree-Fock approximation. There is a pla
region, embedded in theM -g2 plane, where parity is spon
taneously broken. From the point of view of the surfa
mode picture, it can be understood as the surface of ‘‘u5p’’
transitions. Entering the region from theM direction is ac-
companied by the appearance of the surface charges an
background electric field~‘‘ u50→u56p’’ !. Crossing the re-
gion in theM5 direction corresponds to reversing the sign
the electric field~‘‘ u5p↔u52p’’ !. In accordance with Ao-
ki’s scenario,c̄g5c acquires an expectation value in the br
ken region. Taking into account the infinite-coupling result
@18#, I expect the parity-violating phase to extend all the w
to g2→`.

While the ‘‘u5p↔u52p’’ transitions are naturally first
order, there is a strong evidence that the parity-violat
phase transitions inM -g2 plane are also first order in th
Hartree-Fock approximation at nonzerog. This seems quite
unnatural since one would have the first order ends at
boundaries of the parity-violating region. On the other ha
if one thinks conventionally about taking the chiral co
tinuum limit, the first order transition looks quite appropr
ate. There are two parts to the conventional wisdom ab
taking this limit, which is usually thought about in analogy
QCD in four dimensions. First, since the gauge coupli
constant is dimensionful~inverse length! in two dimensions,
it is assumed that the continuum limit can only be taken
vanishingg ~the dimensionless lattice coupling!. Second, the
chiral limit is assumed to be taken by following the line
phase transitionsMc(g

2) towardsg50. The immediate con-
sequence of these assumptions is thatg(a) vanishes ata50

FIG. 12. The concluded qualitative behavior of the full H
phase diagram for the one-flavor Schwinger model on the lat
with Wilson fermions. Parity is spontaneously broken in the bla
sheet, embedded in theM -g2 plane.
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and is an increasing function in the vicinity of this point.
Herea is the lattice spacing. Denoting byD(a) the dimen-
sionless mass gap along the line of phase transitions, th
physical mass of the lightest particle in the theory is given by
D(a)/a. Since chiral symmetry is broken in the continuum
and the lowest mass is nonzero (e/Ap), the above ratio
should approach the constant positive value asa→0. Conse-
quently, similarly tog(a), D(a) should also vanish ata50
and increase in the vicinity of this point. Puting the above
two conclusions together,D(g) must have this local property
as well. In particular, it is zero atg50, but increases asg
becomes finite. Hence, if the conventional picture about chi-
ral continuum limit is correct, the transitions should become
first order as the gauge coupling is turned on.

In the light of the above considerations, it is not entirely
obvious that the HF approximation is giving an incorrect
answer here~which it of course well can!. One possible so-
lution is that what is depicted in Fig. 12 is not all that hap-
pens in the model. In particular, there could be another shee
of first order phase transitions going off theM -g2 plane and
crossing this plane atMc(g

2). If that was the case, then the
second order ends atMc(g

2) would not appear to be neces-
sary. However, I have not found the evidence that would
support this scenario in the HF approximation. In summary,
the order of parity-violating phase transition is a very inter-
esting issue by itself. However, it can only be satisfactorily
settled by accurate calculation beyond the HF approxima-
tion.

Similarly to the one-flavor case, there is a surface of ‘‘u
5p’’ transitions also in the model with two flavors. It takes a
more complicated shape however and its qualitative behavio
in the HF approximation is depicted in Fig. 13~a!. The
‘‘tube’’ of phase transitions encloses theg2 axis as the ex-
plicit flavor breaking is taken to zero and touches theM -g2

plane atMc(g
2). Since the electric field generated by the

surface charges switches the sign, the transitions across th
surface of the ‘‘tube’’ are naturally first order. In the HF
approximation, this is so even when approachingMc(g

2) at
finite coupling. The transition close toMc(g

2) becomes sec-
ond order in HF approximation only asg→0. Note also that
contrary to the single-flavor case, the possible continuous
nature of the phase transitions alongMc(g

2) would not be in
conflict with the above argument concerning the chiral con-
tinuum limit. This is because in the two-flavor case, the non-
singlet part of the flavored chiral symmetry is not anomalous
and there is a massless particle~not a Goldstone boson! in
the continuum theory@24#.

The crucial difference between Figs. 12 and 13~a! is that
with two flavors, it is onlyMc(g

2) that is shared by the
M -g2 plane and the surface of ‘‘u5p’’ transitions. If the
identification of the ‘‘M5’’ physics on the lattice and the ‘‘u’’
physics in the continuum is correct at weak coupling, noth-
ing special should happen upon crossingMc(g

2) with re-
spect to parity, and it indeed does not. At strong coupling,
however, the above scenario might well break. This is nicely
observed in the HF approximation. In particular, the numeri-
cal evidence suggests the existence of rather strong couplin
gs ~4,g s

2,6!, so that forg.gs , the expectation value of
c̄g5t3c is nonzero inside the ‘‘tube’’ of Fig. 13~a!. Conse-
quently, parity flavor is broken inM -g2 plane at subcritical
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masses and strong couplings. I conclude the qualitative
phase diagram in this plane as depicted in Fig. 13~b!. The
full lines in this phase diagram representMc(g

2) and they
are also characterized by the fact that^c̄c& exhibits a jump as
they are crossed. Parity-flavor, however, is only broken in
‘‘BP’’ ~broken phase! region, bounded from below by the
dashed line.

The above results indicate that Aoki’s scenario is not
alized in the two-flavor Schwinger model at the HF level.
is quite feasible that this is the case for QCD in four dime
sions as well@25,26#. Although the analogy between QED2
and QCD4 should certainly not be taken too seriously~espe-
cially in case of an approximation!, I believe that the phase
diagram of Fig. 13~b! indeed represents a possible toy pi
ture of what might be happening in the latter case. In p
ticular, that the parity-flavor-broken phase shrinks to ze
width before entering the vicinity of the continuum limi

FIG. 13. ~a! The concluded qualitative shape of the surface
‘‘ u5p’’ transitions for the model with two flavors.~b! The HF
phase diagram of this model inM -g2 plane. Parity flavor is spon-
taneously broken in the ‘‘BP’’ region.
HF

the

re-
It
n-

c-
ar-
ro
t.

There would still be a linekc(g
2), running up from the QCD

fixed point, on which a transition in̂c̄c& could be observed.
However,^c̄g5t3c& would remain zero.
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APPENDIX

In this Appendix I will briefly describe a technical detail
on the numerical procedure used to solve the HF equations
~37!. The standard way to proceed is to iteratively gen-
erate the sequence of sets of one particle states
$S(0),S(1),...S(k),...%, so thatS(k11) is the eigenset ofH̃ (k).
Here H̃ (k) is the HF Hamiltonian with direct and exchange
potentials determined from wave functions ofS(k). With a
reasonable choice of the initial set the sequence frequently
converges well to the self-consistent setSHF.

Note, however, that there is certain ambiguity in the pro-
cedure that might cause a problem. It arises because of th
fact that the energy of the HF vacuum is not just a sum of the
one particle energies of the filled levels. Indeed, at nonzero
coupling there is an interaction part contributing to the total
energy and it may well be that the filled levels are not those
from SHF with lowest one-particle energies. If that is the case
and the iteration proceeds by filling the lowest levels at each
step, the procedure can never converge to a self-consisten
set.

This bad looking flaw can however be quite easily recti-
fied @22#. Instead of the original HF problem@~24!, ~37!#
consider the one with the two body potential shifted by a
constant: i.e.,

un2mu→un2mu1C. ~A1!

One naturally expects that a resulting HF vacuum will not be
physically different from that of the original problem. In-
deed, it can be easily checked that both problems share thei
solutions. However, the vacuum energy and also the one par
ticle energies will change. In particular,

E→E1CL
g2

4
,

ea→H ea1C
g2

2
, a filled;

ea, a empty.

~A2!

Note that it is only the filled levels that get shifted in
energy, not the empty ones. Therefore by choosingC to be
negative and sufficiently large one can always make the

of



or
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filled levels to be those with lowest one-particle energie
The HF problem with suchC can then in principle be solved
by standard iteration as described above. If the solution
found, it is also the HF vacuum of the original problem.
s.

is

In an actual computation, the constantC was chosen by
trial and error. If the iteration failed for a givenC, a larger
value has been set. In general, larger values were needed f
larger values ofg, as one would expect.
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