
s

s
f

PHYSICAL REVIEW D 1 APRIL 1996VOLUME 53, NUMBER 7

0556-2
Two-loop O„GFMH
2
… radiative corrections to the Higgs boson decay widthH˜gg

for large Higgs boson masses

J. G. Körner, K. Melnikov, and O. I. Yakovlev*
Institut für Physik, THEP, Johannes Gutenberg Universita¨t, Staudinger Weg 7, D 55099 Mainz, Germany

~Received 25 September 1995!

This paper is devoted to the calculation of the two-loopO(GFMH
2 ) radiative corrections to the Higgs boson

decay widthH→gg for large values of the Higgs boson massMH within the minimal standard model. The use
of the equivalence theorem makes it possible to reduce the problem to the consideration of the physical Higg
boson field and the Goldstone bosonsw1,w2,z. We present analytical results for the various two- and
three-particle absorptive parts of the two-loop contributions, and, using dispersive techniques, analytic result
for all but one of the dispersive contributions. The relative corrections to the decay width are large because o
strong cancellations between theW and top loops in the lowest order, but the absolute corrections are small and
perturbatively under control.

PACS number~s!: 14.80.Bn, 12.15.Lk
c

I. INTRODUCTION

The neutral scalar Higgs boson is the essential ingred
of the standard model of the electroweak interactions. T
Higgs boson mass is a free parameter in the minimal s
dard model and until now we did not know much about
value. Experiments exclude a Higgs boson lighter th
;65 GeV@1#. Also theoretical arguments based on perturb
tive unitarity suggest that the upper bound on the Higgs
son mass1 is ;1 TeV @2#.

It is widely believed that the properties of the Higgs b
son can be investigated at the Next Linear Collider wh
will be able to operate in different mode
(e1e2,e1(2)g,gg). In particular, gg collisions are well
suited not only for the observation of the Higgs boson sig
but also for studying its properties~for a review see Ref.@4#!.

As is known for a long time, theHgg vertex serves as a
‘‘counter’’ of the particles with masses larger than the Hig
boson mass: if these particles acquire masses because o
standard Higgs mechanism, then they do not decouple f
the Higgs boson and provide a constant contribution to
Hgg vertex. Therefore, theHgg vertex can provide us, in
principle, with unique information about the structure of t
theory at energy scales unachievable at modern accelera

A similar consideration also shows up in another aspec
turns out that theHgg vertex is very sensitive to differen
anomalous couplings in the massive gauge boson secto
the standard model~SM!. All these properties make the
Hgg interaction vertex an extremely interesting object fro
the theoretical point of view. In order to exploit the possib
ity of looking for deviations from the SM predictions for th
Hgg vertex, one needs quite accurate predictions for t
vertex within the framework of the minimal standard mod

At the tree level, theHgg vertex is absent in the standar
model. At the one-loop level, theW boson and the top quark

* Permanent address: Budker Institute for Nuclear Physi
630 090, Novosibirsk, Russia.
1This statement is also supported by lattice investigations@3#.
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contribute to the effectiveHgg form factor. The one-loop
result was obtained in Refs.@5,6# and can be found in the
text books@7#. Note for the time being that the contributions
of theW and t-quark loop to theHgg vertex have different
signs and hence tend to compensate each other. For realisti
masses of theW boson and the top quark, this compensation
occurs for Higgs boson masses of;600 GeV.

The QCD radiative corrections to theHgg vertex were
calculated recently by several groups@8#. These corrections
are negligible belowt t̄ threshold and are large above the
threshold. As for the size of the other SM radiative correc-
tions, we do not know much about them at present. Recently,
the corrections of orderO(GFmt

2) were evaluated in the
limit of a small Higgs mass@9#. In this paper we consider the
leadingO(GFMH

2 ) SM radiative corrections in the limit of
large Higgs boson masses. We show that this correction has
the same order of magnitude but has the opposite sign as the
QCD correction in the interval 0.5 TeV,mH,1.5 TeV and
blows up for larger Higgs boson masses.

The technical tool which results in great simplifications of
the calculations is the use of the Goldstone boson equiva-
lence theorem~ET! @10#.

The organization of the paper is as follows: in Sec. II we
discuss the one-loop calculation of theHgg vertex in the
framework of the ET; Sec. III is devoted to the two-loop
calculation: we briefly discuss the renormalization procedure
and present results for the imaginary and real parts of the
Hgg vertex; in Sec. IV we discuss our final results and make
some concluding remarks.

II. LOWEST ORDER Hgg VERTEX

The interaction of the Higgs boson with two photons can
be described with the help of the effective Lagrangian

L5
a

4pv
F~s!FmnF

mnH. ~1!

In this equation,F(s) denotes a form factor which con-
tains all information about the particles propagating in the

cs,
3737 © 1996 The American Physical Society
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loop. In the minimal standard model, the form factorF(s)
obtains contributions from the top quark and theW boson.

The lowest order contribution to theHgg vertex is given
by the graphs shown in Fig. 1. The analytical results for t
fermion and spin-one boson contributions can be found, e
in @7#. In the limit when the Higgs boson mass is large i
comparison with the mass of the particle propagating in t
loop, the contribution of the fermions toF(s) is suppressed
as (M f /MH)

2, while the contribution of theW loop results
in a constant

FmH→`
~0! →2. ~2!

This asymptotic value can be obtained using the Go
stone boson equivalence theorem which states that in
limit of a large Higgs boson massMH@MW , the leading
O(GFMH

2 ) contribution to a given Green’s function can b
obtained by replacing the gauge bosonsW,Z by the corre-
sponding would-be Goldsone bosonsw,z of the symmetry-
breaking sector of the theory. The Goldstone bosons can
taken to be massless in this approximation@10#.

The interaction of the would-be Goldstone bosons wi
the Higgs and photon fields is described by theUEM(1)
gauged linears model:

L5~Dmw!* ~Dmw!1
1

2
]mz]

mz1
1

2
]mH]mH2

1

2
MH

2H2

2
MH

2

4v2
~F21H2!22

MH
2

v
~F21H2!H2

1

4
FmnF

mn.

~3!

HereDm5]m2 ieAm is theUEM(1) covariant derivative,
MH is the mass of the Higgs boson field,v is its vacuum
expectation value, andF is the triplet of the Goldstone
bosonsw1,w2,z. The Feynman rules for this Lagrangian
can be found, e.g., in Ref.@11#.

Let us first reproduce the result of Eq.~2! using the La-
grangian of Eq.~3!. It is straightforward to write down the
sum of the Feynman graphs shown in the Fig. 1~neglecting
for the moment the contribution from the top loop!. The
contribution to the form factorF(s) can be conveniently
obtained by contracting the one-loop tensor amplitude w
the tensor~the notation for outgoing photons is clarified in
Fig. 1!:

dmn5gmnk1k22k1
nk2

m . ~4!

FIG. 1. Generic lowest order graphs. The dashed lines cor
spond to photons, heavy solid lines are Higgs bosons. The partic
inside the loop~light solid lines! areW bosons and top quarks.
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In spite of the fact that the sum of these graphs should be
ultraviolet finite, we need to regularize at intermediate steps
of the calculation. For simplicity, we adopt dimensional
regularization, working ind dimensions. At the end of the
calculations we shall putd equal to four. After some algebra
one finds for the sum of the lowest order amplitudes:

M5Mmndmn5MH
2 2pa~d24!s

3E ddq

~2p!d
1

~k11q!2~k22q!2
. ~5!

From this equation it is seen that the leading order calcula-
tion amounts to the calculation of the divergent part of the
massless two-point function. Using well-known results for
the two-point function in Eq.~5!, we obtain the asymptotic
result given in Eq.~2!.

It is also possible to calculate these graphs using disper-
sion relations. In order to do this, we need to cut the graphs
shown in Fig. 1 in all possible ways, calculate the contribu-
tion of the cut graphs to the imaginary part of theF(s) using
unitarity and finally integrate the imaginary part of the
F(s) along the cut. As our Goldstone bosons are exactly
massless, the cut goes from 0 to` in the complexs plane. If
we cut the graphs of Fig. 1, the imaginary part ofF(s) is
given by the convolution of the decay amplitude
H(s)→w1w2, with the amplitudew1w2→gg. Note that
conservation of the total angular momentum requires equal
helicities of both photons in the final state.

It is not difficult to see by exact calculation that the am-
plitude w1w2→gg vanishes for masslessw1 and w2

bosons in the equal photon helicity configuration. Therefore,
the imaginary part of theF(s) is zero and one fails to repro-
duce the result of the direct evaluation of the Feynman
graphs. To find a way out of this paradox, we need to inves-
tigate the amplitudew1w2→gg more carefully. For this
aim we introduce a mass for the Goldstone bosons which
now serves as an infrared cutoff. The amplitude is then

dmnMmn~w1w2→gg!5 ie2
2m2s2

~ t2m2!~u2m2!
, ~6!

wherem is the mass of the Goldstone bosons andt andu are
the Mandelstam variables of the process.

It is then straightforward to calculate the imaginary part
of theF(s) to the lowest order. One obtains

ImF ~0!~s!52pMH
2 4m

2

s2
lnS 11b

12b D , ~7!

whereb is the velocity of the~massive! Goldstone boson. If
we put the mass of the Goldstone boson equal to zero in Eq.
~7!, the imaginary part ofF(s) is zero in accordance with the
previous statement. However, the lower limit in the disper-
sion integral is 4m2. In fact, if we consider the imaginary
part given by Eq.~7! in the dispersion integral, we can see
that in the limitm→0, the imaginary part ofF(s) turns into
a d~s! function.

Hence, the correct procedure consists in evaluating the
dispersion integral with finite Goldstone boson masses and
taking the limitm→0 only after the integration over the cut
has been performed.

re-
les
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In this way, we obtain the same result as in Eq.~2! for the
real part ofF(s), as has been obtained from the known com
plete expression forF(s) in the large Higgs boson mass limit
or from the direct evaluation of the Feynman graphs wi
massless Goldstone bosons.

The reason why we have discussed the one-loop calcu
tion of the Hgg vertex in some detail is twofold: first, it
serves as a reference point to justify the use of the equi
lence theorem for the two-loop calculation; second, in o
opinion, this calculation shows some unexpected properti
~For instance, the evaluation of this one-loop result throu
the dispersion relations is very similar to the evaluation
the axial anomaly through the imaginary part of the triang
graph@12#. However, we have not succeeded in finding an
deep reason underlying this similarity.!

III. TWO-LOOP CONTRIBUTION TO THE Hgg VERTEX

A. Renormalization

In this subsection we briefly discuss the renormalizatio
procedure which is needed for the evaluation of the two-lo
graphs. First note that as theHgg interaction is absent in the
SM Lagrangian, the two-loop graphs must be finite after w
renormalize all subdivergencies. In other words, to make o
two-loop amplitude finite, we need only one-loop counte
terms. The latter are constructed according to the followi
procedure.

FIG. 2. ‘‘Quasi one-loop,’’ two-loop diagrams. Heavy solid line
denote Higgs bosons, thin solid lines denotew1,w2,z Goldstone
bosons of the ET. Dashed lines are photons.

FIG. 3. Abelian~QED-like! two-loop diagrams. Line drawings
as in Fig.2.
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The ‘‘matter’’ part of the Lagrangian@Eq. 3# contains two
independent parameters: the mass of the Higgs boson field
MH and the vacuum expectation valuev. We fix the one-
loop counter terms by requiring the mass of the Higgs boson
field and the vacuum expectation value to be exact one-loop
quantities. This requirement eliminates all tadpole graphs
and provides us with the counter terms for all other divergent
subgraphs. For instance, the self-energies of the Goldstone
bosons must be effectively subtracted on mass shell. Further,
we will need the counter terms for the verticesHw1w2 and
Hzz which can also be obtained from the above require-
ments.

The next point is the renormalization of thegw1w2 ver-
tex. As this vertex is convergent, its renormalization is fixed
by the renormalization of the Goldstone boson wave function
which in turn is fixed by the renormalization of the self-
energy operator for the Goldstone boson. This procedure is
compatible with the electromagnetic Ward identities of the
gaugeds model.

B. Two-particle cuts

In this subsection we compute the contributions of the
two-particle cuts of the graphs presented in Figs. 2–5. The
simplest~quasi one-loop! contributions are given by the set
of Feynman graphs shown in Fig. 2 and the two-particle cuts
of the graphs in Fig. 5.

s

FIG. 4. Two-loop diagrams with triple Higgs boson couplings.
Line drawings as explained in Fig. 2.

FIG. 5. Two-loop diagrams with two-Higgs-boson–two-
Goldstone-boson interaction vertices.
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The graphs shown in Fig. 2 are quasi one-loop graphs.
theHw1w2 vertex diverges at the one-loop level, one nee
to bring in counter terms which can be obtained according
the recipe given above. It is also convenient to consider
multaneously the graphs shown in Fig. 2 and the two-parti
cuts of the two-Higgs-two Goldstone boson vertex grap
presented in Fig. 5. Summing up the contributions of Fig.
the two-particle cut contributions of the graphs shown in F
5 and the one-loop counter term for theHw1w2 vertex, one
has

F ~1!52S MH

4pv D
2

~22A3p!. ~8!

Next, we discuss the contribution of the graphs shown
Fig. 3. Note that we are considering only two-particle cuts
this section.

Let us start with the graphs shown in Figs. 3~a! and 3~b!
and consider the two-particle cuts which lie to the right
the virtual Higgs boson line. The cut contribution is given b
the convolution of the one-loopH→w1w2 amplitude~with
the Higgs boson in thet channel! with the Born amplitude
for w1w2→gg. As we know from the discussion of the
lowest order vertex, the latter is singular for small values
s. Unfortunately, the one-loop correction toH→w1w2 is
also singular fors50 if the Goldstone bosons are exact
massless. As before, we have to introduce a massm for the
Goldstone boson to handle this infrared divergence. Note
this point that the ET guarantees the existence of a smo
limit asm→0. Hence, we expect that the sum of all two-loo
contributions will not be sensitive to the details of the infr
red limit of the theory.

Evaluating theHw1w2 vertex in the limitmH..As,m
we find the result

FL5
MH

2

2 S MH

4pv D
2F11 lnSMH

2

m2 D 2b lnS 11b

12b D G . ~9!

Putting everything together, the imaginary part corr
sponding to the ‘‘right cut’’ graphs of Figs. 3~a! and 3~b! is
given by

ImF ~2!52
MH

2

2
2p

4m2

s2
lnS 11b

12b DFL~s!. ~10!

Inserting Eq.~10! into a dispersion integral, we can evalu
ate the contribution of these cut graphs to the real part of
F(s) and get

F ~2!52S MH

4pv D
2F11 lnSMH

2

m2 D 2
4

3 S 11
p2

12D G . ~11!

Another possibility to cut the graphs of Figs. 3~a! and 3~b!
is to cut to the left of the virtual Higgs boson line. We divid
the integration region in the dispersion integral into tw
parts, introducing an arbitrary scalem. The scalem can be
chosen to satisfy the inequalities

m!m!MH .

If we are interested in the contribution from the ‘‘high
energy’’ part of this graph, we can put the masses of
As
ds
to
si-
cle
hs
2,
ig.

in
in

of
y

of

ly

at
oth
p
a-

e-

-
the

e
o

-
the

Goldstone bosons equal to zero. For the ‘‘high-energy’’ part
of the imaginary part ofF(s), we obtain

ImFh
~3!52

MH
4

2 S MH

4pv D
2 p

s3
A,

A5F8s24~s1MH
2 !lnS s1MH

2

MH
2 D

14MH
2 Li 2S 2

s

MH
2 D G . ~12!

In this equation, Li2(x) is a Spence function as, e.g., defined
in Ref. @13#. Inserting this expression into the dispersion in-
tegral, we can evaluate the contribution of the ‘‘high-energy’’
part to the real part ofF(s), where we must remember that
the lower limit for the integration of the above quantity is
given bym.

Performing the integration, we get

Fh
~3!52S MH

4pv D 2F14lnS m2

MH
2 D 2

7

2
1

p2

6
1
3

2
z~3!G . ~13!

Next, we have to find the contribution of the ‘‘low-
energy’’ region of these graphs toF(s). We do this by ex-
panding the amplitude in terms of powers ofAs/MH and
m/MH .

The result for the imaginary part reads

ImFl
~3!52pMH

2 S MH

4pv D
2 b

s2 F2
s

2
14m2S p2

2
2 ln2

11b

12b D G .
~14!

Inserting~14! into the dispersion integral and integrating
from 4m2 up tom2, we find the ‘‘low-energy’’ contribution
to the real part ofF(s):

Fl
~3!52S MH

4pv D
2S 2

1

4
ln

m2

m2 2
5

6
1

p2

18D . ~15!

Finally, we have to sum the ‘‘low-energy’’ and ‘‘high-
energy’’ contributions and get

F ~3!52S MH

4pv D
2S 2

1

4
ln
MH

2

m2 2
13

3
1

p2

9
1
3

2
z~3! D .

~16!

The next two-particle cut contributions that we have to
consider are obtained by cutting the graphs presented in Figs.
3~c!–3~e!. The calculation proceeds in complete analogy
with the case considered in detail above. The result of our
evaluation is

F ~4!52S MH

4pv D
2S 2

3

4
ln
MH

2

m2 2
p2

2
1
3

2
z~3!13D . ~17!

We mention that the graphs in Figs. 3~f!–3~i! have no two-
particle cuts because of using on-shell renormalization for
the Goldstone bosons.

If we sum F (2), F (3), andF (4), we see that the sum is
finite in the limitm→0 in agreement with our expectations:
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F ~2!1F ~3!1F ~4!52S MH

4pv D
2S 3z~3!2

p2

2
2
5

3D . ~18!

To recapitulate, Eq.~18! contains the contributions of the
two-particle cuts of the diagrams in Fig. 3.

Next we are going to discuss the two-particle cut cont
butions corresponding to the graphs presented in Figs. 4~a!
and 4~b!. Similar to the situation discussed above there a
two possible ways of cutting these graphs, i.e., to the left a
to the right of the virtual Goldstone boson line.

We start with the contribution of the right-cut graph. It
contribution is given by the convolution of the correction t
theHw1w2 vertex and thew1w2→gg amplitude. In this
case, theHw1w2 vertex is not singular fors50 when the
Goldstone bosons are massless. Hence, the contribution
this ‘‘right-cut’’ graph is simply given by the product of the
lowest orderw1w2→gg amplitude and theHw1w2 vertex
calculated fors50. One obtains

F ~5!52S MH

4pv D
2

3. ~19!

The contributions of the ‘‘left-cut’’ graphs are also calcu
lated straightforwardly.2 After a little algebra, we find the
result for the imaginary part

ImF ~6!5
3p

2 S MH

4pv D
2MH

4

s2
2bHF11bH

2

bH
lnS 11bH

12bH
D 22G .

~20!

In this equation

bH5A12
4MH

2

s

is the velocity of the Higgs boson in the intermediate sta
Note, that the dispersion integral starts at the poi
s54MH

2 . The result of the integration is given by:

F ~6!52S MH

4pv D
2SA3p2

p2

6
2
15

4 D . ~21!

The next step is the evaluation of the contribution of th
graph presented in Fig. 4~c!. There is only one possibility to
obtain a two-particle cut from this graph, it is the cut with th
two Higgs bosons in the intermediate state. The evaluation

2There is one subtlety in this discussion. Considering this c
graph more carefully, we find both real andimaginaryparts origi-
nating, e.g., from the imaginary part of the box graphHH→gg.
For our purposes, we need only the real part of the amplitud
which ~after being integrated over the intermediate particle pha
space in the unitarity relation! results in Eq.~20!. As for theimagi-
narypart of the box graph, it will be exactly canceled by the imag
nary part of thethree-particle cut. In the latter case, the imaginary
part comes from the pole of the virtual Higgs boson propagat
which comes into play when the total energy of the process is lar
than 2MH @see also the discussion after Eqs.~38! and ~39!#.
ri-

re
nd

s
o

of

-

te.
nt

e

e
of

this cut is much more involved because of its nonplanar to
pology. Some details of our evaluation of this graph are
given below.

First, after cutting the graph, we face the necessity for
evaluating the box graph. Contracting the box amplitude
with the dmn tensor@defined in Eq.~4!#, we find the repre-
sentation for the box graph contribution

Tmndmn5
i

~4p!2
E dydzS 2s

g~y,z!

1
2sm21~MH

2 2t !~MH
2 2u!

g2~y,z!
D , ~22!

where s,t,u are the usual Mandelstam variables and the
functiong(y,z) reads

g~y,z!5m21~u2m2!y1~ t2m2!z1syz.

They andz integrations in Eq.~22! extend from 0 to 1. After
integration overy andz, we get the result for the box graph
amplitude

M54pa i S MH

4pv D 22F ln2S tu2MH
4

~ t2MH
2 !~u2MH

2 !
D 24Li2~1!

12Li2S tu2MH
4

~ t2MH
2 !~u2MH

2 !
D 1Li2S 2

~ t2MH
2 !2

tu2MH
4 D

1Li2S 2
~u2MH

2 !2

tu2MH
4 D 1

1

2
lnS 2tu

MH
4 D G . ~23!

To calculate the contribution of the box to the imaginary
part of theF(s), we have to integrate Eq.~23! over two-
particle phase space. In doing so, it is convenient to intro
duce a new variable 0,x,1 according to

s

MH
2 5

~11x!2

x
. ~24!

Then, the contribution of the box to the imaginary part of the
F(s) is given by

ImF ~7!5223
3

2 S MH

4pv D
2MH

4

s2 F12x

11x S 2ln2~x!22
11x2

12x2
ln~x!

22p222D18Li2~2x!12
p2

3
22ln2~x!

18ln~x!ln~11x!G . ~25!

Finally, in order to obtain its contribution to the real part
of F(s), one needs to integrate the imaginary part along the
cut. It is clear from the graph in Fig. 4~c! that the cut goes
from 4MH

2 to `. Performing this calculation, we find

F ~7!522S MH

4pv D 2 32 S 2
4

9
z~3!1

38

27A3
p32

23

9
p2

1
2

A3
p2

11

6
18C1D . ~26!
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Here, the constantC1 is

C15E
0

1

dx
ln~x!ln~x21x11!

11x
520.194 692. ~27!

The result in Eq.~26! completes the list of the two-particle
cut contributions.

C. Three-particle cuts

This subsection is devoted to the discussion of the thre
particle cuts. First, we consider the graphs corresponding
Figs. 3~f!–3~i!. We remind the reader that these graphs ha
no two-particle cuts because of using on-shell renormaliz
tion for the Goldstone bosons. In order to evaluate the thre
particle intermediate state contribution, we have to consid
the convolution of the two processesH→w1w2H and
(Hw1)w2→gg. As indicated by the parentheses, the latte
process can be viewed as the annihilation of a massless p
ticlew2 and the massive particle (Hw1) into two photons. It
is not difficult to calculate thedmn-contracted amplitude for
(Hw1)w2→gg which reads

Mmn@~Hw1!w2→gg#dmn5 ie2
MH

2

v
. ~28!

It is then clear that the problem of the calculation of th
imaginary part for this cut contribution amounts to the prob
lem of averaging the virtual Goldstone boson propagator o
the left side of this graph over three-particle phase spac
Performing the integration, we find

ImF ~8!52
MH

4

2 S MH

4pv D 2 2p

s3 F22~s2MH
2 !

1~s1MH
2 !lnS s

MH
2 D G . ~29!

We finally substitute this expression into the dispersio
integral and integrate along the cut going froms5MH

2 to
s5`. The result of this integration is

F ~8!52S MH

4pv D
2S 138 2

p2

6 D . ~30!

Next, we discuss the three-particle cuts of the graphs
Figs. 3~a! and 3~b!. Cutting these graphs along the three
particle intermediate state contributions, it is easy to see th
these graphs produce exactly the same result as the gra
discussed previously@Figs. 3~f!–3~i!#.

A more nontrivial situation arises for the three-particle cu
of the graphs shown in Figs. 3~c! and 3~d!. In this case, the
complexity stems from the fact that the amplitude to the righ
of the cut does not have a simple form as in Eq.~28!. The
way we proceed is the following: as before, we first contra
this amplitude with the tensordmn , and then perform the
phase space integration over the momentum of the dec
products of the virtual Goldstone boson. Then, we obtain th
representation for the imaginary part ofF(s)
e-
to
e
-
e-
er

r
ar-

-
n
e.

n

in
-
at
phs

t

t

t

ay
e

ImF ~9!52
8p2MH

2

s2 SMH
2

v D 2E d3p2
~2p!32E2

G2~Q!

Q2

3S s

Qk1
21D , ~31!

whereQ5k11k22p2 andG2(Q) is given by

G2~Q!5
1

8p

Q22MH
2

Q2 .

Integrating Eq.~31!, we obtain the result for the contribution
of this graph to the imaginary part ofF(s)

ImF ~9!522pS MH

4pv D
2MH

4

4s3
A,

A5F2sln2S s

MH
2 D 2~6s12MH

2 !lnS s

MH
2 D

18~s2MH
2 !G . ~32!

Integrating Eq.~32! along the cut, we finally obtain the
contribution to the real part ofF(s), which reads

F ~9!52S MH

4pv D
2 1

4 S 4p2

3
2
17

2
24z~3! D . ~33!

Next, we come to the discussion of the graphs shown in
Fig. 5. The calculation is performed in complete analogy
with the case discussed previously. Without going into de-
tails, we present the result for the imaginary and real parts of
the corresponding cut graphs: the joint contribution of the cut
graphs in Figs. 5~b! and 5~d! to the imaginary part is the
same as the contribution of the cut graphs in Figs. 5~c! and
5~e! and it has the form

ImF ~10!522pS MH

4pv D 2MH
2

2s3 F ~s1MH
2 !~s2MH

2 !

2

2sMH
2 lnS s

MH
2 D G . ~34!

Upon integration we get, for the real part

F ~10!52S MH

4pv D
2S p2

12
2
7

8D . ~35!

Next, let us write down the contribution of the cut graph
shown in Fig. 5~a!:

ImF ~11!522pS MH

4pv D
2MH

2

4s3
B,

B5F22sMH
2 ln2S s

MH
2 D 22sMH

2 lnS s

MH
2 D

1~s2MH
2 !~3s2MH

2 !G . ~36!



p

h

w

n

53 3743TWO-LOOPO(GFMH
2 ) RADIATIVE CORRECTIONS TO THE . . .
Correspondingly, one has, for the real part,

F ~11!52S MH

4pv D
2 1

4 S 4z~3!1
p2

3
2
17

2 D . ~37!

Next, we consider the contribution of the three-partic
cuts of the graphs shown in Figs. 4~a! and 4~b!. The first step
of the calculation is similar to the evaluation of the graphs
Figs. 5~b!–5~e! because the right-hand side of the cut gra
is again given by the simple expression Eq.~28!. Performing
all further integrations over the phase space variables,
obtain the representation for the imaginary part of the sum
these cut graphs

ImF ~12!522pS MH
2

4pv D
2 6MH

4

s2 E
m

Emax
dE

AE22MH
2

s22AsE
,

~38!

whereEmax is given by

Emax5
s1MH

2

2As
. ~39!

One integrates over the energy of the virtual Higgs bos
which decays to two Goldstone bosons. The specific feat
of this integral is that, depending on the total energy of t
processAs, the denominator of the integral can go throug
zero reflecting the fact that an intermediate state with t
‘‘real’’ Higgs bosons can be formed fors.4MH

2 . It is also
clear that for our purposes we have to treat this singularity
the principal value sense.

It is straightforward to calculate this integral and one o
tains the expression for the imaginary part

ImF ~12!522pS MH
2

4pv D 2 6MH
4

s2
1

4 S 2
1

2
ln

s

MH
2 21

1
MH

2

s
1C~s! D , ~40!

where the functionC(s) is defined by

C~s!5u~4MH
2 2s!

3

2
cotS w

2 D S w2
p

3 D
2u~s24MH

2 !
3

2

12x

11x
ln~x!. ~41!

The variablex is defined as in Eq.~24! and w is defined
through the relation

s54MH
2 sin2

w

2
.

Integrating the imaginary part, we finally obtain the co
tribution to the real part ofF(s)

F ~12!52S MH

4pv D
2Fp2

8
1
3

2
2
3A3
2

Cl2S p

3 D G , ~42!

where Cl2(w) is Clausen’s function~see, e.g.,@13#!.
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Now we are in the position to discuss the most difficult
part of the calculation, namely, the evaluation of the contri-
bution of the three-particle cut given by the nonplanar graph
of Fig. 4~c!. Performing the integration over phase space, we
obtain the representation for the contribution of this cut to
the imaginary part ofF(s)

ImF ~13!522pS MH
2

4pv D
2 6MH

4

s2
@W1~s!1W2~s!1W3~s!#,

~43!

whereW1 ,W2 , andW3 stand for

W1~s!52S 2ln~2!1
1

2D EmEmaxdE bHE

s22AsE
, ~44!

W2~s!522E
m

Emax dE

As
s2EAs
s22AsE

lnS s2EAs1bHEAs
s2EAs2bHEAsD ,

~45!

W3~s!522E
m

Emax
dE

bHE

s22AsE
lnS ~s2EAs!2

~bHEAs!2
21D .

~46!

In this expression,Emax is defined through Eq.~39! and
bH is the velocity of the Higgs boson:

bH5A12
4MH

2

E2 .

In each of the above integrals, there is a pole in the integrand
for total energies larger than twice the Higgs boson mass. We
first evaluate each of these integrals in the case where
s.4MH

2 and then perform an analytic continuation to the
region s,4MH

2 . We shall not present explicit expressions
for the imaginary part of these functions above threshold. If
needed, it can be obtained directly from the integral repre-
sentation of the above functions. One obtains

W1~s!1W3~s!5
1

4 S 12
MH

2

s D 2
1

8
lnS s

MH
2 D 1

1

8
ln2S s

MH
2 D

2
MH

2

2s
lnS s

MH
2 D 1

12x

2~11x! F2
2p2

3

23Li2~x!22Li2~2x!1
7

4
ln2~x!

23ln~x!ln~12x2!2
3

4
ln~x!

1
3

2
ln~x!lnS s

MH
2 D G , ~47!

W2~s!5
p2

6
1
MH

2

2s
lnS s

MH
2 D 2

1

2 S 12
MH

2

s D
1
1

8
ln2S s

MH
2 D 2

3

8
ln2~x!. ~48!
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Here again, the variablex is defined by Eq.~24!.
Performing the analytic continuation to the regio

s,4MH
2 , we find the expressions for the above integrals

W1~s!1W3~s!5
1

4 S 12
MH

2

s D 2
1

8
lnS s

MH
2 D 1

1

8
ln2S s

MH
2 D

2
MH

2

2s
lnS s

MH
2 D 1

cotS w

2 D
2 F S w2

p

3 D S 34
2
3

2
ln

s

MH
2 13ln~2sin~w!! D

1
1

2
@3Cl2~2w!22Cl2~w!#G , ~49!

W2~s!5
MH

2

2s
lnS s

MH
2 D 2

1

2 S 12
MH

2

s D 1
1

8
ln2S s

MH
2 D

1
3

8 S w2
p

3 D 2, ~50!

wherew is defined after Eq.~41!. Equations~47!–~50! pro-
vide us with the desired result for the contribution of th
graph to the imaginary part ofF(s).

The integration in the dispersion integral has to be do
numerically and we find

F ~13!522S MH

4pv D
2

K, K50.0678. ~51!

Summing up all contributions to the real part ofF(s) and
taking into account permutations of the photon’s legs wh
necessary, we obtain the final result

F5F ~0!1(
i51

6

F ~ i !12F ~7!14F ~8!14F ~9!12F ~10!12F ~11!

12F ~12!14F ~13!52F123.027S MH

4pv D
2G . ~52!

The result@Eq. ~52!# completes our calculation and presen
the two-loop correction to the one-loop result@Eq. ~2!#.

IV. DISCUSSION AND CONCLUSIONS

Generally, it is not easy to say for which values of th
Higgs boson mass our results~based on the application of th
equivalence theorem! provide sufficiently accurate predic
tions for the value of the radiative correction. The only hi
that can be obtained is from a comparison of the full on
loop result for theHgg vertex with the result obtained by
applying the equivalence theorem@Eq. ~2!#.

The complete one-loop result for the effective form fact
F(s) is plotted in Fig. 6. As mass parameters, we have ta
mt5180 GeV andmW580 GeV. Curve A shows the contri
bution of theW boson only, whereas curve B is the sum
the top quark and theW boson contributions. Figure 6 show
that the contribution of theW boson toF(s) is slowly ap-
proaching its asymptotic valueFLO52 atmH.600 GeV and
n
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the contribution of the top quark is important until the Higgs
boson mass reaches the valuemH;1TeV. We emphasize that
there is a strong cancellation between the contributions of the
top quark andW boson for Higgs boson masses of order
mH;600 GeV.

Consequently, we expect that, in the two-loop case, the
use of the equivalence theorem for an estimation of the elec-
troweak ~EW! radiative corrections for the coupling of the
Higgs boson to two photons is reasonable for Higgs boson
masses'600 GeV. Below this value, our results must be
considered to be a rough estimate which have to be used in
the absence of the exact calculation. It can also happen that
some other potentially large SM radiative corrections~for
instance, the ones proportional to top-Higgs-Yukawa cou-
pling! should be taken into account to provide a more accu-
rate estimate of the full SM radiative corrections for the
Higgs boson masses below 1 TeV. Note that there are also
large logarithmic contributions of powers of ln(MH

2 /mW
2 ) to

the subleading orderO(GFmW
2 ) which can reduce the range

of validity for our result@Eq. ~52!#.
Our results for the leading two-loop EW corrections are

presented in Fig. 7. We show the ratio of the leading two-

FIG. 6. Absolute value of the one-loop form factorF(mH) of
processH→gg as a function of the Higgs boson massMH @GeV#.
Curve A shows contribution of theW boson only, whereas curve B
is the sum of the top quark and theW-boson contributions.

FIG. 7. Relative two-loop electroweak correction to the decay
width H→gg ~in percent! as a function ofMH @GeV#.
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loop electroweak correction to theH→gg decay width@see
Eq. ~52!# and the full one-loop result (W boson plus top
contribution!. One notes that the relative correction to th
decay width is negative and large formH.500 GeV because
of strong cancellations betweenW and top loops in the low-
est order~see Fig. 6!, but the absolute correction is small an
perturbatively under control. This correction grows with th
mass of the Higgs boson and blows up at aroundmH;1.5
TeV. This general behavior is quite familiar from previou
studies of the large Higgs boson mass two-loop radiati
corrections@14,15#.

Finally, we want to comment on some phenomenologic
issues. A nice place for the investigation of the Higgs bos
coupling to photons would be photon linear colliders, whe
the Higgs bosons would be produced through the react
gg→H→X @4#. The current limitations for the observation
of the Higgs boson signal in this reaction isMH<400 GeV
@16#. As was mentioned before, for such Higgs boso
masses, our results should be considered only as an estim
of the full SM radiative corrections. However, they demon
e
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strate that the SM correction is well under control in this
mass range.

The heavy Higgs boson is a broad resonance with a width
growing proportionally toMH

3 . It is evident that our results
for the radiative correction to the on-shell value of the
Hgg interaction vertex are not sufficient for the description
of the Higgs boson shape in the reactiongg→H→X. How-
ever, since we have also given results for the imaginary part
of the Hgg vertex, it is straightforward to obtain off-shell
values for theHgg-vertex using dispersion integrals to
evaluate the off-shell vertex numerically.
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