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Two-loop O(GEM?) radiative corrections to the Higgs boson decay widttH — yy
for large Higgs boson masses
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This paper is devoted to the calculation of the two-l@(tﬁFMﬁ) radiative corrections to the Higgs boson
decay widthH— vy for large values of the Higgs boson madg within the minimal standard model. The use
of the equivalence theorem makes it possible to reduce the problem to the consideration of the physical Higgs
boson field and the Goldstone bosons,w™,z. We present analytical results for the various two- and
three-particle absorptive parts of the two-loop contributions, and, using dispersive techniques, analytic results
for all but one of the dispersive contributions. The relative corrections to the decay width are large because of
strong cancellations between téand top loops in the lowest order, but the absolute corrections are small and
perturbatively under control.

PACS numbe(s): 14.80.Bn, 12.15.Lk

I. INTRODUCTION contribute to the effectivédyy form factor. The one-loop
result was obtained in Ref§5,6] and can be found in the
The neutral scalar Higgs boson is the essential ingredieriext books[7]. Note for the time being that the contributions
of the standard model of the electroweak interactions. Th@f the W andt-quark loop to theH yy vertex have different
Higgs boson mass is a free parameter in the minimal starsigns and hence tend to compensate each other. For realistic
dard model and until now we did not know much about itsmasses of th& boson and the top quark, this compensation
value. Experiments exclude a Higgs boson lighter therPccurs for Higgs boson masses-600 GeV.
~65 GeV[1]. Also theoretical arguments based on perturba- The QCD radiative corrections to théyy vertex were

tive unitarity suggest that the upper bound on the Higgs bogalculate.d.recently by several groui®. These corrections
son masis ~1 TeV[2]. are negligible belowtt threshold and are large above the

It is widely believed that the properties of the Higgs bo- threshold. As for the size of the other SM radiative correc-

son can be investigated at the Next Linear Collider whicht'i?ns’ we d(? not k?owdmgcheabozut them at p:esen(;. Recr:antly,
will be able to operate in different modes the corrections of ordeO(Gem;) were evaluated in the

(ete",e" Ty, yy). In particular, yy collisions are well limit of a small I;Iiggs masg9). In this paper we consider the

suited not only for the observation of the Higgs boson signa|ead'ng.O(G'E)M H) SM radlat{yve C?]”ecz'horlstr'ln the I'mt'f{ th

but also for studying its propertig¢for a review see Ref4]). arge Higgs boson masses. We snow that this correction has
As is known for a long time, thelyy vertex serves as a the same order of magnitude but has the opposite sign as the

“counter” of the particles with masses larger than the HiggsQCD correction in the interval 0.5 Tevm,,<1.5 TeV and

o . ; lows up for larger Higgs boson masses.
boson mass: if these particles acquire masses because of . 4 . L
) : he technical tool which results in great simplifications of
standard Higgs mechanism, then they do not decouple fro

the Higgs boson and provide a constant contribution to th%e calculations is the use of the Goldstone boson equiva-

; > Nence theorentET) [10].
Hyy vertex. Therefore, théiyy vertex can provide us, in " organization of the paper is as follows: in Sec. Il we
principle, with unique information about the structure of thediscuss the one-loop calculation of thiyy vertex in the
theory at energy scales unachievable at modern accelera’[otrsa.‘mewOrk of the ET Sec. Il is devotegll to the two-loop
calculation: we briefly discuss the renormalization procedure
and present results for the imaginary and real parts of the
vy vertex; in Sec. IV we discuss our final results and make

some concluding remarks.

A similar consideration also shows up in another aspect: i
turns out that theH yy vertex is very sensitive to different
anomalous couplings in the massive gauge boson sector
the standard mode(SM). All these properties make the
H vy interaction vertex an extremely interesting object from
the theoretical point of view. In order to exploit the possibil-
ity of looking for deviations from the SM predictions for the Il. LOWEST ORDER Hyy VERTEX
Hyvy vertex, one needs quite accurate predictions for this
vertex within the framework of the minimal standard model.

At the tree level, théd yy vertex is absent in the standard
model. At the one-loop level, th&/ boson and the top quark

The interaction of the Higgs boson with two photons can
be described with the help of the effective Lagrangian

o
- nv
L yp=— F(s)F,,F*"H. (h)
*Permanent address: Budker Institute for Nuclear Physics,
630 090, Novosibirsk, Russia. In this equationF(s) denotes a form factor which con-
This statement is also supported by lattice investigat8fs tains all information about the particles propagating in the
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In spite of the fact that the sum of these graphs should be

KL . kLu ultraviolet finite, we need to regularize at intermediate steps
of the calculation. For simplicity, we adopt dimensional
regularization, working ind dimensions. At the end of the
2. v 9 v calculations we shall pud equal to four. After some algebra

------- L one finds for the sum of the lowest order amplitudes:

M=M,,d,,=Mi27a(d—4)s
FIG. 1. Generic lowest order graphs. The dashed lines corre-
spond to photons, heavy solid lines are Higgs bosons. The particles ddq 1
inside the loop(light solid lineg areW bosons and top quarks. X (27T)d (k1+q)2(k2—q)2' )

loop. In the minimal standard model, the form factefs) From this equation it is seen that the leading order calcula-
obtains contributions from the top quark and teboson. tion amounts to the calculation of the divergent part of the
The lowest order contribution to tHéyy vertex is given massless two-point function. Using well-known results for
by the graphs shown in Fig. 1. The analytical results for theghe two-point function in Eq(5), we obtain the asymptotic
fermion and spin-one boson contributions can be found, e.gresult given in Eq(2).
in [7]. In the limit when the Higgs boson mass is large in It is also possible to calculate these graphs using disper-
comparison with the mass of the particle propagating in thesion relations. In order to do this, we need to cut the graphs
loop, the contribution of the fermions f6(s) is suppressed shown in Fig. 1 in all possible ways, calculate the contribu-
as (M¢/My)?, while the contribution of th&V loop results  tion of the cut graphs to the imaginary part of #hés) using

in a constant unitarity and finally integrate the imaginary part of the
F(s) along the cut. As our Goldstone bosons are exactly
FO 2 () massless, the cut goes from 0¢an the complexs plane. If
H~>oc .

we cut the graphs of Fig. 1, the imaginary partkefs) is
given by the convolution of the decay amplitude
This asymptotic value can be obtained using the Goldj(s)—w*w~, with the amplitudew*w~— yy. Note that
stone boson equivalence theorem which states that in thesnservation of the total angular momentum requires equal
limit of a large Higgs boson masis!;>My, the leading helicities of both photons in the final state.
O(GgMp) contribution to a given Green’s function can be It is not difficult to see by exact calculation that the am-
obtained by replacing the gauge bosOsZ by the corre-  plitude w"w™— yy vanishes for masslese™ and w™
sponding would-be Goldsone bosonsz of the symmetry-  bosons in the equal photon helicity configuration. Therefore,
breaking sector of the theory. The Goldstone bosons can ke imaginary part of th&(s) is zero and one fails to repro-
taken to be massless in this approximatjag]. duce the result of the direct evaluation of the Feynman
The interaction of the would-be Goldstone bosons withgraphs. To find a way out of this paradox, we need to inves-
the Higgs and photon fields is described by teyw(1) tigate the amplitudev*w™—yy more carefully. For this
gauged lineawr model: aim we introduce a mass for the Goldstone bosons which
now serves as an infrared cutoff. The amplitude is then

1 1 1
L=(D,w)*(D*W)+ = d,z0*z+ = d,HI*H— = MZH? 2m?s?
( " ) ( ) 2%m 27K 2 H dMVM#V(W+W_—>’y’y):iezm, (6)
M2 M2, 1 .
— 5 (P?+H?)2— —(P*+H)H~ - F , F+" wherem is the mass of the Goldstone bosons aaddu are
4v v 4 the Mandelstam variables of the process.
3 It is then straightforward to calculate the imaginary part
of the F(s) to the lowest order. One obtains
HereD,=d,—ieA, is theUgy(1) covariant derivative, a2 (148
My is the mass of the Higgs boson field,is its vacuum ImF(©(s)= _WMa_Z_m ) )
expectation value, an@ is the triplet of the Goldstone S 1-8

bosonsw*,w~,z. The Feynman rules for this Lagrangian
can be found, e.g., in Ref11].

Let us first reproduce the result of E@) using the La-
grangian of Eq(3). It is straightforward to write down the
sum of the Feynman graphs shown in the Fignéglecting

whereg is the velocity of themassive Goldstone boson. If
we put the mass of the Goldstone boson equal to zero in Eq.
(7), the imaginary part of (s) is zero in accordance with the
previous statement. However, the lower limit in the disper-
sion integral is 4n. In fact, if we consider the imaginary

for the moment the contribution from the top lgohe . . . S

contribution to the form factoF(s) can be cgnvoen?(-ently part given by Eq(7) in the dispersion integral, we can see
. ) . ...that in the limitm— 0, the imaginary part o (s) turns into

obtained by contracting the one-loop tensor amplitude with

. . ; . ad(s) function.
tFr:g tf)l?sor(the notation for outgoing photons is clarified in Hence, the correct procedure consists in evaluating the

dispersion integral with finite Goldstone boson masses and
) , , taking the limitm—O0 only after the integration over the cut
d*’=g""k ko —kiks . (4 has been performed.
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a c

| | ‘<X
FIG. 2. “Quasi one-loop,” two-loop diagrams. Heavy solid lines ¢ T

denote Higgs bosons, thin solid lines denaté,w™,z Goldstone

bosons of the ET. Dashed lines are photons. . ) ) ) )
FIG. 4. Two-loop diagrams with triple Higgs boson couplings.

In this way, we obtain the same result as in B).for the ~ Line drawings as explained in Fig. 2.
real part ofF(s), as has been obtained from the known com-
plete expression fdf(s) in the large Higgs boson mass limit The “matter” part of the LagrangiafEq. 3] contains two
or from the direct evaluation of the Feynman graphs withindependent parameters: the mass of the Higgs boson field
massless Goldstone bosons. My and the vacuum expectation value We fix the one-

The reason why we have discussed the one-loop calculagop counter terms by requiring the mass of the Higgs boson
tion of the Hyy vertex in some detail is twofold: first, it field and the vacuum expectation value to be exact one-loop
serves as a reference point to justify the use of the equivaguantities. This requirement eliminates all tadpole graphs
lence theorem for the two-loop calculation; second, in ourand provides us with the counter terms for all other divergent
opinion, this calculation shows some unexpected propertiesubgraphs. For instance, the self-energies of the Goldstone
(For instance, the evaluation of this one-loop result throughhosons must be effectively subtracted on mass shell. Further,
the diSperSion relations is very similar to the evaluation Of\Ne will need the counter terms for the VertiddW+W7 and
the axial anomaly through the imaginary part of the triangleHqzz which can also be obtained from the above require-
graph[12]. However, we have not succeeded in finding anyments.
deep reason underlying this similarjty. The next point is the renormalization of thev*w~ ver-

tex. As this vertex is convergent, its renormalization is fixed

lIl. TWO-LOOP CONTRIBUTION TO THE  Hyy VERTEX by the renormalization of the Goldstone boson wave function
which in turn is fixed by the renormalization of the self-
energy operator for the Goldstone boson. This procedure is

In this subsection we briefly discuss the renormalizationcompatible with the electromagnetic Ward identities of the
procedure which is needed for the evaluation of the two-loogyaugedo model.

graphs. First note that as theyy interaction is absent in the

SM Lagrangian, the two-loop graphs must be finite after we B. Two-particle cuts

renormalize all subdivergencies. In other words, to make our ) ) o

two-loop amplitude finite, we need only one-loop counter In this subsection we compute the contributions of the

terms. The latter are constructed according to the followingWo-particle cuts of the graphs presented in Figs. 2-5. The
procedure. simplest(quasi one-loopcontributions are given by the set

of Feynman graphs shown in Fig. 2 and the two-patrticle cuts
.............. of the graphs in Fig. 5.

< A =S

A. Renormalization

g h i

FIG. 3. Abelian(QED-like) two-loop diagrams. Line drawings FIG. 5. Two-loop diagrams with two-Higgs-boson—two-
as in Fig.2. Goldstone-boson interaction vertices.
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The graphs shown in Fig. 2 are quasi one-loop graphs. A&oldstone bosons equal to zero. For the “high-energy” part
theHw"w™ vertex diverges at the one-loop level, one needf the imaginary part ofF(s), we obtain
to bring in counter terms which can be obtained according to

4 : . : . ) 4 2
the recipe given above. It is also convenient to consider si- ImE® = _ % My |7
multaneously the graphs shown in Fig. 2 and the two-particle My == 5 40 S
cuts of the two-Higgs-two Goldstone boson vertex graphs
presented in Fig. 5. Summing up the contributions of Fig. 2, ) s+ Ma
the two-particle cut contributions of the graphs shown in Fig. A=|8s—4(s+M{)In| —>—
iy~ My
5 and the one-loop counter term for tHev™w™ vertex, one
has ) S
+4AMGLi,| — — | |. 12
LMy e Mﬁ) 12
F=2| — (2—\3m). )
o In this equation, Li(x) is a Spence function as, e.g., defined

Next, we discuss the contribution of the graphs shown ir? Ref-[13]. Inserting this expression into the dispersion in-
Fig. 3. Note that we are considering only two-particle cuts ini€9ral: we can evaluate the contribution of the “high-energy
this section. part to the real part oF(s), where we must remember that

Let us start with the graphs shown in Figga3and 3b) the lower limit for the integration of the above quantity is
and consider the two-particle cuts which lie to the right of9iven by u. _ ,
the virtual Higgs boson line. The cut contribution is given by ~ Pérforming the integration, we get
the convolution of the one-looH —w*w~ amplitude(with Mo\ 201 2 7 22 3
the Higgs boson in thé channel with the Born amplitude |:§13>:2(_H) _|n(’“_2) S _5(3)} (13
for wtw~—yy. As we know from the discussion of the 4 4 \My) 2 6 2
lowest order vertex, the latter is singular for small values of ) I “
s. Unfortunately, the one-loop correction tb—w*w™ is NexE, we have to find the contribution of the “low-
also singular fors=0 if the Goldstone bosons are exactly e”erg,y region of .these.graphs t(s). We do this by ex-
massless. As before, we have to introduce a mager the ~ Panding the amplitude in terms of powers 98/M,, and
Goldstone boson to handle this infrared divergence. Note d/My. ) )
this point that the ET guarantees the existence of a smooth The result for the imaginary part reads

limit as m— 0. Hence, we expect that the sum of all two-loop 2 2

S . i, . . M B S T 1+
contributions will not be sensitive to the details of the infra- |mE® = — 7M2| —| 2| = 2 4+ 4m?| — —In?

- I VY 2
red limit of the theory. Amv) s°| 2 2 1- ﬂ(14)

Evaluating theHw*w™ vertex in the limitmg>>/s,m

we find the result Inserting(14) into the dispersion integral and integrating

M2 [ M. \2 M2 1 from 4m? up to w2, we find the “low-energy” contribution
Fi=—2|—2] | 14In| —¢ | - BIn 1B . (9) tothe real part of(s):
L7 2 \4m m? 1-8
My\2( 1 w? 5 =2
Putting everything together, the imaginary part corre- Ff3):2 4—H) (—Zlnﬂ—z—g %) (19
sponding to the “right cut” graphs of Figs.(® and 3b) is m m
given by Finally, we have to sum the “low-energy” and “high-
Ma 4m? (148 energy” contributions and get
|mF<2)=——27T—2|n(_)F|_(5)- (10 2 2
2 s \1-p4 , M 1 M 13 2 3
. . o FO=2| —| | —Jn—Z——+5+543)
Inserting Eq(10) into a dispersion integral, we can evalu- 4mv 4 m 3 9 2
ate the contribution of these cut graphs to the real part of the (16)

F(s) and get The next two-particle cut contributions that we have to

M. |2 2\ 4 2 consider are obtained by cutting the graphs presented in Figs.

H H T : ;

|:<2>:2( 1+In| — |-z 1+ — } (1) 3(c)-3(e). The calculation proceeds in complete analogy
4my m 3 12 with the case considered in detail above. The result of our

Another possibility to cut the graphs of FiggaBand 3b) evaluation is

is to cut to the left of the virtual Higgs boson line. We divide 2 2 2
the integration region in the dispersion integral into two FO=2| —| | —=In—>——=+=¢(3)+3]|. (17)
parts, introducing an arbitrary scale The scalew can be

chosen to satisfy the inequalities We mention that the graphs in Figdf)3-3(i) have no two-

m<u<My. particle cuts because of using on-shell renormalization for
the Goldstone bosons.
If we are interested in the contribution from the “high-  If we sumF®), F®) andF®, we see that the sum is

energy” part of this graph, we can put the masses of thdinite in the limitm—O0 in agreement with our expectations:
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) 5 . My |2 2 this cut is much more involved because of its nonplanar to-
F+F® 4R EZ(m) (35(3)—7—5)- (18 pology. Some details of our evaluation of this graph are
given below.

First, after cutting the graph, we face the necessity for
evaluating the box graph. Contracting the box amplitude
with thed,,, tensor[defined in Eq.(4)], we find the repre-
sentation for the box graph contribution

To recapitulate, Eq(18) contains the contributions of the
two-particle cuts of the diagrams in Fig. 3.

Next we are going to discuss the two-particle cut contri-
butions corresponding to the graphs presented in Figs. 4

and 4b). Similar to the situation discussed above there are i 2s
two possible ways of cutting these graphs, i.e., to the left and def“’:—ZJ dydz(—
to the right of the virtual Goldstone boson line. (4m) 9(y.2)

We start with the contribution of the right-cut graph. Its —sm+(MZ—t) (M3 —u)
contribution is given by the convolution of the correction to + 5 , (22
the Hw*w~ vertex and thev*w~ — yy amplitude. In this 9%(y.2)

s . . ~ _
case, theHw"w™ vertex is not singular fos=0 when the  \\here 5t,u are the usual Mandelstam variables and the
Goldstone bosons are massless. Hence, the contribution ﬁjnctiong(y 2) reads

this “right-cut” graph is simply given by the product of the

lowest ordew™w ™ — yy amplitude and thélw*w™ vertex g(y,2)=m?+(u—m?)y+(t—m?)z+syz

calculated fors=0. One obtains ] ) )

They andz integrations in Eq(22) extend from O to 1. After
integration ovely andz, we get the result for the box graph

M 2
m) 3. (29 amplitude

4

My |2 tu—My :
The contributions of the “left-cut” graphs are also calcu- M=4mai (m) 2[ |n2( (—MZ)(u— MZ)) —4Liy(1)
lated straightforwardI{. After a little algebra, we find the H H

result for the imaginary part tu—M4 [ (t—M2)2
(t=MHu-My /) 2 tu-Mj
_2}‘ [ (u=M{?\ 1 [—tu
(20) +Lliy| ———7— +§In : (23

4 EVER

+2Li2<
2Mm4

&2 2P

1+ B3
B

1+ By
1-B4

ImF® =— In

2

377 MH
47v

In this equation To calculate the contribution of the box to the imaginary
part of theF(s), we have to integrate E423) over two-
AV particle phase space. In doing so, it is convenient to intro-
duce a new variable 9x<1 according to

Bu= 1- S
s (1+x)2

— =
M§ X

is the velocity of the Higgs boson in the intermediate state. (24)

Note, that the dispersion integral starts at the point
s=4Mf,. The result of the integration is given by: Then, the contribution of the box to the imaginary part of the
F(s) is given by
3 m? 15 o1
57 (21) 3

(MN=_2%x—
ImF 2 >

2
1-x 2

1+x

,:(6):2(_:/'” 1
U 2(y) —
2In(x) 21_)(2

SZ

In(x)

47v

The next step is the evaluation of the contribution of the
graph presented in Fig(@. There is only one possibility to —242-2
obtain a two-particle cut from this graph, it is the cut with the
two Higgs bosons in the intermediate state. The evaluation of

71_2

+8Liy)(—%x)+2 3

2In?(x)

+8In(x)In(1+x) |. (25

“There is one subtlety in this discussion. Considering this cut  Finally, in order to obtain its contribution to the real part
graph more carefully, we flr_1d both real andaginary parts origi-  of F(s), one needs to integrate the imaginary part along the
nating, e.g., from the imaginary part of the box graghi—yy.  cyt. It is clear from the graph in Fig.(@ that the cut goes

For our purposes, we need only the real part of the amplituderrom 4M»%| to «. Performing this calculation, we find
which (after being integrated over the intermediate particle phase

space in the unitarity relatiogmesults in Eq(20). As for theimagi- My 2 3 4 38 23
nary part of the box graph, it will be exactly canceled by the imagi- F=-2 e B 5{(3) + ——7— 9 w?
nary part of thethree-particle cutIn the latter case, the imaginary 27\/5

part comes from the pole of the virtual Higgs boson propagator, > 11
which comes into play when the total energy of the process is larger +—7——+8C,]|. (26)
than 2V [see also the discussion after E¢38) and (39)]. \/§ 6
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Here, the constar€ is N 8mM3 M_ﬁ zj d3p, T,(Q)
2 s° v (2m)32E, Q°
1 In(x)In(x“+x+1)
clzf dx = -0.194692. (27)
0 1+x X i—l) (3D
Qky '

The result in Eq(26) completes the list of the two-particle

cut contributions. whereQ=k;+k,—p, andI',(Q) is given by

C. Three-particle cuts I'(Q)= 87

This subsection is devoted to the discussion of the three-
particle cuts. First, we consider the graphs corresponding tthtegrating Eq(31), we obtain the result for the contribution
Figs. 3f)—3(i). We remind the reader that these graphs havef this graph to the imaginary part &%(s)
no two-particle cuts because of using on-shell renormaliza-

tion for the Goldstone bosons. In order to evaluate the three- (9)_ My |2 M.ﬁ
particle intermediate state contribution, we have to consider ImF™=—27 dmv) 453’V
the convolution of the two processdd—w*w H and
(Hw")w™ —vyy. As indicated by the parentheses, the latter s s
process can be viewed as the annihilation of a massless par- A= Zslnz(w) —(6s+ 2Mﬁ)|n(w>
ticle w~ and the massive particlédfv*) into two photons. It H H
is not difficult to calculate th&*”-contracted amplitude for
(Hw")w™— yy which reads +8(s—M7)|. (32
M3 _ _ ,
MMV[(HW_F)W_—)’)/’}/]d#V:Iez—_ (28 Integrating Eq.(32) along the cut, we finally obtain the
v contribution to the real part d¥(s), which reads
It is then clear that the problem of the calculation of the © My \21(4=% 17
imaginary part for this cut contribution amounts to the prob- Fo=217-1 Z(T —5 4B (33

lem of averaging the virtual Goldstone boson propagator on

the left side of this graph over three-particle phase space. Next, we come to the discussion of the graphs shown in
Performing the integration, we find Fig. 5. The calculation is performed in complete analogy
with the case discussed previously. Without going into de-
) tails, we present the result for the imaginary and real parts of
—2(s—Mp) the corresponding cut graphs: the joint contribution of the cut
graphs in Figs. &) and 5d) to the imaginary part is the
same as the contribution of the cut graphs in Fids) &nd
(29 5(e) and it has the form

S3

MH 2277
47v

M4
@®___H
ImF > (

(s M2)In| —
(s H)nm'

. . . o . . My \2MZ[(s+M2)(s— M3
We finally substitute this expression into the dispersion ImF (10 = —277( H) — ( ) )
integral and integrate along the cut going frcmﬁrME| to m) 2s 2
s=», The result of this integration is s
—sMﬁln(MZH (34)
. My \2(13 @2 H
FO=2|—| | =——]|. (30) _ _
4mv) |8 6 Upon integration we get, for the real part
Next, we discuss the three-particle cuts of the graphs in F(10_ My |2 77_2_ Z 35
Figs. 3a) and 3b). Cutting these graphs along the three- [ /P 12 8/° (39

particle intermediate state contributions, it is easy to see that
these graphs produce exactly the same result as the graphsNext, let us write down the contribution of the cut graph
discussed previouslyFigs. 3f)—3(i)]. shown in Fig. %a):

A more nontrivial situation arises for the three-particle cut
of the graphs shown in Figs(@ and 3d). In this case, the (11 My ZMﬁ
complexity stems from the fact that the amplitude to the right ImF == =2 dmv) 453 °
of the cut does not have a simple form as in E28). The
way we proceed is the following: as before, we first contract
this amplitude with the tensad,,, and then perform the B=
phase space integration over the momentum of the decay
products of the virtual Goldstone boson. Then, we obtain the
representation for the imaginary part B(s) +(s—M32)(3s—M?2)

s s
—25M2In2(—) —Zstln(—)
W%l gz HIn| vz

. (36)
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Correspondingly, one has, for the real part, Now we are in the position to discuss the most difficult
5 5 part of the calculation, namely, the evaluation of the contri-

F(ﬂ):z(& }(4§(3)+ T 1_7> 37) bution of the three-particle cut given by the nonplanar graph

47v) 4 3 2/ of Fig. 4(c). Performing the integration over phase space, we

obtain the representation for the contribution of this cut to
Next, we consider the contribution of the three-particlethe imaginary part of (s)

cuts of the graphs shown in Figgaftand 4b). The first step

of the calculation is similar to the evaluation of the graphs in . M2 \26M},

Figs. 5b)-5(e) because the right-hand side of the cut graph IMF™'=—2m| 7—= _ST[W1(5)+W2(S)+W3(S)]'
is again given by the simple expression E28). Performing (43)
all further integrations over the phase space variables, we

obtain the representation for the imaginary part of the sum owvhereW; ,W,, andWj; stand for

these cut graphs

1 Emax BHE
26M4 [E2_ M2 w s=2(2|n2 +—f dE———, 44
|mF(12):_277-( H) GRQHIEmaxdE E MH’ 1( ) ( ) 2 " S—2\/§E ( )
4o s Jm s—24/sE
(38) Wyis) Enax dE S—EVS | s—E\/§+,8HE\/§>
S)=— ,
whereE .« is given by ? m s s— 2\/§E s—E\s—B4E\/s
(45
c s+M? 39
max— . Emax s—E 2
2\s wg(s):—zj g PHE | [ENS? )
n 2V | (BaENe
One integrates over the energy of the virtual Higgs boson (46)

which decays to two Goldstone bosons. The specific feature
of this integral is that, depending on the total energy of the In this expressionE, is defined through Eq39) and
processy/s, the denominator of the integral can go throughBw is the velocity of the Higgs boson:
zero reflecting the fact that an intermediate state with two .
“real” Higgs bosons can be formed fa@>4M?2. It is also /1o AMy
clear that for our purposes we have to treat this singularity in Pu= E? -
the principal value sense.
It is straightforward to calculate this integral and one ob-In each of the above integrals, there is a pole in the integrand

tains the expression for the imaginary part for total energies larger than twice the Higgs boson mass. We
first evaluate each of these integrals in the case where

(129_-_o M2 ZGMﬁ E _E s s>4Mﬁ and then perform an analytic continuation to the

ImF= m Amv 2 4 2 nMﬁ 1 region s<4Mﬁ. We shall not present explicit expressions

for the imaginary part of these functions above threshold. If

Mﬁ v needed, it can be obtained directly from the integral repre-

T TYE) ), (400 sentation of the above functions. One obtains
2
where the functionV’(s) is defined by i % 1 (s 1,)s
X W1(5)+W3(S)—4 1 s 8In W +8In W
_ 2 a2 e 7
o= tan - 3eof 5| o 5 M8 )y X 2
2s |MZ] " 2(1+x) 3
— 0(s—4M? )2 1+Xln(x) (41)

7
—3Liy(X)—2Liy(—x)+ Zlnz(x)
The variablex is defined as in Eq(24) and ¢ is defined

through the relation 3
—3In(x)In(1—x?)— 2N

a2 ?
s=4Mgsir? > 3 S
+ Eln(x)ln W , (47)
Integrating the imaginary part, we finally obtain the con- H
tribution to the real part oF(s) 22 M2 s 1 MZ
H
=— 4 — - —(1-—
My\372 3 3.3 Wa(s)= 5 2s'”(ﬁ§) 2(1 s)
Fl2=2| —| | =+ = (:l2 , (42
47v 8 2 3 1 s 3
+ —Inz(—z) — =In?(x). (48)
where C}(¢) is Clausen’s functiorisee, e.g.[13]). 8 My 8
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Here again, the variable is defined by Eq(24).
Performing the analytic continuation to the region
s<4M?, we find the expressions for the above integrals

2
M2\ 1

1 1
W, (S) + Ws(s)= Z( 1- —) - gln(

i e
8" | M3

M

o

2
BTN el PR
2s | M3 2

S

3 s ]
— EInM—a+3In(23|r(<p))

1
+5[3Ch(2¢)-2CK(@)]|, (49
W _Mﬁl s 1l|v|ﬁ Lo s
29= 25wz "2\t s e g
3 m\? 50
+§ 3] (50)

where ¢ is defined after Eq(41). Equations(47)—(50) pro-
vide us with the desired result for the contribution of this
graph to the imaginary part @%(s).

The integration in the dispersion integral has to be don
numerically and we find

M 2
,:<13>:_2(_H) K, K=0.0678. (51)
47v

Summing up all contributions to the real part I6fs) and

taking into account permutations of the photon’s legs wheré"

necessary, we obtain the final result

6
F=FO+> FO+2FM+4F® +4F©® +2F10 4 F(AD
i=1

2

M
+2F(12)+4F(13>=2[1—3.027<—H (52
47v

s

'S

500 1000 1500 2000

FIG. 6. Absolute value of the one-loop form facte(m,,) of
processH— y+v as a function of the Higgs boson mads, [GeV].
Curve A shows contribution of thé&/ boson only, whereas curve B
is the sum of the top quark and tNé-boson contributions.

the contribution of the top quark is important until the Higgs
boson mass reaches the vaing~1TeV. We emphasize that
there is a strong cancellation between the contributions of the
top quark andwW boson for Higgs boson masses of order
my~ 600 GeV.

Consequently, we expect that, in the two-loop case, the
use of the equivalence theorem for an estimation of the elec-
e[roweak(EW) radiative corrections for the coupling of the
Higgs boson to two photons is reasonable for Higgs boson
masses~600 GeV. Below this value, our results must be
considered to be a rough estimate which have to be used in
the absence of the exact calculation. It can also happen that
some other potentially large SM radiative correctiqfor
instance, the ones proportional to top-Higgs-Yukawa cou-
pling) should be taken into account to provide a more accu-
rate estimate of the full SM radiative corrections for the
Higgs boson masses below 1 TeV. Note that there are also
large logarithmic contributions of powers of M@/m\z,\,) to
the subleading orde(D(GFm\zN) which can reduce the range
of validity for our result{Eq. (52)].

Our results for the leading two-loop EW corrections are
presented in Fig. 7. We show the ratio of the leading two-

The resulf{Eq. (52)] completes our calculation and presents

the two-loop correction to the one-loop resiiig. (2)].

IV. DISCUSSION AND CONCLUSIONS

Generally, it is not easy to say for which values of the
Higgs boson mass our resultsased on the application of the
equivalence theoremprovide sufficiently accurate predic-
tions for the value of the radiative correction. The only hint
that can be obtained is from a comparison of the full one
loop result for theH yy vertex with the result obtained by
applying the equivalence theordiag. (2)].

The complete one-loop result for the effective form factor
F(s) is plotted in Fig. 6. As mass parameters, we have taken |

m,= 180 GeV andmy,=80 GeV. Curve A shows the contri-
bution of theW boson only, whereas curve B is the sum of
the top quark and the/ boson contributions. Figure 6 shows
that the contribution of th&V boson toF(s) is slowly ap-
proaching its asymptotic value-°=2 atm,>600 GeV and

-0.54

FIG. 7. Relative two-loop electroweak correction to the decay
width H— yv (in percen}t as a function oM [GeV].
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loop electroweak correction to thé— yy decay width[see strate that the SM correction is well under control in this
Eqg. (52)] and the full one-loop resultW boson plus top mass range.

contribution. One notes that the relative correction to the The heavy Higgs boson is a broad resonance with a width
decay width is negative and large fiog,>500 GeV because growing proportionally toM} . It is evident that our results

of strong cancellations betwe&t and top loops in the low- for the radiative correction to the on-shell value of the
est order(see Fig. 6, but the absolute correction is small and Hyy interaction vertex are not sufficient for the description
perturbatively under control. This correction grows with the ©f the Higgs boson shape in the reactipp—H—X. How-
mass of the Higgs boson and blows up at aroomg~1.5  €Ver, since we have. a]so given results for the imaginary part
TeV. This general behavior is quite familiar from previous of the Hyy vertex, it is straightforward to obtain off-shell
studies of the large Higgs boson mass two-loop radiativ&/@lues for theHyy-vertex using dispersion integrals to
correctiong 14,15, evaluate the off-shell vertex numerically.

Finally, we want to comment on some phenomenological
issues. A nice place for the investigation of the Higgs boson
coupling to photons would be photon linear colliders, where We would like to thank J. Gasser for an informative dis-
the Higgs bosons would be produced through the reactiopussion. J.G.K. and O.LY. were supported by the BMFT,
vyy—H—X [4]. The current limitations for the observation FRG, under Contract No. 06MZ566. J.G.K., K.M., and
of the Higgs boson signal in this reactionNs; <400 GeV  O.LY. were supported in part by the Human Capital and
[16]. As was mentioned before, for such Higgs bosonMobility program, EU, under Contract No. CHRX-CT94-
masses, our results should be considered only as an estim®#®79. K.M. was supported by Graduiertenkolleg “Teilchen-
of the full SM radiative corrections. However, they demon-physik,” Mainz.
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