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Phase structure of the Schwinger model on the lattice with Wilson fermions
in the Hartree-Fock approximation
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The phase diagram of the Schwinger model on the lattice with one and two degenerate flavors of Wilson
fermions is investigated in the Hartree-Fock approximation. In the case of a single (fetadirectly ame-
nable to numerical simulationthe calculation indicates the existence of the parity-violating phase at both
weak and intermediate-to-strong couplings. In the broken phase, the Hartree-Fock vacuum sustains a nonzero
electric field. With two flavors, parity is not broken at weak coupling. However, both parity and flavor become
spontaneously broken at the Hartree-Fock level as the coupling becomes strong.

PACS numbds): 11.15.Ha

[. INTRODUCTION lations are performedmeans to relate the concepts of chiral
symmetry breaking to those of the lattice system, where chi-
Understanding lattice fermions has been an outstandintpl symmetry is not present.
issue since the beginning of lattice field theory but satisfac- Restricting myself now to the case of Wilson fermions, it
tory insight is still missing. Aside from nontrivial numerical is generally believed that there is a line of phase transitions
complications introduced by fermionic degrees of freedom/c(9) (in the hopping parameter—gauge coupling pjane-
there are well-known conceptual obstacles, usually referreBing up from the QCD fixed poink.(0). On this line, pi-
to as the “fermion doubling problem.” As revealed by the onI|ke_ state becomes massless and the continuum thral
Nielsen-Ninomiya theorenfi1,2], the doubling problem is QCD is believed to _be approached by following this line
intimately connected to chiral symmetry. In fact, this “no- towar_ds;cc(O)._ Som_e time ago_Aokﬁ?] setout to_ answer the
go’ theorem has succeeded so far in preventing us fro uestlons_ra|sed in the previous paragraph in this context.
formulating chiral gauge theory on the lattice, although the amely, since ag#0 the ma_sslessness of the pion cannot_b(_a
investigations have intensified recentisee, e.g.[3.4] and due to the spontaneous chlra! symmetry breaking, what is it
: . ) due to? In other words, what is the nature of the phase tran-
references therejrand possible clues might be at hand.

. ; sition alongk.(9)?
Except for the fundamental importance of chiral symme- Aoki's answer was thak(g) represents the line of phase

try in electroweak theory, chiral symmetry has long beenyansitions at which parityfone-flavor caseor parity and
believed crucial in understanding the low energy behavior ofj4yor (multiflavor casg becomes spontaneously broken. For
strong interactions, described by a vectorlike theory such agne flavor, the pion is identified with the massless particle
QCD. Hinted by the small pion masses, the basic startingjriving the parity-violating phase transitigti rysy)#0). In
point is that the approximate chiral symmetry crucially case of two flavors, it igi ys7s1) acquiring an expectation
shapes the way the low energy strong interacting worldsalue. #° is identified with a massless mode of this phase
looks. Pions are regarded as Goldstone bosons coming frotransition, while the charged pions are viewed as the Gold-
the spontaneous breakdown of this chiral symmetry, and thstone bosons coming from the breakdown of flaygtys1y)
powerful predictions of the current algebra follg®. is always assumed to be zero thus giving no reasoryfir

It is desirable to study these interesting issues within théoe light, which could be viewed as a solution of théllJ
nonperturbative framework of lattice QCD. While the conse-problem on a latticg7].
guences of the Nielsen-Ninomiya theorem for the vectorlike At strong coupling, the supporting evidence for this sce-
case are less serious than for chiral gauge theory, the exigtario is quite convincing7]. On the other hand, in the weak
ence of chiral anomaly complicates the issue further. The&oupling regime (relevant for the approach to the con-
standard argument is that since the lattice is a physical regdinuum), the situation is far from conclusive. Despite the fact
lator, any symmetry of the lattice action will remain the valid that some numerical work has befg8] and continues to be
symmetry of the theory at every stage, including the condone [9], the very existence of the parity-flavor-violating
tinuum limit. Consequently, an explicitly chirally symmetric phase still needs to be examined, let alone the detailed pic-
lattice model cannot reproduce the anomaly structure of theure of symmetry breaking. The existence of the parity-
vectorlike theory. Indeed, the most extensively used versionavor-violating phase has been recently established in the
of lattice QCD namely, with Wilson fermions and Kogut- Nambu—Jona-Lasinio model using lafyemethodq 10] and
Susskind fermions, both explicitly violate chiral symmetry. also in a numerical simulations with finite number of colors
Nevertheless, it can be shown in lattice perturbation theoryN=2) [11]. In that case, the parity-flavor-breaking phase in
that the amount of violation is just right to obtain the correcta model with two flavors seems only to exist at strong and
anomaly in the continuum lim{2,6]. This is of course quite intermediate couplings.
comforting. However, to understand chiral symmetry on the Recently, there has been a line of seemingly unrelated
lattice at finite lattice spacin@vhere all the numerical simu- developments taking place concerning chiral symmetry fol-
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lowing the ideas of Kaplam12]. His approach amounts to cally through bosonizatioril5]. Taking lessons from the
the use of the surface modes of the vectorlike theory wittcontinuum and combining them with the existence of the
Wilson fermions in 2i+1 dimensions as a basis for the con- doublers and surface modes on the lattice, one naturally ar-
struction of (2)-dimensional chiral gauge theory on the lat- rives to the conclusion that the physics of the parity-violating
tice. (For review, se¢13] and references therejrDetailed  phase corresponds to tife- 7 case in the continuum. This is
Hamiltonian analysis of the surface modes of Wilson fermi-based on the considerations of the previous paragraph and
ons has been carried out[ih4], where it was also suggested the fact that in QED the # parameter has a direct physical
that the notion of surface modes might be useful for undermeaning as the background electric field. The phase dia-
standing the conventional Wilson formulation as well. In par-grams of Ref[3] represent the expected positions &f 7
ticular, one can think of the appearance of the surface modegansitions on the lattice that should be applicable at weak
as an underlying mechanism generating the parity-violatingoupling.
phase. The purpose of this paper is to investigate the issues of a
The nature of the argument is as follows. Consider theparity-violating phase in lattice QEDwith Wilson fermions
Hamiltonian for one flavor of free Wilson fermions in one in a direct lattice calculation. Compared to the wealth of
spatial dimension on a finite lattice with open boundaries: exact and approximate information accumulated over the
years on the continuum Schwinger moéliehe knowledge
T T we have on the lattice is rather modest. First of all, there are
Hw= K; iealiya= 08 =41yt 1 4] no exact solutions within any of the formulations where dou-
blers are removed. The model was mostly investigated with
- Kogut-Susskind fermions, testing various numerical methods
+MY g @ ; :
] y comparing the lattice results to the exactly known con-
tinuum quantities in the massless césee, e.9.[17]). How-
Here K,M,r are hopping parameter, mass, and the Wilsorever, very little is known about the theory in the Wilson
parameter, respectively; is a two component spinor living fermion formulation. The situation is particularly interesting
on sitej. If one increases the hopping paramdtarequiva- for a single flavor, because in that case the direct numerical
lently decreases the mags the supercritical values, so that simulation is not possible. This is due to the fact that for
certain gauge configurations the fermionic determinant is not
positive and therefore one does not have a probabilistic
weight for the purposes of Monte Carlo simulation. In a re-
cent work[18], Gausterer and Lang studied the Lee Yang
two levels start to behave differently from the rest of thezeros of the partition function on small lattices analytically
spectrum and appear bound to the ends of the Igtti¢e As  (at infinite coupling and numerically(at intermediate cou-
the sizeL of the system goes to infinity, the energy of theseplings). The system was also studied in REf9]. In case of
surface modes tends to zero. On a finite lattice the twdwo flavors, the direct numerical analysis is possible, but to
modes mix and acquire the energye-. Consider now the my knowledge, the systematic study of phase structure has
Dirac vacuum with all the negative energy levels filled. Thenot been carried out.
last filled level will either be the surface mode on the right or  In what follows, | will study the phase diagram of Hamil-
the one on the leftthus creating an asymmetric distribution tonian QED on the lattice with one and two degenerate fla-
of particles in the vacuum with an extra particle on one endvors of Wilson fermions in the Hartree-Fo¢KF) approxi-
Consequently, after turning on the1) gauge field, this will mation. | will work in the axial gauge, where the gauge
generate an electric field running through the vacuum. In onéegrees of freedom are easily eliminated in favor of fermi-
spatial dimension such a field cannot be canceled by a pa@nic fields, thus providing a convenient setup for the use of
production and we find that parity is not respected by the¢he HF approximation to the vacuum of the theory. The HF
vacuum of this theory. ground state, or the independent fermion ground state, is a
These ideas were further developed in a recent inspirativetate one might callby definition the mean field ground
review by Creut4 3]. He gives a comprehensive qualitative state for the theory of interacting, particle number conserving
picture of the phase structure using the surface modes scécharge conservingermions. It has a nice variational inter-
nario in both single and multiflavor case. The argument igpretation and can be regarded as a first term in a series of
based on the frequently used analogy between non-Abeliasystematic variational improvements. While belonging to the
gauge theories in four dimensions and electrodynamics istandard set of techniques used in many-body theory, HF
two dimensions[two-dimensional QED(QED,), massive methods are rarely invoked in the lattice gauge context.
Schwinger modél As is well known, QED exhibits some of Dealing with a mean-field-like approach int1 dimen-
the most intriguing features ascribed to QCD, namely consions, there is of course a danger that the result could be a
finement, chiral symmetry breaking and the existence of theerious distortion of the true picture, even on the qualitative
0 parameter. As such it represents a popular toy model folevel. On the other hand, it is known that the HF approxima-
QCD with the advantage that it can be analyzed semiclasstion can perform quite well in one spatial dimension. For
example, in QCD, the HF state is one possible representa-

<1, (2)

2Kr

'on a finite lattice | assume that some very small left-right
symmetry-breaking term is added to thk,, so that the left and 2The recent activity concentrated mostly on the multiflavor case.
right modes do not mix. See, e.g.[16].
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tion of the leading largeN approximation to the vacuum E'(x)=—Aj(x)=ey"(x)p(x)=ep(x), (5)
[20]. While this has a good rationale at lard it became

clear in recent years that the corresponding picture of barywhereE(x)E —Aj(x) is the electric field ang the charge
ons(represented as simple HF excitatipasd mesonsgrep- density. It can be solved by

resented as random phase excitations built on the HF solu-
tion) is surprisingly accurate aN=3 as well [21,22. | 1
therefore feel that it is not implausible that the HF approxi- Ag(X)=— > f dx’|x—x"|ep(x")+Bx+C. (6)
mation can give us some valuable hints about the phase

structure of lattice QEPtoo. As | will try to show in this
paper, if put together with surface modes considerations, th
resulting picture certainly offers a coherent way of thinking

The integration constar® is physically irrelevant and will
fe put to zero. The constaBt represents a uniform back-

. : ground field which can be also put to zero for my current
that might be used in attempts to go beyond the HF approx'['aurposes. Then the Hamiltonian of the theory for the zero

mation. . . . total charge takes the form
Investigating the phase diagram, | adopt the point of view,

taken in Ref[3], that it is quite natural to introduce the axial
mass term(the “Mg" term). More specifically, | will con- H:j dx

t/f(l71<?1+m)t//—zde’p(X)IX—X’Ip(X’) :
sider the generalized version of Hamiltonil), given by

)

HW5= Hw+ M52 i ys¢yj=Hw+Hs. 3 Upon quantizationy andH become operators in the cor-
J responding Hilbert space, with field operators subject to the
Indeed, one obtains such a term from the conventional mad@nonical anticommutation relations. In the standard treat-
term by a chiral rotation. The existence ofigarameter in ment, the local charge Tdensi.ty operator is replaced by its
the continuum theory can be thought of as being due to th8ormal ordered version): ¢ :, with the normal ordering usu-
fact that because of regularization, the theory with such &Iy performed with respect to the filled Dirac se# par-
rotated mass term is actually not equivalent to the originaficles, no antiparticlgs This effectively amounts to the com-
one and is thus anomalous. In this way, introduding es- pgnsathn of the infinite qharge, generated t_)y the sea. Since |
sentially means trading (being an independent parameter of vv_|II not introduce the antiparticle operators it is more conve-
the theory in favor of this new mass term. Consequently, | nient for my later purposes to define the charge density in
will consider the lattice theory in the space of three baresuch a way that the compensation is explicit:
arametersM, M, andg (gauge coupling in contrast to
'?hree conventionasll conti%ugm |gaarameptmsga, ande. POO=9 ()P —1. (8)
In Sec. Il, starting from the continuum theory in axial : L .
gauge, | will formulatge the lattice model with one%avor and To formulate th|_s theory on a Ia.tt|ce' is now straightfor-
discuss its discrete symmetries. The HF approximation igvard. It will be defined by the Hamiltonian
then described in Sec. Ill. | do this in some detail, stressing g2
the variational character of the method and the fact that all H=Hy. —— E paln—mlp,=Hw. +H,, (9)
the discrete symmetrieéncluding parity are preserved by s 4 am °
the approximation. The numerical solutions of the HF equa- ) ) ) ]
tions on finite lattices and their implications on the HF phaseVhereHy is the free part witH; defined in(3) and
diagram are discussed in Sec. IV. | try to make all the ob- :
served qualitative features of the vacuum plausible by trac- pn= nihn—1. (10
ing them to the elementary picture of interacting particles in o ) ) )
filled HF levels. The model with two flavors is then formu- The indicesn,m label the lattice sites running from 1 to
lated and analyzed in Secs. V and VI. Summary, togethefnd the Iatt|ce_ spacing has been set to unity. Fermionic vari-
with some generalizations and speculations, is given in Se@bles are subject to open boundary conditions and satisfy the
VII. Finally, the numerical procedure used to solve the HFCanonical anticommutation relations
equations is described in the Appendix. +
{0 m = SamBors (11

. ' . _ with o, 7 being the spinor indices. The electric field in this
The massive Schwinger model with one flavor of fermi-formulation is a derived quantity, defined through the lattice
ons is defined by the Lagrangian analog of Gauss' law5) by

Il. THE MODEL WITH ONE FLAVOR

P S e O Ipm M) mlg. (@)

4 1 . (12

j L
> o= 2 P
I=1 I=j+1

g
EJ:E

whereF ,,=d,A,—d,A,. ¥ is the two-component spinor

field, A, is the gauge field, anch,e the mass and dimension- HereE; is the operator of electric field on link (j+1).

ful coupling constant, respectively. | will consider the theory It is worth emphasizing at this point that similarly to the

in axial gauge(A;=0). continuum case, the lattice interacting theory possesses exact
The equation of motion foA, is the equation of con- discrete symmetries. Choosing the representatioproftri-

straint(Gauss’ lawy ces as
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0 1 0 1 — - -

. _
the operations o€,P,T in continuum(left column and on +eH[Lf,Lf). (18)

the lattice(right column are defined by the following trans-

formation properties of the field operators: Here|0f,0f), the “sea,” is the state with first levels filled:

FINEIS S t
Py(X)P~ =yod(—x), PyP ™ =roth 11, 07,01 =a13;...3[0). (19

|nf,n?> generically represents states with fermions re-

CY(x)C ™ =14 (x), Cy;Ct= YlleT : moved from the sea and put intoempty levelsn-fermion—
n-antifermion states Indexr enumerates these basis states
Ty(X)T 1= yo(x), T¢jT‘1= Yo - (14) at fi;(Ledn. Obviously, the dimension of the charge zero sector
is ().

HereC,P are unitary and antiunitary operators. The above  Apart from charge conservation, no other symmetries are

transformations indeed leave the corresponding continuur@SSumed to be respected by the vacuum. One usually restricts

and lattice Hamiltonians withottis (Ms=0) unchanged. the space of states further by going to subspace of zero mo-
Note thatHs is odd undeP,C and even undef. There- ~Mentum. However, momentum is not well defined on a lat-

fore CP andT are the exact symmetries of the theory at anyfice With open boundaries. Specification of 'Y complex _
Ms. This is different from the situation in four dimensions, coefficientsc in the above decomposition therefore consti-
whereH; is invariant undelC and changes sign unde;T tutes an exact representation of the vacuum. Requirement of

which in turn implies that botfP C and T are explicitly bro- ~ Minimal energy defines a variational problem for determina-
ken by nonzerdvis. tion of these coefficients. However, on a reasonably sized

lattice the number of variables in the problem becomes too
huge to be manageable.
The variational philosophy behind the HF approach is to

In solid state physics, the HFE approximation is frequenﬂy_regard the seb as a collection of.var|at|onr_:1I parameters
referred to as the “independent electron approximation” andnstéad. In particular, the method aims at adjusting the one-
this probably captures its essence best. Indeed, the main id@article basis in such a way that while retaining only the first
is to approximate a given state of the fermionic many-bodyterm in decomposition(18), the lowest energy state is
system by a Slater determinant of some set of one-particldchieved. Note that in this way, the variational problem in-
states. This is usually applied to approximate the unknowrYolving 2(i") real variables is replaced by one involving
vacuum of the theory, which is also my main interest here. Ir3L” real variables. Moreover, fixing$S by the Hartree-Fock
that case the method boils down to finding a set of onePrescription transforms the decompositit#8) into a well
particle states with the Slater determinant of minimal energydefined variational improvement scheme. Indeed, employing

Let me therefore start to investigate the vacuum of thdhe HF basis one expects the stdtetnf) to play increas-
one-flavor lattice Schwinger model by considering an arbiJngly less important roles in the true vacuum with increasing
trary (but fixed complete orthonormal set of one-particle N- This is expected to be true regardless of the value of the

Ill. HARTREE-FOCK APPROXIMATION

fermionic states on a lattice &f sites: gauge coupling. S _
Having defined the HF approximation it is now a straight-
S={¢%a=1,2,...,2}. (15) forward matter to transform the problem into the familiar

manageable form. Using the field decompositidT) one

Every state¢® is a collection of two-component spinors, C&n rewrite the free part of the Hamiltonié®) as

residing on siten:
Hug=2 iKomiin=3) 8l 7% ag, (20
n

a,l
¢={¢nIn=1.2,...L}, ¢n5< a,z)- (16)

n where

One can build the fermionic many-body Fock space out of . ;
these states in a standard way and define the complete set of TP=2 Ky,
fermionic annihilation operators by nm

Knm:K[gn,m-%—l'}’O(iYl_r)_5n+l,m70(i71+r)]
=, a,d’. 1 .
=2 a.d; (17 + S Mo +iMsyy]. 21

@

With definition (10) of the local charge operator, restric-
tion to th? charge zero sector translates into the. requirementcounting here includes the fact that only the filled levels repre-
of half-filling. In other words, only states with particles are  sent the true variational variables since only they contribute to the
allowed. An arbitrary statéy) from this subspace can be total energy. One also has to take into account the orthonormality
written in the form constraints.
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The interaction term becomes a little more complicated and Due to the self-consistent feature of the above HF equa-
has three parts: tions, finding an exact solution is a nontrivial task and | have

not succeeded in doing that. On the other hand, there is a

2 atal yeBrog a sjmple way to attempt to solye thgse equa_ations on finite Iqt—
LA veo tices numerically, namely by iteration. Straightforward appli-
(22)  cation of the iterative procedure however doesn't converge to
the self-consistent solution. The nature of the problems is

g

2
v 9 Ty

where similar to those described in R¢R2] in the context of con-
tinuum QCD in the largeN limit. | discuss these technical

b= ¢ﬁT|n_m|¢ﬁ, issues in the Appendix. Using a modified approach, numeri-

nm cal solutions can be iteratively found in wide range of cou-

pling constants.
Let me close this section with a few remarks concerning

yaByd _ at _ Bt 16 . R . .
B —% én' drIn—m| Ll dp, (23 symmetry within the HF approximation. It is usually helpful
and desirable that the approximation scheme retains as much
and #, is an unimportant constasf, = — (g%/4)3 ,,/Jn—m|.  symmetry of the approximated system as possible. Espe-

Note that loosely speaking, the constant term corresponds ally if the main purpose of the investigation is spontaneous
the self-interaction of the Dirac sea-compensating charge, theymmetry breaking. In particular, as discussed in the previ-
quadratic term arises due to the interaction of this charg®us section, iMs=0, the Hamiltoniar(9) is invariant under

with the system, and the quartic term represents the intera@arity. Is the parity invariance present in the approximation?

tions of the system itself. In what sense?
The mean energy in the Slater determin@® is a func- The underlying dynamics driving the HF approximation is
tion of the setS and is given by entirely embodied in the HF equations. Therefore, the sym-
metries of these equations should also determine the symme-

g2 tries of the approximation. It follows from transformation
T+ ?‘/]/W properties(14) that under the operation of parity the one-
particle wave functiony, transforms intoygx, +1_n. Since

L
A9=5+ 2
a=1

92 L the HF Hamiltonian implicitly depends on its eigenstates, the
+ = D [LmeBBa—_yeBeB), (24)  parity operation in this case has to involve the wholeSsé
4 ap=1 fact, it can be checked quite easily that the operation

The Hartree-Fock set of stat&®'™ is now determined by
minimizing £(S) with variables¢y subject to the orthonor- SHF={p - PSF={yp% }, €*—e* (28)
mality constraints. Standard manipulations then reveal that
this variational problem can be solved by subjecting the one-
particle wave functions to the HF equations of the form s a symmetry of the HF equations. In other wordsSf is
a self-consistent set solvin@5), then PS™F is also a self-
E Hnmqﬁ%: oL, (25) consistent set with corresponding one-particle energies
m equal.
Let me also mention that not just parity but all the discrete

with symmetries discussed in the previous section are preserved

) by the HF approximation in the above sense. Of course, per-

" 9 D E forming the symmetry operation on the HF vacuum can lead
= + = + . . , , )

Ham=Knm 2 [Vam* Vol (26) to a Slater determinant involving a different self-consistent

set, thus opening the possibility of spontaneous symmetry

and breaking.
L
b _ —ill 1— BT 4B
Vim 5””‘; |n J|( 1 /321 d)l d)l )’ IV. NUMERICAL ANALYSIS (ONE FLAVOR)
L In this section, | will discuss the results of the HF analysis
E _ Bl 8t for the model with one flavor. | will concentrate on the phase
Vim /321 dnIn—m| oy’ (27) diagram in thevl —g? plane. To observe the parity-violating

. effects on a finite lattice, | fixM5 to a very small value
The “tilde” in H,,, serves to denote the fact that these are(Ms=10"") throughout this section. The values of hopping
not the one-particle matrix elements of Hamiltoni@. As  parametefK=1) and Wilson parametefr =0.5 are set in
expected, the HF equations take the form of a one-particlsuch a way that the critical value & at zero coupling is
Hamiltonian eigenstate problem with the complication thatM .(0)=1. All quantities are given in the lattice units. More-
the Hamiltonian matrix depends on the eigenstates themnver, the electric field is always measured in unitggofn
selves. Thus the equations have to be solved selfparticular, this expectation is calculated using form{ia)
consistently. As usual, the self-consistent potential has direatith operators of charge density replaced by their expecta-
and exchange parts. tion values in the HF vacuum,
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Electric Field vs Fermion Mass 07 Electric Field vs Position
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_ FIG. 1. Vacuum expectation_ value of t_he electric field in the One Particle Energies vs Position
middle of the system as a function of fermion mass. r r r T T T
g2=0.1 M=024 <
L 3L L=32 M=104 +
HF _ t
(p)= 2 ¢nT -1, (29 . e
a=1 2L o 0% ]
1o O° & °
0 9° ¢
and the factor of removed. %gw"‘} ¥
To assess the accuracy of the self-consistent numerical r . o M o |
solution and to provide the criterion for terminating the it- 3z o +
erative procedure, | have computed 2 ol * .
+ ° °
< * &
S = 2 |¢a(k+l)_ ¢a(k)| (30) q bk z o &° J
‘ n n 7 06,‘6
a, . o; 60
& <
. . . 2t & _
at each iterative stef Here¢ 2 e S0, the one-particle set 0o °° é‘
after k iterations(see Appendix Obviously, =0 only for e
the self-consistent set. In all cases discussed in this section S 7
S has been accepted as a numerical solution only if - - - - : -
0 5 10 15 20 25 30

89<1072 In most cases, however, this number has been
much smaller(up to four orders of magnitude at weak cou-
plings). With the above bound, the physical characteristics of
the HF Slater determinarfsuch as energy became essen-
tially insensitive to further decrease &f To achieve this
accuracy on the lattices | have studidd=32,40,48 took
typically a few tens of iterations at weak couplingg=<0.5)
and a couple of hundreds at intermediate and strong couapid transition. This suggests the existence of a parity-
plings (g>>0.5). Working in the vicinity of the phase transi- violating phase transition and confirms the qualitative picture
tion typically added roughly one order of magnitude to thepresented in Ref.14] at the Hartree-Fock level.
number of iterations. In the region of couplings studied here The spatial dependence of the electric field across the lat-
(g?<3), the self-consistent solution has always been straighttice is plotted in Fig. 2a) for typical cases in the broken and
forwardly found with free wave functions at givésh used as  symmetric phases. Note that in the broken phase, the field
a starting point for the iteration. nicely settles to a uniform bulk value essentially across the
The representative example of the most relevant finding invhole lattice. In the symmetric example, the field is almost
this study is displayed in Fig. 1. The vacuum expectatiorzero everywhere. It is quite interesting to see the spatial dis-
value of the electric field in the middle of the 32-site lattice tribution of Hartree-Fock levels in these two situations. This
is plotted as a function of the fermion mass at weak couplings shown in Fig. 2b) where | plot the energy of these levels
(g%=0.1). Note that for large values d¥l, the electric field against the mean position of particles in them. In the sym-
tends to zero as one would expect in the parity-invarianimetric case, all the particles reside on average in the middle
theory. However, at small fermion masses the field acquiresf the lattice and the left-right symmetry is preserved up to
an expectation value and the two regions are separated bysaall explicit violations caused by the presence of the small

FIG. 2. (a) Spatial dependence of the electric field in symmetric
(M=1.04 and brokenM =0.24) phases(b) Spatial distribution of
the corresponding HF levels.
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limit. The left vertical line represents! () quoted in[18] for the 04} 4
model in standard Lagrangian formulation.
M5 term. The filled levels produce a uniform charge distri- 03 | ]
bution neutralized by the compensating charge. This is to beg ’
compared to the situation in the broken phase, where thes
left-right symmetry is completely lost. Indeed, it is energeti- ‘f_u o2l ° o |
cally favorable for the levels to spread out asymmetrically. % ) 0000060000006600060000060069
Filling the sea generates the surface charge and an electric o o
field. o | i
Similar behavior is observed also at higher values of the )
gauge coupling. The resulting positions of phase transitions
observed on the lattice with 48 sites are plotted in Fig. 3. The
. . . . . R e ke a2t R T s o ME AP AT YO NNV S
transition points here are determined simply as the locations
of the rapid rise of the vacuum expectation value of the elec- ! L : 1 - L

tric field at fixed coupling. In particular, the phase transition 0 5 15 200 2% 30
is assumed to happen at the fermion mb&gg?), where (b)
this expectation value rises above #0i.e., above the value
one order of magnitude larger than the size of the parity- F|G. 4. (a) Electric field and axial charge density against the
violating M5 term. By comparing to the results on smaller fermion mass. Transitions seem to occur simultaneo(siyspatial
lattices (L=32,40 | expect the critical masses at nonzero dependence of axial density in symmetfd=1.04 and broken
couplings to be increased by a few parts per hundred in theM =0.24 phases.
infinite volume limit.

For the model in the standard Euclidean formulation,

. expectation value simultaneously as expected. Typical spatial
Gausterer and Lanfd 8] concluded the existence of a phase P y b yp P

transition at infinite coupling. After appropriate rescaling of dependence of the axial charge density in the broken and

the parameters of their model, the quoted position of thi$YMMetric phases is plotted in Fig(b4 showing the bulk
transition isM .(-)=0.32. Although | do not know of ang  nature of the order parameter. _
priori reason why the phase transition should occur at the 1Ne relative size of the electric field and the axial charge
same place in both formulations, it is interesting to observél€nsity in the broken phase varies with gauge coupling. This
that their result is an acceptable asymptotic value at strontf demonstrated in Fig. 5 where | plot these expectation val-
coupling here too. ues at fixed fermion mass. Note that while the electric field
Similarly to the electric field, the simplest local fermionic Starts up finite at weak coupling and decreases monotonically
parity-odd operator, namely axial charge denbitysy, also ~ at intermediate and strong couplings, axial charge density
acquires an expectation value at the parity-violating phaséehaves in a complementary way. It approaches zero with
transition. This is illustrated in Fig.(4) where | plot both the vanishing coupling and rises as the coupling increases.
electric field and the axial charge density as a function of The above behavior of electric field is simply a manifes-
fermion mass ag?>=1.0. Both operators appear to acquire antation of charge shielding, an effect well known to be present
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FIG. 5. Expectation values of electric field and axial charge
density in broken phase. Relative size of the condensates varies FIG. 6. Spatial distribution of the HF levels in broken phase at
with gauge coupling. g?=1.5. Filled levels are marked by the diamonds and empty ones
by the crosses.
in the continuum theory as well. Indeed, consider first the

free theory. In that case it is just the filled surface mode tha{

is responsible for the parity-breaking effects. That is why the_he pla_“W'Vll? lst'ng pf;]asehtransmorfl_ I::jt|hke HF apprr:mma-
electric field approaches value 0B=m) when coupling ton- Itis well known that the mean-field-like approaches are

tends to zero. However, once the gauge coupling is turneljeauently _misleading about the order of the phase transitio_n
on, the rest of the levels spread dsee Fig. 20)] and the fand the. critical exponent;. Th.erefore, whllg | assume t_h_at it
accumulation of surface charge is a result of the collectivdS Plausible for HF approximation to recognize the transition,
action of all self-consistently interacting particles in filled the information it gives about the order should be taken with
states. The net effect of this phenomenon is a screening ¢ROre care.
the surface charge. As the value of the gauge coupling in- | have calculated the connected correlation functions
creases, while remaining in the broken phase, one expecfer electric field and axial charge density in the HF vacua.
the levels to spread out and screen even more since the syfser the case of electric field, these functions have a very
tem wants to reduce the positive attraction energy of thenice exponential decay in all cases | have studied and the
surface charges. For examplegdt=1.5, the spatial distribu- corresponding correlation lengths could be reliably deter-
tion of HF levels is shown in Fig. 6. At strictly strong cou- mined. Typical behavior of the inverse correlation length
pling, when the interaction term absolutely dominates, everymass gapacross the phase transition is shown in Fi@).7
particle in the sea will live bound to just one site of the |n the symmetric phase, the correlators of the axial charge
lattice, thus eliminating the surface charge completelypehave in the same way. However, in the broken phase they
Therefore, the field is expected to vanish in this limit in theshow some differences as can be observed from . 7
HF approximation. ] ) . For weak couplings, the determination of the correlation
In the light of the above considerations, behavior of thejengih from these axial charge correlators in the broken

?x(;al gha_rge density in F'?.' S Eecom_es aITo_qw_te r:laturalphase was less accurate than from the electric ones. Using
hdeed, since at zero coupling the parity violation IS a CONthe electric field correlation functions, Fig(bj shows the

qentrated on the ends, it will not pe _reflected in the expectamass gap along the line of phase transitions on a lattice of 48
tion value of the local operator inside the system. Conse-. L

) . . sites. These results are reasonably finite-size staidee so
quently, one expects the bulk axial density to vanish. At

strong coupling, however, parity violation is equally contrib- at stronger couplingsand I exclude the possibility of mass

uted by all the filled levels and the axial density acquires arpaP reducmg to zero n th? infinite volume I|m_|t_. I cpnclude
expectation value. that in the HF approximation the phase transition is of first

An interesting feature already present in the examples ofrder at finiteg, approaching a second order endpoint at zero
Fig. 2, but quite striking in Fig. 6, is that because of the®CUPIing.
interaction energy, it is not necessarily the lowest one-
particle states that are filled to form the HF vacuum. Indeed,

in Fig. 6 almost half of the filled level¢denoted by dia- V. TWO FLAVORS
monds are those with positive one-particle energies. This is
discussed in more detail in the Appendix. Turning now to the case of two degenerate fermion fla-

Finally, let me close this section by discussing the order ofvors, | will consider the lattice Hamiltonian
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Here f,h are flavor indices assuming two valuds,, is

defined in(21), and

The fermionic operators'/L are subject to the canonical an-

f it f
Pn= nT‘pn_ 1.

ticommutation relations.
Note that with flavors being degenerate, the parametethose for one flavor. The crucial difference however is that
space of this two-flavor theory is the same as for a singlepy is now a four-component object atl a 4L X 4L com-

flavor, namelyM,M5,g. Also, similarly to the one-flavor

case, the above lattice model retains all the discrete symme-
tries of the corresponding continuum theory. In addition, the
two-flavor model is invariant under unitary transformations
in flavor space. All of these symmetries will be preserved by
the Hartree-Fock approximation in the sense discussed in
Sec. lll.

Inclusion of the flavor index does not require any concep-
tual changes in the application of the Hartree-Fock proce-
dure. On the technical side, it is easiest to skip the explicit
use of flavor notation and assemble the two fermionic opera-

1
tors on siten into a four-component columr,zknz(zg). The
n
Hamiltonian then takes the form

2

H=S URuti— o > peln=mlpn, (33
< <
with
e Y
and
Pn= Ui —2. (35

Note that to compensate for the charge of the Dirac sea now
requires two units of charge per site.
Using the above notation and the decomposition

4L

U= E aa¢ﬁa

a=1

(36)

the derivation of the HF equations is a line by line repetition

of the procedure for the one-flavor case up to the factors of 2
coming from the doubling of the compensating charge. In-

deed, the HF equations take the form

> Anmdbin= €4, (37)
with
- g2
Hom=Kpmt 7 [Vr?m+VrEm] (38
and
2L
Vr?m: é\nm; In—jl ( 2_;1 ¢38T¢]8) )
2L
Vin= 2 dhin—m|gh'. (39

p=1

Note that these equations are formally almost identical to

plex matrix.
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VI. NUMERICAL ANALYSIS (TWO FLAVORS)

| will start with the discussion of the phase structure in the
M-Mj plane at fixed gauge coupling. Before turning to the 1t
results of the HF analysis, let me first briefly explain what
one would expect to be happening here at weak coupling
based on the surface mode picture. To do that, | will need to 05
borrow the ideas of Ref3], and to make this paper reason-
ably self-contained, to review briefly the part that is relevant
here. Thinking first in_the continuum context, consider the £ 0
standard mass termmiy and its transformation under the
chiral rotationy— e'?27sy. We have

ml/_u//—>m cog 0)124//+m sin( B)i zZysz//. (40

Therefore, the chiral rotation by angtecorresponds to the iy T

rotation of the vecto(m,0) in the m-mg plane around the

origin (“chiral point”) by the same angl@. While naively - : :

expecting that the physics should be the same after the above -5 1 05

change of variables, this is actually not the case because of @

the chiral anomaly. What we are actually getting is a physics

with different “gauge” # parameters, i.e., with different

background electric field, realized for example through the ' ' ' i i

existence of the surface charges. With this identification, the

above transformation prescription gives the approximate re- 1t .

lation (the renormalization effects, for example, will shift the

chiral point to negativen) between the theory considered in

the parameter spacés,m,6) and (e,m,ms). 0.5 .
On a lattice with Wilson fermions, the situation is a little

more complicated, because except frvh, ,0), there is an-

other chiral point in theM-Mg plane, namely(—M.,0), g 0

where the doubler goes massless. The conjecture then is that

here the totab parameter gets two contributions, each being

the angle with respect to the two chiral points, with doubler’s 0.5

contribution taken with the reversed sign. These angles are

sketched in Fig. &). N; degenerate flavors will contribute

equally to the total value of and consequently, one expects

the following approximate relation to hold at weak coupling:

0.5 1 1.5

go

0=N¢(60p— 0y). (41) ) -1 -0.5 |8| 0.5

e

Here 6, , 604 are the contributions of the particle and the dou- g g (a) Assignments of the angles,(p) and 64(d) of Eq.

bler, respectively. In other words, on a lattice with open(41) to a general poins in the M-Ms plane.(b) Expected phase

boundaries, the system is expected to generate surfag@gram for two flavors at weak coupling based on the surface
charges in such a way that the resulting electric field willmode picture of Ref[3].

approximately correspond @ given by the above relation.

If this qualitative picture is correct, there should be phasecircle with center at the origin and radidd.. Including a
transitions occurring in theM-Mg plane at the positions small flavor breaking in bottM and Mg to visualize the
where 6 reachesr. Indeed, for6>r, it will be energetically  chiral endpoints, the phase diagram is expected to look quali-
favorable to create a fermion-antifermion pair thus reducingatively as sketched in Fig.(8) [3]. Note that contrary to the
the magnitude of the electric field and switching its sign.single flavor case, the prediction of this phase structure in the
Consequently,d should jump fromw to —m across these M-Mg plane is quite nontrivial.
phase transitions. The conditiés 7 defines a line ilM-Mg Guided by this simple picture at weak coupling, | set out
plane, but its qualitative behavior strongly depends on theo look for these phase transitions in the Hartree-Fock ap-
number of flavors. With single flavor, the only solution is a proximation. For numerical work, | again fixed the values of
straight line, connecting, and —M_. This can be under- the hopping parametdK =1) and the Wilson parameter
stood already from the point of view of the “naive” surface =0.5), so that the critical value oM at zero coupling is
mode picture as | presented in the Introduction. IndeedM (0)=1. Also, | have always included a very small explicit
switching the sign of a small parity-violatingM " term flavor breaking in botitM andMs. In particular, the masses
causes the two surface modes to exchange the ends of tbé flavors were of the formM +0.001 andM;+0.001. The
lattice, thus switching the sign of the surface charges and thself-consistent solutions were again obtained by the modified
electric field. For two flavors, the conditiof= defines a iteration procedure as described in the Appendix. For all re-
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(a) M
. KL=4O . M|5=0‘01| Ig*g=0.l1 : FIG. 10. Phase diagrams of the two-flavor model in ftheM 5
0.025 | . ] plane atg?=0.1 andg®=1.2 on a lattice with 32 sites. The points
) represent the positions where electric field in the Hartree-Fock
0.02 I ° i vacuum changes its sign.
i
0.015 - ° . I tions, which are naturally first order, end in a second order
0.01 | o chiral endpoint in this plane. The analysis of the electric field
A ° correlators suggests, however, that in the HF approximation,
w 0.005 } . these transitions at finite coupling are first order even close
v to theM-g? plane. It should be stressed again, however, that
0r T this might well be an artifact of the approximation.
Defining the transition point as the position in thle Mg
-0.005 . . , o .
, plane where the field switches its sign, | plot the phase dia-
001 ke o, | grams forg?=0.1 andg?=1.2 on a lattice with 32 sites in
MR R o Fig. 10. In fact, only the points in the upper right quadrant
-0.015 | ° o, 4 were really calculated. The rest of them were obtained using
- ! ! - . - : : symmetry with respect to the mass reflections. Note that
05 06 07 08 M0-9 111 12 while not exactly of circular shape, the transition lines reflect
(o) the expected qualitative features deduced from the surface

mode picture. Also, ay?=0.1, non-negligible finite-size ef-
FIG. 9. (@ Electric field vs Ms in the two-flavor model at  fects are present here. While the transition point alongvthe
g°=0.1 andM =0 on a lattice with 40 sitegb) Electric field along  axis is essentially stable against the increase of the lattice
the M axis in the same situation. size, the transitions along tHd axis occur atMs=0.36,
0.42, 0.48 on the lattices with 32, 40, and 48 sites, respec-
sults presented here the accuracy of the solution, given bively. Thus it is quite possible that the ellipselike shape of
Eq. (30), was better than IG and typically about 10°. To  the transition line will become more circlelike in the infinite
achieve this accuracy in the immediate vicinity of the phasevolume limit.
transition on a lattice of 40 sites took less thart itérations Let me now turn to the question of Aoki’'s phase in the
at strongest coupling studied heig?=6). M-g? plane. First note that the surface mode picture does not
The graphs in Figs.(® and 9b) illustrate how the above suggest that parity-flavor-broken phase should exist here at
qualitative ideas are reflected in the Hartree-Fock approxiweak coupling. Indeed, as one turns off kg and moves
mation. In Fig. 9a) | plot the vacuum expectation value of along theM axis, the angl® defined by(41) is always zero.
the electric field along th&; axis (M =0) at g°=0.1 on a  Both flavors will generate their surface mode Msis low-
lattice with 40 sites. Note that the HF vacuum nicely exhibitsered belowM,, thus changingd by 27 and physically
the expected abrupt change in the electric field and the reshanging nothing. A good way to picture this is by looking at
versal of its sign. Probing the field along thé axis (with  Fig. 8b): however small the flavor breaking is, if one
small M5 present gives the dependence plotted in Figh®  moves close enough to thé axis, it is always possible to
While behaving in qualitatively the same way, the magnitudepass below the chiral point.
of the field is becoming small as one approacheshthg? Discussion of these issues in two dimensions might ap-
plane. This is what one would expect if thege = transi-  pear a little academic since because of the Mermin-Wagner
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theorem[23], one would not expect flavor to be spontane-
ously broken here any coupling. Nevertheless, if the sur-
face mode picture is of relevance to QCD in four dimen-
sions, then this qualitative prediction would not change.
Moreover, | consider the following to be good reasons to _
investigate these issues in the context of the Schwinger €
model itself: (1) the lattice model, defined b§83), is non-
local, and as such does not exactly satisfy the usual assump-
tions of the theorem(2) parity can still be broken; an¢B)
flavor could be erroneously broken within the HF approxi-
mation. Then, although not useful as an information about
the lattice Schwinger model, it can serve as a toy picture of
what might be happening in QCD where there is quite con-
vincing evidence that parity flavor is broken at strong enough
coupling.

With_that in mind, | have calculated the expectation val-
ues of yysmp and yys1ly in the HF vacua. Heres is the
third Pauli matrix ad 1 a unit matrix in flavor space. Note
that the form of flavor breaking iM 5 used here chooses the
73 direction if flavor is broken. Note also that M ;=0 and
(Yysmh)#0, it is both parity and flavor that are spontane-
ously broken. On the other hand, if this expectation is non-
zero at nonzerd/ s, the parity is broken explicitly while the
flavor spontaneously. Furthermore, if 81;=0 we had
(pyslyy#0 and (Yysm3)=0, it would indicate that only
parity has been spontaneously broken.

The results of the HF analysis iM-g? plane (with
Mgs=10"2) on the lattices with up to 40 sites are as follows.
| have found no evidence afys1y acquiring an expectation
value in the region of couplingg’<6. Consequently, there is
no indication of parity being broken alone. However, there
are regions whergyysm) is nonzero in the Hartree-Fock
approximation on the finite lattice. For example, in Fig(al
| plot this expectation as a function of fermion mass at
g®=1.2. The broken region appears as a narrow peak adja-
cent from the left to the #=="* transition point on this
lattice of 40 sites. | have observed similar peakg%t0.1
andg?=4.0 with heights roughly 0.08 and 0.70, respectively.
For the two weaker of the above couplings, | have also per- (b)
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formed a finite-size analysis of the width of this broken re- _

gion. This width decreases linearly withL1/exhibiting a FIG. 11. (a) Expectation value ofyysmsy at g°=1.2 and

small negative intercept in both cases. On the other hand, tHds=0.01 on a lattice with 40 sitesb) The same expectation at

heights of the peaks stay constant as the lattice size ir8"=6.0 on a lattice with 32 sites.

creases. | therefore conclude that these narrow regions will

not survive in the HF phase diagram in the infinite volumeis also worth mentioning tha(hpy5r3¢>¢0 in the whole in-

limit. The only remnant of them will probably be the singular side region of the ¥=="line at this strong coupling and not

behavior of the parity-flavor order parameter at the="7" only in the M-g? plane. This is in contrast to the case of

transition point. narrow broken regions at weaker couplings which can only
The situation qualitatively changes at even stronger coube observed close tdl-g? plane on a finite lattice.

plings. In particular, the parity-flavor-broken phase indeed This concludes the review of the most important aspects

opens up at the subcritical fermion masses. This is demoref the numerical information obtained in this study. In the

strated in Fig. 1(b), where | show the behavior of the order last section, | will turn to generalizations and speculations.

parameter ag?=6.0 on a lattice with 32 sites. There has

been a negligible change here as the lattice size increased to

L =40. | therefore expect the finite-size effects to be small. It ViI. SUMMARY, GENERALIZATIONS,

AND SPECULATIONS

The Schwinger model on a lattice with Wilson fermions
“Note that I loosely refer to a transition, where electric field has been studied in the Hartree-Fock approximation. The
switches the sign as theg=7" transition even at strong coupling. main focus was given to the global structure of phase dia-
This should not be taken too literally neither here, nor in whatgrams with one and two degenerate flavors of fermions. In
follows. future communication, | plan to report on the study of the
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and is an increasing function in the vicinity of this point.
Herea is the lattice spacing. Denoting hiy(a) the dimen-
sionless mass gap along the line of phase transitions, the
physical mass of the lightest particle in the theory is given by
A(a)/a. Since chiral symmetry is broken in the continuum
and the lowest mass is nonzere/ (/;), the above ratio
should approach the constant positive valua-as). Conse-
quently, similarly tog(a), A(a) should also vanish a&=0
and increase in the vicinity of this point. Puting the above
two conclusions togetheA(g) must have this local property
as well. In particular, it is zero aj=0, but increases ag
becomes finite. Hence, if the conventional picture about chi-
ral continuum limit is correct, the transitions should become
first order as the gauge coupling is turned on.

In the light of the above considerations, it is not entirely
obvious that the HF approximation is giving an incorrect
answer herdwhich it of course well can One possible so-
lution is that what is depicted in Fig. 12 is not all that hap-

£ Pens in the model. In particular, there could be another sheet

FIG. 12. The concluded qualitative behavior of the full H . o . 2
phase diagram for the one-flavor Schwinger model on the lattic®f first order phase transitions going off the-g~ plane and

with Wilson fermions. Parity is spontaneously broken in the blackCrossing this plane &¥l;(g?). If that was the case, then the
sheet, embedded in thé-g? plane. second order ends 8 .(g?) would not appear to be neces-

sary. However, | have not found the evidence that would
continuum limit in this framework. The surface mode picture SUPPOTt this scenario in the HF approximation. In summary,
[3,14] served as a reliable guide in these investigations &€ order of parity-violating phase transition is a very inter-
weak coupling. The nonperturbative nature of HF approxi-€sting issue by itself. However, it can only be satisfactorily
mation, however, allows one to study the model at intermesettled by accurate calculation beyond the HF approxima-
diate and strong couplings as well. tion.

For the case of a single flavor, | plot in Fig. 12 the quali-  Similarly to the one-flavor case, there is a surface of
tative behavior of the concluded full phase diagram of the=7" transitions also in the model with two flavors. It takes a
model in the Hartree-Fock approximation. There is a planamore complicated shape however and its qualitative behavior
region, embedded in th#-g? plane, where parity is spon- in the HF approximation is depicted in Fig. (B8 The
taneously broken. From the point of view of the surface“tube” of phase transitions encloses tlpg axis as the ex-
mode picture, it can be understood as the surfacegef#” plicit flavor breaking is taken to zero and touches Kheg?
transitions. Entering the region from ti\é direction is ac- plane atM(g?). Since the electric field generated by the
companied by the appearance of the surface charges and tharface charges switches the sign, the transitions across the
background electric fiel* 6=0—6=+="). Crossing the re- surface of the “tube” are naturally first order. In the HF
gion in theM g direction corresponds to reversing the sign of approximation, this is so even when approacHing(g?) at
the electric field“ 6=7—6=—="). In accordance with Ao- finite coupling. The transition close #d.(g?) becomes sec-
ki's scenario i ysy acquires an expectation value in the bro- ond order in HF approximation only @s—0. Note also that
ken region. Taking into account the infinite-coupling result ofcontrary to the single-flavor case, the possible continuous
[18], | expect the parity-violating phase to extend all the waynature of the phase transitions alovg(g?) would not be in
to g°—oo. conflict with the above argument concerning the chiral con-

While the “6=m< 6=—7" transitions are naturally first tinuum limit. This is because in the two-flavor case, the non-
order, there is a strong evidence that the parity-violatingsinglet part of the flavored chiral symmetry is not anomalous
phase transitions itM-g? plane are also first order in the and there is a massless parti¢tot a Goldstone bosorin
Hartree-Fock approximation at nonzegoThis seems quite the continuum theory24].
unnatural since one would have the first order ends at the The crucial difference between Figs. 12 andal3s that
boundaries of the parity-violating region. On the other handwith two flavors, it is onlyM(g?) that is shared by the
if one thinks conventionally about taking the chiral con- M-g? plane and the surface of¢=#" transitions. If the
tinuum limit, the first order transition looks quite appropri- identification of the ‘Mg” physics on the lattice and theé”
ate. There are two parts to the conventional wisdom aboythysics in the continuum is correct at weak coupling, noth-
taking this limit, which is usually thought about in analogy to ing special should happen upon crossivMg(g?) with re-
QCD in four dimensions. First, since the gauge couplingspect to parity, and it indeed does not. At strong coupling,
constant is dimensionfuinverse lengthin two dimensions, however, the above scenario might well break. This is nicely
it is assumed that the continuum limit can only be taken abbserved in the HF approximation. In particular, the numeri-
vanishingg (the dimensionless lattice couplingecond, the cal evidence suggests the existence of rather strong coupling
chiral limit is assumed to be taken by following the line of g5 (4<g2<6), so that forg>gs, the expectation value of
phase transitionM .(g?) towardsg=0. The immediate con- s is nonzero inside the “tube” of Fig. 18). Conse-
sequence of these assumptions is ti{@) vanishes aa=0  quently, parity flavor is broken ivi-g? plane at subcritical
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There would still be a Iinecc(gz), running up from the QCD
fixed point,_on which a transition it/ could be observed.
However, (¢ ys734) would remain zero.

N
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APPENDIX

In this Appendix | will briefly describe a technical detail
on the numerical procedure used to solve the HF equations
(37). The standard way to proceed is to iteratively gen-
erate the sequence of sets of one particle states
{8 s s 1 so thats** 1 is the eigenset oH®.

Bp Here H™ is the HF Hamiltonian with direct and exchange
potentials determined from wave functions $f. With a
reasonable choice of the initial set the sequence frequently
92 sp - SP converges well to the self-consistent Sgt.

- o Note, however, that there is certain ambiguity in the pro-
cedure that might cause a problem. It arises because of the
fact that the energy of the HF vacuum is not just a sum of the
sSp one particle energies of the filled levels. Indeed, at nonzero
coupling there is an interaction part contributing to the total
energy and it may well be that the filled levels are not those
from S with lowest one-particle energies. If that is the case

-M;(o) 0 Mlc(o) and the iteration proceeds by filling the lowest levels at each
(b) M step, the procedure can never converge to a self-consistent
set.

FIG. 13. (a) The concluded qualitative shape of the surface of This bad looking flaw can however be quite easily recti-
“ 9= transitions for the model with two flavors(b) The HF  fied [22]. Instead of the original HF problerf(24), (37)]
phase diagram of this model M-g? plane. Parity flavor is spon- consider the one with the two body potential shifted by a
taneously broken in the “BP” region. constant: I.e.,

[n—m|—|n—m|+C. (A1)

masses and strong couplings. | conclude the qualitative H
phase diagram in this plane as depicted in FigbL3The
full lines in this phase diagram represevt,(g?) and they
are also characterized by the fact that)) exhibits a jump as
they are crossed. Parity-flavor, however, is only broken in th
“BP” (broken phaseregion, bounded from below by the

Bne naturally expects that a resulting HF vacuum will not be
physically different from that of the original problem. In-
deed, it can be easily checked that both problems share their
solutions. However, the vacuum energy and also the one par-
ficle energies will change. In particular,

dashed line. g2
The above results indicate that Aoki's scenario is not re- E—E+CL i
alized in the two-flavor Schwinger model at the HF level. It
is quite feasible that this is the case for QCD in four dimen- 2
sions as wel[25,26. Although the analogy between QED €+ C g_, «a filled:;
and QCOD) should certainly not be taken too seriougispe- e“— 2 (A2)
cially in case of an approximationl believe that the phase €, a empty.

diagram of Fig. 18&) indeed represents a possible toy pic-

ture of what might be happening in the latter case. In par- Note that it is only the filled levels that get shifted in
ticular, that the parity-flavor-broken phase shrinks to zercenergy, not the empty ones. Therefore by choogintp be
width before entering the vicinity of the continuum limit. negative and sufficiently large one can always make the
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filled levels to be those with lowest one-particle energies.

The HF problem with suc can then in principle be solved

by standard iteration as described above. If the solution isalue has been set. In general, larger values were needed for

found, it is also the HF vacuum of the original problem.

IVAN HORVA TH
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In an actual computation, the constahtwas chosen by
trial and error. If the iteration failed for a give@, a larger

larger values ofy, as one would expect.
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