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Relation of constituent quark models to QCD: Why several simple models work “so well”
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We discuss the relationship between exact QCD and constituent quark nfodefelativistic, bag, or
others to clarify why different models work reasonably in many cases. For this we use the general parametri-
zation method G. Morpurgo, Phys. Rev. B0, 2997 (1989 ] now expressed in terms of the standard current
quark fields(m, andmy a few MeV; mg=~150 MeV, at the usual mass renormalization pejrtl GeV). The
method provides for several quantities the most general exact form of the spin-flavor structure derivable from
the QCD Lagrangian. We can thus determine for many important quaniitiasses of lowest baryons and
mesons, baryon magnetic moments, semileptonic decays, fesen a fit to the data, the coefficients of the
parametrization, the same ones that a direct QCD calculation, if feasible, would give. It turns out that only a
few coefficients are relatively important. Because different models, each with its few free parameters, can
produce these terms by some choice of parameters, one can see why models so different as the nonrelativistic
or quasichiral models work “well.” Finally, expressing the coefficients in the general parametrization dimen-
sionally in terms of current quark masses andve find that theng expansion of broken SB3)xSU(3) is just
an expansion ikm/(éA)~m¢/(éA)~0.3. The&'s determined from different data are rather clgsem 2.3
to 3.7). The resulting effective light quark masses in constituent models are of @AlEerNone of the above
conclusions depend on whether or not the chiral limjt,mg,ms— 0 is mathematically sound.

PACS numbgs): 12.39.Th, 12.38.Aw, 12.39.Ba

I. INTRODUCTION terms of parameters of the QCD Hamiltonidimcluding
masses DGG must conclude that the masses in their final
The connection between QCD and the nonrelativisticformulas are something different; moreover, this “effective
guark model[1] (NRQM) of light hadrons(called also the quark mass” appears abruptly in their treatment, without
naive model has been rather mysterious for many years. Thénaving been defined. Of course, in QCD the quark masses
NRQM not only works qualitatively in the classification of are running; yet it is not clear from DGG how the quark
light hadrons, but also leads to fairly gogdantitativepre- ~ massesM; and M, in their term M;M,)~ Y(o;-o}) of the
dictions. How can this happen and be compatible with ehadron masses are related to the massé@sthe Lagrangian
description so dissimilar as the chiral one? Can both descripsf QCD.
tions be derived from QCD? If so, what is the relationship Recently we have showp5-7] that a description of
between the two, and what is the relationship between curonstituent-type can be derived exactly from a relativistic
rent (quasichiral quarks and constituent ones, and, first,field theory of quarks and gluons, such as QCD. It appeared
what are constituent quarks? Incidentally, the last two questhat any constituent model is nothing but a convenient pa-
tions apply not only to the NRQM but also to any constituentrametrization of certain physical quantiti€e.g., hadron
or potential model, such as the MIT bag mofigj2(b)], of = masses, magnetic moments, eto.the spin-flavor space. It
“relativistic”-type with Dirac four-spinors. was showr{5] that the general structure of this parametriza-
To exemplify, consider the De Rua, Georgi, and tion can be derived exactifand thus relativistically, though
Glashow(DGG) treatmen{4], which was the first attempt to noncovariantly from QCD, using general properties of
connect the NRQM to the QCD Hamiltonian, starting the QCD, namely, the flavor structure of the Lagrangian and the
“QCD-inspired” treatments. DGG write the QCD Hamil- fact that gluons are flavorless and neutral. However, we left
tonian and calculate, in the semirelativistic Fermi-Breit ap-open the relationship between current and constituent quarks,
proximation, the one-gluon exchange QCD potential bedin particular their masses; we shall fill this gap here.
tween a quark and an antiquark or between two quarks. By We divide the presentation into two parts, starting with
examining the effect of the hyperfine interactiof)- o, on  pure QCD and concluding with models. In the first part
the masses of the lowest hadron states, DGG derive a valSecs. 1-VI) we express the parameters of the general pa-
for AM. From their Egs.(5) and (11) they obtain for rametrization in terms of the QCD masses of current quarks,
AM/M, values around 0.35 and conclude “The value ofand show thata expanding the parameters in powers of
M_/M, given by(5) or (11) does not coincide with the value Am=m,—m, the scale of this expansiofx~~3A) extracted
obtained from the pseudoscalar meson masses via currefnbm the baryon and meson masses is found to coincide with
algebra. Ours are effective masses of quarks bound in hatkhe standard scale of the, expansion in broken SQ3)
rons, not the masses appearing in the phenomenologicalSU(3) and (b) one is led to a natural definition of the ef-
Lagrangians describing the breaking of @)X SU(3).” This  fective mass of a light “constituent quark,” the scale-e8A
statement is correct, but cryptic. It leaves obscure the reasdmore precisely, from 2.8 to 3.7A) just mentioned.
why, having set the task of calculating the hadron masses in In the second paiiSecs. VIII-XI) the general parametri-
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zation is shown to allow us to check any proposed constitupressed in terms of the standard quark fields with standard
ent quark model in a way more useful than a direct comparimasse$8,10], a few MeV form, andmg, corresponding to
son of the model predictions to masses, magnetic momentthe conventional renormalization point gt=1 GeV. The
etc.; applying the analysis to several models, we clarify whycoefficients of the parametrization are also thought of as ex-
many are “so good.” pressed in terms of the standard masses. Accordingly, we
Two points on notation and language are in ordey. adopt the standard, d, ands for quark fields instead o,
Above, we spoke of “current” quarks and “quasichiral” ./", and\ of Ref.[5]. We stress that adopting this standard
qguarks. The two are synonymous and refer to the lighthoice of renormalization point does not alter the deduction
(u,d,s) quark fields in the Lagrangian of QCD renormalized [5] of the general parametrization. We recall briefly below
at =1 GeV. (b) Except when notedM will be used to such a treatment.
denote the effective mass of constituent quarks. Instead, We start with the masses of the low@&sand 10 baryons:
m(q) will be the running quark masses of QCD at the renor-

malization pointy; for the standardj=1 GeV, we omit writ- M;=(¢i|Hqcol ¥1)- )
ing g and call such masses simpty,, my, or mg (m, and ] o )
my of a few MeV andm,~120—-180 MeV. HereHocp is the QCD Hamiltoniar{1) and| ;) is the exact

eigenstate of théth 8 and 10 baryonat rest
Il. THE GENERAL PARAMETRIZATION OF BARYON

MASSES IN TERMS OF CURRENT QUARKS Hacol ¢i) =Mil40). ©)
Call Hocp the exact Hamiltonian of QCD. Its strong part 10 parametrize a property of the lowest baryons, one imag-
is ines constructing the exact baryon eigenstéges by apply-

ing a unitary transformatiok to a set of simple three-quark
5 - = _ states| ¢;) (important: in[5-7] we called these statég;)

HQCD:HC+J d*x[m(uu+dd+ss) +Amss] “model states”; now, to avoid any possibility of confusion
with constituent quark models, we will refer {@;)’s as

EHcJFf MU+ AMTPSW), 0 auxiliary states’):
N o [y =VIdi). (7)
where, for simplicity, we neglected intrinsic isospin break-
ing, setting The auxiliary states¢;) andV are defined in Ref{5],
where it was shown how, in principl®, can be constructed

m,=mg=m, Am=mg—m, (2 (see also Sec. IV

As shown in[5] it is convenient to select the wave func-
tion ¢, of the auxiliary states as products of a spdoe
momentum factor X, _(r4,r»,rs) with orbital angular mo-
mentumL=0 and a symmetrical spin-flavor fact@v; con-

andH. is the chiral-invariant part of the Hamiltonian. On the
right in (1) W is the quark field,

u() structed in terms of the spin-flavor variables of three quarks:
W(x)=|d(Xx)|, (3
S(x) $i=XL=0(r1,r2,r3)-W;. (8)
and P* is the projector on the strange quark field W, accounts for all the angular momentum of the statend

therefore has necessarily the @Uspin-flavor structure. For
instance, for the protop (S means symmetrization over
0 =(1-\g)/3, 1,2,3 and forA*" it is

1 Wo(1)=(18) S ay(a,B3— asBa)Ussds],  (9)

0

4
Se— Sy — SH —

P's S Pu O, P d O WA++(T):a1a2a3U1U2U3. (10)
As to flavor, it is broken only by thé&m term. Recall that
M Z/M 2 calculated usingd ocp (1) gives[8] mym=~25 [or,
depending on the correction®], (mg/m)=8-25. This
same QCD Hamiltonian leads to the equally time-honore
value (from 45 to~60 MeV) of the #N o term[10,11].

Now consider the general parametrization. In RE#s:7]
we selected the renormalization point of the running quar itis (i specifies the baryon
masses in the region of low's, so as to haveHgcp ex- P y
pressed in terms of renormalized quark fields with mass val- o N/ iyt _
ues in a range typical of those usually assigned to constituent Mi={¥ilHocol i) =( iV HocoV| 1)
quarks. But, in fact, the parametrization[B+-7] is indepen- =(W;|“parametrized masgW,), (11
dent of the choice of the renormalization point of the quark
masses. Because here we intend to relate constituent amdere the last form is what we call the “general parametri-
current quarks, we now think of the QCD Hamiltonian ex- zation.” [W, are the spin-flavor functions defined (8); the

We underline that alphysical results(e.g., the baryon
masses to be considered noare obviously independent of
(ﬁe choice of the auxiliary statég;). They only depend on

QCD-

Let us recall the general parametrizati@6(d),6(f)] of

I}he massedl; of the8 and10 baryons. As shown in Ref5]
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fact that the space variables have disappeared from the laghe hierarchy of these numbers is evident. The valiSs
form of (11) is due to the factorizability8) of ¢;.] From  decrease so strongly that, omittimgand d, the following
Refs.[5,6](f) it is (compare also Appendix)A mass formula results(d)]:

3(P+EY+T=3(3A+23"-39), (14)
“ H 1] S
parametrized masyMOJrBEi P, +C§k (01 0v) The symbols stand for masses ahds the following com-
bination of decuplet masses:

+Di§>lk(m-ok)(P?+ Py T=E*—1(Q+3*). (15)

The combinations of masses (i4) are independent of elec-
+E > (- o) P+ aE PSPy tromagnetic effects to zero order in flavor breaking. This is
|2k 1>k the reason for the charge combinationgid) and(15). The

(i>k) )
- data satisfy Eq(14) as follows:
b2 (a1 o) PIP left-hand side-1132.6-1.2,

(16)
e 2 (o o) (P5+ Pﬁ)Pjs right-hand side=1132.6-0.1,

'(Tﬁf)' an impressive agreement confirming the smallness of the
terms neglected if12). One more remark: A QCD calcula-
tion, if feasible, would express eacMg,B,...,c,d) in (12
in terms of the quantities in the QCD Lagrangian, the run-
In (12) the o’s are the Pauli matrices; the projectd?$ on ~ hing quark masses—normalized at agythat we like to
the strange quark were defined abové4}] select—and the dimensionéinass parameterA of QCD

A few comments on(12) follow. Because the different [@s(q%)=4m(BoIng*/A%) ™" for g=>1 GeV]; for instance
masses of the lowest octet and decuplet baryons dbaig  (recall that we sem,=my=m):
ring e.m. and isospin correction€q. (12), containing nine A
parameters Ml,,B,C,D,E,a,b,c,d), is certainly true, no Mo=AMo(m(q)/A,ms(q)/A), (17)
matter what is the underlying theory. Nevertheless, [#8) ~ . -
can be regarded as an exact deduction from QCD in th\éVher%Ad'S some ful_nctlﬁn, and §|m||§rly f;B' C’IIID’ E.a,b,
following sense: We could not write the parametrizatitg) c,_an N To simp ify the notation, in what follows we set
if the exact stately;) were not related, as i7), to a sef ¢;) A—lh, relnstalllfll\w/lg/\ when appropriate, and suppress the caret
of three-quark, no-gluorstates. This is the feature of QCD on the RHS ofMy, etc.

that enters. This being clear, the exact parametrizdfiénis ran:l(gttriezggggyn?:é'sv(\;?wllle tr;isrz:'v?gogrg;;h; gt:;ﬁ:el_r:I I’Ff)i?]- i
not trivial; the values of the eight parameters obtained fittin y9 prop grang

Yan of QCD, the asymptotic freedom typical of QCD enters
the massefin the analysis onlyd+ b) intervene$ decrease . o 4 :
strongly, moving to terms with increasing number of indices\évshseennt\i/;?i:}”&?}iﬁg}g\/\}fo_zoo MeV in(17), as will be
(that is[6(f)], with increasing number of gluons exchanged '
and/or flavor-breakindp { factors.

+dPIP3P3. (12

Note that, in deriving12) from QCD, AmMVPSY in the lll. PARAMETRIZATION OF OCTET BARYON
Lagrangian is treated exactly; E¢L2) is always true, in MAGNETIC MOMENTS AND MESON MASSES
particular no matter how large m in the QCD Lagrang- For later use, we display also the parametrizations of
1an. magnetic moments of octet baryofs] and the masses of

Here, we reanalyze the dat@ppendix B to determine
My,B,...,d after subtraction of electromagnetic and intrinsic

. ] . . Baryon magnetic moments
isospin effects, usindfor wide resonancegsboth the pole y g

[12] and the conventional massgk3]. The pole values of Introduce the magnetic moment operator in the rest frame,
parameters ii12) are given below in13), omitting errors, if 1

unimportant. The parameters from conventional baryon == j d3rIrxj(n], (18)
masses are simildAppendix B, but the small ones are not 2

identical. The pole parametefimn MeV) are o ]
wherej(r) is the space part of the electromagnetic current at

=0:
Mo=1076, B=192, t B
10 =1€[5U(X) 7,,u(X) = 3d(X) 7,d(x) = 35(x) 7,,5(x)]
C=45.6, D=-13.8:0.3, (a+b)=—-16*1.4, e _
(13 =5 [P Nat30e) 1, ¥ (X)]

E=51+03, c=-11x07, d=4%3. =ie[V(x)Qy,¥(X)]. (19)
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The chargeQ in (19) is, in terms of the\’s or of the projec-
tors PY, P9, and P,

Q=3(\3+3hg) =3P~ 3PI-3P". (20)
The formula that now replacd4l) for the masses is
Mi= (il 2|y = (VT 72N i)

=(W;|“parametrized magn. momentV;). (21)

Here we give the general parametrization of magnetic moy

ments, keeping only terms linear PF. For baryon masses
Eg.(12) was exact to all orders iR®; the same is true for Eq.

(28) below for meson masses. For the magnetic moments we

might easily write the parametrization to all ordersPif) but

then we would have too many parameters to make it useful.

The terms neglected, bilinear or cubich, are expected to
be at most 5% of the dominant terff(f)]. Keeping only
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(25) gives a fit(Ref.[5], Fig. 1) correct to about 15% of all
octet magnetic moments. Note that keepgygand neglect-
ing g-, which is also expecteld(f)] to be small because it is
a two-gluon exchange, flavor-breaking term, the values, of
andg, in (22) would remain essentially the same as listed in
(24).

Meson masses

The general parametrization of meson masses proceeds as

for baryons. Here we give the parametrization only for the
lowest pseudoscalar and vector mesons with isosgi®
(thatis,, K, p, andK*). Thel =0 mesong», %', o, and¢)

are treated i6(b)]. Equation(11) now becomes

M= (ti|Hocol ¥1) =iV HocoV| éi)

terms linear inP® the parametrization of the magnetic mo- where

ments of the baryon octet has eight terfrisl4]:

7
“parametrized magn. moment >, g,(G,), (22
v=0

with

Go=THQPIY o1, G=2 Qoy, G,=2 QiPfoy,

G3:2 Qioy, G4:E QiPjoy, Gszz QiProy,
1#k 1#k 1#k
(23
Ge=2> QioiP}, G;= > QiPig;.
i#k i#k#]j

As remarked in7(a)] the coefficientg, of G, is expected,
due to general arguments, to bel(? times smaller tham,
and therefore negligible. OmittinG,, the data determine the
other seven coefficientg, ,d,,...,d;. Fitting the observed
moments givegin proton magnetons

0,=2.79, g,=—0.94, gz=—0.076, g,=0.41,

0s=0.097, ge=—0.134, g,=0.155 (24

=(w;(1,2)|“parametrized masgi;(1,2), (27
“parametrized mass=A+B(P;+P3)+Caoy- oy
+Doy- oy(PI+P3). (28

Similar formulas([5,6(b)]) could be written for any power of
the masses.

Once more the parametrizatié®8) is exact, to all orders
in P®. Again this formula looks trivial: four masses and four
parameters. But two aspects (#8) are not trivial, as for
baryons:(1) Its structure is typical of a NRQM description,
yet (28) follows exactly from QCD, and2) the coefficients
decrease in magnitude fromto D [see Eq(31)].

In the last form of(27) the w;’s are the spin-flavor func-
tions

wi(1,2=xi(1,21(1,2) (29)
for the auxiliary statege;) of a quark (1)—antiquark(2)
corresponding to each mesen K, p, andK*; in (29) the
xi's are obviously a singlet spin function ferandK, and a
triplet for p and K*; the f,'s are the flavor functions, e.g.,
u;s, forakK™ or K**.In (28) A, B, C, andD are four real
parameters. The other symbols are obvious. Of coLsese
(17] A, B, C, andD are A times functions ofm(q)/A,
my(q)/A, that could be determined if we were able to calcu-
late with QCD.

Recalling thato;-o,=—3 for J=0 and o-0,=+1 for

showing that the first two terms are appreciably larger thad =1, the meson massésdicated with the meson symbols
the remaining ones; thus one understands why the “naive@’®

NRQM (in which only g; andg, are kept gives a fair de-

scription of the magnetic moments. Indeed, neglecting, be-

sidesgy, all coefficients fromg; to g; we remain with the

“naive” [1(a)] additive form of the “parametrized magnetic

moment” operators: namely,

912 [1+(92/9)PiIQi; (25
With the above values aj; andg,,
0:=2.79, 0,/g9;=-0.34, (26)

7=A—-3C(=138, K=A-3C+B-3D(=495),

(30
p=A+C(=770, K*=A+C+B+D(=894.
Therefore(in MeV),
A=612, B=182, C=158, D=-58. (31

We conclude with the following remark. The pion mass is

m=A—3C=138 (32
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with A=612 andC=158. The idea that in the perfect chiral whereX stands forZy pops.ryr,ree 1N (36) the agr are cre-

limit (mass zero ofi andd quarks the pion would be mass-  ation operators of quarks of momentymand spin-flavor-
less, that is color indexr (we omit color except when necessary) is
_ the vacuum state, in a Fock space of quarks and gluons. In
A-3C=0, (33 . i,
constructing the auxiliary states the masses of quarks,

is almost universally held. Then the pion is looked on as nd alsos are taken equal. For simplicity—this is not
quasi Goldstone boson, getting its mass from explicit breakDecessary—we identify this value with tleommon mass

ing of chiral symmetry due to the small and d quark M(q) of u andd at the renormalization poing. In (36)
masses. This description, extended to all mesons of the lowCr,r,r,(P1.P2.,P3) is the momentum space function of the
est pseudoscalar octet, makes them all quasi Goldstorsuxiliary state of the three quarks in the rest frame;
bosons. We will not discuss this standard chiral picturec'rlrzrg(pl,pz,p3) contains a factof(p;+p,+ps). The quark
[Whic_h accounts for, but is not strictly required by, the'grea pin states are taken as four-spinors with the upper compo-
classical successes of current algebra plus PGp&tial  ontg

conservation of axial vector currghtWe must add, never-

theless, that the pion mass on the RHR\ef3C =138 is not

so small on the scale of the parametésB, C, andD. 1
Because of the 3 in front o, a percentually minor change 0
of C (possibly produced in QCD by a comparatively small

change ofag) might equally well lead toA—3C=0 or to  and two zeros in the lower components. A transformation of
A—3C, say 350, making the pion mass comparable to theo|dy-Wouthuysen type is part of. The auxiliary states
others in the octet. |4} (36) can be seefi5] as the lowestdegenerateeigen-
states of some auxiliary Hamiltonia#, defined in the Fock
IV. THE DEPENDENCE OF THE TRANSFORMATION V sector of three quarks, no antiquark, no gluo#;is useful
ON THE RENORMALIZATION POINT OF THE only to show howV can be constructed by the adiabatic
RUNNING QUARK MASSES IN THE LAGRANGIAN procedure(Appendix to Ref.[5]). As already stated, no
e dirss i o exaine more dosely he auesin2562 55U, 1 ey baryn of mesn mases o

of the choice of the mass renormalization point in ConStrUCt'states, that is, 7.

ing the parametrization. We stated that the parametrization . o

. . : We now characteriz¥. The transformatiotV is simply a
[thus.v in Eqgs.(7), (11?' (21), or (27)] can t_)e mtroduped, n correspondence between a certain set of auxiliary staiges
principle, for any choice of the renormalization potptfor and the exact statggy;) of interest. To characteriz€, ex-

the quark masses in the QCD Hamiltonian; also de¥ 1 Ve
GeV. and, thereforem, and my a few MeV. As already 2??5((1:1 t?gs)ejxact state;) in the complete set of statés(q))
X . :

stated, it is important to have this clear because in Refs.
[5—7] we were thinking of the QCD Hamiltonian expressed

in terms of quark masses renormalized at a low valug, gb _

as to haveu and d masses in the range—a few hundred |¢‘>_%) (@) m@)VId). (37
MeV—usually assigned to constituent quarks. That choice is

possible but unnecessary. Here we have adopted the conv
tional choice.

To see where the renormalization point entersvinwe
express, therefore, from now on, the QCD Hamiltonian in
terms of quark fields with masse¥ q) defined at some defi-
nite freely chosen renormalization four-momentgm De- (v(@)|VIg=(v(a)| ) (38)
compose the QCD Hamiltonian as

0
1

eI'H'Eq. (37) the sum(that is, the expansion of the exact state
in terms of Fock quark-gluon stajesxtends to all possible
eigenstates(q) of H,. Clearly Eq.(37) definesV through

Ho—H.+H (34) for any v(q);_ thus\_/ can be defingd by selecting freely the

Qeb™ Hat Tiby renormalization pointy of the running quark mass, as long
where Hy, is the quark-gluon interaction plus the flavor- @S, for anyq, the states/(q) are a complete set. Less for-
breaking mass term arid,, is all the rest; thusd, is flavor ~ Mally, Eq.(37) means that the exact staftgs) has an ex-
invariant[all quarks in it with massn(q)]. Introduce a com-  tremely complicated structure in Fock space. Schematically,
plete set of statel(q)) of H:

Halv(a))=Ea(a)|v(q)), (39

whereq indicates the selected renormalization point. To bewhere the ellipsis indicates statéa the P=0 frame with
definite we refer below to baryons; for mesons everythingany numben of quarks,n— 3 antiquarks, and any number of
goes similarly. gluons, provided only that the conserved quantum numbers
Write the auxiliary statee;), introduced in(11), as of the Fock states on the RHS (89) (color, charge, bary-
onic number, strangeness, parity, angular momeparnthe

N [ LIPS B same as those ;) (| #;) has, of course, the same quantum
|¢|> pE Crlrzra(plrpZrp3)ap1rlap2r2ap3r3|0>’ (36) numbers a$¢|>) I> :

lgi)=]aqd)+|aqqaa) +[qag,Gluong+--- , (39
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where we set

2 m=m+AmP;, my,=m+AmP;, (42)
] ] and ¢(m,Am|m,,m,) andF(m,Am|m;,m,) are symmetric
1 in 1,2. Exploiting now
(PH"=P? (i=12 (43

FIG. 1. Schematic diagram representing the “external” lines 1and recalling
and 2 and the “internal” box in the general parametrization of a
meson propertyg is the auxiliary state. The “box” contains all mg=m+Am, (44)
sorts of gluon lines and quark closed loops.
we obtain(P3P3 terms do not contribuje
V. THE EXPANSION OF THE MESON MASS
PARAMETERS IN TERMS OF Am=m,—m=m, $(m,Am[mg,m;) = (m, Am[m,m) +[ $(m,Am[mg,m)

We now analyze the mass parametrization of the lowest —¢(m,Am[m,m)](Pi+P3),
hadrons. For simplicity consider first tHet0 mesons. The 4
result of a full QCD calculation of the “parametrized mass” F(M:Am[my,my)=F(m,Am|m,m)+[F(m,Am[mg,m)
(28), showing the most general dependence of the “param- _ s, ps
etrized mass” on the quark masses in the QCD Lagrangian, F(m,Am[m,m)J(P1+P2),

can be written as so that
“parametrized mass” A= ¢(m,Am|m,m),
=¢(m,Amm+AmP],m+AmP;) B= ¢(m,Am|mg,m)— ¢(m,Am|m,m),
+(ay- a)F(MAMM+AMP,m+AmP). (40 C—F(m.Am|m.m). (46)
Here the two functiong andF of m andAm multiplying D=F(m,Am|mg,m)—F(m,Am|m,m).

the spin-independent and spin-dependent parts are assumed

to result from a QCD calculation OITHQCDV after contrac- ReinstallingA (see the end of Sec.)]lwe have, more ex-
tion of all creation and destruction operators and integratiomplicitly,

on the spacéor momentumvariables. That is, we think ab

andF as calculated, from first principles, in QCD. p(m,Am|m,m)=A (m/A, Am/A|m/A,m/A),
The functionsg andF depend on the masses in the QCD (47)
Lagrangianm and Am, in two different ways, as illustrated F(m,Am[m,m)=AF(m/A, Am/A[m/A,m/A),

in Fig. 1. (a) A first dependence comes from the external
lines and carries the indices of the quarks in the auxiliar)yv ; At—1 in what foll
state; the QCD Lagrangian shows that this dependence enome exceptions, we sat=1 in what follows.
tails Am multiplied by the projector® . If, doing the QCD The ratiosB/A andD/C are
calculation, we keep alP§ [without exploiting P})"=P7], B #(m,Am|m,m)— (m,Am|m,m)
the dependence ap andF on the P s is uniquely deter- —= : S : S
mined. In Eq.(40) this dependence oAmP; appears in the A ¢(m,Am|m,m)
arguments ofp andF on the right of the vertical bar. In fact,
it is slightly more convenient, as we did, to insert as argu- E: F(m,Am|ms,m)— F(m,Am|m, m)
ments on the right of the vertical bar {#0) (m-+AmP?) C F(m,Am|m,m)
instead ofAmP?. (b) The second dependencepfandF on o , )
m andAm comes from internal quark loops in the “blob” of From now on, to simplify the notation, we omit the argu-
Fig. 1. This dependence is noted in the arguments on the |efpents on the left of the vertical bqr in all functions; we keep
of the vertical bar ing andF. It goes without saying that, he memory of them by the notation
though the numerical values of the quark running masses at a
given g are definite, we imply, in speaking of tine depen-
dence of¢ andF, that QCD makes sense also in a range ofysing a similar( | symbol for all the intervening functions. It
values of these masséas QED can be expressed in terms ofjs jmportant to recognize that if a ratio such as those in Eq.
the electron mass, though the latter is 0.51 MeV (48) above is expanded itm, no contributions to first order
Equation(40) can be written slightly more compactly as jn Am arise from theAm dependence of the functiogsand
F in the arguments on the left of the vertical bar. In other
A+B(Pi+P3)+[C+D(Pi+P3)](01- 0y) words, for the first order terms in the above mentioned ex-
pansion, one can forget thiem dependence o$ andF on
the left of the bar and consider only them dependence
(41  frommg=m+Amin ¢ andF.

ith similar expressions for all other quantities. Again, with

(48)

(m,Am[m,m)=¢( [m,m), (49

=¢(m,Am|my,my) +F(m,Am|m;,my) (o7 - 03),
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We now expand-(m,Am|mg,m) andF(m,Am|m,m) as  none of the above or the following conclusions depends on
well as ¢(m,Am|mg,m) and ¢(m,Am|m,m) in series of whether the exact chiral limitn,,my,ms—0 is mathemati-
Am, assuming the expansion possibleratReinstalling here cally sound or noj.

A, we have The scale of the expansion ing is derived here simply
from the B/A ratio +0.30 or D/C ratio —0.37, typical
¢(|(m+Am)/A,m/A) ¢(|m/A,m/A) flavor-breaking effects, e.g., D/IC=[F(|mJA,m/A)/

) F(Jm/A,m/A)]—1=—0.37. Indeed, long agthefore[8]),
=14 (Am/BoA) + vo(AM/BoA)"+ -+, instead of them, expansion scale, one used to speak of a
(50 flavor-breaking expansion. Below we may use occasionally
this language; because,=Am, the two are equivalent; the
difference, of course, with respect to old times is that now
the expansion is not idm/m (as it was originally but in

where 8 and y are some coefficient@he indexh refers to Am/(BA). _
the hyperfine terms, the index O to the spin-independent AS to the convergence of the expansiét), we now will

F((m+Am)/A,m/A)/F(|m/A,m/A)

=1+ (Am/BuA)+ ya(AM/BRA) 2+ -,

ones. see that it is supported by the data in the analogous case of
RecallingAm>m and thusAm=m, we have baryon masses.
B/A=(mg/BoA)+ yo(ms/ BoA) >+ -+, VI. THE EXPANSION OF BARYON MASS PARAMETERS

IN TERMS OF Am=mg—m=mg

D/C=(mg/BrA)+ yn(Ms/BrA)2+ -+ . 51
(Ms/BrA)+ y(ms/ Buh) 61 In the baryon massd€q. (12)] consider first the hyper-

If the series on the RHS ab1) converges fast enough, we fine terms, with coefficientsC, D, E, b, and c. To
have[compare the experimental valuesAfB, C, andD in ~ d=3d,+d, contribute the hyperfine term @3) and the

(31)] spin-independent onedg). Experimentally it is impossible
to determine the magnitude of each. Asttothe data deter-

Ims/BoA|~|B/A|=0.30, |ms/BnA|~|D/C|[=0.37. mine onlya+b.
(52 As for mesongSec. \J we write the coefficients of hy-

Note thatB/A and D/C (and thereforeg, and B;) have perfine terms as

opposite signs.
In fact, assuming that the second term in the expansions Ek C+D(P}+ P§)+E§;_ Pi+bPiPy
(51) is of order (first term? with an unknown sign, one = J7kd
should write, instead of52),
+c > (Pi+PHPS+d, >, PiPSPS|(0i- 0y)
Ime/BoA|=0.30-0.09, |me/B,A|=0.37+0.13. i#Ki i#Ki

(53
This scale inmg is compatible with that assumed in chiral :igatj F(m, Am|m;, m;m;)(o;- 01), ©49
perturbation theory{11], where the expansion parameter (i>k)

governing kaon physics is taken to b¥(K)/S]* (M(K)  \where the notationx,y;z in F(m,Am|x,y:z) recalls that
=kaon mass an® a mass between tzhat of theand of a  gych a functionderivable in principle from QCDis sym-

scalar mesor=1 GeV, thus, M(K)/S]“ between 0.25 and metric in x,y, but not necessarily iz. As for mesons, we
0.40) Note that the actual values of the coefficiefitsle-  omijt the arguments on the left of the bar, setting

pend, likeAm or mg, on the chosen renormalization point

and we refer here to the standard pajrt 1 GeV. F(m,Am|m;,m,;my)=F(|m;,m,;m;). (55
However, we stress that, in determining these expansion . .

parametersm,/ BA |, no assumption is made about the exist-~9ain Set, as irt42),

ence of the chiral limit of S(B)XSU(3), that is, about the m =m-+AmPS (56)

behavior of¢(|m,m) or F(|m,m) nearm=0. Nonanalytic- ' '

ity at m— 0 might imply that expanding froorm up tomgis  and use the propert@3). The functionF(|x,y;z) on the

not possible. But even then we can proceed exactly as abovRHS of (55) is determined for values of, y, andz that can

only expanding imAm nearmg and moving down tan. With be eitherm or mg=m+Am. To simplify the formulas we

trivial changes the same expansion hol@dore generally, write s for m. Thus

C=F(Jm,m;m), D=F(|s,m;m)—F(|m,m;m), E=F(|m,m;s)—F(|m,m;m),
b=F(|m,m;m)—2F(|s,m;m)+F(|s,s;m),
(57)

c=F(|m,m;m)—F(|s,m;m)+F(|s,m;s)—F(|m,m;s),

dn=F(|s,s;s)—F(|m,m;m)+F(|m,m;s) — F(|s,s;m)+2{F(|s,m;m)—F(|s,m;s)}.
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We also consider the spin-independent part of the parametrHere by O(Am®) we mean, for instance, that the first non-
zation. It is vanishing term in an expansion &m (or betterAm/A) is of
third order. This general result alone, together with the ex-
perimental values of the coefficients, suggests that terms as-
Mo+ BZ PP+ agfk PIPL+ doPIP3P3= d(|mg,m,mg). sociated with higher powers ofA(n/A) are indeed smaller.
(58) The power inAm/A is, however, not the only reason for
the striking decrease in the coefficients. For a more detailed
In (58) ¢ s, like F, a function ofm andAm and of the three analysis, consider firdE/C=0.11. As noted in Ref[6(f)],
indexed masser better ofm,/A, etc) now symmetric in  where the hierarchy of the coefficients was discussed in de-
1,2,3(thus the notatiom,y;z in F is replaced by,y,z). Itis tail, the term associated with has just oné>® and therefore
is of the same order iAm/A asD. However,E multiplies a
three-index term wherea® multiplies a two-index term.
Three-index terms should arise, in a QCD calculation, from
diagrams exchanging at least one more gluon than diagrams
giving the main contribution to terms with two indicgs5].
(59 Because hyperfine terms represent chromomagnetic interac-
do= (|s,s.5) —3¢(|s,s,m) +3¢(|s,mm)—d(|mmm).  ions of two dipoles, they should be, intrinsically, short
range. We tak¢E/D|=0.37[16] as an estimate of the reduc-
Proceeding as for mesons, consider first the hyperfingon due to this additional gluothard, on the averagend
terms and the rati®/C= —0.3. Because it is refer to[6(f)] and Appendix B for some additional detail.
With the reduction factor for “one gluon more” 0.37 and
D F(|mg,m;m)—F(|m,m;m) the flavor scaleAm/(B,A)=0.3, the order of magnitude of
c” F(m,m;m) ’ (60 |c| is expected to be (0.370.3)|D|=0.11D|=1.5. It is
(Appendix B c=—1.1+0.7. We get an estimate fod,| by
we can again expand in powers ofAm/A atm. The ex-  multiplying |c| by 0.3; it is|d,|=+0.3=0.2.
pansion is similar tq50), but of course not identical, since ~ Consider now the parameters of the spin-independent
the functionF of three variables i54) differs from theF in ~ termsMy, B, a, andd,. FromB andM, we have
(41). We thus have

MO:¢(|m1m1m)r B:¢(|Svmvm)_¢(|m!m!m):

a= ¢(|m,m,m)_2¢(|s,m,m)+¢(|S,S,m),

DIC=(my/ BiA)+ V(M BIAY+ -+ (6D) B _ #(Ims.m.m)~ $(|m.m,m)

MO_ ¢(|m,m,m)
=(mg/ByA)+ ¥ (Mg/ BA)?+---=0.18, (64)

with B}, andyj, replacingB,, andy,, in (50). Because®/C is
now —0.3, instead of-0.37 for mesons53) is replaced by

|mslﬁr{|A|~03(t 0.09 (62) from which we estimate

(having again, arbitrarily, estimated the uncertainty as the (mg/ByA)=0.18+0.03. (65)
square of the first term in the expansi@o that the flavor-
breaking scale, or, if one prefers, the @WK SU(3)-breaking
scale, 8/,A) for baryons, is near to thatB(A), for mesons. The order of magnitude is comparable to thafmf/BpA |
Note that the signs of;, for mesons and baryons are the (though it can differ by as much ag.2l'he sign of(65) is
same. While for mesons the convergence of the expansiodpposite to that from the hyperfine terms, as for mesons.
(50) was assumed, here the availability of more coefficients Coming toa, the data determine onlya(-b) = — 16+ 1.4.
[and their strong decrease—s€E8)] allows a check. We Taking, as order of magnitudégh/D|~|D/C|, we have|b|
show first in general that the experimental hierarchy of the~4. If b>0 we havea~ —20; for b<0, we havea~ —12.
coefficients, together with Eq¢57) and (59) expressing the Therefore|a/B|=0.06+ 0.1, which implies again a large re-
coefficients in terms ofp andF, strongly indicates conver- duction factor ofa with respect to the additive teri. The
gence in Am/A); next we analyze the situation in more different physical meaning od and B does not, however,
detail. allow us to relate this reduction factor to thatefD. With a
The general argument is as follows. Expanding in seriesimilar depression factofd,| is expected to be=0.1ja|~2,
of Am the expressions of the coefficients given(§v) and  leading to|d|=|dy+3d,|~2*1 (experimentd=4=3). In
(59), it appears immediately that the expansion starts with gonclusion, themg/A expansion scale for spin-independent
term of orderAm for D andE of order (Am)? for a, b, and  terms is near to that of hyperfine terms, though we do not
c and of order Am)? for d, andd,, . Of course to see this we have an equivalent for the “hard” gluon chromomagnetic
do not need57) and(59). Just look at the number & that  argumentexcept the usual hand-waving one that soft gluons
multiply each coefficient, since in the Lagrangian only theproduce confinement and, after this is taken into account, the

productAmP® intervenes. Thus, remaining ones are hard on the avepage
For later use(Sec. VI)) we add a remark. Consider
D,E=0O(Am), a,b,c=0(Am?), dy,d,=0O(Amq). the hyperfine terms for baryons. Assume that

(63) in (54 F(|m;,m;m;) is approximately factorizable:
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F(m;,my;mp)~f(m)f(mg)e(m). Put p=[f(mg)  masse$where formulag12) and(28) of the parametrization
—f(m)]/f(m) and wo=[¢(ms) —¢e(M)]/¢(m). Equations are exack we are limited for magnetic moments to terms
(57) lead to linear in P, Recall thatg, andg, in the general parametri-
zation alone provide a fit to 15%. With onty; andg, the
D/C=p~-0.30, E/C=w~01, parametrization reduces to H5) and the physical meaning

2 of
b/C=+p*~+0.09, c/C=pw~—-0.03,

— = [+
dy/C= + p2w~0.01. (66) 92/9,=0.34-0.01 €7

These agree with the above orders of magnitude. InciderS 0bvious: [1+(g,/g;)] =0.66 is the ratio of strange to non-

tally, factorizability fixes the signs df, c, andd,, . strange quark magnetic moments.
The “parametrized magnetic moment” of the baryon octet

is written compactly similarly to the “parametrized baryon
masses’(Sec. \} with the help of three functiong, z, and¢

The general parametrization of the baryon octet momentsf (m/A) and Am/A). Again, these functions, in principle,
was given in Sec. lll. Differently from baryon and meson are derivable from QCD. We have

VII. THE MAGNETIC MOMENTS OF OCTET BARYONS

“parametrized magnetic moment(TrQP%) > x(m,Am|m;;m,m)e+ >  7(mAm|m;;m,,m)Qe;
i#k#] i#K#]

(i>k) (i>k)
+ > &mAmim;,m,m)Qyo (68)
kai)]
(i>

with m;=m+ AmP$ and the functiong and» symmetric in  Identifying (as in Secs. V and YIAm with m,:
k andj. The TIQP® term in (68) is of orderAm/A, and is
related tog, in the general parametrization of Sec. llI 92/91=(Ms/ B"A)+y'(Mg/ B"A)?+ -+, (T1)
[do=x(m,Am|m;m,m)]. The other terms produce the spin- ; . o . ) i
flavor structuresQ,; and Q,o; multiplied by unity or by Whereﬁ andy' are coefficients in the_ expansion. Assuming,
products oﬂ:’js with up to three factors. Extracting fro(68) as previously, _that the second term in the_ expansion has the
all terms either with nd®® or linear in PS, we reobtain, of order of magnitude of the square of the first, we have
course, the terms listed in the general parametrization of Sec. poas
1. (Some terms bilinear ifP® are incorrectly absent in the (Am/g7A)=—-0.34-0.11. (72)
list of Ref. [5], Egs.(37)—(39). This is of no consequence
because we never used for magnetic moments terms biline
or cubic inP®)

Here we discuss the terms extracted frenin (68), the
only ones of interest for Eq25) (in this comparisory and &
do not interveng Again we shortenp(m,Am|m,;m,,ms)
to »(|my;m,,mg). We get, identically,

A classical remarkto be inserted more properly in the en-
@[Jing sections, where we will consider constituent quaiks
this: Approximating magnetic moments €85), anddefining
effective masses of quarks as inversely proportional to mag-
netic moments, the ratio between the effective masses of the
strange and nonstrange quarksso defined s
(1+g,/g;) '=1.5+0.25. The expansiofi71) also implies

an order of magnitude for the effective mass of a quafik.

7(|mi ;my,my) = n(|m;m,m)+[ »(|s;m,m) With the conventional choicAm=150 MeV, this is~450
. s . MeV.
= p(m;m,m)JP7+[(|m;s,m) Coming back to QCD it is remarkable that 8, and 8’
— p(|m;m,m) P+ pjs) in the expansions for the hyperfine parts of th_e meson and
baryon masse&3) and(62) and baryon magnetic moments
+(terms bilinear and cubic irP%). (72) are so close. Why it is so? Only a full QCD calculation
69) can explain this, but a guess may help to relateghef the
hyperfine mass term in baryons to t8¢in the Am expan-
] ) sion of the magnetic momentg71). Assume that
Thus, comparing with25), F(Jm;,m,;m;) governing the hyperfine part of the baryon
masses is approximately factorizable as mentioned at the end
7(|s;m,m)— 7(|m;m,m) of Sec. VI (it is so in some models—see Sec. IX—and is

92/9:= anyway true to first order idm/A); factorizability means
that F(|m; ,m,;m;)=f(m;)f(my) ¢(m;). ThenD/C (60) is

=(Am/B"A)+y"(Am/B"A)%+--- . (70 [f(mg)—f(m)]/f(m). If 7;(|mi;mk,mj) is also factoriz-

7(|m;m,m)



53 RELATION OF CONSTITUENT QUARK MODELS TO QCD. .. 3763

able, that is, 7(|m; ;my,mp) =t(my)r(my)r(m;), we have perfectif they are satisfie@ “perfect” model coincides with
g-/g;=[t(mg) —t(m)]/t(m). Then (1/8') is the first order the true theory, say QCOD
coefficient in the expansion of the quark-gluon chromomag- Another question with models, raised in the Introduction,
netic vertex inAm/A, normalized to the vertex ab,=m. As  is the relation of the effective masses of constituent quarks
to (1/B"), this is the same for the electromagnetic vertex. Theand the masses of current quarks in the QCD Lagrangian. We
similarity in structure of electromagnetic and chromomag-will examine this also.
netic interactions suggests that to first order in Consider, to exemplify, a model of baryon structdtiee
ms we have f(mg)—t(m)]/t(m)=[f(mg)—f(m)]/f(m), same applies to mesondt should at least reproduce the
that is, 8'=R"; note the equality in sign. masses of the lowest baryons and their magnetic moments.
So far we have used only QC®o assumption on mod- Of course, it should reproduce much more, as already stated.
el9. The quarks in play were the standard currégia- But below we concentrate on these, because these alone are
sichira) quarks. From now on we shall deal, instead, withsufficient to substantiate our point.
models, discussing how the parametrization provides a con- We will examine four classes of models: any nonrelativ-
venient way to test models. Before this we comment brieflyistic quark model, the semirelativistic QCD-inspired one-
on the notion of constituent quarks, which sometimes is thgluon-exchange DGG model, the MIT bag model, and the
source of some confusion. cloudy bag model. They are all characterized, at least at
some stage in the calculation, by Hamiltonians with three
quarks(for baryons. The cloudy bag model, which couples

VIIl. THE TWO MEANINGS OF “CONSTITUENT ; . . -
these quarks to pions, will be treated in the next section.

QUARK”

At present “constituent quark” has two meanings, both A. Nonrelativistic quark model
familiar, but rather different. We recall them only to avoid
ambiguities in what follows.

In the first (less commop meaning, a constituent light
quark is the QCD field after choosing a lmnearA) as the
renormalization point for the ma$47,18:

Consider a nonrelativistic quark model. CHl\ a typi-
cal Hamiltonian for it, expressed in terms of the space, spin,
and flavor coordinates of the three quathksy quark vari-
able has an indek=1,2,3. Hyr may be quite general; flavor
has to be broken only by, matrices, or, if electromagnetism
is included, also by\} matrices. The eigenstates Hf in
general will be mixtures of various orbital angular momenta;
in other words, its lowest exact eigenfunctiofgNR) (i
refers to a baryon in the octet or decuplaetay have con-

Meonstituen= M(at g nearA). (73

This definition was implied in Ref$5,6], when deriving the
general para.met.riz.ation. But, as noted, the deriyatipn of t.hﬂguration mixing. Yet, for the lowest baryon®ctet plus
parametrization is independent of the renormalization pombecuple} we may write
and can proceed using as quark fields the standard current
fields; thus theg in v(q) in (37) can be as high as we like. Ji(NR)=Vy\roi , (74)

Constituent quarks defined by something such(Z®
would be related to the QCD Lagrangian. But it is hard towhere ¢; is an auxiliary wave function having the product
turn this definition, for light quarks, into something useful. form of Eq. (8). In (74), of course,V\y is a transformation
At low g’s perturbative QCD fails. With(73) the fact that producing, from theL=0 function ¢, the exact configura-
(Am/m) differs for current and constituents, in spite of scaletionally mixed functiony. This is certainly a much simpler
invariance, might be due to this failure and/or to Politzer’stransformation than th¥ introduced for QCD in Sec. Il to
[17] g~ 2 term. construct the exact state;) from the auxiliary statd¢;).

The second meaning of “constituent quark” is the more There theV transformation had the gigantic task of dressing
common. It dates back to the NRQM]; its continuing use the 3q state with all sorts ofjq pairs and gluons, plus pro-
is due to the above difficulty of reaching a really useful op-ducing configuration mixing, plus transforming two-
erational definition of the first type. In this second usagegcomponent spinors into four-component ones. In the present
constituent quarks are defined with reference to specificase theVyy transformation has just the task of producing
models. Their(effective masses are just some among theconfiguration mixing. But formally Eq11) can be rewritten
many parameters in a calculation with the selected modeRlIso in this casgin writing it we suppress NR inANR)].
From now on constituent quarks will have this second meanThus,

ing; we will use, as mentioned) for the effective mass of a T
constituent quark. Mi=(¥i|Hnrl¢i) = (&il VirHNRVNR| 1)

=(W;|(“parametrized massiyglW;). (75)

IX. MODELS AND QCD . .
Q Because Eq(12) for the “parametrized mass” iff11) fol-

The proliferation of models of hadron structure in the pastiows only from the flavor dependence and invariance prop-
20 years has brought a lack of predictive power: too manyerties of the QCD Hamiltonian, with the factorizable choice
models, all “so good.” Thus it is interesting to see why mod- of ¢,;, the same expressiofl2) is true here.Therefore a
els work and record certain properties that a model shoultNRQM Hamiltonian gives a description of the masses of the
have to agree with some general consequences of QCD. Thewest baryons identical to that of QCD, provided only that it
properties to be considered below are minimal properties: Aas the number of parameters necessary to produce all terms
model should satisfy them, but the model is not necessarilyn (12). Of course since, as we saw, many termg1ig) are
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small (in particular, those with three quark indi¢gegven Aqr 1

simple NR Hamiltonians may lead to good results. A similar ~ Kpee=—g @s MM, (XL=0l 8% (r12)| X —0) (01 05)
argument holds for magnetic moments, where, in writing a

NRQM Hamiltonian, one has to pay attention to gauge in- T

variance. Also, in this case, the fact that the additive terms of T MM, (o1 07), (77)
the general QCD expressi@@5) already reproduce to 15%

the magnetic moments, makes it not so miraculous thawhere the last expression is just a definition7of

simple NR Hamiltonians with few parameters give a good
account of the magnetic moments. What is of interest in this

case, as already remarked and so far unexplaif€tll, is | (77) M, andM, are what DGG call the effective masses
tha_t in the general QCD _parametrlzatl(ﬂB) the coefficient ¢ quarks 1 and 2; they are not defined except®¥. In the

g is so smal(—0.076. Itis this smallness that produces the Fermi-Breit treatment of a He-like atom containing, say, an
classical ratio=—3 of the magnetic moments of proton and gjectron and a muom, andM, would be the masses of the
neutron(which fact[19] greatly contributed, in 1965, to the electron and muon. Here, on the other hand, they are not the
birth of the quark mode! masses of the current quarks that appear in the original La-

Finally, though in this paper we did not treat this problem,grangian of QCD from which DGG move. They have the
the analysig6(a)] of semileptonic decays of the lowest bary- dimensions of a mass and differ for a strange and nonstrange
ons leads to similar conclusions. Of course, many more propguark, but this is all. The question is: How av; andM,
erties should be considerdflist think of excited hadronic related to quantities in the QCD Lagrangian? To simplify the
states. Still, the conclusion is that simple NR models work answer, assume, following DGG, théX, _o| 83(r19)|X_ —o)
because the number of important terms in the QCD genera$ independent oM; andM,, (this, essentially, corresponds
parametrization is relatively small. to X, —o being uniform inside a sphexeThus the only de-

pendence oK g 0N M, andM, is in (M;M,) ~%; note that
this is factorizable.
B. The QCD-inspired model of De Rujula, Georgi, Now go back to the exact general parametrization of
and Glashow baryon masses in QCEEq. (54)] and compare it with the
DGG formula. If we wish the DGG resul77) to approxi-

In their treatment DGG first calculate the one-gluon-mate QCDF(|m;,m,;m;) in (54) must be factorizable, that
exchange QCD potential” between two quarks in the iS, F(|mi,me;m;)=f(m;)f(my)e(m;). We introduced fac-
Fermi-Breit approximation. Their three-body Hamiltonian is torizability at the end of Sec. VII, having in mind also the
Hpee=Ho+ 7, with H, flavor and spin independent. Treat- Present application. To compare with the DGG one-gluon-

ing 7 as a first order perturbation, the DGG baryon masse§Xchange — treatment one must pup(m)=1 in
are f(m;) f(my) ¢(m;). Then comparing witt{77) we have

7= (4m/9) ag(X, —o| 83(r12)| XL ~0). (78)

MM, 1 B A2
Mi=(¥i|Hoedl #i)=(¢ilHocd ¢i) T f(mpf(my)  ASF(my/A)f(my/A)”

=(W;|(“parametrized massipggW;). (76)

(79

In the last form we reinstalled th&’s to make the dimen-
sions explicit. Clearly the DGG “effective massedl; in

. . terms of QCD masseas; and A are
In (76) Hpgg is the full DGG Hamiltoniang, the exact and

¢, the zero order eigenfunctionsvith the effect of 7" in (/A% Y2 =Af~L(m /A). (80)
Hpeg neglectedt the last expression i76) arises from the
third after integration on the space variables. Becadtigés  This shows, as expected, thatis the QCD scale giving the
flavor and spin independent, the unperturbed zero order wawffective mass scale of the constituent quarks.
functions ¢, are flavor independent for all lowest octet and ~ Equation(80) shows clearly how the relationship of cur-
decuplet states and they are factorizablerent and constituent quark masses depends on the model used
di=X__o(r1,r2,rz)W; as in (8). In this treatment the to introduce the latter. We obtainé80) assuming that the
baryon masses automatically have the f@ir® predicted by integral in 7 is independent of th&'s. Otherwise, the rela-
the QCD general parametrization, except for the absence éfon of theM’s to the QCDm’s is affected.
terms with three different quark indices; these would be there Similarly, consider AM/M,)pge and its relationship
if DGG had included the exchange of two or more gluonswith the QCD masses. Comparittg7) and the general pa-
Thus, for the lowest baryons, the “parametrized mass” agairfametrization(12), (AM/M,)pge=—D/C=0.3. From(60)
agrees with the general QCD parametrizatid8), although
it does not contain all the parameters (it2). This being D/C=[F(|ms,m;m)—F(|m,m;m)]/F(|m,m;m)
clear, we pass to the que_zstion raiseid in t_he Introduqytionand’ in the factorized approximationD/C=[f(my)
namely, what is the meaning of the “effective masses Of—f(m)]/f(m) Thus, reinstalling\
guarks in the hyperfine term of DGG? ' ' '

In DGG [4] the hyperfine contribution to the baryon 0.3= — (D/C)=(AM/M,)pee= —[ f(m./A)
masses from quarks 1 and(8ne must then sum over all
pairs of quarkksis —f(m/A) )/ f(m/A)~—Am/(B'A), (81
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having used in the last step the expandi®h. Equation(81)  but is of interest only if the models do not add too many
shows that there is no contradiction betwddn/M~1.4  additional parameters for this purpose.

andm¢/m equal to 25 or 1Qor «); of course,m/m is fun-
damental andM,/M model dependent; E@81) displays the
conceptual relationship between them. Again the model de-
pendence enters ifB1) because to getM;M,) ! in Eq.

(77) [and therefore— (D/C)=(AM/M,)pgc] one must as- In the cloudy bag model we discuss only one point, the
sume, as noted if20], that the integral inr is mass indepen-  exchange pion current contribution to the baryon magnetic
dent. This assumption, nearly true in a potential well, is Nofmoments. The question is: Does the general QCD parametri-
so for a harmonic oscillator, or, worse, for a Coulomb poten—ation contain terms that can be interpreted as due to pion
tial. In such cases we would not have approximate factorizexchange currents? At first sight the question looks intrigu-
ability, as can be seen easily in the analogous simpler case @fg for the following reason: The Hamiltonian of the cloudy

X. EXCHANGE CURRENTS AND THE CLOUDY BAG
MODEL

mesonsAM/M, might be quite different. bag model contains, due to the coupling of pions to quarks,
the Gell-Mann flavor matricek,, \,, andA;. Thus one ex-
C. The MIT bag model pects that the result of any calculation, say that of baryon

We now turn briefly to the MIT bag model, where the Magnetic moments, is expressed throughand \; or [in
quarks are relativisti¢Dirac equation in a bag with four- SU()] 7x and 7,; indeed[22], the magnetic moments of
component spinors: the quark masses in the model are tak&@oton and neutron receive, due to pion exchange, a contri-
very small or zero fou andd and, say, 100 MeV fos). We  Pution with the spin-flavor structure
limit ourselves to considering here the case of the baryon
masses, and specifically the hyperfine contribution. Note that
in spite of the fully relativistic nature of the four-component
spinors from which one starts, the hyperfine term appears, of
course, at the en21] in the Pauli form(82), in agreement
with the general parametrization. Indeed, the hyperfine con- On the other hand, the QCD Lagrangiancluding elec-
tribution to the baryon mass from quarks 1 an¢b@e must tromagnetism contains only the flavor matrices; and \s.
sum over the three pairs of quaykis the expectation value They commute and form a closed algebra. Performing a pure

D (AX 7)o X o). (83)

1#k

of QCD calculation, where virtual pions agg] aggregates, one
expects thak, and\, (that is, 7, and 7,) cannot enter in the
MM final result, in contrast witli83). Indeed, to derive the flavor

Kpag=8as( - o) RS 12 82 structure of the general parametrization, we used the fact that

operating witha; and\g (a closed algebjeone cannot pro-
on theW, spin-flavor states. 1i82) R is the radius of the duce other flavor matrices, which thus cannot appear in the
bag, u; and u, are the chromomagnetic moments, dpdis  final expression. How can this problem be solved?
an expression depending, as do the chromomagnetic mo- Below we will show thatjn apparent contradiction with
ments, on the radiuR. [In principle, R also in(82) might  the argument given aboya term such ag3) can arise from
depend on the flavors of 1 and 2; in that case, it should ba QCD calculation; thus the cloudy bag modahd its pion
Ri,.] The dependence on the quark massefserted in the exchange currejpis compatible with QCD and we weiB-
model remains inu; andl;, To a good approximation in correctin questioning this compatibility in Ref7(a)]. How-
(82 (and also in the baryon magnetic momeritgervene ever, we will also show thatn agreement with the previous
the effective masses of the quarkd,=(m?+x?/R?)Y?  argumentthe term(83) can be identically rewritten as a sum
wherex/R is the quark momentum in the b&g=2.04 inthe  of the spin-flavor structure§,; and G5 in (22), not contain-
limit mR—0). ing 7, and, at all (recall thatG,=%,Q; 07 ,G3=%, . Q; o).

The main point of interest is the following. The hyperfine Thus nothing changes in the general parametrization and the
term (82) is contained in the general parametrization. How-term (83) is not an unequivocal signature of pion exchange
ever, in the simple version of the model treated so far, albr of the cloudy bag model.
terms with three indices, which in general also appear in the The proof is simple. Consider the Majorana space ex-
parametrization, are absent. Since these terms are relativetjrange operatoP ¥ exchanging thespacecoordinates of
small, the situation is, in this respect, the same as in the DG@uarksi andk. In a QCD calculation o¥/'.#V such opera-
treatment with one-gluon exchange, in spite of the fact thators may intervene; that i§/T_Z2V for the baryon magnetic
the two models differ considerably. moments may contain space exchange terms. Then one can

Essentially the same conclusion is true for a variety ofproceed in two fully equivalent ways. First, because the aux-
relativistic or semirelativistic quark models. Any of them caniliary function ¢ [Eq. (8)] is factorized as the product of a
be successfulbut not superior to others, in spite, often, of space factoX, _, times a spin-flavor factow;, we let P,
complicated calculationsprovided that it reproduces the act onX_, and integrate orx. This is just the procedure
spin-flavor structure of the general parametrization and proadopted in deriving the general parametrizati@®); the
vided that it contains a number of parameters producing thpresence oP, does not alter the resul22) (this will emerge
dominant coefficients of it. Of course, one might object thatclearly from Appendix A.
different models will reveal differences in the calculation of  Second, operating, for simplicity, in $B), use now the
hadron properties other than those considered fihiak, = symmetry of the whole wave function, and write
e.g., of the spectrum of excited statebhis is certainly true, P ¥=(1+0;-0y)(1+7-7)/4 [a similar argument holds in
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SU(3)]. Consider then a term of the for®.,Q,0:P ¥, the  descriptions of hadronic phenomenology in terms of bag
existence of which is possible in QCD. Rewrite it as models with different radii.

(3) The important issue of predictivity of models remains
S QP =3 Qa1+, 0)(1+ 7 7)/4. (84 the same as ever. Indeed, assuming that QCD is “the
%k

ik theory,” that is, a full QCD calculation would reproduce all
o ) ) _ _ - details of hadron physics, the extrapolation of any given
Setting[in SU(2)] Q;=37,+ 5, using the identities model to new phenomena, beyond those where it has been

tested and which were used to fix the parameters in the
model, cannot be expected to be 100% exact. This applies to
any model whatsoever. In this situation the “best” model is

to some extent a matter of taste and, to a large extent, a

and limiting oneself to terms that can contribute to the ex-natter of simplicity. To exemplify with a recent important

pectation value of the real function, of the baryon octet 2achievemenk24], consider the measurement of the magnetic
and decuplet, one obtains, frof84) moment of the() ™, an experiment of extraordinary precision:

pn(Q7)=(—2.024=0.056)w, . At the end of their paper the
" L authors state that this measurement disagrees with the static
4;( Qioi,Px = ;k [(Qi+ QW+ 5l(7n-n)—1]l(eit 0w,  quark model value of 1.84u, and express the hope that the
result will provide a stringent test for future models of
—3(mX )T X 7). (86)  baryon structure. On the reality of this hope our point of
view differs from that of the authors §24]. It seems already
BecauseX; . [(7- ) —1](oy + 0y), gives zero when operat- remarkable that the NRQMn its simplest formpredicts
ing on theP, N, or A states, and becau®‘X, =X, _o,  w(Q~)=—1.84u,, confirming the dominance of a few
we remain with the identityyalid only for the nonstrange terms stated above. We saw, in fact, that the general param-

Ti( 7 1) = T~ 1 (T X ),

04i( 0 o) = 05— (O X 0y) 7, (85

baryons of octet and decuplet etrization for the magnetic moments of the octet baryons has
a large variety of termfEqs.(22)—(24)] and the same is true
2 (aixo.k)z(ﬂxfk)zz_gz QiUiz+4z Qi0y,. for the decuplet baryon§7(a)]. Exploiting Ehl§ v:,;}rlety, it
i#k i 7k would be trivial to add some terms to the “naive” ones and

(87)  obtain the measureg()”) value, even if the latter were

) known with a precision still higher than the extraordinary
Thus the exchange term of the cloudy bag model is alreadyne given if24]. But this would not too be fruitful. Yes, the
contained in the_terms with coeff|C|qu§L andgs in the . o4q) so constructed would produce the measyréd"),
general parametrizatiof22). It may contributgmore or less ;¢ jt would necessarily still be approximate for some other

to g; andgs byt it.seems impossible to disentangle it from quantity: unless the “model” and the true theory were the
all other contributions to them. In other words, there is NOgame thing.

specificity of the cloudy bag model in this respect, if one

does not add other assumptions that may be interesting, but
hard to prove. APPENDIX A: OUTLINE OF THE DERIVATION OF THE

GENERAL PARAMETRIZATION

XI. CONCLUSIONS We outline the calculation of the expectation value of the

" T . _ o
Several points were already listed in the Abstract, toﬂeId operatoV HqcpV in the baryon three-quark auxiliary

which we refer. Here we wish to add or underline the foI-Statel éi); €., we outline the derivation of .the fourth form of .
lowing. (12), expressing the masses as expectation values of a spin-

(1) Using the general parametrization starting from theflavor three-body operat¢Eq. (12)] on the spin-flavor func-

standard QCD Lagrangian with quasichifal curreng light i'/?r:'s Wiv' Ir? the th!tr)d forr_n .Of qu(ll.) th_e only partl of

guarks, we have shown that for each model the effective | QCP that C(_)m“ utes is its projection in th&g,no glu-

“constituent quark” massedM are related to the quark ony Fock sector:

massesan of the QCD Lagrangian and tdqcp; the exist-

ence of aA around 200 MeV intervenes in an essential way. H=>> |3q>(3q|VTHQCDV|3q’><3q’|, (A1)

In all sensible models the effective masses of light quarks are 30,39

&N with £ a number between 2.3 and 3.7. There is, in prin-

ciple, no contradiction in havingm/m~(8-25) and where the sums ifAl) are on all possible three-quark, no-

M,/ M~1.4. gluon Fock states. After normal ordering of all creation and
(2) The circumstance that different models may give,destruction operators iRl and their contraction with those

with a convenient choice of a few parameters in each ofrising from(¢;| and|¢;) [see Eq.(36)], the operatoH

them, results in agreement with the data is due to the fact thdtecomes a function only of the spin-flavor space variables of

the general parametrization derived from QCD usually conthe three quarks if¢;); thus parametrizindd amounts to

tains[5,6(f)] only a few important terms. An appropriate se- constructing the most general scalar operator of s,

lection of parameters in each model considered can produdg’s, andr;'s of the three quarksi €& 1,2,3), including in it,

these few important terms. This can be regarded, if one sof course, only those terms, that have a nonvanishing expec-

wishes, as an extension of the so called “Cheshire cat” printation value ing; . Note that(Sec. I\) we took the quarks in

ciple, introduced originally23] to assess the equivalence of the auxiliary state$e;) to be identical to those in the QCD
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Lagrangian at the chosen renormalization point in the noBecause the space part of the model wave function has, by
flavor-breaking limit. Due to this, the contraction of the cre- construction,L =0, the operator?R (r,r') in (A2) must be
ation and destruction operatorsVﬁHQCDV with those in the  rotation invariant. Becausd’ is a scalar ther ,(o.f) that
auxiliary stateg ¢;) [Eq. (36)] is straightforward. After this enter in the parametrization of the masM},smust be scalar
contraction, the projectiohl of the field operatol HocoV  operators, to be constructed only in terms of the spinsf

in the three-body sector becomes, as stated above, a scathe three quarks; hence the parametrized masses are written
(i.e., rotation-invariant function of the space;, spin o, as
flavor f;, and color operators of the three quafkee sup-
press the color variables when possjb{ene has to write the
most general expression of such_an operator. We c#ll’ it

(we use a different symbol becaude[Eq. (A1)] operates in
Fock space, wheredd’, obtained after contraction of the and the massel!; are

field operators, is just a three-body quantum mechanical op-

erato). The number of independent scalar operators in the IO A _ ‘
spin-flavor space of three quarks is finite; we use for them, in Mi=(i|Hl )= 2 9, (Wl (0 F)[Wh)
general, the symboY ,(o,f) where u specifies the operator ) .

to which we refer. Thughe most general operator of the =(W,|“parametrized masgW,), (A7)
space and spin-flavor variables is necessarily

“parametrized mass%E 9,Y.(o,f) (AB)
o

the result already given in E¢l1).
To deduce the general parametrizat{@2) of the masses
=2 R,(r,r)Y, (o), (A2)  itis now sufficient to list all scalar¥ ,(o,f) formed with the
I spins and flavors of the three quarks. BecauseWttis are
symmetric in spin flavor, the only intervening spin-flavor
whereR,,(r,r’) are operatorgnot necessarily locabceting in - structures are precisely those in E2). This is due to the
the coordinate space of the three quarks(AR) r means following points.
(1) The only possible scalars constructed with the three
r=(ry,ra.ra). spin Paulioy’s are 1 and(o;-oy). The scalaro;xX o) o3
(times any Hermitian real flavor operatdras vanishing ex-
To calculate a physical quantity such as a m@sswe are pectation value on any real spin-flavor state of three par-
doing one must form the expectation ¢A2) on ¢;. Now a ticles, as thew;’s are.
most important point: The auxiliary; is arbitrary, provided (2) The only flavor operator in the strong Lagrangian is
that it has the correct quantum numbers of the stgt¢  PS. Thus onlyP?, P{P§, andP3P3P3 are possible flavor
under consideration(in this case an octet or decuplet operators for three quarksP¢)" with any (intege) n repro-
baryon. With this proviso one can choosg; freely. For  duceP7. Structures such as T°¢) are numbers.
instance, the three-quark part of the corfegd [first addend A similar procedure leads to Eq8) for the parametrized
of the RHS 0f(39)] certainly has configuration mixing; still, masses of the mesoiwith |1 +#0). For the baryon magnetic
one can select an auxiliary wave functigh without con-  moments(22) and(23), the Y, (o,f)'s in (A2) must then be
figuration mixing. It is the task of the transformatidhto  axial vectors under rotations; keeping only terms linea?in
produce configuration mixing, and, of course, the wholeone then obtaing22) and(23) [5].
complexity and variety of Fock states present on the right-

hand side 0(39) Thus we select the auxiliary wave function APPENDIX B: THE COEFEICIENTS IN THE BARYON

¢; to be as simple as possible. An important feature in this PARAMETRIZATION
choice is factorizability. That is, we seleg; as in(8), the _ o
product of a space pai, _o(r1.r,,r3) with orbital angular In [5,6(d),6(f)] we determined the coefficients of the pa-

momentumL=0 and a spin-flavofcolor factor W;(1,2,3)  rametrization (12) from the baryon masses. FoA,
carrying the wholel [see(9) and (10)]. The factorization of 2(1389=2*, and Z(1530=E* we used for this if{6] the
¢; implies for the expectation valugll) (that is, the mass conventional massésesonance peakas given in13]. One
M;) the structure of us[12] noted that it might be preferable to use the “pole”
masses. For the “large” coefficienss, B, andC the differ-
ences between the values of the coefficight®8, C, D, E,
Mi= 2 (Xi—o(NIRL(r, 1) ot INWiIY (o, )W), (a+b), c, andd in (12) derived using the conventional or
# (A3) the pole masses are irrelevant or of little interest. For the
smaller coefficientd, E, (a+Db), ¢, andd, the two deter-
minations may differ significantly. Below we will list the
coefficients obtained from the conventional and pole fits. Be-
cause the general parametrizati@nd therefore its coeffi-
> 9, (WY (o, F)| W) (A4)  cientg refers to the strong interaction onfyhe masses in
(12) are the eigenvalues d¢focp, without the electromag-
netic interactio it is necessary, especially for the smaller
with coefficients, to extract from the experimental masses the
strong part. That is, to determine the coefficients of the pa-
gﬂz(XL:O(r)|Ru(r,r’)|XL:O(r’)>. (A5) rametrization(12), one must construct and use combinations

that we also rewrite as
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of baryon masses independent of the e.m. and isospin break- \j —(N+A)/2, B=A—-N+3E, C=(A—N)/6,
ing (m,#my), at least to first order. We did this already (B1)
[6(d)] when writing Eq.(14). Below we write these combi- — — i A0 e

nations of baryon masses. To determine the “large” coeffi-WhereN=(n+p)/2, A=(A""+A"+A +A")/4, andE

. . . is the coefficient i12) given below in Eq.(B3). As to the
cientsMg, B, andC, the precision stated above is unneces-c oficientsD, E, (a+b), ¢, d, they are determined from the

sary and we simply averaged the Coulomb and isospify|iowing Egs. (B2) which are Coulomb and isospin inde-
effects: pendent to first order

D=(U6)[(S* —A )+ —p)],

E=(1/6)(2*  — A7)+ (1/12(2°—3A+2n),
c=(RY[(E* —E")—(Z* —27)]—2E, (B2
a+tb=E"-3"+(1/2(2°-3A+2n)+2c,
d=0—-A"T—3(E*0-3*"),
where in the above formulas™ stays for
A T=A""+3(n—p).

From Eqgs.(B3), using the conventional and pole values of the masses-also the latter are found ih3Réke recall, e.g.,
A" (cony=1231+1, A*"(pole)=1210.5-1) we get for the coefficientén MeV):

M, B C D E (a+b) c d
pole: 1076 192 4560.3 ~13.8+0.3 5.1+0.3 ~16+1.4 -1.1+0.7 4+3
conv: 1086 184 4920.3 ~16.4+x0.2 2.5:0.2 ~7.5+0.8 +3.1+0.4 —5.7+2

The pole valuegfirst line) were already listed ii13). Note  pole fit, in both cases the nel@d] octet-decuplet mass for-
the appreciable difference in the smaller coefficiéitsod)  mula (14) is satisfied practically with the same remarkable
according to the two determinations; although, for reasons oprecision(16) stated in the text.

which we do not come back hef#2], we tend to prefer the
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