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We use QCD sum rules to calculate the hadronic matrix elements governing the rare Beekys' /'~
andB—K*/"/~ induced by the flavor-changing neutral currdént:s transition. We also study relations
among semileptonic and raB—K®*) decay form factors. The analysis of the invariant mass distribution of
the lepton pair iB—K®*)/*/~ and of the angular asymmetry Br—K* /*/~ provides us with interesting
tests of the standard model and its extensions.

PACS numbes): 13.20.He, 11.55.Hx, 12.38.Cy

I. INTRODUCTION been used so far. The resulting theoretical predictions are
characterized by a considerable model dependence; it should
Rare B-meson decays induced by the flavor-changingbe noticed that, differently from the case®f K* , where
neutral currenb—s transition represent important channels the hadronic matrix element must be computed only at one
for testing the standard modé3M) and for searching for the - kinematical point, in correspondence to the on-shell photon,
effects of possible new interactiofi$]. As a matter of fact, for B—K/*/~ and B—K*/"/~ the matrix elements
these processes, which in SM do not occur in the Born apmuyst be known in a wide range of the invariant mass squared
proxmatlon, are partlcul_arly s_ensmve to perturbative .QCDOf the lepton pair:M5+/7=[4Mff,(MB— MK,K*)2]§ there-
corrections and to possible higher mass scales and mtera}cdre the vector meson dominance assumption has non-
tions predicted in supersymmetric theories, two Higgs dou- "~ . ; P
gligible consequences on the theoretical outcome.

blet, and top-color, left-right models, etc. Such interactionsneA h based | f £ OCD th |
determine the operators and their Wilson coefficients appear- n approach based on general features of Q that al-

ing in the low energyAB=1 effective HamiltoniarH,, that lows gs to compute the hadronic matrix elements in a range

governs theb—s transition. of M”, - is provided by three-point function QCD sum
From the experimental point of view, the radiative rules[10]. This method, first employed to compute the pion

b— sy decay has been observed and measured by the CLEform factor [11], has been widely applied to heavy meson

Il Collaboration both in the inclusivB— X4y and exclusive ~Ssemileptonic decays: For example, in the case of
B—K* y modes; the experimental results B—D,D* semileptonic transitions, it has been used to com-

pute the Isgur-Wise universal functigf(y) and the heavy
B(b—sy)=(2.32£0.57+0.35x10°* [2] (1.) quark mass corrections[12]. Moreover, the decays
B—D** /v, where D** are positive parity ¢q) meson
and states, have been analyzed both for finite heavy quark masses
B(§O—>K*Oy)=(4.0i 1.7+0.8x10°5 [3], [13] and in the_ limitmg—oe, with the calculation of the
universal functionsry;»(y) and 73,5(y) analogous to the
(1.2 Isgur-Wise functiorf14]. For the heavy-to-light meson tran-
B(B-—K* y)=(5.7+3.1+1.1)x10 % [3], sitions, such adD(B)— m(p)/ v, the various matrix ele-
ments have also been computgthb,16]; in the case of
have prompted a number of analyses aimed at restricting the— K* v, this approach, employed [17-19, has provided
parameter space of various extensions of the standard mode$ with the prediction R=B(B—K* y)/B(b—sy)
[4]. Similar analyses have also been proposed for the transi=0.17+0.05[17], which agrees with the central value ob-
tion b—s/*/~, which has not been observed y&f; in  tained from the experimental data in E¢$.1) and(1.2).
this case, the invariant dilepton mass distribution and the In this paper we want to apply the three-point function
asymmetry of the dilepton angular distribution, together withQCD sum rule method to compute the hadronic quantities
the total decay rate, can be used to study the features of trappearing in the calculation &—K*)/*/~. We shall ob-
interaction inducing the decay. However, for the exclusiveserve that the various form factors parametrizing the relevant
modes such aB—K/ "/~ andB—K*/"/~ one has to matrix elements have common features with other heavy-to-
face the problem of computing the matrix elementHyf,  light meson transitions, a behavior whose origin is worth
between the stateB andK, K*, a problem related to the investigating in detai[20]. We shall also compare the com-
nonperturbative sector of QCD. puted hadronic quantities to the findings of lattice QCD,
For these matrix elements, either specific hadronizatioreven though these last results are obtained after extrapola-
models[6,7] or information from two-point function QCD tions in the heavy quark mass and in the momentum transfer.
sum rules[8] and from the heavy meson chiral thed@j, Finally, we shall apply our results to predict the invariant
embedded in the vector meson dominance framework, havaass distribution of the lepton pair in the decays
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B—K®)/*/~ and the forward-backward asymmetry for ~ TABLE I. Wilson coefficients Ci(u) for A =225 MeV,

B—K*/ "/~ in the standard model. w=5 GeV, andm,=174 GeV.
The work is organized as follows. In Sec. Il we write
down the (SM) effective Hamiltonian for the transition NDR HV

b—s/*/~, and recall the available information on the Wil-

son coefficients. In Sec. Ill we compute by three-point func--* 105;3

tion QCD sum rules the relevant hadronic quantities forC2 108§< 10°2

B—K/*/7; the same calculation is carried out for -3 ' -

B—K*/ "/~ in Sec. IV. In Sec. V we study the relations 251k 193

derived by Isgur and Wisg21] and Burdman and Donoghue Cs 7.266<10 ,

[22] between rare and semileptonic form factors. Such relag6 —3.063<10

tions can be worked out in the infinite heavy quark mas —0.312

limit m,— o, in the region of maximum momentum transfer C 4.193 3.998
t; a relevant problem is whether they are satisfied also in th&o —4.578

low t region, as has been argued by several authors. We
investigate this hypothesis and comment on the role of th? B
heavy mass corrections. In Secs. VI and VII we study the >
transitionsB—K/*/~ andB—K* /" /", respectively. Fi-
nally, in Sec. VIl we draw our conclusions. Details concern-
ing the calculations are reported in the Appendixes.

are color indices, bg, =[(1*y5)/2]b, and
(i12)[ y*,¥"]); e and g5 are the electromagnetic and
the strong coupling constants, respectively, dng, and
Giv in O; and Og denote the electromagnetic and the glu-
onic field strength tensor€; and O, are current-current
operators, an@®s, . . . ,Og are usually named QCD penguin
Il. EFFECTIVE HAMILTONIAN operatorsO- (inducing the radiativd— sy decay and Og

The effectiveAB=—1, AS=1 Hamiltonian governing in are magnetic penguin operato@, andO,, are semileptonic
the standard model the rare transitibr-s/*/~ can be €lectroweak penguin operators.

written in terms of a set of local operatdi23]: The Wilson coefficient<C;(u) have been partially com-
puted at next-to-leading order in QCD by several groups

e [24-26. As discussed in Ref[25], in the analysis of
Hw= 4\/_thV E Ci(n)O (2.1 B—Xy/ "/~ at next-to-leading order logarithmic correc-
tions must be consistently included only in the coefficient
C,y, since at the leading approximati@y is the only opera-
tor responsible for the transitidm—s/ "/ ~. The contribu-
tion of the other operator®@xcludingOg, which, however, is
not involved in the processes we are studyiagpears only
at next-to-leading order, and therefore their Wilson coeffi-
cients must be evaluated at the leading approximation.
= — Following [25] we use in our phenomenological analysis
O1= (SLa¥DLa)(CLp7uCip), of the decaysB—K™*)/*/~ (within the standard modgl
0,= (5., 7By 5)(CLayuCL) the numerical values of the Wilson coefficients collected in
27 P BB ML Y el Table I. We choose the scaje=5 GeV=m,, A%= 225

whereGg is the Fermi constant and;; are elements of the
Cabibbo-Kobayashi-Maskaw&KM) mixing matrix; we ne-
glect terms proportional toV,,V}s since the ratio
[VopVidVp Vi is of the order 10%. The operatorsO;,
written in terms of quark and gluon fields, read as

O3=(S_a¥*bL ) (UL gy,U )+ ---+(b, vl MeV, whereMS denotes the modified minimal subtraction
: : : LATRTLE LATHELE scheme, and the top quark mass=174 GeV from the mea-
04=(5_,7"b . U+ -+ b, bl surement of the Collider Detector at FermilabDF) Col-
4= (SL?DLpl (Uip7itie) (bug¥ubLa)] laboration[27]. The coefficienCq4, which is evaluated at the

"+(b_R v brs)] next-to-leading or_der approximation, displays a dep_endence
A 7u=RE on the regularization scheme, as can be observed in Table |
comparing the result obtained using the 't Hooft—\Veltman
(HV) and the naive dimensional regularizatigQiNDR)
scheme. Such a dependence must disappear in the decay am-
mb(gLanbRa)FW, plitude if all corrections are taken into account. We shall
include in our analysis the uncertainty @g as a part of the
a theoretical error. In Table | it can also be observed that the
s ok )‘_ bo.|G coefficients of O3—Og are small~(10"2); therefore, the
La 2 RE contribution of such operators can be neglected, and the
ap analysis can be carried out considering only the operators
e2 B o Ol! 02, 07, Og, andQlo.
Og=77==2(SLa¥*PLa)/ ¥/, The various extensions of the standard model, such as
16 models involving supersymmetry, multi-Higgs-boson and
left-right models, induce two kind of changes in the low
energy Hamiltoniar§2.1): First, the values of the coefficients
C,; are modified as an effect of additional virtual particles in

Os5=(SLa¥*DLo)[ (UrgY,Urp) +

O6=(5L07"bLp)[(UrgYuUra) T - - - + (Drg¥,bra) ],

e
07= 162

g
08: 16;_2 mb

2 _
OlOZW(gLa‘Y“bLa)/YMYS/ 2.2
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the loop diagrams describing the— s transition, and, sec- o

ond, new operators can appear in the operator basis, such as Hw,,(p,p’,q)zizf dx dy é'P y=iP

operators with different chirality of the quark current with

respect to0;—0;0, €.g., X (0| TLI(¥)3,.,(0)IE(x)]|0) (3.3

,  ¢© = v of the flavor-changing quark curredt,,=sic, b and of
O7= 1572 Mo(Sr*"DUF 1y, two currentsJ¥(y) and JE(x) with the K and B quantum
numbers,  respectively: J'z(y)za(y) v.ysS(y) and
J?(x)zb(x)i ¥s5d(x). The correlatodl,,,, can be expanded
in a set of independent Lorentz structures:

2 _
O9=16-2(SRY*DR)/ ¥/,

and —int / ' ; (n)
i Haw—lpa(p#py—pypﬂ)ﬂﬂg alh 1M, (3.4

2 _
[ y Z .
O10= 15,2 (SRY*PR) Vs whereIl and II(™ are functions ofp?, p'?, andq?, and

al" are other tensors set up using the vecfpendp’ and

apv

This rich  structure justifies the interest in e metric tensog
pv e

B—K®™)/*/~, where operators of different origin act co- | gt ys considefl. To incorporate the quark-hadron dual-

herently in determining rates,_ spectra, and asymmetries. Fqlry, on which the QCD sum rule approach is based, we write
example, it would be interesting to search for the effects ofyq,\n forT1(p2p’2,q2) a dispersive representation

possible interactions that produce a coeffici€atwith op-

posite sigr5,7]. In this work we shall not analyze such new 1 [+ +oo p(s,s',q%)
effects, limiting ourselves to studying the above processes H(pz,pfzyqz):?f X dSJ’ ) dS'(S_ (s =p'?)
within the theoretical framework provided us by the standard Mo M P P
model. However, it is worth stressing that our results for the + subtractions (3.5
hadronic matrix elements of the operators appearin@ib

represent a complete set of quantities also for the analysis af the variablesp? and p’? corresponding to th& and K
the decaysB—K™)/*/~ in a context different from the channels, respectively. In the region of low valuesaf the

standard model. physical spectral density(s,s’,q?) contains a double
o-function term corresponding to the transiti@+K, and
Ill. FORM FACTORS OF THE DECAY B—K/*/~ therefore the functiodl can be written as
The matrix elements of the operatddg, O,, O7, Og, R
andO;in Eg. (2.2) between the external statBsandK can 1= (M2=p))(M2—p’?)
be parametrized in terms of form factors as B K
1 hal S,SI, 2
. , VRV +—2st0|§ P i( L
(K(p")IS7,bIB(P)=(pHp")uFa(@?) + — 7 — ™ Jo (s=p7)(s"=p™)
< [En(a?) — (02 1 where the residud is given in terms of the form factor
AulFo(@)=Fu(aD] G-I £ 2 and of the leptonic constants andfg, defined by
[q=p—p’, F1(0)=F,(0)] and the__ matrix eIemen;ts (0lgy,yssIK(p'))=ifxp, and
= ) (0]qi ysb|B(p))=fgMa/m; (we putmy=0): R=HF(q?)
(K(p")[sio,,a"b[B(p)) with H=—2f,fsM2/my(Mg+M). The integration do-

FA(o) main D in (3.6), where higher resonances with the sabhe
q and K guantum numbers contribute to the spectral densit
=[(p+p") 4%~ (M2=M2)q, . (3.2 g P y
[(p+p),a"~ (Mg K)q“]MBﬂL Mg 32 p, starts from two effective thresholdg ands}.
) Also the perturbative contribution tbl, computed for
~ The heavy-to-light meson form factoFs andFq appear 2, _« andp’2— —, can be written as Eq3.5). More-
in the calculation of two-body nonleptoriz—KX decays, if  gver, considering the first power corrections of the operator

the factorization approximation is adopted; neglectingproduct expansiofOPE of the correlator(3.3) we get the
SU(3) e-breaking effects, they govern the semileptonic decayepresentation

B—m/v.

F, andF, have already been studied by three-point QCD P T N N e G
sum ruleg16,28. In the following we describe in detail the ~ 1(P%,p'%,q%) = _2f X dsJ' , 48’ ——————>

. _ 7 )m2 JmZ T (s=pI)(s'—p’)

calculation of Fy; for the sake of completeness, we also
report the results foF(q?) andFy(g?) using a unique set +d3(qq)+ds(qoGQ)+- - -. (3.7
of parameters and adopting a coherent numerical procedure,
in order to have at our disposal a consistent set of fornp®¢P(s,s’,q?) is the perturbative spectral function; the two
factors. other terms in(3.7), expressed as a combination of vacuum

To computeF; within the QCD sum rule approach we expectation values of quark and gluon gauge-invariant opera-
consider the three-point correlatdrl] tors of dimension 3 and 5, respectivelygq) and
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(qoGa)=(gqc* G5 (\*/2)q), parametrize the lowest or- s—m?)

der power corrections. The expressions g8F° andds can s.(s)=mi+ W[(mE’ng—qz)

be found in Appendix A, EqQSiA2)—(A4); in this particular b

cased; vanishes. 2 2 12\2 7 2
We3now invoke the quark-hadron duality; i.e., we assume = My M= 67)"— 4mpmg]

that the physical and the perturbative spectral densities argnds’, <s. The effective thresholds, ands] can be fixed

dual to each other, giving the same result when integrateftom the QCD sum rule analysis of two-point functions in

over an appropriate interval. Assuming duality in the regionthe b and s channels. We ges, from the calculation of

D of the hadronic continuum fg, ands; from the expected mass of the first radial excita-
tion of the kaon.
ha 1 42y _ QCDra o A2)1 — An improvement of the expression i{8.9) can be ob-
fDdS ds{p"{s.s".q°) —pNs;s".0%}=0, (38 tained by applying to the left- and right-hand sides the
Shifman-Vainshtein-ZakharowSVZ-)Borel transform, de-
we derive the sum rule fof+: fined by
1 1 e_mZ/MZ
HF (%) 1 p?(s,s',q%) 3 - (3.10
=—| dsds — SM2 T A EERY 2y .
(MEZ—p)(MZ—p?)  2)o 7 (s=pA)(s'—p'D) (M™=p97 (=D (M5

both in the variables- p? and —p’?; M? is a new(Borel)
parameter. This operation has the advantage that the conver-
(3.9 gence of the power series is improved by factorials; more-
over, for low values oM? andM’? the possible contribution
whereD' is the region corresponding to the low-lyiBgand  of higher states in Eq3.9) is exponentially suppressed. The
K states:mgsss Sp, S_(s)<s'=<s/, (s) with resulting Borel transformed sum rule fBf reads

+d3(qq) +ds(qoGa)+ - - -,

' 1 ’ ’ ~ - ~ — ’
(g7 Ma i WZJD/"S ds p@(s,s’, %)M M1 [l3(qa) + (GG e M M,
(3.1

From Eq.(3.11) the form factorF(g?) can be derived, Putting these parameters in E8.11 we obtain the form
once the value of the Borel paramet&f$ andM'? is fixed.  factor F; depicted in Fig. 1, where the different curves cor-
This can be done observing that, sinb® and M'? are  respond to different choices of the threshotgsands;. In
unphysical quantitiess must be independent of thefata-  the sum rule, the perturbative term is a factor of 4—5 times
bility region of the sum rulg moreover, the values df1>  |arger than theD=5 contribution, and the integral of the
andM 2 should allow a hierarchical structure in the series ofspectral function over the regidd’ gives more than 60% of
the power correction and a suppression of the contribution ofe result of the integration over the whole region of the

the continuum in the hadronic side of the sum rule. dispersion relatior{3.5). The duality window, where the re-
In our numerical analygls we use the values for the quarl§ults become independent of the Borel parameléfsand
condensateat a renormalization scale=1 GeV) [11]: M’2, starts atM?~7 GeV2 andM'2=1.7 Ge\?; varying
_ M? in the range 7-9 Ge¥andM’? in the range 1.7-2.5
(qg)=(—230 MeV)®, GeV? the results change within the bounds provided by the
different curves depicted in Fig. 1.
3 A2 B The same analysis can be applied to the form fadtqrs
<qgso-“VG‘;v?q> =m3(qq), (3.12  andF, using the flavor-changing vector curreht=sy,b in
the correlator(3.3) and studying the projection”II,, to
derive Fy. We report in Appendix A the relevant quantities
with mg=0.8 Ge\2. Notice that the numerical results do not appearing in the sum rules fér, andF; the difference with
change sensitively if the condensates are evaluated at highgfspect td15], as far as, is concerned, is that we keep all
scales using the leading-logarithmic approximation for theiterms proportional to powers of the strange quark mass
anomalous dimension. m,. In the calculation of both the form factors, the contribu-
As for the quark masses and leptonic constants, we usgons of the perturbative term and of tiz=3 term have
ms=0.175 GeV, m,=4.6 GeV, fx=0.16 GeV, and comparable size, whereas tlie=5 term is one order of
fg=0.18 GeV. The thresholds, and s, are chosen in the magnitude smaller; the contribution of the resonance in the
ranges,=(33-36 GeV? ands,=(1.4-1.6 GeV?, with the  hadronic side of the rule is nearly equal to the contribution of
Borel parameters kept fixed to the valud$=8 GeV? and  the continuum. We obtain the form factof,(q?) and
M’2=2 GeV2. Fo(g?) depicted in Fig. 1. Also in this case the Borel param-
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0.6 T 1T 1T : T 11 TR O FT T ov T T T7 T 1] Fo(qz)_Fl(qz)
os | A ] FT(q2)=(MB+MK)(mb+ms)T; (3.14
T E 1E Fo 3
04 qF A Eqg. (3.14 is in agreement with the computed form factor
03 [ b R F+ displayed in Fig. 1, and therefore we can use the double
Eoo 1 E . pole model:
02 4 F =
01 | 1F 3 F+(0)
r 1t 3 FT(qz): 2 2\ (3.19
0 oo Ly lov ot B v Ly v by vy 1 1_ q l— q
0 E T T T | LI | LR E 0 5 1(2) (G Vz;s M |231 M 2P0
0.1 | E a7
02 i E with F1(0)=—0.14+0.03 andMp andMp_ given by the
g fitted values of the mass of the poleskof andF, respec-
03 | = tively.
o4 F 3 It is interesting to observe that information on the possible
E N form of theq? dependence of the form factors can be derived
05 R by studying the limitm,— . In this limit, at the zero recoil
PP S o point where the kaon is at rest in tBemeson rest frame, it
oo 5 10 15 is straightforward to show that the parametric dependence of
a* (GeV?) the form factors on the heavy meson maég is given by

F1(0%a) ~ VMg and Fo(g2.)~1/VMg [21]. Both these
FIG. 1. Form factors;(g?), Fo(g?), andF(q?) of the tran-  Scaling laws —are compatible with the constraint
sitonB—K/*/~. The curves refer to different sets of parameters:F1(0)=Fo(0) and with a multipolar functional dependence
So=33 Ge\? and sj=1.4 Ge\? (solid line), s;=33 GeV? and

sy=1.6 Ge\? (dashed ling s,=36 GeV? ands)=1.4 Ge\? (dot- ) F.(0)
ted ling), sy=36 Ge\? ands)= 1.6 Ge\? (dashed-dotted lineThe Fi(g)= T (3.16
Borel parameters are fixed M?=8 GeV?, M'2=2 Ge\?. ( 1— W)

P.

if ny=ng+1. Thus, in the limitm,—~, to a polar form
eters can be varied in the rangd*=7-9 GeV* and  factor F,(q?) corresponds a nearly constant form factor
MI2=1.7—2.5 Ge\;, the results Change within the region Fo(qz) The outcome of QCD sum rules is in agreement
corresponding to the different curves depicted in Fig. 1 foryith this observation[29]; the observed increasing &,
each form factor. _ would be due to subleading terms contributing at fimitg.

We observe a different” dependence for the various | et us now compare our results with the outcome of dif-
form factors. In the range ofy*> we are considering ferent QCD-based approaches. In the charBelw the
(0=g’<13-15 GeV) F, follows a simple pole formula:  form factor F, has been computed by light-cone sum rules

[30], with numerical results in agreement, at finliequark

N F(0) mass, with the outcome of three-point function sum rules.
F(a%)= q%’ (3.13 As for lattice QCD, both-; andF, have been computed
1- M2 at largeq? [31], and data show thd&, has a flat dependence

P

on the momentum transfer, wherefag increases withg?.

_ _ The full set of form factor$,, Fg, andF+ by these other
with F;(0)=0.25+0.03 andMp =5 GeV. Afit to the for-  methods is still missing; the complete comparison of our
mula (3.13 for F, gives the resuliv Py~ GeV. The same results with such different approaches could help in under-
formula, applied toFy, would give Fy=-0.14 and standing the_z drawbacks a_nd the ad\(antages of the various
Mp=4.5 GeV. Therefore, only the dependence of the formmethods; this would shed light on the issue of decays such as
factor Fl(qz) does not Contradict the po'ar behavior domi_ B— 7T/V that are Of Interest as fa.r as the measurement Of
nated byB? , which is the nearest singularity in thechan- ~ Vub IS concermned.

nel, as we would expect by invoking the vector meson domi-

nance(VMD) ansatz. The form factoF, increases softly IV. FORM FACTORS OF B—K*/*/~

with g2 and, as already observed [i28], the fitted mass of

the po|e is |arger than the expected mass of the physica| The form factors parametrizing the hadronic matrix ele-
singularity, in this case tha®=0" bs state. As forF;, the ~ ments of the transitioB— K*/*/~ can also be computed
VMD ansatz would predict a polar dependence, with the pol®y QCD sum rules by considering a three-point correlator
represented b* ; on the other hand, we observe tifag with the interpolating current fok* represented by the vec-
can be related t¢-; andF, by an identity obtained by the tor currentJﬁ*(y)=a(y) v,5(y). Let us define thé8— K*
equation of motion; matrix elements:
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(K*(p",€)[5y,(1—y5)b|B(p)) = copoprs 2N 7 (Mg+ M)A (g = (e*-q)(p+p’) )
p e Yu Vs p = €uvap€ pp MB+MK* 6/_L B K* 1(d €-q)(prp M(MB—'_MK*)
. 2M g« ’ )
—(€*-0q) e [As(a%) —Ao(a%) ], (4.1)
and
N - (1+7vs) . , )
<K*(p 1€)/50,,0" 5 b|B(P) ) =i €ape™ PP P2T1(0) +[ € (ME—MEL) (€5 q)(p+P),1Ta(4?)
q2
+(€*-q) q#—W(erp’)M T3(g?). 4.2
B~ Wk*
|
A; can be written as a linear combination &f and A,: Concerning the form factof;, we observe that it con-
tributes, together withl';, and T,, to other invariant func-
5. Mg+Mgx 5. Mpg—Mg« ) tions in(4.5) and, in principle, it also could be obtained by a
As(9%) = M 1T oML 200, sum rule. However, since it can be relatedAp, A,, and
(4.3 Ao by applying the equation of motion,
. . . . 2 2
with the condition Ag(0)=A,(0). The identity o A9 —A(a)
Tuys=—(12)€4,00™®  (€g129=+1) implies  that Ta(a) =My (Mp=mg) === (4.

T1(0)=T(0).
The form factorsT;(g?) and T,(q?) can be derived by Wwe prefer to use this expression to determine it, considering
the correlator that this procedure is successful #8¢(q2).
The form factorsV and A; can be obtained by studying

ﬁa#(p,p',q)=i2J dx dy &P’ y=ip) the correlator(4.4) with a vectorJ, =sy,b and an axial

X (0| T[IK" (y)3,(0)38(x)]|0), (4.9 0.6 T P

. 0.5 qF =
with g T, 1 ¢ T,
1+ “r AE E
J#=s<r#y—2y5qu. 03 4F 3
i 02 b = I S =
Expandingll,, in Lorentz-independent structures o1 c JE ‘ =
I1,,=i€4,,sp"P P11 +g,,I1,+other structures ip,p’, o bl vl 3B 0
(45) 0 [T TT T T 0 5 10 15
. i o1 F 3 q° (GeV?)
we getT, and T, from II; andIl,, respectively. The sum -02 E T.
rules have the same structure as that of E§9), (3.11), 03 B >3
with the perturbative spectral functiopgs,s’,q%) and the 04 E
power correctiongl; and dg reported in Appendix B. The 05 E
only difference with respect to the kaon case is the value of 06 F E
the K* leptonic constant, defined by the matrix element '3'; T3
(0|qy,s|K*(p,€))=fsMx€,, with fix=216 MeV. 09 E E
In Fig. 2 we depict the form factor$;(g?) and T,(g?) i T
obtained choosing the threshoky in the range 1.6-1.8 0 5 10 15
GeV? and the other parameters as in the previous section. In q* (GeV?)
the sum rule for both the form factors the perturbative term
does not dominate over the nonperturbative oneg?At0 it FIG. 2. Form factordy(q?), T»(q?), andTs(g?) of the transi-

represents 30% of the quark condensate contribution, and {pn B—K* /*/~. The curves refer to different sets of parameters:
nearly equal to th® =5 term. However, it rapidly increases s,=33 Ge\? and so=1.6 Ge\? (solid line), s,=33 Ge\? and
with the momentum transfer, andg= 15 GeV? it is equal  sj=1.8 Ge\? (dashed ling s,=36 Ge\? ands)=1.6 Ge\2 (dot-

to the contribution of theD=3 term, whereas th® =5  ted ling, s,=36 GeV? ands;=1.8 Ge\? (dashed-dotted lineThe
contribution is an order of magnitude smaller. Borel parameters are fixed d2=8 GeV?, M'2=2 Ge\?.
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TABLE Il. Parameters of the form factors. The functiorgl
dependence is either poldf(q?)=F(0)/(1— qleﬁ), or linear,

LA L I L L L B B L L

14 = E

P F 3 F(q?)=F(0)(1+ Bg?). For the form factolF; see text.

“E 1F A

1 4F = F(0) Mp (GeV) B (Gev~?)

08 ENS E Fi 0.25+0.03 5

0.6 I F = Fo 0.25+0.03 7

04 1 E = Fr —0.14+0.03

02 & 3k = v 0.47+0.03 5

0 :l 1 11 | | S | 111 l: :\ - ' | S | | - I: Al 0'37i0'03 _0'023
N AL L A | S I A | I T T 1T | T T ] A2 040—:003 0034

14 F ER3 E Ao 0.30+0.03 48

12 4 F = T, 0.19+0.03 5.3

1 B A JE Ao 3 T, 0.19+0.03 -0.02

08 |E JE 7 Ts -0.7 0.005

0.6 [ <A =

04 F ERT E in Ref. [17] is due to the effect of the strange quark mass,

02 3F E which here has been included

0 B ';' - '1'0' - Iiso_‘ = ';' — '1'0' - Iis The error in the mass of the pole is correlated to the error
0 ) 2 A in the form factor ag?=0, and it can be estimated to be of

q” (GeV?) q” (GeV?)

the order of 200—300 MeV. The relevant result is that the
masses of the poles are not far from the values expected by
the dominance of the nearest singularity in thehannel:
FIG. 3. Form factorsV(g?), Ay(d?), Ax(g?), andAg(g?) of ~Mp=Mg: for T andV, Mp=Mg_for A,. We stress that
B—K*/*/~. The curves refer to the same set of parameters as ifhe fit is performed in a range of valuesgfwhere the QCD
Fig. 2. calculation can be meaningfully carried out, therefore large
momenta transferredy¢>15 GeV?) are not taken into ac-
Jﬁ=§yﬂy5b flavor-changing current, considering the projec- count.
tion qJ, to deriveA,. We collect in Appendix B the com-  In the second set of form factors we includg, Tj,
plete expressions appearing in the relevant sum rules for aind A;. They softly decrease withg* Fi(g?)
the form factors, excluding\,, whose expressions can be =F;(0)(1+89?%), with T,(0)=T;(0) and B=-0.02
found in[32]; also in this case the difference with respect toGeV~2, T4(0)=-0.7 and B8=0.005 GeV 2, and
[15] is that we include all powers of the strange quark massA;(0)=0.37+0.03 and3= —0.023 GeV 2 with the error in
Using our set of parameters we g®¥(q%), Ai(9%),  p at the level of 10%. The dependenceTf is related to
A,(g?), andAy(g?) depicted in Fig. 3, and, using.6), the A, A,, andA,.
form factor T in Fig. 2. The last form factorA, linearly increases withg?:
As happens foiT; and T, also in the sum rules fo¥,  A,(0)=0.40+0.03 andB=0.034 GeV 2. A fit to a polar

Ay, andA, the perturbative term, aj”=0, is smaller than  gependence for this form factor would gitée=7 GeV for
the D=3 contribution; the relative weights of the various the mass of the pole.

contributions change with the momentum transfer, and at The parameters of all the form factors are collected in

2 _ 2 — —
q°=15 GeV” the D=0 andD=3 terms have comparable 146 ||, Albeit the form factors have been computed in a
size. As it happens for thB—K form factors, the chosen oy gefined range of momentum transfer, once their func-

2 12 2_ 2 12 _ 2
vaIue§ c.)fM and M ’ .M =8 GeV" andM'"*=2 GQV ' tional > dependence has been fitted and the parameters de-
are within the duality window where the results are indepen-

dent of the Borel parameters. Also in this case, vanihg termined, we e-xtrapollat(.a them up ‘th?%ax- This procedure
and M’2 in the ranges M?=7-9 GeV? and cannot be avmdgd within the method of QCD sum -rules,
M'2=1.7-2.5 Ge\?, the final results change within the where large positive values @f® are not accessible since
same uncertainty coming from the variation of the con-there is a region where the distance between the paints
tinuum threshold. y, and O in the correlator, which is the initial ingredient of
Considering the results displayed in Figs. 2 and 3, wdhis approach, is large, and therefore the standard OPE can-
collect the form factord; , V, andA, in three sets, according Not be used; this is shown by the occurrence of singularities
to their functional dependence on the momentum transfer. lin the correlator whemy? is close t002 1y
the first set we includ&, V, andAg, which display a sharp As for the computed dependence on the momentum trans-
increase withg?. It is possible to fit them with a polag®  fer, is worth remembering that deviations from the VMD
dependence, Eq3.13 (as observed also ifil6,32), with expectations for the form factos; and A, have been al-
T1(0)=0.19+0.03 andMp=5.3 GeV, V(0)=0.47£0.03 ready observed in the literature, first in the—-K* /v [15]
andMp=5 GeV, andA,(0)=0.30+0.03 andM ,=4.8 GeV  channel and then foB— p/ v [16]. Here we find a kind of
[the difference with respect to the valliig(0)=0.17+0.03  common feature; i.e., all form factors deviating from the po-
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lar dependencéexcludingF;) seem to depend linearly on 15
the momentum transfer, with smalpositive or negative 14
slopes. 13

It is interesting that also fol;(q%) and T,(q%) we can 12

use the argument developed in the previous section concern- 1.1
ing the limit my—o0: Since T1(g2,,)~ VMg and T»(q3,,) 0;
~1/yJMp, the constrainf;(0)=T,(0) can be fulfilled by a ’

multipolar g® dependence ifi,=n,+1 in Eq.(3.16. 3:3

At zero momentum transfer our results numerically agree 0.6
with those obtained by the method of light-cone sum rules 0.5
[33], within the errors and taking into account the different LS
choices of the input parameters. [B83] it has also been ig
observed that |, V, andA; have different functional depen- 1:2
dences org?; the difference with respect to our case is that 14

the slopes are larger than those obtained from three-point 1

sum rules; in particular, the form factdx; increases with 0.9
g2. The origin of this discrepancy should be investigated. 0.8

The form factorsT,; and T, have been computed by lat- 0.7
tice QCD[34,35 near the point of zero recoil and for the %6
mass of the heavy quark smaller thamy, due to the finite 0.5

size of the available lattices; therefore, the resultg%t0
and for a realistic value ah, are obtained after an extrapo-
lation in the momentum transfer and in the heavy quark
mass. Also, in this case, in the region of large valueg%f
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FIG. 4. Momentum dependence of the ratio between rare and

. . . H H B — 2 W/ 2y, W H
the form factorT, increases rapidly with the momentum Sémileptonic form factors”=F(q%)/F{"(q); F;" are obtained

transfer, wherea3, is quite flat. As for the analytig? be-
havior obtained from lattice calculations, it seems to us that
larger lattices are needed to enlarge the range of momentum
transfer where the measurements can be performed, in order
to clearly disentangle different possible dependences;of
andT, (e.g., dipole versus pole or pole versus congtant

V. RELATIONS BETWEEN RARE AND SEMILEPTONIC
B DECAY FORM FACTORS

In the limit my— Isgur and Wis¢21] and Burdman and
Donoghue[22] have derived exact relations between the
form factorsF, T, in Egs.(3.2), (4.2 and the form factors
Fi, V, A in Egs.(3.D, (4.2). These relations can be easily
worked out observing that, in the effective theory where the
b-quark mass is taken to the infinity, the equatigtb=b is
satisfied in the rest frame of tHg meson.

from Egs.(5.1)—(5.3.

2
(M3—Mi, +0?)

To(0)= e W W) Al

ANMZ,M%,,9?)

+ V(g?),
AMg(Ma—Mpa) (Mgt M2 /(@)

2y — _
a0 =~ Mo (Mat M)

(5.3
M2+3MZ, —g? M
i V() oy As(@?)
Myx (M3—MZ,) Ag(q?)—Ag(q?
K B K 3(0%) , o(d ), (5.9

2Mg

q

In our parametrization such relations can be writtenwhere\ is the triangular function.

as follows, near the of recoil

[q22q2max:(M B— M) :

point zero

It has been argued by several authors that the relations
(5.1)—(5.4) could also be valid at low values af?® [22],

although a general proof has not been found in support of
this hypothesis.

Mg+ My
2Mg

Fr(a?) F1(q%)

Fo(@®)—F1(9?)

—(MZ—Mg) 3

L e

Using the form factors computed by QCD sum rules in
the previous sections, it is possible to check Efsl)—(5.4).
In Fig. 4 we plot the ratioz=F/F" in the case ofFp,
T,, andT,, as a function ofj?, in the range of momentum
transfer where the calculation has been carried out. We ob-
serve that the relations between the various form factors are

verified at different levels of accuracy.

M3—MZ, +q?

4AMg(Mg+ M)

V(g?),
(5.2)

AL (g?)+

In the case ofF; the ratio.”2 differs from unity at the
level of (25-30%, including the uncertainty coming from
the errors of the various parameters. In particulag®t 0
we haveF;/FY¥Y=0.7+0.1. The situation is different for the
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ratios concerning’; andT,, which differ from unity at the difficult, with large uncertainties in the final result. The prob-

level of (10-20%: at g>=0 we haveTllTQ"’:O.94i 0.05 lem is not avoided by the possible choice of using the form

andT,/T)Y=1.12+0.05. factors of the semileptonic transitidh— K* /" v, and then
These results support the argument put forwardliff on  rescaling them according to the their leading dependence on

the validity of the Isgur-Wise relations, in the limit,—o  the heavy mass, i.e.,

also at small values af?; they also can be well compared to B 2

the outcome of light-cone sum rules, obtained Igrat a V= (Amax) _ %

finite m, [33]. The conclusion is that the quark is near to VPR (g2 ) Mp’

the mass shell also when the recoil of the light hadron is

large with respect tan,, with 1/my, corrections that do not etc.[neglecting SW) and «, corrections. As a matter of

appear to overwhelm the effect. fact, in such a procedure the next-to-leading mass corrections
Relations(5.1)—(5.4) could be used to perform a model- could be large and not under control. Finally, as we shall see

independent analysis of the decdys-K*)/ "/~ employ- in the next section, the differential branching ratios of

ing experimental informatioiwhen availablg on the form  B—K®)/*/~ at largeq? are small, and therefore the ex-

factors of the semileptonic transitidd— p/ v [36]. In par-  perimental errors are expected to be sizable. For this reason

ticular, since(5.1)—(5.4) are valid on general grounds in the we prefer to propose an analysis of the decay extended to the

largeq? region, it has been proposed to perform the analysisull range of g, using hadronic quantities determined in a

in the range of large invariant mass of the lepton pair, e.g.well-defined theoretical framework. The dependence on the

M, +,-=4 GeV. computational scheme will be reduced once the different
Albeit in principle correct, we feel that, from the experi- form factors have been computed by different QCD calcula-

mental point of view, the procedure of extracting the semi-tions, and the whole information collected in a unique set of

leptonic B—p form factors near zero recoil will be rather form factors.

VI. DECAY B—K/*/~

We can now compute the invariant-mass-squared distribution of the lepton pair in theRleday ™/ :

dr  M3G2a? F+(g?) 2
d_qz(B—>K/+/ )=W|V§th|2 C; 2my T Mgt Mg +CSﬂF1(q2) +[CyoF1(a?)]?
Mi 2 qz 2 q2 i 3/2
1= =X ol 2] —2| ]| 1+ =% 1
Mé) (Ma AR D

(q2=M§+/,). The contribution of the operato@,;, Og, and O, is taken into account in the terms proportionalQGe,
Cqy, andC,y. The operator®, andO, provide a short distance contribution, with a loop of charm quarks described by the
functionh(x,s) (x=m./my, s:qzlmﬁ) 23,24

e | e 8 16x2+4 4x? s G t 4x2 1‘1’2 6o
(%9)="g" =279 s tg Vs ~H 25 |acal 5 632
if s<4x? and

N B 4I , 8 16x2+2 4x? +4x2 | 1+\1—-4x°ls| 6.3

e L Y e L ey~ B ©3
|

if s>4x2; the imaginary part in6.3) comes from on-shell
charm quarksO; andO, also provide a long distance con- CM=Cqy+(3C1+Cy)| h(x,5)
tribution, related tocc bound states X/ ,¢’) converting
into the lepton pair’" /"~ [37,39. This contribution can be 5 R
described in terms of thd/y and ¢’ leptonic decay con- D 7l (="M,
stants(0|cy*c|¢i(e,q)) = €“f .M, and of the fulld/y and +ki:1 q2—be_+iM ol | ©4

Y’ decay WidthsF¢i. We derivef(,,i from the experimental

branching ratiog;—/* /"~ ; in this way the whole contribu-

tion of O, and O, can be taken into account by modifying If the nonleptonidB— K ¢; transition is computed by factor-
the coefficientCgq into Cgﬁ: ization, the parametd( is given by
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3 |VEVed exchange diagrams becomes important, and the interaction
=2 W; acquires th&/-A parity-violating structure, leading to a large
ts'tb asymmetry. As already observed in R@43] this pattern

the sign between the short distance and the long distanc%rong!y d?‘Pe”dS on_the value of the top quark mass, and the
terms in(6.4) can be fixed according to the analyses in Ref,P€nguin diagrams witZ exchange and th@/ box diagram

[38]. In Ref.[5] the value ofk is appropriately chosen in are expected to overwhelm the photon penguin diagram in
order to reproduce the quantity correspondence to the measured Moreover, since the FB

asymmetry is sensitive not only to the magnitude of the Wil-

2 son coefficients, but also to their si¢f], it can be used to
B(B—K/"/7)|ies= > B(B—¢K)B(i—/"/7) probe the values predicted by the standard model.
=1 Let us defined, as the angle between thé" direction
~7x10°5 [39]. (6.5) and theB direction in the rest frame of the lepton pair. Since,

in the case of massless leptons, as we assume, the amplitude
This can be done by choosing=(1.5-2(3/a?). Notice ~ can be written as sum of noninterfering helicity amplitudes,
that, since thel/y and ¢’ resonances are narrow, their con- the double differential decay rate reads as follows:
tribution modifies the dilepton spectrum only in the region 5 5 X2 2\ 12n2 aa2 2
close toMiW_:Mﬁ,w,Mzw,_ dr _ GE|VpViy“a® N AMg, M« ,q9)
As input parameters we choose the ratio dg’d cosd, 287° M3
m;/my=0.27-0.29 and the value of the CKM matrix ele- , 5 2, AL . AR
ment|V,s =0.04; a different value foV,¢ only modifies the X {sir’8,A_+q?[(1+cosh,)* (AL +AT)
prediction of the branching ratio, leaving unchanged the _ 2/ AL R
shape of the spectrufd0]. +(1—cost,)Y(AZ+AD) ]}, (7.9
_We depict in Fig. 5 the obtained invariant-mass-squaregyhere A, corresponds to a longitudinally polarizet*,
?|strlbutlon of the lepton pair iB—K/"/". In the same e A5, represent the contribution from leftight) lep-
igure we also plot the spectrum obtained considering °n|¥ons and fromK* with transverse polarization:
the short distance contribution, which gives the branching
ratio (using 7g=1.5x 10" *? sec for theB~ meson lifetim¢ ( 1 i )
—,0

B(B—K/ "/ 7)|sq=3x10 7|V,/0.042, to be compared to €.=
the experimental upper limipbtained excluding the region
nearJ/y and¢') B(B"—K utu")<0.9x10 ° (at 90%
C.L.) [41,42. The uncertainty coming from the two possible
values ofCgq in Table | is less then 1% and does not have 1
relevant consequences on the predicted branching ratio and AL=—75{|Bi(M3—M%,—q%)+By\|?
on the invariant mass distribution. K*

From the experimental point of view, the measurement of 2
the spectrum in Fig. 5 is a nontrivial task; hopefully, it will +|D1(Mé_ MK*_q2)+D27\|2} (7.2
be possible to obtain experimental results from the future
dedicatece™ e colliders. The important point to be stressed and
is that, in the distribution depicted in Fig. 5 the theoretical AL =|]\Y¥(A-C)F(B,—D,)|? 7.3
uncertainty connected to the hadronic matrix element is re- + vy '
duced to a well-defined QCD computational schei@€D
sum rule$, so that in the studies of the effects of interactions 1
beyond the standard model the hadronic uncertainty no

We obtain

|||||||6||||l TTT

|IIII]I II|I|||||||||I|I1_E

; 0.9
longer plays a major role. 08
VIl. DECAY B—K*/*/~ 0.7

0.6

A great deal of information can be obtained from the 05

channelB—K*/*/~ investigating, together with the lep-
ton invariant mass distribution, also the forward-backward
(FB) asymmetry in the dilepton angular distribution; this
may reveal effects beyond the standard model that could not
be observed in the analysis of the decay rate.

A FB asymmetry in the dilepton angular distribution is a o Bobenn bbby b
hint on parity violation. Since the dec&—K*/ "/~ pro- 0 25 5 75 10 125 15 17.5 20 225
ceeds throughy, Z, andW intermediate bosons, we expect a
different behavior in the varioug?® kinematical regions. In
the region of lowg?, the photon exchange dominates, lead-
ing to a substantially vectorlike parity-conserving interac- FIG. 5. Invariant-mass-squared distribution of the lepton pair for
tion; as a consequence, we expect a small asymmetry. On tlige decayB—K/ "/~ ; the dashed line refers to the short distance
other hand, whem? is large, the contribution o andW  contribution only.

04
0.3
0.2
0.1

dBr(B —> KI'l")/dq* (107)

bl o b b b b

q* (GeV?)
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AR=]\Y4A+C)F(B;+D;)|? (7.4)

Where)\z)\(Mé,Mi* ,0%). The termsA,C,B;,D; contain
the short distance coefficients, as well as the form factors:

C; 5 V(g?)
A= ?4mbT1(q )+Cgm, (75)
V(g?)
C‘CNMB+MK* , (7.6)
C
Bl=q—Z4 myTo(q%)(M3—MZ,)
+CoA1(q?) (Mg+ M), (7.7
C; T3(g?)
Bo=—|—4my| To(q?)+ 9> —5——5—
2 9 b( 2(9°) +q (Mé—Mi*)
Az(qz)
+C9—MB+MK* , (7.9
D;=C10A1(d%)(Mg+Myx), (7.9
A2(q2)
The FB asymmetry is defined as
APE(g?)
1 dor 0 d’r
fo dg’d cosﬁ/d cos,— f_ldqzd cosﬁ/d cost,
~ 1 dr 0 d’I’ ’
fo dg?d cosﬂ/d cos,+ j,ldqzd cose/d cos,
(7.11
thus, we have
3 20%AL +AR-AL —AR
Are(q) = o 29 D @12

4 A +20% At +AR+AL +AR)

AFB(g?) is depicted in Fig. 6; it is consistent with the pre-
diction of low asymmetry in the smali?> region and high
asymmetry for largeg?. The analysis of the individual
shapes of the helicity amplitudéseglecting the long dis-
tance contributionshows tha; andAR have comparable

size, and therefore there is a cancellation of their contribution

in Eg. (7.12; moreover, they are small with respect to
A“R . In the region of largeM2. ., A- dominates over
AR | whereas the situation is reversed for low dilepton in-

variant mass squared, and this is the reason for the small

positive asymmetry appearing in Fig. 6 fcM?/V_$3

GeV?2. It is interesting to observe that such positive asym-

metry depends orC,, and that it disappears i€; has a
reversed sign.

The invariant-mass-squared distribution of the lepton pair
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FIG. 6. Forward-backward asymmetry in the decay
B—K*/ "/~ the dashed line refers to the short distance contribu-
tion only.

B(B—K*/ "/ 7)|sq=1x10 °V,/0.04%, to be compared
to the experimental upper limitB(B®—K*%u" ™)
<3.1x10°° (CLEO ) and B(B°—K*%u*u")<2.3
X 10 % (UA1) (at 90% C.L) obtained excluding the region
of the resonanced/ and ¢’ [41,44,39. Also in this case
the uncertainty irCq does not have relevant consequences.
The interesting observation is that, for low values of the
invariant mass squared, the distribution is still sizable, an
effect that could be revealed at futuBefactories such as the
Pep-ll asymmetri@™ e~ collider at SLAC.

VIIl. CONCLUSIONS

In this paper we have analyzed some features of the rare
decaysB—K/*/~ andB—K*/*/~ within the theoreti-
cal framework provided by the standard model, using an ap-
proach based on three-point function QCD sum rules to com-
pute the relevant hadronic matrix elements.

Albeit QCD sum rules have their own limitatiorifinite
number of terms in the operator product expansion of the

SERNRARRRE:
0.9 ]
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(107)

dBr(B = K'I'")/dq

IllIIII|IIII|IIII|I]II|HII|IIIIIII)I!IIII|I

LN AN LD AR ERREN LLRLY RARA) SARNNRRARRA

Eooolos b Lo baa boen Lo by n Powa 1y

2 4 6 8 10 12 14 16 18
4’ (Gev?)

FIG. 7. Invariant-mass-squared distribution of the lepton pair for

is depicted in Fig. 7, where the short distance contribution ishe decayg—K* /*/~; the dashed line refers to the short distance
separately displayed. The predicted branching ratio igontribution only.
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correlators, values of the condensates, validity of the local As for the decays we have analyzed in the present paper,
duality assumptiop we believe that the obtained results arewithin the standard model they are expected with branching
meaningful from the quantitative point of view. ratios of the order 10’ (B—K/*/7) and 10°
There is a quite good agreement with independent QCQRB—K* /" /"), with peculiar shapes of the invariant mass
methods(lattice QCD, light-cone sum rulg$or a few quan-  of the lepton pair and of the FB asymmetry. Any deviation
tities computed by the various approaches. The calculationgom the above expectations would be interpreted as a signal
of the remaining quantitiesFp, T;, Aq) by the other two  of deviation from the standard model. Interesting experimen-
methods is required in order to complete the overview on thgg| data are therefore expected from current and future

various results. _ ee” colliders in this exciting sector of the heavy flavor
We have used our results to test some relations among thghysics.

computed form factors which hold in the infinite heavy quark
limit, but that are expected to hold also for low values of
g? and for finiteb mass. We have found that the different
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form factors satisfy with different accuracies these relations,
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APPENDIX A: B—K/*/~

The three-point function QCD sum rule for the form fackr(g?) in Eq. (3.2) can be derived by studying the function
I1(p? p'?9? in Eq. (3.4 and using in Egs(3.9), (3.11) the expressions

ME 1
H——ZfoBEm, (A1)
N2 3 ' 1 122 ’ ’ 2,2
p(s,s',q ):W 2A's—Au+ X[GA s°+2Ass —6AA'su+A“u]y, (A2)

with A=s—mZ, A’=s'—mZ, u=s+s’'— g% A=u?—4ss . The coefficients ob =3 andD =5 vacuum matrix elements are
given by

d;=0, (A3)
m
dSZW' (A4)

with r=p2—m2, r'=p'?—m?

<.
Also Fl(qz) and Fo(qz) can be derived by equations analogous3®), (3.11). The relevant quantities del(qz) are
given by

Mg
H:foBm_b, (AS)

3
p(s,s',0%) = 52| Mol2A(u=s)+ A" (u—4s)]+my(Au—24"s)

+ %[Az(Bs’u— 2ss' —u?)+A'%(3su—6s%) +2AA’ (3su—2sS —u?)] (AB)
N ,
dy=— 5 A7
3 2rr "’ ( )
2 2 2 2
L mg 1 2mg—msm,—2q
As= 237 * a3 gz 12r%r'? (A8)

For Fo(g?) the formulas read

Mg
H=foBm—b(M§—Mﬁ), (A9)
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!

3 2 u
p(s,s',9%) = m[A(mb—ms)wL T{mb[Z(A—A’HZs’—u]+ms(u—23)}] , (A10)

~ My(Mp—my)

d.=
3 rr’

(A1)

(A12)

2 2 2 2 3
mpmg  My(Mg—MyMs+mg—qg°) mp—mg My 2m,
ds=(My—my) .

+ + +
2rr '3 6ror’? 6rr’s " 2r3’ " 3rer’

In the formulas for the coefficients of the nonperturbative contributions, reported in this appendix and in the following one, we
have omitted all terms that vanish after the double Borel transform.

APPENDIX B: B—K*/*/~

The quantities appearing in the sum rule for the form fa@tgg?) in Eq. (4.2) read

M3
H:2fK*MK*fB_! (Bl)
my

3 1
p(s,s',9%) = Y A= —{mym2A"s+2As"—u(A+A")]

8\
+(s'—u)(2A's—Au)—s(2As'—A'u)—A'?s—A%S"+AA'u}, (B2)
(my+mg)
3:_Trsv (B3)

M, 3myt2mg  mi(mp+mg)  mi(mptmy)  (My+mg[mpmst2(q’—mi—md)]

ds=Tor2t 1% " a7 ardr 122 (B4)
For the form factorT,(q?),
M3
H:—fK*MK*fBE(ME—Mi*), (B5)
(s.8'.q)= — (A= 8)+ (A5~ 875)+ (u—29) A STAS TAATY) (B6)
S,S, = ——1MyMm — S — S u—~2S s
_(mb_ms)[(mb+ms)2_q2]
d3_ 4rr/ ’ (87)
o 3ot ms  (My—mgmel (my+my®—g%]  (my—mgmef(my+mg)?-g?]
5 241’ 8rr’3 8rir’
(my— my)[(My +Mg)?— G [Mymy— 2(m + g — )] G*(2my—my) — 2(My + M) (m; —mg)
24r%r'? 24rr'?
g%(5my—4mg) — 4(my+ mg) (mz— m2)
242’ : (B8)
For the form factoV(q?),
f f M3 2
H— K*MK* Bm_bm, (Bg)

3
p=— Zar[Ms(248' —A'U)+my(24’s—Au)], (B10)
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e 1 B11
== (B11)
! m m?  2(mZ+m2—qg?)—mymg 2
57312 203 2’3 6ror'? ' B2
For the form factorA;(g?),

M2
H:fK*MK*fB—B(MB+MK*)y (Bls)

My
2| (a7 e ma)+ a2 A% - A0 ") (514

=——1|(m m S S — u)i,

p 8\/X b S A

ds= [mp+mE—g?+2mymg], (619

2’

1 3m2+9mpymg+4mi—4g® Ami+emymgt+6mi—4g?> m2[(mp+mg)2—g?] mZ(my+ms)?—g?]

6rr’ 12r°r’ 24r?r'? 4rr '3 4r3r’
— 4mi—6m3m,— 4m2m2— 6mymS3— 4m?— 4m2q?+ 6m,myq?+ 8mZq?— 4q*
- 772 . (B16)
24 “r
For the form factorA,(q?),
H=fy«Mxf My 1 Bl
e Te T, My M e
3 ! ! !
P="gNan my(2As' —A'u)+my(2A’'s—Au)
2my 2 2 2 2 2
+T[A’ (2ss'+u“—3su)+3A9(2s'“—s'u)+2AA’'(—3s'u+2ss +u)]y, (B19)
ds= ! B19
3 2“” ’ ( )
1 m? m2  2m2+2m2—2g%—mymg
=— + + + _
ds 6ror’ " 4rr'3 " 4r3r’ 12r%r’2 (B20)
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