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Relation of constituent quark models to QCD: Why several simple models work ‘‘so well’’
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Dipartimento di Fisica, Universita` degli Studi di Genova, via Dodecaneso 33, I-16146 Genova, Italy

and Sezione di Genova, Istituto Nazionale di Fisica Nucleare (INFN), I-16146 Genova, Italy
~Received 6 July 1995!

We discuss the relationship between exact QCD and constituent quark models~nonrelativistic, bag, or
others! to clarify why different models work reasonably in many cases. For this we use the general parametri-
zation method@G. Morpurgo, Phys. Rev. D40, 2997~1989!# now expressed in terms of the standard current
quark fields~mu andmd a few MeV;ms'150 MeV, at the usual mass renormalization pointq51 GeV!. The
method provides for several quantities the most general exact form of the spin-flavor structure derivable from
the QCD Lagrangian. We can thus determine for many important quantities~masses of lowest baryons and
mesons, baryon magnetic moments, semileptonic decays, etc.!, from a fit to the data, the coefficients of the
parametrization, the same ones that a direct QCD calculation, if feasible, would give. It turns out that only a
few coefficients are relatively important. Because different models, each with its few free parameters, can
produce these terms by some choice of parameters, one can see why models so different as the nonrelativistic
or quasichiral models work ‘‘well.’’ Finally, expressing the coefficients in the general parametrization dimen-
sionally in terms of current quark masses andL, we find that thems expansion of broken SU~3!3SU~3! is just
an expansion inDm/(jL)'ms/(jL)'0.3. Thej’s determined from different data are rather close~from 2.3
to 3.7!. The resulting effective light quark masses in constituent models are of order~jL!. None of the above
conclusions depend on whether or not the chiral limitmu ,md ,ms→0 is mathematically sound.

PACS number~s!: 12.39.Th, 12.38.Aw, 12.39.Ba
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I. INTRODUCTION

The connection between QCD and the nonrelativis
quark model@1# ~NRQM! of light hadrons~called also the
naive model! has been rather mysterious for many years. T
NRQM not only works qualitatively in the classification o
light hadrons, but also leads to fairly goodquantitativepre-
dictions. How can this happen and be compatible with
description so dissimilar as the chiral one? Can both desc
tions be derived from QCD? If so, what is the relationsh
between the two, and what is the relationship between c
rent ~quasichiral! quarks and constituent ones, and, firs
what are constituent quarks? Incidentally, the last two qu
tions apply not only to the NRQM but also to any constitue
or potential model, such as the MIT bag model@3,2~b!#, of
‘‘relativistic’’-type with Dirac four-spinors.

To exemplify, consider the De Ru´jula, Georgi, and
Glashow~DGG! treatment@4#, which was the first attempt to
connect the NRQM to the QCD Hamiltonian, starting th
‘‘QCD-inspired’’ treatments. DGG write the QCD Hamil
tonian and calculate, in the semirelativistic Fermi-Breit a
proximation, the one-gluon exchange QCD potential b
tween a quark and an antiquark or between two quarks.
examining the effect of the hyperfine interactionsi•sk on
the masses of the lowest hadron states, DGG derive a v
for DM . From their Eqs.~5! and ~11! they obtain for
DM /Ml values around 0.35 and conclude ‘‘The value
MP /Ml given by~5! or ~11! does not coincide with the value
obtained from the pseudoscalar meson masses via cur
algebra. Ours are effective masses of quarks bound in h
rons, not the masses appearing in the phenomenolog
Lagrangians describing the breaking of SU~3!3SU~3!.’’ This
statement is correct, but cryptic. It leaves obscure the rea
why, having set the task of calculating the hadron masse
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terms of parameters of the QCD Hamiltonian~including
masses!, DGG must conclude that the masses in their fin
formulas are something different; moreover, this ‘‘effectiv
quark mass’’ appears abruptly in their treatment, witho
having been defined. Of course, in QCD the quark mass
are running; yet it is not clear from DGG how the quar
massesMi andMk in their term (MiMk)

21~si•sk! of the
hadron masses are related to the massesm in the Lagrangian
of QCD.

Recently we have shown@5–7# that a description of
constituent-type can be derived exactly from a relativist
field theory of quarks and gluons, such as QCD. It appear
that any constituent model is nothing but a convenient p
rametrization of certain physical quantities~e.g., hadron
masses, magnetic moments, etc.! in the spin-flavor space. It
was shown@5# that the general structure of this parametriza
tion can be derived exactly~and thus relativistically, though
noncovariantly! from QCD, using general properties o
QCD, namely, the flavor structure of the Lagrangian and t
fact that gluons are flavorless and neutral. However, we l
open the relationship between current and constituent qua
in particular their masses; we shall fill this gap here.

We divide the presentation into two parts, starting wit
pure QCD and concluding with models. In the first pa
~Secs. I–VII! we express the parameters of the general p
rametrization in terms of the QCD masses of current quar
and show that~a! expanding the parameters in powers o
Dm5ms2m, the scale of this expansion~'3L! extracted
from the baryon and meson masses is found to coincide w
the standard scale of thems expansion in broken SU~3!
3SU~3! and ~b! one is led to a natural definition of the ef-
fective mass of a light ‘‘constituent quark,’’ the scale of'3L
~more precisely, from 2.3L to 3.7L! just mentioned.

In the second part~Secs. VIII–XI! the general parametri-
3754 © 1996 The American Physical Society



53 3755RELATION OF CONSTITUENT QUARK MODELS TO QCD: . . .
zation is shown to allow us to check any proposed const
ent quark model in a way more useful than a direct comp
son of the model predictions to masses, magnetic mome
etc.; applying the analysis to several models, we clarify w
many are ‘‘so good.’’

Two points on notation and language are in order.~a!
Above, we spoke of ‘‘current’’ quarks and ‘‘quasichiral
quarks. The two are synonymous and refer to the lig
(u,d,s) quark fields in the Lagrangian of QCD renormalize
at q>1 GeV. ~b! Except when noted,M will be used to
denote the effective mass of constituent quarks. Inste
m(q) will be the running quark masses of QCD at the ren
malization pointq; for the standardq51 GeV, we omit writ-
ing q and call such masses simplymu , md , or ms ~mu and
md of a few MeV andms'120–180 MeV!.

II. THE GENERAL PARAMETRIZATION OF BARYON
MASSES IN TERMS OF CURRENT QUARKS

Call HQCD the exact Hamiltonian of QCD. Its strong pa
is

HQCD5Hc1E d3x@m~ ūu1d̄d1 s̄s!1Dms̄s#

[Hc1E d3x~mC̄C1DmC̄PsC!, ~1!

where, for simplicity, we neglected intrinsic isospin brea
ing, setting

mu5md[m, Dm[ms2m, ~2!

andHc is the chiral-invariant part of the Hamiltonian. On th
right in ~1! C is the quark field,

C~x!5Uu~x!

d~x!

s~x!
U , ~3!

andPs is the projector on the strange quark field

U0 0

1
U[~12l8!/3,

~4!
Pss5s, Psu50, Psd50.

As to flavor, it is broken only by theDm term. Recall that
M K

2 /M p
2 calculated usingHQCD ~1! gives@8# ms/m'25 @or,

depending on the corrections@9#, (ms/m)58–25#. This
same QCD Hamiltonian leads to the equally time-hono
value ~from 45 to'60 MeV! of thepN s term @10,11#.

Now consider the general parametrization. In Refs.@5–7#
we selected the renormalization point of the running qu
masses in the region of lowq’s, so as to haveHQCD ex-
pressed in terms of renormalized quark fields with mass v
ues in a range typical of those usually assigned to constitu
quarks. But, in fact, the parametrization in@5–7# is indepen-
dent of the choice of the renormalization point of the qua
masses. Because here we intend to relate constituent
current quarks, we now think of the QCD Hamiltonian e
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pressed in terms of the standard quark fields with standard
masses@8,10#, a few MeV formu andmd , corresponding to
the conventional renormalization point atq'1 GeV. The
coefficients of the parametrization are also thought of as ex-
pressed in terms of the standard masses. Accordingly, we
adopt the standardu, d, ands for quark fields instead ofP ,
N , andl of Ref. @5#. We stress that adopting this standard
choice of renormalization point does not alter the deduction
@5# of the general parametrization. We recall briefly below
such a treatment.

We start with the masses of the lowest8 and10 baryons:

Mi5^c i uHQCDuc i&. ~5!

HereHQCD is the QCD Hamiltonian~1! anduc i& is the exact
eigenstate of thei th 8 and10 baryonat rest:

HQCDuc i&5Mi uc i&. ~6!

To parametrize a property of the lowest baryons, one imag-
ines constructing the exact baryon eigenstatesuc i& by apply-
ing a unitary transformationV to a set of simple three-quark
statesuf i& ~important: in @5–7# we called these statesuf i&
‘‘model states’’; now, to avoid any possibility of confusion
with constituent quark models, we will refer touf i& ’s as
‘‘ auxiliary states’’!:

uc i&5Vuf i&. ~7!

The auxiliary statesuf i& andV are defined in Ref.@5#,
where it was shown how, in principle,V can be constructed
~see also Sec. IV!.

As shown in@5# it is convenient to select the wave func-
tion f i of the auxiliary states as products of a space~or
momentum! factor XL50~r1,r2,r3! with orbital angular mo-
mentumL50 and a symmetrical spin-flavor factorWi con-
structed in terms of the spin-flavor variables of three quarks:

f i5XL50~r1 ,r2 ,r3!•Wi . ~8!

Wi accounts for all the angular momentum of the statei , and
therefore has necessarily the SU~6! spin-flavor structure. For
instance, for the protonp ~S means symmetrization over
1,2,3! and forD11 it is

Wp~↑ !5~18!21/2S@a1~a2b32a3b2!u1u2d3#, ~9!

WD11~↑ !5a1a2a3u1u2u3 . ~10!

We underline that allphysical results~e.g., the baryon
masses to be considered now! are obviously independent of
the choice of the auxiliary statesuf i&. They only depend on
HQCD.

Let us recall the general parametrization@5,6~d!,6~f!# of
the massesMi of the8 and10baryons. As shown in Ref.@5#
it is ~i specifies the baryon!

Mi5^c i uHQCDuc i&5^f i uV†HQCDVuf i&

5^Wi u ‘‘parametrized mass’’uWi&, ~11!

where the last form is what we call the ‘‘general parametri-
zation.’’ @Wi are the spin-flavor functions defined in~8!; the



i

e

e

t

-

f

,

t

3756 53G. DILLON AND G. MORPURGO
fact that the space variables have disappeared from the
form of ~11! is due to the factorizability~8! of f i .# From
Refs.@5,6#~f! it is ~compare also Appendix A!

‘‘parametrized mass’’5M01B(
i
Pi
s1C(

i.k
~si•sk!

1D(
i.k

~si•sk!~Pi
s1Pk

s!

1E (
iÞkÞ j
~ i.k!

~si•sk!Pj
s1a(

i.k
Pi
sPk

s

1b(
i.k

~si•sk!Pi
sPk

s

1c (
iÞkÞ j
~ i.k!

~si•sk!~Pi
s1Pk

s!Pj
s

1dP1
sP2

sP3
s . ~12!

In ~12! thesi ’s are the Pauli matrices; the projectorsP i
s on

the strange quark were defined above in~4!.
A few comments on~12! follow. Because the different

masses of the lowest octet and decuplet baryons are 8~bar-
ring e.m. and isospin corrections!, Eq. ~12!, containing nine
parameters (M0,B,C,D,E,a,b,c,d), is certainly true, no
matter what is the underlying theory. Nevertheless, Eq.~12!
can be regarded as an exact deduction from QCD in
following sense: We could not write the parametrization~12!
if the exact statesuc i& were not related, as in~7!, to a setuf i&
of three-quark, no-gluonstates. This is the feature of QCD
that enters. This being clear, the exact parametrization~12! is
not trivial; the values of the eight parameters obtained fitt
the masses@in the analysis only (a1b) intervenes# decrease
strongly, moving to terms with increasing number of indic
~that is @6~f!#, with increasing number of gluons exchang
and/or flavor-breakingP k

s factors!.
Note that, in deriving~12! from QCD,DmC̄PsC in the

Lagrangian is treated exactly; Eq.~12! is always true, in
particular no matter how large isDm in the QCD Lagrang-
ian.

In @5,6~f!# we gaveM0, B, C, D, E, (a1b), c, andd.
Here, we reanalyze the data~Appendix B! to determine
M0,B,...,d after subtraction of electromagnetic and intrins
isospin effects, using~for wide resonances! both the pole
@12# and the conventional masses@13#. The pole values of
parameters in~12! are given below in~13!, omitting errors, if
unimportant. The parameters from conventional bary
masses are similar~Appendix B!, but the small ones are no
identical. The pole parameters~in MeV! are

M051076, B5192,

C545.6, D5213.860.3, ~a1b!521661.4,
~13!

E55.160.3, c521.160.7, d5463.
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d
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The hierarchy of these numbers is evident. The values~13!
decrease so strongly that, omittingc and d, the following
mass formula results@6~d!#:

1
2 ~P1J0!1T5 1

4 ~3L12S12S0!. ~14!

The symbols stand for masses andT is the following com-
bination of decuplet masses:

T5J*22 1
2 ~V1S*2!. ~15!

The combinations of masses in~14! are independent of elec-
tromagnetic effects to zero order in flavor breaking. This is
the reason for the charge combinations in~14! and~15!. The
data satisfy Eq.~14! as follows:

left-hand side51132.661.2,
~16!

right-hand side51132.660.1,

an impressive agreement confirming the smallness of th
terms neglected in~12!. One more remark: A QCD calcula-
tion, if feasible, would express each (M0,B,...,c,d) in ~12!
in terms of the quantities in the QCD Lagrangian, the run-
ning quark masses—normalized at anyq that we like to
select—and the dimensional~mass! parameterL of QCD
@as(q

2)54p(b0 ln q
2/L2)21 for q@1 GeV#; for instance

~recall that we setmu5md[m!:

M0[LM̂0„m~q!/L,ms~q!/L…, ~17!

whereÂ is some function, and similarly forB, C, D, E, a, b,
c, andd. To simplify the notation, in what follows we set
L51, reinstallingL when appropriate, and suppress the care
on the RHS ofM0, etc.

Note finally that, while the derivation of the general pa-
rametrization needs only general properties of the Lagrang
ian of QCD, the asymptotic freedom typical of QCD enters
when we introduceL'150–200 MeV in~17!, as will be
essential in what follows.

III. PARAMETRIZATION OF OCTET BARYON
MAGNETIC MOMENTS AND MESON MASSES

For later use, we display also the parametrizations o
magnetic moments of octet baryons@5# and the masses of
lowest meson nonets@6~b!#.

Baryon magnetic moments

Introduce the magnetic moment operator in the rest frame

M5
1

2 E d3r @r3 j ~r !#, ~18!

wherej ~r ! is the space part of the electromagnetic current a
t50:

j m~x!5 ie@ 2
3 ū~x!gmu~x!2 1

3 d̄~x!gmd~x!2 1
3 s̄~x!gms~x!#

[
ie

2
@C̄~x!~l31

1
3l8!gmC~x!#

[ ie@C̄~x!QgmC~x!#. ~19!
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The chargeQ in ~19! is, in terms of thel’s or of the projec-
torsPu, Pd, andPs,

Q5 1
2 ~l31

1
3l8!5 2

3P
u2 1

3P
d2 1

3P
s. ~20!

The formula that now replaces~11! for the masses is

Mi5^c i uMzuc i&5^f i uV†MzVuf i&

5^Wi u ‘‘parametrized magn. moment’’uWi&. ~21!

Here we give the general parametrization of magnetic m
ments, keeping only terms linear inPs. For baryon masses
Eq. ~12! was exact to all orders inPs; the same is true for Eq.
~28! below for meson masses. For the magnetic moments
might easily write the parametrization to all orders inPs, but
then we would have too many parameters to make it use
The terms neglected, bilinear or cubic inPs, are expected to
be at most 5% of the dominant term@6~f!#. Keeping only
terms linear inPs the parametrization of the magnetic mo
ments of the baryon octet has eight terms@5,14#:

‘‘parametrized magn. moment’’5 (
n50

7

gn~Gn!z ~22!

with

G05Tr@QPs#(
i

si , G15(
i
Qisi , G25(

i
QiPi

ssi ,

G35(
iÞk

Qisk , G45(
iÞk

QiPi
ssk , G55(

iÞk
QiPk

ssk ,

~23!

G65(
iÞk

QisiPk
s , G75 (

iÞkÞ j
QiPk

ssj .

As remarked in@7~a!# the coefficientg0 of G0 is expected,
due to general arguments, to be'102 times smaller thang1
and therefore negligible. OmittingG0, the data determine the
other seven coefficientsg1 ,g2 ,...,g7 . Fitting the observed
moments gives~in proton magnetons!

g152.79, g2520.94, g3520.076, g450.41,

g550.097, g6520.134, g750.155, ~24!

showing that the first two terms are appreciably larger th
the remaining ones; thus one understands why the ‘‘naiv
NRQM ~in which only g1 andg2 are kept! gives a fair de-
scription of the magnetic moments. Indeed, neglecting, b
sidesg0 , all coefficients fromg3 to g7 we remain with the
‘‘naive’’ @1~a!# additive form of the ‘‘parametrized magnetic
moment’’ operators: namely,

g1(
i

@11~g2 /g1!P1
s#Qisi . ~25!

With the above values ofg1 andg2 ,

g152.79, g2 /g1520.34, ~26!
o-

we

ful.

-

an
e’’
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~25! gives a fit~Ref. @5#, Fig. 1! correct to about 15% of all
octet magnetic moments. Note that keepingg0 and neglect-
ing g7 , which is also expected@6~f!# to be small because it is
a two-gluon exchange, flavor-breaking term, the values ofg1
andg2 in ~22! would remain essentially the same as listed in
~24!.

Meson masses

The general parametrization of meson masses proceeds
for baryons. Here we give the parametrization only for the
lowest pseudoscalar and vector mesons with isospinIÞ0
~that is,p, K, r, andK* !. TheI50 mesons~h, h8, v, andf!
are treated in@6~b!#. Equation~11! now becomes

Mi5^c i uHQCDuc i&5^f i uV†HQCDVuf i&

5^wi~1,2!u ‘‘parametrized mass’’uwi~1,2!&, ~27!

where

‘‘parametrized mass’’5A1B~P1
s1P2

s!1Cs1•s2

1Ds1•s2~P1
s1P2

s!. ~28!

Similar formulas~@5,6~b!#! could be written for any power of
the masses.

Once more the parametrization~28! is exact, to all orders
in Ps. Again this formula looks trivial: four masses and four
parameters. But two aspects of~28! are not trivial, as for
baryons:~1! Its structure is typical of a NRQM description,
yet ~28! follows exactly from QCD, and~2! the coefficients
decrease in magnitude fromA to D @see Eq.~31!#.

In the last form of~27! thewi ’s are the spin-flavor func-
tions

wi~1,2!5x i~1,2! f i~1,2! ~29!

for the auxiliary statesuf i& of a quark ~1!–antiquark~2!
corresponding to each mesonp, K, r, andK* ; in ~29! the
x i ’s are obviously a singlet spin function forp andK, and a
triplet for r andK* ; the f i ’s are the flavor functions, e.g.,
u1s̄2 for aK

1 or K*1. In ~28! A, B, C, andD are four real
parameters. The other symbols are obvious. Of course@see
~17!# A, B, C, and D are L times functions ofm(q)/L,
ms(q)/L, that could be determined if we were able to calcu-
late with QCD.

Recalling thats1•s2523 for J50 ands1•s2511 for
J51, the meson masses~indicated with the meson symbols!
are

p5A23C~5138!, K5A23C1B23D~5495!,
~30!

r5A1C~5770!, K*5A1C1B1D~5894!.

Therefore~in MeV!,

A5612, B5182, C5158, D5258. ~31!

We conclude with the following remark. The pion mass is

p5A23C5138 ~32!
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with A5612 andC5158. The idea that in the perfect chiral
limit ~mass zero ofu andd quarks! the pion would be mass-
less, that is

A23C50, ~33!

is almost universally held. Then the pion is looked on as
quasi Goldstone boson, getting its mass from explicit brea
ing of chiral symmetry due to the smallu and d quark
masses. This description, extended to all mesons of the lo
est pseudoscalar octet, makes them all quasi Goldsto
bosons. We will not discuss this standard chiral pictur
@which accounts for, but is not strictly required by, the grea
classical successes of current algebra plus PCAC~partial
conservation of axial vector current!#. We must add, never-
theless, that the pion mass on the RHS ofA23C5138 is not
so small on the scale of the parametersA, B, C, andD.
Because of the 3 in front ofC, a percentually minor change
of C ~possibly produced in QCD by a comparatively sma
change ofas! might equally well lead toA23C>0 or to
A23C, say 350, making the pion mass comparable to th
others in the octet.

IV. THE DEPENDENCE OF THE TRANSFORMATION V
ON THE RENORMALIZATION POINT OF THE

RUNNING QUARK MASSES IN THE LAGRANGIAN

We digress briefly to examine more closely the questio
of the choice of the mass renormalization point in construc
ing the parametrization. We stated that the parametrizati
@thusV in Eqs.~7!, ~11!, ~21!, or ~27!# can be introduced, in
principle, for any choice of the renormalization pointq for
the quark masses in the QCD Hamiltonian; also forq'1
GeV, and, therefore,mu and md a few MeV. As already
stated, it is important to have this clear because in Re
@5–7# we were thinking of the QCD Hamiltonian expresse
in terms of quark masses renormalized at a low value ofq, so
as to haveu and d masses in the range—a few hundre
MeV—usually assigned to constituent quarks. That choice
possible but unnecessary. Here we have adopted the conv
tional choice.

To see where the renormalization point enters inV, we
express, therefore, from now on, the QCD Hamiltonian i
terms of quark fields with massesm(q) defined at some defi-
nite freely chosen renormalization four-momentumq. De-
compose the QCD Hamiltonian as

HQCD5Ha1Hb , ~34!

where Hb is the quark-gluon interaction plus the flavor-
breaking mass term andHa is all the rest; thusHa is flavor
invariant@all quarks in it with massm(q)#. Introduce a com-
plete set of statesun(q)& of Ha :

Haun~q!&5Ea~q!un~q!&, ~35!

whereq indicates the selected renormalization point. To b
definite we refer below to baryons; for mesons everythin
goes similarly.

Write the auxiliary statesuf i&, introduced in~11!, as

uf i&5(
p,r

Cr1r2r3
i ~p1 ,p2 ,p3!ap1r1

† ap2r2
† ap3r3

† u0&, ~36!
a
k-

w-
ne
e
t

ll

e

n
t-
on

fs.
d

d
is
en-

n

e
g

where(p,r stands for(p1p2p3 ,r1r2r3
. In ~36! the apr

† are cre-
ation operators of quarks of momentump and spin-flavor-
color indexr ~we omit color except when necessary!; u0& is
the vacuum state, in a Fock space of quarks and gluons. I
constructing the auxiliary states the masses of quarksu, d,
and also s are taken equal. For simplicity—this is not
necessary—we identify this value with the~common! mass
m(q) of u and d at the renormalization pointq. In ~36!
Cr1r2r3
i (p1 ,p2 ,p3) is the momentum space function of the

auxiliary state of the three quarks in the rest frame;
Cr1r2r3
i (p1 ,p2 ,p3) contains a factord~p11p21p3!. The quark

spin states are taken as four-spinors with the upper compo
nents

U10U or U01U
and two zeros in the lower components. A transformation of
Foldy-Wouthuysen type is part ofV. The auxiliary states
uf i& ~36! can be seen@5# as the lowest~degenerate! eigen-
states of some auxiliary HamiltonianH, defined in the Fock
sector of three quarks, no antiquark, no gluon;H is useful
only to show howV can be constructed by the adiabatic
procedure~Appendix to Ref. @5#!. As already stated, no
physical result, in particular baryon or meson masses o
magnetic moments, depends on the choice of the auxiliary
states, that is, ofH.

We now characterizeV. The transformationV is simply a
correspondence between a certain set of auxiliary statesuf i&
and the exact statesuc i& of interest. To characterizeV, ex-
pand the exact stateuc i& in the complete set of statesun(q)&
of Eq. ~35!:

uc i&5(
n~q!

un~q!&^n~q!uVuf i&. ~37!

In Eq. ~37! the sum~that is, the expansion of the exact state
in terms of Fock quark-gluon states! extends to all possible
eigenstatesn(q) of Ha . Clearly Eq.~37! definesV through

^n~q!uVuf i&[^n~q!uc i& ~38!

for any n(q); thusV can be defined by selecting freely the
renormalization pointq of the running quark mass, as long
as, for anyq, the statesn(q) are a complete set. Less for-
mally, Eq. ~37! means that the exact stateuc i& has an ex-
tremely complicated structure in Fock space. Schematically

uc i&5uqqq&1uqqqq̄q&1uqqq,Gluons&1••• , ~39!

where the ellipsis indicates states~in the P50 frame! with
any numbern of quarks,n23 antiquarks, and any number of
gluons, provided only that the conserved quantum number
of the Fock states on the RHS of~39! ~color, charge, bary-
onic number, strangeness, parity, angular momentum! are the
same as those ofuc i& ~uf i& has, of course, the same quantum
numbers asuc i&!.
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V. THE EXPANSION OF THE MESON MASS
PARAMETERS IN TERMS OF Dm[ms2m>ms

We now analyze the mass parametrization of the low
hadrons. For simplicity consider first theIÞ0 mesons. The
result of a full QCD calculation of the ‘‘parametrized mass
~28!, showing the most general dependence of the ‘‘para
etrized mass’’ on the quark masses in the QCD Lagrang
can be written as

‘‘parametrized mass’’

5f~m,Dmum1DmP1
s ,m1DmP2

s!

1~s1•s2!F~m,Dmum1DmP1
s ,m1DmP2

s!. ~40!

Here the two functionsf andF of m andDmmultiplying
the spin-independent and spin-dependent parts are assu
to result from a QCD calculation ofV†HQCDV after contrac-
tion of all creation and destruction operators and integrat
on the space~or momentum! variables. That is, we think off
andF as calculated, from first principles, in QCD.

The functionsf andF depend on the masses in the QC
Lagrangian,m andDm, in two different ways, as illustrated
in Fig. 1. ~a! A first dependence comes from the extern
lines and carries the indices of the quarks in the auxilia
state; the QCD Lagrangian shows that this dependence
tailsDm multiplied by the projectorsP i

s. If, doing the QCD
calculation, we keep allP i

s @without exploiting (P i
s)n5P i

s#,
the dependence off andF on theP i

s’s is uniquely deter-
mined. In Eq.~40! this dependence onDmPi

s appears in the
arguments off andF on the right of the vertical bar. In fact
it is slightly more convenient, as we did, to insert as arg
ments on the right of the vertical bar in~40! (m1DmPi

s)
instead ofDmPi

s. ~b! The second dependence off andF on
m andDm comes from internal quark loops in the ‘‘blob’’ of
Fig. 1. This dependence is noted in the arguments on the
of the vertical bar inf andF. It goes without saying that,
though the numerical values of the quark running masses
given q are definite, we imply, in speaking of them depen-
dence off andF, that QCD makes sense also in a range
values of these masses~as QED can be expressed in terms
the electron mass, though the latter is 0.51 MeV!.

Equation~40! can be written slightly more compactly as

A1B~P1
s1P2

s!1@C1D~P1
s1P2

s!#~s1•s2!

[f~m,Dmum1 ,m2!1F~m,Dmum1 ,m2!~s1•s2!,

~41!

FIG. 1. Schematic diagram representing the ‘‘external’’ lines
and 2 and the ‘‘internal’’ box in the general parametrization of
meson property;f is the auxiliary state. The ‘‘box’’ contains all
sorts of gluon lines and quark closed loops.
est
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where we set

m15m1DmP1
s , m25m1DmP2

s , ~42!

andf(m,Dmum1 ,m2) andF(m,Dmum1 ,m2) are symmetric
in 1,2. Exploiting now

~Pi
s!n5Pi

s ~ i51,2! ~43!

and recalling

ms5m1Dm, ~44!

we obtain~P1
sP2

s terms do not contribute!

f~m,Dmum1 ,m2!5f~m,Dmum,m!1@f~m,Dmums ,m!

2f~m,Dmum,m!#~P1
s1P2

s!,
~45!

F~m,Dmum1 ,m2!5F~m,Dmum,m!1@F~m,Dmums ,m!

2F~m,Dmum,m!#~P1
s1P2

s!,

so that

A5f~m,Dmum,m!,

B5f~m,Dmums ,m!2f~m,Dmum,m!,
~46!

C5F~m,Dmum,m!,

D5F~m,Dmums ,m!2F~m,Dmum,m!.

ReinstallingL ~see the end of Sec. II!, we have, more ex-
plicitly,

f~m,Dmum,m![Lf~m/L,Dm/Lum/L,m/L!,
~47!

F~m,Dmum,m![LF~m/L,Dm/Lum/L,m/L!,

with similar expressions for all other quantities. Again, with
some exceptions, we setL51 in what follows.

The ratiosB/A andD/C are

B

A
5

f~m,Dmums ,m!2f~m,Dmum,m!

f~m,Dmum,m!
,

D

C
5
F~m,Dmums ,m!2F~m,Dmum,m!

F~m,Dmum,m!
. ~48!

From now on, to simplify the notation, we omit the argu-
ments on the left of the vertical bar in all functions; we keep
the memory of them by the notation

f~m,Dmum,m![f~ um,m!, ~49!

using a similar~ u symbol for all the intervening functions. It
is important to recognize that if a ratio such as those in Eq.
~48! above is expanded inDm, no contributions to first order
in Dm arise from theDm dependence of the functionsf and
F in the arguments on the left of the vertical bar. In other
words, for the first order terms in the above mentioned ex-
pansion, one can forget theDm dependence off andF on
the left of the bar and consider only theDm dependence
from ms5m1Dm in f andF.

1
a
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We now expandF(m,Dmums ,m) andF(m,Dmum,m) as
well as f(m,Dmums ,m) and f(m,Dmum,m) in series of
Dm, assuming the expansion possible atm. Reinstalling here
L, we have

f„u~m1Dm!/L,m/L…/f~ um/L,m/L!

511~Dm/b0L!1g0~Dm/b0L!21••• ,
~50!

F„u~m1Dm!/L,m/L…/F~ um/L,m/L!

511~Dm/bhL!1gh~Dm/bhL!21••• ,

whereb andg are some coefficients~the indexh refers to
the hyperfine terms, the index 0 to the spin-independ
ones!.

RecallingDm@m and thusDm>ms we have

B/A5~ms /b0L!1g0~ms /b0L!21•••,

D/C5~ms /bhL!1gh~ms /bhL!21••• . ~51!

If the series on the RHS of~51! converges fast enough, w
have@compare the experimental values ofA, B, C, andD in
~31!#

ums /b0Lu'uB/Au50.30, ums /bhLu'uD/Cu50.37.
~52!

Note thatB/A and D/C ~and thereforeb0 and bh! have
opposite signs.

In fact, assuming that the second term in the expansi
~51! is of order ~first term!2 with an unknown sign, one
should write, instead of~52!,

ums /b0Lu50.3060.09, ums /bhLu50.3760.13.
~53!

This scale inms is compatible with that assumed in chira
perturbation theory@11#, where the expansion paramet
governing kaon physics is taken to be [M (K)/S] 2 „M (K)
5kaon mass andS a mass between that of ther and of a
scalar meson'1 GeV, thus, [M (K)/S] 2 between 0.25 and
0.40.… Note that the actual values of the coefficientsb de-
pend, likeDm orms , on the chosen renormalization pointq
and we refer here to the standard pointq51 GeV.

However, we stress that, in determining these expans
parametersums/bLu, no assumption is made about the exis
ence of the chiral limit of SU~3!3SU~3!, that is, about the
behavior off(um,m) or F(um,m) nearm50. Nonanalytic-
ity at m→0 might imply that expanding fromm up toms is
not possible. But even then we can proceed exactly as ab
only expanding inDm nearms and moving down tom. With
trivial changes the same expansion holds.~More generally,
ent

e

ons

l
er

ion
t-

ove,

none of the above or the following conclusions depends on
whether the exact chiral limitmu ,md ,ms→0 is mathemati-
cally sound or not.!

The scale of the expansion inms is derived here simply
from the B/A ratio 10.30 or D/C ratio 20.37, typical
flavor-breaking effects, e.g., D/C5[F(ums/L,m/L)/
F(um/L,m/L)]21520.37. Indeed, long ago~before @8#!,
instead of thems expansion scale, one used to speak of a
flavor-breaking expansion. Below we may use occasionally
this language; becausems>Dm, the two are equivalent; the
difference, of course, with respect to old times is that now
the expansion is not inDm/m ~as it was originally! but in
Dm/(bL).

As to the convergence of the expansion~51!, we now will
see that it is supported by the data in the analogous case o
baryon masses.

VI. THE EXPANSION OF BARYON MASS PARAMETERS
IN TERMS OF Dm[ms2m>ms

In the baryon masses@Eq. ~12!# consider first the hyper-
fine terms, with coefficientsC, D, E, b, and c. To
d53dh1d0 contribute the hyperfine term (3dh) and the
spin-independent one (d0). Experimentally it is impossible
to determine the magnitude of each. As tob, the data deter-
mine onlya1b.

As for mesons~Sec. V! we write the coefficients of hy-
perfine terms as

(
i.k

FC1D~Pi
s1Pk

s!1E (
jÞk,i

Pj
s1bPi

sPk
s

1c (
jÞk,i

~Pi
s1Pk

s!Pj
s1dh (

jÞk,i
Pk
sPi

sPj
sG~si•sk!

5 (
iÞkÞ j
~ i.k!

F~m,Dmumi ,mk ;mj !~si•sk!, ~54!

where the notationx,y;z in F(m,Dmux,y;z) recalls that
such a function~derivable in principle from QCD! is sym-
metric in x,y, but not necessarily inz. As for mesons, we
omit the arguments on the left of the bar, setting

F~m,Dmumi ,mk ;mj ![F~ umi ,mk ;mj !. ~55!

Again set, as in~42!,

mi5m1DmPi
s ~56!

and use the property~43!. The functionF(ux,y;z) on the
RHS of ~55! is determined for values ofx, y, andz that can
be eitherm or ms5m1Dm. To simplify the formulas we
write s for ms . Thus
C5F~ um,m;m!, D5F~ us,m;m!2F~ um,m;m!, E5F~ um,m;s!2F~ um,m;m!,

b5F~ um,m;m!22F~ us,m;m!1F~ us,s;m!,
~57!

c5F~ um,m;m!2F~ us,m;m!1F~ us,m;s!2F~ um,m;s!,

dh5F~ us,s;s!2F~ um,m;m!1F~ um,m;s!2F~ us,s;m!12$F~ us,m;m!2F~ us,m;s!%.
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We also consider the spin-independent part of the param
zation. It is

M01B(
i
Pi
s1a(

i.k
Pi
sPk

s1d0P1
sP2

sP3
s5f~ um1 ,m2 ,m3!.

~58!

In ~58! f is, like F, a function ofm andDm and of the three
indexed masses~or better ofm1/L, etc.! now symmetric in
1,2,3~thus the notationx,y;z in F is replaced byx,y,z!. It is

M05f~ um,m,m!, B5f~ us,m,m!2f~ um,m,m!,

a5f~ um,m,m!22f~ us,m,m!1f~ us,s,m!,
~59!

d05f~ us,s,s!23f~ us,s,m!13f~ us,m,m!2f~ um,m,m!.

Proceeding as for mesons, consider first the hyper
terms and the ratioD/C>20.3. Because it is

D

C
5
F~ ums ,m;m!2F~ um,m;m!

F~ um,m;m!
, ~60!

we can again expandF in powers ofDm/L at m. The ex-
pansion is similar to~50!, but of course not identical, sinc
the functionF of three variables in~54! differs from theF in
~41!. We thus have

D/C5~ms /bh8L!1gh8~ms /bh8L!21••• ~61!

with bh8 andgh8 replacingbh andgh in ~50!. BecauseD/C is
now20.3, instead of20.37 for mesons,~53! is replaced by

ums /bh8Lu'0.3060.09 ~62!

~having again, arbitrarily, estimated the uncertainty as
square of the first term in the expansion! so that the flavor-
breaking scale, or, if one prefers, the SU~3!3SU~3!-breaking
scale, (bh8L) for baryons, is near to that, (bhL), for mesons.
Note that the signs ofbh for mesons and baryons are th
same. While for mesons the convergence of the expan
~50! was assumed, here the availability of more coefficie
@and their strong decrease—see~13!# allows a check. We
show first in general that the experimental hierarchy of
coefficients, together with Eqs.~57! and ~59! expressing the
coefficients in terms off andF, strongly indicates conver-
gence in (Dm/L); next we analyze the situation in mor
detail.

The general argument is as follows. Expanding in ser
of Dm the expressions of the coefficients given in~57! and
~59!, it appears immediately that the expansion starts wit
term of orderDm for D andE of order (Dm)2 for a, b, and
c and of order (Dm)3 for d0 anddh . Of course to see this we
do not need~57! and~59!. Just look at the number ofPs that
multiply each coefficient, since in the Lagrangian only t
productDmPs intervenes. Thus,

D,E5O~Dm!, a,b,c5O~Dm2!, d0 ,dh5O~Dm3!.
~63!
tri-
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Here byO(Dm3) we mean, for instance, that the first non-
vanishing term in an expansion inDm ~or betterDm/L! is of
third order. This general result alone, together with the ex-
perimental values of the coefficients, suggests that terms as
sociated with higher powers of (Dm/L) are indeed smaller.

The power inDm/L is, however, not the only reason for
the striking decrease in the coefficients. For a more detailed
analysis, consider firstE/C>0.11. As noted in Ref.@6~f!#,
where the hierarchy of the coefficients was discussed in de
tail, the term associated withE has just onePs and therefore
is of the same order inDm/L asD. However,E multiplies a
three-index term whereasD multiplies a two-index term.
Three-index terms should arise, in a QCD calculation, from
diagrams exchanging at least one more gluon than diagram
giving the main contribution to terms with two indices@15#.
Because hyperfine terms represent chromomagnetic interac
tions of two dipoles, they should be, intrinsically, short
range. We takeuE/Du>0.37@16# as an estimate of the reduc-
tion due to this additional gluon~hard, on the average! and
refer to @6~f!# and Appendix B for some additional detail.

With the reduction factor for ‘‘one gluon more’’ 0.37 and
the flavor scaleDm/(bh8L)50.3, the order of magnitude of
ucu is expected to be (0.3730.3)uDu50.11uDu>1.5. It is
~Appendix B! c521.160.7. We get an estimate forudhu by
multiplying ucu by 0.3; it is udhu510.360.2.

Consider now the parameters of the spin-independen
termsM0 , B, a, andd0 . FromB andM0 we have

B

M0
5

f~ ums ,m,m!2f~ um,m,m!

f~ um,m,m!

5~ms /b08L!1gh8~ms /b08L!21•••>0.18, ~64!

from which we estimate

~ms /b08L!50.1860.03. ~65!

The order of magnitude is comparable to that ofums /bh8Lu
~though it can differ by as much as 2!. The sign of~65! is
opposite to that from the hyperfine terms, as for mesons.

Coming toa, the data determine only (a1b)521661.4.
Taking, as order of magnitude,ub/Du'uD/Cu, we haveubu
'4. If b.0 we havea'220; for b,0, we havea'212.
Thereforeua/Bu>0.0640.1, which implies again a large re-
duction factor ofa with respect to the additive termB. The
different physical meaning ofa and B does not, however,
allow us to relate this reduction factor to that ofE/D. With a
similar depression factor,ud0u is expected to be'0.1uau'2,
leading toudu5ud013dhu'261 ~experiment:d5463!. In
conclusion, thems/L expansion scale for spin-independent
terms is near to that of hyperfine terms, though we do not
have an equivalent for the ‘‘hard’’ gluon chromomagnetic
argument~except the usual hand-waving one that soft gluons
produce confinement and, after this is taken into account, the
remaining ones are hard on the average!.

For later use~Sec. VII! we add a remark. Consider
the hyperfine terms for baryons. Assume that
in ~54! F(umi ,mk ;mj ) is approximately factorizable:
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F(umi ,mk ;mj )' f (mi) f (mk)w(mj ). Put r5[ f (ms)
2 f (m)]/ f (m) and v5[w(ms)2w(m)]/w(m). Equations
~57! lead to

D/C5r'20.30, E/C5v'0.1,

b/C51r2'10.09, c/C5rv'20.03,

dh /C51r2v'0.01. ~66!

These agree with the above orders of magnitude. Incid
tally, factorizability fixes the signs ofb, c, anddh .

VII. THE MAGNETIC MOMENTS OF OCTET BARYONS

The general parametrization of the baryon octet mome
was given in Sec. III. Differently from baryon and meso
n-

nts
n

masses@where formulas~12! and~28! of the parametrization
are exact#, we are limited for magnetic moments to terms
linear inPs. Recall thatg1 andg2 in the general parametri-
zation alone provide a fit to 15%. With onlyg1 andg2 the
parametrization reduces to Eq.~25! and the physical meaning
of

2g2 /g150.3460.01 ~67!

is obvious: [11(g2/g1)]50.66 is the ratio of strange to non-
strange quark magnetic moments.

The ‘‘parametrized magnetic moment’’ of the baryon octe
is written compactly similarly to the ‘‘parametrized baryon
masses’’~Sec. V! with the help of three functionsx, h, andj
of (m/L) and (Dm/L). Again, these functions, in principle,
are derivable from QCD. We have
‘‘parametrized magnetic moment’’5~TrQPs! (
iÞkÞ j
~ i.k!

x~m,Dmumi ;mk ,mj !si1 (
iÞkÞ j
~ i.k!

h~m,Dmumi ;mk ,mj !Qisi

1 (
iÞkÞ j
~ i.k!

j~m,Dmumi ,mk ,mj !Qksi ~68!
e

-
e

d

nd
with mi5m1DmPi
s and the functionsx andh symmetric in

k and j . The TrQPs term in ~68! is of orderDm/L, and is
related to g0 in the general parametrization of Sec. I
[g05x(m,Dmum;m,m)]. The other terms produce the spin
flavor structuresQisi andQksi multiplied by unity or by
products ofP j

s with up to three factors. Extracting from~68!
all terms either with noPs or linear inPs, we reobtain, of
course, the terms listed in the general parametrization of S
III. ~Some terms bilinear inPs are incorrectly absent in the
list of Ref. @5#, Eqs. ~37!–~39!. This is of no consequence
because we never used for magnetic moments terms bilin
or cubic inPs.!

Here we discuss the terms extracted fromh in ~68!, the
only ones of interest for Eq.~25! ~in this comparisonx andj
do not intervene!. Again we shortenh(m,Dmum1 ;m2 ,m3)
to h(um1 ;m2 ,m3). We get, identically,

h~ umi ;mk ,mj !5h~ um;m,m!1@h~ us;m,m!

2h~m;m,m!#Pi
s1@h~ um;s,m!

2h~ um;m,m!#~Pk
s1Pj

s!

1~ terms bilinear and cubic inPs!.

~69!

Thus, comparing with~25!,

g2 /g15
h~ us;m,m!2h~ um;m,m!

h~ um;m,m!

5~Dm/b9L!1g9~Dm/b9L!21••• . ~70!
II
-

ec.

ear

Identifying ~as in Secs. V and VI! Dm with ms :

g2 /g1>~ms /b9L!1g9~ms /b9L!21••• , ~71!

whereb9 andg9 are coefficients in the expansion. Assuming,
as previously, that the second term in the expansion has th
order of magnitude of the square of the first, we have

~Dm/b9L!520.3460.11. ~72!

A classical remark~to be inserted more properly in the en-
suing sections, where we will consider constituent quarks! is
this: Approximating magnetic moments by~25!, anddefining
effective masses of quarks as inversely proportional to mag
netic moments, the ratio between the effective masses of th
strange and nonstrange quarks,so defined, is
(11g2/g1)

21>1.560.25. The expansion~71! also implies
an order of magnitude for the effective mass of a quarkb9L.
With the conventional choiceDm5150 MeV, this is'450
MeV.

Coming back to QCD it is remarkable thatb, b8, andb9
in the expansions for the hyperfine parts of the meson an
baryon masses~53! and ~62! and baryon magnetic moments
~72! are so close. Why it is so? Only a full QCD calculation
can explain this, but a guess may help to relate theb8 of the
hyperfine mass term in baryons to theb9 in theDm expan-
sion of the magnetic moments~71!. Assume that
F(umi ,mk ;mj ) governing the hyperfine part of the baryon
masses is approximately factorizable as mentioned at the e
of Sec. VI ~it is so in some models—see Sec. IX—and is
anyway true to first order inDm/L!; factorizability means
that F(umi ,mk ;mj )5 f (mi) f (mk)w(mj ). ThenD/C ~60! is
[ f (ms)2 f (m)]/ f (m). If h(umi ;mk ,mj ) is also factoriz-
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able, that is,h(umi ;mk ,mj )5t(mi)r (mk)r (mj ), we have
g2/g15[ t(ms)2t(m)]/ t(m). Then ~1/b8! is the first order
coefficient in the expansion of the quark-gluon chromoma
netic vertex inDm/L, normalized to the vertex atms5m. As
to ~1/b9!, this is the same for the electromagnetic vertex. T
similarity in structure of electromagnetic and chromoma
netic interactions suggests that to first order
ms we have [t(ms)2t(m)]/ t(m)5[ f (ms)2 f (m)]/ f (m),
that is,b85b9; note the equality in sign.

So far we have used only QCD~no assumption on mod-
els!. The quarks in play were the standard current~qua-
sichiral! quarks. From now on we shall deal, instead, wi
models, discussing how the parametrization provides a c
venient way to test models. Before this we comment brie
on the notion of constituent quarks, which sometimes is
source of some confusion.

VIII. THE TWO MEANINGS OF ‘‘CONSTITUENT
QUARK’’

At present ‘‘constituent quark’’ has two meanings, bo
familiar, but rather different. We recall them only to avoi
ambiguities in what follows.

In the first ~less common! meaning, a constituent ligh
quark is the QCD field after choosing a lowq ~nearL! as the
renormalization point for the mass@17,18#:

mconstituent5m~at q nearL!. ~73!

This definition was implied in Refs.@5,6#, when deriving the
general parametrization. But, as noted, the derivation of
parametrization is independent of the renormalization po
and can proceed using as quark fields the standard cur
fields; thus theq in n(q) in ~37! can be as high as we like.

Constituent quarks defined by something such as~73!
would be related to the QCD Lagrangian. But it is hard
turn this definition, for light quarks, into something usefu
At low q’s perturbative QCD fails. With~73! the fact that
(Dm/m) differs for current and constituents, in spite of sca
invariance, might be due to this failure and/or to Politze
@17# q22 term.

The second meaning of ‘‘constituent quark’’ is the mo
common. It dates back to the NRQM@1#; its continuing use
is due to the above difficulty of reaching a really useful o
erational definition of the first type. In this second usag
constituent quarks are defined with reference to spec
models. Their~effective! masses are just some among th
many parameters in a calculation with the selected mod
From now on constituent quarks will have this second me
ing; we will use, as mentioned,M for the effective mass of a
constituent quark.

IX. MODELS AND QCD

The proliferation of models of hadron structure in the pa
20 years has brought a lack of predictive power: too ma
models, all ‘‘so good.’’ Thus it is interesting to see why mod
els work and record certain properties that a model sho
have to agree with some general consequences of QCD.
properties to be considered below are minimal properties
model should satisfy them, but the model is not necessa
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perfect if they are satisfied~a ‘‘perfect’’ model coincides with
the true theory, say QCD!.

Another question with models, raised in the Introduction,
is the relation of the effective masses of constituent quarks
and the masses of current quarks in the QCD Lagrangian. We
will examine this also.

Consider, to exemplify, a model of baryon structure~the
same applies to mesons!. It should at least reproduce the
masses of the lowest baryons and their magnetic moments.
Of course, it should reproduce much more, as already stated.
But below we concentrate on these, because these alone are
sufficient to substantiate our point.

We will examine four classes of models: any nonrelativ-
istic quark model, the semirelativistic QCD-inspired one-
gluon-exchange DGG model, the MIT bag model, and the
cloudy bag model. They are all characterized, at least at
some stage in the calculation, by Hamiltonians with three
quarks~for baryons!. The cloudy bag model, which couples
these quarks to pions, will be treated in the next section.

A. Nonrelativistic quark model

Consider a nonrelativistic quark model. CallHNR a typi-
cal Hamiltonian for it, expressed in terms of the space, spin,
and flavor coordinates of the three quarks~any quark vari-
able has an indexj51,2,3!. HNR may be quite general; flavor
has to be broken only byl8

j matrices, or, if electromagnetism
is included, also byl3

j matrices. The eigenstates ofHNR in
general will be mixtures of various orbital angular momenta;
in other words, its lowest exact eigenfunctionsc i~NR! ~i
refers to a baryon in the octet or decuplet! may have con-
figuration mixing. Yet, for the lowest baryons~octet plus
decuplet! we may write

c i~NR!5VNRf i , ~74!

wheref i is an auxiliary wave function having the product
form of Eq. ~8!. In ~74!, of course,VNR is a transformation
producing, from theL50 functionf, the exact configura-
tionally mixed functionc. This is certainly a much simpler
transformation than theV introduced for QCD in Sec. II to
construct the exact stateuc i& from the auxiliary stateuf i&.
There theV transformation had the gigantic task of dressing
the 3q state with all sorts ofqq̄ pairs and gluons, plus pro-
ducing configuration mixing, plus transforming two-
component spinors into four-component ones. In the present
case theVNR transformation has just the task of producing
configuration mixing. But formally Eq.~11! can be rewritten
also in this case@in writing it we suppress NR inc~NR!#.
Thus,

Mi5^c i uHNRuc i&5^f i uVNR
† HNRVNRuf i&

5^Wi u~‘‘parametrized mass’’!NRuWi&. ~75!

Because Eq.~12! for the ‘‘parametrized mass’’ in~11! fol-
lows only from the flavor dependence and invariance prop-
erties of the QCD Hamiltonian, with the factorizable choice
of f i , the same expression~12! is true here.Therefore a
NRQM Hamiltonian gives a description of the masses of the
lowest baryons identical to that of QCD, provided only that it
has the number of parameters necessary to produce all terms
in (12). Of course since, as we saw, many terms in~12! are
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small ~in particular, those with three quark indices!, even
simple NR Hamiltonians may lead to good results. A simi
argument holds for magnetic moments, where, in writing
NRQM Hamiltonian, one has to pay attention to gauge
variance. Also, in this case, the fact that the additive terms
the general QCD expression~25! already reproduce to 15%
the magnetic moments, makes it not so miraculous t
simple NR Hamiltonians with few parameters give a go
account of the magnetic moments. What is of interest in t
case, as already remarked and so far unexplained@6~f!#, is
that in the general QCD parametrization~23! the coefficient
g3 is so small~20.076!. It is this smallness that produces th
classical ratio>2 3

2 of the magnetic moments of proton an
neutron~which fact @19# greatly contributed, in 1965, to the
birth of the quark model!.

Finally, though in this paper we did not treat this proble
the analysis@6~a!# of semileptonic decays of the lowest bar
ons leads to similar conclusions. Of course, many more pr
erties should be considered~just think of excited hadronic
states!. Still, the conclusion is that simple NR models wo
because the number of important terms in the QCD gen
parametrization is relatively small.

B. The QCD-inspired model of De Rujula, Georgi,
and Glashow

In their treatment DGG first calculate the one-gluo
exchange QCD potentialV between two quarks in the
Fermi-Breit approximation. Their three-body Hamiltonian
HDGG5H01V , with H0 flavor and spin independent. Trea
ing V as a first order perturbation, the DGG baryon mas
are

Mi5^c i uHDGGuc i&>^f i uHDGGuf i&

5^Wi u~ ‘‘parametrized mass’’!DGGuWi&. ~76!

In ~76! HDGG is the full DGG Hamiltonian,c i the exact and
f i the zero order eigenfunctions~with the effect ofV in
HDGG neglected!; the last expression in~76! arises from the
third after integration on the space variables. BecauseH0 is
flavor and spin independent, the unperturbed zero order w
functionsf i are flavor independent for all lowest octet an
decuplet states and they are factorizab
f i5XL50(r 1 ,r 2 ,r 3)Wi as in ~8!. In this treatment the
baryon masses automatically have the form~12! predicted by
the QCD general parametrization, except for the absenc
terms with three different quark indices; these would be th
if DGG had included the exchange of two or more gluon
Thus, for the lowest baryons, the ‘‘parametrized mass’’ ag
agrees with the general QCD parametrization~12!, although
it does not contain all the parameters in~12!. This being
clear, we pass to the question raised in the Introducti
namely, what is the meaning of the ‘‘effective masses’’
quarks in the hyperfine term of DGG?

In DGG @4# the hyperfine contribution to the baryo
masses from quarks 1 and 2~one must then sum over a
pairs of quarks! is
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KDGG5
4p

9
as

1

M1M2
^XL50ud3~r12!uXL50&~s1•s2!

[
t

M1M2
~s1•s2!, ~77!

where the last expression is just a definition oft:

t[~4p/9!as^XL50ud3~r12!uXL50&. ~78!

In ~77! M1 andM2 are what DGG call the effective masses
of quarks 1 and 2; they are not defined except by~77!. In the
Fermi-Breit treatment of a He-like atom containing, say, an
electron and a muon,M1 andM2 would be the masses of the
electron and muon. Here, on the other hand, they are not th
masses of the current quarks that appear in the original La
grangian of QCD from which DGG move. They have the
dimensions of a mass and differ for a strange and nonstrang
quark, but this is all. The question is: How areM1 andM2
related to quantities in the QCD Lagrangian? To simplify the
answer, assume, following DGG, that^XL50ud

3~r12!uXL50&
is independent ofM1 andM2 ~this, essentially, corresponds
to XL50 being uniform inside a sphere!. Thus the only de-
pendence ofKDGG onM1 andM2 is in (M1M2)

21; note that
this is factorizable.

Now go back to the exact general parametrization o
baryon masses in QCD@Eq. ~54!# and compare it with the
DGG formula. If we wish the DGG result~77! to approxi-
mate QCD,F(umi ,mk ;mj ) in ~54! must be factorizable, that
is, F(umi ,mk ;mj )5 f (mi) f (mk)w(mj ). We introduced fac-
torizability at the end of Sec. VII, having in mind also the
present application. To compare with the DGG one-gluon
exchange treatment one must putw(mj )51 in
f (mi) f (mk)w(mj ). Then comparing with~77! we have

M1M2

t
5

1

f ~m1! f ~m2!
[

L2

L3f ~m1 /L! f ~m2 /L!
. ~79!

In the last form we reinstalled theL’s to make the dimen-
sions explicit. Clearly the DGG ‘‘effective masses’’Mi in
terms of QCD massesmi andL are

~t/L3!21/2Mi5L f21~mi /L!. ~80!

This shows, as expected, thatL is the QCD scale giving the
effective mass scale of the constituent quarks.

Equation~80! shows clearly how the relationship of cur-
rent and constituent quark masses depends on the model us
to introduce the latter. We obtained~80! assuming that the
integral int is independent of theM ’s. Otherwise, the rela-
tion of theM ’s to the QCDm’s is affected.

Similarly, consider (DM /Ml)DGG and its relationship
with the QCD masses. Comparing~77! and the general pa-
rametrization~12!, (DM /Ml)DGG52D/C50.3. From~60!

D/C5@F~ ums ,m;m!2F~ um,m;m!#/F~ um,m;m!

and, in the factorized approximation,D/C5[ f (ms)
2 f (m)]/ f (m). Thus, reinstallingL,

0.352~D/C!5~DM /Ml!DGG52@ f ~ms /L!

2 f ~m/L!#/ f ~m/L!'2Dm/~b8L!, ~81!
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having used in the last step the expansion~61!. Equation~81!
shows that there is no contradiction betweenMl/M'1.4
andms/m equal to 25 or 10~or `!; of course,ms/m is fun-
damental andMl/M model dependent; Eq.~81! displays the
conceptual relationship between them. Again the model
pendence enters in~81! because to get (M1M2)

21 in Eq.
~77! @and therefore2(D/C)5(DM /Ml)DGG# one must as-
sume, as noted in@20#, that the integral int is mass indepen-
dent. This assumption, nearly true in a potential well, is n
so for a harmonic oscillator, or, worse, for a Coulomb pote
tial. In such cases we would not have approximate facto
ability, as can be seen easily in the analogous simpler cas
mesons;DM /Ml might be quite different.

C. The MIT bag model

We now turn briefly to the MIT bag model, where th
quarks are relativistic~Dirac equation in a bag with four-
component spinors; the quark masses in the model are ta
very small or zero foru andd and, say, 100 MeV fors!. We
limit ourselves to considering here the case of the bary
masses, and specifically the hyperfine contribution. Note t
in spite of the fully relativistic nature of the four-componen
spinors from which one starts, the hyperfine term appears
course, at the end@21# in the Pauli form~82!, in agreement
with the general parametrization. Indeed, the hyperfine c
tribution to the baryon mass from quarks 1 and 2~one must
sum over the three pairs of quarks! is the expectation value
of

Kbag58as~s1•s2!
m1m2

R3 I 1,2 ~82!

on theWi spin-flavor states. In~82! R is the radius of the
bag,m1 andm2 are the chromomagnetic moments, andI 1,2 is
an expression depending, as do the chromomagnetic
ments, on the radiusR. @In principle,R also in ~82! might
depend on the flavors of 1 and 2; in that case, it should
R12.# The dependence on the quark massesmi inserted in the
model remains inm i and I 1,2. To a good approximation in
~82! ~and also in the baryon magnetic moments! intervene
the effective masses of the quarksMi5(mi

21x2/R2)1/2

wherex/R is the quark momentum in the bag~x52.04 in the
limit mR→0!.

The main point of interest is the following. The hyperfin
term ~82! is contained in the general parametrization. Ho
ever, in the simple version of the model treated so far,
terms with three indices, which in general also appear in
parametrization, are absent. Since these terms are relati
small, the situation is, in this respect, the same as in the D
treatment with one-gluon exchange, in spite of the fact t
the two models differ considerably.

Essentially the same conclusion is true for a variety
relativistic or semirelativistic quark models. Any of them ca
be successful~but not superior to others, in spite, often, o
complicated calculations! provided that it reproduces the
spin-flavor structure of the general parametrization and p
vided that it contains a number of parameters producing
dominant coefficients of it. Of course, one might object th
different models will reveal differences in the calculation
hadron properties other than those considered here~think,
e.g., of the spectrum of excited states!. This is certainly true,
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but is of interest only if the models do not add too many
additional parameters for this purpose.

X. EXCHANGE CURRENTS AND THE CLOUDY BAG
MODEL

In the cloudy bag model we discuss only one point, the
exchange pion current contribution to the baryon magneti
moments. The question is: Does the general QCD parametr
zation contain terms that can be interpreted as due to pio
exchange currents? At first sight the question looks intrigu
ing for the following reason: The Hamiltonian of the cloudy
bag model contains, due to the coupling of pions to quarks
the Gell-Mann flavor matricesl1, l2, andl3. Thus one ex-
pects that the result of any calculation, say that of baryon
magnetic moments, is expressed throughl1 and l2 or @in
SU~2!# tx and ty ; indeed @22#, the magnetic moments of
proton and neutron receive, due to pion exchange, a contr
bution with the spin-flavor structure

(
iÞk

~ti3tk!z~si3sk!. ~83!

On the other hand, the QCD Lagrangian~including elec-
tromagnetism! contains only the flavor matricesl8 andl3.
They commute and form a closed algebra. Performing a pur
QCD calculation, where virtual pions areqq̄ aggregates, one
expects thatl1 andl2 ~that is,tx andty! cannot enter in the
final result, in contrast with~83!. Indeed, to derive the flavor
structure of the general parametrization, we used the fact th
operating withl3 andl8 ~a closed algebra! one cannot pro-
duce other flavor matrices, which thus cannot appear in th
final expression. How can this problem be solved?

Below we will show that,in apparent contradiction with
the argument given above, a term such as~83! can arise from
a QCD calculation; thus the cloudy bag model~and its pion
exchange current! is compatible with QCD and we werein-
correct in questioning this compatibility in Ref.@7~a!#. How-
ever, we will also show that,in agreement with the previous
argument, the term~83! can be identically rewritten as a sum
of the spin-flavor structuresG1 andG3 in ~22!, not contain-
ing tx andty at all ~recall thatG15( iQisi ,G35( iÞkQisk!.
Thus nothing changes in the general parametrization and th
term ~83! is not an unequivocal signature of pion exchange
or of the cloudy bag model.

The proof is simple. Consider the Majorana space ex
change operatorP x

ik exchanging thespacecoordinates of
quarksi andk. In a QCD calculation ofV†

MV such opera-
tors may intervene; that is,V†

MV for the baryon magnetic
moments may contain space exchange terms. Then one c
proceed in two fully equivalent ways. First, because the aux
iliary function f @Eq. ~8!# is factorized as the product of a
space factorXL50 times a spin-flavor factorWi , we let Px
act onXL50 and integrate onx. This is just the procedure
adopted in deriving the general parametrization~22!; the
presence ofPx does not alter the result~22! ~this will emerge
clearly from Appendix A!.

Second, operating, for simplicity, in SU~2!, use now the
symmetry of the whole wave function, and write
P x

ik5~11si•sk!~11ti•tk!/4 @a similar argument holds in



e

n
e
to

a

tic

-
s

r

in-

f

c-

3766 53G. DILLON AND G. MORPURGO
SU~3!#. Consider then a term of the form( iÞkQisiP x
ik, the

existence of which is possible in QCD. Rewrite it as

(
iÞk

QisiPx
ik5(

iÞk
Qisi~11si•sk!~11ti•tk!/4. ~84!

Setting@in SU~2!# Qi5
1
2 tzi1

1
6 , using the identities

tzi~ti•tk!5tzk2 i ~ti3tk!z ,

szi~si•sk!5szk2 i ~si3sk!z , ~85!

and limiting oneself to terms that can contribute to the e
pectation value of the real functionsWi of the baryon octet
and decuplet, one obtains, from~84!,

4(
iÞk

Qis izPx
ik5(

iÞk
@~Qi1Qk!1 1

6 @~ti•tk!21##~si1sk!z

2 1
2 ~ti3tk!z~si3sk!z . ~86!

Because( iÞk@~ti•tk!21#~si1sk)z gives zero when operat
ing on theP, N, or D states, and becauseP x

ikXL505XL50,
we remain with the identity,valid only for the nonstrange
baryons of octet and decuplet:

(
iÞk

~si3sk!z~ti3tk!z528(
i
Qis iz14(

iÞk
Qiskz .

~87!

Thus the exchange term of the cloudy bag model is alre
contained in the terms with coefficientsg1 and g3 in the
general parametrization~22!. It may contribute~more or less!
to g1 andg3 but it seems impossible to disentangle it fro
all other contributions to them. In other words, there is
specificity of the cloudy bag model in this respect, if on
does not add other assumptions that may be interesting,
hard to prove.

XI. CONCLUSIONS

Several points were already listed in the Abstract,
which we refer. Here we wish to add or underline the fo
lowing.

~1! Using the general parametrization starting from t
standard QCD Lagrangian with quasichiral~or current! light
quarks, we have shown that for each model the effec
‘‘constituent quark’’ massesM are related to the quark
massesm of the QCD Lagrangian and toLQCD; the exist-
ence of aL around 200 MeV intervenes in an essential wa
In all sensible models the effective masses of light quarks
jL with j a number between 2.3 and 3.7. There is, in pr
ciple, no contradiction in havingms/m'(8–25) and
Ml/M'1.4.

~2! The circumstance that different models may giv
with a convenient choice of a few parameters in each
them, results in agreement with the data is due to the fact
the general parametrization derived from QCD usually co
tains@5,6~f!# only a few important terms. An appropriate s
lection of parameters in each model considered can prod
these few important terms. This can be regarded, if one
wishes, as an extension of the so called ‘‘Cheshire cat’’ pr
ciple, introduced originally@23# to assess the equivalence
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descriptions of hadronic phenomenology in terms of bag
models with different radii.

~3! The important issue of predictivity of models remains
the same as ever. Indeed, assuming that QCD is ‘‘th
theory,’’ that is, a full QCD calculation would reproduce all
details of hadron physics, the extrapolation of any given
model to new phenomena, beyond those where it has bee
tested and which were used to fix the parameters in th
model, cannot be expected to be 100% exact. This applies
any model whatsoever. In this situation the ‘‘best’’ model is
to some extent a matter of taste and, to a large extent,
matter of simplicity. To exemplify with a recent important
achievement@24#, consider the measurement of the magnetic
moment of theV2, an experiment of extraordinary precision:
m(V2)5(22.02460.056)mN . At the end of their paper the
authors state that this measurement disagrees with the sta
quark model value of21.84mN and express the hope that the
result will provide a stringent test for future models of
baryon structure. On the reality of this hope our point of
view differs from that of the authors of@24#. It seems already
remarkable that the NRQMin its simplest formpredicts
m(V2)521.84mN , confirming the dominance of a few
terms stated above. We saw, in fact, that the general param
etrization for the magnetic moments of the octet baryons ha
a large variety of terms@Eqs.~22!–~24!# and the same is true
for the decuplet baryons@7~a!#. Exploiting this variety, it
would be trivial to add some terms to the ‘‘naive’’ ones and
obtain the measuredm~V2! value, even if the latter were
known with a precision still higher than the extraordinary
one given in@24#. But this would not too be fruitful. Yes, the
model so constructed would produce the measuredm~V2!,
but it would necessarily still be approximate for some othe
quantity; unless the ‘‘model’’ and the true theory were the
same thing.

APPENDIX A: OUTLINE OF THE DERIVATION OF THE
GENERAL PARAMETRIZATION

We outline the calculation of the expectation value of the
field operatorV†HQCDV in the baryon three-quark auxiliary
stateuf i&; i.e., we outline the derivation of the fourth form of
~11!, expressing the masses as expectation values of a sp
flavor three-body operator@Eq. ~12!# on the spin-flavor func-
tions Wi . In the third form of Eq.~11! the only part of
V†HQCDV that contributes is its projection in theu3q,no glu-
on& Fock sector:

H̃5((
3q,3q8

u3q&^3quV†HQCDVu3q8&^3q8u, ~A1!

where the sums in~A1! are on all possible three-quark, no-
gluon Fock states. After normal ordering of all creation and
destruction operators inH̃ and their contraction with those
arising from ^f i u and uf i& @see Eq.~36!#, the operatorH̃
becomes a function only of the spin-flavor space variables o
the three quarks inuf i&; thus parametrizingH̃ amounts to
constructing the most general scalar operator of thesi ’s,
l i ’s, and r i ’s of the three quarks (i51,2,3), including in it,
of course, only those terms, that have a nonvanishing expe
tation value inf i . Note that~Sec. IV! we took the quarks in
the auxiliary statesuf i& to be identical to those in the QCD
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Lagrangian at the chosen renormalization point in the n
flavor-breaking limit. Due to this, the contraction of the cr
ation and destruction operators inV†HQCDV with those in the
auxiliary statesuf i& @Eq. ~36!# is straightforward. After this
contraction, the projectionH̃ of the field operatorV†HQCDV
in the three-body sector becomes, as stated above, a s
~i.e., rotation-invariant! function of the spacer i , spin si ,
flavor f i , and color operators of the three quarks~we sup-
press the color variables when possible!. One has to write the
most general expression of such an operator. We call itH̃8
~we use a different symbol becauseH̃ @Eq. ~A1!# operates in
Fock space, whereasH̃8, obtained after contraction of the
field operators, is just a three-body quantum mechanical
erator!. The number of independent scalar operators in
spin-flavor space of three quarks is finite; we use for them
general, the symbolYm~s,f ! wherem specifies the operator
to which we refer. Thusthe most general operator of the
space and spin-flavor variables is necessarily

H̃85(
m

Rm~r ,r 8!Ym~s, f !, ~A2!

whereRm~r ,r 8! are operators~not necessarily local! acting in
the coordinate space of the three quarks. In~A2! r means

r[~r1 ,r2 ,r3!.

To calculate a physical quantity such as a mass~as we are
doing! one must form the expectation of~A2! onf i . Now a
most important point: The auxiliaryf i is arbitrary, provided
that it has the correct quantum numbers of the stateuc i&
under consideration~in this case an octet or decuple
baryon!. With this proviso one can choosef i freely. For
instance, the three-quark part of the correctuc i& @first addend
of the RHS of~39!# certainly has configuration mixing; still,
one can select an auxiliary wave functionf i without con-
figuration mixing. It is the task of the transformationV to
produce configuration mixing, and, of course, the who
complexity and variety of Fock states present on the rig
hand side of~39!. Thus we select the auxiliary wave functio
f i to be as simple as possible. An important feature in t
choice is factorizability. That is, we selectf i as in ~8!, the
product of a space partXL50~r1,r2,r3! with orbital angular
momentumL50 and a spin-flavor~color! factorWi(1,2,3)
carrying the wholeJ @see~9! and~10!#. The factorization of
f i implies for the expectation value~11! ~that is, the mass
Mi! the structure

Mi5(
m

^XL50~r !uRm~r ,r 8!ufL50~r 8!&^Wi uYm~s, f !uWi&,

~A3!

that we also rewrite as

(
m

gm^Wi uYm~s, f !uWi& ~A4!

with

gm5^XL50~r !uRm~r ,r 8!uXL50~r 8!&. ~A5!
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Because the space part of the model wave function has, by
construction,L50, the operatorsRm~r ,r 8! in ~A2! must be
rotation invariant. BecauseH̃8 is a scalar, theYm~s,f ! that
enter in the parametrization of the massesMi must be scalar
operators, to be constructed only in terms of the spinssi of
the three quarks; hence the parametrized masses are writte
as

‘‘parametrized mass’’5(
m

gmYm~s, f ! ~A6!

and the massesMi are

Mi5^f i uH̃uf i&5(
m

gm^Wi uYm~s, f !uWi&

[^Wi u ‘‘parametrized mass’’uWi&, ~A7!

the result already given in Eq.~11!.
To deduce the general parametrization~12! of the masses

it is now sufficient to list all scalarsYm~s,f ! formed with the
spins and flavors of the three quarks. Because theWi ’s are
symmetric in spin flavor, the only intervening spin-flavor
structures are precisely those in Eq.~12!. This is due to the
following points.

~1! The only possible scalars constructed with the three
spin Paulisi ’s are 1 and~si•sk!. The scalar~s13s2!•s3
~times any Hermitian real flavor operator! has vanishing ex-
pectation value on any real spin-flavor state of three par-
ticles, as theWi ’s are.

~2! The only flavor operator in the strong Lagrangian is
Ps. Thus onlyP i

s, P i
sP k

s, andP 1
sP 2

sP 3
s are possible flavor

operators for three quarks; (P i
s)n with any ~integer! n repro-

duceP i
s. Structures such as Tr(P i

s) are numbers.
A similar procedure leads to Eq.~28! for the parametrized

masses of the mesons~with IÞ0!. For the baryon magnetic
moments~22! and ~23!, theYn~s,f !’s in ~A2! must then be
axial vectors under rotations; keeping only terms linear inPs

one then obtains~22! and ~23! @5#.

APPENDIX B: THE COEFFICIENTS IN THE BARYON
PARAMETRIZATION

In @5,6~d!,6~f!# we determined the coefficients of the pa-
rametrization ~12! from the baryon masses. ForD,
S~1385![S* , andJ~1530![J* we used for this in@6# the
conventional masses~resonance peaks! as given in@13#. One
of us @12# noted that it might be preferable to use the ‘‘pole’’
masses. For the ‘‘large’’ coefficientsA, B, andC the differ-
ences between the values of the coefficientsA, B, C, D, E,
(a1b), c, andd in ~12! derived using the conventional or
the pole masses are irrelevant or of little interest. For the
smaller coefficientsD, E, (a1b), c, andd, the two deter-
minations may differ significantly. Below we will list the
coefficients obtained from the conventional and pole fits. Be-
cause the general parametrization~and therefore its coeffi-
cients! refers to the strong interaction only@the masses in
~12! are the eigenvalues ofHQCD, without the electromag-
netic interaction# it is necessary, especially for the smaller
coefficients, to extract from the experimental masses the
strong part. That is, to determine the coefficients of the pa-
rametrization~12!, one must construct and use combinations
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of baryon masses independent of the e.m. and isospin br
ing (muÞmd), at least to first order. We did this alread
@6~d!# when writing Eq.~14!. Below we write these combi-
nations of baryon masses. To determine the ‘‘large’’ coe
cientsM0 , B, andC, the precision stated above is unnece
sary and we simply averaged the Coulomb and isos
effects:
eak-
y

ffi-
s-
pin

M05~N1D!/2, B5L2N13E, C5~D2N!/6,
~B1!

whereN5(n1p)/2, D5(D111D11D01D2)/4, andE
is the coefficient in~12! given below in Eq.~B3!. As to the
coefficientsD, E, (a1b), c, d, they are determined from the
following Eqs. ~B2! which are Coulomb and isospin inde-
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